WO2022027270A1 - 一种无需光电传感器的光电和光热的追踪系统 - Google Patents

一种无需光电传感器的光电和光热的追踪系统 Download PDF

Info

Publication number
WO2022027270A1
WO2022027270A1 PCT/CN2020/106950 CN2020106950W WO2022027270A1 WO 2022027270 A1 WO2022027270 A1 WO 2022027270A1 CN 2020106950 W CN2020106950 W CN 2020106950W WO 2022027270 A1 WO2022027270 A1 WO 2022027270A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
fixed
solar
adjustment
motor
Prior art date
Application number
PCT/CN2020/106950
Other languages
English (en)
French (fr)
Inventor
李�杰
Original Assignee
李�杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李�杰 filed Critical 李�杰
Priority to PCT/CN2020/106950 priority Critical patent/WO2022027270A1/zh
Publication of WO2022027270A1 publication Critical patent/WO2022027270A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the invention relates to the field of new energy, in particular to a photoelectric and photothermal tracking system that does not require a photoelectric sensor.
  • photoelectric or photothermal in the market almost adopts the installation mode of fixed bracket technology. Due to its high cost and complex structure, inductive tracking technology is difficult to be widely promoted to solar cooling and heating products, and there is a lack of photoelectricity in the market. There are two ways to improve the efficiency of photoelectric power generation and photothermal heat collection by integrating the technology with the photothermal system. It is to change the angle of photovoltaic panels or heat collectors, including azimuth and inclination.
  • the present invention provides a photoelectric and photothermal tracking system without a photoelectric sensor, which solves the above technical problems.
  • a photoelectric and photothermal tracking system without photoelectric sensors which includes a solar angle controller, a T-shaped pillar or pillar, a photovoltaic panel, a solar heat collector, a safety rope, and a motor combination.
  • the tracking system is divided into independent and 1 +N Two different modes, wherein the independent mode is further divided into two different types of 1-latitude or 2-latitude tracking, and the 2-latitude tracking type in the independent mode adopts a T-shaped pillar, which is a
  • An intelligent electric column, fixed on the ground, the column is mainly composed of a shaft and a T-shaped hollow tube.
  • the T-shaped hollow tube is fixed on the shaft and rotates with the shaft and cannot move up and down.
  • the top of the T-shaped hollow tube is fixed on the wing.
  • the 1+N mode is 2-latitude tracking, which uses a drive motor or a combination of an intelligent electric column and a mechanical transmission to drive N
  • the rotation of the non-rotating strut, the non-rotating strut is fixed on the ground through the base, except that the motor and mechanical transmission mechanism are not installed in the base, the rest including the column are the same as the intelligent electric column in independent mode, but the shaft
  • One more gear is added to the top, the gear is installed under the hollow tube of the non-rotating strut and fixed on the shaft, the gears of the N non-rotating struts are linked together by a closed chain, and one end of the chain is linked with the mechanical transmission mechanism
  • the drive motor or intelligent electric column drives N non-rotating struts to rotate at the same time through the chain and mechanical transmission mechanism.
  • a hollow tube P is fixed in S rolling bearings, and a combination of 1 or 2 motors is installed in the hollow tube P.
  • the motor assembly includes a motor, a gear, and a motor base.
  • the gear is connected to the shaft of the motor and fixed on the inside of the hollow tube.
  • the motor is placed in the hollow tube P but not fixed to its inner wall.
  • the motor is fixed on the motor base.
  • the motor base On the fixing fastening member, the two ends of the hollow tube P are respectively connected to the runner of the fastening member, the fastening members at both ends are fixed on the bracket, and the bracket is respectively fixed on the two ends of the top of the T-shaped pillar, and the safety rope is There are two types of fixing methods for a chain or steel wire rope.
  • the first is that both ends are fixedly installed, and the two ends are respectively fixed on the cylinder of the smart electric column and the frame on the back of the photovoltaic panel or solar collector.
  • the second is that one end is fixed and one end is movable, the fixed end is installed on the frame on the back of the photovoltaic panel or solar collector or the wing on the top of the T-shaped hollow tube, and the movable end has a circular or polygonal fastener.
  • the movable snap is on the concave ring, and the concave ring is fixed on the ground with the intelligent electric column or non-rotating support as the center. Polygon, the opening is narrow at the top and wide at the bottom.
  • the concave ring When the smart electric column rotates from east to south in the morning and from north to west in the afternoon, the concave ring is installed with a semi-circle on the east and west sides. It becomes an independent mode or 1+N mode of a 2-dimensional tracking system.
  • the photovoltaic panel or solar collector is installed on the system to become a sun-tracking photovoltaic or photothermal system, and the photovoltaic panel and solar collector are installed at the same time.
  • Photoelectric and photothermal integrated sun tracking system among the 1 latitude tracking types in the independent mode, photovoltaic panels or solar panels
  • the solar collector is fixed on the balcony or wall through a hollow tube F, the hollow tube F is installed with the above 1 or 2 motor assemblies, the hollow tube F is fixed on the F rolling bearings, the F rolling bearings and the motor combination
  • the brackets are fixed on the balcony or wall, one end of the photovoltaic panel or solar collector is fixed on the hollow tube F, one end of the safety rope is fixed on the balcony or wall, and the other end is fixed on the photovoltaic panel or solar collector
  • the cylinders of all the above-mentioned smart electric columns are fixed on the base, and their driving is carried out by a combination of a motor and a mechanical transmission mechanism fixed in the base.
  • the adjustment of the angle of the photothermal system is to adjust the angle of the photovoltaic panel or the solar collector, which will be controlled by the solar angle controller installed with the embedded angle sensor.
