WO2022027558A1 - Method for controlling rlc entities of user equipment, network node and user equipment - Google Patents

Method for controlling rlc entities of user equipment, network node and user equipment Download PDF

Info

Publication number
WO2022027558A1
WO2022027558A1 PCT/CN2020/107713 CN2020107713W WO2022027558A1 WO 2022027558 A1 WO2022027558 A1 WO 2022027558A1 CN 2020107713 W CN2020107713 W CN 2020107713W WO 2022027558 A1 WO2022027558 A1 WO 2022027558A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc entities
user equipment
network node
activating
deactivating
Prior art date
Application number
PCT/CN2020/107713
Other languages
French (fr)
Inventor
Hejun WANG
Jia SHENG
Original Assignee
JRD Communication (Shenzhen) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JRD Communication (Shenzhen) Ltd. filed Critical JRD Communication (Shenzhen) Ltd.
Priority to CN202080104320.5A priority Critical patent/CN116235617A/en
Priority to PCT/CN2020/107713 priority patent/WO2022027558A1/en
Publication of WO2022027558A1 publication Critical patent/WO2022027558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a method for controlling activation/deactivation of Radio Link Control (RLC) entities, a network node and a user equipment.
  • RLC Radio Link Control
  • Wireless communication systems and networks have developed towards being a broadband and mobile system.
  • user equipment UE is connected by a wireless link to a radio access network (RAN) .
  • the RAN comprises a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control.
  • BSs base stations
  • CN core network
  • the RAN and CN each conduct respective functions in relation to the overall network.
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR New Radio
  • Ultra-reliable low-latency communication is one of several different types of use cases supported by the 5G NR standard, as stipulated by 3GPP Release 15.
  • URLLC is a communication service for successfully delivering packets with stringent requirements, particularly in terms of availability, latency, and reliability.
  • URLLC is developed to support the emerging applications and services, such as wireless control and automation in industrial factory environments, inter-vehicular communications for improved safety and efficiency, and the tactile internet.
  • URLLC is important for 5G as it supports verticals bringing new business to the whole telecommunication industry.
  • URLLC low latency which is the key point to make autonomous vehicle and remote surgeries possible. Low latency allows a network to be optimized for processing incredibly large amounts of data with minimal delay or latency.
  • URLLC requires a quality of service (QoS) totally different from mobile broadband services.
  • QoS quality of service
  • PDCP duplication is a useful L2 tool for reliability enhancement so that the reliability requirement of URLLC with moderate channel condition in which the reliability target of L1 is not very stringent.
  • the most stringent reliability requirement in URLLC is 1-10 -9 .
  • the target reliability of 1-10 -9 can be achieved by 3-leg duplication with common link in theory.
  • each leg should use an exclusive carrier component (CC) set.
  • CC exclusive carrier component
  • DC duplication since it is excluded to extend DC to more than two configured CGs, at least one of the CGs should be configured with 2-leg or 3-leg PDCP duplication when DC duplication is configured.
  • PDCP duplication with more than two RLC entities is supported by NR, and RLC entities activation/deactivation is determined by Media access control control element (MAC CE) .
  • MAC CE Media access control control element
  • Network coordination is beneficial for PDCP duplication in the uplink in NR-DC/CA architectures, a mechanism for network coordinated RLC entities activation/deactivation is needed.
  • An object of the present disclosure is to propose a method for controlling activation/deactivation of Radio Link Control (RLC) entities, a base station and a user equipment.
  • RLC Radio Link Control
  • a first aspect of the disclosure provides a method for controlling Radio Link Control (RLC) entities of a user equipment executable in a hosting network.
  • the method comprises transmitting a RLC entities activating/deactivating signaling to a user equipment, receiving a status message indicating to active/inactive statuses of RLC entities of the user equipment which activates the RLC entities in response to the RLC entities activating/deactivating signaling, and updating the activate statuses of the RLC entities of the user equipment based on the status message.
  • RLC Radio Link Control
  • the method further comprises determining a delay level of packets based on Quality-of-Service (QoS) information.
  • QoS Quality-of-Service
  • the method further comprises upon a condition that the delay level of packets is met an activation operation with X2/Xn interface delay, transmitting the RLC entities activating signaling to an assisting network node, and forwarding the status message to the assisting network node.
  • the method further comprises transmitting the RLC entities activating/deactivating signaling to the assisting network node via an X2/Xn interface.
  • the method further comprises transmitting the RLC entities activating/deactivating signaling to the user equipment and the assisting network node simultaneously.
  • the method further comprises transmitting the RLC entities activating/deactivating signaling to the user equipment through an Uu interface.
  • the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
  • MAC CE Medium Access Control Control Element
  • the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
  • the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
  • a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
  • the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
  • MCG master cell group
  • SCG secondary cell group
  • the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
  • DC Dual Connectivity
  • the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
  • a split data radio bearer is configured for the user equipment.
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration.
  • the method further comprises receiving a timer-expiring status message from the user equipment indicating to the active/inactive statuses of RLC entities of the user equipment when a timer of the user equipment expires by the time duration, and updating the activate statuses of the RLC entities of the user equipment based on the timer- expiring status message.
  • the method further comprises transmitting a modified RLC entities activating/deactivating signaling to the user equipment, receiving a timer-restarting status message from the user equipment indicating to the active statuses of RLC entities of the user equipment which activates the RLC entities in response to the modified RLC entities activating/deactivating signaling, when a timer of the user equipment restarts before the time duration is reached, and updating the activate statuses of the RLC entities of the user equipment based on the timer-restarting status message.
  • the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  • DC Dual Connectivity
  • CA Carrier Aggregation
  • CA Carrier Aggregation
  • the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  • DRB split data radio bearer
  • the split data radio bearer is configured for the user equipment.
  • the user equipment is in an RRC_CONNECTED state with the hosting network node.
  • the method further comprises periodically transmitting the RLC entities activating/deactivating signaling to the user equipment.
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
  • DRB split data radio bearer
  • a second aspect of the disclosure provides a network node.
  • the network node comprises a transceiver and a processor connected with the transceiver and configured to execute the following operations comprising: transmitting a RLC entities activating/deactivating signaling to a user equipment, receiving a status message indicating to active statuses of RLC entities of the user equipment which activates/deactivates the RLC entities in response to the RLC entities activating/deactivating signaling, and updating the activate statuses of the RLC entities of the user equipment based on the status message.
  • the operations further comprise determining a delay level of packets based on Quality-of-Service (QoS) information.
  • QoS Quality-of-Service
  • the operations further comprise upon a condition that the delay level of packets is met an activation operation with X2/Xn interface delay, transmitting the RLC entities activating/deactivating signaling to an assisting network node, and forwarding the status message to the assisting network node.
  • the operations further comprise transmitting the RLC entities activating/deactivating signaling to the assisting network node via an X2/Xn interface.
  • the operations further comprise transmitting the RLC entities activating/deactivating signaling to the user equipment and the assisting network node simultaneously.
  • the operations further comprise transmitting the RLC entities activating/deactivating signaling to the user equipment through an Uu interface.
  • the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
  • MAC CE Medium Access Control Control Element
  • the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
  • the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
  • a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
  • the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
  • MCG master cell group
  • SCG secondary cell group
  • the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
  • DC Dual Connectivity
  • the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
  • a split data radio bearer is configured for the user equipment.
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration.
  • the operations further comprise receiving a timer-expiring status message from the user equipment indicating to the active statuses of RLC entities of the user equipment when a timer of the user equipment expires by the time duration, and updating the activate statuses of the RLC entities of the user equipment based on the timer-expiring status message.
  • the operations further comprise transmitting a modified RLC entities activating/deactivating signaling to the user equipment, receiving a timer-restarting status message from the user equipment indicating to the active statuses of RLC entities of the user equipment which activates/deactivates the RLC entities in response to the modified RLC entities activating/deactivating signaling, when a timer of the user equipment restarts before the time duration is reached, and updating the activate statuses of the RLC entities of the user equipment based on the timer-restarting status message.
  • the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  • DC Dual Connectivity
  • CA Carrier Aggregation
  • CA Carrier Aggregation
  • the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  • DRB split data radio bearer
  • the split data radio bearer is configured for the user equipment.
  • the user equipment is in an RRC_CONNECTED state with the hosting network node.
  • the operations further comprise periodically transmitting the RLC entities activating/deactivating signaling to the user equipment.
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
  • DRB split data radio bearer
  • a third aspect of the disclosure provides a method for controlling Radio Link Control (RLC) entities of a user equipment comprising: receiving an RLC entities activating/deactivating signaling from a hosting network node, activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling, and transmitting, from the user equipment to the hosting network node, a status message indicating to active statuses of RLC entities of the user equipment.
  • RLC Radio Link Control
  • the method further comprises: upon a condition that a delay level of packets is met an activation operation with X2/Xn interface delay, receiving the RLC entities activating/deactivating signaling from an assisting network node that is forwarded by the hosting network node via an X2/Xn interface, and activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node.
  • the method further comprises: receiving the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node through an Uu interface.
  • the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
  • MAC CE Medium Access Control Control Element
  • the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
  • the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
  • a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
  • the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
  • MCG master cell group
  • SCG secondary cell group
  • the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
  • DC Dual Connectivity
  • the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
  • a split data radio bearer is configured for the user equipment.
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration.
  • the method further comprises triggering a timer of the user equipment upon receiving the RLC entities activating/deactivating signaling.
  • the method further comprises restoring the activate statuses of the RLC entities of the user equipment when the timer expires by the time duration, and transmitting a timer-expiring status message to the hosting network node indicating to the active statuses of RLC entities of the user equipment.
  • the method further comprises restarting the timer of the user equipment upon receiving a modified RLC entities activating/deactivating signaling before the time duration is reached, activating/deactivating the RLC entities in response to the modified RLC entities activating/deactivating signaling from the hosting network node, and transmitting a timer-restarting status message to the hosting network node indicating to the active statuses of RLC entities of the user equipment.
  • the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  • DC Dual Connectivity
  • CA Carrier Aggregation
  • CA Carrier Aggregation
  • the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  • DRB split data radio bearer
  • the split data radio bearer is configured for the user equipment.
  • the user equipment is in an RRC_CONNECTED state with the hosting network node.
  • the method further comprises periodically transmitting, from the user equipment to the hosting network node, the status message indicating to active statuses of RLC entities of the user equipment.
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
  • DRB split data radio bearer
  • a fourth aspect of the disclosure provides a user equipment.
  • the user equipment comprises a transceiver, and a processor connected with the transceiver and configured to execute the following operations comprising: receiving an RLC entities activating/deactivating signaling from a hosting network node, activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling, and transmitting, from the user equipment to the hosting network node, a status message indicating to active statuses of RLC entities of the user equipment.
  • the operation further comprise: upon a condition that a delay level of packets is met an activation operation with X2/Xn interface delay, receiving the RLC entities activating/deactivating signaling from an assisting network node that is forwarded by the hosting network node via an X2/Xn interface, and activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node.
  • the operation further comprise: receiving the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node through an Uu interface.
