WO2022027210A1 - 一种分离空气中亚微米颗粒的装置 - Google Patents

一种分离空气中亚微米颗粒的装置 Download PDF

Info

Publication number
WO2022027210A1
WO2022027210A1 PCT/CN2020/106702 CN2020106702W WO2022027210A1 WO 2022027210 A1 WO2022027210 A1 WO 2022027210A1 CN 2020106702 W CN2020106702 W CN 2020106702W WO 2022027210 A1 WO2022027210 A1 WO 2022027210A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation channel
standing wave
particles
wave field
channel
Prior art date
Application number
PCT/CN2020/106702
Other languages
English (en)
French (fr)
Inventor
李晓东
刘济洲
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to PCT/CN2020/106702 priority Critical patent/WO2022027210A1/zh
Priority to US17/424,471 priority patent/US11925893B2/en
Priority to EP20913052.5A priority patent/EP3978097A4/en
Publication of WO2022027210A1 publication Critical patent/WO2022027210A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D49/00Separating dispersed particles from gases, air or vapours by other methods
    • B01D49/006Separating dispersed particles from gases, air or vapours by other methods by sonic or ultrasonic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3678Separation of cells using wave pressure; Manipulation of individual corpuscles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/283Settling tanks provided with vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves

Definitions

  • the invention relates to a device for separating sub-micron particles in the air, in particular to a device for separating sub-micron particles in the air by using ultrasonic standing waves, and in particular to a device for separating tiny pathogens (such as viruses) and Nanoparticle device.
  • respiratory tract-borne viruses range in size from approximately 80 nm to 300 nm. Viruses are often spread in the air by droplets produced by infected patients through coughing or sneezing, forming submicron-sized aerosols in the air, making traditional filtration methods extremely inefficient.
  • building air conditioning systems central, independent, etc.
  • transportation environment control systems aircraft, railways, automobiles, etc.
  • air purification devices and sewage systems (sewers, etc.) all lack efficient, safe and convenient means to remove submicron Viruses in the size range.
  • Document (CN106853381A) discloses a particle separation device, the device includes a liquid flow channel, a focused ultrasonic device and a separation ultrasonic device, wherein the liquid flow channel includes a sample liquid inlet, a sheath liquid inlet, a focusing channel, a separation channel and at least two particles
  • the first ultrasonic wave is generated by the focused ultrasonic device to act on the particles to be separated in the focusing channel to make them move to the same plane perpendicular to the propagation direction of the first ultrasonic wave
  • the second ultrasonic wave is generated by the separation ultrasonic device to act on the particles in the separation channel.
  • the particles to be separated separate particles of different sizes to form different particle beams, thereby separating particles of different sizes.
  • the device can effectively separate particles with different sizes to form different particle beams, but the carrier of the device is liquid, and the particles are separated (aggregated) by high-frequency acoustic radiation pressure, which is not suitable for forming sub-micron-sized sub-particles in the air. Separation of micron suspended particles (ie, sub-micron suspended particles whose carrier is air). Therefore, there is an urgent need to provide a technical solution capable of efficiently removing submicron particles in the air.
  • the embodiment of the present invention provides a device for separating submicron particles in the air, which can effectively remove the submicron suspended particles in the air by using the principle of agglomeration of the suspended particles in the air by ultrasonic standing waves.
  • An embodiment of the present invention provides a device for separating submicron particles in air, comprising a first separation channel, a second separation channel and a collection device connected in sequence;
  • the first separation channel and the second separation channel are rectangular parallelepiped structures with open ends, and the height H 1 of the first separation channel is greater than the height H 2 of the second separation channel;
  • the height direction of the first separation channel is the positive y-axis
  • the length direction of the first separation channel is the positive x-axis
  • a first vibration sound source is installed on the outer surface of the upper wall of the first separation channel, and a first bactericidal coating is arranged on the inner surface of the upper wall and the lower wall; the first vibration sound source is used to generate the first vibration sound source along the y direction.