  • An intelligent control device that controls the angle of photovoltaic panels or solar collectors to change. It mainly includes a main chip, an angle sensor, GPS satellite positioning or electronic compass, clock chip, Bluetooth, and a motor-driven module. Real-time clock and angle values, according to different time periods to control the change of the angle of photovoltaic panels or solar collectors, the clock chip will automatically use GPS or Bluetooth to calibrate the time after the solar angle controller is powered on.
  • the working principle of the angle adjustment of the solar collector is that the solar angle controller is installed on the same horizontal plane as the photovoltaic panel or the solar collector during the 2-latitude tracking.
  • the solar angle control When the time reaches the preset adjustment time, the solar angle control When the sensor receives a signal for adjusting the angle, the control module of the motor is used to make the angle detection module rotate, so that the photovoltaic panel or solar collector can complete the horizontal or tilting action.
  • the intelligent electric column or non- The self-rotating strut will complete the horizontal or extending or retracting motion with the rotation of the motor, and push the photovoltaic panel or solar collector to rotate to the predetermined position, and the analog output from the angle sensor will be converted by the analog-to-digital converter and sent to the main controller.
  • the main controller determines whether the photovoltaic panel or solar collector has rotated to a predetermined angle according to this input, and controls the control module of the motor accordingly, thereby completing an angle adjustment, within 1 day of the inclination angle
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F in the morning period; the inclination angle is fixed in the noon period, and it is ⁇ + ⁇ /F in the afternoon period.
  • the inclination angle value to be adjusted is pre-input into the storage module of the controller together with its corresponding analog voltage value or adjustment time.
  • the specific implementation is that when the angle sensor is in the horizontal position and the angle is 0°, the output terminal Vo outputs is the analog voltage of A volts.
  • the output is the analog voltage of B volts.
  • the output voltage of the output terminal Vo will change from A volt to B volt or B volt to the analog voltage signal of A volt, so by measuring The value of the Vo voltage at the output end of the angle sensor can determine the angle between the photovoltaic panel or the solar collector and the horizontal plane.
  • a 1-latitude or 2-dimensional tracking photoelectric and photothermal sun-seeking system the adjustment of azimuth and inclination will be timed, and controlled by a solar angle controller, which is based on time timing, By controlling the intelligent electric column or driving motor to drive the azimuth angle of photovoltaic panels or solar collectors to move horizontally to the east or west, or to rotate from east to west, the azimuth angle of photovoltaic panels or solar collectors can be adjusted. Or the method in which the inclination angle changes with the change of time.
  • the adjustment sequence is that the azimuth angle is adjusted first and the inclination angle is later.
  • the adjustment of the azimuth angle is controlled by the solar angle controller according to the signal output by the GPS or electronic compass module.
  • the adjustment of the inclination has two different methods: the input method or the calculation method, the adjustment of the inclination is the input method, and the input method is the required adjustment calculated by the maximum inclination arithmetic average method.
  • the inclination angle value is pre-input into the storage module of the controller together with its corresponding adjustment time.
  • the inclination angle is a method of arithmetic averaging according to the number of adjustments.
  • the time count is three or more times in a day.
  • the adjustment time period of the 2-dimensional tracking is divided into three time periods: morning, noon and afternoon.
  • the photovoltaic panels or solar collectors face east, and the inclination angle is the largest, at noon, the photovoltaic panels or solar collectors are horizontal; in the afternoon, the photovoltaic panels or solar collectors face west, The inclination angle is the largest, the azimuth angle is adjusted every E minutes, and the inclination angle is adjusted F times within E minutes.
  • the angle value of each adjustment is ⁇ /F, and the orientation of the photovoltaic panels or solar collectors in the three time periods is the same as that of the three adjustments in one day.
  • the angle value of each new adjustment is ⁇ -J * ⁇ /F, J is an integer number series value, the minimum value is 1, and the maximum value is F; in the afternoon period, the angle value of each new adjustment is ⁇ + ⁇ /F, and ⁇ is the angle value at the previous moment of adjustment , each time the azimuth angle is adjusted, the inclination angle has been returned to the initial position, the angle of each rotation of the motor in the hollow tube P is the same as the angle of each inclination adjustment above, and the multiple adjustments of the 1-latitude tracking inclination angle are respectively Do it in 1 time slot in the morning or afternoon.
  • the invention provides a photoelectric and photothermal tracking system that does not require a photoelectric sensor.
  • the integrated tracking technology of photoelectricity and photothermal is adopted to improve the power generation and collection efficiency.
  • the thermal efficiency solves the technical problems that need to be solved urgently in the photovoltaic and photothermal industry.
  • Figure 1 is a top plan view of a photoelectric or photothermal two-dimensional tracking system in independent mode: symbol 1 is a photovoltaic panel or solar collector, symbol 2 is the base of a rolling bearing, symbol 3 is a rolling bearing set, symbol 4 is a hollow tube P, The symbol 5 is the top of the T-shaped pillar, the symbol 6 is the fastening member, the symbol 7 is the motor, the symbol 8 is the gear, and the symbol 9 is the intelligent electric column;
  • Figure 2 is the front view of the photoelectric or photothermal 2D tracking system in independent mode : Symbol 10 is a bracket for the fastening member, symbol 11 is a safety rope, and symbol 12 is a concave ring;
