WO2022027406A1 - Multiple receiver operation for user equipment (ue) - Google Patents

Multiple receiver operation for user equipment (ue) Download PDF

Info

Publication number
WO2022027406A1
WO2022027406A1 PCT/CN2020/107311 CN2020107311W WO2022027406A1 WO 2022027406 A1 WO2022027406 A1 WO 2022027406A1 CN 2020107311 W CN2020107311 W CN 2020107311W WO 2022027406 A1 WO2022027406 A1 WO 2022027406A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resources
message
receiver branch
prbs
bwp
Prior art date
Application number
PCT/CN2020/107311
Other languages
French (fr)
Inventor
Chao Wei
Chenxi HAO
Jing LEI
Huilin Xu
Wanshi Chen
Qiaoyu Li
Peter Gaal
Jing Dai
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/107311 priority Critical patent/WO2022027406A1/en
Publication of WO2022027406A1 publication Critical patent/WO2022027406A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to a user equipment (UE) configured for multiple receiver operation.
  • UE user equipment
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method of wireless communication includes receiving, at a user equipment (UE) from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the method also includes monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE.
  • the method further includes monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the at least one processor.
  • the at least one processor is configured to receive, at a UE from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the at least one processor is also configured to monitor the first set of frequency resources using the first receiver branch and a first antenna of the UE.
  • the at least one processor is further configured to monitor the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  • an apparatus configured for wireless communication.
  • the apparatus includes means for receiving, at a UE from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the apparatus also includes means for monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE.
  • the apparatus further includes means for monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  • a non-transitory computer-readable medium stores instructions that, when executed by a processor, causes the processor to perform operations.
  • the operations include receiving, at a UE from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the operations also include monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE.
  • the operations further include monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  • a method of wireless communication includes transmitting, from a base station to a UE, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the method also includes transmitting a first downlink (DL) message to the UE via the first set of frequency resources.
  • the method further includes transmitting a second DL message to the UE via the second set of frequency resources.
  • DL downlink
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the at least one processor.
  • the at least one processor is configured to initiate transmission, from a base station to a UE, of a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the at least one processor is also configured to initiate transmission of a first DL message to the UE via the first set of frequency resources.
  • the at least one processor is further configured to initiate transmission of a second DL message to the UE via the second set of frequency resources.
  • an apparatus configured for wireless communication.
  • the apparatus includes means for transmitting, from a base station to a UE, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the apparatus also includes means for transmitting a first DL message to the UE via the first set of frequency resources.
  • the apparatus further includes means for transmitting a second DL message to the UE via the second set of frequency resources.
  • a non-transitory computer-readable medium stores instructions that, when executed by a processor, causes the processor to perform operations.
  • the operations include initiating transmission, from a base station to a UE, of a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the operations also include initiating transmission of a first DL message to the UE via the first set of frequency resources.
  • the operations further include initiating transmission of a second DL message to the UE via the second set of frequency resources.
  • FIG. 1 is a block diagram illustrating details of an example wireless communication system according to some embodiments of the present disclosure.
  • FIG. 2 is a block diagram conceptually illustrating an example design of a base station and a user equipment (UE) configured according to some embodiments of the present disclosure.
  • UE user equipment
  • FIG. 3 is a block diagram illustrating an example wireless communication system that supports allocation of different frequency resources to different receiver branches of a UE according to some aspects.
  • FIG. 4 includes diagrams illustrating examples of frequency resource allocation to different receiver branches according to some aspects.
  • FIGS. 5A-C are diagrams illustrating examples of resource block (RB) allocations to different receiver branches according to some aspects.
  • FIG. 6 is a timing diagram illustrating an example of RB allocation to different receiver branches according to some aspects.
  • FIG. 7 includes timing diagrams illustrating examples of RB allocations to different receiver branches according to some aspects.
  • FIG. 8 is a flow diagram illustrating an example process that supports monitoring different frequency resources using different receiver branches according to some aspects.
  • FIG. 9 is a flow diagram illustrating an example process that supports allocating different frequency resources to different receiver branches according to some aspects.
  • FIG. 10 is a block diagram of an example UE that supports monitoring different frequency resources using different receiver branches according to some aspects.
  • FIG. 11 is a block diagram of an example base station that supports allocating different frequency resources to different receiver branches according to some aspects.
  • 5G NR techniques will be applied to “reduced capability” user equipments (UEs) , such as UEs that are associated with smaller bandwidth capabilities, reduced numbers of receive (RX) antennas, or relaxed processing and channel monitoring compared to other UEs, such as smartphones, vehicles, or other mobile devices.
  • UEs user equipments
  • Examples of reduced capability UEs may include “wearables” (e.g., smart watches, fitness devices, health monitoring devices, and the like) , industrial wireless sensor networks (IWSNs) , wireless surveillance cameras, and the like.
  • IWSNs industrial wireless sensor networks
  • These reduced capability UEs may have relaxed requirements for peak throughput, latency, and reliability, but also may be associated with increased requirements for efficiency (e.g., power consumption and system overhead) and cost.
  • a reduced capability UE also referred to as a NR RedCap UE
  • a reduced capability UE may be required to support up to two RX antennas with a reduced maximum bandwidth (e.g., up to 20 megahertz (MHz) for FR1) .
  • Such maximum bandwidth reduction may result in limited control resource set (CORESET) size, thereby increasing physical downlink control channel (PDCCH) blocking, and lower frequency diversity and coverage.
  • the NR RedCap UE with two RX antennas may be configured to achieve RX diversity gain, but not frequency selective gain, from a large system bandwidth.
  • the present disclosure provides systems, apparatus, methods, and computer-readable media for allocating different frequency resources to different receiver branches of a UE, such as a “reduced capability” UE.
  • the techniques of the present disclosure may enable a base station or other network entity to allocate different frequency resources, such as different bandwidth parts (BWPs) or different physical resource blocks (PRBs) of a common BWP, to different receiver branches of a UE.
  • BWPs bandwidth parts
  • PRBs physical resource blocks
  • a UE that supports two antennas and receiver branches may be configured to receive downlink (DL) signals from the base station via different frequency resources using different receiver branches and antennas, which may improve coverage and frequency diversity at the UE.
  • DL downlink
  • the base station may allocate a first set of frequency resources to a first receiver branch of the UE and a second set of frequency resources to a second receiver branch of the UE.
  • the first set of frequency resources may correspond to a first BWP (e.g., a narrowband BWP) of a carrier bandwidth (BW) and the second set of frequency resources may correspond to a non-overlapping second BWP of the carrier BW.
  • the first set of frequency resources may correspond to a first set of PRBs of a BWP (e.g., a wideband BWP) and the second set of frequency resources may correspond to a non-overlapping second set of PRBs of the BWP.
  • the base station may transmit a message to the UE that indicates the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch, respectively. Based on receipt of the message, the UE may monitor the first set of frequency resources using the first receiver branch and a first antenna, and the UE may monitor the second set of frequency resources using the second receiver branch and a second antenna, to receive DL messages from the base station. In this manner, the UE may use multiple frequency layers to receive DL messages using different frequency resources, in addition to using a single frequency layer (e.g., using the same frequency resources for multiple receiver branches and antennas) to receive DL messages.
  • a single frequency layer e.g., using the same frequency resources for multiple receiver branches and antennas
  • the switching between using a single frequency layer and multiple frequency layers may be static, semi-static, or dynamic.
  • the base station may configure the UE to use different frequency resources for multiple receiver branches and antennas for all physical downlink control channels (PDCCHs) .
  • the base station may dynamically activate the switching at the UE, such as by using a downlink control information (DCI) message that indicates the allocation of frequency resources.
  • DCI downlink control information
  • the base station may switch the allocation of frequency resources to the different receiver branches in a similar manner, such as semi-statically by using a radio resource control (RRC) message that indicates a new frequency resource allocation or dynamically by using a DCI message that indicates the new frequency resource allocation.
  • RRC radio resource control
  • the frequency resource allocation to multiple receiver branches and antennas may be switched according to a predetermined pattern, such as once every slot, once every two slots, once every four slots, or some other pattern.
  • the present disclosure provides techniques for allocating different frequency resources to different receiver branches of a 5G NR compliant reduced capability UE, also referred to as a NR RedCap UE or a NR Light UE.
  • the reduced capability UE may include a wearable (e.g., a smart watch, a fitness device, a health monitoring device, and the like) , an industrial wireless sensor network (IWSN) , a wireless surveillance camera, and the like, that are associated relaxed requirements for peak throughput, latency, and reliability, but also may be associated with increased requirements for efficiency (e.g., power consumption and system overhead) and cost.
  • the reduced capability UE may support up to two antennas and receiver branches with a reduced maximum bandwidth, as compared to other 5G NR compliant UEs that typically support four or more antennas and receiver branches with a larger maximum bandwidth. Due to the allocation of different frequency resources to the two receiver branches, the UE may achieve improved RX diversity gain and frequency selective gain as compared to a UE that is allocated the same frequency resources for each receiver branch. As an example, the UE may achieve 1-2 decibel (dB) gain due to the allocation of different frequency resources, and such gain may be increased for higher modulation and coding schemes (MCSs) .
  • MCSs modulation and coding schemes
  • This disclosure relates generally to providing or participating in authorized shared access between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may, for example implement a radio technology such as Global System for Mobile Communication (GSM) .
  • GSM Global System for Mobile Communication
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. Additionally, an operator network may also include one or more LTE networks, and/or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification.
  • 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard.
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • LTE long term evolution
  • UMTS universal mobile telecommunications system
  • the present disclosure may describe certain aspects with reference to LTE, 4G, or 5G NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects descried with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects of the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • advanced wireless technologies such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • FIG. 1 is a block diagram illustrating details of an example wireless communication system.
  • the wireless communication system may include wireless network 100.
  • Wireless network 100 may, for example, include a 5G wireless network.
  • components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
  • Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include a plurality of operator wireless networks) .
  • base station 105 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG.
  • base stations 105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple (e.g., two, three, four, and the like) cells.
  • Wireless network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology.
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • Some non-limiting examples of a mobile apparatus such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • PDA personal digital assistant
  • a mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • IoT Internet of things
  • IoE Internet of everything
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UEs that do not include UICCs may also be referred to as IoE devices.
  • UEs 115a-115d of the implementation illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100
  • a UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
  • a mobile apparatus such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like.
  • a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
  • UEs may operate as base stations or other network nodes in some scenarios.
  • Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
  • base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • Wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG. 2 shows a block diagram conceptually illustrating an example design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1.
  • base station 105 may be small cell base station 105f in FIG. 1
  • UE 115 may be UE 115c or 115d operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list of accessible UEs for small cell base station 105f.
  • Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • transmit processor 220 may receive data from data source 212 and control information from controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for the PDSCH, etc.
  • transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal.
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
  • transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Additionally, transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH)
  • controller/processor 280 e.g., for the physical uplink control channel (PUCCH)
  • transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable,
  • the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115.
  • Receive processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
  • Controllers/processors 240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIGS. 8 and 9, and/or other processes for the techniques described herein.
  • Memories 242 and 282 may store data and program codes for base station 105 and UE 115, respectively.
  • Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Wireless communications systems operated by different network operating entities may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen-before-talk or listen-before-transmitting
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • a CCA also may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • the present disclosure provides systems, apparatus, methods, and computer-readable media for allocating different frequency resources to different receiver branches of a UE, such as a “reduced capability” UE.
  • the techniques of the present disclosure may enable a base station or other network entity to allocate different frequency resources, such as different bandwidth parts (BWPs) or different physical resource blocks (PRBs) of a common BWP, to different receiver branches of a UE.
  • BWPs bandwidth parts
  • PRBs physical resource blocks
  • a UE that supports two antennas and receiver branches may be configured to receive downlink (DL) signals from the base station via different frequency resources using different receiver branches and antennas, which may improve coverage and frequency diversity at the UE.
  • DL downlink
  • the base station may allocate a first set of frequency resources to a first receiver branch of the UE and a second set of frequency resources to a second receiver branch of the UE.
  • the first set of frequency resources may correspond to a first BWP (e.g., a narrowband BWP) of a carrier bandwidth (BW) and the second set of frequency resources may correspond to a non-overlapping second BWP of the carrier BW.
  • the first set of frequency resources may correspond to a first set of PRBs of a BWP (e.g., a wideband BWP) and the second set of frequency resources may correspond to a non-overlapping second set of PRBs of the BWP.
  • the base station may transmit a message to the UE that indicates the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch, respectively. Based on receipt of the message, the UE may monitor the first set of frequency resources using the first receiver branch and a first antenna, and the UE may monitor the second set of frequency resources using the second receiver branch and a second antenna, to receive DL messages from the base station. In this manner, the UE may use multiple frequency layers to receive DL messages using different frequency resources, in addition to using a single frequency layer (e.g., using the same frequency resources for multiple receiver branches and antennas) to receive DL messages.
  • a single frequency layer e.g., using the same frequency resources for multiple receiver branches and antennas
  • the switching between using a single frequency layer and multiple frequency layers may be static, semi-static, or dynamic.
  • the base station may configure the UE to use different frequency resources for multiple receiver branches and antennas for all physical downlink control channels (PDCCHs) .
  • the base station may dynamically activate the switching at the UE, such as by using a downlink control information (DCI) message that indicates the allocation of frequency resources.
  • DCI downlink control information
  • the base station may switch the allocation of frequency resources to the different receiver branches in a similar manner, such as semi-statically by using a radio resource control (RRC) message that indicates a new frequency resource allocation or dynamically by using a DCI message that indicates the new frequency resource allocation.
  • RRC radio resource control
  • the frequency resource allocation to multiple receiver branches and antennas may be switched according to a predetermined pattern, such as once every slot, once every two slots, once every four slots, or some other pattern.
  • the present disclosure provides techniques for allocating different frequency resources to different receiver branches of a 5G NR compliant reduced capability UE, also referred to as a NR RedCap UE or a NR Light UE.
  • the reduced capability UE may include a wearable (e.g., a smart watch, a fitness device, a health monitoring device, and the like) , an industrial wireless sensor network (IWSN) , a wireless surveillance camera, and the like, that are associated relaxed requirements for peak throughput, latency, and reliability, but also may be associated with increased requirements for efficiency (e.g., power consumption and system overhead) and cost.
  • the reduced capability UE may support up to two antennas and receiver branches with a reduced maximum bandwidth, as compared to other 5G NR compliant UEs that typically support four or more antennas and receiver branches with a larger maximum bandwidth. Due to the allocation of different frequency resources to the two receiver branches, the UE may achieve improved RX diversity gain and frequency selective gain as compared to a UE that is allocated the same frequency resources for each receiver branch. As an example, the UE may achieve 1-2 decibel (dB) gain due to the allocation of different frequency resources, and such gain may be increased for higher modulation and coding schemes (MCSs) .
  • MCSs modulation and coding schemes
  • FIG. 3 is a block diagram of an example wireless communications system 300 that supports allocation of different frequency resources to different receiver branches of a UE according to some aspects.
  • the wireless communications system 300 may implement aspects of the wireless network 100.
  • the wireless communications system 300 includes the UE 115 and the base station 105. Although one UE 115 and one base station 105 are illustrated, in some other implementations, the wireless communications system 300 may generally include multiple UEs 115, and may include more than one base station 105.
  • the UE 115 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein.
  • these components can include one or more processors 302 (hereinafter referred to collectively as “the processor 302” ) , one or more memory devices 304 (hereinafter referred to collectively as “the memory 304” ) , one or more transmitters 310 (hereinafter referred to collectively as “the transmitter 310” ) , one or more receivers 312 (hereinafter referred to collectively as “the receiver 312” ) , a first antenna 318, and a second antenna 320.
  • the processor 302 may be configured to execute instructions stored in the memory 304 to perform the operations described herein.
  • the processor 302 includes or corresponds to one or more of the receive processor 258, the transmit processor 264, and the controller/processor 280
  • the memory 304 includes or corresponds to the memory 282.
  • the transmitter 310 is configured to transmit reference signals, control information and data to one or more other devices
  • the receiver 312 is configured to receive references signals, synchronization signals, control information and data from one or more other devices.
  • the transmitter 310 may transmit signaling, control information and data to, and the receiver 312 may receive signaling, control information and data from, the base station 105.
  • the transmitter 310 and the receiver 312 may be integrated in one or more transceivers.
  • the transmitter 310 or the receiver 312 may include or correspond to one or more components of the UE 115 described with reference to FIG. 2.
  • the receiver 312 may include multiple “branches, ” such as a first receiver branch 314 and a second receiver branch 316.
  • the receiver branches 314-316 may include one or more components of the receiver 312, such as filters, amplifiers, demodulators, and the like.
  • the receiver branches 314-316 may include or correspond to, or also be referred to as, receive paths or radio frequency (RF) chains. Although two receiver branches are described, in other implementations, the receiver 312 may include more than two receiver branches.
  • RF radio frequency
  • the first antenna 318 and the second antenna 320 may each be configured to perform wireless communications with other devices, such as with the base station 105.
  • the first antenna 318 and the second antenna 320 may be configured to perform wireless communications using different beams, also referred to as antenna beams, or via different wireless communication channels.
  • the beams may include TX beams and RX beams.
  • Each of the antennas 318-320 may be associated with, or be included as part of, one of the receiver branches 314-316.
  • the first antenna 318 may be associated with, or included as part of, the first receiver branch 314, and the second antenna 320 may be associated with, or included as part of, the second receiver branch 316.
  • the UE 115 may include more than two antennas.
  • the antennas 318-320 may include or correspond to antenna arrays or antenna panels.
  • the UE 115 includes or corresponds to a reduced capability UE, also referred to as a NR RedCap UE or a NR Light UE.
  • the UE 115 may include or correspond to wearables (e.g., smart watches, fitness devices, health monitoring devices, and the like) , industrial wireless sensor networks (IWSNs) , wireless surveillance cameras, and the like.
  • the UE 115 may have relaxed requirements for peak throughput, latency, and reliability, but also may be associated with increased requirements for efficiency (e.g., power consumption and system overhead) and cost, as compared to other 5G NR compliant UEs, such as smart phones, vehicles, and the like.
  • the UE 115 may include up to two receiver branches and antennas, as compared to other 5G NR compliant UEs that typically include four or more receiver branches and antennas.
  • the base station 105 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein.
  • these components can include one or more processors 352 (hereinafter referred to collectively as “the processor 352” ) , one or more memory devices 354 (hereinafter referred to collectively as “the memory 354” ) , one or more transmitters 356 (hereinafter referred to collectively as “the transmitter 356” ) , and one or more receivers 358 (hereinafter referred to collectively as “the receiver 358” ) .
  • the processor 352 may be configured to execute instructions stored in the memory 354 to perform the operations described herein.
  • the processor 352 includes or corresponds to one or more of the receive processor 238, the transmit processor 220, and the controller/processor 240, and the memory 354 includes or corresponds to the memory 242.
  • the memory 354 may be configured to store redundancy version (RV) values 353, a pattern indicator 355, phase tracking reference signal (PTRS) frequency densities 357, and PTRS resource element (RE) mappings 359.
  • RV values 353 may indicate RVs associated with transport blocks (TBs) , or with codewords (CWs) of TBs, to be transmitted to the UE 115.
  • the pattern indicator 355 may indicate a pattern for transmission of messages that change frequency resource allocation, as further described herein.
  • the PTRS frequency densities 357 may include frequency densities associated with PTRSs to be transmitted to the UE 115.
  • the PTRS RE mappings 359 may include mappings of PTRS REs to PRBs (or other frequency resources) for use in transmitting PTRSs to the UE 115, and the mappings may be based on frequency resources allocated to various receiver branches, as further described herein.
  • the transmitter 356 is configured to transmit reference signals, synchronization signals, control information and data to one or more other devices
  • the receiver 358 is configured to receive reference signals, control information and data from one or more other devices.
  • the transmitter 356 may transmit signaling, control information and data to, and the receiver 358 may receive signaling, control information and data from, the UE 115.
  • the transmitter 356 and the receiver 358 may be integrated in one or more transceivers.
  • the transmitter 356 or the receiver 358 may include or correspond to one or more components of base station 105 described with reference to FIG. 2.
  • the wireless communications system 300 implements a 5G New Radio (NR) network.
  • the wireless communications system 300 may include multiple 5G-capable UEs 115 and multiple 5G-capable base stations 105, such as UEs and base stations configured to operate in accordance with a 5G NR network protocol such as that defined by the 3GPP.
  • the 5G NR network protocol may include a 5G NR RedCap protocol or a 5G NR Light protocol associated with reduced capability UEs.
  • the base station 105 may determine to configure the UE 115 for multiple frequency layer operation. Based on this determination, the base station 105 may determine allocation of frequency resources to the two receiver branches of the UE 115. For example, the base station 105 may allocate a first set of frequency resources 372 to the first receiver branch 314 and a second set of frequency resources 374 to the second receiver branch 316.
  • the sets of frequency resources 372-374 may include one or more resource blocks (RBs) , such as one or more physical resource blocks (PRBs) , that correspond to different frequency bandwidths.
  • RBs resource blocks
  • PRBs physical resource blocks
  • the first set of frequency resources 372 correspond to a first BWP of a carrier BW and the second set of frequency resources 374 correspond to a second BWP of the carrier BW that is non-overlapping with the first BWP, as further described with reference to FIG. 4.