  • a standing wave field the first standing wave field is used to gather particles having a first diameter d p1 , and the first diameter d p1 is in the range of [350nm, 1.2 ⁇ m];
  • a second vibration sound source is installed on the outer surface of the upper wall of the second separation channel, and a second bactericidal coating is arranged on the inner surfaces of the upper wall and the lower wall; the second vibration sound source is used to generate a second vibration sound source along the y direction.
  • two standing wave fields the second standing wave fields are used for gathering particles having a second diameter d p2 , the second diameter d p2 being in the range of [80nm, 500nm];
  • the relationship between the standing wave frequency f a1 of the first standing wave field and the height H 1 is set so that the particles flowing into the first separation channel gather on the inner surface of the upper wall of the first separation channel and the center of the channel in the y direction at the axial level and the inner surface of the lower wall; the first bactericidal coating is used for adsorbing the particles collected at the inner surface of the upper wall and the inner surface of the lower wall of the first separation channel;
  • the relationship between the standing wave frequency f a2 of the second standing wave field and the height H 2 is set so that the particles flowing into the second separation channel gather on the inner surface of the upper wall of the second separation channel, and the horizontal plane of the central axis in the y-direction of the channel and the inner surface of the lower wall; the second bactericidal coating is used for adsorbing the particles collected at the inner surface of the upper wall and the inner surface of the lower wall of the second separation channel;
  • the relationship between the standing wave frequency of the first standing wave field and the standing wave frequency of the second standing wave field and the diameter of the corresponding aggregated particles is determined by the following formulas (1) to (4):
  • ⁇ 1 ⁇ mp d p1 2 /(18 ⁇ g ) (2)
  • ⁇ 2 ⁇ mp d p2 2 /(18 ⁇ g ) (4)
  • ⁇ 1 and ⁇ 2 are the relaxation times of the viscous force of the air in the first separation channel and the second separation channel, respectively, ⁇ mp is the material density of the particles, and ⁇ g is the dynamic viscosity of the air;
  • the collecting device is used to collect particles collected on the central plane.
  • the device for separating sub-micron particles in the air provided by the embodiment of the present invention is based on the theory of agglomeration of suspended particles in the air by ultrasonic standing waves, and can aggregate the sub-micron suspended particles flowing into the channel of the device to the upper and lower walls of the channel and the center of the channel. On-line, and sterilize the aggregated particles, which can effectively remove sub-micron suspended particles in the air.
  • FIG. 1 is a schematic structural diagram of a device for separating submicron particles in air provided by an embodiment of the present invention
  • Figures 2(a) to 2(e) are simulation results of the simulated separation of submicron particles by the first separation channel according to the embodiment of the present invention
  • Fig. 3(a) to Fig. 3(f) are simulation results of the second separation channel simulating the separation of submicron particles according to the embodiment of the present invention.
  • an embodiment of the present invention provides a device for separating submicron particles in air, which includes a first separation channel 1 , a second separation channel 2 and a collection device 3 that are connected in sequence.
  • the first separation channel 1 and the second separation channel 2 may be rectangular parallelepiped structures with open ends, wherein the height H 1 of the first separation channel 1 is greater than that of the second separation channel Height H2 of channel 2 .
  • the first separation channel 1 and the second separation channel 2 are hermetically connected, and in one example, there is a smooth transition connection between the two, so that the particle flow formed by the submicron particles flowing into the first separation channel 1 can smoothly flow into the in the second separation channel 2.
  • the interval between the first separation channel 1 and the second separation channel 2 is not particularly limited, as long as smooth inflow of the particle flow can be achieved, and in a specific example, the interval between the two may be 0.05m.
  • the material of the separation channel can be made of anti-vibration material, such as steel material.
  • a vibration sound source is installed on the outer surface of the upper wall of each separation channel.
  • the air flow with submicron particles is moved along the positive direction of the x-axis at an average velocity Umean and is introduced into the first separation channel 1 from the left side
  • Umean average velocity
  • the first vibration sound source 4 works, a standing wave field will be generated along the y direction, as shown in FIG. 1 .