  • Figure 3 is a top plan view of the 1+N mode photoelectric and photothermal integrated 2-dimensional tracking system: Symbol 13 is a closed chain, Symbol 14 is a non-rotating column, symbol 15 is an intelligent electric column or drive motor, symbol 16 is a gear on the non-rotating column, and symbol 17 is
  • the photovoltaic panel or solar collector 1 is fixedly installed on the hollow tube P4, and the hollow tube P4 is fixed on the rolling bearing 3.
  • the rolling bearing 3 is fixed on the base 2, the base 2 is fixed on the top wing 5 of the T-shaped strut 9, the motor 7 and the gear 8 are installed in the hollow tube P4, the gear 8 is connected with the rotating shaft of the motor 7, and is fixed on the hollow tube P4
  • the motor 7 is fixed on the fastening member 6 through the motor seat
  • the fastening member 6 is fixed on the bracket 10
  • the bracket 10 is fixed on the top wing 5 of the T-shaped pillar 9
  • the ground is fixed on the ground.
  • One end of the rope 11 is fixed on the top wing 5 of the photovoltaic panel or solar heat collector 1 or the T-shaped pillar 9, and the other end is movably installed in the groove 18 of the concave ring 12, and the concave ring 12 is a T-shaped pillar. 9 is laid for the center of the circle and fixed on the ground, thereby completing the installation of the photoelectric or photothermal solar tracking system.
  • FIG. 3 to 4 it is a plan view and a front view of the photoelectric and photothermal integrated 2-dimensional tracking system of the 1+N mode, and the gears 16/17 are respectively fixed on the non-rotating support 14 or the drive motor or the intelligent electric column 15.
  • the N non-rotating struts 14 and the driving motor or the intelligent electric column 15 are connected into one through the closed chain 13 on the axis of the motor. Under the driving of the driving motor or the intelligent electric column 15 on the shaft, the non-rotating struts 14 will also follow the Rotation, thus forming a drive motor or a smart electric column 15 to drive N groups of photoelectric and photothermal integrated systems to rotate together.
  • the adjustment of the angle is three or more times in a day.
  • the adjustment time period of the 2-dimensional tracking is divided into three periods: morning, noon, and afternoon. Three adjustments in a day, morning period, photovoltaic panels or solar collectors Facing east, the inclination angle is the largest. During noon, the photovoltaic panel or solar collector is horizontal; in the afternoon, the photovoltaic panel or solar collector faces west, and the inclination angle is the largest.
  • the azimuth angle is adjusted every E minute.
  • the inclination angle is adjusted F times within E minutes
  • the angle value of the maximum inclination angle ⁇ of the photovoltaic panel or solar collector in the input method is divided into F times according to the arithmetic average
  • the angle value of each adjustment is ⁇ /F
  • three The orientation of the photovoltaic panels or solar collectors during the time period is the same as that of the three adjustments within one day.
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F, where J is an integer number series value, The minimum value is 1, and the maximum value is F; in the afternoon period, the newly adjusted angle value is ⁇ + ⁇ /F, and ⁇ is the angle value at the previous moment of adjustment.
  • the angle of each rotation of the motor in the hollow tube P is the same as the angle of each inclination adjustment described above, and multiple adjustments of the inclination angle of 1 latitude tracking are performed in a time period in the morning or afternoon, respectively.
  • FIG. 1-2 for the top plan view and front view of the photoelectric or photothermal 2-dimensional tracking system in independent mode.
  • the tracking system After the tracking system is installed, start the power supply. East or west, at a predetermined time, first adjust the azimuth of the photovoltaic panel or solar collector 1, the azimuth is determined by the electronic compass module, and the solar angle controller will obtain the sun according to the signal output by the electronic compass module.
  • the azimuth angle facing east or west the controller controls the rotation of the motor of the intelligent electric column 9 through the angle sensor, and drives the shaft to rotate through the transmission mechanism.
  • the heater 1 rotates in place along with the intelligent electric column 9, and then adjusts the inclination of the photovoltaic panel or solar collector 1.
  • the adjustment of the inclination does not require a driving device.
  • the solar angle controller is used to control the rotation of the motor. When the motor rotates, it drives the photovoltaic panel. Or the solar collector 1 rotates in the same direction, so that the inclination of the photovoltaic panel or the solar collector 1 changes.
  • the angle of each rotation of the motor in the hollow tube P is the same as the angle of each inclination adjustment.
  • the specific adjustment method refer to Section 0011, after each adjustment, the system will automatically return to the original state.
  • the present invention provides a photoelectric and photothermal tracking system that does not require a photoelectric sensor, and provides a tracking technology that does not require a photoelectric sensor for 1 latitude or 2 latitudes.
  • Inductive tracking technology has simple technology, low cost and small self-loss of electricity.
  • the integrated tracking technology of photoelectric and photothermal is used to improve power generation and heat collection. It solves the technical problems that need to be solved urgently in the photovoltaic and CSP industry, that is, the photovoltaic and CSP systems can not only track the sun, but also have practical value and technical problems of integration.
  • the photovoltaic power generation efficiency of the present invention is higher than Compared with the current fixed installation mode, the solar thermal collection efficiency is about 60% higher on average.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种无需光电传感器的光电和光热的追踪系统,涉及新能源领域。目前市场上光电或光热几乎采用的都是固定支架技术的安装模式,感应式追踪技术由于其成本高、结构复杂很难大面积的推广到太阳能制冷制热产品当中,市场上更是缺少光电和光热系统一体化的技术,所以在光电或光热的发电或集热的转化率短期内难于有效提高的当下,让太阳能制冷制热产品不仅能够追日而且又具有实用性,就成为光电和光热行业所遇到的一个亟待解决的技术难题。该无需光电传感器的光电和光热的追踪系统提供了一种分别采用不同的电机和机械传动机构的组合体,构建成一个1纬度或2维度追踪的光电和光热系统,很好地解决了上述技术难题,使得发电及集热效率平均增加了60%左右。