  • the first set of frequency resources 372 corresponds to a first set of PRBs of a BWP and the second set of frequency resources 374 corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs, as further described with reference to FIG. 4.
  • the base station 105 may generate and transmit a first message 370 to the UE 115.
  • the first message 370 may include an indicator of the first set of frequency resources 372 and an indicator of the second set of frequency resources 374.
  • the first message 370 may include a single indicator that indicates bot the first set of frequency resources 372 and the second set of frequency resources 374.
  • Transmitting the first message 370 to the UE 115 may statically, semi-statically, or dynamically switch the UE 115 from single frequency layer operation (e.g., receiving DL messages using the same frequency for multiple receiver branches and antennas) to multiple frequency layer operation (e.g., using the receiver branches 314-316 and the antennas 318-320 to receive DL messages via different frequency resources) .
  • single frequency layer operation e.g., receiving DL messages using the same frequency for multiple receiver branches and antennas
  • multiple frequency layer operation e.g., using the receiver branches 314-316 and the antennas 318-320 to receive DL messages via different frequency resources
  • the first message 370 may include or correspond to a RRC message.
  • the first set of frequency resources 372 and the second set of frequency resources 374 may be allocated for PDCCH resources.
  • the sets of frequency resources 372-374 may be designated for transmission of one or more PDCCHs by the base station 105.
  • the base station 105 may transmit the first message 370 as part of a static allocation of frequency resources to the receiver branches 314-316.
  • the base station 105 may transmit the first message 370 to the UE 115 during an association process or other communication link establishment process between the base station 105 and the UE 115.
  • the base station 105 may transmit the first message 370 (and similar RRC messages) as part of a semi-static allocation of frequency resources to the receiver branches 314-316. For example, the base station 105 may transmit the first message 370 and additional RRC messages periodically to the UE 115 to configure semi-persistent scheduling (SPS) PDCCH or SPS-PDSCH resources at the UE 115.
  • SPS semi-persistent scheduling
  • the first message 370 may include or correspond to a different type of message, such as a medium access control (MAC) control element (MAC-CE) , as a non-limiting example.
  • MAC medium access control
  • MAC-CE medium access control element
  • the first message 370 may include or correspond to a DCI message.
  • the first set of frequency resources 372 and the second set of frequency resources 374 may be allocated based on an explicit indicator of a single or multiple frequency layer transmission or implicitly determined by using transmission configuration indicators (TCIs) .
  • TCIs transmission configuration indicators
  • the first message 370 may indicate a first TCI associated with the first set of frequency resources 372 and a second TCI associated with the second set of frequency resources 374.
  • the base station 105 may configure the UE 115 for multiple frequency layer operation.
  • the base station 105 may transmit a DCI message that includes a single TCI to switch the UE 115 to single frequency layer operation.
  • the first message 370 may include a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources 372 and the second set of frequency resources 374.
  • FDRA frequency domain resource assignment
  • the FDRA field may indicate resource blocks (RBs) or portions of a RB bundle that are allocated to the first set of frequency resources 372 and the second set of frequency resources 374, respectively.
  • the FDRA field may indicate a same RB allocation for two BWPs of a carrier BW for the first set of frequency resources 372 and the second set of frequency resources 374, as further described with reference to FIG. 5A.
  • the FDRA field may indicate a RB allocation within a BWP, and different portions of the RB allocation may be allocated to the first set of frequency resources 372 and the second set of frequency resources 374, as further described with reference to FIGS. 5B and 5C.
  • the UE 115 may receive the first message 370 from the base station 105. After receiving the first message 370, the UE 115 may monitor for DL messages from the base station 105 via the allocated frequency resources and components of the UE 115. For example, the UE 115 may monitor the first set of frequency resources 372 using the first receiver branch 314 and the first antenna 318, and the UE 115 may monitor the second set of frequency resources 374 using the second receiver branch 316 and the second antenna 320.
  • the base station 105 may transmit DL messages to the UE 115 via the different allocated frequency resources. For example, the base station 105 may transmit a first DL message 376 to the UE 115 via the first set of frequency resources 372, and the base station 105 may transmit a second DL message 380 to the UE 115 via the second set of frequency resources 374.
  • the UE 115 may receive the first DL message 376 using the first receiver branch 314 and the first antenna 318, and the UE 115 may receive the second DL message 380 using the second receiver branch 316 and the second antenna 320.
  • the UE 115 may be configured for multiple receiver operation (e.g., multiple frequency layer operation) when communicating with the base station 105 based on the first message 370.
  • the first DL message 376 and the second DL message 380 may include a single CW (or portions thereof) associated with a single TB.
  • the first DL message 376 may include a single CW (or a first portion of the CW)
  • the second DL message 380 may include the CW (or a second portion of the CW) .
  • the first portion of the CW and the second portion of the CW may be associated with the same redundancy version (RV) of RV values 353, as further described with reference to FIG. 6.
  • RV redundancy version
  • the RV associated with a CW corresponds to a rate mapping operation for a 5G low density parity check (LDPC) code used to generate the CW (or the TB) .
  • LDPC low density parity check
  • Transmitting a single CW (or two portions of the CW) associated with the same RV using the first DL message 376 and the second DL message 380 may be transparent to the UE 115 from a rate matching/resource element (RE) point of view.
  • RE rate matching/resource element
  • the first DL message 376 and the second DL message 380 may include different CWs that are each associated with a single TB.
  • the first DL message 376 may include a first CW/TB 378 (a first CW in this example) associated with a TB and the second DL message 380 may include a second CW/TB 382 (a second CW in this example) associated with the TB.
  • the base station 105 may transmit the first CW via the first set of frequency resources 372, and the base station 105 may transmit the second CW via the second set of frequency resources 374.
  • the first CW may be associated with a first RV of RV values 353, and the second CW may be associated with a second RV of RV values 353, as further described with reference to FIG. 6.
  • the first DL message 376 and the second DL message 380 may include different TBs.
  • the first DL message 376 may include a first CW/TB 378 (a first TB in this example) and the second DL message 380 may include a second CW/TB 382 (a second TB in this example) .
  • the base station 105 may transmit the first TB via the first set of frequency resources 372, and the base station 105 may transmit the second TB via the second set of frequency resources 374, as described with reference to FIG. 6.
  • the first TB and the second TB may be associated with the same RV of the RV values 353.
  • the first TB may be associated with a first RV of the RV values 353 and the second TB may be associated with a second RV of the RV values 353.
  • the first TB and the second TB may be associated with the same demodulation reference signal (DMRS) port.
  • the base station 105 may use the same DMRS port for transmitting the first DL message 376 and the second DL message 380 (including the first TB and the second TB, respectively) . In this manner, the maximum number of transmission layers in the first set of frequency resources 372 and the second set of frequency resources 374 is one.
  • the first TB and the second TB may be associated with different DMRS ports, and one or more of the first set of frequency resource 372 and the second set of frequency resources 374 may include more than one transmission layer.
  • the base station 105 may indicate to the UE 115 whether the UE 115 is configured to receive a single CW (or portions thereof) , multiple CWs of a single TB, or multiple TBs, via messages such as RRC messages or DCI messages, as non-limiting examples. Additionally, the messages may indicate the RV values 353 associated with the single CW, the multiple CWs, or the multiple TBs.
  • the base station 105 may determine a TB size based, at least in part, on the number of PRBs corresponding to the first set of frequency resources 372. For example, the base station 105 may determine a TB size based on the number of PRBs included in the first set of frequency resources 372. Alternatively, the base station 105 may determine the TB size based on a scaling factor and a total number of PRBs included in the first set of frequency resources 372 and the second set of frequency resources 374.
  • the total number of PRBs are equally (or substantially equally) divided among the sets of frequency resources 372-374, and the scaling factor is 1/2.
  • the base station 105 is described as determining TB sizes, the UE 115 may also determine TB sizes as described above to enable receipt and detection of the TBs.
  • the UE 115 may receive and process the first DL message 376 and the second DL message 380 based on the allocation of frequency resources indicated in the first message 370. For example, the UE 115 may receive the first DL message 376 via the first set of frequency resources 372 using the first receiver branch 314 and the first antenna 318, and the UE 115 may receive the second DL message 380 via the second set of frequency resources 374 using the second receiver branch 316 and the second antenna 320. In implementations in which the first DL message 376 and the second DL message 380 include a single CW (or portions of the CW) , the UE 115 may process the CW after receiving the DL messages (or after combining the portions of the CW) .
  • the UE 115 may combine the CWs to detect the TB. In implementations in which the first DL message 376 and the second DL message 380 include different TBs, the UE 115 may process each of the received TBs.
  • the base station 105 may determine to change frequency resource allocations for the UE 115. In some such implementations, the base station 105 may determine to switch the UE 115 from multiple frequency layer operation to single frequency layer operation. For example, the base station 105 may generate and transmit a second message 384 to the UE 115.
  • the second message 384 may indicate a third set of frequency resources 386 that is allocated to the UE 115 (either to a single receiver branch or to both receiver branches) .
  • the second message 384 may include or correspond to a RRC message, a DCI message, a MAC-CE, or another type of message.
  • the UE 115 may receive the second message 384 and switch from monitoring the first set of frequency resources 372 and the second set of frequency resources 374 for DL messages to monitoring the third set of frequency resources 386 for DL messages. For example, the UE 115 may monitor the third set of frequency resources 386 using the first receiver branch 314 and the first antenna 318 (while optionally powering down the second receiver branch 316 and the second antenna 320) . As another example, the UE 115 may monitor the third set of frequency resources 386 using the second receiver branch 316 and the second antenna 320 (while optionally powering down the first receiver branch 314 and the first antenna 318) .
  • the UE 115 may monitor the third set of frequency resources 386 using the first receiver branch 314, the first antenna 318, the second receiver branch 316, and the second antenna 320.
  • the base station 105 may transmit a third DL message 388 via the third set of frequency resources 386 to the UE 115.
  • the third DL message 388 may include a third TB 390 that is different than the first TB and the second TB (or the TB associated with the first CW and the second CW) included in the first DL message 376 and the second DL message 380, respectively.
  • the UE 115 may receive the third DL message 388 via the third set of frequency resources 386 using the first receiver branch 314 and the first antenna 318, the second receiver branch 316 and the second antenna 320, or a combination thereof.
  • the base station 105 may switch the allocation of frequency resources to the receiver branches 314-316.
  • the second message 384 may indicate that the first set of frequency resources 372 is allocated to the second receiver branch 316, and that the second set of frequency resources 374 is allocated to the first receiver branch 314.
  • the UE 115 may switch to monitoring the second set of frequency resources 374 using the first receiver branch 314 and the first antenna 318, and the UE 115 may switch to monitoring the first set of frequency resources 372 using the second receiver branch 316 and the second antenna 320.
  • the base station 105 may periodically switch the frequency resource allocation to the receiver branches 314-316 using repeated messaging.
  • the first message 370 may include a repetition indicator (e.g., an indicator of repetition of transmission across multiple slots) , and the base station 105 may transmit additional messages indicating switching of the allocation of the first set of frequency resources 372 and the second set of frequency resources 374 to the first receiver branch 314 and the second receiver branch 316 according to a predetermined pattern associated with the pattern indicator 355, as further described with reference to FIG. 7.
  • a repetition indicator e.g., an indicator of repetition of transmission across multiple slots
  • the base station 105 may switch between transmitting a single CW, multiple CWs of a single TB, or multiple TBs, in a semi-static or dynamic manner. For example, the base station 105 may transmit a message to the UE 115 that indicates that the UE 115 is to switch from receiving a single CW (or portions thereof) to receiving multiple CWs of a single TB (or that the UE 115 is to switch from receiving multiple CWs of a single TB to receiving a single CW) in a semi-static manner.
  • the message may include a RRC message, and the UE 115 may be switched based on the RRC message for receiving any future DL messages until another RRC message is received.
  • the base station 105 may transmit a message to the UE 115 that indicates that the UE 115 is to switch from receiving one or more CWs to receiving multiple TBs (or that the UE 115 is to switch from receiving multiple TBs to receiving one or more CWs) in a dynamic manner.
  • the message may include a DCI message
  • the UE 115 may be switched based on the DCI message for any DL messages received via physical downlink shared channel (PDSCH) resources scheduled by the DCI message.
  • PDSCH physical downlink shared channel
  • the DCI message may include one or multiple TB indicators, which in some implementations may include or correspond to TCIs.
  • the base station 105 may configure one or more phase tracking reference signal (PTRS) parameters based on the allocation of frequency resources indicated by the first message 370. For example, if the sets of frequency resources 372-374 include sets of PRBs, the base station 105 may determine a first PTRS frequency density of the PTRS frequency densities 357 based on a number of PRBs included in the first set of frequency resources 372, and the base station 105 may determine a second PTRS frequency density of the PTRS frequency densities 357 based on a number of PRBs included in the second set of frequency resources 374.
  • PTRS phase tracking reference signal
  • the base station 105 may determine relatively higher densities for the PTRS frequency densities 357 based on the sets of frequency resources 372-374 including relatively smaller numbers of PRBs, and the base station 105 may determine relatively lower densities for the PTRS frequency densities 357 based on the sets of frequency resources 372-374 including relatively larger numbers of PRBs.
  • the sets of frequency resources 372-374 include sets of PRBs
  • the base station 105 may determine a first PTRS RE mapping of the PTRS RE mappings 359 that is associated with the first set of frequency resources 372, and the base station 105 may determine a second PTRS RE mapping of the PTRS RE mappings 359 that is associated with the second set of frequency resources 374.
  • the PTRS RE mappings 359 may map PTRS REs to different resources based on differences in the PRBs included in the first set of frequency resources 372 and the second set of frequency resources 374.
  • the base station may generate and transmit PTRSs 392 to the UE 115 in accordance with the PTRS frequency densities 357, the PTRS RE mappings 359, other PTRS parameters, or a combination thereof.
  • the UE 115 may determine the various PTRS parameters, such as based on the sets of frequency resources 372-374, and the UE 115 may monitor for and receive the PTRSs 392.
  • the present disclosure provides techniques for enabling allocation of different frequency resources to different receiver branches of the UE 115, and for switching frequency resource allocations (which may include switching frequency layer operations) at the UE 115.
  • the UE 115 may experience improved RX diversity gain and frequency selective gain while only supporting a small maximum bandwidth per receiver branch.
  • a reduced capability UE may comply with 5G NR communication protocols with improved performance, without requiring additional hardware, power consumption, and cost, which may be particularly beneficial for devices such as wearables, IWSNs, wireless surveillance cameras, and the like.
  • FIG. 4 includes diagrams illustrating examples of frequency resource allocation to different receiver branches according to some aspects.
  • the frequency allocations described with reference to FIG. 4 may include or correspond to allocation of the first set of frequency resources 372 to the first receiver branch 314 at the UE 115 and allocation of the second set of frequency resources 374 to the second receiver branch 316 of FIG. 3.
  • FIG. 4 depicts a first frequency resource allocation 400.
  • the first frequency resource allocation 400 includes an allocation of a first set of frequency resources 402 to a first receiver branch ( “Rx Branch 0” ) at a UE and an allocation of a second set of frequency resources 404 to a second receiver branch ( “Rx Branch 1” ) at the UE.
  • the first set of frequency resources 402 may include or correspond to a first BWP of a carrier BW and the second set of frequency resources may include or correspond to a second BWP of the carrier BW.
  • the first BWP and the second BWP may each include narrowband BWPs, also referred to as narrow BWPs, which may each include frequency ranges that are smaller than a maximum UE BW supported at the UE. As shown in FIG. 4, the first set of frequency resources 402 does not overlap with the second set of frequency resources 404.
  • the first BWP and the second BWP may be associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
  • the bandwidth (e.g., frequency range) associated with the first BWP may have the same width as the bandwidth (e.g., frequency range) associated with the second BWP, although the BWPs may be located at different frequencies within carrier BW.
  • FIG. 4 also depicts a second frequency resource allocation 410.
  • the second frequency resource allocation 410 includes an allocation of a first set of frequency resources 412 to a first receiver branch ( “Rx Branch 0” ) at a UE and an allocation of a second set of frequency resources 414 to a second receiver branch ( “Rx Branch 1” ) at the UE.
  • the first set of frequency resources 412 may include or correspond to a first set of RBs ( “RB Set 0” ) of a BWP
  • the second set of frequency resources 414 may include or correspond to a second set of RBs ( “RB Set 1” ) of the BWP.
  • the sets of RBs may include PRBs or virtual RBs (VRBs) that may be mapped to PRBs.
  • the BWP may include a wideband BWP, also referred to as a wide BWP, that includes a larger frequency range than a maximum UE BW supported at the UE.
  • the first set of frequency resources 412 does not overlap with the second set of frequency resources 414.
  • the first set of frequency resources 412 and the second set of frequency resources 414 may include the same (or substantially same) number of RBs.
  • the first set of frequency resources 412 may include a different number of RBs than the second set of frequency resources 414.
  • FIGS. 5A-C are diagrams illustrating examples of RB allocations to different receiver branches according to some aspects.
  • the RB allocations shown in FIGS. 5A-5C may include or correspond to allocation of the first set of frequency resources 372 and the second set of frequency resources 374 to the first receiver branch 314 and the second receiver branch 316 of FIG. 3.
  • the RB allocations may be indicated by an FDRA field of a DCI message, such as the first message 370 of FIG. 3.
  • FIG. 5A is a diagram illustrating an example of a first RB allocation 500 of RBs to two different BWPs of a carrier BW for two respective receiver branches at a UE.
  • the first RB allocation 500 includes an allocation of VRBs 502 to a first receiver branch at the UE and to a second receiver branch at the UE.
  • VRBs e.g., VRBs 0-3) of a first BWP ( “BWP 0”
  • VRBs e.g., VRBs 0-3) of a second BWP ( “BWP 1” ) may be allocated to the second receiver branch.
  • the VRBs 502 may be mapped to PRBs 504, resulting in an allocation of the PRBs 504 to the receiver branches.
  • PRBs e.g., PRBs 0-3, indicated by a first hatching style
  • PRBs e.g., PRBs 0-3, indicated by a second hatching style
  • the BWPs may include the same number of RBs, and the number of RBs of each BWP that are allocated to the receiver branches may be the same. In the example shown in FIG.
  • the first BWP and the second BWP each include eight RBs, and the same four RBs (e.g., RBs 0-3) of each BWP are allocated to the respective receiver branch.
  • the BWPs may include fewer than eight or more than eight RBs, and the number of RBs allocated from the BWPs may be fewer than four or more than four RBs.
  • FIG. 5B is a diagram illustrating an example of a second RB allocation 510 of a RB group to two sets of PRBs for two respective receiver paths.
  • the second RB allocation 510 includes an allocation of VRBs 512 to a first receiver branch at the UE and to a second receiver branch at the UE.
  • an RB group of VRBs e.g., VRBs 0-7) of a BWP may be allocated to the first receiver branch and the second receiver branch.
  • the VRBs 512 may be mapped to PRBs 514, resulting in an allocation of an RB group of the PRBs 514 to the receiver branches.
  • the VRBs 512 are mapped to the PRBs 514 without interleaving.
  • the RB group of the VRBs 512 may be mapped to the RB group of the PRBs 514 that has the same size.
  • the RB group of the PRBs 514 may then be split for allocation of PRBs 516 to the different receiver paths. For example, a first set of PRBs (e.g., PRBs 0-3) of the RB group may be allocated to the first receiver branch, and a second set of PRBs (e.g., PRBs 4-7) of the RB group may be allocated to the second receiver branch.
  • the number of RBs allocated to each receiver branch may be the same (or substantially the same) .
  • the RB group may be divided into N bundle bundles according to Equation 1 below:
  • N bundle N RB /L
  • N RB is the number of RBs in the RB group
  • L is dependent on a precoding granularity (PRG) associated with transmissions to the UE, such as a PDSCH precoder granularity.
  • PRG precoding granularity
  • WB wideband
  • L may be a different value, such as a value of 2 or 4 RBs as configured by RRC.
  • the first N bundle /2 RBs of a first bundle may be allocated to the first receiver branch, and the remaining N bundle /2 RBs of the first bundle may be allocated to the second receiver branch.
  • different numbers of PRBs may be allocated to the receiver branches.
  • FIG. 5C is a diagram illustrating an example of a third RB allocation 520 of a RB group to two sets of PRBs for two receiver paths.
  • the third RB allocation 520 includes an allocation of VRBs 522 to a first receiver branch at the UE and to a second receiver branch at the UE.
  • an RB group of VRBs e.g., VRBs 0-7) of a BWP may be allocated to the first receiver branch and the second receiver branch.
  • the VRBs 522 may be mapped to PRBs 524, resulting in an allocation of an RB group of the PRBs 524 to the receiver branches.
  • the VRBs 522 are mapped to the PRBs 524 with interleaving.
  • the RB group of the VRBs 522 may be mapped to multiple RB groups of the PRBs 524 that have smaller sizes.
  • the VRBs 0-7 may be mapped to the PRBs 0-7 in an interleaved manner such that a first set of PRBs includes VRBs 0, 1, 4, and 5, and a second set of PRBs includes VRBs 2, 3, 6, and 7.
  • the RB groups of the PRBs 524 may then be allocated as PRBs 526 to the different receiver paths.
  • a first set of PRBs (e.g., PRBs 0-3) of the PRBs 526 may be allocated to the first receiver branch, and a second set of PRBs (e.g., PRBs 8-11) of the PRBs 526 may be allocated to the second receiver branch.
  • the number of RBs allocated to each receiver branch may be the same (or substantially the same) and may be determined according to Equation 1. In other implementations, different numbers of PRBs may be allocated to the receiver branches.
  • FIG. 6 is a timing diagram illustrating an example of RB allocation 600 to different receiver branches according to some aspects.
  • the RB allocation may include or correspond to the first set of frequency resources 372 and the second set of frequency resources 374 allocated to the first receiver branch 314 and the second receiver branch 316 of FIG. 3.
  • the RB allocation 600 includes allocation of a first set of RBs 602 ( “RB Set 1” ) to a first receiver branch at a UE and a second set of RBs 604 ( “RB Set 2” ) to a second receiver branch at the UE.
  • the sets of RBs 602-604 may be different RB sets of a BWP (e.g., a wideband BWP) , as further described with reference to FIGS. 3 and 4.
  • Each of the RBs of the sets of RBs 602-604 may include a PRB (or a VRB that maps to a PRB, as described with reference to FIGS. 5A-5C) .
  • Each of the sets of RBs 602-604 may include respective multiple RBs across multiple symbols.
  • the first set of RBs 602 includes four RBs (e.g., RBs 5-8) across six symbols for a total twenty-four RBs
  • the second set of RBs 604 includes four RBs (e.g., RBs 1-4) across six symbols for a total of twenty-four RBs.
  • the sets of RBs 602-604 may include fewer than twenty-four RBs or more than twenty-four RBs.
  • the sets of RBs 602-604 may include or correspond to one or more CWs or multiple TBs.
  • a base station may transmit a first CW (or a first portion thereof) of a TB via the first set of RBs 602, and the base station may transmit the first CW (or a second portion thereof) via the second set of RBs 604.
  • the portions of the CW are associated with the same RV.
  • the portions of the CW transmitted by the sets of RBs 602-604 may be LDPC encoded according to a first RV scheme 610, which illustrates encoding according to a single RV initialized at a RV value of 0.
  • the sets of RBs 602-604 may include or correspond to two CWs of a single TB.
  • the base station may transmit a first CW of a TB via the first set of RBs 602, and the base station may transmit a second CW of the TB via the second set of RBs 604.
  • the first CW may be associated with a first RV and the second CW may be associated with a second RV that is different than the first RV.
  • the first CW and the second CW may be LDPC encoded according to a second RV scheme 620, which illustrates encoding according to a first RV initialized at a RV value of 0 and a second RV initialized at a RV value of 3.
  • the sets of RBs 602-604 may include or correspond to two TBs.
  • the base station may transmit a first TB via the first set of RBs 602, and the base station may transmit a second TB via the second set of RBs 604.
  • the two TBs may be associated with the same RV or with different RVs.
  • the TBs may be LDPC encoded according to the first RV scheme 610 or the second RV scheme 620.
  • a maximum number of transmission layers included in (or represented by) the first set of RBs 602 and the second set of RBs 604 is one.
  • transmissions via the sets of RBs 602-604 may not include or correspond to multiple transmission layers.
  • the base station may use the same DMRS port for performing transmissions via the first set of RBs 602 and the second set of RBs 604.
  • the base station may transmit the multiple portions of the single CW, the multiple CWs of the single TB, or the multiple TBs, using the same DMRS port.
  • FIG. 7 includes timing diagrams illustrating examples of RB allocations to different receiver branches according to some aspects.