  • the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
  • MAC CE Medium Access Control Control Element
  • the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
  • the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
  • a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
  • the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
  • MCG master cell group
  • SCG secondary cell group
  • the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
  • DC Dual Connectivity
  • the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
  • a split data radio bearer is configured for the user equipment.
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration.
  • the operation further comprise triggering a timer of the user equipment upon receiving the RLC entities activating/deactivating signaling.
  • the operation further comprise restoring the activate statuses of the RLC entities of the user equipment when the timer expires by the time duration, and transmitting a timer-expiring status message to the hosting network node indicating to the active statuses of RLC entities of the user equipment.
  • the operation further comprise restarting the timer of the user equipment upon receiving a modified RLC entities activating/deactivating signaling before the time duration is reached, activating/deactivating the RLC entities in response to the modified RLC entities activating/deactivating signaling from the hosting network node, and transmitting a timer-restarting status message to the hosting network node indicating to the active statuses of RLC entities of the user equipment.
  • the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  • DC Dual Connectivity
  • CA Carrier Aggregation
  • CA Carrier Aggregation
  • the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  • DRB split data radio bearer
  • the split data radio bearer is configured for the user equipment.
  • the user equipment is in an RRC_CONNECTED state with the hosting network node.
  • the operation further comprise periodically transmitting, from the user equipment to the hosting network node, the status message indicating to active statuses of RLC entities of the user equipment.
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
  • DRB split data radio bearer
  • the disclosed method may be implemented in a chip.
  • the chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium.
  • the non-transitory computer readable medium when loaded to a computer, directs a processor of the computer to execute the disclosed method.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the disclosed method may be programmed as computer program product, that causes a computer to execute the disclosed method.
  • the disclosed method may be programmed as computer program, that causes a computer to execute the disclosed method.
  • Embodiments of the disclosure are provided to a method for controlling activation/deactivation of Radio Link Control (RLC) entities, a base station and a user equipment.
  • RLC Radio Link Control
  • PDCP duplication with more than two RLC entities configured for a DRB in a combination of DC architecture and a CA architecture one network node cannot control the active/inactive status of the RLC entities of a user equipment belonging to the other network node in some cases.
  • RLC entities activation/deactivation configuration can be transmitted to the CN by one network node and forwarded to the other network node, then the other network node transmits the configuration to the UE, or the hosting node may transmit activation/deactivation signaling to the assisting node and the assisting node then forwards the RLC entities activating/deactivating signaling to the UE.
  • the network node transmits the RLC entities activating/deactivating signaling to the UE through the Uu interface directly.
  • the network node For the packet that the delay requirement can be met by the transmission with X2/Xn delay introduced, the network node transmits the RLC entities activating/deactivating signaling to the UE through the Uu interface and via the other network node. This may not meet the delay requirement for some kinds of services with high delay requirement because of the X2/Xn interface delay introduced. Hence, the present disclosure can efficiently activating/deactivating RLC entities of a user equipment.
  • Fig. 1 is a schematic diagram showing a system according to an embodiment of the present disclosure.
  • Fig. 2 illustrates a schematic diagram of a master node acting as a hosting network node according to the embodiment of the present disclosure.
  • Fig. 3 illustrates a schematic diagram of a secondary node acting as a hosting network node according to another embodiment of the present disclosure.
  • Fig. 4 illustrates a network side protocol termination options for MCG, SCG and split bearers in MR-DC with 5GC according to an embodiment of the present disclosure.
  • Fig. 5 illustrates a radio protocol architecture for MCG, SCG and split bearer from a UE perspective in MR-DC.
  • Fig. 6 illustrates a flow of a method of controlling activation/deactivation of Radio Link Control (RLC) entities according to an embodiment of the present disclosure.
  • RLC Radio Link Control
  • Fig. 7 is a schematic diagram showing a system according to another embodiment of the present disclosure.
  • Fig. 8 illustrates a flow of a method of controlling activation/deactivation of Radio Link Control (RLC) entities according to another embodiment of the present disclosure.
  • RLC Radio Link Control
  • Fig. 9 illustrates a timing diagram of an RLC entity according to another embodiment of the present disclosure.
  • Fig. 10 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • Specify PDCP duplication with up to 4 RLC entities configured by RRC in architectural combinations including CA only and NR-DC in combination with CA [RAN2, RAN3] .
  • Specify mechanisms relating to dynamic control of how a set or subset of configured RLC entities or legs are used for PDCP duplication [RAN2, RAN3] .
  • Lower priority objective Specify enhancements for more resource efficient PDCP duplication by enhancing PDCP duplication activation/deactivation mechanisms (e.g. MAC CE based or based on UE configurable criteria) , provided that complexity increase is reasonable. Per-packet selective duplication can also be considered. [RAN2] .
  • RLC entities can be configured for a DRB leveraging DC and CA architecture, so different combinations of number of RLC entities hosted in MCG and SCG are allowed.
  • the number of copies generated is equal to the number of active RLC entities, i.e. one copy per leg/RLC entity, and active/inactive state is determined by MAC CE.
  • the network provides in RRC only one LCH cell restriction configuration per LCH, like in Rel-15. Changes to LCH cell restriction configuration is only possible via RRC.
  • the MAC CE signaling structure is either:
  • a new LCID is used for the Rel-16 MAC CE controlling PDCP duplication.
  • the RLC entities activating/deactivating signaling will include the duplication activation status corresponding to all the RLC entities configured for a DRB, thus belonging to both MCG and SCG in case of DC or DC and CA scenarios.
  • Network coordination is beneficial for PDCP duplication in the uplink in NR-DC/CA architectures.
  • MAC CE Dynamic Network control of DRB duplication
  • the number of copies generated is equal to the number of active RLC entities, i.e. one copy per leg/RLC entity, and active/inactive state is determined by MAC CE.
  • the network provides in RRC only one LCH cell restriction configuration per LCH, like in Rel-15. Changes to LCH cell restriction configuration is only possible via RRC.
  • the MAC CE signaling structure is either:
  • Network coordination is beneficial for PDCP duplication in the uplink in NR-DC/CA architectures.
  • the UE just follows the received MAC CE, even if the RLCi field belongs to the other node. No specification change is required.
  • ⁇ PDCP duplication with more than two RLC entities is supported only by NR. It needs to be clarified in 37.340 and 38.331.
  • One PDCP entity has one primary path.
  • the number of copies generated is equal to the number of active RLC entities, i.e. one copy per leg/RLC entity.
  • ⁇ RLC entities active/inactive state is determined by MAC CE.
  • the index I for RLCi field of Rel-16 MAC CE is determined by ascending order of logical channel ID of secondary RLC entities in MCG and SCG.
  • the UE just follows the received MAC CE, even if the RLCi field belongs to the other node.
  • the network provides in RRC only one LCH cell restriction configuration per LCH.
  • a new LCID is used for the Rel-16 MAC CE controlling PDCP duplication.
  • Network coordination is beneficial for PDCP duplication in the uplink in NR-DC/CA architectures.
  • a telecommunication system including a UE 10a, a first network node 200a, a second network node 200b, and a network entity device 30. Connections between devices and device components are shown as lines and arrows in the Figs.
  • the UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a.
  • the first network node 200a may include a processor 201a, a memory 202a, and a transceiver 203a.
  • the second network node 200b may include a processor 201b, a memory 202b, and a transceiver 203b.
  • the network entity device 300 may include a processor 301, a memory 302, and a transceiver 303.
  • Each of the processors 11a, 201b, 201a, and 301 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the processors 11a, 201b, 201a, and 301.
  • Each of the memory 12a, 202a, 202b, and 302 operatively stores a variety of program and information to operate a connected processor.
  • Each of the transceiver 13a, 203a, 203b, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals.
  • Each of the first network node 200a and second network node 200b may be a base station such as an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10a.
  • Each of the processor 11a, 201b, 201a, and 301 may include an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices.
  • ASICs application-specific integrated circuits
  • Each of the memory 12a, 202a, 202b, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • Each of the transceiver 13a, 203a, 203b, and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals.
  • RF radio frequency
  • the network entity device 300 may be a node in a CN.
  • CN may include LTE CN or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
  • UPF user plane function
  • SMF session management function
  • AMF mobility management function
  • UDM unified data management
  • PCF policy control function
  • PCF control plane
  • CP control plane
  • UP user plane
  • CUPS authentication server
  • NSSF network slice selection function
  • NEF network exposure function
  • Fig. 2 illustrates a schematic diagram of a master node acting as a hosting network node according to the embodiment of the present disclosure.
  • Fig. 3 illustrates a schematic diagram of a secondary node acting as a hosting network node according to another embodiment of the present disclosure.
  • the first network node 200a as a master node MN located in a master cell group MCG can be a hosting network node, while the second network node 200b serves as a secondary node SN located in a secondary cell group SCG can be an assisting network node.
  • the UE 10a is configured with a Dual connectivity (DC) architecture and a Carrier Aggregation (CA) architecture through RRC signaling.
  • DC Dual connectivity
  • CA Carrier Aggregation
  • the first network node 200a refers to the base station where the split bearer is located in the DC and CA architectures, and the second network node 200b in the architecture is the assisting node.
  • the first network node 200a can be an assisting network node while the second network node 200a can be a hosting network node.
  • Fig. 4 illustrates a network side protocol termination options for MCG, SCG and split bearers in multi-radio (MR) -DC with 5GC according to an embodiment of the present disclosure.
  • Fig. 5 illustrates a radio protocol architecture for MCG, SCG and split bearer from a UE perspective in MR-DC.
  • DRBs data radio bearers
  • Fig. 6 illustrates a flow of a method of controlling activation/deactivation of Radio Link Control (RLC) entities according to an embodiment of the present disclosure.
  • the hosting network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a directly, and transmits the RLC entities activating/deactivating signaling to the assisting network node 200b.
  • SDAP service data adaptation protocol
  • the hosting network node 200a determines a delay level of packets based on Quality-of-Service (QoS) information (Step 600) .
  • QoS Quality-of-Service
  • the hosting network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a directly through the Uu interface.
  • the RLC entities activating/deactivating signaling is transmitted to the UE 10a through Uu interface or/and via the assisting network node 200b. There is no particular order in time of the operations that the hosting network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a and to the assisting network node 200b.
  • the hosting network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a through the Uu interface (Step 601) , and then the hosting network node 200a transmits the RLC entities activating/deactivating signaling to the assisting network node 200b through the X2/Xn interface as step 602.
  • the network node 200a may transmit the RLC entities activating/deactivating signaling to the assisting network node 200b like step 602, and then sends the RLC entities activating/deactivating signaling to the UE 10a like step 601.
  • the network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a and to the assisting network node 200b simultaneously.
  • the RLC entities activating/deactivating signaling may be in any forms, e.g., MAC CE.
  • the RLC entities activating/deactivating signaling may be in form of per MAC entity bitmap or per RB.
  • the RLC entities activating/deactivating signaling that the hosting network node 200a sends to the UE 10a and the RLC entities activating/deactivating signaling transmits to the assisting network node 200b can be in different forms or formats.
  • the assisting network node 200b forwards the RLC entities activating/deactivating signaling received from the hosting network node 200a to the UE 10a through the Uu interface. (Step 604) .
  • the RLC entities activating/deactivating signaling may be in any forms, e.g., MAC CE.
  • the UE 10a may perform RLC entities activation/deactivation according to the RLC entities activating/deactivating signaling received from the hosting network node 200a (step 603) , or the UE 10a may activate/deactivate the RLC entities of the configured DRB belonging to the MAC entity corresponding to the hosting network node 200a (step 605) .
  • the hosting network node 200a acting as the master node receives the RLC entities activating/deactivating signaling for the split DRB, namely DRB1, then UE 10a may activate/deactivate the RLC0 belonging to the DRB1.
  • the UE 10a may perform RLC entities activation/deactivation according to the RLC entities activating/deactivating signaling received from the assisting network node 200b (step 605) .
  • the UE 10a may activate/deactivate the RLC entities of the configured DRB belonging to the MAC entity corresponding to the assisting network node 200b. For example, if the assisting network node 200b serves as the secondary node, then UE 10a may activate/deactivate RLC1 and RLC2 belonging to the DRB1.