  • the coordinate system is constructed with the leftmost end of the inner surface of the lower wall of the first separation channel as the coordinate origin, the height direction of the first separation channel is the positive y-axis, and the length direction of the first separation channel is the positive x-axis.
  • the vibration sound source may be a high frequency vibration generator.
  • a first vibration sound source 4 is installed on the outer surface of the upper wall of the first separation channel 1, and a first bactericidal coating 6 is arranged on the inner surfaces of the upper and lower walls; the first vibration sound source 4 is used to generate a first standing wave field along the y-direction for gathering particles having a first diameter d p1 in the range of [350 nm, 1.2 ⁇ m], ie,
  • the height of the first separation channel 1 is relatively large and the frequency of the standing wave is relatively low, and is mainly responsible for the aggregation of submicron suspended particles with larger diameters, such as smaller bacterial particles.
  • a second vibration sound source 5 is installed on the outer surface of the upper wall of the second separation channel 2, and a second bactericidal coating 7 is arranged on the inner surfaces of the upper and lower walls; the second vibration sound source 5 is used for
  • a second standing wave field is generated along the y-direction for collecting particles having a second diameter d p2 in the range [80 nm, 500 nm], ie a second separation Channel 2, which has a smaller height and a higher frequency of standing waves, is responsible for aggregating particles with smaller diameters, such as most viral particles.
  • the aggregation of submicron particles with diameters ranging from 80 nm to 1.2 ⁇ m in the airflow can be achieved.
  • only either stage of the two separation channels can be used.
  • the relationship between the standing wave frequency f a1 of the first standing wave field and the height H 1 is set so that the particles flowing into the first separation channel gather on the inner surface of the upper wall of the first separation channel and the center of the channel in the y direction shaft level and the inner surface of the lower wall.
  • the height of the first separation channel may be 2500 ⁇ m
  • the standing wave frequency of the first standing wave field may be 136000 Hz
  • the height of the second separation channel may be 1000 ⁇ m
  • the height of the second standing wave field may be 1000 ⁇ m.
  • the standing wave frequency may be 340,000 Hz, and this example shows that the standing wave frequency and channel height enable efficient aggregation of sub-micron particles with diameters in the range of 80 nm-1.2 ⁇ m.
  • the difference between the standing wave frequency of the first standing wave field and the standing wave frequency of the second standing wave field and the diameter of the corresponding aggregated particles is determined by the following formulas (1) to (4):
  • ⁇ 1 ⁇ mp d p1 2 /(18 ⁇ g ) (2)
  • ⁇ 2 ⁇ mp d p2 2 /(18 ⁇ g ) (4)
  • ⁇ 1 and ⁇ 2 are the relaxation times of the viscous force of the air in the first separation channel and the second separation channel, respectively, and ⁇ mp is the density of the material composing the particles, obtained through actual measurement, in one example, it can be The density is 1400kg/m 3 , which is close to the material density of particles such as viruses and bacteria in the air, and ⁇ g is the dynamic viscosity of air.
  • the kinetic energy is the largest, the more it can be separated from the movement of the carrier medium, that is, the aggregation effect of suspended particles is the best.
  • the effect of separating suspended particles with a diameter in the range of [80nm, 500nm] from the carrier medium is more obvious, that is, the aggregation effect is better.
  • the kinetic energy obtained by the suspended particles passing through the second separation channel from the carrier medium is maximized, and the more it can be separated from the motion of the carrier medium, that is, It has the best agglomeration effect on suspended particles.
  • the first bactericidal coating 6 is used for adsorbing the particles accumulated on the inner surface of the upper wall and the inner surface of the lower wall of the first separation channel
  • the second bactericidal coating 7 is used for adsorbing the aggregated particles Particles at the inner surface of the upper wall and the inner surface of the lower wall of the second separation channel for attachment and inactivation of pathogenic microorganism particles.