  • the RB allocations may include or correspond to the first set of frequency resources 372 and the second set of frequency resources 374 allocated to the first receiver branch 314 and the second receiver branch 316 of FIG. 3.
  • FIG. 7 depicts a first RB allocation 700 of a first set of frequency resources that is represented by a block having a higher frequency (e.g., that is higher with respect to the frequency axis) and a second set of frequency resources that is represented by a block having a lower frequency (e.g., that is lower with respect to the frequency axis) .
  • the first set of frequency resources and the second set of frequency resources are allocated to different receiver branches at a UE.
  • the first set of frequency resources is allocated to a first receiver branch ( “RX 0” ) and the second set of frequency resources is allocated to a second receiver branch ( “RX 1” ) .
  • the RB allocations e.g., the frequency resource allocations
  • the message may include a repetition indicator that indicates whether repeated transmissions are enabled. If repeated transmissions are enabled, the base station may transmit additional messages (e.g., via RRC or DCI) indicating switching of the RB allocations.
  • Such messages may indicate switching of the RB allocation according to a predetermined pattern.
  • the predetermined pattern is once per pair of time slots (e.g., once per every two time slots) .
  • the first set of frequency resources may be allocated to the first receiver branch for the first and second time slots, followed by the first set of frequency resources being allocated to the second receiver branch for the third and fourth time slots.
  • the second set of frequency resources may be allocated to the second receiver branch for the first and second time slots, followed by the second set of frequency resources being allocated to the first receiver branch for the third and fourth time slots.
  • the allocation of frequency resources may be switched, and the pattern may continue for one or more additional time slots.
  • FIG. 7 also depicts a second RB allocation 710 of the first set of frequency resources and the second set of frequency resources to the receiver branches according to a predetermined pattern.
  • the predetermined pattern is once per time slot.
  • the first set of frequency resources may be allocated to the first receiver branch for the first time slot, followed by the first set of frequency resources being allocated to the second receiver branch for the second time slot.
  • the second set of frequency resources may be allocated to the second receiver branch for the first time slot, followed by the second set of frequency resources being allocated to the first receiver branch for the second time slot.
  • the allocation of frequency resources may be switched, and the pattern may continue for one or more additional time slots.
  • the predetermined pattern may be different, such as once per set of four time slots or once per set of ten time slots, as non-limiting examples.
  • FIG. 8 is a flow diagram illustrating an example process 800 that supports monitoring different frequency resources using different receiver branches according to some aspects.
  • Operations of the process 800 may be performed by a UE, such as the UE 115 described above with reference to FIGS. 1-3 or a UE as described with reference to FIG. 10.
  • example operations (also referred to as “blocks” ) of the process 800 may enable the UE 115 to monitor different frequency resources using different receiver branches based on allocations of the frequency resources.
  • the UE 115 receives, a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE 115 and a second set of frequency resources to a second receiver branch at the UE 115.
  • the first message may include the first message 370
  • the first set of frequency resources may include the first set of frequency resources 372
  • the second set of frequency resources may include the second set of frequency resources 374 of FIG. 3.
  • the UE 115 monitors the first set of frequency resources using the first receiver branch and a first antenna of the UE 115.
  • the first receiver branch may include the first receiver branch 314 and the first antenna may include the first antenna 318 of FIG. 3.
  • the UE 115 monitors the second set of frequency resources using the second receiver branch and a second antenna of the UE 115.
  • the second receiver branch may include the second receiver branch 316 and the second antenna may include the second antenna 320 of FIG. 3.
  • the UE may include a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
  • the first set of frequency resources may correspond to a first BWP of a carrier BW
  • the second set of frequency resources may correspond to a second BWP of the carrier BW that is non-overlapping with the first BWP.
  • the first BWP and the second BWP may be associated with the same SCS and the same BWP bandwidth.
  • the first set of frequency resources may correspond to a first set of PRBs of a BWP
  • the second set of frequency resources may correspond to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
  • the process 800 also includes determining a TB size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both, based on a number of PRBs included in the first set of PRBs.
  • the process 800 may include determining a TB size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs. Additionally or alternatively, the process 800 may further include determining a first PTRS frequency density based on a number of PRBs included in the first set of PRBs, and determining a second PTRS frequency density based on a number of PRBs included in the second set of PRBs.
  • the first message may include a DCI message.
  • the DCI message indicates a first TCI associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
  • the process 800 may also include receiving, from the base station, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources, and switching from monitoring the first set of frequency resources and the second set of frequency resources to monitoring the third set of frequency resources using the first receiver branch and the first antenna, the second receiver branch and the second antenna, or a combination thereof.
  • the DCI message may include a FDRA field that indicates the first set of frequency resources and the second set of frequency resources.
  • the FDRA field may indicate a same RB allocation for two BWPs of a carrier BW for the first set of frequency resources and the second set of frequency resources.
  • the FDRA field may indicate a RB allocation within a BWP, the first set of frequency resources may be based on a first half of the allocated RBs, and the second set of frequency resources may be based on a second half of the allocated RBs.
  • the process 800 may include receiving a first portion of a codeword associated with a single TB from the base station via the first set of frequency resources using the first receiver branch and the first antenna, receiving a second portion of the codeword from the base station via the second set of frequency resources using the second receiver branch and the second antenna, and combining the first portion of the codeword and the second portion of the codeword to detect the single TB.
  • the first portion of the codeword and the second portion of the codeword may be associated with the same RV.
  • the process 800 may include receiving a first codeword associated with a single TB from the base station via the first set of frequency resources using the first receiver branch and the first antenna, receiving a second codeword associated with the single TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna, and combining the first codeword and the second codeword to detect the single TB.
  • the first codeword may be associated with a first RV
  • the second codeword may be associated with a second RV that is different than the first RV.
  • the process 800 may include receiving a first TB from the base station via the first set of frequency resources using the first receiver branch and the first antenna, and receiving a second TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
  • the first TB and the second TB may be associated with the same DMRS port.
  • the process 800 may also include receiving, from the base station, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern.
  • the first message indicates a repetition transmission across multiple slots.
  • the predetermined pattern may be once per time slot. Alternatively, the predetermined pattern may be once per pair of time slots.
  • FIG. 9 is a flow diagram illustrating an example process 900 that supports allocating different frequency resources to different receiver branches according to some aspects.
  • Operations of the process 900 may be performed by a base station, such as the base station 105 described above with reference to FIGS. 1-3 or a base station as described with reference to FIG. 11.
  • example operations of the process 900 may enable the base station 105 to allocate different frequency resources to different receiver branches of a UE.
  • the base station 105 transmits, to a UE, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the first message may include the first message 370
  • the first set of frequency resources may include the first set of frequency resources 372
  • the second set of frequency resources may include the second set of frequency resources 374 of FIG. 3.
  • the base station 105 transmits a first DL message to the UE via the first set of frequency resources.
  • the first DL message may include the first DL message 376 of FIG. 3.
  • the base station 105 transmits a second DL message to the UE via the second set of frequency resources.
  • the second DL message may include the second DL message 380 of FIG. 3.
  • the UE may include a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
  • the first set of frequency resources may correspond to a first BWP of a carrier BW
  • the second set of frequency resources may correspond to a second BWP of the carrier BW that is non-overlapping with the first BWP.
  • the first BWP and the second BWP may be associated with the same SCS and the same BWP bandwidth.
  • the first set of frequency resources may correspond to a first set of PRBs of a BWP
  • the second set of frequency resources may correspond to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
  • the process 900 may also include determining a TB size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a number of PRBs included in the first set of PRBs.
  • the process 900 may include determining a TB size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs. Additionally or alternatively, the process 900 may further include transmitting a first PTRS to the UE, the first PTRS associated with a first PTRS frequency density that is based on a number of PRBs included in the first set of PRBs, and transmitting a second PTRS to the UE, the second PTRS associated with a second PTRS frequency density that based on a number of PRBs included in the second set of PRBs.
  • the first message may include a RRC message, and the first set of frequency resources and the second set of frequency resources may be allocated for PDCCH resources.
  • the first message may include a DCI message.
  • the DCI message indicates a first TCI associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
  • the process 900 may include transmitting, to the UE, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources, and transmitting a third DL message to the UE via the first set of frequency resources, the second set of frequency resources, or both.
  • the DCI message may include a FDRA field that indicates the first set of frequency resources and the second set of frequency resources.
  • the FDRA field may indicate the same RB allocation for two BWPs of a carrier BW for the first set of frequency resources and the second set of frequency resources.
  • the FDRA field may indicate a RB allocation within a BWP, the first set of frequency resources may be based on a first half of the allocated RBs, and the second set of frequency resources may be based on a second half of the allocated RBs.
  • the first DL message may include a first portion of a codeword associated with a single TB, and the second DL message may include a second portion of the codeword.
  • the first portion of the codeword and the second portion of the codeword may be associated with the same RV.
  • the first DL message may include a first codeword associated with a single TB, and the second DL message may include a second codeword associated with the single TB.
  • the first codeword may be associated with a first RV
  • the second codeword may be associated with a second RV that is different than the first RV.
  • the first DL message may include a first TB
  • the second DL message may include a second TB.
  • the first TB and the second TB may be associated with the same DMRS port.
  • the process 900 may further include transmitting, to the UE, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern.
  • the first message indicates a repetition transmission across multiple slots.
  • the predetermined pattern may be once per time slot. Alternatively, the predetermined pattern may be once per pair of time slots.
  • FIG. 10 is a block diagram of an example UE 1000 that supports monitoring different frequency resources using different receiver branches according to some aspects.
  • the UE 1000 may be configured to perform operations, including the blocks of the process 800 described with reference to FIG. 8.
  • the UE 1000 includes the structure, hardware, and components shown and described with reference to the UE 115 of FIGS. 2 or 3.
  • the UE 1000 includes the controller/processor 280, which operates to execute logic or computer instructions stored in the memory 282, as well as controlling the components of the UE 1000 that provide the features and functionality of the UE 1000.
  • the UE 1000 under control of the controller/processor 280, transmits and receives signals via wireless radios 1001a-r and the antennas 252a-r.
  • the wireless radios 1001a-r include various components and hardware, as illustrated in FIG. 2 for the UE 115, including the modulator and demodulators 254a-r, the MIMO detector 256, the receive processor 258, the transmit processor 264, and the TX MIMO processor 266.
  • the memory 282 may include receive logic 1002 and DL monitoring logic 1003.
  • the receive logic 1002 may be configured to enable receipt of signals or data, such as resource allocation messages, via the wireless radios 1001a-r and the antennas 252a-4.
  • the DL monitoring logic 1003 may be configured to monitor different frequency resources for DL signals or data using different receiver branches of the wireless radios 1001a-r.
  • the UE 1000 may receive signals from or transmit signals to one or more network entities, such as the base station 105 of FIGS. 1-3 or a base station as illustrated in FIG. 11.
  • the UE 1000 may be configured to perform the process 800 of FIG. 8.
  • the UE 1000 may execute, under control of the controller/processor 280, the receive logic 1002 and the DL monitoring logic 1003 stored in the memory 282.
  • the execution environment of the receive logic 1002 provides the functionality to perform at least the operations in block 802.
  • the execution environment of the DL monitoring logic 1003 provides the functionality to perform at least the operations in blocks 804 and 806.
  • FIG. 11 is a block diagram of an example base station 1100 that supports allocating different frequency resources to different receiver branches according to some aspects.
  • the base station 1100 may be configured to perform operations, including the blocks of the process 900 described with reference to FIG. 9.
  • the base station 1100 includes the structure, hardware, and components shown and described with reference to the base station 105 of FIGS. 1-3.
  • the base station 1100 may include the controller/processor 240, which operates to execute logic or computer instructions stored in the memory 242, as well as controlling the components of the base station 1100 that provide the features and functionality of the base station 1100.
  • the base station 1100 under control of the controller/processor 240, transmits and receives signals via wireless radios 1101a-t and the antennas 234a-t.
  • the wireless radios 1101a-t include various components and hardware, as illustrated in FIG. 2 for the base station 105, including the modulator and demodulators 232a-t, the transmit processor 220, the TX MIMO processor 230, the MIMO detector 236, and the receive processor 238.
  • the memory 242 may include frequency allocation logic 1102 and transmit logic 1103.
  • the frequency allocation logic 1102 may be configured to allocate different frequency resources to different receive branches of a UE.
  • the transmit logic 1103 may be configured to enable transmission of signals or data, such as frequency allocation messages and DL messages, via the wireless radios 1101a-t and the antennas 234a-t.
  • the base station 1100 may receive signals from or transmit signals to one or more UEs, such as the UE 115 of FIGS. 1-3 or the UE 1000 of FIG. 10.
  • the base station 1100 may be configured to perform the process 900 of FIG. 9.
  • the base station 1100 may execute, under control of the controller/processor 240, the frequency allocation logic 1102 and the transmit logic 1103 stored in the memory 242.
  • the execution environment of the frequency allocation logic 1102 and the transmit logic 1103 provides the functionality to perform at least the operations in block 902.
  • the execution environment of the transmit logic 1103 provides the functionality to perform at least the operations in blocks 904 and 906.
  • FIGS. 8 and 9 may be combined with one or more blocks (or operations) described with reference to another of the figures.
  • one or more blocks (or operations) of FIG. 8 may be combined with one or more blocks (or operations) of FIG. 9.
  • one or more blocks associated with FIGS. 10 or 11 may be combined with one or more blocks (or operations) associated with FIGS. 2 or 3.
  • enabling allocation of different frequency resources to different receiver branches may include additional aspects, such as any single aspect or any combination of aspects described below or in connection with one or more other processes or devices described elsewhere herein.
  • enabling allocation of different frequency resources to different receiver branches may include an apparatus that is configured to receive, at a UE from a base station, a first message.
  • the first message may indicate allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the apparatus may also be configured to monitor the first set of frequency resources using the first receiver branch and a first antenna of the UE.
  • the apparatus may further be configured to monitor the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  • the apparatus includes a wireless device, such as a UE.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations described herein with respect to the wireless device.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • the apparatus includes a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
  • the first set of frequency resources corresponds to a first bandwidth part (BWP) of a carrier bandwidth (BW) .
  • the second set of frequency resources corresponds to a second BWP of the carrier BW that is non-overlapping with the first BWP.
  • the first BWP and the second BWP are associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
  • SCS subcarrier spacing
  • the first set of frequency resources corresponds to a first set of physical resource blocks (PRBs) of a bandwidth part (BWP) .
  • the second set of frequency resources corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
  • the apparatus is configured to determine a transport block (TB) size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both based on a number of PRBs included in the first set of PRBs.
  • TB transport block
  • the apparatus is configured to determine a transport block (TB) size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs.
  • TB transport block
  • the apparatus is configured to determine a first phase tracking reference signal (PTRS) frequency density based on a number of PRBs included in the first set of PRBs.
  • PTRS phase tracking reference signal
  • the apparatus is configured to determine a second PTRS frequency density based on a number of PRBs included in the second set of PRBs.
  • the first message includes a radio resource control (RRC) message.
  • RRC radio resource control
  • the first set of frequency resources and the second set of frequency resources are allocated for physical downlink control channel (PDCCH) resources.
  • PDCCH physical downlink control channel
  • the first message includes a downlink control information (DCI) message.
  • the DCI message indicates a first transmission configuration indicator (TCI) associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
  • TCI transmission configuration indicator
  • the apparatus is configured to receive, from the base station, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources.
  • the apparatus is configured to switch from monitoring the first set of frequency resources and the second set of frequency resources to monitoring the third set of frequency resources using the first receiver branch and the first antenna, the second receiver branch and the second antenna, or a combination thereof.
  • the DCI message includes a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources and the second set of frequency resources.
  • FDRA frequency domain resource assignment
  • the FDRA field indicates a same resource block (RB) allocation for two bandwidth parts (BWPs) of a carrier bandwidth (BW) for the first set of frequency resources and the second set of frequency resources.
  • the FDRA field indicates a resource block (RB) allocation within a bandwidth part (BWP) .
  • the first set of frequency resources is based on a first half of the allocated RBs and the second set of frequency resources is based on a second half of the allocated RBs.
  • the apparatus is configured to receive a first portion of a codeword associated with a single transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna.
  • TB transport block
  • the apparatus is configured to receive a second portion of the codeword from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
  • the apparatus in combination with the seventeenth aspect, is configured to combine the first portion of the codeword and the second portion of the codeword to detect the single TB.
  • the first portion of the codeword and the second portion of the codeword are associated with the same redundancy version (RV) .
  • the apparatus is configured to receive a first codeword associated with a single transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna.
  • TB transport block
  • the apparatus is configured to receive a second codeword associated with the single TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
  • the apparatus in combination with the twenty-first aspect, is configured to combine the first codeword and the second codeword to detect the single TB.
  • the first codeword is associated with a first redundancy version (RV) .
  • the second codeword is associated with a second RV that is different than the first RV.
  • the apparatus is configured to receive a first transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna.
  • TB transport block
  • the apparatus is configured to receive a second TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
  • the first TB and the second TB are associated with the same demodulation reference signal (DMRS) port.
  • DMRS demodulation reference signal
  • the apparatus is configured to receive, from the base station, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern.
  • the first message indicates a repetition transmission across multiple slots.
  • the predetermined pattern is once per time slot.
  • the predetermined pattern is once per pair of time slots.
  • an apparatus configured for wireless communication such as a base station, is configured to transmit, from a base station to a UE, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE.
  • the apparatus is also configured to transmit a first DL message to the UE via the first set of frequency resources; and.
  • the apparatus is further configured to transmit a second DL message to the UE via the second set of frequency resources.
  • the apparatus includes a wireless device, such as a base station.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations described herein with respect to the wireless device.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • the UE includes a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
  • the first set of frequency resources corresponds to a first bandwidth part (BWP) of a carrier bandwidth (BW) .
  • the second set of frequency resources corresponds to a second BWP of the carrier BW that is non-overlapping with the first BWP.
  • the first BWP and the second BWP are associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
  • SCS subcarrier spacing
  • the first set of frequency resources corresponds to a first set of physical resource blocks (PRBs) of a bandwidth part (BWP) .
  • the second set of frequency resources corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
  • the apparatus is configured to determine a transport block (TB) size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a number of PRBs included in the first set of PRBs.
  • TB transport block
  • the apparatus is configured to determine a transport block (TB) size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs.
  • TB transport block
  • the apparatus is configured to transmit a first phase tracking reference signal (PTRS) to the UE.
  • PTRS phase tracking reference signal
  • the first PTRS is associated with a first PTRS frequency density that is based on a number of PRBs included in the first set of PRBs.
  • the apparatus is configured to transmit a second PTRS to the UE.
  • the second PTRS is associated with a second PTRS frequency density that based on a number of PRBs included in the second set of PRBs.
  • the first message includes a radio resource control (RRC) message.
  • RRC radio resource control
  • the first set of frequency resources and the second set of frequency resources are allocated for physical downlink control channel (PDCCH) resources.
  • PDCCH physical downlink control channel
  • the first message includes a downlink control information (DCI) message.
  • the DCI message indicates a first transmission configuration indicator (TCI) associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
  • TCI transmission configuration indicator
  • the apparatus in combination with the thirty-ninth aspect, is configured to transmit, to the UE, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources.
  • the apparatus in combination with the fortieth aspect, is configured to transmit a third DL message to the UE via the first set of frequency resources, the second set of frequency resources, or both.
  • the DCI message includes a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources and the second set of frequency resources.
  • FDRA frequency domain resource assignment
  • the FDRA field indicates the same resource block (RB) allocation for two bandwidth parts (BWPs) of a resource bandwidth (BW) for the first set of frequency resources and the second set of frequency resources.
  • the FDRA field indicates a resource block (RB) allocation within a bandwidth part (BWP) .
  • the first set of frequency resources is based on a first half of the allocated RBs and the second set of frequency resources is based on a second half of the allocated RBs.
  • the first DL message includes a first portion of a codeword associated with a single transport block (TB) .
  • the second DL message includes a second portion of the codeword.
  • the first portion of the codeword and the second portion of the codeword are associated with the same redundancy version (RV) .
  • the first DL message includes a first codeword associated with a single transport block (TB) .
  • the second DL message includes a second codeword associated with the single TB.
  • the first codeword is associated with a first redundancy version (RV) .
  • the second codeword is associated with a second RV that is different than the first RV.
  • the first DL message includes a first transport block (TB) .
  • the second DL message includes a second TB.
  • the first TB and the second TB are associated with the same demodulation reference signal (DMRS) port.
  • DMRS demodulation reference signal
  • the apparatus is configured to transmit, to the UE, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern.
  • the first message indicates a repetition transmission across multiple slots.
  • the predetermined pattern is once per time slot.
  • the predetermined pattern is once per pair of time slots.
  • Components, the functional blocks, and modules described herein may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • processors e.g., the components, functional blocks, and modules in FIGS. 2, 3, 10, and 11
  • FIGS. 1-11 may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In some implementations, a method of wireless communication includes receiving, at a user equipment (UE) from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The method also includes monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE. The method further includes monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE. Other aspects and features are also claimed and described.

