WO2022027320A1 - 一种基于雷达信号的发射方法和装置 - Google Patents

一种基于雷达信号的发射方法和装置 Download PDF

Info

Publication number
WO2022027320A1
WO2022027320A1 PCT/CN2020/107127 CN2020107127W WO2022027320A1 WO 2022027320 A1 WO2022027320 A1 WO 2022027320A1 CN 2020107127 W CN2020107127 W CN 2020107127W WO 2022027320 A1 WO2022027320 A1 WO 2022027320A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
signal
band
frequency
bands
Prior art date
Application number
PCT/CN2020/107127
Other languages
English (en)
French (fr)
Inventor
张慧
马莎
宋思达
高磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/107127 priority Critical patent/WO2022027320A1/zh
Priority to CN202080004176.8A priority patent/CN112534299B/zh
Publication of WO2022027320A1 publication Critical patent/WO2022027320A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4454Monopulse radar, i.e. simultaneous lobing phase comparisons monopulse, i.e. comparing the echo signals received by an interferometric antenna arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present application relates to the field of radar technology, and in particular, to a method and device for transmitting signals based on a millimeter-wave radar.
  • the radar system emits electromagnetic waves, and uses the electromagnetic waves reflected by the target to obtain information such as the target's position, speed, or angle, and has the ability to work all day and all day.
  • Millimeter-wave radar works in the millimeter-wave frequency band. Compared with traditional low-band radar, millimeter-wave radar has the advantages of easy to obtain high resolution, easy to achieve miniaturization and light weight due to the short wavelength of the transmitted signal. Therefore, the millimeter wave radar has the ability to measure the distance, angle or speed of the target with high precision.
  • Millimeter-wave radar has the characteristics of small size, light weight and high spatial resolution. Compared with optical sensors such as infrared, laser, and camera, millimeter-wave radar has a strong ability to penetrate fog, smoke, and dust, and has all-weather and all-day conditions. Features. Therefore, millimeter-wave radars are often installed on smart cars to sense the surrounding environment at any time during the driving process of the car, collect data, and realize a variety of assisted driving functions, such as adaptive cruise, safe distance warning and other functions.
  • assisted driving functions such as adaptive cruise, safe distance warning and other functions.
  • millimeter-wave radar needs to further improve its own measurement resolution, so that it can match with lidar, optical image, etc.
  • Embodiments of the present application provide a radar signal-based transmitting method and device, which are used to simultaneously improve the accuracy of ranging and angle measurement.
  • a radar signal transmission control method at least comprising: a first transmission array transmitting a first angle measurement signal, wherein the first transmission array includes M1 first transmission array elements, and the first transmission array includes M1 first transmission array elements.
  • the frequency band occupied by an angle measurement signal includes M1 first transmit sub-bands, each of the first transmit array elements corresponds to one of the M1 first transmit sub-bands, and the M1 first transmit sub-bands.
  • the i-th first transmission sub-band in the transmission sub-band has a first frequency offset ⁇ f 1i compared with the i-1-th first transmission sub-band, 2 ⁇ i ⁇ M1, where M1 is a positive value greater than or equal to 2.
  • the first frequency offset ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset threshold, and the phase error introduced by the first frequency offset threshold ⁇ f threshold satisfies the angle measurement requirement;
  • the second transmitting array transmits a second ranging signal, wherein the second transmitting array includes M2 second transmitting array elements, and the frequency band occupied by the second ranging signal includes M2 second transmitting sub-bands, each The second transmission array element corresponds to one of the M2 second transmission sub-bands, and the bandwidth of the j-th second transmission sub-band in the M2 second transmission sub-bands is B 2j , the bandwidth of the j-1th second emission sub-band is B 2j-1 , 2 ⁇ j ⁇ M2, M2 is a positive integer greater than or equal to 2, the j-th second emission sub-band is the same as the j-1th
  • the emission sub-bands have a second frequency band offset ⁇ f 2j compared to the second frequency offset
  • the overlapping frequency bands of the ranging signal and the angle measurement signal are set, so as to realize the multiplexing of signals, and at the same time expand the bandwidth and angle measurement of the ranging signal.
  • the virtual aperture of the signal so that the radar range resolution and angular resolution can be improved at the same time.
  • the second frequency band offset ⁇ f 2j satisfies: B 2j-1 ⁇ f 2j ⁇ (B 2j-1 +B 2j ).
  • the offset of the second frequency band of the second ranging signal is made as large as possible, so that the bandwidth of frequency band synthesis is made as large as possible, and the range resolution of the radar is improved.
  • the ⁇ f threshold is B 1i /4, where B 1i is the bandwidth of the i-th first transmit subband.
  • the bandwidths B 1i of the M1 first transmission sub-bands are set to be equal; or the bandwidths B 2j of the M2 second transmission sub-bands are set to be equal; or the M1 The first frequency offsets ⁇ f 1i of the first transmission sub-bands are equal; or the second frequency offsets ⁇ f 2j of the M2 second transmission sub-bands are equal.
  • setting the corresponding parameters to be equal reduces the amount of calculation and improves the speed of configuring the frequency band of the transmitted signal.
  • the first goniometric signal occupying the at least one first emission subband and the at least one second emission subband occupy the
  • the second ranging signals of the frequency band are all quadrature signals.
  • the two sets of transmitting signals in the overlapping frequency range are set as orthogonal signals, so that both sets of receiving arrays can receive signals transmitted by the other transmitting arrays in the overlapping frequency range.
  • a radar signal transmission control device at least includes: a first transmission module, which controls a first transmission array to transmit a first angle measurement signal, wherein the first transmission array includes M1 first A transmitting array element, the frequency band occupied by the first angle measurement signal includes M1 first transmitting sub-bands, and each first transmitting array element corresponds to one first transmitting sub-band in the M1 first transmitting sub-bands , the i-th first transmission sub-band in the M1 first transmission sub-bands has a first frequency offset ⁇ f 1i compared with the i-1-th first transmission sub-band, 2 ⁇ i ⁇ M1, M1 is a positive integer greater than 2, the first frequency offset ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset threshold, and the phase introduced by the first frequency offset threshold ⁇ f threshold The error meets the angle measurement requirements; the second transmitting module controls the second transmitting array to transmit the second ranging signal, wherein
  • the bandwidth of the j-th second transmission sub-band is B 2j
  • the bandwidth of the j-1-th second transmission sub-band is B 2j-1
  • 2 ⁇ j ⁇ M2 is a positive integer greater than or equal to 2
  • the The j second transmit sub-bands have a second frequency offset ⁇ f 2j compared to the j-1th transmit sub-band, and the second frequency offset ⁇ f 2j satisfies: 0 ⁇ f 2j ⁇ (B 2j-1 +B 2j ); wherein, at least one of the M1 first transmission sub-bands and at least one second transmission sub-band of the M2 second transmission sub-bands have overlapping frequency ranges.
  • the second frequency band offset ⁇ f 2j satisfies: B 2j-1 ⁇ f 2j ⁇ (B 2j-1 +B 2j ).
  • the ⁇ f threshold is B 1i /4, where B 1i is the bandwidth of the i-th first transmit subband.
  • the bandwidths B 1i of the M1 first transmission sub-bands are equal, or the bandwidths B 2j of the M2 second transmission sub-bands are equal; or the M1 first transmission sub-bands are equal to the bandwidth B 2j;
  • the first frequency offsets ⁇ f 1i of one transmission sub-band are equal; or the second frequency offsets ⁇ f 2j of the M2 second transmission sub-bands are equal.
  • the first goniometric signal occupying the at least one first emission subband and the at least one second emission subband occupy the
  • the second ranging signals of the frequency band are all quadrature signals.
  • a radar signal-based angle measurement method at least comprising: a first receiving array receiving a first received signal, wherein the first received signal includes a first echo signal and a first overlap an echo signal; the first echo signal is a reflection signal of the first angle measurement signal, and the frequency band occupied by the first angle measurement signal includes M1 first emission sub-bands, and the M1 first emission sub-bands
  • Each of the first transmit sub-bands of the The i-1th first transmit subband has a first frequency offset ⁇ f 1i , 2 ⁇ i ⁇ M1, M1 is a positive integer greater than or equal to 2, and the first frequency offset ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset threshold, the phase error introduced by the first frequency offset threshold ⁇ f threshold satisfies the angle measurement requirement; at least one of the M1 first transmit subbands A transmission sub-band has an overlapping frequency range with at least one of the M2 second transmission
  • the calculating the first steering vector corresponding to the first echo signal includes: based on the center frequency of each first transmit sub-band and a reference transmit array element The first steering vector is calculated from the difference between the center frequencies of the corresponding first transmit sub-bands.
  • the calculating the second steering vector of the first overlapped echo signal includes: based on the at least one second transmit subband in the overlapped frequency range The second steering vector is calculated by the difference between the center frequency and the center frequency of the first transmit sub-band corresponding to the reference transmit array element.
  • a radar signal-based angle measurement device comprising: a first receiving module that controls a first receiving array to receive a first received signal, wherein the first received signal includes a first echo signal and a first received signal. an overlapping echo signal; the first echo signal is a reflection signal of the first goniometric signal, the first transmit array includes M1 first transmit array elements, and the frequency band occupied by the first goniometer signal includes M1 number of first transmit sub-bands, each of the first transmit array elements transmits a signal of one of the M1 first transmit sub-bands, and the i-th transmit sub-band in the M1 first transmit sub-bands
  • the first transmission sub-bands have a first frequency offset ⁇ f 1i compared with the i-1th first transmission sub-band, 2 ⁇ i ⁇ M1, M1 is a positive integer greater than 2, and the first frequency offset
  • the shift ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset
  • the first calculation module is specifically configured to: based on the center frequency of each first transmit sub-band and the center of the first transmit sub-band corresponding to the reference transmit array element The difference in frequency calculates the first steering vector.
  • the second calculation module is specifically configured to: based on the center frequency of the at least one second transmit sub-band in the overlapped frequency range corresponding to the reference transmit array element
  • the second steering vector is calculated from the difference of the center frequencies of the first transmit sub-bands.
  • a device for generating a radar signal includes a signal generator and a controller, and the controller executes the first aspect or any of the possible implementations of the first aspect.
  • the signal generator is configured to generate the first angle measurement signal and the second ranging signal in the first aspect or any possible implementation manner of the first aspect.
  • a chip including at least the device for generating a radar signal according to the fifth aspect.
  • an electronic device in a seventh aspect, includes a processor and a memory, the memory stores instructions, and when the processor executes the instructions, the device causes the device to perform the above-mentioned first aspect or The signal transmitting method in any possible implementation manner of the first aspect.
  • a computer storage medium is also provided, and instructions are stored in the computer-readable storage medium, and when the instructions are executed on a computer, the computer is made to execute the first aspect or any one of the first aspects.
  • a radar ranging method is also provided, the method at least comprising: S11, the signal received by the second receiving array is a second receiving signal, wherein the working frequency band of the second receiving signal includes a plurality of second receiving signals.
  • the receiving sub-band, the second receiving signal includes a second echo signal and a second overlapping echo signal, the second echo signal is a reflection signal of the second ranging signal, and the second overlapping echo signal is the The echo signal of the first angle measurement signal in the overlapping part of the working frequency of the first angle measurement signal and the second distance measurement signal;
  • S12 performing frequency band synthesis on the plurality of second receiving sub-band signals to obtain a synthesized signal
  • the frequency band is the second synthetic frequency band;
  • S13 use the second synthetic frequency band to perform distance estimation.
  • the second receiving array is used to receive the second receiving signal for ranging, because the second receiving array not only receives the ranging signal transmitted by itself, but also receives the overlapping frequency band transmission of the first transmitting array and the second transmitting array.
  • the reflected signal of the angle measuring signal thus expanding the ranging bandwidth of the radar and improving the accuracy of ranging.
  • the first receiving array receives a first receiving signal, and a working frequency band of the first receiving signal includes a plurality of first receiving sub-bands, wherein the first receiving signal includes a first receiving signal.
  • the echo signal and the first overlapping echo signal, the first echo signal is the reflection signal of the first transmitting signal, and the first overlapping echo signal is the overlapping part of the operating frequency of the second transmitting signal and the first transmitting signal perform frequency band synthesis on the sub-band signals of the first received signal, and obtain the synthesized signal frequency band as the first synthesized frequency band; perform frequency band splicing on the first synthesized frequency band and the second synthesized frequency band to obtain a third synthesized frequency band ; use the third synthetic frequency band for distance estimation.
  • the first received signal received by the first array is superimposed for processing, and the second received signal received by the second array is assisted to perform ranging.
  • Using the reflected signal of the first angle measuring signal to assist the second ranging signal to perform ranging greatly expands the width of the synthetic frequency band and greatly improves the ranging accuracy.
  • a distance estimation apparatus includes: a first receiving module, a second receiving module, a first frequency band synthesis module, a second frequency band synthesis module, a third frequency band synthesis module, and a distance estimation module a first receiving module for controlling the first receiving array to receive a first receiving signal, the working frequency band of the first receiving signal includes a plurality of first receiving sub-bands, wherein the first receiving signal includes a first echo signal and a first overlapping echo signal, the first echo signal is a reflection signal of the first transmission signal, and the first overlapping echo signal is the echo of the overlapping portion of the operating frequency of the second transmission signal and the first transmission signal signal; a second receiving module, for the signal received by the second receiving array is a second receiving signal, wherein the working frequency band of the second receiving signal includes a plurality of second receiving sub-bands, and the second receiving signal includes a second echo signal and a second overlapping echo signal, the second echo signal is a reflection signal of the second ranging
  • a vehicle including the electronic device of the seventh aspect.
  • an electronic device including a processor and a memory, wherein the memory stores instructions, when the processor executes the instructions, the device is made to perform the third aspect or any of the third aspects.
  • a thirteenth aspect a computer storage medium, characterized in that the computer-readable storage medium stores instructions, which when executed on a computer, cause the computer to execute the third aspect or any of the third aspects.
  • a fourteenth aspect provides a radar signal transmission control method, the method at least comprising: a first transmission array transmitting a first transmission signal, wherein the first transmission array includes M1 first transmission array elements, and the first transmission array includes M1 first transmission array elements.
  • a frequency band occupied by a transmit signal includes M1 first transmit sub-bands, each of the first transmit array elements corresponds to one of the M1 first transmit sub-bands, and the M1 first transmit sub-bands
  • the i-th first transmit sub-band in the sub-bands has a first frequency offset ⁇ f 1i compared to the i-1-th first transmit sub-band, 2 ⁇ i ⁇ M1, where M1 is a positive value greater than or equal to 2.
  • the first frequency offset ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset threshold, and the phase error introduced by the first frequency offset threshold ⁇ f threshold satisfies the angle measurement requirement;
  • the second transmit array transmits a second ranging signal, wherein the second transmit array includes M2 second transmit array elements, and the frequency band occupied by the second transmit signal includes M2 second transmit sub-bands, each of which is The second transmission array element corresponds to one of the M2 second transmission sub-bands, and the bandwidth of the j-th second transmission sub-band in the M2 second transmission sub-bands is B 2j , The bandwidth of the j-1th second transmission sub-band is B 2j-1 , 2 ⁇ j ⁇ M2, M2 is a positive integer greater than or equal to 2, the j-th second transmission sub-band is the same as the j-1th transmission sub-band
  • the sub-bands have a second frequency band offset ⁇ f 2j , and the second frequency
  • a fifteenth aspect provides a radar signal transmission control method, the method at least comprising: a first transmission array transmitting a first transmission signal, wherein the first transmission array includes one first transmission array element, the first transmission array A frequency band occupied by a transmit signal includes one first transmit sub-band, and the first transmit array element corresponds to the first transmit sub-band in the first transmit sub-band; the second transmit array transmits a second ranging signal, wherein , the second transmit array includes M2 second transmit array elements, the frequency band occupied by the second transmit signal includes M2 second transmit sub-bands, and each of the second transmit array elements corresponds to the M2 One second transmission sub-band in the two transmission sub-bands, the bandwidth of the j-th second transmission sub-band in the M2 second transmission sub-bands is B 2j , and the bandwidth of the j-1-th second transmission sub-band is B 2j-1 , 2 ⁇ j ⁇ M2, M2 is a positive integer greater than or equal to 2, and the j-th second transmission sub-band has a second
  • any other method or device provided above can correspond to the transmitting method provided above. Therefore, the beneficial effects that can be achieved can refer to the beneficial effects of the corresponding methods provided above. , and will not be repeated here.