Description

一种无需光电传感器的光电和光热的追踪系统 技术领域
本发明涉及新能源领域,具体为一种无需光电传感器的光电和光热的追踪系统。
背景技术
目前市场上光电或光热几乎采用的都是固定支架技术的安装模式,感应式追踪技术由于其成本高、结构复杂很难大面积的推广到太阳能制冷制热产品当中,市场上更是缺少光电和光热系统一体化的技术,提高光电发电和光热集热的效率有两种方式,一是大幅度提高光电和光热的转换率,但以目前的技术短期内还很能实现,二是改变光伏板或集热装置的角度,包括方位角和倾角,所以在光电或光热的发电或集热的转化率短期内难于有效提高的当下,让太阳能制冷制热产品不仅能够追日而且又具有实用性,就成为光电和光热行业所遇到的一个亟待解决的技术难题。
技术问题
目前太阳能制冷制热行业几乎都是采用无法追日的固定支架技术安装,由于发电和集热效率的低下,难以满足负荷需求,如何提高太阳能制冷制热的发电和集热效率,是光电和光热行业内所遇到的亟待解决的技术难题。
技术解决方案
针对上述缺陷,本发明提供的一种无需光电传感器的光电和光热的追踪系统,使得上述的技术难题得到了解决。
为实现上述目的,本发明的技术方案为如下。
一种无需光电传感器的光电和光热的追踪系统,其包含有太阳能角度控制器、T型支柱或支柱、光伏板、太阳能集热装置、安全绳、电机组合体,追踪系统分为独立和1+N两种不同的模式,其中独立模式当中又分为1纬度或2纬度追踪的两种不同类型,所述独立模式中的2纬度追踪类型的采用的是1根T型支柱,其是一种智能电动柱,固定在地面,其柱体主要由轴、T型空心管所构成,T型空心管固定在轴上随轴一起旋转而不能上下移动,T型空心管顶部的翼上固定安装有S个基座,每个基座上固定有1个滚动轴承,所述1+N模式是2纬度追踪,其采用1台驱动电机或者1根智能电动柱和机械传动的组合体,驱动N根非自转支柱的转动,非自转支柱通过机座固定在地面上,其机座内除了没有安装电机和机械传动机构之外,其余的包括柱体都与独立模式的智能电动柱的相同,但轴上多增加了一个齿轮,齿轮安装在非自转支柱的空心管之下并固定在轴上,N个非自转支柱的齿轮通过一根闭合的链条链接为一体,链条的一端与机械传动机构链接,驱动电机或智能电动柱通过链条和机械传动机构共同驱动N个非自转支柱同时转动,一根空心管P,固定在S个滚动轴承内,空心管P内安装有1或2个电机的组合体,电机组合体包含了电机、齿轮、电机机座,齿轮与电机的轴连接并固定在空心管内侧,电机安放在空心管P内但不与其内壁固定,电机固定在电机机座上,电机机座固定紧固构件上,空心管P的两端分别连接在紧固构件的转轮上,两端的紧固构件固定在支架上,支架分别固定在T型支柱顶部的两端,所述安全绳是根链条或钢丝绳,其固定方式有两种类型,第一种是两端都是固定安装,其两端分别是固定在智能电动柱的柱体和光伏板或太阳能集热器背面的边框上,第二种是一端固定一端活动,固定的一端是安装在光伏板或太阳能集热器背面的边框或T型空心管顶部的翼上,活动的一端带有圆形或多边形的扣件,扣件活动式的卡扣在凹形的环上,凹形的环是以智能电动柱或非自转支柱为中心固定在地面上,所述凹形环是一个圆环或两个半圆环,截面为多边形,开口部是上窄下宽,当智能电动柱在上午时段由东到南、下午时段由北向西转动时,凹形环是在东面和西面各安装一个半圆环,由此构建成一个2维度追踪系统的独立模式或1+N模式,系统上安装了光伏板或太阳能集热器则成为追日型的光电或光热系统,同时安装了光伏板和太阳能集热器则成为光电和光热一体化追日系统,所述独立模式中的1纬度追踪类型当中,光伏板或太阳能集热器是通过一根空心管F固定在阳台或墙体上,空心管F安装有上述1或2个电机组合体,空心管F固定在F个滚动轴承上,F个滚动轴承以及电机组合体的支架都是固定在阳台或墙体上,光伏板或太阳能集热器的一端固定在空心管F上,安全绳的一端固定阳台或墙体上,另一端固定在光伏板或太阳能集热器背面的底端或中部上,上述所有的智能电动柱的柱体都是固定在机座上,其的驱动都是采用固定在机座内的电机和机械传动机构的组合体来进行,光电和光热系统角度的调节,是调节光伏板或太阳能集热器的角度,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制光伏板或太阳能集热器的