Description

MULTIPLE RECEIVER OPERATION FOR USER EQUIPMENT (UE) TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to a user equipment (UE) configured for multiple receiver operation.
INTRODUCTION
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
SUMMARY
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In one aspect of the disclosure, a method of wireless communication includes receiving, at a user equipment (UE) from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The method also includes monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE. The method further includes monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE. Other aspects and features are also claimed and described.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the at least one processor. The at least one processor is configured to receive, at a UE from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The at least one processor is also configured to monitor the first set of frequency resources using the first receiver branch and a first antenna of the UE. The at least one processor is further configured to monitor the second set of frequency resources using the second receiver branch and a second antenna of the UE.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes means for receiving, at a UE from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The apparatus also includes means for monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE. The apparatus further includes means for monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE.
In an additional aspect of the disclosure, a non-transitory computer-readable medium stores instructions that, when executed by a processor, causes the processor to perform operations. The operations include receiving, at a UE from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The operations also include monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE. The operations further include monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE.
In an additional aspect of the disclosure, a method of wireless communication includes transmitting, from a base station to a UE, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The method also includes transmitting a first downlink (DL) message to the UE via the first set of frequency resources. The method further includes transmitting a second DL message to the UE via the second set of frequency resources.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the at least one processor. The at least one processor is configured to initiate transmission, from a base station to a UE, of a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The at least one processor is also configured to initiate transmission of a first DL message to the UE via the first set of frequency resources. The at least one processor is further configured to initiate transmission of a second DL message to the UE via the second set of frequency resources.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes means for transmitting, from a base station to a UE, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The apparatus also includes means for transmitting a first DL message to the UE via the first set of frequency resources. The apparatus further includes means for transmitting a second DL message to the UE via the second set of frequency resources.
In an additional aspect of the disclosure, a non-transitory computer-readable medium stores instructions that, when executed by a processor, causes the processor to perform operations. The operations include initiating transmission, from a base station to a UE, of a  first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The operations also include initiating transmission of a first DL message to the UE via the first set of frequency resources. The operations further include initiating transmission of a second DL message to the UE via the second set of frequency resources.
Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments in conjunction with the accompanying figures. While features may be discussed relative to certain aspects and figures below, all embodiments can include one or more of the advantageous features discussed herein. In other words, while one or more aspects may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various aspects. In similar fashion, while exemplary aspects may be discussed below as device, system, or method aspects, the exemplary aspects can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating details of an example wireless communication system according to some embodiments of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating an example design of a base station and a user equipment (UE) configured according to some embodiments of the present disclosure.
FIG. 3 is a block diagram illustrating an example wireless communication system that supports allocation of different frequency resources to different receiver branches of a UE according to some aspects.
FIG. 4 includes diagrams illustrating examples of frequency resource allocation to different receiver branches according to some aspects.
FIGS. 5A-C are diagrams illustrating examples of resource block (RB) allocations to different receiver branches according to some aspects.
FIG. 6 is a timing diagram illustrating an example of RB allocation to different receiver branches according to some aspects.
FIG. 7 includes timing diagrams illustrating examples of RB allocations to different receiver branches according to some aspects.
FIG. 8 is a flow diagram illustrating an example process that supports monitoring different frequency resources using different receiver branches according to some aspects.
FIG. 9 is a flow diagram illustrating an example process that supports allocating different frequency resources to different receiver branches according to some aspects.
FIG. 10 is a block diagram of an example UE that supports monitoring different frequency resources using different receiver branches according to some aspects.
FIG. 11 is a block diagram of an example base station that supports allocating different frequency resources to different receiver branches according to some aspects.
The Appendix provides further details regarding various aspects of this disclosure and the subject matter therein forms a part of the specification of this application.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings and appendix, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation.
As research into fifth generation (5G) new radio (NR) communication systems continues, 5G NR techniques will be applied to “reduced capability” user equipments (UEs) , such as UEs that are associated with smaller bandwidth capabilities, reduced numbers of receive (RX) antennas, or relaxed processing and channel monitoring compared to other UEs, such as smartphones, vehicles, or other mobile devices. Examples of reduced capability UEs may include “wearables” (e.g., smart watches, fitness devices, health monitoring devices, and the like) , industrial wireless sensor networks (IWSNs) , wireless surveillance cameras, and the like. These reduced capability UEs may have relaxed requirements for peak throughput, latency, and reliability, but also may be associated with increased requirements for efficiency  (e.g., power consumption and system overhead) and cost. As a particular example, a reduced capability UE, also referred to as a NR RedCap UE, may be required to support up to two RX antennas with a reduced maximum bandwidth (e.g., up to 20 megahertz (MHz) for FR1) . Such maximum bandwidth reduction may result in limited control resource set (CORESET) size, thereby increasing physical downlink control channel (PDCCH) blocking, and lower frequency diversity and coverage. Additionally, the NR RedCap UE with two RX antennas may be configured to achieve RX diversity gain, but not frequency selective gain, from a large system bandwidth.
The present disclosure provides systems, apparatus, methods, and computer-readable media for allocating different frequency resources to different receiver branches of a UE, such as a “reduced capability” UE. The techniques of the present disclosure may enable a base station or other network entity to allocate different frequency resources, such as different bandwidth parts (BWPs) or different physical resource blocks (PRBs) of a common BWP, to different receiver branches of a UE. In this manner, a UE that supports two antennas and receiver branches may be configured to receive downlink (DL) signals from the base station via different frequency resources using different receiver branches and antennas, which may improve coverage and frequency diversity at the UE.
To illustrate, the base station may allocate a first set of frequency resources to a first receiver branch of the UE and a second set of frequency resources to a second receiver branch of the UE. In some implementations, the first set of frequency resources may correspond to a first BWP (e.g., a narrowband BWP) of a carrier bandwidth (BW) and the second set of frequency resources may correspond to a non-overlapping second BWP of the carrier BW. In some other implementations, the first set of frequency resources may correspond to a first set of PRBs of a BWP (e.g., a wideband BWP) and the second set of frequency resources may correspond to a non-overlapping second set of PRBs of the BWP. The base station may transmit a message to the UE that indicates the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch, respectively. Based on receipt of the message, the UE may monitor the first set of frequency resources using the first receiver branch and a first antenna, and the UE may monitor the second set of frequency resources using the second receiver branch and a second antenna, to receive DL messages from the base station. In this manner, the UE may use multiple frequency layers to receive DL messages using different frequency resources, in addition to using a single frequency layer (e.g., using the same frequency resources for multiple receiver branches and antennas) to receive DL messages.
The switching between using a single frequency layer and multiple frequency layers may be static, semi-static, or dynamic. As one example, the base station may configure the UE to use different frequency resources for multiple receiver branches and antennas for all physical downlink control channels (PDCCHs) . As another example, the base station may dynamically activate the switching at the UE, such as by using a downlink control information (DCI) message that indicates the allocation of frequency resources. Additionally or alternatively, the base station may switch the allocation of frequency resources to the different receiver branches in a similar manner, such as semi-statically by using a radio resource control (RRC) message that indicates a new frequency resource allocation or dynamically by using a DCI message that indicates the new frequency resource allocation. In some such implementations, the frequency resource allocation to multiple receiver branches and antennas may be switched according to a predetermined pattern, such as once every slot, once every two slots, once every four slots, or some other pattern.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. In some aspects, the present disclosure provides techniques for allocating different frequency resources to different receiver branches of a 5G NR compliant reduced capability UE, also referred to as a NR RedCap UE or a NR Light UE. The reduced capability UE may include a wearable (e.g., a smart watch, a fitness device, a health monitoring device, and the like) , an industrial wireless sensor network (IWSN) , a wireless surveillance camera, and the like, that are associated relaxed requirements for peak throughput, latency, and reliability, but also may be associated with increased requirements for efficiency (e.g., power consumption and system overhead) and cost. As a particular example, the reduced capability UE may support up to two antennas and receiver branches with a reduced maximum bandwidth, as compared to other 5G NR compliant UEs that typically support four or more antennas and receiver branches with a larger maximum bandwidth. Due to the allocation of different frequency resources to the two receiver branches, the UE may achieve improved RX diversity gain and frequency selective gain as compared to a UE that is allocated the same frequency resources for each receiver branch. As an example, the UE may achieve 1-2 decibel (dB) gain due to the allocation of different frequency resources, and such gain may be increased for higher modulation and coding schemes (MCSs) .
This disclosure relates generally to providing or participating in authorized shared access between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks. In various implementations,  the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network, for example, may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may, for example implement a radio technology such as Global System for Mobile Communication (GSM) . The Third Generation Partnership Project (3GPP) defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. Additionally, an operator network may also include one or more LTE networks, and/or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3GPP is a collaboration between groups  of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure may describe certain aspects with reference to LTE, 4G, or 5G NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects descried with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects of the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz,  for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to example 5G NR implementations or in a 5G-centric way, and 5G terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to 5G applications.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
While aspects and implementations are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and/or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices,  industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
FIG. 1 is a block diagram illustrating details of an example wireless communication system. The wireless communication system may include wireless network 100. Wireless network 100 may, for example, include a 5G wireless network. As appreciated by those skilled in the art, components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used. In implementations of wireless network 100 herein, base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include a plurality of operator wireless networks) . Additionally, in implementations of wireless network 100 herein, base station 105 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In some other examples, each base station 105 and UE 115 may be operated by a single network operating entity.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1,  base stations  105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.
Wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. It should be appreciated that, although a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some  other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile apparatus, such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may also be referred to as IoE devices. UEs 115a-115d of the implementation illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100 A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
A mobile apparatus, such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like. In FIG. 1, a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations. UEs may operate as base stations or other network nodes in some scenarios. Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
In operation at wireless network 100, base stations 105a-105c serve  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
Wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , UE 115g (smart meter) , and UE 115h (wearable device) may communicate through wireless network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f. Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
FIG. 2 shows a block diagram conceptually illustrating an example design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1. For a restricted association scenario (as mentioned above) , base station 105 may be small cell base station 105f in FIG. 1, and UE 115 may be  UE  115c or 115d operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list of accessible UEs for small cell base station 105f. Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At base station 105, transmit processor 220 may receive data from data source 212 and control information from controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical  downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc. The data may be for the PDSCH, etc. Additionally, transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal. Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. For example, spatial processing performed on the data symbols, the control symbols, or the reference symbols may include precoding. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
At UE 115, the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
On the uplink, at UE 115, transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Additionally, transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105. At base station 105, the uplink signals from UE 115 may be received by antennas 234, processed by demodulators  232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115. Receive processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
Controllers/ processors  240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIGS. 8 and 9, and/or other processes for the techniques described herein.  Memories  242 and 282 may store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Wireless communications systems operated by different network operating entities (e.g., network operators) may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.
For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
In some cases, UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. In some implementations, a CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
The present disclosure provides systems, apparatus, methods, and computer-readable media for allocating different frequency resources to different receiver branches of a UE, such as a “reduced capability” UE. The techniques of the present disclosure may enable a base station or other network entity to allocate different frequency resources, such as different bandwidth parts (BWPs) or different physical resource blocks (PRBs) of a common BWP, to different receiver branches of a UE. In this manner, a UE that supports two antennas and receiver branches may be configured to receive downlink (DL) signals from the base station via different frequency resources using different receiver branches and antennas, which may improve coverage and frequency diversity at the UE.
To illustrate, the base station may allocate a first set of frequency resources to a first receiver branch of the UE and a second set of frequency resources to a second receiver branch of the UE. In some implementations, the first set of frequency resources may correspond to a first BWP (e.g., a narrowband BWP) of a carrier bandwidth (BW) and the second set of frequency resources may correspond to a non-overlapping second BWP of the carrier BW. In some other implementations, the first set of frequency resources may correspond to a first set of PRBs of a BWP (e.g., a wideband BWP) and the second set of  frequency resources may correspond to a non-overlapping second set of PRBs of the BWP. The base station may transmit a message to the UE that indicates the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch, respectively. Based on receipt of the message, the UE may monitor the first set of frequency resources using the first receiver branch and a first antenna, and the UE may monitor the second set of frequency resources using the second receiver branch and a second antenna, to receive DL messages from the base station. In this manner, the UE may use multiple frequency layers to receive DL messages using different frequency resources, in addition to using a single frequency layer (e.g., using the same frequency resources for multiple receiver branches and antennas) to receive DL messages.
The switching between using a single frequency layer and multiple frequency layers may be static, semi-static, or dynamic. As one example, the base station may configure the UE to use different frequency resources for multiple receiver branches and antennas for all physical downlink control channels (PDCCHs) . As another example, the base station may dynamically activate the switching at the UE, such as by using a downlink control information (DCI) message that indicates the allocation of frequency resources. Additionally or alternatively, the base station may switch the allocation of frequency resources to the different receiver branches in a similar manner, such as semi-statically by using a radio resource control (RRC) message that indicates a new frequency resource allocation or dynamically by using a DCI message that indicates the new frequency resource allocation. In some such implementations, the frequency resource allocation to multiple receiver branches and antennas may be switched according to a predetermined pattern, such as once every slot, once every two slots, once every four slots, or some other pattern.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. In some aspects, the present disclosure provides techniques for allocating different frequency resources to different receiver branches of a 5G NR compliant reduced capability UE, also referred to as a NR RedCap UE or a NR Light UE. The reduced capability UE may include a wearable (e.g., a smart watch, a fitness device, a health monitoring device, and the like) , an industrial wireless sensor network (IWSN) , a wireless surveillance camera, and the like, that are associated relaxed requirements for peak throughput, latency, and reliability, but also may be associated with increased requirements for efficiency (e.g., power consumption and system overhead) and cost. As a particular example, the reduced capability UE may support up to two antennas and receiver branches with a reduced maximum bandwidth, as compared to  other 5G NR compliant UEs that typically support four or more antennas and receiver branches with a larger maximum bandwidth. Due to the allocation of different frequency resources to the two receiver branches, the UE may achieve improved RX diversity gain and frequency selective gain as compared to a UE that is allocated the same frequency resources for each receiver branch. As an example, the UE may achieve 1-2 decibel (dB) gain due to the allocation of different frequency resources, and such gain may be increased for higher modulation and coding schemes (MCSs) .
FIG. 3 is a block diagram of an example wireless communications system 300 that supports allocation of different frequency resources to different receiver branches of a UE according to some aspects. In some examples, the wireless communications system 300 may implement aspects of the wireless network 100. The wireless communications system 300 includes the UE 115 and the base station 105. Although one UE 115 and one base station 105 are illustrated, in some other implementations, the wireless communications system 300 may generally include multiple UEs 115, and may include more than one base station 105.
The UE 115 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein. For example, these components can include one or more processors 302 (hereinafter referred to collectively as “the processor 302” ) , one or more memory devices 304 (hereinafter referred to collectively as “the memory 304” ) , one or more transmitters 310 (hereinafter referred to collectively as “the transmitter 310” ) , one or more receivers 312 (hereinafter referred to collectively as “the receiver 312” ) , a first antenna 318, and a second antenna 320. The processor 302 may be configured to execute instructions stored in the memory 304 to perform the operations described herein. In some implementations, the processor 302 includes or corresponds to one or more of the receive processor 258, the transmit processor 264, and the controller/processor 280, and the memory 304 includes or corresponds to the memory 282.