  • FIG. 1 is a schematic diagram of a radar system according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an exemplary structure of a vehicle-mounted millimeter-wave radar device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of the principle of a radar transmitting and receiving signals and an intermediate frequency signal according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a radar receiving antenna receiving signals according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the principle of a MIMO radar virtual receiving array provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a LFMCW MIMO radar using an FDM mode to transmit signals according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a usage scenario of a vehicle-mounted millimeter-wave radar control system provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a vehicle-mounted millimeter-wave radar device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a radar control device according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a radar signal transmission control method provided by an embodiment of the application.
  • FIG. 11 is a diagram of frequency band allocation of a transmission signal provided by an embodiment of the application.
  • FIG. 12 is a flowchart 1 of a radar signal ranging method provided by an embodiment of the present application.
  • FIG. 13 is a second flowchart of a radar signal ranging method provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of a radar signal ranging apparatus provided by an embodiment of the application.
  • 15 is a flowchart of a radar signal angle measurement method provided by an embodiment of the application.
  • 16 is a schematic diagram of a radar signal angle measuring device provided by an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of a computer program product provided by an embodiment of the present application.
  • radar can be installed in motor vehicles, drones, rail cars, bicycles, signal lights, speed measuring devices or network equipment (such as base stations, terminal equipment in various systems) and so on.
  • This application is applicable not only to a radar system between vehicles, but also to a radar system between a vehicle and other devices such as drones, or a radar system between other devices.
  • radar can be installed on smart terminals such as smart transportation equipment, smart home equipment, and robots. This application does not limit the type of terminal equipment on which the radar is installed, the installation location of the radar and the function of the radar.
  • Radar Also known as radar device, also known as detector or detection device. Its working principle is to detect the corresponding target object by transmitting a signal (or called a detection signal) and receiving the reflected signal reflected by the target object.
  • a signal or called a detection signal
  • Millimeter wave radar refers to the radar working in the millimeter wave band.
  • millimeter waves refer to electromagnetic waves in the frequency domain of 30 to 300 GHz (wavelength is 1 to 10 mm). The wavelength of millimeter waves is between centimeter waves and light waves. Therefore, millimeter waves have the advantages of both microwave guidance and photoelectric guidance.
  • MIMO radar Multiple Input Multiple Output Radar, multiple transmission and multiple reception radar, can be divided into three types: time division MIMO (TDM-MIMO), code division MIMO (CDM-MIMO), or frequency division MIMO (FDM-MIMO).
  • TDM-MIMO time division MIMO
  • CDM-MIMO code division MIMO
  • FDM-MIMO frequency division MIMO
  • Initial frequency At the beginning of a transmit cycle, the radar transmits the radar signal at an initial frequency, and the transmit frequency varies during the transmit cycle based on the initial frequency.
  • Linear Frequency Modulated Continuous Wave An electromagnetic wave whose frequency varies linearly with time.
  • the linear change here generally refers to a linear change within a cycle.
  • the waveform of the LFM continuous wave is generally a sawtooth wave or a triangular wave, and other possible waveforms, such as pulses, may also exist.
  • Intermediate frequency (Intermediate Frequency, IF) signal The signal processed by the mixer of the radar local oscillator signal and the received target reflected signal is the intermediate frequency signal. Specifically, a part of the FM continuous wave signal generated by the oscillator is used as a local oscillator signal, and a part is transmitted as a transmit signal through the transmit antenna, and the reflected signal of the transmit signal received by the receive antenna will be combined with the local oscillator signal. Mixing to obtain the "IF signal".
  • the intermediate frequency signal Through the intermediate frequency signal, at least one of the position information, velocity information and angle information of the target object can be obtained. Wherein, the position information, speed information and angle information may be relative position, relative speed and relative angle information relative to the current radar. Further, the frequency of the intermediate frequency signal is an intermediate frequency frequency.
  • Virtual aperture angle measurement technology Using multiple transmit antennas and receive antennas can equivalently form a virtual array with a larger aperture than the original size of the array. For example, M transmit antennas and N receive antennas can form M ⁇ N virtual receive array elements , the distance between different virtual receiving array elements will generate a wave path difference, thereby generating a phase difference related to the target angle, and the target angle can be estimated by using the phase difference.
  • Spatial spectrum estimation is an important research direction in array signal processing. Spatial spectrum estimation focuses on the ability of the processing system composed of spatial multi-sensor arrays to accurately estimate various parameters of the spatial signal of interest. , the main purpose is to estimate the spatial parameters of the signal or the location of the source. The classical spectral estimation algorithm calculates the spatial spectrum and then finds the location of its local maximum, so as to estimate the target angle and other information.
  • MUSIC method Multiple Signal Classification, multiple signal classification, is a kind of spatial spectrum estimation algorithm. The idea is to use the orthogonality of the signal subspace and the noise subspace to decompose the covariance matrix of the received data, separate the signal subspace and the noise subspace, and use the signal direction vector and the noise subspace to form a spatial spectrum. The global search for spectral peaks enables parameter estimation of the signal.
  • DOA estimation Direction of arrival estimation, that is, estimating the direction of arrival of the signal.
  • the direction of arrival is the direction in which the electromagnetic wave reaches, representing the angle at which the target is located.
  • Range resolution The resolution of the distance dimension, that is, the minimum distance at which two targets can be identified. Range resolution is the ability of the vehicle-mounted millimeter-wave radar to distinguish two or more target objects. When the distance between the two target objects is less than a certain distance, the vehicle-mounted millimeter-wave radar will not be able to distinguish the two target objects.
  • Azimuth/Angular Resolution The resolution in the angular dimension, ie the minimum angle at which two targets can be identified.
  • the angular resolution is the ability of the vehicle-mounted millimeter-wave radar to distinguish the angles of two or more target objects. When the angle between the two target objects is less than a certain value, the vehicle-mounted millimeter-wave radar will not be able to distinguish the two target objects.
  • Band The frequency range of a signal. For two chirps, the same frequency band means that the bandwidth, lowest frequency, and highest frequency of both frequency bands are the same.
  • Sweep Bandwidth The bandwidth occupied by the radar signal waveform. It should be noted here that the "sweep bandwidth" is defined for the convenience of description, and technically is the bandwidth occupied by the radar signal waveform. Further, the frequency band occupied by the radar signal waveform may be referred to as a sweep frequency band. The transmission period of the radar signal is also called the sweep time, that is, the time to transmit a complete waveform.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first radar signal and the second radar signal are only for distinguishing different radar signals, but do not indicate the difference in content, priority, transmission order, or importance of the two radar signals.
  • the radar involved in the embodiments of the present application may be a millimeter wave (millimeter wave, mmWave) radar, a micron wave radar, or the like, and the present application does not limit the properties of the electromagnetic waves emitted by the radar.
  • FIG. 2 provides a schematic diagram of an exemplary structure of a vehicle-mounted millimeter-wave radar device, which generally includes devices such as an oscillator, a transmitting antenna, a receiving antenna, a mixer, and a controller.
  • the controller may not be arranged in the vehicle-mounted millimeter-wave radar device, but at the receiving end of the signal output by the vehicle-mounted millimeter-wave radar device.
  • the controller may be located in the car, or a processing device for controlling the driving of the car, etc. This application The embodiment does not specifically limit this.
  • An oscillator produces a signal whose frequency increases linearly with time.
  • This signal may be referred to as a Chirp Continuous Wave LFMCW.
  • Part of the above-mentioned FM continuous wave is output to the mixer as the local oscillator signal through the directional coupler, and part is transmitted through the transmitting antenna, and the signal reflected from the object in front of the vehicle is received by the receiving antenna, and mixed with the local oscillator signal in the mixer.
  • the intermediate frequency signal contains the information of the target object, and the information of the target object can be the relative parameter between the target object and the vehicle where the on-board radar is located, such as the relative distance between the target object and the vehicle , at least one item of speed and angle.
  • the intermediate frequency signal (for example, it can be an intermediate frequency signal after a low-pass filter and amplification processing, the low-pass filter is not shown in the figure) is sent to the controller, and the controller processes the intermediate frequency signal (for example, the signal Perform fast Fourier transform, or perform spectrum analysis) to obtain the information of the target object, and finally perform vehicle control.
  • the controller processes the intermediate frequency signal (for example, the signal Perform fast Fourier transform, or perform spectrum analysis) to obtain the information of the target object, and finally perform vehicle control.
  • the IF frequency corresponding to the maximum ranging distance is considered to be the maximum IF frequency, and the signal greater than this IF frequency will be filtered out by the low-pass filter.
  • the following takes the sawtooth wave as an example to introduce the ranging principle of the millimeter wave radar in detail.
  • the ranging principle of the triangular wave is similar.
  • FIG. 3 is a schematic diagram of a possible frequency change of the transmitted signal, the reflected signal and the intermediate frequency signal. As shown in Figure 3, the transmitted signal and the received signal are expressed as
  • ⁇ 1 (t) and ⁇ 2 (t) are the angular velocities of the transmitted signal x 1 and the received signal x 2 , respectively, and are the initial phases of the transmitted signal x1 and the received signal x2 , respectively.
  • There is a delay ⁇ between the transmitted signal and the received signal.
  • the relationship between ⁇ and the target distance r can be expressed as
  • the transmitting signal and the receiving signal are multiplied in the mixer, and after passing through the low-pass filter, the intermediate frequency (IF) signal is output.
  • the frequency of the intermediate frequency signal (IF frequency) is equal to the difference between the transmitting signal and the receiving signal frequency, expressed as :
  • the intermediate frequency is the product of the transmit signal slope s and the time delay ⁇ , that is
  • the distance r from the target object is:
  • Tr is one transmission period, and for the triangular wave, Tr is half the transmission period. It can be understood that Tr is related to the waveform.
  • the frequency difference ie, the intermediate frequency
  • the time delay of the transmitted signal and the received reflected signal have a linear relationship.
  • the distance to the target object can also be calculated by the phase difference between the transmitted signal and the received signal, that is, the distance between the object and the radar can be obtained by detecting the intermediate frequency. It can be seen from the above that the information of the target object is also contained in the intermediate frequency.
  • the maximum intermediate frequency frequency is the intermediate frequency frequency corresponding to the maximum ranging distance, or, in other words, the frequency variation range within the time delay caused by the maximum ranging distance.
  • the slope of the transmit signal reflects the degree of change of the transmit frequency or the receive frequency with time. If the frequency of the transmitted signal decreases with time, the slope is negative, and if the frequency of the transmitted signal increases with time, the slope is positive. For a triangle wave, the slopes of the rising and falling edges are opposite numbers.
  • the absolute value of the slope may also be referred to as the variation range of the frequency per unit time, and the two expressions involved in the embodiments of the present application have the same meaning.
  • the radar ranging resolution is inversely proportional to the transmitted signal bandwidth, namely:
  • ⁇ r represents the range resolution
  • B r represents the bandwidth of the transmitted signal
  • c represents the speed of light
  • the angle measuring principle of the radar is also an extension of the ranging principle.
  • the radar may have a first receiving antenna 91 and a second receiving antenna 92 , and the distance between the two receiving antennas is d.
  • the distances of the reflected waves of FM continuous waves reaching the two receiving antennas are different. Since the distance d between the two receiving antennas is much smaller than the distance between the target object and the radar, the direction of the reflected waves received by the two receiving antennas is can be approximately parallel, and two IF signals can be obtained.
  • the phases of the two intermediate frequency signals are different, and the emission angle can be calculated by the difference between the two phases.
  • the distance between the two receiving antennas is d, and ⁇ is the wavelength of the signal.
  • the angular resolution is related to the radar aperture, ie, the larger the radar aperture, the higher the angular resolution.
  • the radar angular resolution ⁇ ⁇ is expressed as:
  • ⁇ ⁇ is the angular resolution
  • N is the number of receiving array elements
  • d is the distance between adjacent receiving array elements
  • is the angle of the target
  • is the wavelength of the transmitted signal.
  • the signals transmitted by different transmit antennas may have different characteristics, that is, different transmit antennas transmit Signals are transmitted using different transmission parameters, where the transmission parameters include, for example, center frequency, start time, and the like.
  • the transmission parameters include, for example, center frequency, start time, and the like.
  • Figure 5 it is a schematic diagram of the principle of the MIMO radar virtual receiving array.
  • Figure 5 takes a MIMO radar including 2 transmit antennas (Tx1 and Tx2) and 4 receive antennas (Rx1, Rx2, Rx3 and Rx4) as an example.
  • the signal received by each receiving antenna is the superimposed signal after the signals transmitted by all transmit multiple transmit single receive (SIMO) antennas are reflected by the target object.
  • SIMO transmit multiple transmit single receive
  • each receiving antenna can extract the signals from different transmitting antennas and reflected by the target object from the received signals as the received signals of the virtual receiving array element.
  • the virtual receiving array element here refers to an array element composed of multiple transmitting antennas and multiple receiving antennas, that is, M transmitting antennas and N receiving antennas, corresponding to the received signals of M*N virtual receiving array elements. Therefore, using M transmit antennas and N receive antennas, the angle of the SIMO radar with M*N receive array elements can be detected.
  • the MIMO radar can transmit signals in a frequency division multiplexing (Frequency Division Multiplexing, FDM) mode, that is, different transmit antennas transmit signals using different center frequencies.
  • FDM Frequency Division Multiplexing
  • FIG. 6 the MIMO radar adopts the FDM mode.
  • Schematic diagram of the transmitted signal The abscissa t in Figure 6 represents the time domain, and the ordinate f represents the frequency domain.
  • Figure 6 takes the example of a MIMO radar including three transmit antennas. The three transmit antennas are transmit antenna Tx1, transmit antenna Tx2, and transmit antenna Tx3.
  • the center frequency of the signal transmitted by the transmitting antenna Tx1 is f1
  • the center frequency of the signal transmitted by the transmitting antenna Tx2 is f2
  • the center frequency of the signal transmitted by the transmitting antenna Tx3 is f3, that is, different transmitting antennas use different centers frequency transmission signal.
  • the frequencies of the transmit signals of the multiple transmit antennas may be equally spaced or unequally spaced. Equal interval, that is, the frequency interval of any two adjacent transmit signals in the frequency domain is fixed.
  • Tx1 and Tx2 are two transmit signals adjacent in frequency
  • Tx2 and Tx3 are two transmit signals adjacent in frequency
  • the frequency interval between Tx1 and Tx2 is ⁇ f1, Tx1 and Tx2
  • the frequency interval between is ⁇ f2.
  • frequency domain offset the frequency interval between two adjacent transmit signals in the frequency domain.
  • the frequency band overlap between the emission sub-bands should be as small as possible or the frequency band spacing should be as large as possible; however, in order to obtain higher angle measurement accuracy, each emission array is required.
  • the frequency band of the signal transmitted by the element is the same or slightly different. It can be seen that there is a contradiction in the demand for signal frequency bands to improve the angle measurement accuracy and the distance measurement accuracy at the same time in the same device.
  • the embodiment of the present application provides a radar control system.
  • the ranging signal and the angle measurement signal are set to have overlapping frequency bands, and the signals are multiplexed.
  • the bandwidth of the ranging signal and the virtual aperture of the angle measuring signal are enlarged, so that the radar range resolution and angle resolution can be improved at the same time.
  • the radar control system includes at least two radars 1 and 2 and a control device 903 , and the at least two radars 1 and 2 and the control device 903 are arranged on the same vehicle.
  • the radar 1 includes a first signal generator 101 , a first transmitting array 102 , and a first receiving antenna 103 . Further optionally, referring to the structure of the vehicle-mounted millimeter-wave radar device shown in FIG. 2, the radar 1 may further include a controller, a mixer, a low-pass filter and/or a directional coupler.
  • the first signal generator 101 can be any radar signal generating device, such as the oscillator in FIG. 2 .
  • the first transmit array 102 may be a transmit antenna of the radar 1 .
  • the radar may be a MIMO radar, having M1 transmitting array elements, and receiving radar signals generated by the first signal generator 101 .
  • the first receiving array 103 may be the receiving antenna of the above-mentioned radar 1, and has N1 receiving array elements.
  • the first transmitting array 102 and the first receiving array 103 are used to support the radar 1 to transmit and receive signals, so as to finally realize the detection function.
  • the radar 2 has a structure similar to that of the radar 1 , which is not repeated here. By setting the synchronization signal, the time and phase synchronization between radar 1 and radar 2 is guaranteed.