  • the bactericidal coating can use existing commercially available products, such as Germagic long-acting bactericidal spray produced by Jieke Biotechnology (Shanghai) Co., Ltd.
  • the collection device 3 is used to collect the particles aggregated on the central surface.
  • the collection device 3 can be an existing device, which is not particularly limited in the present invention, as long as the aggregated suspended particles can be collected and processed after any equipment is available.
  • the clean air treated with the germicidal coating and the collection device can flow normally along the channel from other y-direction locations and be vented to the atmosphere or used normally.
  • the length of the separation channel when the standing wave amplitude of the standing wave field is fixed, the length of the separation channel is positively correlated with the average flow velocity of the particles flowing in the separation channel, and when the average flow velocity of the particles flowing in the separation channel is fixed, the length of the separation channel It is negatively correlated with the standing wave amplitude of the standing wave field; when the length of the separation channel is fixed, the standing wave amplitude of the standing wave field is positively correlated with the average velocity of the particles flowing in the separation channel.
  • the length L1 of the first separation channel 1 is positively correlated with the average flow velocity U mean1 of the particles flowing in the first separation channel 1;
  • the length of the first separation channel is negatively correlated with the standing wave amplitude p 1 of the first standing wave field;
  • the length of the first separation channel is maintained constant, the The standing wave amplitude p 1 of the first standing wave field is positively correlated with the average flow velocity U mean1 of the particles flowing in the first separation channel.
  • the length L 2 of the second separation channel 2 is positively correlated with the average flow velocity U mean2 of the particles flowing in the second separation channel; when the second separation channel is maintained When the average flow velocity of the flowing particles is constant, the length of the second separation channel is negatively correlated with the standing wave amplitude p 2 of the second standing wave field; when the length of the second separation channel is maintained constant, the second separation channel The standing wave amplitude p 2 of the standing wave field is positively correlated with the average flow velocity U mean2 of the particles flowing in the second separation channel.
  • the main parameters of the first separation channel 1 and the second separation channel 2 can be as shown in Table 1 below Show:
  • the minimum particle diameter that can be aggregated can be down to 80 nm, and the maximum particle diameter that can be aggregated is 500 nm.
  • the aggregation effect of suspended particles with a diameter of 320 nm is the best, which can effectively cover the diameter range of most airborne virus particles.
  • the aggregation process of particles with diameters of 350 nm, 520 nm, 750 nm, 1 ⁇ m and 1.2 ⁇ m was simulated to verify the aggregation effect on particles with diameters larger than 500 nm and smaller than 1.2 ⁇ m ;
  • the second separation channel simulate the aggregation process when the particle diameters are 80 nm, 100 nm, 160 nm, 240 nm, 320 nm and 500 nm to verify its aggregation effect on particles with a diameter of less than 500 nm.
  • the simulation process focused on the aggregation effect on particles (airborne viruses) with diameters ranging from 80 nm to 300 nm.
  • the material density ⁇ mp of the particles in the simulation is taken as 1400 kg/m 3 .
  • the numerical simulation method defined by the following formulae (7) to (11) is used to verify the aggregation effect of the separation channel with the parameters in Table 2.
  • the standing wave as the driving term for particle motion, is given in the form of an analytical solution. Assuming that the wavelength of the standing wave is the pipe height H, the pressure p g (y, t) of the standing wave and the velocity v g (y, t) in the y direction are:
  • t represents the action time of the standing wave on the particle, that is, the standing wave action time, and the unit is s, which is determined by actual measurement
  • y represents the coordinate of the particle in the y direction at the standing wave action time t, which is determined by actual measurement;
  • Suspended submicron particles are regarded as moving spherical particles, and the Newtonian equation of motion is:
  • the standing wave frequency f a the standing wave amplitude p a , the height H of the channel, the average flow velocity U mean , the particle diameter d p and the material density ⁇ mp of the particles can be obtained according to the standing wave frequency fa given in Table 2, and the standing wave measured during the simulation process.