The transmitter 310 is configured to transmit reference signals, control information and data to one or more other devices, and the receiver 312 is configured to receive references signals, synchronization signals, control information and data from one or more other devices. For example, the transmitter 310 may transmit signaling, control information and data to, and the receiver 312 may receive signaling, control information and data from, the base station 105. In some implementations, the transmitter 310 and the receiver 312 may be integrated in one or more transceivers. Additionally or alternatively, the transmitter 310 or the receiver 312 may include or correspond to one or more components of the UE 115 described with reference to FIG. 2.
In some implementations, the receiver 312 may include multiple “branches, ” such as a first receiver branch 314 and a second receiver branch 316. The receiver branches 314-316 may include one or more components of the receiver 312, such as filters, amplifiers, demodulators, and the like. The receiver branches 314-316 may include or correspond to, or also be referred to as, receive paths or radio frequency (RF) chains. Although two receiver branches are described, in other implementations, the receiver 312 may include more than two receiver branches.
The first antenna 318 and the second antenna 320 may each be configured to perform wireless communications with other devices, such as with the base station 105. In some implementations, the first antenna 318 and the second antenna 320 may be configured to perform wireless communications using different beams, also referred to as antenna beams, or via different wireless communication channels. The beams may include TX beams and RX beams. Each of the antennas 318-320 may be associated with, or be included as part of, one of the receiver branches 314-316. For example, the first antenna 318 may be associated with, or included as part of, the first receiver branch 314, and the second antenna 320 may be associated with, or included as part of, the second receiver branch 316. Although two antennas are described, in other implementations, the UE 115 may include more than two antennas. Although described as antennas, in other implementations, the antennas 318-320 may include or correspond to antenna arrays or antenna panels.
In some implementations, the UE 115 includes or corresponds to a reduced capability UE, also referred to as a NR RedCap UE or a NR Light UE. In such implementations, the UE 115 may include or correspond to wearables (e.g., smart watches, fitness devices, health monitoring devices, and the like) , industrial wireless sensor networks (IWSNs) , wireless surveillance cameras, and the like. The UE 115 may have relaxed requirements for peak throughput, latency, and reliability, but also may be associated with increased requirements for efficiency (e.g., power consumption and system overhead) and cost, as compared to other 5G NR compliant UEs, such as smart phones, vehicles, and the like. As a particular example, the UE 115 may include up to two receiver branches and antennas, as compared to other 5G NR compliant UEs that typically include four or more receiver branches and antennas.
The base station 105 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein. For example, these components can include one or more processors 352 (hereinafter referred to collectively as “the processor 352” ) , one or more memory devices 354 (hereinafter referred to collectively as “the memory 354” ) , one or more transmitters 356 (hereinafter referred to  collectively as “the transmitter 356” ) , and one or more receivers 358 (hereinafter referred to collectively as “the receiver 358” ) . The processor 352 may be configured to execute instructions stored in the memory 354 to perform the operations described herein. In some implementations, the processor 352 includes or corresponds to one or more of the receive processor 238, the transmit processor 220, and the controller/processor 240, and the memory 354 includes or corresponds to the memory 242.
In some implementations, the memory 354 may be configured to store redundancy version (RV) values 353, a pattern indicator 355, phase tracking reference signal (PTRS) frequency densities 357, and PTRS resource element (RE) mappings 359. The RV values 353 may indicate RVs associated with transport blocks (TBs) , or with codewords (CWs) of TBs, to be transmitted to the UE 115. The pattern indicator 355 may indicate a pattern for transmission of messages that change frequency resource allocation, as further described herein. The PTRS frequency densities 357 may include frequency densities associated with PTRSs to be transmitted to the UE 115. The PTRS RE mappings 359 may include mappings of PTRS REs to PRBs (or other frequency resources) for use in transmitting PTRSs to the UE 115, and the mappings may be based on frequency resources allocated to various receiver branches, as further described herein.
The transmitter 356 is configured to transmit reference signals, synchronization signals, control information and data to one or more other devices, and the receiver 358 is configured to receive reference signals, control information and data from one or more other devices. For example, the transmitter 356 may transmit signaling, control information and data to, and the receiver 358 may receive signaling, control information and data from, the UE 115. In some implementations, the transmitter 356 and the receiver 358 may be integrated in one or more transceivers. Additionally or alternatively, the transmitter 356 or the receiver 358 may include or correspond to one or more components of base station 105 described with reference to FIG. 2.
In some implementations, the wireless communications system 300 implements a 5G New Radio (NR) network. For example, the wireless communications system 300 may include multiple 5G-capable UEs 115 and multiple 5G-capable base stations 105, such as UEs and base stations configured to operate in accordance with a 5G NR network protocol such as that defined by the 3GPP. In some such implementations, the 5G NR network protocol may include a 5G NR RedCap protocol or a 5G NR Light protocol associated with reduced capability UEs.
During operation of the wireless communications system 300, the base station 105 may determine to configure the UE 115 for multiple frequency layer operation. Based on this determination, the base station 105 may determine allocation of frequency resources to the two receiver branches of the UE 115. For example, the base station 105 may allocate a first set of frequency resources 372 to the first receiver branch 314 and a second set of frequency resources 374 to the second receiver branch 316. The sets of frequency resources 372-374 may include one or more resource blocks (RBs) , such as one or more physical resource blocks (PRBs) , that correspond to different frequency bandwidths. In some implementations, the first set of frequency resources 372 correspond to a first BWP of a carrier BW and the second set of frequency resources 374 correspond to a second BWP of the carrier BW that is non-overlapping with the first BWP, as further described with reference to FIG. 4. In some other implementations, the first set of frequency resources 372 corresponds to a first set of PRBs of a BWP and the second set of frequency resources 374 corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs, as further described with reference to FIG. 4.
After determining the frequency resource allocation, the base station 105 may generate and transmit a first message 370 to the UE 115. The first message 370 may include an indicator of the first set of frequency resources 372 and an indicator of the second set of frequency resources 374. Alternatively, the first message 370 may include a single indicator that indicates bot the first set of frequency resources 372 and the second set of frequency resources 374. Transmitting the first message 370 to the UE 115 may statically, semi-statically, or dynamically switch the UE 115 from single frequency layer operation (e.g., receiving DL messages using the same frequency for multiple receiver branches and antennas) to multiple frequency layer operation (e.g., using the receiver branches 314-316 and the antennas 318-320 to receive DL messages via different frequency resources) .
In some implementations, the first message 370 may include or correspond to a RRC message. In some such implementations, the first set of frequency resources 372 and the second set of frequency resources 374 may be allocated for PDCCH resources. For example, the sets of frequency resources 372-374 may be designated for transmission of one or more PDCCHs by the base station 105. In some implementations, the base station 105 may transmit the first message 370 as part of a static allocation of frequency resources to the receiver branches 314-316. For example, the base station 105 may transmit the first message 370 to the UE 115 during an association process or other communication link establishment process between the base station 105 and the UE 115. In some other implementations, the  base station 105 may transmit the first message 370 (and similar RRC messages) as part of a semi-static allocation of frequency resources to the receiver branches 314-316. For example, the base station 105 may transmit the first message 370 and additional RRC messages periodically to the UE 115 to configure semi-persistent scheduling (SPS) PDCCH or SPS-PDSCH resources at the UE 115. Although described above as a RRC message, in other implementations, the first message 370 may include or correspond to a different type of message, such as a medium access control (MAC) control element (MAC-CE) , as a non-limiting example.
In some other implementations, the first message 370 may include or correspond to a DCI message. In some such implementations, the first set of frequency resources 372 and the second set of frequency resources 374 may be allocated based on an explicit indicator of a single or multiple frequency layer transmission or implicitly determined by using transmission configuration indicators (TCIs) . For example, the first message 370 may indicate a first TCI associated with the first set of frequency resources 372 and a second TCI associated with the second set of frequency resources 374. By transmitting the first message 370 that includes two TCIs, the base station 105 may configure the UE 115 for multiple frequency layer operation. Similarly, the base station 105 may transmit a DCI message that includes a single TCI to switch the UE 115 to single frequency layer operation.
In some implementations in which the first message 370 includes the DCI message, the first message 370 may include a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources 372 and the second set of frequency resources 374. For example, the FDRA field may indicate resource blocks (RBs) or portions of a RB bundle that are allocated to the first set of frequency resources 372 and the second set of frequency resources 374, respectively. In some implementations, the FDRA field may indicate a same RB allocation for two BWPs of a carrier BW for the first set of frequency resources 372 and the second set of frequency resources 374, as further described with reference to FIG. 5A. In some other implementations, the FDRA field may indicate a RB allocation within a BWP, and different portions of the RB allocation may be allocated to the first set of frequency resources 372 and the second set of frequency resources 374, as further described with reference to FIGS. 5B and 5C.
The UE 115 may receive the first message 370 from the base station 105. After receiving the first message 370, the UE 115 may monitor for DL messages from the base station 105 via the allocated frequency resources and components of the UE 115. For example, the UE 115 may monitor the first set of frequency resources 372 using the first  receiver branch 314 and the first antenna 318, and the UE 115 may monitor the second set of frequency resources 374 using the second receiver branch 316 and the second antenna 320.
The base station 105 may transmit DL messages to the UE 115 via the different allocated frequency resources. For example, the base station 105 may transmit a first DL message 376 to the UE 115 via the first set of frequency resources 372, and the base station 105 may transmit a second DL message 380 to the UE 115 via the second set of frequency resources 374. The UE 115 may receive the first DL message 376 using the first receiver branch 314 and the first antenna 318, and the UE 115 may receive the second DL message 380 using the second receiver branch 316 and the second antenna 320. In this manner, the UE 115 may be configured for multiple receiver operation (e.g., multiple frequency layer operation) when communicating with the base station 105 based on the first message 370.
In some implementations, the first DL message 376 and the second DL message 380 may include a single CW (or portions thereof) associated with a single TB. For example, the first DL message 376 may include a single CW (or a first portion of the CW) , and the second DL message 380 may include the CW (or a second portion of the CW) . In some implementations, the first portion of the CW and the second portion of the CW may be associated with the same redundancy version (RV) of RV values 353, as further described with reference to FIG. 6. The RV associated with a CW (or a TB) corresponds to a rate mapping operation for a 5G low density parity check (LDPC) code used to generate the CW (or the TB) . Transmitting a single CW (or two portions of the CW) associated with the same RV using the first DL message 376 and the second DL message 380 may be transparent to the UE 115 from a rate matching/resource element (RE) point of view.
In some other implementations, the first DL message 376 and the second DL message 380 may include different CWs that are each associated with a single TB. For example, the first DL message 376 may include a first CW/TB 378 (a first CW in this example) associated with a TB and the second DL message 380 may include a second CW/TB 382 (a second CW in this example) associated with the TB. For example, the base station 105 may transmit the first CW via the first set of frequency resources 372, and the base station 105 may transmit the second CW via the second set of frequency resources 374. In some implementations, the first CW may be associated with a first RV of RV values 353, and the second CW may be associated with a second RV of RV values 353, as further described with reference to FIG. 6.
In some other implementations, the first DL message 376 and the second DL message 380 may include different TBs. For example, the first DL message 376 may include a first CW/TB 378 (a first TB in this example) and the second DL message 380 may include a  second CW/TB 382 (a second TB in this example) . For example, the base station 105 may transmit the first TB via the first set of frequency resources 372, and the base station 105 may transmit the second TB via the second set of frequency resources 374, as described with reference to FIG. 6. In some implementations, the first TB and the second TB may be associated with the same RV of the RV values 353. Alternatively, the first TB may be associated with a first RV of the RV values 353 and the second TB may be associated with a second RV of the RV values 353. In some implementations, the first TB and the second TB may be associated with the same demodulation reference signal (DMRS) port. For example, the base station 105 may use the same DMRS port for transmitting the first DL message 376 and the second DL message 380 (including the first TB and the second TB, respectively) . In this manner, the maximum number of transmission layers in the first set of frequency resources 372 and the second set of frequency resources 374 is one. In some other implementations, the first TB and the second TB may be associated with different DMRS ports, and one or more of the first set of frequency resource 372 and the second set of frequency resources 374 may include more than one transmission layer. In some implementations, the base station 105 may indicate to the UE 115 whether the UE 115 is configured to receive a single CW (or portions thereof) , multiple CWs of a single TB, or multiple TBs, via messages such as RRC messages or DCI messages, as non-limiting examples. Additionally, the messages may indicate the RV values 353 associated with the single CW, the multiple CWs, or the multiple TBs.
In some implementations in which the first DL message 376 and the second DL message 380 are associated with a single TB, and the first set of frequency resources 372 and the second set of frequency resources 374 correspond to different sets of PRBs of a BWP, the base station 105 may determine a TB size based, at least in part, on the number of PRBs corresponding to the first set of frequency resources 372. For example, the base station 105 may determine a TB size based on the number of PRBs included in the first set of frequency resources 372. Alternatively, the base station 105 may determine the TB size based on a scaling factor and a total number of PRBs included in the first set of frequency resources 372 and the second set of frequency resources 374. In some implementations, the total number of PRBs are equally (or substantially equally) divided among the sets of frequency resources 372-374, and the scaling factor is 1/2. Although the base station 105 is described as determining TB sizes, the UE 115 may also determine TB sizes as described above to enable receipt and detection of the TBs.
The UE 115 may receive and process the first DL message 376 and the second DL message 380 based on the allocation of frequency resources indicated in the first message 370. For example, the UE 115 may receive the first DL message 376 via the first set of frequency resources 372 using the first receiver branch 314 and the first antenna 318, and the UE 115 may receive the second DL message 380 via the second set of frequency resources 374 using the second receiver branch 316 and the second antenna 320. In implementations in which the first DL message 376 and the second DL message 380 include a single CW (or portions of the CW) , the UE 115 may process the CW after receiving the DL messages (or after combining the portions of the CW) . In implementations in which the first DL message 376 and the second DL message 380 include different CWs of a single TB, the UE 115 may combine the CWs to detect the TB. In implementations in which the first DL message 376 and the second DL message 380 include different TBs, the UE 115 may process each of the received TBs.
In some implementations, the base station 105 may determine to change frequency resource allocations for the UE 115. In some such implementations, the base station 105 may determine to switch the UE 115 from multiple frequency layer operation to single frequency layer operation. For example, the base station 105 may generate and transmit a second message 384 to the UE 115. The second message 384 may indicate a third set of frequency resources 386 that is allocated to the UE 115 (either to a single receiver branch or to both receiver branches) . The second message 384 may include or correspond to a RRC message, a DCI message, a MAC-CE, or another type of message. The UE 115 may receive the second message 384 and switch from monitoring the first set of frequency resources 372 and the second set of frequency resources 374 for DL messages to monitoring the third set of frequency resources 386 for DL messages. For example, the UE 115 may monitor the third set of frequency resources 386 using the first receiver branch 314 and the first antenna 318 (while optionally powering down the second receiver branch 316 and the second antenna 320) . As another example, the UE 115 may monitor the third set of frequency resources 386 using the second receiver branch 316 and the second antenna 320 (while optionally powering down the first receiver branch 314 and the first antenna 318) . As another example, the UE 115 may monitor the third set of frequency resources 386 using the first receiver branch 314, the first antenna 318, the second receiver branch 316, and the second antenna 320. After transmitting the second message 384, the base station 105 may transmit a third DL message 388 via the third set of frequency resources 386 to the UE 115. The third DL message 388 may include a third TB 390 that is different than the first TB and the second TB (or the TB  associated with the first CW and the second CW) included in the first DL message 376 and the second DL message 380, respectively. The UE 115 may receive the third DL message 388 via the third set of frequency resources 386 using the first receiver branch 314 and the first antenna 318, the second receiver branch 316 and the second antenna 320, or a combination thereof.
In some implementations, the base station 105 may switch the allocation of frequency resources to the receiver branches 314-316. For example, instead of indicating the third set of frequency resources 386, the second message 384 may indicate that the first set of frequency resources 372 is allocated to the second receiver branch 316, and that the second set of frequency resources 374 is allocated to the first receiver branch 314. After receiving the second message 384, the UE 115 may switch to monitoring the second set of frequency resources 374 using the first receiver branch 314 and the first antenna 318, and the UE 115 may switch to monitoring the first set of frequency resources 372 using the second receiver branch 316 and the second antenna 320. In some such implementations, the base station 105 may periodically switch the frequency resource allocation to the receiver branches 314-316 using repeated messaging. For example, the first message 370 may include a repetition indicator (e.g., an indicator of repetition of transmission across multiple slots) , and the base station 105 may transmit additional messages indicating switching of the allocation of the first set of frequency resources 372 and the second set of frequency resources 374 to the first receiver branch 314 and the second receiver branch 316 according to a predetermined pattern associated with the pattern indicator 355, as further described with reference to FIG. 7.
In some implementations, the base station 105 may switch between transmitting a single CW, multiple CWs of a single TB, or multiple TBs, in a semi-static or dynamic manner. For example, the base station 105 may transmit a message to the UE 115 that indicates that the UE 115 is to switch from receiving a single CW (or portions thereof) to receiving multiple CWs of a single TB (or that the UE 115 is to switch from receiving multiple CWs of a single TB to receiving a single CW) in a semi-static manner. To illustrate, the message may include a RRC message, and the UE 115 may be switched based on the RRC message for receiving any future DL messages until another RRC message is received. As another example, the base station 105 may transmit a message to the UE 115 that indicates that the UE 115 is to switch from receiving one or more CWs to receiving multiple TBs (or that the UE 115 is to switch from receiving multiple TBs to receiving one or more CWs) in a dynamic manner. To illustrate, the message may include a DCI message, the UE 115 may be switched based on the DCI message for any DL messages received via physical  downlink shared channel (PDSCH) resources scheduled by the DCI message. For example, the DCI message may include one or multiple TB indicators, which in some implementations may include or correspond to TCIs.
In some implementations, the base station 105 may configure one or more phase tracking reference signal (PTRS) parameters based on the allocation of frequency resources indicated by the first message 370. For example, if the sets of frequency resources 372-374 include sets of PRBs, the base station 105 may determine a first PTRS frequency density of the PTRS frequency densities 357 based on a number of PRBs included in the first set of frequency resources 372, and the base station 105 may determine a second PTRS frequency density of the PTRS frequency densities 357 based on a number of PRBs included in the second set of frequency resources 374. To illustrate, the base station 105 may determine relatively higher densities for the PTRS frequency densities 357 based on the sets of frequency resources 372-374 including relatively smaller numbers of PRBs, and the base station 105 may determine relatively lower densities for the PTRS frequency densities 357 based on the sets of frequency resources 372-374 including relatively larger numbers of PRBs. As another example, if the sets of frequency resources 372-374 include sets of PRBs, the base station 105 may determine a first PTRS RE mapping of the PTRS RE mappings 359 that is associated with the first set of frequency resources 372, and the base station 105 may determine a second PTRS RE mapping of the PTRS RE mappings 359 that is associated with the second set of frequency resources 374. To illustrate, the PTRS RE mappings 359 may map PTRS REs to different resources based on differences in the PRBs included in the first set of frequency resources 372 and the second set of frequency resources 374. The base station may generate and transmit PTRSs 392 to the UE 115 in accordance with the PTRS frequency densities 357, the PTRS RE mappings 359, other PTRS parameters, or a combination thereof. The UE 115 may determine the various PTRS parameters, such as based on the sets of frequency resources 372-374, and the UE 115 may monitor for and receive the PTRSs 392.