  • the UE 10a may not perform RLC entities activation/deactivation until it received signaling from the hosting network node 200a and from the assisting network node 200b, then the UE 10a may activate/deactivate the RLC entities according to the RLC entities activating/deactivating signaling, including operations shown in step 603 and step 605.
  • the UE 10a can generate the RLC entities active/inactive status messages, then send the RLC entities active/inactive status messages to the hosting network node 200a and to the assisting network node 200b.
  • the status massage includes the active/inactive status information of the RLC entities after UE 10a performs the activate/deactivate operation.
  • the status message may be per RB, namely only include active/inactive status information of the RLC entities of a certain DRB, or the status message may be per MAC entity, namely include active/inactive status information of the RLC entities of a certain MAC entity, or the status message may be per UE 10a, including active/inactive status information of the RLC entities of the UE 10a.
  • the UE 10a may generate status message including status information of RLC entities of the DRB (s) of the MAC entity corresponding to the hosting network node 200a after RLC entities activation/deactivation is performed, and send to the hosting network node 200a (step 606) .
  • the status message is per DRB, for DRB1, the status message includes status information of RLC0 of the DRB1.
  • the UE 10a may generate status message including status information of RLC entities of the DRB (s) of the MAC entity corresponding to the assisting network node 200b after step 605 is performed, and send to the assisting network node 200b (Step 608) . If the status message is per DRB, for DRB1, the status message includes status information of RLC1 and RLC2 of DRB1.
  • the UE 10a may generate status message including status information of RLC entities of the DRB (s) of MAC entity corresponding to the hosting network node 200a and MAC entity corresponding to the assisting network node 200b after step 603 and step 605 are both performed, and send the message to the hosting network node 200a and the assisting network node 200b, as is shown in step 606 and 608.
  • the status message shall include status information of RLC0, RLC1 and RLC2 of DRB1.
  • the status messages received by the hosting network node 200a and the assisting network node 200b from the UE 10a may be shared between the hosting network node 200a and the assisting network node 200b via X2/Xn interface, as is shown in step 608 and step 610.
  • the hosting network node 200a and assisting network node 200b can update status information according to the RLC entities active/inactive status message received from the UE 10a.
  • the hosting network node 200a may maintain status information of the RLC entities of the UE 10a.
  • the status information may be per MAC entities, e.g., the status information including status information of RLC0 and RLC1 of DRB0, RLC0 of DRB1.
  • the status information may be per UE 10a, e.g., the status information including status information of RLC0 and RLC1 of DRB0, RLC0, RLC1 and RLC2 of DRB1.
  • the assisting network node 200b may maintain status information of the RLC entities of the UE 10a.
  • the status information may be per MAC entities, e.g., the status information includes status information of RLC1 and RLC2 of DRB1.
  • the status information may be per UE 10a, e.g., the status information includes status information of RLC0 and RLC1 of DRB0, RLC0, RLC1 and RLC2 of DRB1.
  • the hosting network node 200a and the assisting network node 200b may both maintain the RLC entities of the UE 10a.
  • the status information may be per UE 10a, e.g., the status information includes status information of RLC0 and RLC1 of DRB0, RLC0, RLC1 and RLC2 of DRB1.
  • An indicator for the RLC entities status information is introduced to indicate whether the RLC entities status information is available.
  • the hosting network node 200a transmits RLC entities activation/deactivation signaling to the UE 10a, it set the value of the indicator to ‘unavailable’ .
  • the UE 10a performing RLC entities activation/deactivation received from the hosting network node 200a via assisting node, and sending the acknowledge message (may include RLC entities active/inactive status information) to the hosting network node 200a through Uu interface directly or via the assisting node
  • the hosting network node 200a may set the value of the indicator to ‘available’ .
  • An indicator is introduced to indicate whether the delay introduced by the X2/Xn interface can meet the requirement of the packet to be transmitted.
  • the delay introduced by the X2/Xn interface can meet the requirement, set the value of indicator to ‘available’ , the RLC entities activating/deactivating signaling is transmitted to the UE 10a through Uu interface and via the assisting node. And the RLC entities activating/deactivating signaling is transmitted to UE 10a through Uu interface only. Otherwise, the delay introduced by the X2/Xn interface cannot meet the requirement, set the value of indicator to ‘unavailable’ , and transmit the RLC entities activating/deactivating signaling to the UE 10a directly.
  • the value of the indicator ‘available’ , ‘unavailable’ can be digital ‘1’ , ‘0’ , or in any other forms.
  • This embodiment discloses the method that for the packet that its delay requirement can be met by the activation/deactivation operation with X2/Xn interface delay introduced, the RLC entities activation/deactivation signaling can be sent to the assisting network node 200bthrough the X2/Xn interface, by the hosting network node 200a, when it is transmitted to the UE 10a directly. Then the assisting network node 200b forward the RLC entities activating/deactivating signaling to the UE 10a via the Uu interface. After receiving the RLC entities activating/deactivating signaling from the hosting network node 200a, the UE 10a shall activate/deactivate the RLC entities as the RLC entities activating/deactivating signaling indicated.
  • the UE 10a generates RLC entities active/inactive status message and sends it to the hosting network node 200a.
  • the hosting network node 200a updates the local status information of the RLC entities.
  • the UE 10a shall activate/deactivate the RLC entities as the RLC entities activating/deactivating signaling indicated.
  • UE 10a generates RLC entities active/inactive status message and transmits it to the assisting network node 200b.
  • the assisting network node 200bthen updates the local status information of the RLC entities according to the information of the RLC entities status message received from the UE 10a. At the same time, the assisting network node 200b forwards the RLC entities status message to the hosting network node 200a through the X2/Xn interface, and the hosting network node 200a updates the local status information of the RLC entities accordingly.
  • Fig. 7 illustrates a telecommunication system including a UE 10, a network node 200 and a network entity device 30 according to another embodiment of the present disclosure.
  • the UE 10 is configured with a Dual connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of the DC architecture and the CA architecture.
  • the UE 10 may include a processor 11, a memory 12, a timer 14 and a transceiver 13.
  • the network node 200 may include a processor 201, a memory 202, and a transceiver 203.
  • the network entity device 300 may include a processor 301, a memory 302, and a transceiver 303.
  • Each of the processors 11, 201, and 301 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the processors 11, 201, and 301.
  • Each of the memory 12, 202 and 302 operatively stores a variety of program and information to operate a connected processor.
  • Each of the transceiver 13, 203, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals.
  • Each of the network node 200 may be a base station such as an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10.
  • Each of the processor 11, 201, and 301 may include an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices.
  • Each of the memory 12, 202, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • Each of the transceiver 13a, 203 and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals.
  • RF radio frequency
  • Fig. 8 illustrates a flow of a method of controlling activation/deactivation of Radio Link Control (RLC) entities according to another embodiment of the present disclosure.
  • RLC Radio Link Control
  • DRBs data radio bearers
  • the network node 200 and the user equipment 10 are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  • DC Dual Connectivity
  • CA Carrier Aggregation
  • CA Carrier Aggregation
  • Up to four RLC entities of the UE 10 to be configured for a radio bearer is supported by the UE 10.
  • the network node 200 sends RLC entities activating/deactivating signaling to the UE 10 (step 801) .
  • the RLC entities activating/deactivating signaling carries a configuration including a time duration, data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  • the DRB ID included in the configuration may identify a DRB in CA architecture, MCG DRB, SCG DRB or split DRB in DC architecture or in a combination of the DC and CA architectures.
  • the time duration is used to set the value of the timer 14.
  • the timer 14 may be configured per radio bearer.
  • the UE 10 can activate/deactivate the RLC entities according to the RLC entities activating/deactivating signaling received from the base station, set the timer 14 with the duration time and start the timer 14 (step 802) .
  • the RLC entities active/inactive status shall remain unchanged until the timer 14 expires.
  • the UE 10 can report RLC entities active/inactive status information to the base station (step 803) .
  • the UE 10 restores the status of the RLC entities (Step 804) .
  • the UE 10 can restore the RLC entities to the status before the RLC entities activation/deactivation is performed indicated by the RLC entities activating/deactivating signaling, or UE 10 can restore the RLC entities to the default status that can be active or inactive status.
  • the UE 10 can report a timer-expiring status message to the network node 200 (step 805) .
  • the timer-expiring status message indicates to the active/inactive statuses of RLC entities of the user equipment when the timer 14 expires by the time duration.
  • the network node 100 transmits a modified RLC entities activating/deactivating signaling to the UE 10 for the same DRB before the time duration is reached (step 806) , the UE 10 performs RLC entities activation/deactivation according to the modified RLC entities activating/deactivating signaling and restarts the timer 14 (step 807) . Then the UE 10 can transmit a timer-restarting status message indicating to the modified active statuses of RLC entities of the user equipment to the network node 200 (step 809) . The network node 200 updates the activate statuses of the RLC entities of the user equipment based on the timer-restarting status message.
  • the configuration may include DRB ID (s) , RLC ID (s) , operation (s) (activation/deactivation) , duration (s) .
  • the UE 10 shall activate/deactivate the RLC entities as is configured and start the timer 14 at the same time. Then the UE 10 reports the RLC entities active/inactive status information to the network node 200. When the timer 14 expires, the UE 10 can restore the RLC entities to the active/inactive status before the activation/deactivation operation, or to the default status. If the modified RLC entities activating/deactivating signaling is received from the network node 200 before the timer 14 expires, the UE 10 may perform as the latest configuration indicated, and restart the timer 14, then report RLC entities status information to the network node 200.
  • Fig. 9 illustrates a timing diagram of an RLC entity according to another embodiment of the present disclosure.
  • This embodiment disclosed a method that the RLC entities activation/deactivation configuration indicates that the RLC entities may be activated/deactivated periodically.
  • the configuration may include parameters like DRB ID (s) , RLC ID (s) , operation (s) (activation/deactivation) , periodicity, (active/inactive) duration, number of times, etc.
  • UE 10 can activate/deactivate the RLC entities periodically according to the configuration received from the network node 200. Every time the UE 10 activates/deactivates the RLC entities for a duration as is configured, and then restores the RLC entities status. If the number of times or the duration for the operation is configured, UE 10 can perform activation/deactivation periodically until the timer 14 expires or reached the number of times as is configured. Or UE 10 can keep performing activation/deactivation periodically until new signaling is received for the DRB.
  • Time duration t active and T p are parameters of the configuration.
  • the parameters can be per RLC entity or per DRB. That is to say for different RLC entities, the parameters can be the same or different.
  • the UE 10 may report RLC entities active/inactive status information to the network node 200.
  • the report may be periodically of a specified periodicity or every time the RLC entities status is changed.
  • Fig. 10 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • Fig. 10 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
  • RF radio frequency
  • the processing unit 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the UE, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the processing unit.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the processing unit, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
  • Embodiments of the disclosure are provided to a method for controlling activation/deactivation of Radio Link Control (RLC) entities, a base station and a user equipment.
  • RLC Radio Link Control
  • PDCP duplication with more than two RLC entities configured for a DRB in a combination of DC architecture and a CA architecture one network node cannot control the active/inactive status of the RLC entities of a user equipment belonging to the other network node.
  • RLC entities activation/deactivation configuration can be transmitted to the CN by one network node and forwarded to the other network node, then the other network node transmits the configuration to the UE, or the hosting node may transmit activation/deactivation signaling to the assisting node and the assisting node then forwards the RLC entities activating/deactivating signaling to the UE.
  • the network node transmits the RLC entities activating/deactivating signaling to the UE through the Uu interface directly.
  • the network node For the packet that the delay requirement can be met by the transmission with X2/Xn delay introduced, the network node transmits the RLC entities activating/deactivating signaling to the UE through the Uu interface and via the other network node. This may not meet the delay requirement for some kinds of services with high delay requirement because of the X2/Xn interface delay introduced. Hence, the present disclosure can efficiently activating/deactivating RLC entities of a user equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for controlling Radio Link Control (RLC) entities of a user equipment executable in a hosting network, comprises: transmitting a RLC entities activating/ deactivating signaling to a user equipment; receiving a status message indicating to active statuses of RLC entities of the user equipment which activates the RLC entities in response to the RLC entities activating/deactivating signaling; and updating the activate statuses of the RLC entities of the user equipment based on the status message.