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制光伏板或太阳能集热器角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,光伏板或太阳能集热器角度调节的工作原理为,太阳能角度控制器,在2纬度追踪当中与光伏板或太阳能集热器安装在同一个水平面上,当时间到达预设的调节时刻时,太阳能角度控制器接受到一个调节角度的信号,则通过控制电机的控制模块来使角度检测模块做出转动动作,以使得光伏板或太阳能集热器完成水平或倾斜的动作,此时的智能电动柱或非自转支柱将随着电机的转动完成水平或伸或缩的运动,推动光伏板或太阳能集热器转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定光伏板或太阳能集热器是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,在倾角1日之内的多次调节模式当中,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就可以确定光伏板或太阳能集热器与水平面间的夹角,其特征在于:不需要光电传感装置,分别采用电机和机械传动机构的不同组合体,构建成一个1纬度或2维度追踪的光电和光热的追日系统,方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制,所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱或驱动电机驱动光伏板或太阳能集热器方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节光伏板或太阳能集热器的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号控制其朝东或朝西转动,所述倾角的调节有输入法或计算法两种不同的方法,所述倾角的调节为输入法,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角算术平均法是指在上午或下午的时段内,光伏板或太阳能集热器所能够形成的最大倾角,按调节的次数进行算术平均的方法,所述时间计时是一日之内三次或多次,2维度追踪的调节的时间段分为上午、正午、下午三个时段,一日之内的三次调节,上午时段,光伏板或太阳能集热器面朝东面,倾角最大,正午时段,光伏板或太阳能集热器是水平状;下午时段,光伏板或太阳能集热器面朝西面,倾角最大,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的光伏板或太阳能集热器的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板或太阳能集热器的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,空心管P内的电机每次旋转的角度与上述每次倾角调节的角度相同,1纬度追踪倾角的多次调节分别是在上午或下午的1个时间段内进行。
有益效果
本发明提供的一种无需光电传感器的光电和光热的追踪系统,在光电和光热的转换率难以大幅度提高的当下,采用光电和光热的一体化的追踪技术,提高了发电和集热的效率,解决了光电和光热行业内所亟待解决的技术难题。
附图说明
图1为独立模式的光电或光热2维度追踪系统的平面俯视图:符号1为光伏板或太阳能集热器,符号2为滚动轴承的基座,符号3为滚动轴承置,符号4为空心管P,符号5为T型支柱的顶端,符号6为紧固构件,符号7为电机,符号8为齿轮,符号9为智能电动柱;图2为独立模式的光电或光热2维度追踪系统的正视图:符号10紧固构件的支架,符号11为安全绳,符号12为凹形环;图3为1+N模式的光电和光热一体化2维度追踪系统的平面俯视图:符号13为闭合链条,符号14为非自转支柱,符号15为智能电动柱或驱动电机,符号16为非自转支柱上的齿轮,符号17为智能电动柱上的齿轮;图4为1+N模式的光电和光热一体化2维度追踪系统的正视图,图5凹形环的截面图,符号18为凹槽。
本发明的最佳实施方式