As described with reference to FIG. 3, the present disclosure provides techniques for enabling allocation of different frequency resources to different receiver branches of the UE 115, and for switching frequency resource allocations (which may include switching frequency layer operations) at the UE 115. By allocating different frequency resources (e.g., the first set of frequency resources 372 and the second set of frequency resources 374) to different receiver branches (e.g., the first receiver branch 314 and the second receiver branch 316) , the UE 115 may experience improved RX diversity gain and frequency selective gain  while only supporting a small maximum bandwidth per receiver branch. Thus, a reduced capability UE may comply with 5G NR communication protocols with improved performance, without requiring additional hardware, power consumption, and cost, which may be particularly beneficial for devices such as wearables, IWSNs, wireless surveillance cameras, and the like.
FIG. 4 includes diagrams illustrating examples of frequency resource allocation to different receiver branches according to some aspects. In some implementations, the frequency allocations described with reference to FIG. 4 may include or correspond to allocation of the first set of frequency resources 372 to the first receiver branch 314 at the UE 115 and allocation of the second set of frequency resources 374 to the second receiver branch 316 of FIG. 3.
FIG. 4 depicts a first frequency resource allocation 400. The first frequency resource allocation 400 includes an allocation of a first set of frequency resources 402 to a first receiver branch ( “Rx Branch 0” ) at a UE and an allocation of a second set of frequency resources 404 to a second receiver branch ( “Rx Branch 1” ) at the UE. In some implementations, the first set of frequency resources 402 may include or correspond to a first BWP of a carrier BW and the second set of frequency resources may include or correspond to a second BWP of the carrier BW. The first BWP and the second BWP may each include narrowband BWPs, also referred to as narrow BWPs, which may each include frequency ranges that are smaller than a maximum UE BW supported at the UE. As shown in FIG. 4, the first set of frequency resources 402 does not overlap with the second set of frequency resources 404. In some implementations, the first BWP and the second BWP may be associated with the same subcarrier spacing (SCS) and the same BWP bandwidth. For example, the bandwidth (e.g., frequency range) associated with the first BWP may have the same width as the bandwidth (e.g., frequency range) associated with the second BWP, although the BWPs may be located at different frequencies within carrier BW.
FIG. 4 also depicts a second frequency resource allocation 410. The second frequency resource allocation 410 includes an allocation of a first set of frequency resources 412 to a first receiver branch ( “Rx Branch 0” ) at a UE and an allocation of a second set of frequency resources 414 to a second receiver branch ( “Rx Branch 1” ) at the UE. In some implementations, the first set of frequency resources 412 may include or correspond to a first set of RBs ( “RB Set 0” ) of a BWP, and the second set of frequency resources 414 may include or correspond to a second set of RBs ( “RB Set 1” ) of the BWP. The sets of RBs may include PRBs or virtual RBs (VRBs) that may be mapped to PRBs. The BWP may include a  wideband BWP, also referred to as a wide BWP, that includes a larger frequency range than a maximum UE BW supported at the UE. As shown in FIG. 4, the first set of frequency resources 412 does not overlap with the second set of frequency resources 414. In some implementations, the first set of frequency resources 412 and the second set of frequency resources 414 may include the same (or substantially same) number of RBs. Alternatively, the first set of frequency resources 412 may include a different number of RBs than the second set of frequency resources 414.
FIGS. 5A-C are diagrams illustrating examples of RB allocations to different receiver branches according to some aspects. The RB allocations shown in FIGS. 5A-5C may include or correspond to allocation of the first set of frequency resources 372 and the second set of frequency resources 374 to the first receiver branch 314 and the second receiver branch 316 of FIG. 3. In some implementations, the RB allocations may be indicated by an FDRA field of a DCI message, such as the first message 370 of FIG. 3.
FIG. 5A is a diagram illustrating an example of a first RB allocation 500 of RBs to two different BWPs of a carrier BW for two respective receiver branches at a UE. The first RB allocation 500 includes an allocation of VRBs 502 to a first receiver branch at the UE and to a second receiver branch at the UE. For example, VRBs (e.g., VRBs 0-3) of a first BWP ( “BWP 0” ) may be allocated to the first receiver branch, and VRBs (e.g., VRBs 0-3) of a second BWP ( “BWP 1” ) may be allocated to the second receiver branch. The VRBs 502 may be mapped to PRBs 504, resulting in an allocation of the PRBs 504 to the receiver branches. For example, PRBs (e.g., PRBs 0-3, indicated by a first hatching style) of the first BWP may be allocated to the first receiver branch, and PRBs (e.g., PRBs 0-3, indicated by a second hatching style) of the second BWP may be allocated to the second receiver branch. In some implementations, the BWPs may include the same number of RBs, and the number of RBs of each BWP that are allocated to the receiver branches may be the same. In the example shown in FIG. 5A, the first BWP and the second BWP each include eight RBs, and the same four RBs (e.g., RBs 0-3) of each BWP are allocated to the respective receiver branch. In other implementations, the BWPs may include fewer than eight or more than eight RBs, and the number of RBs allocated from the BWPs may be fewer than four or more than four RBs.
FIG. 5B is a diagram illustrating an example of a second RB allocation 510 of a RB group to two sets of PRBs for two respective receiver paths. The second RB allocation 510 includes an allocation of VRBs 512 to a first receiver branch at the UE and to a second receiver branch at the UE. For example, an RB group of VRBs (e.g., VRBs 0-7) of a BWP  may be allocated to the first receiver branch and the second receiver branch. The VRBs 512 may be mapped to PRBs 514, resulting in an allocation of an RB group of the PRBs 514 to the receiver branches. In the example shown in FIG. 5B, the VRBs 512 are mapped to the PRBs 514 without interleaving. Accordingly, the RB group of the VRBs 512 may be mapped to the RB group of the PRBs 514 that has the same size. The RB group of the PRBs 514 may then be split for allocation of PRBs 516 to the different receiver paths. For example, a first set of PRBs (e.g., PRBs 0-3) of the RB group may be allocated to the first receiver branch, and a second set of PRBs (e.g., PRBs 4-7) of the RB group may be allocated to the second receiver branch. In some implementations, the number of RBs allocated to each receiver branch may be the same (or substantially the same) . For example, the RB group may be divided into N bundle bundles according to Equation 1 below:
N bundle = N RB /L
Equation 1
where N RB is the number of RBs in the RB group, and L is dependent on a precoding granularity (PRG) associated with transmissions to the UE, such as a PDSCH precoder granularity. In a particular implementation, if the PRG is wideband (WB) , then L = 1. Otherwise, L may be a different value, such as a value of 2 or 4 RBs as configured by RRC. The first N bundle /2 RBs of a first bundle may be allocated to the first receiver branch, and the remaining N bundle /2 RBs of the first bundle may be allocated to the second receiver branch. In other implementations, different numbers of PRBs may be allocated to the receiver branches.
FIG. 5C is a diagram illustrating an example of a third RB allocation 520 of a RB group to two sets of PRBs for two receiver paths. The third RB allocation 520 includes an allocation of VRBs 522 to a first receiver branch at the UE and to a second receiver branch at the UE. For example, an RB group of VRBs (e.g., VRBs 0-7) of a BWP may be allocated to the first receiver branch and the second receiver branch. The VRBs 522 may be mapped to PRBs 524, resulting in an allocation of an RB group of the PRBs 524 to the receiver branches. In the example shown in FIG. 5C, the VRBs 522 are mapped to the PRBs 524 with interleaving. Accordingly, the RB group of the VRBs 522 may be mapped to multiple RB groups of the PRBs 524 that have smaller sizes. For example, the VRBs 0-7 may be mapped to the PRBs 0-7 in an interleaved manner such that a first set of PRBs includes  VRBs  0, 1, 4, and 5, and a second set of PRBs includes  VRBs  2, 3, 6, and 7. The RB groups of the PRBs 524 may then be allocated as PRBs 526 to the different receiver paths. For example, a first  set of PRBs (e.g., PRBs 0-3) of the PRBs 526 may be allocated to the first receiver branch, and a second set of PRBs (e.g., PRBs 8-11) of the PRBs 526 may be allocated to the second receiver branch. In some implementations, the number of RBs allocated to each receiver branch may be the same (or substantially the same) and may be determined according to Equation 1. In other implementations, different numbers of PRBs may be allocated to the receiver branches.
FIG. 6 is a timing diagram illustrating an example of RB allocation 600 to different receiver branches according to some aspects. In some implementations, the RB allocation may include or correspond to the first set of frequency resources 372 and the second set of frequency resources 374 allocated to the first receiver branch 314 and the second receiver branch 316 of FIG. 3.
The RB allocation 600 includes allocation of a first set of RBs 602 ( “RB Set 1” ) to a first receiver branch at a UE and a second set of RBs 604 ( “RB Set 2” ) to a second receiver branch at the UE. The sets of RBs 602-604 may be different RB sets of a BWP (e.g., a wideband BWP) , as further described with reference to FIGS. 3 and 4. Each of the RBs of the sets of RBs 602-604 may include a PRB (or a VRB that maps to a PRB, as described with reference to FIGS. 5A-5C) . Each of the sets of RBs 602-604 may include respective multiple RBs across multiple symbols. In the particular example shown in FIG. 6, the first set of RBs 602 includes four RBs (e.g., RBs 5-8) across six symbols for a total twenty-four RBs, and the second set of RBs 604 includes four RBs (e.g., RBs 1-4) across six symbols for a total of twenty-four RBs. In other implementations, the sets of RBs 602-604 may include fewer than twenty-four RBs or more than twenty-four RBs.
The sets of RBs 602-604 may include or correspond to one or more CWs or multiple TBs. In some implementations, a base station may transmit a first CW (or a first portion thereof) of a TB via the first set of RBs 602, and the base station may transmit the first CW (or a second portion thereof) via the second set of RBs 604. In some implementations, the portions of the CW are associated with the same RV. For example, the portions of the CW transmitted by the sets of RBs 602-604 may be LDPC encoded according to a first RV scheme 610, which illustrates encoding according to a single RV initialized at a RV value of 0. In some other implementations, the sets of RBs 602-604 may include or correspond to two CWs of a single TB. For example, the base station may transmit a first CW of a TB via the first set of RBs 602, and the base station may transmit a second CW of the TB via the second set of RBs 604. In some implementations, the first CW may be associated with a first RV and the second CW may be associated with a second RV that is different than the first RV.  For example, the first CW and the second CW may be LDPC encoded according to a second RV scheme 620, which illustrates encoding according to a first RV initialized at a RV value of 0 and a second RV initialized at a RV value of 3. In some other implementations, the sets of RBs 602-604 may include or correspond to two TBs. For example, the base station may transmit a first TB via the first set of RBs 602, and the base station may transmit a second TB via the second set of RBs 604. The two TBs may be associated with the same RV or with different RVs. For example, the TBs may be LDPC encoded according to the first RV scheme 610 or the second RV scheme 620.
In some implementations, a maximum number of transmission layers included in (or represented by) the first set of RBs 602 and the second set of RBs 604 is one. For example, transmissions via the sets of RBs 602-604 may not include or correspond to multiple transmission layers. Additionally or alternatively, the base station may use the same DMRS port for performing transmissions via the first set of RBs 602 and the second set of RBs 604. For example, the base station may transmit the multiple portions of the single CW, the multiple CWs of the single TB, or the multiple TBs, using the same DMRS port.
FIG. 7 includes timing diagrams illustrating examples of RB allocations to different receiver branches according to some aspects. In some implementations, the RB allocations may include or correspond to the first set of frequency resources 372 and the second set of frequency resources 374 allocated to the first receiver branch 314 and the second receiver branch 316 of FIG. 3.
FIG. 7 depicts a first RB allocation 700 of a first set of frequency resources that is represented by a block having a higher frequency (e.g., that is higher with respect to the frequency axis) and a second set of frequency resources that is represented by a block having a lower frequency (e.g., that is lower with respect to the frequency axis) . During each slot (e.g., each increment along the time axis) , the first set of frequency resources and the second set of frequency resources are allocated to different receiver branches at a UE. For example, during a first slot, the first set of frequency resources is allocated to a first receiver branch ( “RX 0” ) and the second set of frequency resources is allocated to a second receiver branch ( “RX 1” ) . For example, the RB allocations (e.g., the frequency resource allocations) to the receiver branches may be indicated to the UE by a base station transmitting a message that indicates the RB allocations, such as the first message 370 of FIG. 3. In some implementations, the message may include a repetition indicator that indicates whether repeated transmissions are enabled. If repeated transmissions are enabled, the base station may transmit additional messages (e.g., via RRC or DCI) indicating switching of the RB  allocations. Such messages may indicate switching of the RB allocation according to a predetermined pattern. In the example of the first RB allocation 700, the predetermined pattern is once per pair of time slots (e.g., once per every two time slots) . For example, the first set of frequency resources may be allocated to the first receiver branch for the first and second time slots, followed by the first set of frequency resources being allocated to the second receiver branch for the third and fourth time slots. Additionally, the second set of frequency resources may be allocated to the second receiver branch for the first and second time slots, followed by the second set of frequency resources being allocated to the first receiver branch for the third and fourth time slots. After the fourth time slot, the allocation of frequency resources may be switched, and the pattern may continue for one or more additional time slots.
FIG. 7 also depicts a second RB allocation 710 of the first set of frequency resources and the second set of frequency resources to the receiver branches according to a predetermined pattern. In the example of the second RB allocation 710, the predetermined pattern is once per time slot. For example, the first set of frequency resources may be allocated to the first receiver branch for the first time slot, followed by the first set of frequency resources being allocated to the second receiver branch for the second time slot. Additionally, the second set of frequency resources may be allocated to the second receiver branch for the first time slot, followed by the second set of frequency resources being allocated to the first receiver branch for the second time slot. After the second time slot, the allocation of frequency resources may be switched, and the pattern may continue for one or more additional time slots. In other implementations, the predetermined pattern may be different, such as once per set of four time slots or once per set of ten time slots, as non-limiting examples.
FIG. 8 is a flow diagram illustrating an example process 800 that supports monitoring different frequency resources using different receiver branches according to some aspects. Operations of the process 800 may be performed by a UE, such as the UE 115 described above with reference to FIGS. 1-3 or a UE as described with reference to FIG. 10. For example, example operations (also referred to as “blocks” ) of the process 800 may enable the UE 115 to monitor different frequency resources using different receiver branches based on allocations of the frequency resources.
In block 802, the UE 115 receives, a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE 115 and a second set of frequency resources to a second receiver branch at the UE 115. For example, the first  message may include the first message 370, the first set of frequency resources may include the first set of frequency resources 372, and the second set of frequency resources may include the second set of frequency resources 374 of FIG. 3.
In block 804, the UE 115 monitors the first set of frequency resources using the first receiver branch and a first antenna of the UE 115. For example, the first receiver branch may include the first receiver branch 314 and the first antenna may include the first antenna 318 of FIG. 3.
In block 806, the UE 115 monitors the second set of frequency resources using the second receiver branch and a second antenna of the UE 115. For example, the second receiver branch may include the second receiver branch 316 and the second antenna may include the second antenna 320 of FIG. 3.
In some implementations, the UE may include a reduced-capability UE associated with or having a restriction on a maximum bandwidth. Additionally or alternatively, the first set of frequency resources may correspond to a first BWP of a carrier BW, and the second set of frequency resources may correspond to a second BWP of the carrier BW that is non-overlapping with the first BWP. In some such implementations, the first BWP and the second BWP may be associated with the same SCS and the same BWP bandwidth.
In some implementations, the first set of frequency resources may correspond to a first set of PRBs of a BWP, and the second set of frequency resources may correspond to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs. In some such implementations, the process 800 also includes determining a TB size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both, based on a number of PRBs included in the first set of PRBs. Alternatively, the process 800 may include determining a TB size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs. Additionally or alternatively, the process 800 may further include determining a first PTRS frequency density based on a number of PRBs included in the first set of PRBs, and determining a second PTRS frequency density based on a number of PRBs included in the second set of PRBs.
In some implementations, the first message may include a DCI message. The DCI message indicates a first TCI associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources. In some such implementations, the process 800 may also include receiving, from the base station, a second DCI message that  indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources, and switching from monitoring the first set of frequency resources and the second set of frequency resources to monitoring the third set of frequency resources using the first receiver branch and the first antenna, the second receiver branch and the second antenna, or a combination thereof. In some such implementations, the DCI message may include a FDRA field that indicates the first set of frequency resources and the second set of frequency resources. In some such implementations, the FDRA field may indicate a same RB allocation for two BWPs of a carrier BW for the first set of frequency resources and the second set of frequency resources. Alternatively, the FDRA field may indicate a RB allocation within a BWP, the first set of frequency resources may be based on a first half of the allocated RBs, and the second set of frequency resources may be based on a second half of the allocated RBs.
In some implementations, the process 800 may include receiving a first portion of a codeword associated with a single TB from the base station via the first set of frequency resources using the first receiver branch and the first antenna, receiving a second portion of the codeword from the base station via the second set of frequency resources using the second receiver branch and the second antenna, and combining the first portion of the codeword and the second portion of the codeword to detect the single TB. In some such implementations, the first portion of the codeword and the second portion of the codeword may be associated with the same RV.
In some implementations, the process 800 may include receiving a first codeword associated with a single TB from the base station via the first set of frequency resources using the first receiver branch and the first antenna, receiving a second codeword associated with the single TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna, and combining the first codeword and the second codeword to detect the single TB. In some such implementations, the first codeword may be associated with a first RV, and the second codeword may be associated with a second RV that is different than the first RV.
In some implementations, the process 800 may include receiving a first TB from the base station via the first set of frequency resources using the first receiver branch and the first antenna, and receiving a second TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna. In some such  implementations, the first TB and the second TB may be associated with the same DMRS port.
In some implementations, the process 800 may also include receiving, from the base station, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern. The first message indicates a repetition transmission across multiple slots. In some such implementations, the predetermined pattern may be once per time slot. Alternatively, the predetermined pattern may be once per pair of time slots.
FIG. 9 is a flow diagram illustrating an example process 900 that supports allocating different frequency resources to different receiver branches according to some aspects. Operations of the process 900 may be performed by a base station, such as the base station 105 described above with reference to FIGS. 1-3 or a base station as described with reference to FIG. 11. For example, example operations of the process 900 may enable the base station 105 to allocate different frequency resources to different receiver branches of a UE.
In block 902, the base station 105 transmits, to a UE, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. For example, the first message may include the first message 370, the first set of frequency resources may include the first set of frequency resources 372, and the second set of frequency resources may include the second set of frequency resources 374 of FIG. 3.