Description

Method for Controlling RLC Entities of User Equipment, Network Node and User Equipment Technical Field
The present disclosure relates to the field of communication systems, and more particularly, to a method for controlling activation/deactivation of Radio Link Control (RLC) entities, a network node and a user equipment.
Background Art
Wireless communication systems and networks have developed towards being a broadband and mobile system. In cellular wireless communication systems, user equipment (UE) is connected by a wireless link to a radio access network (RAN) . The RAN comprises a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control. As will be appreciated the RAN and CN each conduct respective functions in relation to the overall network. The 3rd Generation Partnership Project (3GPP) has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or more macro-cells are supported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (New Radio) systems where one or more cells are supported by a base station known as a gNB.
Ultra-reliable low-latency communication (URLLC) , is one of several different types of use cases supported by the 5G NR standard, as stipulated by 3GPP Release 15. URLLC is a communication service for successfully delivering packets with stringent requirements, particularly in terms of availability, latency, and reliability. URLLC is developed to support the emerging applications and services, such as wireless control and automation in industrial factory environments, inter-vehicular communications for improved safety and efficiency, and the tactile internet. Thus, URLLC is important for 5G as it supports verticals bringing new business to the whole telecommunication industry.
One of the key features of URLLC is low latency which is the key point to make autonomous vehicle and remote surgeries possible. Low latency allows a network to be optimized for processing incredibly large amounts of data with minimal delay or latency. URLLC requires a quality of service (QoS) totally different from mobile broadband services.
PDCP duplication is a useful L2 tool for reliability enhancement so that the reliability requirement of URLLC with moderate channel condition in which the reliability target of L1 is  not very stringent. The most stringent reliability requirement in URLLC is 1-10 -9. With the typical reliability of 1-10 -3 of eMBB the target reliability of 1-10 -9 can be achieved by 3-leg duplication with common link in theory.
For Carrier Aggregation (CA) duplication, each leg should use an exclusive carrier component (CC) set. For dual connectivity (DC) duplication, since it is excluded to extend DC to more than two configured CGs, at least one of the CGs should be configured with 2-leg or 3-leg PDCP duplication when DC duplication is configured.
As per 3GPP Release 16, PDCP duplication with more than two RLC entities is supported by NR, and RLC entities activation/deactivation is determined by Media access control control element (MAC CE) . Network coordination is beneficial for PDCP duplication in the uplink in NR-DC/CA architectures, a mechanism for network coordinated RLC entities activation/deactivation is needed.
Technical Problem
For PDCP duplication with more than two RLC entities configured for a Data radio bearer (DRB) in a combination of DC architecture and a CA architecture, one network node cannot control the active/inactive status of the RLC entities belongs to the other node in some scenarios. Hence, a mechanism for network coordinated RLC entities activation/deactivation is needed.
Technical Solution
An object of the present disclosure is to propose a method for controlling activation/deactivation of Radio Link Control (RLC) entities, a base station and a user equipment.
A first aspect of the disclosure provides a method for controlling Radio Link Control (RLC) entities of a user equipment executable in a hosting network. The method comprises transmitting a RLC entities activating/deactivating signaling to a user equipment, receiving a status message indicating to active/inactive statuses of RLC entities of the user equipment which activates the RLC entities in response to the RLC entities activating/deactivating signaling, and updating the activate statuses of the RLC entities of the user equipment based on the status message.
In an embodiment of the present disclosure, the method further comprises determining a delay level of packets based on Quality-of-Service (QoS) information.
In an embodiment of the present disclosure, the method further comprises upon a condition that the delay level of packets is met an activation operation with X2/Xn interface delay,  transmitting the RLC entities activating signaling to an assisting network node, and forwarding the status message to the assisting network node.
In an embodiment of the present disclosure, the method further comprises transmitting the RLC entities activating/deactivating signaling to the assisting network node via an X2/Xn interface.
In an embodiment of the present disclosure, the method further comprises transmitting the RLC entities activating/deactivating signaling to the user equipment and the assisting network node simultaneously.
In an embodiment of the present disclosure, the method further comprises transmitting the RLC entities activating/deactivating signaling to the user equipment through an Uu interface.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
In an embodiment of the present disclosure, a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
In an embodiment of the present disclosure, the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
In an embodiment of the present disclosure, the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
In an embodiment of the present disclosure, the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
In an embodiment of the present disclosure, a split data radio bearer (DRB) is configured for the user equipment.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling carries a configuration including a time duration.
In an embodiment of the present disclosure, the method further comprises receiving a timer-expiring status message from the user equipment indicating to the active/inactive statuses of RLC entities of the user equipment when a timer of the user equipment expires by the time duration, and updating the activate statuses of the RLC entities of the user equipment based on the timer- expiring status message.
In an embodiment of the present disclosure, the method further comprises transmitting a modified RLC entities activating/deactivating signaling to the user equipment, receiving a timer-restarting status message from the user equipment indicating to the active statuses of RLC entities of the user equipment which activates the RLC entities in response to the modified RLC entities activating/deactivating signaling, when a timer of the user equipment restarts before the time duration is reached, and updating the activate statuses of the RLC entities of the user equipment based on the timer-restarting status message.
In an embodiment of the present disclosure, the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
In an embodiment of the present disclosure, the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
In an embodiment of the present disclosure, the split data radio bearer is configured for the user equipment.
In an embodiment of the present disclosure, the user equipment is in an RRC_CONNECTED state with the hosting network node.
In an embodiment of the present disclosure, the method further comprises periodically transmitting the RLC entities activating/deactivating signaling to the user equipment.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
A second aspect of the disclosure provides a network node. The network node comprises a transceiver and a processor connected with the transceiver and configured to execute the following operations comprising: transmitting a RLC entities activating/deactivating signaling to a user equipment, receiving a status message indicating to active statuses of RLC entities of the user equipment which activates/deactivates the RLC entities in response to the RLC entities activating/deactivating signaling, and updating the activate statuses of the RLC entities of the user equipment based on the status message.
In an embodiment of the present disclosure, the operations further comprise determining  a delay level of packets based on Quality-of-Service (QoS) information.
In an embodiment of the present disclosure, the operations further comprise upon a condition that the delay level of packets is met an activation operation with X2/Xn interface delay, transmitting the RLC entities activating/deactivating signaling to an assisting network node, and forwarding the status message to the assisting network node.
In an embodiment of the present disclosure, the operations further comprise transmitting the RLC entities activating/deactivating signaling to the assisting network node via an X2/Xn interface.
In an embodiment of the present disclosure, the operations further comprise transmitting the RLC entities activating/deactivating signaling to the user equipment and the assisting network node simultaneously.
In an embodiment of the present disclosure, the operations further comprise transmitting the RLC entities activating/deactivating signaling to the user equipment through an Uu interface.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
In an embodiment of the present disclosure, a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
In an embodiment of the present disclosure, the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
In an embodiment of the present disclosure, the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
In an embodiment of the present disclosure, the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
In an embodiment of the present disclosure, a split data radio bearer (DRB) is configured for the user equipment.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling carries a configuration including a time duration.
In an embodiment of the present disclosure, the operations further comprise receiving a timer-expiring status message from the user equipment indicating to the active statuses of RLC entities of the user equipment when a timer of the user equipment expires by the time duration, and updating the activate statuses of the RLC entities of the user equipment based on the timer-expiring status message.
In an embodiment of the present disclosure, the operations further comprise transmitting a modified RLC entities activating/deactivating signaling to the user equipment, receiving a timer-restarting status message from the user equipment indicating to the active statuses of RLC entities of the user equipment which activates/deactivates the RLC entities in response to the modified RLC entities activating/deactivating signaling, when a timer of the user equipment restarts before the time duration is reached, and updating the activate statuses of the RLC entities of the user equipment based on the timer-restarting status message.
In an embodiment of the present disclosure, the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
In an embodiment of the present disclosure, the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
In an embodiment of the present disclosure, the split data radio bearer is configured for the user equipment.
In an embodiment of the present disclosure, the user equipment is in an RRC_CONNECTED state with the hosting network node.
In an embodiment of the present disclosure, the operations further comprise periodically transmitting the RLC entities activating/deactivating signaling to the user equipment.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
A third aspect of the disclosure provides a method for controlling Radio Link Control (RLC) entities of a user equipment comprising: receiving an RLC entities activating/deactivating signaling from a hosting network node, activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling, and transmitting, from the user equipment to the  hosting network node, a status message indicating to active statuses of RLC entities of the user equipment.
In an embodiment of the present disclosure, the method further comprises: upon a condition that a delay level of packets is met an activation operation with X2/Xn interface delay, receiving the RLC entities activating/deactivating signaling from an assisting network node that is forwarded by the hosting network node via an X2/Xn interface, and activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node.
In an embodiment of the present disclosure, the method further comprises: receiving the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node through an Uu interface.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
In an embodiment of the present disclosure, a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
In an embodiment of the present disclosure, the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
In an embodiment of the present disclosure, the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
In an embodiment of the present disclosure, the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
In an embodiment of the present disclosure, a split data radio bearer (DRB) is configured for the user equipment.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling carries a configuration including a time duration.
In an embodiment of the present disclosure, the method further comprises triggering a timer of the user equipment upon receiving the RLC entities activating/deactivating signaling.
In an embodiment of the present disclosure, the method further comprises restoring the activate statuses of the RLC entities of the user equipment when the timer expires by the time duration, and transmitting a timer-expiring status message to the hosting network node indicating to the active statuses of RLC entities of the user equipment.
In an embodiment of the present disclosure, the method further comprises restarting the timer of the user equipment upon receiving a modified RLC entities activating/deactivating signaling before the time duration is reached, activating/deactivating the RLC entities in response to the modified RLC entities activating/deactivating signaling from the hosting network node, and transmitting a timer-restarting status message to the hosting network node indicating to the active statuses of RLC entities of the user equipment.
In an embodiment of the present disclosure, the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
In an embodiment of the present disclosure, the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
In an embodiment of the present disclosure, the split data radio bearer is configured for the user equipment.
In an embodiment of the present disclosure, the user equipment is in an RRC_CONNECTED state with the hosting network node.
In an embodiment of the present disclosure, the method further comprises periodically transmitting, from the user equipment to the hosting network node, the status message indicating to active statuses of RLC entities of the user equipment.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
A fourth aspect of the disclosure provides a user equipment. The user equipment comprises a transceiver, and a processor connected with the transceiver and configured to execute the following operations comprising: receiving an RLC entities activating/deactivating signaling  from a hosting network node, activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling, and transmitting, from the user equipment to the hosting network node, a status message indicating to active statuses of RLC entities of the user equipment.
In an embodiment of the present disclosure, the operation further comprise: upon a condition that a delay level of packets is met an activation operation with X2/Xn interface delay, receiving the RLC entities activating/deactivating signaling from an assisting network node that is forwarded by the hosting network node via an X2/Xn interface, and activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node.
In an embodiment of the present disclosure, the operation further comprise: receiving the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node through an Uu interface.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
In an embodiment of the present disclosure, a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
In an embodiment of the present disclosure, the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
In an embodiment of the present disclosure, the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
In an embodiment of the present disclosure, the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
In an embodiment of the present disclosure, a split data radio bearer (DRB) is configured for the user equipment.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling carries a configuration including a time duration.
In an embodiment of the present disclosure, the operation further comprise triggering a timer of the user equipment upon receiving the RLC entities activating/deactivating signaling.
In an embodiment of the present disclosure, the operation further comprise restoring the activate statuses of the RLC entities of the user equipment when the timer expires by the time duration, and transmitting a timer-expiring status message to the hosting network node indicating to the active statuses of RLC entities of the user equipment.