  • the control device 903 may be a terminal device in the form of a portable accessory that has a computing function and can be connected to a smart terminal or various terminal devices, such as a radar. It can also be a server device that has computing functions and can be connected to various devices. It can also be an element in the above-mentioned device, such as a chip or the like.
  • the control device 903 controls and manages the actions of the radar 1 and the radar 2 or performs corresponding processing functions, such as emission control, calculation of distance, or calculation of angle.
  • the control device 903 may be a processor or a controller, for example, a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP) or an application specific integrated circuit (Application Specific integrated circuit) integrated Circuit, ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • CPU Central Processing Unit
  • DSP digital signal processor
  • ASIC Application Specific integrated circuit
  • FPGA field programmable gate array
  • the control device 903 includes a transmission control device, a first receiving module 203 , a second receiving module 204 , a ranging unit and an angle measuring unit.
  • the transmission control device of the control device includes a first transmission module 201 and a second transmission module 202 , which can control the operations of the first transmission array 101 of the radar 1 and the second transmission array 105 of the radar 2 .
  • the first transmitting module 201 controls the first transmitting array 101 to transmit the angle measurement signal to be transmitted
  • the second transmitting module 202 controls the second transmitting array 102 to transmit the ranging signal to be transmitted.
  • the first receiving module 203 and the second receiving module 204 of the control device can control the operations of the first receiving array 103 of the radar 1 and the second receiving array 104 of the radar 2 .
  • the echo signal to be received is controlled by the first receiving module 203 to receive the first receiving array 103, or the second receiving module 204 is controlled by the second receiving array 104 to receive, and the received echo signal can be transmitted to the control
  • the device 903 performs corresponding processing.
  • the ranging unit includes a first frequency band synthesis module 205 , a second frequency band synthesis module 206 , a third frequency band synthesis module 207 , and a distance estimation module 208 .
  • the first frequency band synthesis module 205 processes the first echo signal received by the first receiving array 101 of the radar 1, and performs bandwidth synthesis on the frequency band of the first echo signal
  • the second frequency band synthesis module 206 processes the second receiving array of the radar 2.
  • 102 performs bandwidth synthesis on the frequency band of the second echo signal received
  • the third frequency band synthesis module 208 performs frequency band synthesis on the signals processed by the first frequency band synthesis module 205 and the second frequency band synthesis module 206 .
  • the angle measurement unit includes a calculation module 209 and an angle estimation module 210 .
  • the calculation module 209 is used to calculate the steering vector of the echo signal received by the first receiving array of the radar 1 .
  • the angle estimation module 210 is used for performing angle estimation according to the steering vector.
  • the radar control system includes at least one radar 3 and a control device 903, and the at least one radar 3 and the control device 903 are arranged on the same vehicle.
  • the first transmitting array 102 and the second transmitting array 103 may be set in the same MIMO radar.
  • the first signal generator 101 and the second signal generator 102 may be combined into one signal generator.
  • the first receiving array 105 and the second receiving array 106 are also set in the same MIMO radar.
  • control device 903 is included in the at least one radar.
  • the control device 903 may perform some possible determination and/or processing functions.
  • control device also controls the operations of the first receiving array 102 and the first receiving array 103 .
  • the controller controls the first transmitting array 102 to transmit the signal to be transmitted, and the signal received through the first receiving array 103 can be transmitted to the controller for corresponding processing.
  • the radar control system further includes a central controller.
  • the central controller is used for controlling the vehicle according to the detection information of at least one sensor.
  • the controlling vehicle may be controlling the driving of the vehicle or controlling devices integrated in the vehicle, such as braking, deceleration, and the like.
  • the radar 1 may also include a memory for storing program instructions and/or data.
  • the first transmitting array 102 and the first receiving array 103 may be set independently, or may be integrated and set as a transceiver antenna to perform corresponding transceiver functions.
  • the control method of radar signal transmission will be introduced in detail below. As shown in Figure 10, the method includes several steps.
  • the first transmit array 102 transmits a first goniometric signal, wherein the first transmit array includes M1 first transmit array elements, and the frequency band occupied by the first goniometer signal includes M1 first transmit sub-bands, Each of the first transmitting array elements transmits a signal in one of the M1 first transmitting sub-bands, and the i-th first transmitting sub-band in the M1 first transmitting sub-bands is the same as the
  • the i-1th first transmit subband has a first frequency offset ⁇ f 1i , 2 ⁇ i ⁇ M1, M1 is a positive integer greater than or equal to 2, and the first frequency offset ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset threshold, and the phase error introduced by the first frequency offset threshold ⁇ f threshold satisfies the angle measurement requirement.
  • the first transmitting array 102 of the radar 1 transmits the first radar signal, which is mainly used to measure the angle of the target object. Therefore, the first radar signal transmitted by the first transmitting array 102 is called the first angle measurement signal.
  • the first angle measurement signal includes, but is not limited to, a linear frequency modulated continuous wave signal, a stepwise frequency modulated continuous wave signal, a single frequency signal, a pulse signal, and the like.
  • the spectral overlap of each sub-band of the radar 1 is set to be as large as possible, that is, ⁇ f1i is as small as possible.
  • ⁇ ⁇ is the angle measurement phase error
  • ⁇ r is the target distance measurement error
  • c is the speed of light, which is about 299792458m/s
  • ⁇ ⁇ is the phase error threshold.
  • the bandwidths of the transmitted signals of each sub-array element can be set to be equal to B1, and the frequency band offsets of adjacent sub-band signals can also be set to be equal to ⁇ f1. Set the corresponding parameters to be equal, reduce the amount of calculation, and improve the configuration speed of the frequency band of the transmitted signal
  • ⁇ f1 the value of ⁇ f1 is 0, and in this case, the spectrum of each sub-band overlaps.
  • the ⁇ f threshold may be set to B 1i /4, where B 1i is the bandwidth of the i-th first transmission sub-band in the M1 first transmission sub-bands. It is simple and convenient to set the range of the first frequency offset without calculation, which improves the configuration speed of the frequency band of the transmitted signal.
  • the second transmitting array transmits a second ranging signal, wherein the second transmitting array includes M2 second transmitting array elements, and the frequency band occupied by the second ranging signal includes M2 second transmitting elements of different frequency bands frequency band, each second transmitting array element transmits a signal of one second transmitting sub-band in the M2 second transmitting sub-bands, and the jth second transmitting sub-band in the M2 second transmitting sub-bands
  • the bandwidth of the frequency band is B 2j
  • the bandwidth of the j-1th second transmission sub-band is B 2j-1 , 1 ⁇ j ⁇ M2
  • M2 is a positive integer greater than or equal to 2
  • the j-th second transmission sub-band Compared with the j-1th transmit sub-band, it has a second frequency band offset ⁇ f 2j , and the second frequency offset ⁇ f 2j satisfies: 0 ⁇ f 2j ⁇ (B 2j-1 +B 2j );
  • At least one first transmission sub-band in the M1 first transmission sub-bands and at least one second transmission sub-band in the M2 second transmission sub-bands have overlapping frequency ranges.
  • the second transmitting array 105 of the radar 2 transmits a second radar signal, which is mainly used to measure the distance of the target object. Therefore, the second radar signal transmitted by the second transmitting array 105 is called a second ranging signal.
  • the second ranging signal includes, but is not limited to, a linear frequency modulated continuous wave signal, a stepwise frequency modulated continuous wave signal, a single frequency signal, a pulse signal, and the like.
  • the frequency band of the goniometric signal on the left coordinate and the ranging signal frequency band on the right coordinate in the figure have overlapping frequency bands, for example, the frequency band f1M1 in the first goniometric signal and the frequency band f21 in the second ranging signal
  • the two may overlap, or it may be set that multiple frequency bands in the first goniometric signal and multiple frequency bands in the second ranging signal overlap.
  • the transmitting method realizes the multiplexing of signals, sets the overlapping frequency bands of the ranging signal and the angle measurement signal, and at the same time expands the bandwidth of the ranging signal and the frequency band of the angle measurement signal.
  • Virtual aperture which can improve radar range resolution and angular resolution at the same time.
  • the overlap may be the overlap of a part of the frequency bands in the overlapped sub-bands, or the overlap of all the frequency bands of the overlapped sub-bands.
  • the bandwidths of the transmitted signals of each sub-array element are set to be equal to B2, and the frequency band offsets of adjacent sub-band signals are also equal to ⁇ f2.
  • the offset of the second frequency band of the second ranging signal is set as large as possible, so that the bandwidth of the frequency band synthesis is as large as possible, and the range resolution of the radar is improved.
  • the spectrum overlap between the various transmission sub - bands of the radar 2 is as small as possible or there is a certain interval between the spectrums .
  • the bandwidth of the signal is increased, and the accuracy of ranging is improved.
  • the frequency band offset of two adjacent sub-bands needs to be smaller than the sum of the bandwidths of the two sub-bands. Because when the frequency band offset of two adjacent sub-bands is greater than the sum of the two sub-bands, the second frequency band synthesis module 206 in the ranging unit described in FIG. The ranging calculation cannot be performed.
  • the second frequency band offset ⁇ f 2j is set to satisfy: B 2j-1 ⁇ f 2j ⁇ (B 2j-1 +B 2j ), so that the ranging bandwidth is as large as possible, thereby improving the ranging accuracy.
  • At least one first transmission sub-band in the M1 first transmission sub-bands and at least one second transmission sub-band in the M2 second transmission sub-bands may be set have overlapping frequency ranges.
  • the frequency band signal f1M1 of the highest frequency of the radar 1 and the frequency band signal f21 of the lowest frequency of the radar 2 have the same starting frequency and the same overlapping frequency band.
  • the waveforms of the transmitted signals of the overlapping parts of radar 1 and radar 2 are set to be orthogonal, which can be time-division waveform orthogonal signals or code-division waveform orthogonal signals. Therefore, the radar 1 and the radar 2 can receive the signals in the overlapping frequency bands transmitted by each other, thereby expanding the bandwidth and the virtual aperture, and at the same time improving the ranging accuracy and angle measuring accuracy.
  • a synchronization signal should be set to ensure the time and phase synchronization between the radar 1 and the radar 2.
  • the transmission signal setting mode of radar 1 and radar 2 in the above-mentioned distributed radar system can be extended to two sub-arrays of a single multi-transmission radar. Unification into the same radar reduces the requirement for synchronization between radars.
  • Embodiments of the present application further provide a radar signal transmission control apparatus 200, which controls the radar 1 and the radar 2 to transmit radar signals.
  • the radar signal transmission control device provided in the embodiment of the present application can be used to execute the radar signal transmission control method in the above-mentioned embodiments.
  • the radar signal transmission control apparatus may be divided into functional modules according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that the division of modules in this application is schematic, and is only a logical function division, and other division methods may be used in actual implementation.
  • the emission control apparatus is included in the left part of FIG. 9 , and specifically, the emission control apparatus includes a first emission module 201 and a second emission module 202 . specific:
  • the first transmitting module 201 controls the first transmitting array 102 to transmit a first angle measurement signal, wherein the first transmission array 102 includes M1 first transmission array elements, and the frequency band occupied by the first angle measurement signal includes M1 a first transmit sub-band, each of the first transmit array elements transmits a signal of one of the M1 first transmit sub-bands, and the i-th one of the M1 first transmit sub-bands
  • the first transmission sub-band has a first frequency offset ⁇ f 1i compared with the i-1th first transmission sub-band, 2 ⁇ i ⁇ M1, M1 is a positive integer greater than 2, and the first frequency offset ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset threshold, and the phase error introduced by the first frequency offset threshold ⁇ f threshold satisfies the angle measurement requirement.
  • the first transmitting array 102 of the radar 1 transmits the first radar signal, which is mainly used to measure the angle of the target object. Therefore, the first radar signal transmitted by the first transmitting array 102 is called the first angle measurement signal.
  • the spectral overlap of each subband of the radar 1 is set as large as possible, that is, ⁇ f1i is as small as possible, and the phase error introduced by the first frequency offset threshold ⁇ fthreshold meets the angle measurement requirements.
  • the bandwidths of the transmitted signals of each sub-array element can be set to be equal to B1, and the frequency band offsets of adjacent sub-band signals can also be set to be equal to ⁇ f1.
  • ⁇ f1 the value of ⁇ f1 is 0, and in this case, the spectrum of each sub-band overlaps.
  • the ⁇ f threshold may be set to B 1i /4, where B 1i is the bandwidth of the i-th first transmission sub-band in the M1 first transmission sub-bands.
  • the second transmitting module 202 controls the second transmitting array 105 to transmit a second ranging signal, wherein the second ranging signal includes M2 second transmitting array elements, and the frequency band occupied by the second ranging signal includes M2 Second transmit sub-bands of different frequency bands, each of the second transmit array elements transmits a signal of one of the M2 second transmit sub-bands, and one of the M2 second transmit sub-bands.
  • the bandwidth of the j-th second transmission sub-band is B 2j , 1 ⁇ j ⁇ M2, where M2 is a positive integer greater than 2, and the j-th second transmission sub-band has The second frequency band offset ⁇ f 2j , the second frequency offset ⁇ f 2j satisfies: 0 ⁇ f 2j ⁇ (B 2j-1 +B 2j );
  • At least one first transmission sub-band in the M1 first transmission sub-bands and at least one second transmission sub-band in the M2 second transmission sub-bands have overlapping frequency ranges.
  • the second transmitting array 105 of the radar 2 transmits a second radar signal, which is mainly used to measure the distance of the target object. Therefore, the second radar signal transmitted by the second transmitting array 105 is called a second ranging signal.
  • the frequency band of the goniometric signal on the left coordinate and the ranging signal frequency band on the right coordinate in the figure have overlapping frequency bands, for example, the frequency band f1M1 in the first goniometric signal and the frequency band f21 in the second ranging signal
  • the two may overlap, or it may be set that multiple frequency bands in the first goniometric signal and multiple frequency bands in the second ranging signal overlap.
  • the overlap may be the overlap of a part of the frequency bands in the overlapped sub-bands, or the overlap of all the frequency bands of the overlapped sub-bands.
  • the bandwidths of the transmitted signals of each sub-array element are set to be equal to B2, and the frequency band offsets of adjacent sub-band signals are also equal to ⁇ f2.
  • the spectrum overlap between the various transmission sub - bands of the radar 2 is as small as possible or there is a certain interval between the spectrums .
  • the bandwidth of the signal is increased, and the accuracy of ranging is improved.
  • the frequency band offset of two adjacent sub-bands needs to be smaller than the sum of the bandwidths of the two sub-bands. Because when the frequency band offset of two adjacent sub-bands is greater than the sum of the two sub-bands, the second frequency band synthesis module 206 in the ranging unit described in FIG. Perform ranging calculations.
  • the second frequency band offset ⁇ f 2j is set to satisfy: B 2j-1 ⁇ f 2j ⁇ (B 2j-1 +B 2j ), so that the ranging bandwidth is as large as possible, thereby improving the ranging accuracy.
  • At least one first transmission sub-band in the M1 first transmission sub-bands and at least one second transmission sub-band in the M2 second transmission sub-bands may be set have overlapping frequency ranges.
  • the frequency band signal f1M1 of the highest frequency of the radar 1 and the frequency band signal f21 of the lowest frequency of the radar 2 have the same starting frequency.
  • the overlapping sub-bands between Radar 1 and Radar 2 can overlap completely or partially.
  • the waveforms of the transmitted signals of the overlapping parts of radar 1 and radar 2 are set to be orthogonal, which can be time-division waveform orthogonal signals or frequency-division waveform orthogonal signals. Therefore, the radar 1 and the radar 2 can receive the signals in the overlapping frequency bands transmitted by each other, thereby expanding the bandwidth and the virtual aperture, and at the same time improving the ranging accuracy and angle measuring accuracy.
  • a synchronization signal should be set to ensure the time and phase synchronization between the radar 1 and the radar 2.
  • the transmission signal setting mode of radar 1 and radar 2 in the above-mentioned distributed radar system can be extended to two sub-arrays of a single multi-transmission radar. Unification into the same radar reduces the requirement for synchronization between radars.
  • the embodiment of the present application also provides a radar ranging method, as shown in FIG. 12 , the ranging method includes the following steps:
  • the signal received by the second receiving array 106 is a second receiving signal, wherein the working frequency band of the second receiving signal includes a plurality of second receiving sub-bands, and the second receiving signal includes a second echo signal and a second overlapping echo signal.
  • wave signal the second echo signal is the reflection signal of the second ranging signal
  • the second overlapping echo signal is the overlapping part of the operating frequency of the first angle measuring signal and the second ranging signal
  • the echo signal of the first goniometric signal is a second receiving signal, wherein the working frequency band of the second receiving signal includes a plurality of second receiving sub-bands, and the second receiving signal includes a second echo signal and a second overlapping echo signal.