In block 904, the base station 105 transmits a first DL message to the UE via the first set of frequency resources. For example, the first DL message may include the first DL message 376 of FIG. 3.
In block 906, the base station 105 transmits a second DL message to the UE via the second set of frequency resources. For example, the second DL message may include the second DL message 380 of FIG. 3.
In some implementations, the UE may include a reduced-capability UE associated with or having a restriction on a maximum bandwidth. Additionally or alternatively, the first set of frequency resources may correspond to a first BWP of a carrier BW, and the second set of frequency resources may correspond to a second BWP of the carrier BW that is non-overlapping with the first BWP. In some such implementations, the first BWP and the second BWP may be associated with the same SCS and the same BWP bandwidth.
In some implementations, the first set of frequency resources may correspond to a first set of PRBs of a BWP, and the second set of frequency resources may correspond to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs. In some such implementations, the process 900 may also include determining a TB size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a number of PRBs included in the first set of PRBs. Alternatively, the process 900 may include determining a TB size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs. Additionally or alternatively, the process 900 may further include transmitting a first PTRS to the UE, the first PTRS associated with a first PTRS frequency density that is based on a number of PRBs included in the first set of PRBs, and transmitting a second PTRS to the UE, the second PTRS associated with a second PTRS frequency density that based on a number of PRBs included in the second set of PRBs.
In some implementations, the first message may include a RRC message, and the first set of frequency resources and the second set of frequency resources may be allocated for PDCCH resources. Alternatively, the first message may include a DCI message. The DCI message indicates a first TCI associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources. In some such implementations, the process 900 may include transmitting, to the UE, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources, and transmitting a third DL message to the UE via the first set of frequency resources, the second set of frequency resources, or both. Additionally or alternatively, the DCI message may include a FDRA field that indicates the first set of frequency resources and the second set of frequency resources. In some such implementations, the FDRA field may indicate the same RB allocation for two BWPs of a carrier BW for the first set of frequency resources and the second set of frequency resources. Alternatively, the FDRA field may indicate a RB allocation within a BWP, the first set of frequency resources may be based on a first half of the allocated RBs, and the second set of frequency resources may be based on a second half of the allocated RBs.
In some implementations, the first DL message may include a first portion of a codeword associated with a single TB, and the second DL message may include a second  portion of the codeword. In some such implementations, the first portion of the codeword and the second portion of the codeword may be associated with the same RV.
In some implementations, the first DL message may include a first codeword associated with a single TB, and the second DL message may include a second codeword associated with the single TB. In some such implementations, the first codeword may be associated with a first RV, and the second codeword may be associated with a second RV that is different than the first RV.
In some implementations, the first DL message may include a first TB, and the second DL message may include a second TB. In some such implementations, the first TB and the second TB may be associated with the same DMRS port.
In some implementations, the process 900 may further include transmitting, to the UE, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern. The first message indicates a repetition transmission across multiple slots. In some such implementations, the predetermined pattern may be once per time slot. Alternatively, the predetermined pattern may be once per pair of time slots.
FIG. 10 is a block diagram of an example UE 1000 that supports monitoring different frequency resources using different receiver branches according to some aspects. The UE 1000 may be configured to perform operations, including the blocks of the process 800 described with reference to FIG. 8. In some implementations, the UE 1000 includes the structure, hardware, and components shown and described with reference to the UE 115 of FIGS. 2 or 3. For example, the UE 1000 includes the controller/processor 280, which operates to execute logic or computer instructions stored in the memory 282, as well as controlling the components of the UE 1000 that provide the features and functionality of the UE 1000. The UE 1000, under control of the controller/processor 280, transmits and receives signals via wireless radios 1001a-r and the antennas 252a-r. The wireless radios 1001a-r include various components and hardware, as illustrated in FIG. 2 for the UE 115, including the modulator and demodulators 254a-r, the MIMO detector 256, the receive processor 258, the transmit processor 264, and the TX MIMO processor 266.
As shown, the memory 282 may include receive logic 1002 and DL monitoring logic 1003. The receive logic 1002 may be configured to enable receipt of signals or data, such as resource allocation messages, via the wireless radios 1001a-r and the antennas 252a-4. The DL monitoring logic 1003 may be configured to monitor different frequency resources for  DL signals or data using different receiver branches of the wireless radios 1001a-r. The UE 1000 may receive signals from or transmit signals to one or more network entities, such as the base station 105 of FIGS. 1-3 or a base station as illustrated in FIG. 11.
In some implementations, the UE 1000 may be configured to perform the process 800 of FIG. 8. To illustrate, the UE 1000 may execute, under control of the controller/processor 280, the receive logic 1002 and the DL monitoring logic 1003 stored in the memory 282. The execution environment of the receive logic 1002 provides the functionality to perform at least the operations in block 802. The execution environment of the DL monitoring logic 1003 provides the functionality to perform at least the operations in  blocks  804 and 806.
FIG. 11 is a block diagram of an example base station 1100 that supports allocating different frequency resources to different receiver branches according to some aspects. The base station 1100 may be configured to perform operations, including the blocks of the process 900 described with reference to FIG. 9. In some implementations, the base station 1100 includes the structure, hardware, and components shown and described with reference to the base station 105 of FIGS. 1-3. For example, the base station 1100 may include the controller/processor 240, which operates to execute logic or computer instructions stored in the memory 242, as well as controlling the components of the base station 1100 that provide the features and functionality of the base station 1100. The base station 1100, under control of the controller/processor 240, transmits and receives signals via wireless radios 1101a-t and the antennas 234a-t. The wireless radios 1101a-t include various components and hardware, as illustrated in FIG. 2 for the base station 105, including the modulator and demodulators 232a-t, the transmit processor 220, the TX MIMO processor 230, the MIMO detector 236, and the receive processor 238.
As shown, the memory 242 may include frequency allocation logic 1102 and transmit logic 1103. The frequency allocation logic 1102 may be configured to allocate different frequency resources to different receive branches of a UE. The transmit logic 1103 may be configured to enable transmission of signals or data, such as frequency allocation messages and DL messages, via the wireless radios 1101a-t and the antennas 234a-t. The base station 1100 may receive signals from or transmit signals to one or more UEs, such as the UE 115 of FIGS. 1-3 or the UE 1000 of FIG. 10.
In some implementations, the base station 1100 may be configured to perform the process 900 of FIG. 9. To illustrate, the base station 1100 may execute, under control of the controller/processor 240, the frequency allocation logic 1102 and the transmit logic 1103 stored in the memory 242. The execution environment of the frequency allocation logic 1102  and the transmit logic 1103 provides the functionality to perform at least the operations in block 902. The execution environment of the transmit logic 1103 provides the functionality to perform at least the operations in  blocks  904 and 906.
It is noted that one or more blocks (or operations) described with reference to FIGS. 8 and 9 may be combined with one or more blocks (or operations) described with reference to another of the figures. For example, one or more blocks (or operations) of FIG. 8 may be combined with one or more blocks (or operations) of FIG. 9. As another example, one or more blocks associated with FIGS. 10 or 11 may be combined with one or more blocks (or operations) associated with FIGS. 2 or 3.
In some aspects, techniques for enabling allocation of different frequency resources to different receiver branches may include additional aspects, such as any single aspect or any combination of aspects described below or in connection with one or more other processes or devices described elsewhere herein. In some aspects, enabling allocation of different frequency resources to different receiver branches may include an apparatus that is configured to receive, at a UE from a base station, a first message. The first message may indicate allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The apparatus may also be configured to monitor the first set of frequency resources using the first receiver branch and a first antenna of the UE. The apparatus may further be configured to monitor the second set of frequency resources using the second receiver branch and a second antenna of the UE. In some implementations, the apparatus includes a wireless device, such as a UE. In some implementations, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations described herein with respect to the wireless device. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
In a first aspect, the apparatus includes a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
In a second aspect, alone or in combination with the first aspect, the first set of frequency resources corresponds to a first bandwidth part (BWP) of a carrier bandwidth  (BW) . The second set of frequency resources corresponds to a second BWP of the carrier BW that is non-overlapping with the first BWP.
In a third aspect, in combination with the second aspect, the first BWP and the second BWP are associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
In a fourth aspect, alone or in combination with one or more of the first through second aspects, the first set of frequency resources corresponds to a first set of physical resource blocks (PRBs) of a bandwidth part (BWP) . The second set of frequency resources corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
In a fifth aspect, in combination with the fourth aspect, the apparatus is configured to determine a transport block (TB) size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both based on a number of PRBs included in the first set of PRBs.
In a sixth aspect, in combination with the fourth aspect, the apparatus is configured to determine a transport block (TB) size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs.
In a seventh aspect, alone or in combination with one or more of the fourth through sixth aspects, the apparatus is configured to determine a first phase tracking reference signal (PTRS) frequency density based on a number of PRBs included in the first set of PRBs.
In an eighth aspect, in combination with the seventh aspect, the apparatus is configured to determine a second PTRS frequency density based on a number of PRBs included in the second set of PRBs.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the first message includes a radio resource control (RRC) message. The first set of frequency resources and the second set of frequency resources are allocated for physical downlink control channel (PDCCH) resources.
In a tenth aspect, alone or in combination with one or more of the first through eighth aspects, the first message includes a downlink control information (DCI) message. The DCI message indicates a first transmission configuration indicator (TCI) associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
In an eleventh aspect, in combination with the tenth aspect, the apparatus is configured to receive, from the base station, a second DCI message that indicates an  allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources.
In a twelfth aspect, in combination with the eleventh aspect, the apparatus is configured to switch from monitoring the first set of frequency resources and the second set of frequency resources to monitoring the third set of frequency resources using the first receiver branch and the first antenna, the second receiver branch and the second antenna, or a combination thereof.
In a thirteenth aspect, in combination with the twelfth aspect, the DCI message includes a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources and the second set of frequency resources.
In a fourteenth aspect, in combination with the thirteenth aspect, the FDRA field indicates a same resource block (RB) allocation for two bandwidth parts (BWPs) of a carrier bandwidth (BW) for the first set of frequency resources and the second set of frequency resources.
In a fifteenth aspect, in combination with the thirteenth aspect, the FDRA field indicates a resource block (RB) allocation within a bandwidth part (BWP) . The first set of frequency resources is based on a first half of the allocated RBs and the second set of frequency resources is based on a second half of the allocated RBs.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the apparatus is configured to receive a first portion of a codeword associated with a single transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna.
In a seventeenth aspect, in combination with the sixteenth aspect, the apparatus is configured to receive a second portion of the codeword from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
In a eighteenth aspect, in combination with the seventeenth aspect, the apparatus is configured to combine the first portion of the codeword and the second portion of the codeword to detect the single TB.
In a nineteenth aspect, in combination with the eighteenth aspect, the first portion of the codeword and the second portion of the codeword are associated with the same redundancy version (RV) .
In a twentieth aspect, alone or in combination with one or more of the first through fifteenth aspects, the apparatus is configured to receive a first codeword associated with a  single transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna.
In a twenty-first aspect, in combination with the twentieth aspect, the apparatus is configured to receive a second codeword associated with the single TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
In a twenty-second aspect, in combination with the twenty-first aspect, the apparatus is configured to combine the first codeword and the second codeword to detect the single TB.
In a twenty-third aspect, in combination with the twenty-second aspect, the first codeword is associated with a first redundancy version (RV) . The second codeword is associated with a second RV that is different than the first RV.
In a twenty-fourth aspect, in combination with one or more of the first through fifteenth aspects, the apparatus is configured to receive a first transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna.
In a twenty-fifth aspect, in combination with the twenty-fourth aspect, the apparatus is configured to receive a second TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
In a twenty-sixth aspect, in combination with the twenty-fifth aspect, the first TB and the second TB are associated with the same demodulation reference signal (DMRS) port.
In a twenty-seventh aspect, alone or in combination with one or more of the first through twenty-sixth aspects, the apparatus is configured to receive, from the base station, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern. The first message indicates a repetition transmission across multiple slots.
In a twenty-eighth aspect, in combination with the twenty-seventh aspect, the predetermined pattern is once per time slot.
In a twenty-ninth aspect, in combination with the twenty-seventh aspect, the predetermined pattern is once per pair of time slots.
In some aspects, an apparatus configured for wireless communication, such as a base station, is configured to transmit, from a base station to a UE, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE. The apparatus is  also configured to transmit a first DL message to the UE via the first set of frequency resources; and. The apparatus is further configured to transmit a second DL message to the UE via the second set of frequency resources. In some implementations, the apparatus includes a wireless device, such as a base station. In some implementations, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations described herein with respect to the wireless device. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
In a thirtieth aspect, the UE includes a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
In a thirty-first aspect, alone or in combination with the thirtieth aspect, the first set of frequency resources corresponds to a first bandwidth part (BWP) of a carrier bandwidth (BW) . The second set of frequency resources corresponds to a second BWP of the carrier BW that is non-overlapping with the first BWP.
In a thirty-second aspect, in combination with the thirty-first aspect, the first BWP and the second BWP are associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
In a thirty-third aspect, alone or in combination with the thirtieth aspect, the first set of frequency resources corresponds to a first set of physical resource blocks (PRBs) of a bandwidth part (BWP) . The second set of frequency resources corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
In a thirty-fourth aspect, in combination with the thirty-third aspect, the apparatus is configured to determine a transport block (TB) size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a number of PRBs included in the first set of PRBs.
In a thirty-fifth aspect, in combination with the thirty-third aspect, the apparatus is configured to determine a transport block (TB) size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs.
In a thirty-sixth, alone or in combination with one or more of the thirty-fourth through thirty-fifth aspects, the apparatus is configured to transmit a first phase tracking reference signal (PTRS) to the UE. The first PTRS is associated with a first PTRS frequency density that is based on a number of PRBs included in the first set of PRBs.
In a thirty-seventh, in combination with the thirty-sixth aspect, the apparatus is configured to transmit a second PTRS to the UE. The second PTRS is associated with a second PTRS frequency density that based on a number of PRBs included in the second set of PRBs.
In a thirty-eighth aspect, alone or in combination with one or more of the thirtieth through thirty-seventh aspects, the first message includes a radio resource control (RRC) message. The first set of frequency resources and the second set of frequency resources are allocated for physical downlink control channel (PDCCH) resources.
In a thirty-ninth aspect, alone or in combination with one or more of the thirtieth through thirty-seventh aspects, the first message includes a downlink control information (DCI) message. The DCI message indicates a first transmission configuration indicator (TCI) associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
In a fortieth aspect, in combination with the thirty-ninth aspect, the apparatus is configured to transmit, to the UE, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources.
In a forty-first aspect, in combination with the fortieth aspect, the apparatus is configured to transmit a third DL message to the UE via the first set of frequency resources, the second set of frequency resources, or both.
In a forty-second aspect, alone or in combination with one or more of the fortieth through forty-first aspects, the DCI message includes a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources and the second set of frequency resources.
In a forty-third aspect, alone or in combination with one or more of the fortieth through forty-first aspects, the FDRA field indicates the same resource block (RB) allocation for two bandwidth parts (BWPs) of a resource bandwidth (BW) for the first set of frequency resources and the second set of frequency resources.
In a forty-fourth aspect, alone or in combination with the thirtieth through forty-third aspects, the FDRA field indicates a resource block (RB) allocation within a bandwidth part  (BWP) . The first set of frequency resources is based on a first half of the allocated RBs and the second set of frequency resources is based on a second half of the allocated RBs.
In a forty-fifth aspect, alone or in combination with one or more of the thirtieth through forty-fourth aspects, the first DL message includes a first portion of a codeword associated with a single transport block (TB) . The second DL message includes a second portion of the codeword.
In a forty-sixth aspect, in combination with the forty-fifth aspect, the first portion of the codeword and the second portion of the codeword are associated with the same redundancy version (RV) .
In a forty-seventh aspect, alone or in combination with one or more of the thirtieth through forty-fourth aspects, the first DL message includes a first codeword associated with a single transport block (TB) . The second DL message includes a second codeword associated with the single TB.
In a forty-eighth aspect, in combination with the forty-seventh aspect, the first codeword is associated with a first redundancy version (RV) . The second codeword is associated with a second RV that is different than the first RV.
In a forty-ninth aspect, alone or in combination with one or more of the thirtieth through forty-fourth aspects, the first DL message includes a first transport block (TB) . The second DL message includes a second TB.
In a fiftieth aspect, in combination with the forty-ninth aspect, the first TB and the second TB are associated with the same demodulation reference signal (DMRS) port.
In a fifty-first aspect, alone or in combination with one or more of the thirtieth through fiftieth aspects, the apparatus is configured to transmit, to the UE, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern. The first message indicates a repetition transmission across multiple slots.
In a fifty-second aspect, in combination with the fifty-first aspect, the predetermined pattern is once per time slot.
In a fifty-third aspect, in combination with the fifty-first aspect, the predetermined pattern is once per pair of time slots.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be  referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Components, the functional blocks, and modules described herein (e.g., the components, functional blocks, and modules in FIGS. 2, 3, 10, and 11) may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof. In addition, features discussed herein relating to FIGS. 1-11 may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps (e.g., the logical blocks in FIGS. 8 and 9) described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can  contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Figure PCTCN2020107311-appb-000001
Figure PCTCN2020107311-appb-000002
Figure PCTCN2020107311-appb-000003
Figure PCTCN2020107311-appb-000004
Figure PCTCN2020107311-appb-000005
Figure PCTCN2020107311-appb-000006
Figure PCTCN2020107311-appb-000007
Figure PCTCN2020107311-appb-000008