In an embodiment of the present disclosure, the operation further comprise restarting the timer of the user equipment upon receiving a modified RLC entities activating/deactivating signaling before the time duration is reached, activating/deactivating the RLC entities in response to the modified RLC entities activating/deactivating signaling from the hosting network node, and transmitting a timer-restarting status message to the hosting network node indicating to the active statuses of RLC entities of the user equipment.
In an embodiment of the present disclosure, the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
In an embodiment of the present disclosure, the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
In an embodiment of the present disclosure, the split data radio bearer is configured for the user equipment.
In an embodiment of the present disclosure, the user equipment is in an RRC_CONNECTED state with the hosting network node.
In an embodiment of the present disclosure, the operation further comprise periodically transmitting, from the user equipment to the hosting network node, the status message indicating to active statuses of RLC entities of the user equipment.
In an embodiment of the present disclosure, the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
The disclosed method may be implemented in a chip. The chip may include a processor,  configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium. The non-transitory computer readable medium, when loaded to a computer, directs a processor of the computer to execute the disclosed method. The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
The disclosed method may be programmed as computer program product, that causes a computer to execute the disclosed method.
The disclosed method may be programmed as computer program, that causes a computer to execute the disclosed method.
Advantageous Effects
Embodiments of the disclosure are provided to a method for controlling activation/deactivation of Radio Link Control (RLC) entities, a base station and a user equipment. For PDCP duplication with more than two RLC entities configured for a DRB in a combination of DC architecture and a CA architecture, one network node cannot control the active/inactive status of the RLC entities of a user equipment belonging to the other network node in some cases. However, the present disclosure proposes that RLC entities activation/deactivation configuration can be transmitted to the CN by one network node and forwarded to the other network node, then the other network node transmits the configuration to the UE, or the hosting node may transmit activation/deactivation signaling to the assisting node and the assisting node then forwards the RLC entities activating/deactivating signaling to the UE. In addition, for the packet with high delay requirement, the network node transmits the RLC entities activating/deactivating signaling to the UE through the Uu interface directly. For the packet that the delay requirement can be met by the transmission with X2/Xn delay introduced, the network node transmits the RLC entities activating/deactivating signaling to the UE through the Uu interface and via the other network node. This may not meet the delay requirement for some kinds of services with high delay requirement because of the X2/Xn interface delay introduced. Hence, the present disclosure can efficiently activating/deactivating RLC entities of a user equipment.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
Fig. 1 is a schematic diagram showing a system according to an embodiment of the present disclosure.
Fig. 2 illustrates a schematic diagram of a master node acting as a hosting network node according to the embodiment of the present disclosure.
Fig. 3 illustrates a schematic diagram of a secondary node acting as a hosting network node according to another embodiment of the present disclosure.
Fig. 4 illustrates a network side protocol termination options for MCG, SCG and split bearers in MR-DC with 5GC according to an embodiment of the present disclosure.
Fig. 5 illustrates a radio protocol architecture for MCG, SCG and split bearer from a UE perspective in MR-DC.
Fig. 6 illustrates a flow of a method of controlling activation/deactivation of Radio Link Control (RLC) entities according to an embodiment of the present disclosure.
Fig. 7 is a schematic diagram showing a system according to another embodiment of the present disclosure.
Fig. 8 illustrates a flow of a method of controlling activation/deactivation of Radio Link Control (RLC) entities according to another embodiment of the present disclosure.
Fig. 9 illustrates a timing diagram of an RLC entity according to another embodiment of the present disclosure.
Fig. 10 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
3GPP NR IIOT Background
In the revised WID of NR IIoT RP-192324, the detailed objectives for NR PDCP duplication enhancements are:
● Specify PDCP duplication with up to 4 RLC entities configured by RRC in architectural combinations including CA only and NR-DC in combination with CA [RAN2, RAN3] .
● Specify mechanisms relating to dynamic control of how a set or subset of configured RLC entities or legs are used for PDCP duplication [RAN2, RAN3] .
● Lower priority objective: Specify enhancements for more resource efficient PDCP duplication by enhancing PDCP duplication activation/deactivation mechanisms (e.g. MAC CE based or based on UE configurable criteria) , provided that complexity increase is reasonable. Per-packet selective duplication can also be considered. [RAN2] .
● Specify enhancements for more efficient DL PDCP duplication without impacting the UE, provided that gains can be confirmed with a reasonable complexity. [RAN3] .
● Specify enhancements to address potential impacts of higher-layer multi-connectivity based on SA2 progress and request [RAN3] .
For 3GPP Release-16 (Rel-16) , up to 4 RLC entities can be configured for a DRB leveraging DC and CA architecture, so different combinations of number of RLC entities hosted in MCG and SCG are allowed.
At RAN2#107 the following agreements were made to introduce Duplication Controlling MAC CE (with a new LCID) in Release-16 to dynamically control the activation (deactivation) of the RLC entities to be used for PDCP duplication out of the RLC entities configured in the uplink:
RAN2 #107 Agreements:
● The number of copies generated is equal to the number of active RLC entities, i.e. one copy per leg/RLC entity, and active/inactive state is determined by MAC CE.
● The network provides in RRC only one LCH cell restriction configuration per LCH, like in Rel-15. Changes to LCH cell restriction configuration is only possible via RRC.
● At PDCP duplication, application of the configured cell restrictions are not dynamically changed upon activation or deactivation of PDCP duplication beyond Rel-15. (FFS the case of CA duplication)
● The MAC CE signaling structure is either:
a. Per DRB signaling with the activation status of the associated RLC entities, or
b. All DRBs with the activation status of the associated RLC entities for each DRB
● A new LCID is used for the Rel-16 MAC CE controlling PDCP duplication.
Regardless of which MAC CE structure (listed in the RAN2 #107 agreement) will be adopted by RAN2, the RLC entities activating/deactivating signaling will include the duplication activation status corresponding to all the RLC entities configured for a DRB, thus belonging to both MCG and SCG in case of DC or DC and CA scenarios.
As was agreed in RAN2#108 that network coordination is beneficial for Rel-16 PDCP duplication under DC and CA architecture, an issue on how the nodes can coordinate RLC entities activation/deactivation between each other raised.
RAN2 #108 Agreements:
Network coordination is beneficial for PDCP duplication in the uplink in NR-DC/CA architectures.
Thus a mechanism for network coordination RLC entities activation/deactivation is PDCP duplication is needed.
Related agreements on accurate reference timing delivery for TSN
3GPP RAN2#106 Agreements:
● Dynamic Network control of DRB duplication is by MAC CE.
● By the MAC CE, Network to control which of the configured RLC entities that is/are active.
3GPP RAN2#107 Agreements:
● The number of copies generated is equal to the number of active RLC entities, i.e. one copy per leg/RLC entity, and active/inactive state is determined by MAC CE.
● The network provides in RRC only one LCH cell restriction configuration per LCH, like in Rel-15. Changes to LCH cell restriction configuration is only possible via RRC.
● The MAC CE signaling structure is either:
a. Per DRB signaling with the activation status of the associated RLC entities, or
b. All DRBs with the activation status of the associated RLC entities for each DRB● A new LCID is used for the Rel-16 MAC CE controlling PDCP duplication.
3GPP RAN2#108 Agreements:
● Network coordination is beneficial for PDCP duplication in the uplink in NR-DC/CA architectures.
3GPP RAN2#110-e Agreements:
● The UE just follows the received MAC CE, even if the RLCi field belongs to the other node. No specification change is required.
● PDCP duplication with more than two RLC entities is supported only by NR. It needs to be clarified in 37.340 and 38.331.
● Clarify DC+CA duplication in 38.300. 3+1 duplication scenario also needs to be considered. CA duplication may need clarification. Wording to be worked on.
Related prior art
Base on the Release 16 meetings, following conclusions can be drawn:
● PDCP duplication with more than two RLC entities is supported only by NR
■ One PDCP entity has one primary path.
■ The primary path should not be de-activated for data PDUs.
■ The number of copies generated is equal to the number of active RLC entities, i.e. one copy per leg/RLC entity.
● Dynamic Network control of DRB duplication is by MAC CE
■ RLC entities active/inactive state is determined by MAC CE.
■ For PDCP duplication controlling MAC CE format, per DRB signaling with the activation status of the associated RLC entities should be adopted in Rel-16.
■ The index I for RLCi field of Rel-16 MAC CE is determined by ascending order of logical channel ID of secondary RLC entities in MCG and SCG.
■ R16 MAC CE for both leg selection and on/off.
■ The UE just follows the received MAC CE, even if the RLCi field belongs to the other node.
● The network provides in RRC only one LCH cell restriction configuration per LCH.
■ Changes to LCH cell restriction configuration is only possible via RRC.
■ At PDCP duplication, application of the configured cell restrictions are not dynamically changed upon activation or deactivation of PDCP duplication beyond Rel-15.
■ A new LCID is used for the Rel-16 MAC CE controlling PDCP duplication.
● Network coordination is beneficial for PDCP duplication in the uplink in NR-DC/CA architectures.
With reference to Fig. 1, a telecommunication system including a UE 10a, a first network node 200a, a second network node 200b, and a network entity device 30. Connections between devices and device components are shown as lines and arrows in the Figs. The UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a. The first network node 200a may include a processor 201a, a memory 202a, and a transceiver 203a. The second network node 200b may include a processor 201b, a memory 202b, and a transceiver 203b. The network entity device 300 may include a processor 301, a memory 302, and a transceiver 303. Each of the  processors  11a, 201b, 201a, and 301 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the  processors  11a, 201b, 201a, and 301. Each of the  memory  12a, 202a, 202b, and 302 operatively stores a variety of program and information to operate a connected processor. Each of the  transceiver  13a, 203a, 203b, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals. Each of the first network node 200a and second network node 200b may be a base station such as an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10a.
Each of the  processor  11a, 201b, 201a, and 301 may include an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices. Each of the  memory  12a, 202a, 202b, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. Each of the  transceiver  13a, 203a, 203b, and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules, procedures, functions, entities and so on, that perform the functions described herein. The modules can be stored in a memory and executed by the processors. The memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
The network entity device 300 may be a node in a CN. CN may include LTE CN or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) ,  mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
Referring to Fig. 1, Fig. 2, and Fig. 3. Fig. 2 illustrates a schematic diagram of a master node acting as a hosting network node according to the embodiment of the present disclosure. Fig. 3 illustrates a schematic diagram of a secondary node acting as a hosting network node according to another embodiment of the present disclosure. The first network node 200a as a master node MN located in a master cell group MCG can be a hosting network node, while the second network node 200b serves as a secondary node SN located in a secondary cell group SCG can be an assisting network node. The UE 10a is configured with a Dual connectivity (DC) architecture and a Carrier Aggregation (CA) architecture through RRC signaling. The first network node 200a refers to the base station where the split bearer is located in the DC and CA architectures, and the second network node 200b in the architecture is the assisting node. In another embodiment, the first network node 200a can be an assisting network node while the second network node 200a can be a hosting network node.
Please refer to Fig. 4 and Fig. 5. Fig. 4 illustrates a network side protocol termination options for MCG, SCG and split bearers in multi-radio (MR) -DC with 5GC according to an embodiment of the present disclosure. Fig. 5 illustrates a radio protocol architecture for MCG, SCG and split bearer from a UE perspective in MR-DC. When the user equipment 10a is in an RRC_CONNECTED state with both the hosting network node 200a and the assisting network node 200b, data radio bearers (DRBs) are established by hosting network node 200a and the assisting network node 200b and is configured for the user equipment 10a. Up to four RLC entities of the UE 10a to be configured for a radio bearer is supported by the UE 10a.
Please refer to Fig. 4, Fig. 5 and Fig. 6. Fig. 6 illustrates a flow of a method of controlling activation/deactivation of Radio Link Control (RLC) entities according to an embodiment of the present disclosure. The hosting network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a directly, and transmits the RLC entities activating/deactivating signaling to the assisting network node 200b. As shown in Fig. 4, since service data adaptation protocol (SDAP) handles mapping between a QoS flow and a data radio bearer, the hosting network  node 200a determines a delay level of packets based on Quality-of-Service (QoS) information (Step 600) .
For the services with high delay requirement, the hosting network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a directly through the Uu interface. For the services that the X2/Xn interface delay can meet the delay requirement, the RLC entities activating/deactivating signaling is transmitted to the UE 10a through Uu interface or/and via the assisting network node 200b. There is no particular order in time of the operations that the hosting network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a and to the assisting network node 200b. The hosting network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a through the Uu interface (Step 601) , and then the hosting network node 200a transmits the RLC entities activating/deactivating signaling to the assisting network node 200b through the X2/Xn interface as step 602. In another embodiment, the network node 200a may transmit the RLC entities activating/deactivating signaling to the assisting network node 200b like step 602, and then sends the RLC entities activating/deactivating signaling to the UE 10a like step 601. In another embodiment, the network node 200a sends the RLC entities activating/deactivating signaling to the UE 10a and to the assisting network node 200b simultaneously. The RLC entities activating/deactivating signaling may be in any forms, e.g., MAC CE. The RLC entities activating/deactivating signaling may be in form of per MAC entity bitmap or per RB. The RLC entities activating/deactivating signaling that the hosting network node 200a sends to the UE 10a and the RLC entities activating/deactivating signaling transmits to the assisting network node 200b can be in different forms or formats.
The assisting network node 200b forwards the RLC entities activating/deactivating signaling received from the hosting network node 200a to the UE 10a through the Uu interface. (Step 604) . The RLC entities activating/deactivating signaling may be in any forms, e.g., MAC CE.
The UE 10a may perform RLC entities activation/deactivation according to the RLC entities activating/deactivating signaling received from the hosting network node 200a (step 603) , or the UE 10a may activate/deactivate the RLC entities of the configured DRB belonging to the MAC entity corresponding to the hosting network node 200a (step 605) . The hosting network node 200a acting as the master node receives the RLC entities activating/deactivating signaling for the split DRB, namely DRB1, then UE 10a may activate/deactivate the RLC0 belonging to the DRB1. The UE 10a may perform RLC entities activation/deactivation according to the RLC entities activating/deactivating signaling received from the assisting network node 200b (step 605) .