  • the second receiving module 204 controls the second receiving array 106 of the radar 2 to receive the second receiving signal. It can be seen from the frequency band range drawn in Fig. 11 that since radar 2 and radar 1 have transmission signals of overlapping operating frequency bands, radar 2 can not only receive radar signals transmitted by radar 2 itself, but also receive radar signals from radar 1 and radar 2 The signal emitted by the radar 1 in the frequency overlapping part. Therefore, the second received signal includes the second echo signal and the second overlapping echo signal. As shown in FIG. 11 , the frequency band distribution of the second ranging signal is the shape described by the coordinates on the right side of the figure, and the second echo signal is a reflection signal of the second ranging signal.
  • the second overlapping echo signal is an echo signal of the first goniometric signal at the overlapping portion of the operating frequency of the first goniometric signal and the second ranging signal.
  • the frequency band of the left coordinate and the frequency band of the right coordinate have overlapping frequency bands, for example, the frequency band f1M1 of the first angle measurement signal and the frequency band f21 of the second ranging signal may overlap.
  • the radar 2 will also receive the echo signal of the frequency band f1M1 in the first angle measurement signal sent by the radar 1 .
  • the second frequency band synthesis module 206 processes the plurality of second receiving sub-band signals received by the second receiving array 106 of the radar 2, and is divided into the following two cases according to the form of the second receiving sub-band signals:
  • the frequency band synthesis can be performed directly after phase correction.
  • the signal frequency band after synthesis is the second synthesis frequency band, and the bandwidth range of the second synthesis frequency band is
  • the distance estimation module 208 uses the second synthetic frequency band to perform distance estimation, specifically, the above formula may be used for calculation, or other existing radar distance estimation methods may be used.
  • ranging is performed by the second received signal received by the radar 2, because the radar 2 not only receives the ranging signal transmitted by itself, but also receives the reflection of the angle measuring signal emitted by the radar 1 and the radar 2 in the overlapping frequency band. signal, thereby expanding the ranging bandwidth of the radar and improving the accuracy of ranging.
  • the first received signal received by the first array may be superimposed for processing, and the second received signal received by the second array may be assisted to perform ranging.
  • the distance estimation method further includes the following steps:
  • the first receiving array 103 receives a first receiving signal, the working frequency band of the first receiving signal includes a plurality of first receiving sub-bands, wherein the first receiving signal includes a first echo signal and a first overlapping echo
  • the first echo signal is a reflected signal of the first transmit signal
  • the first overlapped echo signal is an echo signal of the overlapping portion of the operating frequency of the second transmit signal and the first transmit signal.
  • the first receiving module 203 controls the signal received by the first receiving array 103 of the radar 1 to be the first receiving signal.
  • radar 1 can not only receive the radar signal transmitted by radar 1 itself, that is, the first echo signal, but also receive The ranging signal f21 emitted by the radar 2 in the overlapping part of the radar 2 and the radar 1 is the first overlapping echo signal. Therefore, the first received signal includes the first echo signal and the first overlapping echo signal.
  • the first frequency band synthesis module 205 processes the first received signal received by the first receiving array. Since the spectral overlap between the various sub-bands of the radar 1 is relatively large, the overlapping frequency bands can be used to directly perform phase error estimation and correction, and then directly The frequency band synthesis of radar 1 can be completed by performing spectrum alignment and splicing without extrapolation.
  • the synthesized first signal bandwidth range is
  • the third frequency band synthesis module 207 performs frequency band splicing on the first synthesis frequency band and the second synthesis frequency band. As shown in step S22, the bandwidth range of the first signal is: It can be known from step S12 that the bandwidth range of the second synthesis frequency band is After combining the above two frequency bands, the third combined frequency band is [f 11 , f 2M2 +B 2 ].
  • the distance estimation module 208 uses the third synthetic frequency band to perform distance estimation, specifically, the above formula may be used for calculation, or other existing radar distance estimation methods may be used.
  • the use of the reflected signal of the first angle measurement signal transmitted by the radar 1 to assist the second distance measurement signal transmitted by the radar 2 to perform range measurement expands the width of the synthetic frequency band and improves the range measurement accuracy.
  • the ranging apparatus includes: a first receiving module 203 , a second receiving module 204 , a first frequency band synthesis module 205 , and a second frequency band synthesis module 206 , a third frequency band synthesis module 207 , and a distance estimation module 208 .
  • the above modules correspond to the modules in FIG. 9 .
  • the specific limited functions of the above modules are the same as those described above for the distance estimation method, and will not be repeated here.
  • the radar signal ranging apparatus provided in the embodiment of the present application can be used to execute the radar distance estimation method in the foregoing embodiments.
  • the radar signal distance estimation apparatus can be divided into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that the division of modules in this application is schematic, only a logical function division, and there may be other division methods in actual implementation.
  • the embodiment of the present invention also provides an angle measurement method, as shown in FIG. 15 , the angle measurement includes:
  • the first receiving array receives a first receiving signal, wherein the first receiving signal includes a first echo signal and a first overlapping echo signal; the first echo signal is a reflected signal of the first angle measurement signal , the frequency band occupied by the first angle measurement signal includes M1 first transmission sub-bands, and each first transmission sub-band in the M1 first transmission sub-bands corresponds to M1 first transmission arrays in the first transmission array
  • One of the first transmit array elements in the M1 first transmit sub-bands, the i-th first transmit sub-band among the M1 first transmit sub-bands has a first frequency offset compared with the i-1-th first transmit sub-band ⁇ f 1i , 2 ⁇ i ⁇ M1, M1 is a positive integer greater than or equal to 2, the first frequency offset ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset threshold, the first frequency offset
  • the phase error introduced by a frequency offset threshold ⁇ f threshold satisfies the angle
  • the first receiving module 203 controls the first receiving array 103 of the radar 1 to receive a signal, and the received signal is the first received signal.
  • the received signal is the first received signal.
  • radar 1 and radar 2 have transmit signals of overlapping operating frequency bands, radar 1 can not only receive the reflected signal of the first angle measurement signal transmitted by radar 1 itself, that is, the first echo Signal, the ranging signal f21 emitted by the radar 2 in the overlapping part of the radar 2 and the radar 1 can also be received, that is, the first overlapping echo signal. Therefore, the first received signal includes the first echo signal and the first overlapping echo signal.
  • the frequency band limitation of the first angle measurement signal and the related limitation of the second ranging signal are as described in the above-mentioned radar emission control method, that is, the part corresponding to FIG. 11 , and will not be repeated here.
  • the first calculation module 2091 calculates a first steering vector corresponding to the first echo signal of the first transmitting array. Specifically, the position of the first transmitting antenna element of radar 1 is selected as the reference position of the transmitting antenna, and the position of the first receiving array element of radar 1 is selected as the reference position of the receiving antenna. Then the steering vector a′ i ( ⁇ ) of the N 1 receiving array elements corresponding to the transmitting signal of the i-th transmitting array element of radar 1 is:
  • the second calculation module 2092 calculates the echo signal of the transmitting signal of the transmitting array element of radar 2 corresponding to the overlapping frequency band of radar 2 and radar 1, the echo signal is received by N 1 array elements of radar 1, and the corresponding steering vector is denoted as
  • d′ T is the distance between the position of the transmitting antenna corresponding to the overlapping frequency band of radar 2 and the reference transmitting array element
  • ⁇ r is the wavelength corresponding to the center frequency of the overlapping frequency band of radar 2 and radar 1 .
  • the combining unit 2093 combines the above-mentioned first steering vector and second steering vector to obtain the steering vector matrix of the received signal of radar 1:
  • the terms related to the wavelength (frequency) and distance in the steering vector disappears and degenerates into the steering vector of the ordinary single-band MIMO radar angle measurement.
  • the angle estimation unit 210 uses the third steering vector to perform angle estimation, and the specific method of angle estimation may use MUSC spectral estimation, or other existing spectral estimation methods, or a Fourier transform method.
  • the steering vector is only related to the incident angle, and the updated steering vector and the corresponding MUSIC can be used. Spectral estimation can complete the angle estimation.
  • the radar signal used for angle estimation not only includes the first angle measurement signal transmitted by the first array, but also includes the part of the second ranging signal transmitted by the second array that overlaps the frequency band of the angle measurement signal. , which expands the virtual radar aperture for angle estimation and improves the accuracy of angle measurement.
  • the present application also provides a radar signal-based angle measurement device.
  • the angle measurement device includes: a first receiving module 203 , a calculation module 209 , and an angle estimation unit 210 .
  • the calculation module 209 includes: a first calculation module 2091 , a second calculation module 2092 , and a merging unit 2093 .
  • the above modules correspond to the modules in FIG. 9 .
  • the specific limited functions of the above modules are the same as those described above for the angle estimation method, and their implementation principles and technical effects are similar, and the functions of each module may refer to the corresponding descriptions in the method embodiments. It will not be repeated here.
  • the angle measuring device for radar signals provided by the embodiments of the present application can be used to execute the radar angle estimation method in the above-mentioned embodiments.
  • the radar signal angle measuring device can be divided into functional modules according to the above method examples.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that the division of modules in this application is schematic, and is only a logical function division, and other division methods may be used in actual implementation.
  • An embodiment of the present application further provides an apparatus for generating a radar signal, the apparatus includes a signal generator and a controller, the controller executes the signal transmitting method described in the above embodiment, and the signal generator is used to generate the above embodiment Example of the first angle measurement signal and the second ranging signal.
  • the apparatus includes a signal generator and a controller
  • the controller executes the signal transmitting method described in the above embodiment
  • the signal generator is used to generate the above embodiment Example of the first angle measurement signal and the second ranging signal.
  • the implementation principle and technical effect thereof are similar, and the functions of each module may refer to the corresponding description in the method embodiment, which will not be repeated here.
  • An embodiment of the present application further provides a chip, which at least includes the device for generating a radar signal in the above embodiment, which can be used to implement the technical solution of the above method embodiment, and its implementation principle and technical effect are similar, and the functions of each module can refer to Corresponding descriptions in the method embodiments are not repeated here.
  • Embodiments of the present application further provide an electronic device, including a processor and a memory, where the memory stores instructions, and when the processor executes the instructions, the device causes the device to execute the signals described in the above embodiments launch method.
  • the implementation principle and technical effect thereof are similar, and the functions of each module may refer to the corresponding description in the method embodiment, which will not be repeated here.
  • An embodiment of the present application further provides a radar signal transmission control method, the method at least includes: a first transmission array transmits a first transmission signal, wherein the first transmission array includes M1 first transmission array elements, and the first transmission array includes M1 first transmission array elements.
  • a frequency band occupied by a transmit signal includes M1 first transmit sub-bands, each of the first transmit array elements corresponds to one of the M1 first transmit sub-bands, and the M1 first transmit sub-bands
  • the i-th first transmit sub-band in the sub-bands has a first frequency offset ⁇ f 1i compared to the i-1-th first transmit sub-band, 2 ⁇ i ⁇ M1, where M1 is a positive integer greater than or equal to 2 , the first frequency offset ⁇ f 1i satisfies: 0 ⁇ f 1i ⁇ f threshold , ⁇ f threshold is the first frequency offset threshold, and the phase error introduced by the first frequency offset threshold ⁇ f threshold satisfies the angle measurement requirements;
  • the second transmitting array transmits
  • the bandwidth of the j-1 second emission sub-band is B 2j-1 , 2 ⁇ j ⁇ M2, M2 is a positive integer greater than or equal to 2, and the j-th second emission sub-band is the same as the j-1-th emission sub-band
  • the frequency bands have a second frequency band offset ⁇ f 2j , and the second frequency offset ⁇ f 2j satisfies: 0 ⁇ f 2j ⁇ (B 2j-1 +B 2j ); wherein, in the M1 first transmit sub-bands
  • the at least one first transmission sub-band of and at least one second transmission sub-band of the M2 second transmission sub-bands have overlapping frequency ranges.
  • the implementation principle and technical effect thereof are similar to those of the transmitting method, and reference may be made to the corresponding description in the method embodiment for each step, which will not be repeated here.
  • An embodiment of the present application further provides a radar signal transmission control method, the method at least includes: a first transmission array transmits a first transmission signal, wherein the first transmission array includes one first transmission array element, and the first transmission array A frequency band occupied by a transmit signal includes one first transmit sub-band, and the first transmit array element corresponds to the first transmit sub-band in the first transmit sub-band; the second transmit array transmits a second ranging signal, wherein , the second transmit array includes M2 second transmit array elements, the frequency band occupied by the second transmit signal includes M2 second transmit sub-bands, and each of the second transmit array elements corresponds to the M2 One second transmission sub-band in the two transmission sub-bands, the bandwidth of the j-th second transmission sub-band in the M2 second transmission sub-bands is B 2j , and the bandwidth of the j-1-th second transmission sub-band is B 2j-1 , 2 ⁇ j ⁇ M2, M2 is a positive integer greater than or equal to 2, and the j-th second transmission sub-band has
  • example computer program product 600 is provided using signal bearing medium 601 .
  • the signal bearing medium 601 may include one or more program instructions 602 that, when executed by one or more processors, may provide the functions described above with respect to FIGS. 10 , 12 , and 15 , or portions thereof.
  • steps S21 - S24 may be undertaken by one or more instructions associated with the signal bearing medium 601 .
  • program instructions 602 in FIG. 17 also describe example instructions.
  • the signal bearing medium 601 may include a computer-readable medium 603, such as, but not limited to, a hard drive, a compact disc (CD), a digital video disc (DVD), a digital tape, a memory, a read only memory (Read) -Only Memory, ROM) or random access memory (Random Access Memory, RAM) and so on.
  • the signal bearing medium 601 may include a computer recordable medium 604, such as, but not limited to, memory, read/write (R/W) CDs, R/W DVDs, and the like.
  • signal bearing medium 601 may include communication medium 605, such as, but not limited to, digital and/or analog communication media (eg, fiber optic cables, waveguides, wired communication links, wireless communication links, etc.).
  • the signal bearing medium 601 may be conveyed by a wireless form of communication medium 605 (eg, a wireless communication medium conforming to the IEEE 802.11 standard or other transmission protocol).
  • the one or more program instructions 602 may be, for example, computer-executable instructions or logic-implemented instructions.
  • a computing device such as the computing devices described with respect to FIGS.
  • 10 , 12 , and 5 may be configured to respond to a One or more program instructions 602 communicated to a computing device to provide various operations, functions, or actions.
  • program instructions 602 communicated to a computing device to provide various operations, functions, or actions.
  • the arrangements described herein are for illustrative purposes only. Thus, those skilled in the art will understand that other arrangements and other elements (eg, machines, interfaces, functions, sequences, and groups of functions, etc.) can be used instead and that some elements may be omitted altogether depending on the desired results . Additionally, many of the described elements are functional entities that may be implemented as discrete or distributed components, or in conjunction with other components in any suitable combination and position.
  • each functional module in the embodiments of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence or a part that contributes to the prior art or all or part of the technical solution, and the computer software product is stored in a storage inoculation , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, removable hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store programs.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available ring that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more of the available media integrations.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid State Disk (SSD), etc.).
  • the program instructions can be implemented in the form of software functional units and can be sold or used as a stand-alone product, and the memory can be any form of computer-readable storage medium.
  • the memory can be any form of computer-readable storage medium.
  • all or part of the technical solutions of the present application may be embodied in the form of software products, including several instructions to enable hundreds of millions of computer devices, specifically processors, to execute the target detection device in each embodiment of the present application. all or part of the steps.
  • the aforementioned computer-readable storage medium includes: U disk, removable hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other programs that can store programs medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请提供一种雷达信号发射控制方法,所述方法至少包括:第一发射阵列发射第一测角信号;第二发射阵列发射第二测距信号;其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围。由于设置测距信号和测角信号的具有重叠的频带,实现了信号的复用,同时扩大了测距信号的带宽和测角信号的虚拟孔径,从而可以同时提高雷达距离分辨率和角度分辨率。