  • the wave action time t and the coordinate y of the corresponding particle in the y direction are based on the above formulas (7) to (11) to obtain the spatial position and velocity of each particle.
  • the simulation results can be shown in Fig. 2(a)-(e) and Fig. 3(a)-(f), respectively.
  • the standing wave aggregation efficiency is slightly lower, but when the particles move axially to the channel outlet (0.15m) , the particles are also basically aggregated at the theoretical position, that is, the inner surfaces of the two walls and the centerline of the first separation channel.
  • Figures 3(a)-(f) show the distribution and state of particles with six diameters of 80 nm, 100 nm, 160 nm, 240 nm, 320 nm and 500 nm in the second separation channel after standing wave for 3 seconds. It can be seen from Figure 3(a) that for the case of smaller diameter (eg 80nm), the standing wave has a slightly lower agglomeration efficiency, but when the particles move axially to the channel outlet (0.25m), the particles also Basically gather at the theoretical position, namely the inner surface of the two walls and the centerline of the second separation channel.
  • Figure 3(b)-(e) shows the aggregation distribution of standing waves on particles with a diameter between 100nm and 320nm.
  • the device for separating sub-micron particles in the air provided by the embodiments of the present invention, based on the theory of agglomeration of suspended particles in the air by ultrasonic standing waves, can aggregate the sub-micron suspended particles flowing into the channel of the device to the upper wall and lower surface of the channel.