参阅图1~2为独立模式的光电或光热2维度追踪系统的平面俯视图和正视图,光伏板或太阳能集热器1固定安装与空心管P4上,空心管P4固定于滚动轴承3上,滚动轴承3固定于基座2上,基座2固定于T型支柱9的顶端翼5上,电机7和齿轮8安装在空心管P4内,齿轮8与电机7的转轴相连,并固定于空心管P4内侧,电机7通过电机座固定于紧固构件6上,紧固构件6固定安装在支架10上,支架10固定于T型支柱9的顶端翼5上,T型支柱9固定于地面上,安全绳11一端固定于光伏板或太阳能集热1或T型支柱9的顶端翼5上,另一端活动式安装在凹形圆环12的凹槽18内,凹形圆环12是以T型支柱9为圆心铺设并固定于地面上,由此完成光电或光热太阳光追踪系统的安装。
[0010] 参阅图3~4是1+N模式的光电和光热一体化2维度追踪系统的平面俯视图和正视图,齿轮16/17分别固定在非自转支柱14或驱动电机或智能电动柱15的轴上,通过闭合链条13把N个非自转支柱14和驱动电机或智能电动柱15连为一体,在驱动电机或智能电动柱15轴上的驱动下,非自转支柱14也将随着一起转动,由此形成了一个由一台驱动电机或1根智能电动柱15带动N组的光电和光热一体化系统一同转动。
本发明的实施方式
角度的调节是一日之内三次或多次,2维度追踪的调节的时间段分为上午、正午、下午三个时段,一日之内的三次调节,上午时段,光伏板或太阳能集热器面朝东面,倾角最大,正午时段,光伏板或太阳能集热器是水平状;下午时段,光伏板或太阳能集热器面朝西面,倾角最大,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的光伏板或太阳能集热器的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板或太阳能集热器的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,空心管P内的电机每次旋转的角度与上述每次倾角调节的角度相同,1纬度追踪倾角的多次调节分别是在上午或下午的1个时间段内进行。
参阅图1~2为独立模式的光电或光热2维度追踪系统的平面俯视图和正视图,追踪系统安装完成后启动电源,太阳能角度控制器先把光伏板或太阳能集热器1归位面朝东面或西面,在预定时刻,首先调节光伏板或太阳能集热器1的方位角,方位角采用电子指南针模块来确定方位角,太阳能角度控制器将根据电子指南针模块输出的信号得出太阳朝东或西的方位角,通过角度传感器由控制器控制智能电动柱9的电机转动,通过传动机构带动轴转动,轴转动的同时又带动T型空心管同向转动,则光伏板或太阳能集热器1随同智能电动柱9转动到位,然后调节光伏板或太阳能集热器1的倾角,倾角的调节无需驱动装置,是采用太阳能角度控制器控制电机的转动,电机转动的同时,带动光伏板或太阳能集热器1同向转动,从而使得光伏板或太阳能集热器1的倾角发生改变,空心管P内的电机每次旋转的角度与每次倾角调节的角度相同,具体的调节方式参照0011段,每次调节结束后,系统又自动归位到原有的状态。
参阅图3~4是1+N模式的光电和光热一体化2维度追踪系统的平面俯视图和正视图,追踪系统安装完成后启动电源,太阳能角度控制器先把光伏板或太阳能集热器1归位面朝东面或西面,方位角和倾角的调节方式分别与独立模式中的相一致,调节方式具体为,在预定的时间,太阳能角度控制器依据角度传感器得出的信号,控制驱动电机或智能电动柱15启动带动齿轮17转动,通过机械传动机构带动链条13发生转动,由此带动了N根转动支柱14上的齿轮16发生转动,固定在支柱上的光伏板或太阳能集热器1也将随着发生转动,由此光伏板或太阳能集热器1的方位角调节到位。之后,对光伏板或太阳能集热器1倾角进行调节,调节方式参照0011~0012段。
工业实用性
本发明的一种无需光电传感器的光电和光热的追踪系统,提供的1纬度或2纬度无需光电传感器的追踪技术,是有别于公知的固定支架技术和感应式追踪技术的一种新型非感应式追踪技术,其技术简单、成本低、自损电量小,在光电和光热的转换率难以大幅度提高的当下,采用光电和光热的一体化的追踪技术,提高了发电和集热的效率,解决了光电和光热行业内所亟待解决的技术难题,即,光电和光热系统不仅能够追日,而且还要具有实用价值及一体化的技术难题,本发明光电的发电效率和光热的集热效率比目前固定安装模式的平均多增加60%左右。