Description

一种基于雷达信号的发射方法和装置 技术领域
本申请涉及雷达技术领域,尤其涉及一种基于毫米波雷达的信号发射方法及装置。
背景技术
雷达系统发射电磁波,并利用目标反射的电磁波,获得目标的位置、速度、或角度等信息,具有全天时和全天候工作的能力。毫米波雷达工作在毫米波频段,毫米波雷达由于发射信号波长短,相比于传统低频段雷达,具有易于获得高分辨率、易于实现小型化和轻型化等优点。因此,毫米波雷达具备对目标高精度测距、测角或测速的能力。
毫米波雷达具有体积小、质量轻和空间分辨率高的特点,与红外、激光、摄像头等光学传感器相比,毫米波雷达穿透雾、烟、灰尘的能力强,具有全天候和全天时的特点。因此,毫米波雷达常常安装在智能汽车上,在汽车行驶过程中随时来感应周围的环境,收集数据,实现多种辅助驾驶功能,如自适应巡航、安全距离预警等功能。
然而,为了推进自动驾驶技术从L2级到L5级的发展,需要进一步提高毫米波雷达的测距、测速、测角分辨率。另一方面,要实现毫米波雷达与激光雷达、光学图像等的融合,需要毫米波雷达进一步提高自身测量分辨率,从而可以与激光雷达、光学图像等相匹配。
因此,目前毫米波雷达的测距测角分辨率亟需提高。
发明内容
本申请实施例提供一种基于雷达信号的发射方法和装置,用于同时提高测距和测角的精度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种雷达信号发射控制方法,所述方法至少包括:第一发射阵列发射第一测角信号,其中,所述第一发射阵列包括M1个第一发射阵元,所述第一测角信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元对应所述M1个第一发射子频带中的一个第一发射子频带,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于等于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二测距信号占用的频带包括M2个的第二发射子频带,每个所述第二发射阵元对应所述M2个第二发射子频带中的一个第二发射子频带,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,2≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围。
上述技术方案中,在满足雷达测距和测角要求的基础上,设置测距信号和测角信号的具有重叠的频带,实现了信号的复用,同时扩大了测距信号的带宽和测角信号的虚拟孔径,从而可以同时提高雷达距离分辨率和角度分辨率。
在第一方面的一种可能的实现方式中,所述第二频带偏移Δf 2j满足:B 2j-1≤Δf 2j<(B 2j-1+B 2j)。
上述可能的实现方式中,令第二测距信号的第二频带偏移尽量大,使得频带合成的带宽尽量大,提高了雷达的距离分辨率。
在第一方面的一种可能的实现方式中,所述Δf threshold为B 1i/4,其中B 1i为所述第i个第一发射子频带的带宽。
上述可能的实现方式中,设置Δf threshold为B 1i/4,无需计算简单便捷的设置第一频率偏移的范围,提升了发射信号的频带的配置速度。
在第一方面的一种可能的实现方式中,设置所述M1个第一发射子频带的带宽B 1i相等;或所述M2个第二发射子频带的带宽B 2j相等;或所述M1个第一发射子频带的第一频率偏移Δf 1i相等;或所述M2个第二发射子频带的第二频率偏移Δf 2j相等。
在可能的实现方式中,设置相应的参数相等,降低了计算量,提升了发射信号的频带的配置速度。
在第一方面的一种可能的实现方式中,在所述重叠的频率范围内,占用所述至少一个第一发射子频带的所述第一测角信号和占用所述至少一个第二发射子频带的第二测距信号均是正交信号。
在可能的实现方式中,设置重叠频率范围的两组发射信号为正交信号,使得两组接收阵列都可以接收到重叠频率范围内,对方发射阵列发射的信号。
第二方面,提供了一种雷达信号发射控制装置,所述装置至少包括:第一发射模块,控制第一发射阵列发射第一测角信号,其中,所述第一发射阵列包括M1个第一发射阵元,所述第一测角信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元对应所述M1个第一发射子频带中的一个第一发射子频带,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;第二发射模块,控制第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二测距信号占用的频带包括M2个第二发射子频带,每个所述第二发射阵元发射所述M2个第二发射子频带中的一个第二发射子频带的信号,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,2≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频 带中的至少一个第二发射子频带具有重叠的频率范围。
在第二方面的一种可能的实现方式中,所述第二频带偏移Δf 2j满足:B 2j-1≤Δf 2j<(B 2j-1+B 2j)。
在第二方面的一种可能的实现方式中,所述Δf threshold为B 1i/4,其中B 1i为所述第i个第一发射子频带的带宽。
在第二方面的一种可能的实现方式中,所述M1个第一发射子频带的带宽B 1i相等,或所述M2个第二发射子频带的带宽B 2j相等;或所述M1个第一发射子频带的第一频率偏移Δf 1i相等;或所述M2个第二发射子频带的第二频率偏移Δf 2j相等。
在第二方面的一种可能的实现方式中,在所述重叠的频率范围内,占用所述至少一个第一发射子频带的所述第一测角信号和占用所述至少一个第二发射子频带的所述第二测距信号均是正交信号。
第三方面,提供了一种基于雷达信号的测角方法,所述方法至少包括:第一接收阵列接收第一接收信号,其中,所述第一接收信号包括第一回波信号以及第一重叠回波信号;所述第一回波信号是第一测角信号的反射信号,所述第一测角信号占用的频带包括M1个第一发射子频带,所述M1个第一发射子频带中的每个第一发射子频带对应第一发射阵列内M1个第一发射阵元中的一个第一发射阵元,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于等于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;所述M1个第一发射子频带中的至少一个第一发射子频带与用于发送第二测距信号的M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围,M2是大于等于2的正整数;所述第一重叠回波信号是所述重叠的频率范围内占用所述至少一个第二发射子频带的第二测距信号的反射信号;计算所述第一回波信号的第一导向矢量;计算所述第一重叠回波信号的第二导向矢量;将第一导向矢量和第二导向矢量合并为第三导向矢量;利用所述第三导向矢量进行角度估计。
在第三方面的一种可能的实现方式中,所述计算所述第一回波信号对应的第一导向矢量,包括:基于所述每个第一发射子频带的中心频率与参考发射阵元对应的第一发射子频带的中心频率的差值计算所述第一导向矢量。
在第三方面的一种可能的实现方式中,所述计算所述第一重叠回波信号的第二导向矢量,包括:基于所述重叠的频率范围内所述至少一个第二发射子频带的中心频率与参考发射阵元对应的第一发射子频带的中心频率的差值计算所述第二导向矢量。
第四方面,提供了一种基于雷达信号的测角装置,包括:第一接收模块,控制第一接收阵列接收第一接收信号,其中,所述第一接收信号包括第一回波信号以及第一重叠回波信号;所述第一回波信号是第一测角信号的反射信号,所述第一发射阵列包括M1个第一发射阵元,所述第一测角信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元发射所述M1个第一发射子频带中的一个第一发射子频带的信号,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带之间具有重叠的频率范围;所述第一重叠回波信号是所述重叠的频率范围内的第二发射子频带的发射信号的反射信号;第一计算模块,计算所述第一接收阵列对应第一回波信号的第一导向矢量;第二计算模块,计算所述第一接收阵列对应第一重叠回波信号的第二导向矢量合成模块,将第一导向矢量和第二导向矢量合并为第三导向矢量;角度估计模块,利用所述虚拟阵列导向矢量进行角度估计。
在第四方面的一种可能的实现方式中,所述第一计算模块具体用于:基于所述每个第一发射子频带的中心频率与参考发射阵元对应的第一发射子频带的中心频率的差值计算所述第一导向矢量。
在第四方面的一种可能的实现方式中,所述第二计算模块具体用于:基于所述重叠的频率范围内所述至少一个第二发射子频带的中心频率与参考发射阵元对应的第一发射子频带的中心频率的差值计算所述第二导向矢量。
第五方面,还提供了一种产生雷达信号的装置,所述装置包括信号产生器和控制器,所述控制器执行上述第一方面或第一方面任一种可能实现方式中的所述的信号发射方法,所述信号产生器用于产生上述第一方面或第一方面任一种可能实现方式中的所述的第一测角信号和第二测距信号。
第六方面,还提供了一种芯片,至少包括上述第五方面所述的产生雷达信号的装置。
第七方面,还提供了一种电子设备,所述设备包括处理器和存储器,所述存储器存储有指令,当所述处理器运行所述指令时,使得所述设备执行如上述第一方面或第一方面任一种可能实现方式中的所述的信号发射方法。
第八方面,还提供了一种计算机存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行上述第一方面或第一方面任一种可能实现方式中所述的信号发射方法。
第九方面,还提供了一种雷达测距方法,所述方法至少包括:S11、第二接收阵列接收的信号为第二接收信号,其中所述第二接收信号的工作频带包括多个第二接收子频带,第二接收信号包括第二回波信号以及第二重叠回波信号,所述第二回波信号是第二测距信号的反射信号,所述第 二重叠回波信号是所述第一测角信号与所述第二测距信号的工作频率重叠部分的第一测角信号的回波信号;S12、对所述多个第二接收子频带信号进行频带合成,得到合成后信号频带为第二合成频带;S13、利用所述第二合成频带进行距离估计。
上述可能实现的方式,通过第二接收阵列接收第二接收信号进行测距,由于第二接收阵列不仅接收到了本身发射的测距信号,还接收到了第一发射阵列和第二发射阵列重合频带发射的测角信号的反射信号,从而扩大了雷达的测距带宽,提高了测距的精度。
在第九方面的一种可能实现方式中,第一接收阵列接收第一接收信号,所述第一接收信号的工作频带包括多个第一接收子频带,其中所述第一接收信号包括第一回波信号以及第一重叠回波信号,所述第一回波信号是第一发射信号的反射信号,所述第一重叠回波信号是第二发射信号与第一发射信号的工作频率重叠部分的回波信号;对所述第一接收信号的子频带信号进行频带合成,得到合成后信号频带为第一合成频带;将第一合成频带和第二合成频带进行频带拼接,得到第三合成频带;利用所述第三合成频带进行距离估计。
上述可能实现的方式,叠加第一阵列接收的第一接收信号进行处理,辅助第二阵列接收的第二接收信号进行测距。利用第一测角信号的反射信号,来辅助第二测距信号来进行测距大大扩展了合成频带的宽度,大大提高了测距精度。
第十方面,还提供了一种距离估计装置,所述估计装置包括:第一接收模块、第二接收模块、第一频带合成模块、第二频带合成模块、第三频带合成模块、距离估计模块;第一接收模块,用于控制第一接收阵列接收第一接收信号,所述第一接收信号的工作频带包括多个第一接收子频带,其中所述第一接收信号包括第一回波信号以及第一重叠回波信号,所述第一回波信号是第一发射信号的反射信号,所述第一重叠回波信号是第二发射信号与第一发射信号的工作频率重叠部分的回波信号;第二接收模块,用于第二接收阵列接收的信号为第二接收信号,其中所述第二接收信号的工作频带包括多个第二接收子频带,第二接收信号包括第二回波信号以及第二重叠回波信号,所述第二回波信号是第二测距信号的反射信号,所述第二重叠回波信号是所述第一测角信号与所述第二测距信号的工作频率重叠部分的第一测角信号的回波信号;第一频带合成模块用于,对所述第一接收信号的子频带信号进行频带合成,得到合成后信号频带为第一合成频带;第二频带合成模块,用于对所述多个第二接收子频带信号进行频带合成,得到合成后信号频带为第二合成频带;第三频带合成模块,用于将第一合成频带和第二合成频带进行频带拼接,得到第三合成频带;距离估计模块,用于利用所述第三合成频带进行距离估计。
第十一方面,还提供了一种车辆,包括第七方面所述的电子设备。
第十二方面,还提供了一种电子设备,包括处理器和存储器,所述存储器存储有指令,当所述处理器运行所述指令时,使得所述设备执行第三方面或第三方面任一可能实现方式的测角方法,或第九方面或第九方面任一可能实现方式的测距方法。
第十三方面,一种计算机存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行第三方面或第三方面任一可能实现方式的测角方法,或第九方面或第九方面任一可能实现方式的测距方法。
第十四方面,提供一种雷达信号发射控制方法,所述方法至少包括:第一发射阵列发射第一发射信号,其中,所述第一发射阵列包括M1个第一发射阵元,所述第一发射信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元对应所述M1个第一发射子频带中的一个第一发射子频带,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δ f 1i,2≤i≤M1,M1是大于等于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二发射信号占用的频带包括M2个的第二发射子频带,每个所述第二发射阵元对应所述M2个第二发射子频带中的一个第二发射子频带,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,2≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围。
第十五方面,提供一种雷达信号发射控制方法,所述方法至少包括:第一发射阵列发射第一发射信号,其中,所述第一发射阵列包括1个第一发射阵元,所述第一发射信号占用的频带包括1个第一发射子频带,所述第一发射阵元对应所述第一发射子频带中的第一发射子频带;第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二发射信号占用的频带包括M2个的第二发射子频带,每个所述第二发射阵元对应所述M2个第二发射子频带中的一个第二发射子频带,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,2≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围。
可以理解地,上述提供的其他任一种方法或装置,均可以与上文所提供的发射方法对应,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种雷达系统的示意图;
图2为本申请实施例提供的一种车载毫米波雷达装置示例性结构的示意图;
图3为本申请实施例提供的一种雷达发射、接收信号与中频信号的原理示意图;
图4为本申请实施例提供的一种雷达接收天线接收信号的示意图;
图5为本申请实施例提供的一种MIMO雷达虚拟接收阵列原理示意图;
图6为本申请实施例提供的一种LFMCW MIMO雷达采用FDM模式发射信号的示意图;
图7为本申请实施例提供的一种车载毫米波雷达控制系统使用场景示意图;
图8为本申请实施例提供的一种车载毫米波雷达装置的结构示意图;
图9为本申请实施例提供的一种雷达控制装置结构示意图;;
图10为本申请实施例提供的一种雷达信号发射控制方法流程图;
图11为本申请实施例提供的一种发射信号频带分配图;
图12为本申请实施例提供的一种雷达信号测距方法流程图一;
图13为本申请实施例提供的一种雷达信号测距方法流程图二;
图14为本申请实施例提供的一种雷达信号测距装置示意图;
图15为本申请实施例提供的一种雷达信号测角方法流程图;
图16为本申请实施例提供的一种雷达信号测角装置示意图;
图17为本申请实施例提供的一种计算机程序产品的结构示意图。
具体实施方式
如图1所示,雷达可以安装在机动车辆、无人机、轨道车、自行车、信号灯、测速装置或网络设备(如各种系统中的基站、终端设备)等等。本申请既适用于车与车之间的雷达系统,也适用于车与无人机等其他装置的雷达系统,或其他装置之间的雷达系统。例如,雷达可以安装在智能运输设备、智能家居设备、机器人等智能终端上。本申请对安装雷达的终端设备类型,雷达的安装位置和雷达的功能不做限定。
以下,对本申请实施例可能出现的术语进行解释。
雷达(Radar):或称为雷达装置,也可以称为探测器或者探测装置。其工作原理是通过发射信号(或者称为探测信号),并接收经过目标物体反射的反射信号,来探测相应的目标物体。
毫米波雷达:指工作在毫米波波段的雷达。通常毫米波是指30~300GHz频域(波长为1~10mm)的电磁波,毫米波的波长介于厘米波和光波之间,因此毫米波兼有微波制导和光电制导的优点。
MIMO雷达:Multiple Input Multiple Output Radar,多发多收雷达,可以分为时分MIMO(TDM-MIMO)、码分MIMO(CDM-MIMO)、或频分MIMO(FDM-MIMO)三种类型。
初始频率:在一个发射周期的开始,雷达会以一个初始频率发射雷达信号,并且发射频率以所述初始频率为基础在所述发射周期内变化。
线性调频连续波(Linear Frequency Modulated Continuous Wave,LFMCW):频率随时间线性变化的电磁波。这里的线性变化一般是指在一个周期内线性变化。具体的,线性调频连续波的波形一般是锯齿波或者三角波,也可能存在其它可能的波形,例如脉冲。
中频(Intermediate Frequency,IF)信号:雷达本振信号与接收到的目标反射信号经过混频器处理后的信号,即为中频信号。具体来说,通过振荡器产生的调频连续波信号,一部分作为本振信号,一部分作为发射信号通过发射天线发射出去,而接收天线接收的所述发射信号的反射信号,会与所述本振信号混频,得到所述“中频信号”。通过所述中频信号,可以得到目标物体的位置信息、速度信息和角度信息中的至少一个。其中,所述位置信息、速度信息和角度信息可以为相对当前的雷达的相对位置、相对速度和相对角度信息。进一步,所述中频信号的频率为中频频率。
虚拟孔径测角技术:利用多个发射天线和接收天线可以等效形成比阵列原有尺寸更大孔径的虚拟阵列,如,M个发射天线N个接收天线可以形成M×N个虚拟接收阵元,不同虚拟接收阵元的间距会产生波程差,从而产生与目标角度相关的相位差,利用该相位差可以完成目标角度估计。
空间谱估计算法:空间谱估计是阵列信号处理中的一个重要研究方向,空间谱估计侧重于研究空间多传感器阵列所构成的处理系统对感兴趣的空间信号的多种参数进行准确的估计的能力,主要目的就是估计信号的空域参数或信源位置。经典的谱估计算法是通过计算空间谱,然后求取其局部最大值所在位置,就可以估计出目标角度等信息。
MUSIC方法:Multiple Signal Classification,多重信号分类,是一类空间谱估计算法。其思想是利用信号子空间与噪声子空间的正交性,将接收数据的协方差矩阵进行特征分解,分离出信号子空间和噪声子空间,利用信号方向向量与噪声子空间构成空间谱,进行全域搜索谱峰,从而实现信号的参数估计。
DOA估计:波达方向估计,即估计信号的到达方向。波达方向为电磁波达到的方向,代表目标所在的角度。
距离分辨率:距离维度的分辨率,即两个目标能够被辨识的最小距离。距离分辨率是车载毫米波雷达辨别两个或更多目标对象的能力,当两个目标对象之间的距离小于一定距离时,车载毫米波雷达将无法将这两个目标对象区分开。
方位/角度分辨率:角度维度的分辨率,即两个目标可以被辨识的最小角度。角度分辨率是车载毫米波雷达辨别两个或更多目标对象角度的能力,当两个目标对象之间的角度小于一定值时,车载毫米波雷达将无法将这两个目标对象区分开。
频带:信号的频率范围。对于两个线性调频连续波,频带相同意味两个频段的带宽、最低频率、最高频率均相同。
扫频带宽:雷达信号波形所占用的带宽。这里需要说明的是,“扫频带宽”是为了阐述方便而定义的,技术上为雷达信号波形所占用的带宽。进一步,雷达信号波形所占用的频带可以称为扫频频带。雷达信号的发射周期又称为扫频时间,即发射一个完整波形的时间。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一雷达信号和第二雷达信号,只是为了区分不同的雷达信号,而并不是表示这两种雷达信号的内容、优先级、发送顺序或者重要程度等的不同。
本申请实施例涉及的雷达可以为毫米波(millimeter wave,mmWave)雷达、微米波雷达等等,本申请对雷达发射的电磁波的属性不作限定。
下面结合图2以车载毫米波雷达装置的参考架构阐述一下雷达信号的处理和发射过程。图2提供了一种车载毫米波雷达装置示例性结构的示意图,一般包括振荡器、发射天线、接收天线、混频器、和控制器等装置。其中控制器也可以不设置在车载毫米波雷达装置中,而设置在车载毫米波雷达装置所输出信号的接收端,例如,可以位于汽车中,或者用于控制汽车行驶的处理装置等,本申请实施例对此不作具体限制。
振荡器会产生一个频率随时间线性增加的信号。该信号可以称为线性调频连续波LFMCW。上述调频连续波的一部分经过定向耦合器输出至混频器作为本振信号,一部分通过发射天线发射出去,并通过接收天线接收车辆前方物体反射回来的信号,在混频器与本振信号进行混频,得到中频信号,所述中频信号包含目标物体的信息,所述目标物体的信息可以为目标物体与所述车载雷达所在的车辆之间的相对参数,例如目标物体与车辆之间的相对距离、速度、角度中的至少一项信息。中频信号(例如,可以为经过低通滤波器并经过放大处理后的中频信号,图中并未示出低通滤波器)输送到控制器,控制器对中频信号进行处理(例如,可以对信号进行快速傅里叶变换,或者,进行频谱分析)以得到所述目标物体的信息,最后以进行车辆控制。一般来说,基于雷达自身的配置,最大测距距离对应的中频频率被认为是最大的中频频率,大于该中频频率的信号会被低通滤波器过滤掉。
以下以锯齿波为例详细介绍一下毫米波雷达的测距原理,三角波的测距原理与之类似。
毫米波雷达通过发射天线向外发射一系列的信号,该信号遇到障碍物后,会反射回来,发射信号与反射信号的形状相同。图3为一种可能的发射信号、反射信号与中频信号的频率变化示意图。如图3所示,发射信号与接收信号表示为
Figure PCTCN2020107127-appb-000001
其中,ω 1(t)与ω 2(t)分别为发射信号x 1与接收信号x 2的角速度,
Figure PCTCN2020107127-appb-000002
Figure PCTCN2020107127-appb-000003
分别为发射信号x 1与接收信号x 2的初相。发射信号与接收信号在时间上有一个延迟τ,如图3所示,τ与目标距离r的关系可以表示为
Figure PCTCN2020107127-appb-000004
其中,c为光速。
发射信号和接收信号在混频器中进行相乘处理,并经低通滤波器后,输出中频(IF)信号,中频信号的频率(中频频率)等于发射信号和接收信号频率的差,表示为:
Figure PCTCN2020107127-appb-000005
如图3所示,根据三角形几何关系,中频频率为发射信号斜率s与时延τ的乘积,即
Figure PCTCN2020107127-appb-000006
故与目标物体的距离r为:
Figure PCTCN2020107127-appb-000007
其中,发射信号斜率为