  • the surface of the wall and the center line, and the aggregated particles are sterilized, so that the sub-micron suspended particles in the air can be effectively removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种分离空气中亚微米颗粒的装置,包括依次连接的第一分离通道(1)、第二分离通道(2)和收集装置(3);所述第一分离通道(1)和所述第二分离通道(2)为两端开放的长方体结构,所述第一分离通道(1)的高度H 1大于所述第二分离通道(2)的高度H 2,每个分离通道上安装有振动声源和杀菌涂层。该装置基于超声驻波对空气中悬浮颗粒的团聚理论,能够将流入装置通道内的亚微米悬浮颗粒聚集到通道的上壁面和下壁面以及中心线上,并对聚集的颗粒进行杀菌处理,从而能够有效去除空气中亚微米悬浮颗粒。

Description

一种分离空气中亚微米颗粒的装置 技术领域
本发明涉及一种分离空气中亚微米颗粒的装置,具体涉及一种利用超声驻波分离空气中亚微米颗粒的装置,尤其涉及一种利用超声驻波分离空气中悬浮微小病原体(如病毒)和纳米颗粒的装置。
背景技术
空气中的悬浮颗粒,如病原微生物、污染颗粒PM2.5等对人体的危害越来越得到重视。对于直径大于1μm的颗粒,如细菌、PM2.5等,可以采用过滤或者惯性离心的方法将其与空气分离开来。但是,对于病毒和纳米颗粒等亚微米悬浮颗粒物,由于直径很小、运动跟随性好,前述的分离方式效率不高。
通常,经呼吸道传播的病毒尺寸范围大约为80nm-300nm。病毒往往由感染患者通过咳嗽或打喷嚏产生的飞沫,在空气中形成亚微米尺寸的气溶胶传播,这使得传统的过滤方式效率极低。事实上目前建筑物空调系统(中央、独立等)、交通运输工具环控系统(飞机、铁路、汽车等)、空气净化装置以及排污系统(下水道等)等均缺乏高效安全便捷的手段去除亚微米尺寸范围内的病毒。
文献(CN106853381A)公开了一种粒子分离装置,该装置包括液体流通通道、聚焦超声装置和分离超声装置,其中液体流通通道包括样液入口、鞘液入口、聚焦通道、分离通道和至少两个粒子出口,通过聚焦超声装置产生第一超声波作用于聚焦通道内的待分离粒子使其运动至与第一超声波的传播方向垂直的同一平面上,通过分离超声装置产第二超声波作用于分离通道内的待分离粒子使不同大小的粒子分离形成不同粒子束,从而将大小不同的粒子分离开来。该装置 能够有效的将具有不同大小的粒子分离形成不同粒子束,但是该装置的载体是液体,通过高频率的声辐射压力使颗粒分离(聚集),不适合在空气中形成亚微米尺寸的亚微米悬浮颗粒物的分离(即载体为空气的亚微米悬浮颗粒物)。因此,亟待需要提供一种能够高效去除空气中的亚微米颗粒的技术方案。
发明内容
本发明的实施例提供一种分离空气中亚微米颗粒的装置,该装置通过利用超声驻波对空气中悬浮颗粒的团聚原理,能够有效去除空气中的亚微米悬浮颗粒。
本发明采用的技术方案为:
本发明实施例提供一种分离空气中亚微米颗粒的装置,包括依次连接的第一分离通道、第二分离通道和收集装置;
所述第一分离通道和所述第二分离通道为两端开放的长方体结构,所述第一分离通道的高度H 1大于所述第二分离通道的高度H 2
以第一分离通道下壁内表面最左端为坐标原点,第一分离通道的高度方向为y轴正向,第一分离通道长度方向为x轴正向,构建坐标系;
所述第一分离通道的上壁外表面安装有第一振动声源,并且上壁和下壁的内表面设置有第一杀菌涂层;所述第一振动声源用于沿y方向产生第一驻波场,所述第一驻波场用于聚集具有第一直径d p1的颗粒,所述第一直径d p1的范围为[350nm,1.2μm];
所述第二分离通道的上壁外表面安装有第二振动声源,并且上壁和下壁的内表面设置有第二杀菌涂层;所述第二振动声源用于沿y方向产生第二驻波场,所述第二驻波场用于聚集具有第二直径d p2的颗粒,所述第二直径d p2的范围为[80nm,500nm];
其中,所述第一驻波场的驻波频率f a1和高度H 1之间的关系被设置为使得流入第一分离通道的颗粒聚集在第一分离通道的上壁内表面、通道y方向中心轴水平面和下壁内表面处;所述第一杀菌涂层用 于吸附聚集在第一分离通道的上壁内表面和下壁内表面处的颗粒;
所述第二驻波场的驻波频率f a2和高度H 2之间的关系被设置为使得流入第二分离通道的颗粒聚集在第二分离通道的上壁内表面、通道y方向中心轴水平面和下壁内表面处;所述第二杀菌涂层用于吸附聚集在第二分离通道的上壁内表面和下壁内表面处的颗粒;