Claims (3)

  1. 一种无需光电传感器的光电和光热的追踪系统,其包含有太阳能角度控制器、T型支柱或支柱、光伏板、太阳能集热装置、安全绳、电机组合体,追踪系统分为独立和1+N两种不同的模式,其中独立模式当中又分为1纬度或2纬度追踪的两种不同类型,所述独立模式中的2纬度追踪类型的采用的是1根T型支柱,其是一种智能电动柱,固定在地面,其柱体主要由轴、T型空心管所构成,T型空心管固定在轴上随轴一起旋转而不能上下移动,T型空心管顶部的翼上固定安装有S个基座,每个基座上固定有1个滚动轴承,所述1+N模式是2纬度追踪,其采用1台驱动电机或者1根智能电动柱和机械传动的组合体,驱动N根非自转支柱的转动,非自转支柱通过机座固定在地面上,其机座内除了没有安装电机和机械传动机构之外,其余的包括柱体都与独立模式的智能电动柱的相同,但轴上多增加了一个齿轮,齿轮安装在非自转支柱的空心管之下并固定在轴上,N个非自转支柱的齿轮通过一根闭合的链条链接为一体,链条的一端与机械传动机构链接,驱动电机或智能电动柱通过链条和机械传动机构共同驱动N个非自转支柱同时转动,一根空心管P,固定在S个滚动轴承内,空心管P内安装有1或2个电机的组合体,电机组合体包含了电机、齿轮、电机机座,齿轮与电机的轴连接并固定在空心管内侧,电机安放在空心管P内但不与其内壁固定,电机固定在电机机座上,电机机座固定紧固构件上,空心管P的两端分别连接在紧固构件的转轮上,两端的紧固构件固定在支架上,支架分别固定在T型支柱顶部的两端,所述安全绳是根链条或钢丝绳,其固定方式有两种类型,第一种是两端都是固定安装,其两端分别是固定在智能电动柱的柱体和光伏板或太阳能集热器背面的边框上,第二种是一端固定一端活动,固定的一端是安装在光伏板或太阳能集热器背面的边框或T型空心管顶部的翼上,活动的一端带有圆形或多边形的扣件,扣件活动式的卡扣在凹形的环上,凹形的环是以智能电动柱或非自转支柱为中心固定在地面上,所述凹形环是一个圆环或两个半圆环,截面为多边形,开口部是上窄下宽,当智能电动柱在上午时段由东到南、下午时段由北向西转动时,凹形环是在东面和西面各安装一个半圆环,由此构建成一个2维度追踪系统的独立模式或1+N模式,系统上安装了光伏板或太阳能集热器则成为追日型的光电或光热系统,同时安装了光伏板和太阳能集热器则成为光电和光热一体化追日系统,所述独立模式中的1纬度追踪类型当中,光伏板或太阳能集热器是通过一根空心管F固定在阳台或墙体上,空心管F安装有上述1或2个电机组合体,空心管F固定在F个滚动轴承上,F个滚动轴承以及电机组合体的支架都是固定在阳台或墙体上,光伏板或太阳能集热器的一端固定在空心管F上,安全绳的一端固定阳台或墙体上,另一端固定在光伏板或太阳能集热器背面的底端或中部上,上述所有的智能电动柱的柱体都是固定在机座上,其的驱动都是采用固定在机座内的电机和机械传动机构的组合体来进行,光电和光热系统角度的调节,是调节光伏板或太阳能集热器的角度,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制光伏板或太阳能集热器的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制光伏板或太阳能集热器角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,光伏板或太阳能集热器角度调节的工作原理为,太阳能角度控制器,在2纬度追踪当中与光伏板或太阳能集热器安装在同一个水平面上,当时间到达预设的调节时刻时,太阳能角度控制器接受到一个调节角度的信号,则通过控制电机的控制模块来使角度检测模块做出转动动作,以使得光伏板或太阳能集热器完成水平或倾斜的动作,此时的智能电动柱或非自转支柱将随着电机的转动完成水平或伸或缩的运动,推动光伏板或太阳能集热器转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定光伏板或太阳能集热器是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,在倾角1日之内的多次调节模式当中,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就可以确定光伏板或太阳能集热器与水平面间的夹角,其特征在于:不需要光电传感装置,分别采用电机和机械传动机构的不同组合体,构建成一个1纬度或2维度追踪的光电和光热的追日系统,方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制。
  2. 根据权利要求1所述的一种无需光电传感器的光电和光热的追踪系统,其特征在于:所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱或驱动电机驱动光伏板或太阳能集热器方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节光伏板或太阳能集热器的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号控制其朝东或朝西转动,所述倾角的调节有输入法或计算法两种不同的方法,所述倾角的调节为输入法,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角算术平均法是指在上午或下午的时段内,光伏板或太阳能集热器所能够形成的最大倾角,按调节的次数进行算术平均的方法。
  3. 根据权利要求2所述的一种无需光电传感器的光电和光热的追踪系统,其特征在于:所述时间计时是一日之内三次或多次,2维度追踪的调节的时间段分为上午、正午、下午三个时段,一日之内的三次调节,上午时段,光伏板或太阳能集热器面朝东面,倾角最大,正午时段,光伏板或太阳能集热器是水平状;下午时段,光伏板或太阳能集热器面朝西面,倾角最大,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的光伏板或太阳能集热器的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板或太阳能集热器的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,空心管P内的电机每次旋转的角度与上述每次倾角调节的角度相同,1纬度追踪倾角的多次调节分别是在上午或下午的1个时间段内进行。
PCT/CN2020/106950 2020-08-05 2020-08-05 一种无需光电传感器的光电和光热的追踪系统 WO2022027270A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106950 WO2022027270A1 (zh) 2020-08-05 2020-08-05 一种无需光电传感器的光电和光热的追踪系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106950 WO2022027270A1 (zh) 2020-08-05 2020-08-05 一种无需光电传感器的光电和光热的追踪系统