In another embodiment, the UE 10a may activate/deactivate the RLC entities of the configured DRB belonging to the MAC entity corresponding to the assisting network node 200b. For example, if the assisting network node 200b serves as the secondary node, then UE 10a may activate/deactivate RLC1 and RLC2 belonging to the DRB1.
The UE 10a may not perform RLC entities activation/deactivation until it received signaling from the hosting network node 200a and from the assisting network node 200b, then the UE 10a may activate/deactivate the RLC entities according to the RLC entities activating/deactivating signaling, including operations shown in step 603 and step 605.
The UE 10a can generate the RLC entities active/inactive status messages, then send the RLC entities active/inactive status messages to the hosting network node 200a and to the assisting network node 200b. The status massage includes the active/inactive status information of the RLC entities after UE 10a performs the activate/deactivate operation. The status message may be per RB, namely only include active/inactive status information of the RLC entities of a certain DRB, or the status message may be per MAC entity, namely include active/inactive status information of the RLC entities of a certain MAC entity, or the status message may be per UE 10a, including active/inactive status information of the RLC entities of the UE 10a.
The UE 10a may generate status message including status information of RLC entities of the DRB (s) of the MAC entity corresponding to the hosting network node 200a after RLC entities activation/deactivation is performed, and send to the hosting network node 200a (step 606) . For example, if the status message is per DRB, for DRB1, the status message includes status information of RLC0 of the DRB1.
The UE 10a may generate status message including status information of RLC entities of the DRB (s) of the MAC entity corresponding to the assisting network node 200b after step 605 is performed, and send to the assisting network node 200b (Step 608) . If the status message is per DRB, for DRB1, the status message includes status information of RLC1 and RLC2 of DRB1.
The UE 10a may generate status message including status information of RLC entities of the DRB (s) of MAC entity corresponding to the hosting network node 200a and MAC entity corresponding to the assisting network node 200b after step 603 and step 605 are both performed, and send the message to the hosting network node 200a and the assisting network node 200b, as is shown in step 606 and 608. For example, if the status message is per DRB, for DRB1, the status message shall include status information of RLC0, RLC1 and RLC2 of DRB1.
The status messages received by the hosting network node 200a and the assisting network node 200b from the UE 10a may be shared between the hosting network node 200a and the assisting network node 200b via X2/Xn interface, as is shown in step 608 and step 610.
The hosting network node 200a and assisting network node 200b can update status information according to the RLC entities active/inactive status message received from the UE 10a. The hosting network node 200a may maintain status information of the RLC entities of the UE 10a. The status information may be per MAC entities, e.g., the status information including status information of RLC0 and RLC1 of DRB0, RLC0 of DRB1. The status information may be per UE 10a, e.g., the status information including status information of RLC0 and RLC1 of DRB0, RLC0, RLC1 and RLC2 of DRB1.
The assisting network node 200b may maintain status information of the RLC entities of the UE 10a. The status information may be per MAC entities, e.g., the status information includes status information of RLC1 and RLC2 of DRB1. The status information may be per UE 10a, e.g., the status information includes status information of RLC0 and RLC1 of DRB0, RLC0, RLC1 and RLC2 of DRB1.
The hosting network node 200a and the assisting network node 200b may both maintain the RLC entities of the UE 10a. The status information may be per UE 10a, e.g., the status information includes status information of RLC0 and RLC1 of DRB0, RLC0, RLC1 and RLC2 of DRB1.
An indicator for the RLC entities status information is introduced to indicate whether the RLC entities status information is available. When the hosting network node 200a transmits RLC entities activation/deactivation signaling to the UE 10a, it set the value of the indicator to ‘unavailable’ . After the UE 10a performing RLC entities activation/deactivation received from the hosting network node 200a via assisting node, and sending the acknowledge message (may include RLC entities active/inactive status information) to the hosting network node 200a through Uu interface directly or via the assisting node, the hosting network node 200a may set the value of the indicator to ‘available’ . An indicator is introduced to indicate whether the delay introduced by the X2/Xn interface can meet the requirement of the packet to be transmitted. If so, the delay introduced by the X2/Xn interface can meet the requirement, set the value of indicator to ‘available’ , the RLC entities activating/deactivating signaling is transmitted to the UE 10a through Uu interface and via the assisting node. And the RLC entities activating/deactivating signaling is transmitted to UE 10a through Uu interface only. Otherwise, the delay introduced by the X2/Xn interface cannot meet the requirement, set the value of indicator to ‘unavailable’ , and transmit the RLC entities activating/deactivating signaling to the UE 10a directly. The value of the indicator ‘available’ , ‘unavailable’ can be digital ‘1’ , ‘0’ , or in any other forms.
This embodiment discloses the method that for the packet that its delay requirement can be met by the activation/deactivation operation with X2/Xn interface delay introduced, the RLC  entities activation/deactivation signaling can be sent to the assisting network node 200bthrough the X2/Xn interface, by the hosting network node 200a, when it is transmitted to the UE 10a directly. Then the assisting network node 200b forward the RLC entities activating/deactivating signaling to the UE 10a via the Uu interface. After receiving the RLC entities activating/deactivating signaling from the hosting network node 200a, the UE 10a shall activate/deactivate the RLC entities as the RLC entities activating/deactivating signaling indicated. Then the UE 10a generates RLC entities active/inactive status message and sends it to the hosting network node 200a. According to the RLC entities status information of the status message received from the UE 10a, the hosting network node 200a updates the local status information of the RLC entities. After receiving the RLC entities activating/deactivating signaling from the assisting network node 200b. The UE 10a shall activate/deactivate the RLC entities as the RLC entities activating/deactivating signaling indicated. Then UE 10a generates RLC entities active/inactive status message and transmits it to the assisting network node 200b. The assisting network node 200bthen updates the local status information of the RLC entities according to the information of the RLC entities status message received from the UE 10a. At the same time, the assisting network node 200b forwards the RLC entities status message to the hosting network node 200a through the X2/Xn interface, and the hosting network node 200a updates the local status information of the RLC entities accordingly.
Embodiment 2
Referring to Fig. 7. Fig. 7 illustrates a telecommunication system including a UE 10, a network node 200 and a network entity device 30 according to another embodiment of the present disclosure. The UE 10 is configured with a Dual connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of the DC architecture and the CA architecture. The UE 10 may include a processor 11, a memory 12, a timer 14 and a transceiver 13. The network node 200 may include a processor 201, a memory 202, and a transceiver 203. The network entity device 300 may include a processor 301, a memory 302, and a transceiver 303. Each of the  processors  11, 201, and 301 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the  processors  11, 201, and 301. Each of the  memory  12, 202 and 302 operatively stores a variety of program and information to operate a connected processor. Each of the  transceiver  13, 203, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals. Each of the network node 200 may be a base station such as an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the  UE 10.
Each of the  processor  11, 201, and 301 may include an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices. Each of the  memory  12, 202, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. Each of the  transceiver  13a, 203 and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules, procedures, functions, entities and so on, that perform the functions described herein. The modules can be stored in a memory and executed by the processors. The memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
Please refer to Fig. 7 and Fig. 8. Fig. 8 illustrates a flow of a method of controlling activation/deactivation of Radio Link Control (RLC) entities according to another embodiment of the present disclosure. When the user equipment 10 is in an RRC_CONNECTED state with the network node 200, data radio bearers (DRBs) are established by the network node 200 and is configured for the user equipment 10. The network node 200 and the user equipment 10 are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture. Up to four RLC entities of the UE 10 to be configured for a radio bearer is supported by the UE 10.
The network node 200 sends RLC entities activating/deactivating signaling to the UE 10 (step 801) . The RLC entities activating/deactivating signaling carries a configuration including a time duration, data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities. The DRB ID included in the configuration may identify a DRB in CA architecture, MCG DRB, SCG DRB or split DRB in DC architecture or in a combination of the DC and CA architectures. Furthermore, the time duration is used to set the value of the timer 14. The timer 14 may be configured per radio bearer.
The UE 10 can activate/deactivate the RLC entities according to the RLC entities activating/deactivating signaling received from the base station, set the timer 14 with the duration time and start the timer 14 (step 802) . The RLC entities active/inactive status shall remain unchanged until the timer 14 expires.
The UE 10 can report RLC entities active/inactive status information to the base station (step 803) . When the timer 14 expires, the UE 10 restores the status of the RLC entities (Step 804) . The UE 10 can restore the RLC entities to the status before the RLC entities activation/deactivation  is performed indicated by the RLC entities activating/deactivating signaling, or UE 10 can restore the RLC entities to the default status that can be active or inactive status.
The UE 10 can report a timer-expiring status message to the network node 200 (step 805) . The timer-expiring status message indicates to the active/inactive statuses of RLC entities of the user equipment when the timer 14 expires by the time duration.
If the network node 100 transmits a modified RLC entities activating/deactivating signaling to the UE 10 for the same DRB before the time duration is reached (step 806) , the UE 10 performs RLC entities activation/deactivation according to the modified RLC entities activating/deactivating signaling and restarts the timer 14 (step 807) . Then the UE 10 can transmit a timer-restarting status message indicating to the modified active statuses of RLC entities of the user equipment to the network node 200 (step 809) . The network node 200 updates the activate statuses of the RLC entities of the user equipment based on the timer-restarting status message.
This embodiment disclosed a method that the RLC entities activation/deactivation configuration indicates that the RLC entities may be activated/deactivated for a specified duration. The configuration may include DRB ID (s) , RLC ID (s) , operation (s) (activation/deactivation) , duration (s) . After receiving the RLC entities activating/deactivating signaling, the UE 10 shall activate/deactivate the RLC entities as is configured and start the timer 14 at the same time. Then the UE 10 reports the RLC entities active/inactive status information to the network node 200. When the timer 14 expires, the UE 10 can restore the RLC entities to the active/inactive status before the activation/deactivation operation, or to the default status. If the modified RLC entities activating/deactivating signaling is received from the network node 200 before the timer 14 expires, the UE 10 may perform as the latest configuration indicated, and restart the timer 14, then report RLC entities status information to the network node 200.
Embodiment 3
Please refer to Fig. 7, Fig. 8 and Fig. 9. Fig. 9 illustrates a timing diagram of an RLC entity according to another embodiment of the present disclosure. This embodiment disclosed a method that the RLC entities activation/deactivation configuration indicates that the RLC entities may be activated/deactivated periodically. The configuration may include parameters like DRB ID (s) , RLC ID (s) , operation (s) (activation/deactivation) , periodicity, (active/inactive) duration, number of times, etc.
UE 10 can activate/deactivate the RLC entities periodically according to the configuration received from the network node 200. Every time the UE 10 activates/deactivates the RLC entities for a duration as is configured, and then restores the RLC entities status. If the number of times or  the duration for the operation is configured, UE 10 can perform activation/deactivation periodically until the timer 14 expires or reached the number of times as is configured. Or UE 10 can keep performing activation/deactivation periodically until new signaling is received for the DRB.
As was shown in Fig. 9, after receiving the RLC entities activation signaling, the UE 10 can activate RLC entity i at time t 0 for duration of t active and then deactivate it at time t 1 when the time duration t active expires, then activate the RLC entity i again at time t 2 when the time duration T p expires, and repeat the operation in periodicity of T p. Time duration t active and T p are parameters of the configuration. The parameters can be per RLC entity or per DRB. That is to say for different RLC entities, the parameters can be the same or different.
The UE 10 may report RLC entities active/inactive status information to the network node 200. The report may be periodically of a specified periodicity or every time the RLC entities status is changed.
Fig. 10 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. Fig. 10 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
The processing unit 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area  network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry. In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the UE, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the processing unit. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the processing unit, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory. In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite. In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
Embodiments of the disclosure are provided to a method for controlling activation/deactivation of Radio Link Control (RLC) entities, a base station and a user equipment. For PDCP duplication with more than two RLC entities configured for a DRB in a combination of DC architecture and a CA architecture, one network node cannot control the active/inactive status of the RLC entities of a user equipment belonging to the other network node. However, the present disclosure proposes that RLC entities activation/deactivation configuration can be transmitted to the CN by one network node and forwarded to the other network node, then the other network node transmits the configuration to the UE, or the hosting node may transmit activation/deactivation signaling to the assisting node and the assisting node then forwards the RLC entities activating/deactivating signaling to the UE. In addition, for the packet with high delay requirement, the network node transmits the RLC entities activating/deactivating signaling to the UE through the Uu interface directly. For the packet that the delay requirement can be met by the transmission with X2/Xn delay introduced, the network node transmits the RLC entities activating/deactivating signaling to the UE through the Uu interface and via the other network node. This may not meet the delay requirement for some kinds of services with high delay requirement because of the X2/Xn interface delay introduced. Hence, the present disclosure can efficiently activating/deactivating RLC entities of a user equipment.
While the present disclosure has been described in connection with what is considered the  most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (96)