所述第一驻波场的驻波频率和所述第二驻波场的驻波频率和对应的聚集颗粒的直径之间的关系通过下述公式(1)至(4)确定:
0.45≤2πf a1τ 1≤5.35    (1)
τ 1=ρ mpd p1 2/(18μ g)    (2)
0.06≤2πf a2τ 2≤2.32    (3)
τ 2=ρ mpd p2 2/(18μ g)    (4)
其中,τ 1、τ 2分别为第一分离通道和第二分离通道中的空气的粘性力的弛豫时间,ρ mp为颗粒的材料密度,μ g为空气的动力粘度;
所述收集装置用于收集聚集在所述中心面上的颗粒。
本发明实施例提供的分离空气中亚微米颗粒的装置,基于超声驻波对空气中悬浮颗粒的团聚理论,能够将流入装置通道内的亚微米悬浮颗粒聚集到通道的上壁面和下壁面以及中心线上,并对聚集的颗粒进行杀菌处理,从而能够有效去除空气中的亚微米悬浮颗粒。
附图说明
图1为本发明实施例提供的分离空气中亚微米颗粒的装置的结构示意图;
图2(a)至图2(e)为本发明实施例的第一分离通道模拟分离亚微米颗粒的模拟结果;
图3(a)至图3(f)为本发明实施例的第二分离通道模拟分离亚微米颗粒的模拟结果;
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,本发明实施例提供一种分离空气中亚微米颗粒的装置,包括依次连接的第一分离通道1、第二分离通道2和收集装置3。
在本发明实施例中,所述第一分离通道1和所述第二分离通道2可为两端开放的长方体结构,其中,所述第一分离通道1的高度H 1大于所述第二分离通道2的高度H 2。第一分离通道1和第二分离通道2之间密封连接,在一个示例中,两者之间圆滑过渡连接,以使得流入第一分离通道1中的亚微米颗粒形成的颗粒流能够平滑流入到第二分离通道2中。第一分离通道1和第二分离通道2之间的间隔没有特别限制,只要能够实现颗粒流的平稳流入即可,在一个具体示例中,两者之间的间隔可为0.05m。此外,分离通道的材质可采用抗震动的材质,例如钢材质等。
在本发明实施例中,每个分离通道的上壁外表面安装有振动声源,当夹带亚微米颗粒的空气气流以平均速度Umean沿x轴正方向运动从左侧引入第一分离通道1时,第一振动声源4工作时,会沿y方向产生驻波场,如图1所示。在本发明实施例中,以第一分离通道下壁内表面最左端为坐标原点,第一分离通道的高度方向为y轴正向,第一分离通道长度方向为x轴正向,构建坐标系。振动声源可为高频振动发生器。
具体地,所述第一分离通道1的上壁外表面安装有第一振动声源4,并且上壁和下壁的内表面设置有第一杀菌涂层6;所述第一振动声源4用于沿y方向产生第一驻波场,所述第一驻波场用于聚集具有第一直径d p1的颗粒,所述第一直径d p1的范围为[350nm,1.2μm],即,第一分离通道1的高度较大,驻波频率较低,主要负责聚集直径较大的亚微米悬浮颗粒,如较小的细菌颗粒。所述第二分离通道2的上壁外表面上安装有第二振动声源5,并且上壁和下壁的内表面设置有第二杀菌涂层7;所述第二振动声源5用于沿y方向产生第二驻波场, 所述第二驻波场用于聚集具有第二直径d p2的颗粒,所述第二直径d p2的范围为[80nm,500nm],即,第二分离通道2的高度较小,驻波频率较高,负责聚集直径较小的颗粒,如大部分病毒颗粒。这样,通过这两个驻波场,可以实现对气流中直径在80nm-1.2μm范围内的亚微米颗粒的聚集。当然,如果仅针对直径小于500nm的颗粒或者直径大于500nm且小于1.2μm的颗粒,可以仅使用两个分离通道中的任意一级。
其中,所述第一驻波场的驻波频率f a1和高度H 1之间的关系被设置为使得流入第一分离通道的颗粒聚集在第一分离通道的上壁内表面、通道y方向中心轴水平面和下壁内表面处。所述第二驻波场的驻波频率f a2和高度H 2之间的关系被设置为使得流入第二分离通道的颗粒聚集在第二分离通道的上壁内表面、通道y方向中心轴水平面和下壁内表面处。即,流入第一分离通道的颗粒会在驻波的作用下聚集在y=0,y=H 1/2和y=H 1的位置处。