Figure PCTCN2020107127-appb-000008
B r为雷达信号的扫频带宽,对于锯齿波来说,T r为一个发射周期,对于三角波来说T r为半个发射周期,可以理解,T r与波形有关。
通过上面的推导可以看出,发射信号与接收的反射信号的频率差(即,中频频率)和时延呈线性关系。物体越远,反射信号收到的时间就越晚,那么它跟发射信号的频率差值就越大。通过判断中频信号频率的高低可以判断障碍物的距离。实际应用中也可以通过发射信号与接收信号的相位差来求解与目标物体的距离,即通过检测中频频率可以得到物体与雷达的距离。由上可知,目标物体的信息也包含在中频频率中。由于低通滤波器的设置可以过滤掉大于最大中频频率的信号,所以无需考虑这部分信号的干扰。其中,所述最大中频频率为最大测距距离对应的中频频率,或者说,最大测距距离所带来的时延内的频率变化范围。
需要说明的是,发射信号的斜率反映的是发射频率或者接收频率随时间的变化程度。发射信号的频率随时间增加而降低,则所述斜率为负值,发射信号的频率随时间增加而升高,则所述斜率为正值。对于三角波来说,上升沿和下降沿的斜率为相反数。所述斜率的绝对值也可以称为单位时间内频率的变化范围,本申请实施例中涉及的两种表述方式含义相同。
雷达测距分辨率与发射信号带宽成反比,即:
Figure PCTCN2020107127-appb-000009
其中,ρ r表示距离分辨率,B r代表发射信号带宽,c代表光速。
雷达的测角原理同样为测距原理的扩展,如图4所示,雷达可以具有第一接收天线91和第二接收天线92,两个接收天线之间的距离为d。调频连续波的反射波到达两个接收天线的距离是不同的,由于两个接收天线之间的距离d远远小于目标物体至雷达间的距离,所以两个接收天线所 接收的反射波的方向可近似为平行,并且可以得到两个中频信号。根据测距原理即得两个中频信号的相位不同,通过两者相位的差值即可推算出发射角度。
如上述公式可以,两个中频信号的相位差
Figure PCTCN2020107127-appb-000010
并且ΔR=d sinθ,所以得到目标物体的角度θ为:
Figure PCTCN2020107127-appb-000011
两个接收天线之间的距离为d,λ为信号的波长。
角度分辨率与雷达孔径相关,即,雷达孔径越大,角度分辨率越高。以均匀线阵为例,雷达角度分辨率ρ θ表示为:
Figure PCTCN2020107127-appb-000012
其中,ρ θ为角度分辨率,N为接收阵元个数,d为相邻接收阵元间距,θ为目标所在角度,λ为发射信号波长。
由公式6和8可知,提高雷达距离分辨率的关键是提高信号带宽,提高雷达角度分辨率的关键在于获取更大的虚拟孔径。
对于多发多收(Multiple Input Multiple Output,MIMO)雷达,即包括多个发射天线和多个接收天线的雷达而言,不同的发射天线发射的信号可以具有不同的特征,也就是不同的发射天线发射采用不同的发射参数发射信号,这里的发射参数例如包括中心频率、起始时间等。如图5所示,为MIMO雷达虚拟接收阵列原理示意图。图5以MIMO雷达包括2个发射天线(Tx1和Tx2)和4个接收天线(Rx1、Rx2、Rx3和Rx4)为例。其中,每个接收天线接收的信号是所有发射多发单收(SIMO)天线发射的信号被目标物体反射后叠加的信号。每个接收天线根据多个发射天线发射信号的发射参数,可以从接收的信号中提取分别来自不同发射天线,且经过目标物体反射后的信号,作为虚拟接收阵元的接收信号。这里的虚拟接收阵元指的是多个发射天线和多个接收天线组成的阵元,即M个发射天线和N个接收天线,对应M*N个虚拟接收阵元的接收信号。所以利用M个发射天线和N个接收天线,可以检测M*N个接收阵元的SIMO雷达的角度。
在一些实施例中,MIMO雷达可以采用频分复用(Frequency Division Multiplexing,FDM)模式发射信号,即不同的发射天线采用不同的中心频率发射信号,如图6所示,为MIMO雷达采用FDM模式发射信号的示意图。图6横坐标t表示时域,纵坐标f表示频域,图6以MIMO雷达包括3个发射天线为例,这3个发射天线分别为发射天线Tx1、发射天线Tx2和发射天线Tx3。从图6中可以看出,发射天线Tx1发射信号的中心频率为f1,发射天线Tx2发射信号的中心频率为f2,发射天线Tx3发射信号的中心频率为f3,即不同的发射天线采用不同的中心频率发射信号。
本申请实施例中,多个发射天线的发射信号的频率可以是等间隔的,也可以是不等间隔的。等间隔即,在频域上任意相邻的两个发射信号的频率间隔是固定不变的。例如,如图6所示的Tx1和Tx2为频率上相邻的两个发射信号,Tx2和Tx3为频率上相邻的两个发射信号,Tx1和Tx2之间的频率间隔为Δf1,Tx1和Tx2之间的频率间隔为Δf2。
为了便于描述,下文中,将频域上相邻的两个发射信号的频率间隔称为频域偏移。
按照目前的测量方法,为了获得更高距离分辨率的提升效果,各个发射子带之间的频带重叠应当尽量小或频带间距尽量大;但是,为了获得更高的测角精度,需要各个发射阵元发射的信号频带相同或相差微小。可见,在同一装置中同时提高测角精度与提高测距精度对信号频带的需求产生了矛盾。
为了解决上述技术问题,本申请实施例提供了一种雷达控制系统,在满足雷达测距和测角要求的基础上,设置测距信号和测角信号具有重叠的频带,进行信号的复用,同时扩大了测距信号的带宽和测角信号的虚拟孔径,从而可以同时提高雷达距离分辨率和角度分辨率。
如图7所示,该雷达控制系统包括至少两个雷达1、2以及控制装置903,所述至少两个雷达1、2以及控制装置903设置在同一个车辆上。
如图8所示,所述雷达1包括第一信号发生器101、第一发射阵列102、第一接收天线103。进一步可选的,可以参见上述图2所示的车载毫米波雷达装置的结构,雷达1还可以包括控制器、混频器、低通滤波器和/或定向耦合器。
第一信号发生器101可以为任意的雷达信号产生装置,例如图2中的振荡器。
第一发射阵列102可以为雷达1的发射天线。示例性的,该雷达可以为MIMO雷达,具有M1个发射阵元,接收第一信号发生器101产生的雷达信号。
第一接收阵列103可以为上述雷达1的接收天线,具有N1个接收阵元。
第一发射阵列102和第一接收阵列103用于支持雷达1进行信号发射和接收,以最终实现探测功能。
如图8所示,所述雷达2具有与雷达1相似的结构,此处不再赘述。通过设置同步信号,保证雷达1和雷达2之间的时间、相位同步。
该控制装置903可以是具备计算功能、可连接智能终端或各类终端设备的以便携式配件形式存在的终端设备,例如雷达。也可以是具备计算功能、可与各类设备连接的服务器设备。还可以是上述设备中的元件,例如芯片等。
控制装置903对雷达1、雷达2的动作进行控制管理或者执行相应的处理功能,例如发射控制、计算距离、或计算角度等。其中,控制装置903可以是处理器或控制器,例如具体可以是中央处理器(Central Processing Unit,CPU)、通用处理器、数字信号处理器(Digital Signal Processor,DSP)或者专用集成电路(Application Specific integrated Circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。
如图9所示,该控制装置903包括发射控制装置,第一接收模块203、第二接收模块204、测距单元和测角单元。
其中,该控制装置的发射控制装置包括第一发射模块201和第二发射模块202,可以控制雷达1第一发射阵列101和雷达2的第二发射阵列105的操作。具体的,需要发射的测角信号通过第一发射模块201控制第一发射阵列101进行发射,需要发射的测距信号通过第二发射模块202控制第二发射阵列102进行发射。。
该控制装置的第一接收模块203、第二接收模块204可以控制雷达1第一接收阵列103和雷达2第二接收阵列104的操作。具体的,需要接收的回波信号通过第一接收模块203控制第一接收阵列103进行接收、或通过第二接收模块204控制第二接收阵列104进行接收,接收到的回波信号可以传输给控制装置903进行相应的处理。
测距单元,包括第一频带合成模块205、第二频带合成模块206、第三频带合成模块207、距离估计模块208。第一频带合成模块205处理雷达1的第一接收阵列101接收的第一回波信号,对该第一回波信号的频带进行带宽合成,第二频带合成模块206处理雷达2的第二接收阵列102接收的第二回波信号,对该第二回波信号的频带进行带宽合成,第三频带合成模块208对第一频带合成模块205以及第二频带合成模块206处理后的信号进行频带合成。
测角单元,包括计算模块209、角度估计模块210。计算模块209用于计算雷达1的第一接收阵列接收到的回波信号的导向矢量。角度估计模块210,用于根据该导向矢量进行角度估计。
在可选的设计中,雷达控制系统包括至少一个雷达3以及控制装置903,所述至少一个雷达3和控制装置903设置在同一个车辆上。
具体的,第一发射阵列102和第二发射阵列103可以设置在同一个MIMO雷达中。与此同时,第一信号发生器101、第二信号发生器102可以合并为一个信号发生器。需要说明的是,第一接收阵列105和第二接收阵列106也设置在同一MIMO雷达中。
在可选的设计中,所述至少一个雷达中包含所述控制装置903。控制装置903可以执行一些可能的确定和/或处理功能。进一步,控制装置还控制第一接收阵列102和第一接收阵列103的操作。具体的,需要发射的信号通过控制器控制第一发射阵列102进行发射,通过第一接收阵列103接收到的信号可以传输给控制器进行相应的处理。
在该可选的设计中,所述雷达控制系统还包括中央控制器。所述中央控制器用于根据至少一个传感器的探测信息,控制车辆。其中,所述控制车辆可以为控制车辆的行驶或者控制车辆内集成的设备,例如刹车、减速等。
可选的,雷达1还可以包含存储器,用于存储程序指令和/或数据。
其中第一发射阵列102和第一接收阵列103可以是独立设置的,也可以集成设置为收发天线,执行相应的收发功能。
在介绍完雷达控制系统之后,下面将详细介绍雷达信号发射的控制方法。如图10所示,该方法包括几个步骤。
S1、第一发射阵列102发射第一测角信号,其中,所述第一发射阵列包括M1个第一发射阵元,所述第一测角信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元发射所述M1个第一发射子频带中的一个第一发射子频带的信号,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于等于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求。
雷达1的第一发射阵列102发射第一雷达信号,该信号主要用于测量目标物体的角度,因此,将第一发射阵列102发射的第一雷达信号称为第一测角信号。该第一测角信号包括但不限于线性调频连续波信号、步进式调频连续波信号、单频信号、脉冲信号等。
如图11左侧坐标所示,该坐标表征了第一测角信号的频带分布情况。雷达1的第一发射阵列102具备M1个第一发射阵元,M1是大于等于2的正整数,该各个第一发射阵元的发射载频起点为f 1i,i=1,2,...,M 1,设置每个子阵元发射信号的带宽为B 1i,相邻子带信号的频带偏移为Δf1i。
如上文描述,为了提高测角精度,设置雷达1的各子频带频谱重叠尽量大,即Δf1i尽量小。
设置雷达1各个阵元之间的频谱偏移Δf 1尽量小,使得在进行角度估计计算时,由于频率差引入的相位可以忽略,即当
Figure PCTCN2020107127-appb-000013
时,频率差引入的相位影响可以忽略。其中σ φ为测角相位误差,σ r为目标距离测量误差,c为光速,约为299792458m/s,η φ为相位误差门限。
进一步的,可以设置每个子阵元发射信号的带宽相等为B1,相邻子带信号的频带偏移也相等为Δf1。设置相应的参数相等,降低了计算量,提升了发射信号的频带的配置速度
进一步的,Δf1的值为0,这种情况下各个子频带频谱均重叠。
进一步的,根据测试经验,所述Δf threshold可以设置为B 1i/4,其中B 1i为所述M1个第一发射子频带中第i个第一发射子频带的带宽。无需计算简单便捷的设置第一频率偏移的范围,提升了发射信号的频带的配置速度。
S2、第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二测距信号占用的频带包括M2个不同频带的第二发射子频带,每个所述第二发射阵元发射所述M2个第二发射子频带中的一个第二发射子频带的信号,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,1≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);
其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带之间具有重叠的频率范围。
雷达2的第二发射阵列105发射第二雷达信号,该信号主要用于测量目标物体的距离,因此,将第二发射阵列105发射的第二雷达信号称为第二测距信号。该第二测距信号包括但不限于线性调频连续波信号、步进式调频连续波信号、单频信号、脉冲信号等。
如图11右侧坐标所示,该坐标表征了第二测距信号的频带分布情况。雷达2的第二发射阵列105具备M2个第二发射阵元,M2是大于等于2的正整数,各个发射阵元的发射载频起点为f 2j,j=1,2,...,M 2,每个子阵元发射信号的带宽为B 2j,相邻子带信号的频带偏移为Δf 2j
如图11所示,图中左侧坐标的测角信号频带和右侧坐标的测距信号频带存在重合的频带范围,例如第一测角信号中的频带f1M1和第二测距信号的频带f21二者可以重叠,或者可以设置第一测角信号中有多个频带和第二测距信号中的多个频带重叠。
该发射方法在满足雷达测角和测距要求的基础上,实现了信号的复用,设置测距信号和测角信号的具有重叠的频带,同时扩大了测距信号的带宽和测角信号的虚拟孔径,从而可以同时提高雷达距离分辨率和角度分辨率。
进一步的,该重叠可以为重叠子频带中的部分频带的重叠,也可以为重叠子频带的频带全部重叠。
进一步的,设置每个子阵元发射信号的带宽相等为B2,相邻子带信号的频带偏移也相等为Δf2。如此设置第二测距信号的第二频带偏移尽量大,使得频带合成的带宽尽量大,提高了雷达的距离分辨率。
进一步的,设置雷达2各个发射子频带之间的频谱重叠尽量小或者频谱之间存在一定的间隔,具体而言,各通道发射信号频谱有重叠(Δf 2<B 2)、毗邻(Δf 2=B 2)、间隔(B 2<Δf 2<2B 2)三种情况。从而增加了信号的带宽,提高测距的精度。
当各通道发射信号的频谱具有间隔时,相邻两个子频带的频带偏移需要小于该两个子频带的带宽的和。因为当相邻两个子频带的频带偏移大于该两个子频带的和时,附图9所述的测距单元中的第二频带合成模块206在进行频带合成时将无法完成频带外推,进而无法进行测距计算。
进一步的,设置第二频带偏移Δf 2j满足:B 2j-1≤Δf 2j<(B 2j-1+B 2j),使得测距带宽尽量大,从而提高测距精度。
为了实现雷达1和雷达2的联合作业,可以设置所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带之间具有重叠的频率范围。例如图11所示,雷达1的最高频率的频带信号f1M1与雷达2的最低频率的频带信号f21具有相同的起始频率和相同的重叠频带。
设置雷达1和雷达2重叠部分的发射信号波形正交,可以为时分波形正交信号,也可以为码分波形正交信号。从而使得雷达1和雷达2能够接收到对方发射的在重叠频段的信号,从而扩大了带宽和虚拟孔径,同时提高了测距精度以及测角精度。
需要说明的是,为了保证接收信号的同步,要设置同步信号保证雷达1和雷达2之间的时间、相位同步。
在可选的设计中,上述分布式雷达系统中的雷达1、雷达2的发射信号设置方式可以扩展到单个多发雷达的两个子阵。统一到同一个雷达中,降低了对雷达间同步的要求。
本申请实施例还提供一种雷达信号发射控制装置200,该发射控制装置控制雷达1和雷达2发射雷达信号。
本申请实施例提供的雷达信号发射控制装置,可以用于执行上述实施方式中的雷达信号发射控制方法。本申请实施例可以根据上述方法示例对雷达信号发射控制装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
该发射控制装置包含在图9的左侧部分,具体的该发射控制装置包括第一发射模块201、第二发射模块202。具体的:
第一发射模块201,控制第一发射阵列102发射第一测角信号,其中,所述第一发射阵列102包括M1个第一发射阵元,所述第一测角信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元发射所述M1个第一发射子频带中的一个第一发射子频带的信号,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求。
雷达1的第一发射阵列102发射第一雷达信号,该信号主要用于测量目标物体的角度,因此,将第一发射阵列102发射的第一雷达信号称为第一测角信号。
如图11左侧所示,雷达1的第一发射阵列102具备M1个第一发射阵元,M1是大于等于2的正整数,该各个第一发射阵元的发射载频起点为f 1i,i=1,2,...,M 1,设置每个子阵元发射信号的 带宽为B 1i,相邻子带信号的频带偏移为Δf 1i
如上文描述,为了提高测角精度,设置雷达1的各子频带频谱重叠尽量大,即Δf1i尽量小,第一频率偏移门限Δfthreshold引入的相位误差满足角度测量要求。
进一步的,可以设置每个子阵元发射信号的带宽相等为B1,相邻子带信号的频带偏移也相等为Δf1。
进一步的,Δf1的值为0,这种情况下各个子频带频谱均重叠。
进一步的,根据经验,所述Δf threshold可以设置为B 1i/4,其中B 1i为所述M1个第一发射子频带中第i个第一发射子频带的带宽。
第二发射模块202,控制第二发射阵列105发射第二测距信号,其中,所述第二测距信号包括M2个第二发射阵元,所述第二测距信号占用的频带包括M2个不同频带的第二发射子频带,每个所述第二发射阵元发射所述M2个第二发射子频带中的一个第二发射子频带的信号,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,1≤j≤M2,M2是大于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);
其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带之间具有重叠的频率范围。
雷达2的第二发射阵列105发射第二雷达信号,该信号主要用于测量目标物体的距离,因此,将第二发射阵列105发射的第二雷达信号称为第二测距信号。
如图11右侧所示,雷达2的第二发射阵列105具备M2个第二发射阵元,M2是大于等于2的正整数,各个发射阵元的发射载频起点为f 2j,j=1,2,...,M 2,每个子阵元发射信号的带宽为B 2j,相邻子带信号的频带偏移为Δf 2j
如图11所示,图中左侧坐标的测角信号频带和右侧坐标的测距信号频带存在重合的频带范围,例如第一测角信号中的频带f1M1和第二测距信号的频带f21二者可以重叠,或者可以设置第一测角信号中有多个频带和第二测距信号中的多个频带重叠。
进一步的,该重叠可以为重叠子频带中的部分频带的重叠,也可以为重叠子频带的频带全部重叠。
进一步的,设置每个子阵元发射信号的带宽相等为B2,相邻子带信号的频带偏移也相等为Δf2。
进一步的,设置雷达2各个发射子频带之间的频谱重叠尽量小或者频谱之间存在一定的间隔,具体而言,各通道发射信号频谱有重叠(Δf 2<B 2)、毗邻(Δf 2=B 2)、间隔(B 2<Δf 2<2B 2)三种情况。从而增加了信号的带宽,提高测距的精度。
当各通道发射信号的频谱具有间隔时,相邻两个子频带的频带偏移需要小于该两个子频带的带宽的和。因为当相邻两个子频带的频带偏移大于该两个子频带的和时,图9所述的测距单元中的第二频带合成模块206在进行频带合成时将无法完成频带外推,进而无法进行测距计算。
进一步的,设置第二频带偏移Δf 2j满足:B 2j-1≤Δf 2j<(B 2j-1+B 2j),使得测距带宽尽量大,从而提高测距精度。
为了实现雷达1和雷达2的联合作业,可以设置所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带之间具有重叠的频率范围。例如图11所示,雷达1的最高频率的频带信号f1M1与雷达2的最低频率的频带信号f21具有相同的起始频率。
雷达1和雷达2之间重叠子频带可以完全重叠,也可以部分重叠。
设置雷达1和雷达2重叠部分的发射信号波形正交,可以为时分波形正交信号,也可以为频分波形正交信号。从而使得雷达1和雷达2能够接收到对方发射的在重叠频段的信号,从而扩大了带宽和虚拟孔径,同时提高了测距精度以及测角精度。
需要说明的是,为了保证接收信号的同步,要设置同步信号保证雷达1和雷达2之间的时间、相位同步。
可选择的,上述分布式雷达系统中的雷达1、雷达2的发射信号设置方式可以扩展到单个多发雷达的两个子阵。统一到同一个雷达中,降低了对雷达间同步的要求。
本申请实施例还提供了一种雷达测距方法,如图12所示,该测距方法包括以下几个步骤:
S11、第二接收阵列106接收的信号为第二接收信号,其中所述第二接收信号的工作频带包括多个第二接收子频带,第二接收信号包括第二回波信号以及第二重叠回波信号,所述第二回波信号是第二测距信号的反射信号,所述第二重叠回波信号是所述第一测角信号与所述第二测距信号的工作频率重叠部分的第一测角信号的回波信号。
第二接收模块204控制雷达2的第二接收阵列106接收到第二接收信号。从附图11绘制的频段范围可以看出,由于雷达2与雷达1具有重叠的工作频带的发射信号,因而雷达2不仅可以收到雷达2本身发射的雷达信号,还可以接收雷达1与雷达2频率重合部分的雷达1发射的信号。因此,第二接收信号包括第二回波信号和第二重叠回波信号。如图11所示,第二测距信号的频带分布是图中右侧坐标所描述的形状,所述第二回波信号是第二测距信号的反射信号。所述第二重叠回波信号是所述第一测角信号与所述第二测距信号的工作频率重叠部分的第一测角信号的回波信号。如图11所示,图中左侧坐标的频带和右侧坐标的频带存在重合的频带范围,例如第一测角信号中的频带f1M1和第二测距信号的频带f21二者可以重叠。那么,雷达2也将接收到雷达1发送的第一测角信号中的频带f1M1的回波信号。
S12、对所述多个第二接收子频带信号进行频带合成,得到合成后信号频带为第二合成频带。
第二频带合成模块206对雷达2的第二接收阵列106接收到的多个第二接收子频带信号进行处理,根据第二接收子频带信号的形式分为以下2种情况:
情况1,当雷达2的第二接收子频带信号的频带偏移小于等于子频带的带宽时,即频谱毗邻或有重叠时,可以进行相位校正后直接进行频带合成。
情况2,当雷达2的第二接收子频带信号的频带偏移大于子频带的带宽,且小于子频带带宽的2倍时,则需要进行频谱外推,然后利用频谱外推后的重叠频带估计各子带之间的相位误差,进而完成相位对齐和雷达2的频带合成。
合成后信号频带为第二合成频带,所述第二合成频带带宽范围为
Figure PCTCN2020107127-appb-000014
S13、利用所述第二合成频带进行距离估计。
距离估计模块208利用所述第二合成频带进行距离估计,具体可以采用上文所述公式进行计算,或者采用其他现有的雷达距离估计方法。
该测距方法,通过雷达2接收到的第二接收信号进行测距,由于雷达2不仅接收到了本身发射的测距信号,还接收到了雷达1的与雷达2重合频带发射的测角信号的反射信号,从而扩大了雷达的测距带宽,提高了测距的精度。
可选的设计,还可以叠加第一阵列接收的第一接收信号进行处理,辅助第二阵列接收的第二接收信号进行测距。如图13,该距离估计方法还包括以下步骤:
S21、第一接收阵列103接收第一接收信号,所述第一接收信号的工作频带包括多个第一接收子频带,其中所述第一接收信号包括第一回波信号以及第一重叠回波信号,所述第一回波信号是第一发射信号的反射信号,所述第一重叠回波信号是第二发射信号与第一发射信号的工作频率重叠部分的回波信号。
第一接收模块203控制雷达1的第一接收阵列103接收的信号为第一接收信号。如附图11描述的内容可知,由于雷达1与雷达2具有重叠的工作频带的发射信号,因而雷达1不仅可以接收到雷达1自己发射的雷达信号,即第一回波信号,也可以接收到雷达2与雷达1重合部分的雷达2发射的测距信号f21,即第一重叠回波信号。因此,第一接收信号包括第一回波信号和第一重叠回波信号。
S22、对所述第一接收信号的子频带信号进行频带合成,得到合成后信号频带为第一合成频带。
第一频带合成模块205对第一接收阵列接收到的第一接收信号进行处理,由于雷达1各个子频带之间的频谱重叠部分较大,可以利用重叠频带直接进行相位误差估计和校正,然后直接进行频谱对齐和拼接即可完成雷达1的频带合成,无需外推,合成后的第一信号带宽范围为
Figure PCTCN2020107127-appb-000015
S23、将第一合成频带和第二合成频带进行频带拼接,得到第三合成频带。
第三频带合成模块207对第一合成频带和第二合成频带进行频带拼接,如步骤S22可知第一信号带宽范围为
Figure PCTCN2020107127-appb-000016
由步骤S12可知第二合成频带带宽范围为
Figure PCTCN2020107127-appb-000017
将上述2个频带进行合成后,第三合成频带为[f 11,f 2M2+B 2]。
S24、利用所述第三合成频带进行距离估计。
距离估计模块208利用所述第三合成频带进行距离估计,具体可以采用上文公式进行计算,或者采用其他现有的雷达距离估计方法。
可见,利用雷达1发射的第一测角信号的反射信号,来辅助雷达2发射的第二测距信号来进行测距扩展了合成频带的宽度,提高了测距精度。
本申请实施例还提供了一种测距装置,如图14所示,所述测距装置包括:第一接收模块203、第二接收模块204、第一频带合成模块205、第二频带合成模块206、第三频带合成模块207、距离估计模块208。并且上述各模块与附图9中的各模块相对应。上述模块的具体限定功能,与上文对距离估计方法的描述相同,此处就不再赘述。
本申请实施例提供的雷达信号的测距装置,可以用于执行上述实施方式中的雷达距离估计方法。本申请实施例可以根据上述方法示例对雷达信号距离估计装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的 是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本发明实施例还提供了一种测角方法,如图15所示,所述测角包括:
S31、第一接收阵列接收第一接收信号,其中,所述第一接收信号包括第一回波信号以及第一重叠回波信号;所述第一回波信号是第一测角信号的反射信号,所述第一测角信号占用的频带包括M1个第一发射子频带,所述M1个第一发射子频带中的每个第一发射子频带对应第一发射阵列内M1个第一发射阵元中的一个第一发射阵元,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于等于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;所述M1个第一发射子频带中的至少一个第一发射子频带与用于发送第二测距信号的M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围,M2是大于等于2的正整数;所述第一重叠回波信号是所述重叠的频率范围内占用所述至少一个第二发射子频带的第二测距信号的反射信号。
第一接收模块203控制雷达1的第一接收阵列103接收信号,该接收信号为第一接收信号。如附图11描述的内容可知,由于雷达1与雷达2具有重叠的工作频带的发射信号,因而雷达1不仅可以接收到雷达1自己发射的第一测角信号的反射信号,即第一回波信号,也可以接收到雷达2与雷达1重合部分的雷达2发射的测距信号f21,即第一重叠回波信号。因此,第一接收信号包括第一回波信号和第一重叠回波信号。
第一测角信号的频带限定以及第二测距信号的相关限定,如上文的雷达发射控制方法,即附图11对应的部分所述,此处不再赘述。
S32、计算所述第一回波信号的第一导向矢量。
第一计算模块2091计算对应第一发射阵列的第一回波信号的第一导向矢量。具体为,选择雷达1第一个发射天线阵元位置作为发射天线参考位置,雷达1第一个接收阵元的位置作为接收天线参考位置。则雷达1第i个发射阵元的发射信号对应的N 1个接收阵元的导向矢量a′ i(θ)为:
Figure PCTCN2020107127-appb-000018
S33、计算所述第一重叠回波信号的第二导向矢量。
第二计算模块2092计算雷达2与雷达1重叠频带对应的雷达2的发射阵元的发射信号的回波信号,该回波信号被雷达1的N 1个阵元接收,对应的导向矢量记为
Figure PCTCN2020107127-appb-000019
Figure PCTCN2020107127-appb-000020
其中d′ T时雷达2重叠频带对应的发射天线的位置与参考发射阵元之间的距离,λ r为雷达2与雷达1重叠频带的中心频率对应的波长。
S34、将第一导向矢量和第二导向矢量合并为第三导向矢量。
合并单元2093将上述第一导向矢量和第二导向矢量合并,得到雷达1接收信号的导向矢量矩阵:
Figure PCTCN2020107127-appb-000021
可选的,当雷达1各个发射天线发射信号的频带相同时,导向矢量中与波长(频率)和距离相关的项(即
Figure PCTCN2020107127-appb-000022
)消失,退化为普通的单频带MIMO雷达测角的导向矢量。
S35、利用所述第三导向矢量进行角度估计。
角度估计单元210利用第三导向矢量进行角度估计,角度估计的具体方法,可以采用MUSC谱估计,或者其他现有的谱估计方法,或者为傅里叶变换方法。
由于阵元间距以及各发射阵元发射信号的波长均已知,且目标到参考阵元的距离R 0已经获得,因此导向矢量只与入射角度有关,则可以利用更新的导向矢量和对应的MUSIC谱估计即可完成角度估计。
MUSIC谱的表达式如下:
Figure PCTCN2020107127-appb-000023
本实施例的角度估计方法,由于用于角度估计的雷达信号不仅包括第一阵列发射的第一测角信号,还包括第二阵列发射的第二测距信号与该测角信号频带重合的部分,扩大了角度估计的虚拟雷达孔径,提高了测角的精度。
本申请还提供了一种基于雷达信号的测角装置,如附图16所示,该测角装置包括:第一接收模块203、计算模块209、角度估计单元210。其中计算模块209包括:第一计算模块2091、第二计算模块2092、合并单元2093。并且上述各模块与图9中的各模块相对应。上述模块的具体限定功能,与上文对角度估计方法的描述相同,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述。此处就不再赘述。
本申请实施例提供的雷达信号的测角装置,可以用于执行上述实施方式中的雷达角度估计方法。本申请实施例可以根据上述方法示例对雷达信号测角装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请实施例还提供一种产生雷达信号的装置,所述装置包括信号产生器和控制器,所述控制器执行上述实施例中所述的信号发射方法,所述信号产生器用于产生上述实施例所述的第一测角信号和第二测距信号。其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
本申请实施例还提供一种芯片,至少包括上面实施例中的产生雷达信号的装置,可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
本申请实施例还提供一种电子设备,包括处理器和存储器,所述存储器存储有指令,当所述处理器运行所述指令时,使得所述设备执行上面实施例所述的所述的信号发射方法。其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
本申请实施例还提供一种雷达信号发射控制方法,所述方法至少包括:第一发射阵列发射第一发射信号,其中,所述第一发射阵列包括M1个第一发射阵元,所述第一发射信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元对应所述M1个第一发射子频带中的一个第一发射子频带,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于等于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二发射信号占用的频带包括M2个的第二发射子频带,每个所述第二发射阵元对应所述M2个第二发射子频带中的一个第二发射子频带,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,2≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围。其实现原理和技术效果与发射方法类似,其中各个步骤可以参考方法实施例中相应的描述,此处不再赘述。
本申请实施例还提供一种雷达信号发射控制方法,所述方法至少包括:第一发射阵列发射第一发射信号,其中,所述第一发射阵列包括1个第一发射阵元,所述第一发射信号占用的频带包括1个第一发射子频带,所述第一发射阵元对应所述第一发射子频带中的第一发射子频带;第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二发射信号占用的频带包括M2个的第二发射子频带,每个所述第二发射阵元对应所述M2个第二发射子频带中的一个第二发射子频带,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,2≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带具有重叠 的频率范围。其实现原理和技术效果与发射方法类似,其中各个步骤可以参考方法实施例中相应的描述,此处不再赘述。
在一些实施例中,所公开的方法可以实施为以机器可读格式被编码在计算机可读存储介质上的或者被编码在其它非瞬时性介质或者制品上的计算机程序指令。图17示意性地示出根据这里展示的至少一些实施例而布置的示例计算机程序产品的概念性局部视图,所述示例计算机程序产品包括用于在计算设备上执行计算机进程的计算机程序。在一个实施例中,示例计算机程序产品600是使用信号承载介质601来提供的。所述信号承载介质601可以包括一个或多个程序指令602,其当被一个或多个处理器运行时可以提供以上针对图10、图12、图15描述的功能或者部分功能。因此,例如,参考图13中所示的实施例,步骤S21-S24的一个或多个特征可以由与信号承载介质601相关联的一个或多个指令来承担。此外,图17中的程序指令602也描述示例指令。
在一些示例中,信号承载介质601可以包含计算机可读介质603,诸如但不限于,硬盘驱动器、紧密盘(CD)、数字视频光盘(DVD)、数字磁带、存储器、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等等。在一些实施方式中,信号承载介质601可以包含计算机可记录介质604,诸如但不限于,存储器、读/写(R/W)CD、R/W DVD、等等。在一些实施方式中,信号承载介质601可以包含通信介质605,诸如但不限于,数字和/或模拟通信介质(例如,光纤电缆、波导、有线通信链路、无线通信链路、等等)。因此,例如,信号承载介质601可以由无线形式的通信介质605(例如,遵守IEEE 802.11标准或者其它传输协议的无线通信介质)来传达。一个或多个程序指令602可以是,例如,计算机可执行指令或者逻辑实施指令。在一些示例中,诸如针对图10、图12、图5描述的计算设备的计算设备可以被配置为,响应于通过计算机可读介质603、计算机可记录介质604、和/或通信介质605中的一个或多个传达到计算设备的程序指令602,提供各种操作、功能、或者动作。应该理解,这里描述的布置仅仅是用于示例的目的。因而,本领域技术人员将理解,其它布置和其它元素(例如,机器、接口、功能、顺序、和功能组等等)能够被取而代之地使用,并且一些元素可以根据所期望的结果而一并省略。另外,所描述的元素中的许多是可以被实现为离散的或者分布式的组件的、或者以任何适当的组合和位置来结合其它组件实施的功能实体。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储接种中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或者部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序的介质。
在上述实施例中,可以全部或者部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申 请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用戒指或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid State Disk(SSD)等。
所述程序指令可以以软件功能单元的形式实现并能够作为独立的产品销售或使用,所述存储器可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得亿台计算机设备,具体可以是处理器,来执行本申请各个实施例中目标检测装置的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存储存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序的介质。
本实施例以上所述的电子设备,可以用于执行上述各方法实施例的技术方案,其实现原理和技术效果类似,其中各个器件的功能可以参考实施例中相应的描述,此处不再赘述。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种雷达信号发射控制方法,其特征在于,所述方法至少包括:
    第一发射阵列发射第一测角信号,其中,所述第一发射阵列包括M1个第一发射阵元,所述第一测角信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元对应所述M1个第一发射子频带中的一个第一发射子频带,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于等于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;
    第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二测距信号占用的频带包括M2个的第二发射子频带,每个所述第二发射阵元对应所述M2个第二发射子频带中的一个第二发射子频带,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,2≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);
    其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围。
  2. 根据权利要求1所述的方法,其特征在于,所述第二频带偏移Δf 2j满足:B 2j-1≤Δf 2j<(B 2j-1+B 2j)。
  3. 根据权利要求1或2所述的方法,其特征在于,所述Δfthreshold为B 1i/4,其中B 1i为所述第i个第一发射子频带的带宽。
  4. 根据权利要求1-3之一所述的方法,其特征在于,所述M1个第一发射子频带的带宽B 1i相等;
    或所述M2个第二发射子频带的带宽B 2j相等;
    或所述M1个第一发射子频带的第一频率偏移Δf 1i相等;
    或所述M2个第二发射子频带的第二频率偏移Δf 2j相等。
  5. 根据权利要求1-4之一所述的方法,其特征在于,在所述重叠的频率范围内,占用所述至少一个第一发射子频带的所述第一测角信号和占用所述至少一个第二发射子频带的第二测距信号均是正交信号。
  6. 一种雷达信号发射控制装置,其特征在于,所述装置至少包括:
    第一发射模块,控制第一发射阵列发射第一测角信号,其中,所述第一发射阵列包括M1个第一发射阵元,所述第一测角信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元对应所述M1个第一发射子频带中的一个第一发射子频带,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;
    第二发射模块,控制第二发射阵列发射第二测距信号,其中,所述第二发射阵列包括M2个第二发射阵元,所述第二测距信号占用的频带包括M2个第二发射子频带,每个所述第二发射阵 元发射所述M2个第二发射子频带中的一个第二发射子频带的信号,所述M2个第二发射子频带中的第j个第二发射子频带的带宽为B 2j,第j-1个第二发射子频带的带宽为B 2j-1,2≤j≤M2,M2是大于等于2的正整数,所述第j个第二发射子频带与第j-1个发射子频带相比具有第二频带偏移Δf 2j,所述第二频率偏移Δf 2j满足:0<Δf 2j<(B 2j-1+B 2j);
    其中,所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围。
  7. 根据权利要求6所述的装置,其特征在于,所述第二频带偏移Δf 2j满足:B 2j-1≤Δf 2j<(B 2j-1+B 2j)。
  8. 根据权利要求6或7所述的装置,其特征在于,所述Δfthreshold为B 1i/4,其中B 1i为所述第i个第一发射子频带的带宽。
  9. 根据权利要求6-8之一所述的装置,其特征在于,所述M1个第一发射子频带的带宽B 1i相等,
    或所述M2个第二发射子频带的带宽B 2j相等;
    或所述M1个第一发射子频带的第一频率偏移Δf 1i相等;
    或所述M2个第二发射子频带的第二频率偏移Δf 2j相等。
  10. 根据权利要求6-9之一所述的装置,其特征在于,在所述重叠的频率范围内,占用所述至少一个第一发射子频带的所述第一测角信号和占用所述至少一个第二发射子频带的所述第二测距信号均是正交信号。
  11. 一种基于雷达信号的测角方法,其特征在于:
    第一接收阵列接收第一接收信号,其中,所述第一接收信号包括第一回波信号以及第一重叠回波信号;所述第一回波信号是第一测角信号的反射信号,所述第一测角信号占用的频带包括M1个第一发射子频带,所述M1个第一发射子频带中的每个第一发射子频带对应第一发射阵列内M1个第一发射阵元中的一个第一发射阵元,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于等于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;所述M1个第一发射子频带中的至少一个第一发射子频带与用于发送第二测距信号的M2个第二发射子频带中的至少一个第二发射子频带具有重叠的频率范围,M2是大于等于2的正整数;所述第一重叠回波信号是所述重叠的频率范围内占用所述至少一个第二发射子频带的第二测距信号的反射信号;
    计算所述第一回波信号的第一导向矢量;
    计算所述第一重叠回波信号的第二导向矢量;
    将第一导向矢量和第二导向矢量合并为第三导向矢量;
    利用所述第三导向矢量进行角度估计。
  12. 根据权利要求11所述的测角方法,其特征在于,所述计算所述第一回波信号对应的第一导向矢量,包括:
    基于所述每个第一发射子频带的中心频率与参考发射阵元对应的第一发射子频带的中心频率的差值计算所述第一导向矢量。
  13. 根据权利要求11或12所述的测角方法,其特征在于,所述计算所述第一重叠回波信号的第二导向矢量,包括:
    基于所述重叠的频率范围内所述至少一个第二发射子频带的中心频率与参考发射阵元对应的第一发射子频带的中心频率的差值计算所述第二导向矢量。
  14. 一种基于雷达信号的测角装置,包括:
    第一接收模块,控制第一接收阵列接收第一接收信号,其中,所述第一接收信号包括第一回波信号以及第一重叠回波信号;所述第一回波信号是第一测角信号的反射信号,所述第一发射阵列包括M1个第一发射阵元,所述第一测角信号占用的频带包括M1个第一发射子频带,每个所述第一发射阵元发射所述M1个第一发射子频带中的一个第一发射子频带的信号,所述M1个第一发射子频带中的第i个第一发射子频带与第i-1个所述第一发射子频带相比具有第一频率偏移Δf 1i,2≤i≤M1,M1是大于2的正整数,所述第一频率偏移Δf 1i满足:0≤Δf 1i<Δf threshold,Δf threshold为第一频率偏移门限,所述第一频率偏移门限Δf threshold引入的相位误差满足角度测量要求;所述M1个第一发射子频带中的至少一个第一发射子频带与所述M2个第二发射子频带中的至少一个第二发射子频带之间具有重叠的频率范围;所述第一重叠回波信号是所述重叠的频率范围内的第二发射子频带的发射信号的反射信号;
    第一计算模块,计算所述第一接收阵列对应第一回波信号的第一导向矢量;
    第二计算模块,计算所述第一接收阵列对应第一重叠回波信号的第二导向矢量
    合成模块,将第一导向矢量和第二导向矢量合并为第三导向矢量;
    角度估计模块,利用所述虚拟阵列导向矢量进行角度估计。
  15. 根据权利要求14所述的装置,所述第一计算模块具体用于:
    基于所述每个第一发射子频带的中心频率与参考发射阵元对应的第一发射子频带的中心频率的差值计算所述第一导向矢量。
  16. 根据权利要求14或15所述的装置,所述第二计算模块具体用于:
    基于所述重叠的频率范围内所述至少一个第二发射子频带的中心频率与参考发射阵元对应的第一发射子频带的中心频率的差值计算所述第二导向矢量。
  17. 一种产生雷达信号的装置,其特征在于,所述装置包括信号产生器和控制器,所述控制器执行权利要求1-5所述的信号发射方法,所述信号产生器用于产生权利要求1-5所述的第一测角信号和第二测距信号。
  18. 一种芯片,至少包括权利要求17所述的产生雷达信号的装置。
  19. 一种电子设备,其特征在于,所述设备包括处理器和存储器,所述存储器存储有指令,当所述处理器运行所述指令时,使得所述设备执行如权利要求1-5所述的信号发射方法。
  20. 一种计算机存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1-5所述的信号发射方法。
PCT/CN2020/107127 2020-08-05 2020-08-05 一种基于雷达信号的发射方法和装置 WO2022027320A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/107127 WO2022027320A1 (zh) 2020-08-05 2020-08-05 一种基于雷达信号的发射方法和装置
CN202080004176.8A CN112534299B (zh) 2020-08-05 2020-08-05 一种基于雷达信号的发射方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107127 WO2022027320A1 (zh) 2020-08-05 2020-08-05 一种基于雷达信号的发射方法和装置