  1. A method for controlling Radio Link Control (RLC) entities of a user equipment executable in a hosting network, comprising:
    transmitting a RLC entities activating/deactivating signaling to a user equipment;
    receiving a status message indicating to active statuses of RLC entities of the user equipment which activates the RLC entities in response to the RLC entities activating/deactivating signaling; and
    updating the activate statuses of the RLC entities of the user equipment based on the status message.
  2. The method of claim 1, further comprising:
    determining a delay level of packets based on Quality-of-Service (QoS) information.
  3. The method of claim 2, further comprising:
    upon a condition that the delay level of packets is met an activation operation with X2/Xn interface delay, transmitting the RLC entities activating/deactivating signaling to an assisting network node; and
    forwarding the status message to the assisting network node.
  4. The method of claim 3, further comprising:
    transmitting the RLC entities activating/deactivating signaling to the assisting network node via an X2/Xn interface.
  5. The method of claim 3, further comprising:
    transmitting the RLC entities activating/deactivating signaling to the user equipment and the assisting network node simultaneously.
  6. The method of claim 1, further comprising:
    transmitting the RLC entities activating/deactivating signaling to the user equipment through an Uu interface.
  7. The method of claim 1, wherein the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
  8. The method of claim 7, wherein the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
  9. The method of claim 7, wherein the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
  10. The method of claim 1, wherein a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
  11. The method of claim 10, wherein the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
  12. The method of claim 11, wherein the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
  13. The method of claim 3, wherein the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
  14. The method of claim 1, wherein a split data radio bearer (DRB) is configured for the user equipment.
  15. The method of claim 1, wherein the RLC entities activating/deactivating signaling carries a configuration including a time duration.
  16. The method of claim 15, further comprising:
    receiving a timer-expiring status message from the user equipment indicating to the active statuses of RLC entities of the user equipment when a timer of the user equipment expires by the time duration; and
    updating the activate statuses of the RLC entities of the user equipment based on the timer-expiring status message.
  17. The method of claim 15, further comprising:
    transmitting a modified RLC entities activating/deactivating signaling to the user equipment;
    receiving a timer-restarting status message from the user equipment indicating to the active statuses of RLC entities of the user equipment which activates the RLC entities in response to the modified RLC entities activating/deactivating signaling, when a timer of the user equipment restarts before the time duration is reached; and
    updating the activate statuses of the RLC entities of the user equipment based on the timer-restarting status message.
  18. The method of claim 15, wherein the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  19. The method of claim 15, wherein the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  20. The method of claim 19, wherein the split data radio bearer is configured for the user equipment.
  21. The method of claim 15, wherein the user equipment is in an RRC_CONNECTED state with the hosting network node.
  22. The method of claim 1, further comprising:
    periodically transmitting the RLC entities activating/deactivating signaling to the user equipment.
  23. The method of claim 22, wherein the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
  24. A network node comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following operations comprising:
    transmitting a RLC entities activating/deactivating signaling to a user equipment;
    receiving a status message indicating to active statuses of RLC entities of the user equipment which activates the RLC entities in response to the RLC entities activating/deactivating signaling; and
    updating the activate statuses of the RLC entities of the user equipment based on the status message.
  25. The network node of claim 24, wherein the operations further comprise:
    determining a delay level of packets based on Quality-of-Service (QoS) information.
  26. The network node of claim 25, wherein the operations further comprise:
    upon a condition that the delay level of packets is met an activation operation with X2/Xn interface delay, transmitting the RLC entities activating/deactivating signaling to an assisting network node; and
    forwarding the status message to the assisting network node.
  27. The network node of claim 26, wherein the operations further comprise:
    transmitting the RLC entities activating/deactivating signaling to the assisting network node via an X2/Xn interface.
  28. The network node of claim 26, wherein the operations further comprise:
    transmitting the RLC entities activating/deactivating signaling to the user equipment and the assisting network node simultaneously.
  29. The network node of claim 24, wherein the operations further comprise:
    transmitting the RLC entities activating/deactivating signaling to the user equipment through an Uu interface.
  30. The network node of claim 24, wherein the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
  31. The network node of claim 30, wherein the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
  32. The network node of claim 30, wherein the RLC entities activating/deactivating signaling is in  form of per radio bearer (RB) .
  33. The network node of claim 24, wherein a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
  34. The network node of claim 33, wherein the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
  35. The network node of claim 34, wherein the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
  36. The network node of claim 26, wherein the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
  37. The network node of claim 24, wherein a split data radio bearer (DRB) is configured for the user equipment.
  38. The network node of claim 1, wherein the RLC entities activating/deactivating signaling carries a configuration including a time duration.
  39. The network node of claim 38, wherein the operations further comprise:
    receiving a timer-expiring status message from the user equipment indicating to the active statuses of RLC entities of the user equipment when a timer of the user equipment expires by the time duration; and
    updating the activate statuses of the RLC entities of the user equipment based on the timer-expiring status message.
  40. The network node of claim 38, wherein the operations further comprise:
    transmitting a modified RLC entities activating/deactivating signaling to the user equipment;
    receiving a timer-restarting status message from the user equipment indicating to the active statuses of RLC entities of the user equipment which activates the RLC entities in response to the modified RLC entities activating/deactivating signaling, when a timer of the user equipment restarts before the time duration is reached; and
    updating the activate statuses of the RLC entities of the user equipment based on the timer-restarting status message.
  41. The network node of claim 38, wherein the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  42. The network node of claim 38, wherein the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  43. The network node of claim 42, wherein the split data radio bearer is configured for the user equipment.
  44. The network node of claim 38, wherein the user equipment is in an RRC_CONNECTED state with the hosting network node.
  45. The network node of claim 24, wherein the operations further comprise:
    periodically transmitting the RLC entities activating/deactivating signaling to the user equipment.
  46. The network node of claim 45, wherein the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
  47. A method for controlling Radio Link Control (RLC) entities of a user equipment, comprising:
    receiving an RLC entities activating/deactivating signaling from a hosting network node;
    activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling; and
    transmitting, from the user equipment to the hosting network node, a status message indicating to active statuses of RLC entities of the user equipment.
  48. The method of claim 47, further comprising:
    upon a condition that a delay level of packets is met an activation operation with X2/Xn interface delay, receiving the RLC entities activating/deactivating signaling from an assisting network node that is forwarded by the hosting network node via an X2/Xn interface; and
    activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node.
  49. The method of claim 48, further comprising:
    receiving the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node through an Uu interface.
  50. The method of claim 47, wherein the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
  51. The method of claim 50, wherein the RLC entities activating/deactivating signaling is in form of per MAC entity bitmap.
  52. The method of claim 50, wherein the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
  53. The method of claim 47, wherein a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
  54. The method of claim 48, wherein the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
  55. The method of claim 54, wherein the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
  56. The method of claim 48, wherein the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
  57. The method of claim 47, wherein a split data radio bearer (DRB) is configured for the user equipment.
  58. The method of claim 47, wherein the RLC entities activating/deactivating signaling carries a configuration including a time duration.
  59. The method of claim 58, further comprising:
    triggering a timer of the user equipment upon receiving the RLC entities activating/deactivating signaling.
  60. The method of claim 59, further comprising:
    restoring the activate statuses of the RLC entities of the user equipment when the timer expires by the time duration; and
    transmitting to the hosting network node a timer-expiring status message indicating to the active statuses of RLC entities of the user equipment.
  61. The method of claim 58, further comprising:
    restarting the timer of the user equipment upon receiving a modified RLC entities activating/deactivating signaling before the time duration is reached;
    activating/deactivating the RLC entities in response to the modified RLC entities activating/deactivating signaling from the hosting network node; and
    transmitting to the hosting network node a timer-restarting status message indicating to the active statuses of RLC entities of the user equipment.
  62. The method of claim 58, wherein the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  63. The method of claim 58, wherein the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  64. The method of claim 63, wherein the split data radio bearer is configured for the user equipment.
  65. The method of claim 58, wherein the user equipment is in an RRC_CONNECTED state with the hosting network node.
  66. The method of claim 47, further comprising:
    periodically transmitting, from the user equipment to the hosting network node, the status message indicating to active statuses of RLC entities of the user equipment.
  67. The method of claim 58, wherein the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
  68. A user equipment comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following operations comprising:
    receiving an RLC entities activating/deactivating signaling from a hosting network node;
    activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling; and
    transmitting, from the user equipment to the hosting network node, a status message indicating to active statuses of RLC entities of the user equipment.
  69. The user equipment of claim 68, wherein the operations further comprise:
    upon a condition that a delay level of packets is met an activation operation with X2/Xn interface delay, receiving the RLC entities activating/deactivating signaling from an assisting network node that is forwarded by the hosting network node via an X2/Xn interface; and
    activating/deactivating the RLC entities in response to the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node.
  70. The user equipment of claim 69, wherein the operations further comprise:
    receiving the RLC entities activating/deactivating signaling from the hosting network node or the assisting network node through an Uu interface.
  71. The user equipment of claim 68, wherein the RLC entities activating/deactivating signaling is in form of Medium Access Control Control Element (MAC CE) .
  72. The user equipment of claim 71, wherein the RLC entities activating/deactivating signaling is  in form of per MAC entity bitmap.
  73. The user equipment of claim 71, wherein the RLC entities activating/deactivating signaling is in form of per radio bearer (RB) .
  74. The user equipment of claim 68, wherein a number of the RLC entities of the user equipment configured for a radio bear is less than 5.
  75. The user equipment of claim 69, wherein the RLC entities are hosted in a master cell group (MCG) and a secondary cell group (SCG) , and the hosting network node is configured in the master cell group and the assisting network node is configured in the secondary cell group.
  76. The user equipment of claim 75, wherein the user equipment, the master cell group and the secondary cell group are in a Dual Connectivity (DC) architecture and a Carrier Aggregation architecture.
  77. The user equipment of claim 69, wherein the user equipment is in an RRC_CONNECTED state with both the hosting network node and the assisting node.
  78. The user equipment of claim 68, wherein a split data radio bearer (DRB) is configured for the user equipment.
  79. The user equipment of claim 68, wherein the RLC entities activating/deactivating signaling carries a configuration including a time duration.
  80. The user equipment of claim 79 further comprising a timer, wherein the operations further comprise:
    triggering the timer upon receiving the RLC entities activating/deactivating signaling.
  81. The user equipment of claim 80, wherein the operations further comprise:
    restoring the activate statuses of the RLC entities of the user equipment when the timer expires by the time duration; and
    transmitting to the hosting network node a timer-expiring status message indicating to the active statuses of RLC entities of the user equipment.
  82. The user equipment of claim 80, wherein the operations further comprise:
    restarting the timer of the user equipment upon receiving a modified RLC entities activating/deactivating signaling before the time duration is reached;
    activating/deactivating the RLC entities in response to the modified RLC entities activating/deactivating signaling from the hosting network node; and
    transmitting to the hosting network node a timer-restarting status message indicating to the active statuses of RLC entities of the user equipment.
  83. The user equipment of claim 79, wherein the hosting network node is a base station, and the hosting network node and the user equipment are in a Dual Connectivity (DC) architecture, or a Carrier Aggregation (CA) architecture, or a combination of a Dual Connectivity (DC) architecture and a Carrier Aggregation (CA) architecture.
  84. The user equipment of claim 79, wherein the configuration further comprises a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities.
  85. The user equipment of claim 84, wherein the split data radio bearer is configured for the user equipment.
  86. The user equipment of claim 79, wherein the user equipment is in an RRC_CONNECTED state with the hosting network node.
  87. The user equipment of claim 68, further comprising:
    periodically transmitting, from the user equipment to the hosting network node, the status message indicating to active statuses of RLC entities of the user equipment.
  88. The user equipment of claim 79, wherein the RLC entities activating/deactivating signaling carries a configuration including a time duration, a split data radio bearer (DRB) ID, RLC IDs, operations associated with activation/deactivation of the RLC entities, and a number of times of periodicity.
  89. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device  in which the chip is installed to execute any of the methods of claims 1 to 23.
  90. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any of the methods of claims 25 to 47.
  91. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute any of the methods of claims 1 to 23.
  92. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute any of the methods of claims 47 to 67.
  93. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any of the methods of claims 1 to 23.
  94. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any of the methods of claims 47 to 67.
  95. A computer program, wherein the computer program causes a computer to execute any of the methods of claims 1 to 23.
  96. A computer program, wherein the computer program causes a computer to execute any of the methods of claims 47 to 67.
PCT/CN2020/107713 2020-08-07 2020-08-07 Method for controlling rlc entities of user equipment, network node and user equipment WO2022027558A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080104320.5A CN116235617A (en) 2020-08-07 2020-08-07 Method for controlling a radio link control entity, network node and user equipment
PCT/CN2020/107713 WO2022027558A1 (en) 2020-08-07 2020-08-07 Method for controlling rlc entities of user equipment, network node and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107713 WO2022027558A1 (en) 2020-08-07 2020-08-07 Method for controlling rlc entities of user equipment, network node and user equipment