Claims (96)

  1. A method of wireless communication, the method comprising:
    receiving, at a user equipment (UE) from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE;
    monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE; and
    monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  2. The method of claim 1, wherein the UE comprises a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
  3. The method of claim 1, wherein the first set of frequency resources corresponds to a first bandwidth part (BWP) of a carrier bandwidth (BW) , and wherein the second set of frequency resources corresponds to a second BWP of the carrier BW that is non-overlapping with the first BWP.
  4. The method of claim 3, wherein the first BWP and the second BWP are associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
  5. The method of claim 1, wherein the first set of frequency resources corresponds to a first set of physical resource blocks (PRBs) of a bandwidth part (BWP) , and wherein the second set of frequency resources corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
  6. The method of claim 5, further comprising determining a transport block (TB) size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both, based on a number of PRBs included in the first set of PRBs.
  7. The method of claim 5, further comprising determining a transport block (TB) size associated with TBs to be received via the first set of frequency resources, the second set  of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs.
  8. The method of claim 5, further comprising:
    determining a first phase tracking reference signal (PTRS) frequency density based on a number of PRBs included in the first set of PRBs; and
    determining a second PTRS frequency density based on a number of PRBs included in the second set of PRBs.
  9. The method of claim 1, wherein the first message comprises a radio resource control (RRC) message, and wherein the first set of frequency resources and the second set of frequency resources are allocated for physical downlink control channel (PDCCH) resources.
  10. The method of claim 1, wherein the first message comprises a downlink control information (DCI) message, and wherein the DCI message indicates a first transmission configuration indicator (TCI) associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
  11. The method of claim 10, further comprising:
    receiving, from the base station, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources; and
    switching from monitoring the first set of frequency resources and the second set of frequency resources to monitoring the third set of frequency resources using the first receiver branch and the first antenna, the second receiver branch and the second antenna, or a combination thereof.
  12. The method of claim 11, wherein the DCI message includes a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources and the second set of frequency resources.
  13. The method of claim 12, wherein the FDRA field indicates a same resource block (RB) allocation for two bandwidth parts (BWPs) of a carrier bandwidth (BW) for the first set of frequency resources and the second set of frequency resources.
  14. The method of claim 12, wherein the FDRA field indicates a resource block (RB) allocation within a bandwidth part (BWP) , and wherein the first set of frequency resources is based on a first half of the allocated RBs and the second set of frequency resources is based on a second half of the allocated RBs.
  15. The method of claim 1, further comprising:
    receiving a first portion of a codeword associated with a single transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna;
    receiving a second portion of the codeword from the base station via the second set of frequency resources using the second receiver branch and the second antenna; and
    combining the first portion of the codeword and the second portion of the codeword to detect the single TB.
  16. The method of claim 15, wherein the first portion of the codeword and the second portion of the codeword are associated with the same redundancy version (RV) .
  17. The method of claim 1, further comprising:
    receiving a first codeword associated with a single transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna;
    receiving a second codeword associated with the single TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna; and
    combining the first codeword and the second codeword to detect the single TB.
  18. The method of claim 17, wherein the first codeword is associated with a first redundancy version (RV) , and wherein the second codeword is associated with a second RV that is different than the first RV.
  19. The method of claim 1, further comprising:
    receiving a first transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna; and
    receiving a second TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
  20. The method of claim 19, wherein the first TB and the second TB are associated with the same demodulation reference signal (DMRS) port.
  21. The method of claim 1, further comprising receiving, from the base station, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern, wherein the first message indicates a repetition transmission across multiple slots.
  22. The method of claim 21, wherein the predetermined pattern is once per time slot.
  23. The method of claim 21, wherein the predetermined pattern is once per pair of time slots.
  24. An apparatus configured for wireless communication, the apparatus comprising:
    at least one processor; and
    a memory coupled to the at least one processor, wherein the at least one processor is configured to:
    receive, at a user equipment (UE) from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE;
    monitor the first set of frequency resources using the first receiver branch and a first antenna of the UE; and
    monitor the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  25. The apparatus of claim 24, wherein the UE comprises a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
  26. The apparatus of claim 24, wherein the first set of frequency resources corresponds to a first bandwidth part (BWP) of a carrier bandwidth (BW) , and wherein the second set of frequency resources corresponds to a second BWP of the carrier BW that is non-overlapping with the first BWP.
  27. The apparatus of claim 26, wherein the first BWP and the second BWP are associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
  28. The apparatus of claim 24, wherein the first set of frequency resources corresponds to a first set of physical resource blocks (PRBs) of a bandwidth part (BWP) , and wherein the second set of frequency resources corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
  29. The apparatus of claim 28, wherein the at least one processor is further configured to determine a transport block (TB) size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both based on a number of PRBs included in the first set of PRBs.
  30. The apparatus of claim 28, wherein the at least one processor is further configured to determine a transport block (TB) size associated with TBs to be received via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs.
  31. The apparatus of claim 28, wherein the at least one processor is further configured to:
    determine a first phase tracking reference signal (PTRS) frequency density based on a number of PRBs included in the first set of PRBs; and
    determine a second PTRS frequency density based on a number of PRBs included in the second set of PRBs.
  32. The apparatus of claim 24, wherein the first message comprises a radio resource control (RRC) message, and wherein the first set of frequency resources and the second set of frequency resources are allocated for physical downlink control channel (PDCCH) resources.
  33. The apparatus of claim 24, wherein the first message comprises a downlink control information (DCI) message, and wherein the DCI message indicates a first transmission configuration indicator (TCI) associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
  34. The apparatus of claim 33, wherein the at least one processor is further configured to:
    receive, from the base station, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources; and
    switch from monitoring the first set of frequency resources and the second set of frequency resources to monitoring the third set of frequency resources using the first receiver branch and the first antenna, the second receiver branch and the second antenna, or a combination thereof.
  35. The apparatus of claim 34, wherein the DCI message includes a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources and the second set of frequency resources.
  36. The apparatus of claim 35, wherein the FDRA field indicates a same resource block (RB) allocation for two bandwidth parts (BWPs) of a carrier bandwidth (BW) for the first set of frequency resources and the second set of frequency resources.
  37. The apparatus of claim 35, wherein the FDRA field indicates a resource block (RB) allocation within a bandwidth part (BWP) , and wherein the first set of frequency  resources is based on a first half of the allocated RBs and the second set of frequency resources is based on a second half of the allocated RBs.
  38. The apparatus of claim 24, wherein the at least one processor is further configured to:
    receive a first portion of a codeword associated with a single transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna;
    receive a second portion of the codeword from the base station via the second set of frequency resources using the second receiver branch and the second antenna; and
    combine the first portion of the codeword and the second portion of the codeword to detect the single TB.
  39. The apparatus of claim 38, wherein the first portion of the codeword and the second portion of the codeword are associated with the same redundancy version (RV) .
  40. The apparatus of claim 24, wherein the at least one processor is further configured to:
    receive a first codeword associated with a single transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna;
    receive a second codeword associated with the single TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna; and
    combine the first codeword and the second codeword to detect the single TB.
  41. The apparatus of claim 40, wherein the first codeword is associated with a first redundancy version (RV) , and wherein the second codeword is associated with a second RV that is different than the first RV.
  42. The apparatus of claim 24, wherein the at least one processor is further configured to:
    receive a first transport block (TB) from the base station via the first set of frequency resources using the first receiver branch and the first antenna; and
    receive a second TB from the base station via the second set of frequency resources using the second receiver branch and the second antenna.
  43. The apparatus of claim 42, wherein the first TB and the second TB are associated with the same demodulation reference signal (DMRS) port.
  44. The apparatus of claim 24, wherein the at least one processor is further configured to receive, from the base station, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern, and wherein the first message indicates a repetition transmission across multiple slots.
  45. The apparatus of claim 44, wherein the predetermined pattern is once per time slot.
  46. The apparatus of claim 44, wherein the predetermined pattern is once per pair of time slots.
  47. An apparatus configured for wireless communication, the apparatus comprising:
    means for receiving, at a user equipment (UE) from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE;
    means for monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE; and
    means for monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  48. A non-transitory computer-readable storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    receiving, at a user equipment (UE) from a base station, a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE;
    monitoring the first set of frequency resources using the first receiver branch and a first antenna of the UE; and
    monitoring the second set of frequency resources using the second receiver branch and a second antenna of the UE.
  49. A method of wireless communication, the method comprising:
    transmitting, from a base station to a user equipment (UE) , a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE;
    transmitting a first downlink (DL) message to the UE via the first set of frequency resources; and
    transmitting a second DL message to the UE via the second set of frequency resources.
  50. The method of claim 49, wherein the UE comprises a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
  51. The method of claim 49, wherein the first set of frequency resources corresponds to a first bandwidth part (BWP) of a carrier bandwidth (BW) , and wherein the second set of frequency resources corresponds to a second BWP of the carrier BW that is non-overlapping with the first BWP.
  52. The method of claim 51, wherein the first BWP and the second BWP are associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
  53. The method of claim 49, wherein the first set of frequency resources corresponds to a first set of physical resource blocks (PRBs) of a bandwidth part (BWP) , and wherein the second set of frequency resources corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
  54. The method of claim 53, further comprising determining a transport block (TB) size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a number of PRBs included in the first set of PRBs.
  55. The method of claim 53, further comprising determining a transport block (TB) size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs.
  56. The method of claim 53, further comprising:
    transmitting a first phase tracking reference signal (PTRS) to the UE, the first PTRS associated with a first PTRS frequency density that is based on a number of PRBs included in the first set of PRBs; and
    transmitting a second PTRS to the UE, the second PTRS associated with a second PTRS frequency density that based on a number of PRBs included in the second set of PRBs.
  57. The method of claim 49, wherein the first message comprises a radio resource control (RRC) message, and wherein the first set of frequency resources and the second set of frequency resources are allocated for physical downlink control channel (PDCCH) resources.
  58. The method of claim 49, wherein the first message comprises a downlink control information (DCI) message, and wherein the DCI message indicates a first transmission configuration indicator (TCI) associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
  59. The method of claim 58, further comprising:
    transmitting, to the UE, a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources; and
    transmitting a third DL message to the UE via the first set of frequency resources, the second set of frequency resources, or both.
  60. The method of claim 58, wherein the DCI message includes a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources and the second set of frequency resources.
  61. The method of claim 60, wherein the FDRA field indicates the same resource block (RB) allocation for two bandwidth parts (BWPs) of a carrier bandwidth (BW) for the first set of frequency resources and the second set of frequency resources.
  62. The method of claim 60, wherein the FDRA field indicates a resource block (RB) allocation within a bandwidth part (BWP) , and wherein the first set of frequency resources is based on a first half of the allocated RBs and the second set of frequency resources is based on a second half of the allocated RBs.
  63. The method of claim 49, wherein the first DL message includes a first portion of a codeword associated with a single transport block (TB) , and wherein the second DL message includes a second portion of the codeword.
  64. The method of claim 63, wherein the first portion of the codeword and the second portion of the codeword are associated with the same redundancy version (RV) .
  65. The method of claim 49, wherein the first DL message includes a first codeword associated with a single transport block (TB) , and wherein the second DL message includes a second codeword associated with the single TB.
  66. The method of claim 65, wherein the first codeword is associated with a first redundancy version (RV) , and wherein the second codeword is associated with a second RV that is different than the first RV.
  67. The method of claim 49, wherein the first DL message includes a first transport block (TB) , and wherein the second DL message includes a second TB.
  68. The method of claim 67, wherein the first TB and the second TB are associated with the same demodulation reference signal (DMRS) port.
  69. The method of claim 49, further comprising transmitting, to the UE, additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern, wherein the first message indicates a repetition transmission across multiple slots.
  70. The method of claim 69, wherein the predetermined pattern is once per time slot.
  71. The method of claim 69, wherein the predetermined pattern is once per pair of time slots.
  72. An apparatus configured for wireless communication, the apparatus comprising:
    at least one processor; and
    a memory coupled to the at least one processor, wherein the at least one processor is configured to:
    initiate transmission, from a base station to a user equipment (UE) , of a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE;
    initiate transmission of a first downlink (DL) message to the UE via the first set of frequency resources; and
    initiate transmission of a second DL message to the UE via the second set of frequency resources.
  73. The apparatus of claim 72, wherein the UE comprises a reduced-capability UE associated with or having a restriction on a maximum bandwidth.
  74. The apparatus of claim 72, wherein the first set of frequency resources corresponds to a first bandwidth part (BWP) of a carrier bandwidth (BW) , and wherein the  second set of frequency resources corresponds to a second BWP of the carrier BW that is non-overlapping with the first BWP.
  75. The apparatus of claim 74, wherein the first BWP and the second BWP are associated with the same subcarrier spacing (SCS) and the same BWP bandwidth.
  76. The apparatus of claim 72, wherein the first set of frequency resources corresponds to a first set of physical resource blocks (PRBs) of a bandwidth part (BWP) , and wherein the second set of frequency resources corresponds to a second set of PRBs of the BWP that are non-overlapping with the first set of PRBs.
  77. The apparatus of claim 76, wherein the at least one processor is further configured to determine a transport block (TB) size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both based on a number of PRBs included in the first set of PRBs.
  78. The apparatus of claim 76, wherein the at least one processor is further configured to determine a transport block (TB) size associated with TBs to be transmitted via the first set of frequency resources, the second set of frequency resources, or both, based on a scaling factor and a total number of PRBs included in the first set of PRBs and the second set of PRBs.
  79. The apparatus of claim 76, wherein the at least one processor is further configured to:
    initiate transmission of a first phase tracking reference signal (PTRS) to the UE, the first PTRS associated with a first PTRS frequency density that is based on a number of PRBs included in the first set of PRBs; and
    initiate transmission of a second PTRS to the UE, the second PTRS associated with a second PTRS frequency density that based on a number of PRBs included in the second set of PRBs.
  80. The apparatus of claim 72, wherein the first message comprises a radio resource control (RRC) message, and wherein the first set of frequency resources and the  second set of frequency resources are allocated for physical downlink control channel (PDCCH) resources.
  81. The apparatus of claim 72, wherein the first message comprises a downlink control information (DCI) message, and wherein the DCI message indicates a first transmission configuration indicator (TCI) associated with the first set of frequency resources and a second TCI associated with the second set of frequency resources.
  82. The apparatus of claim 81, wherein the at least one processor is further configured to:
    initiate transmission, to the UE, of a second DCI message that indicates an allocation of a third set of frequency resources to the first receiver branch and the second receiver branch and a third TCI associated with the third set of frequency resources; and
    initiate transmission of a third DL message to the UE via the first set of frequency resources, the second set of frequency resources, or both.
  83. The apparatus of claim 81, wherein the DCI message includes a frequency domain resource assignment (FDRA) field that indicates the first set of frequency resources and the second set of frequency resources.
  84. The apparatus of claim 83, wherein the FDRA field indicates the same resource block (RB) allocation for two bandwidth parts (BWPs) of a carrier bandwidth (BW) for the first set of frequency resources and the second set of frequency resources.
  85. The apparatus of claim 83, wherein the FDRA field indicates a resource block (RB) allocation within a bandwidth part (BWP) , and wherein the first set of frequency resources is based on a first half of the allocated RBs and the second set of frequency resources is based on a second half of the allocated RBs.
  86. The apparatus of claim 72, wherein the first DL message includes a first portion of a codeword associated with a single transport block (TB) , and wherein the second DL message includes a second portion of the codeword.
  87. The apparatus of claim 86, wherein the first portion of the codeword and the second portion of the codeword are associated with the same redundancy version (RV) .
  88. The apparatus of claim 72, wherein the first DL message includes a first codeword associated with a single transport block (TB) , and wherein the second DL message includes a second codeword associated with the single TB.
  89. The apparatus of claim 88, wherein the first codeword is associated with a first redundancy version (RV) , and wherein the second codeword is associated with a second RV that is different than the first RV.
  90. The apparatus of claim 72, wherein the first DL message includes a first transport block (TB) , and wherein the second DL message includes a second TB.
  91. The apparatus of claim 90, wherein the first TB and the second TB are associated with the same demodulation reference signal (DMRS) port.
  92. The apparatus of claim 72, wherein the at least one processor is further configured to initiate transmission, to the UE, of additional messages indicating switching of the allocation of the first set of frequency resources and the second set of frequency resources to the first receiver branch and the second receiver branch according to a predetermined pattern, and wherein the first message indicates a repetition transmission across multiple slots.
  93. The apparatus of claim 92, wherein the predetermined pattern is once per time slot.
  94. The apparatus of claim 92, wherein the predetermined pattern is once per pair of time slots.
  95. An apparatus configured for wireless communication, the apparatus comprising:
    means for transmitting, from a base station to a user equipment (UE) , a first message indicating allocation of a first set of frequency resources to a first receiver  branch at the UE and a second set of frequency resources to a second receiver branch at the UE;
    means for transmitting a first downlink (DL) message to the UE via the first set of frequency resources; and
    means for transmitting a second DL message to the UE via the second set of frequency resources.
  96. A non-transitory computer-readable storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    initiating transmission, from a base station to a user equipment (UE) , of a first message indicating allocation of a first set of frequency resources to a first receiver branch at the UE and a second set of frequency resources to a second receiver branch at the UE;
    initiating transmission of a first downlink (DL) message to the UE via the first set of frequency resources; and
    initiating transmission of a second DL message to the UE via the second set of frequency resources.
PCT/CN2020/107311 2020-08-06 2020-08-06 Multiple receiver operation for user equipment (ue) WO2022027406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107311 WO2022027406A1 (en) 2020-08-06 2020-08-06 Multiple receiver operation for user equipment (ue)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107311 WO2022027406A1 (en) 2020-08-06 2020-08-06 Multiple receiver operation for user equipment (ue)

Publications (1)

Publication Number Publication Date
WO2022027406A1 true WO2022027406A1 (en) 2022-02-10

Family

ID=80119721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107311 WO2022027406A1 (en) 2020-08-06 2020-08-06 Multiple receiver operation for user equipment (ue)

Country Status (1)

Country Link
WO (1) WO2022027406A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365945A1 (en) * 2013-01-24 2015-12-17 Sony Corporation Mobile communication device and method for allocating resources outside of a virtual carrier based on ue capabilities
CN107636997A (en) * 2015-04-08 2018-01-26 交互数字专利控股公司 The method and apparatus based on the transmission of more subbands for the wireless transmitter/receiver unit with the ability of simplification and coverage enhancement
CN111434153A (en) * 2018-09-25 2020-07-17 联发科技(新加坡)私人有限公司 Carrier-specific and frequency-specific capability restrictions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365945A1 (en) * 2013-01-24 2015-12-17 Sony Corporation Mobile communication device and method for allocating resources outside of a virtual carrier based on ue capabilities
CN107636997A (en) * 2015-04-08 2018-01-26 交互数字专利控股公司 The method and apparatus based on the transmission of more subbands for the wireless transmitter/receiver unit with the ability of simplification and coverage enhancement
CN111434153A (en) * 2018-09-25 2020-07-17 联发科技(新加坡)私人有限公司 Carrier-specific and frequency-specific capability restrictions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Remaining details on SRS", 3GPP DRAFT; R1-1718549, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051341730 *

Similar Documents

Publication Publication Date Title
US11516800B2 (en) Bandwidth part (BWP) configuration for full duplex
US11323236B2 (en) Narrowband PDCCH DMRS bundling with enhanced coverage
US20230239128A1 (en) Joint dl/ul bandwidth techniques in full-duplex mode
EP4214883A1 (en) Guard bands for resource block sets of full duplex slot configured bandwidth parts
US11924827B2 (en) UE processing time for PDSCH repetition in the same slot
WO2021243300A1 (en) Codebook-based operation for subband full duplex in nr
WO2021025805A1 (en) Spur management in millimeter wave communications
US11832268B2 (en) Frequency resource allocation of a bandwidth part for multiple communication types
WO2022272210A1 (en) Control resource set (coreset) allocation for reduced bandwidth devices in 5g-nr
US20210321404A1 (en) Demodulation reference signal grouping for full duplex wireless communications
WO2022027406A1 (en) Multiple receiver operation for user equipment (ue)
WO2022036620A1 (en) Group common demodulation reference signal for multiple user equipments
US11805495B2 (en) Dynamic switching of physical uplink control channel (PUCCH) between uplink (UL) and supplementary uplink (SUL)
US11811571B2 (en) Resource allocation for peak reduction tones
US20230231603A1 (en) Techniques for antenna-switched diversity and multi-sim concurrent operation management
WO2021232419A1 (en) Sounding reference signal triggering using control information
WO2021179303A1 (en) Power headroom reporting for a full-duplex mode of operation of a device
US20240015751A1 (en) Enhanced implicit pucch resource indication and identification techniques
WO2021237610A1 (en) Low-power data scheduling and reception techniques
WO2021146830A1 (en) Search space set for monitoring physical downlink control channel (pdcch) of one cell in multiple cells
WO2021114215A1 (en) Uplink precoder grouping and tpmi feedback for subband precoding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948862

Country of ref document: EP

Kind code of ref document: A1