Publications (1)

Publication Number Publication Date
WO2022027320A1 true WO2022027320A1 (zh) 2022-02-10

Family

ID=74977394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107127 WO2022027320A1 (zh) 2020-08-05 2020-08-05 一种基于雷达信号的发射方法和装置

Country Status (2)

Country Link
CN (1) CN112534299B (zh)
WO (1) WO2022027320A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220037A (zh) * 2021-04-15 2022-10-21 华为技术有限公司 成像方法及装置
WO2022266817A1 (zh) * 2021-06-21 2022-12-29 华为技术有限公司 天线阵列、探测设备和终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1186907A1 (fr) * 2000-09-01 2002-03-13 Thales Radar à impulsions, à modulation de fréquence du type rampe, à haute résolution en distance
CN101021561A (zh) * 2007-04-06 2007-08-22 清华大学 一种采用多发多收频分信号的宽带雷达及其成像方法
CN109901149A (zh) * 2019-03-25 2019-06-18 西安电子科技大学 一种基于fda-mimo雷达的目标参数估计方法
CN111103580A (zh) * 2018-10-26 2020-05-05 华为技术有限公司 雷达信号处理方法和装置
CN111190170A (zh) * 2018-10-25 2020-05-22 华为技术有限公司 一种探测方法、装置以及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454629A (zh) * 2013-08-31 2013-12-18 西北工业大学 一种基于超宽带mimo阵列的扇扫成像方法
CN104678395B (zh) * 2015-03-15 2017-04-19 西安电子科技大学 基于循环前缀的mimo‑ofdm雷达成像方法
CN106353751B (zh) * 2016-08-05 2019-01-01 上海电机学院 一种高分辨率引信目标检测方法
JP6990850B2 (ja) * 2018-03-23 2022-01-12 パナソニックIpマネジメント株式会社 レーダ装置
US20210215817A1 (en) * 2018-08-17 2021-07-15 Aura Intelligent Systems, Inc. Synthetic aperture antenna array for 3d imaging
CN110133634B (zh) * 2019-05-08 2022-10-14 电子科技大学 一种基于频分复用技术的mimo雷达虚拟孔径测角方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1186907A1 (fr) * 2000-09-01 2002-03-13 Thales Radar à impulsions, à modulation de fréquence du type rampe, à haute résolution en distance
CN101021561A (zh) * 2007-04-06 2007-08-22 清华大学 一种采用多发多收频分信号的宽带雷达及其成像方法
CN111190170A (zh) * 2018-10-25 2020-05-22 华为技术有限公司 一种探测方法、装置以及系统
CN111103580A (zh) * 2018-10-26 2020-05-05 华为技术有限公司 雷达信号处理方法和装置
CN109901149A (zh) * 2019-03-25 2019-06-18 西安电子科技大学 一种基于fda-mimo雷达的目标参数估计方法

Also Published As

Publication number Publication date
CN112534299A (zh) 2021-03-19
CN112534299B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN108885254B (zh) 物体检测装置
US10768276B2 (en) Decentralised radar system
KR101137088B1 (ko) 통합 레이더 장치 및 통합 안테나 장치
US20200341134A1 (en) Radar device and method for detecting radar targets
WO2022027320A1 (zh) 一种基于雷达信号的发射方法和装置
US20210116536A1 (en) Method and radar device for ascertaining radial relative acceleration of at least one target
JP2009168452A (ja) レーダ装置
CN111239721B (zh) 车载mimo雷达求熵解速度模糊的方法
EP4071501A1 (en) Signal processing method and apparatus
US20210356556A1 (en) Radio Signal Sending Method and Apparatus
JP2022093367A (ja) 情報測定方法および情報測定装置
NL2029890B1 (en) Radar apparatus, system, and method
WO2022000332A1 (zh) 一种雷达探测方法及相关装置
US20240019568A1 (en) System and method for radar-based localization and/or mapping
CN114002677A (zh) 一种分布式雷达
CN112859100A (zh) 一种激光雷达及探测方法、存储介质
KR20200053222A (ko) 거리, 각도 속도를 정밀 측정하기 위한 레이더 장치 및 레이더 신호 처리 방법
KR101634455B1 (ko) 선형 주파수 변조 신호와 잡음 신호를 이용한 레이더 및 이의 제어 방법
WO2021056187A1 (zh) 一种测速信号的发射方法和接收方法
KR101052050B1 (ko) 다수의 레이더를 가간섭적으로 결합하여 이동 표적의 감지율을 향상시키는 방법 및 그 방법이 적용된 레이더 시스템
US20240019565A1 (en) Motion compensation for fast target detection in automotive radar
WO2022166241A1 (zh) 干扰侦听方法、装置及雷达
US20240036183A1 (en) Radar method and radar system for a phase-coherent analysis
WO2020097903A1 (zh) 测角方法以及雷达设备
KR20210136629A (ko) 차량용 레이더 장치 및 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948126

Country of ref document: EP

Kind code of ref document: A1