Publications (1)

Publication Number Publication Date
WO2022027270A1 true WO2022027270A1 (zh) 2022-02-10

Family

ID=80119466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106950 WO2022027270A1 (zh) 2020-08-05 2020-08-05 一种无需光电传感器的光电和光热的追踪系统

Country Status (1)

Country Link
WO (1) WO2022027270A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713649A (zh) * 2013-12-27 2014-04-09 合肥工业大学 一种反射式多平面镜太阳能聚光跟踪控制系统及控制方法
CN104870910A (zh) * 2012-11-28 2015-08-26 Imo控股有限责任公司 跟踪装置,其具有能围绕至少一个轴线调整的、用于以射线技术上的优选方向装配至少一个对电磁波敏感的元件的接收结构
CN105159331A (zh) * 2015-09-11 2015-12-16 广州华凌制冷设备有限公司 光伏电池板的追踪调节装置和调节方法及光伏供电系统
CN106357211A (zh) * 2016-10-05 2017-01-25 李�杰 一种新型发电效率高的光伏发电系统
CN106369545A (zh) * 2016-10-21 2017-02-01 哈尔滨工业大学深圳研究生院 一种可用于太阳光光纤照明系统的太阳追踪装置
KR102067505B1 (ko) * 2018-10-30 2020-01-17 임채경 가변 각도조절수단이 구비된 태양광장치
CN110941291A (zh) * 2018-09-25 2020-03-31 中国电力科学研究院有限公司 一种平单轴光伏矩阵跟踪控制系统和方法
CN210927544U (zh) * 2019-06-05 2020-07-03 中国水利水电科学研究院 一种方向和角度可调的家用太阳能发电系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870910A (zh) * 2012-11-28 2015-08-26 Imo控股有限责任公司 跟踪装置,其具有能围绕至少一个轴线调整的、用于以射线技术上的优选方向装配至少一个对电磁波敏感的元件的接收结构
CN103713649A (zh) * 2013-12-27 2014-04-09 合肥工业大学 一种反射式多平面镜太阳能聚光跟踪控制系统及控制方法
CN105159331A (zh) * 2015-09-11 2015-12-16 广州华凌制冷设备有限公司 光伏电池板的追踪调节装置和调节方法及光伏供电系统
CN106357211A (zh) * 2016-10-05 2017-01-25 李�杰 一种新型发电效率高的光伏发电系统
CN106369545A (zh) * 2016-10-21 2017-02-01 哈尔滨工业大学深圳研究生院 一种可用于太阳光光纤照明系统的太阳追踪装置
CN110941291A (zh) * 2018-09-25 2020-03-31 中国电力科学研究院有限公司 一种平单轴光伏矩阵跟踪控制系统和方法
KR102067505B1 (ko) * 2018-10-30 2020-01-17 임채경 가변 각도조절수단이 구비된 태양광장치
CN210927544U (zh) * 2019-06-05 2020-07-03 中国水利水电科学研究院 一种方向和角度可调的家用太阳能发电系统

Similar Documents

Publication Publication Date Title
CN201479045U (zh) 东西方向向日水平轴单轴跟踪系统
EP2546975B1 (en) Sunlight-tracking device
US6089224A (en) Apparatus for orientation of solar radiation collectors
US20210194417A1 (en) Elevated dual-axis photovoltaic solar tracking assembly
CN105958930A (zh) 一种智慧型太阳跟踪器控制系统及其跟踪支架
CN101859148B (zh) 一种采光球型太阳位置传感器及自动跟踪方法
CN102566587A (zh) 一种光伏组跟踪装置
WO2022027281A1 (zh) 通信基站无需光电传感器的光伏发电追踪系统
Ghassoul A dual solar tracking system based on a light to frequency converter using a microcontroller
WO2022027267A1 (zh) 太阳能房无需光电传感器的光电和光热一体化追踪系统
CN111750320A (zh) 一种追日型的风光互补路灯
EP2194343A1 (en) Mechanical solar tracker
WO2022027270A1 (zh) 一种无需光电传感器的光电和光热的追踪系统
WO2022027272A1 (zh) 一种追日型的风光互补发电系统
CN201956932U (zh) 一种光伏组跟踪装置
CN111880578A (zh) 一种无需光电传感器的光电和光热的追踪系统
Song et al. A photovoltaic solar tracking system with bidirectional sliding axle for building integration
CN201467010U (zh) 用于安装太阳能光伏组件的太阳跟踪装置
WO2013082872A1 (zh) 同步跟踪摇杆式聚光型太阳能电站
CN212392834U (zh) 一种追踪型的风光互补发电装置
CN111884568A (zh) 一种追日型的风光互补发电系统
CN212460385U (zh) 一种光电和光热的追踪装置
CN111878943A (zh) 太阳能空调和太阳能热水器的非感应式追踪系统
CN111828916A (zh) 非感应式追踪的太阳能路灯
KR20120048761A (ko) 태양광 추적장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948883

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20948883

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/09/2023)