Publications (1)

Publication Number Publication Date
WO2022027558A1 true WO2022027558A1 (en) 2022-02-10

Family

ID=80119094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107713 WO2022027558A1 (en) 2020-08-07 2020-08-07 Method for controlling rlc entities of user equipment, network node and user equipment

Country Status (2)

Country Link
CN (1) CN116235617A (en)
WO (1) WO2022027558A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451787A1 (en) * 2017-09-01 2019-03-06 IDAC Holdings, Inc. Methods and apparatuses for enabling physical layer sharing among multiple wireless communication entities
CN110401963A (en) * 2019-08-26 2019-11-01 展讯通信(上海)有限公司 Transfer control method and device
WO2020027599A1 (en) * 2018-08-01 2020-02-06 삼성전자 주식회사 Method and device for controlling duplicate packet transmission in wireless communication system
CN110856275A (en) * 2019-11-07 2020-02-28 展讯通信(上海)有限公司 DRB configuration method and related device
CN110972205A (en) * 2018-09-28 2020-04-07 华为技术有限公司 Communication method and device
EP3664572A1 (en) * 2017-08-02 2020-06-10 Vivo Mobile Communication Co., Ltd. Method for activating and deactivating data duplication, and terminal
CN111315027A (en) * 2018-12-11 2020-06-19 夏普株式会社 User equipment and method thereof, base station and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405231B2 (en) * 2017-04-24 2019-09-03 Motorola Mobility Llc Switching between packet duplication operating modes
US10805836B2 (en) * 2017-05-05 2020-10-13 Qualcomm Incorporated Packet duplication at a packet data convergence protocol (PDCP) entity
KR20200034921A (en) * 2018-09-21 2020-04-01 주식회사 케이티 Methods of Duplication transmission of data for 5G IoT and Apparatuses thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3664572A1 (en) * 2017-08-02 2020-06-10 Vivo Mobile Communication Co., Ltd. Method for activating and deactivating data duplication, and terminal
EP3451787A1 (en) * 2017-09-01 2019-03-06 IDAC Holdings, Inc. Methods and apparatuses for enabling physical layer sharing among multiple wireless communication entities
WO2020027599A1 (en) * 2018-08-01 2020-02-06 삼성전자 주식회사 Method and device for controlling duplicate packet transmission in wireless communication system
CN110972205A (en) * 2018-09-28 2020-04-07 华为技术有限公司 Communication method and device
CN111315027A (en) * 2018-12-11 2020-06-19 夏普株式会社 User equipment and method thereof, base station and method thereof
CN110401963A (en) * 2019-08-26 2019-11-01 展讯通信(上海)有限公司 Transfer control method and device
CN110856275A (en) * 2019-11-07 2020-02-28 展讯通信(上海)有限公司 DRB configuration method and related device

Also Published As

Publication number Publication date
CN116235617A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
US10624146B2 (en) Radio link failure handling method, related device, and communications system
CN110149732B (en) Communication method and wireless communication device
CN108391321B (en) Apparatus and method for handling status mismatch in wireless communication system
US11212864B2 (en) Method and device for processing non-matching between UE and network state
US20210274393A1 (en) Data transmission method and device in rrc inactive state, terminal and network side device
TW202027529A (en) Apparatus, method, and computer program
CN114079952B (en) Method for transmitting small data under non-starting state and user device
CN113810964B (en) Communication method and device
US11979936B2 (en) User equipment and method of wireless communication of same
WO2021185118A1 (en) Communication method and terminal device
WO2017078789A1 (en) Solution to support multiple presence reporting areas for public data network connection
US9713193B2 (en) Apparatuses and methods for reducing paging for extended discontinuous reception (EDRX) mobile station (MS) to receive mobile terminated (MT) short messages (SM)
WO2022027558A1 (en) Method for controlling rlc entities of user equipment, network node and user equipment
WO2019192534A1 (en) User equipment and method for controlling transmission of same in a wireless communication system
US20220322262A1 (en) Method, apparatus, and system for signal synchronization
WO2022206393A1 (en) Communication method and apparatus
WO2019157716A1 (en) Communication method, network device, and terminal device
WO2023279339A1 (en) Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment
WO2021134763A1 (en) Method, apparatus and device for recovering transmission
WO2022082583A1 (en) Method for data transmission in pdcp duplication, network node and user equipment
WO2020225684A1 (en) Enforcement of service gap control in wireless communication networks
WO2022205304A1 (en) Method for uplink data transmission, user equipment, and base station
WO2023060398A1 (en) Method and user equipment for handling rlc failure of rlc entities configured for pdcp duplication
WO2023185929A1 (en) Resource control method and apparatus, terminal, and network side device
WO2024032293A1 (en) Wireless communication method, user equipment, and base station background of disclosure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948713

Country of ref document: EP

Kind code of ref document: A1