在一个具体实施例中,所述第一驻波场的驻波频率f a1和高度H 1之间的关系为:f a1*H 1=c 0;所述第二驻波场的驻波频率f a2和高度H 2之间的关系为:f a2*H 2=c 0;c 0为空气中的声速。在一个示例中,所述第一分离通道的高度可为2500μm,所述第一驻波场的驻波频率可为136000Hz,所述第二分离通道的高度可为1000μm,第二驻波场的驻波频率可为340000Hz,该示例示出的驻波频率和通道高度能够对直径在80nm-1.2μm范围内的亚微米颗粒进行有效的聚集。
进一步地,在本发明实施中,为实现对亚微米颗粒的高效分离,所述第一驻波场的驻波频率和所述第二驻波场的驻波频率和对应的聚集颗粒的直径之间的关系通过下述公式(1)至(4)确定:
0.45≤2πf a1τ 1≤5.35    (1)
τ 1=ρ mpd p1 2/(18μ g)    (2)
0.06≤2πf a2τ 2≤2.32    (3)
τ 2=ρ mpd p2 2/(18μ g)    (4)
即:
0.45≤2πf a1ρ mpd p1 2/(18μ g)≤5.35    (5)
0.06≤2πf a2ρ mpd p2 2/(18μ g)≤2.32    (6)
其中,τ 1、τ 2分别为第一分离通道和第二分离通道中的空气的粘性力的弛豫时间,ρ mp为组成颗粒的材料的密度,通过实际测定获得,在一个示例中可为与空气中病毒、细菌等颗粒的材料密度相接近的密度1400kg/m 3,μ g为空气的动力粘度。本发明的发明人经过多次试验验证发现,在第一分离通道的驻波频率和颗粒直径满足上述公式(5)时,能够使得直径范围为[350nm,1.2μm]的悬浮颗粒与载体介质(即空气)分离的效果比较明显,即聚集效果比较好,尤其是当2πf a1ρ mpd p1 2/(18μ g)=1时,能够使得通过第一分离通道的悬浮颗粒从载体介质处获得的动能最大,越能与载体介质的运动发生分离,即对悬浮颗粒的聚集效果最好。同理,在第二分离通道的驻波频率和颗粒直径满足上述公式(6)时,能够使得直径范围为[80nm,500nm]的悬浮颗粒与载体介质分离的效果比较明显,即聚集效果比较好,尤其是当2πf a2ρ mpd p2 2/(18μ g)=1时,能够使得通过第二分离通道的悬浮颗粒从载体介质处获得的动能最大,越能与载体介质的运动发生分离,即对悬浮颗粒的聚集效果最好。
在本发明实施例中,所述第一杀菌涂层6用于吸附聚集在第一分离通道的上壁内表面和下壁内表面处的颗粒,所述第二杀菌涂层7用于吸附聚集在第二分离通道的上壁内表面和下壁内表面处的颗粒,以对病原体微生物颗粒进行附着和灭活。杀菌涂层可采用现有市售产品, 例如可采用劼科生物科技(上海)有限公司生产的Germagic长效杀菌喷剂。
此外,所述收集装置3用于收集聚集在所述中心面上的颗粒,收集装置3可为现有设备,本发明并不做特别限定,只要能够将聚集的悬浮颗粒收集并后处理的任何设备均可以。经杀菌涂层和收集装置处理后的洁净的空气可以从其它y向位置沿通道正常流出并被排放如大气或者被正常使用。
在本发明实施例中,驻波场的驻波幅值固定时,分离通道的长度与在分离通道流动的颗粒的平均流速正相关,分离通道流动的颗粒的平均流速固定时,分离通道的长度与驻波场的驻波幅值负相关;分离通道的长度固定时,驻波场的驻波幅值与在分离通道流动的颗粒的平均流速正相关。即,当维持第一驻波场的驻波幅值不变时,所述第一分离通道1的长度L 1与在第一分离通道1流动的颗粒的平均流速U mean1正相关;当维持第一分离通道流动的颗粒的平均流速不变时,所述第一分离通道的长度与第一驻波场的驻波幅值p 1负相关;当维持第一分离通道的长度不变时,所述第一驻波场的驻波幅值p 1与在第一分离通道流动的颗粒的平均流速U mean1正相关。当维持第二驻波场的驻波幅值不变时,所述第二分离通道2的长度L 2与在第二分离通道流动的颗粒的平均流速U mean2正相关;当维持第二分离通道流动的颗粒的平均流速不变时,所述第二分离通道的长度与第二驻波场的驻波幅值p 2负相关;当维持第二分离通道的长度不变时,所述第二驻波场的驻波幅值p 2与在第二分离通道流动的颗粒的平均流速U mean2正相关。
在本发明一具体实施例中,为实现对对气流中直径在80nm-1.2μm范围内的亚微米颗粒的有效聚集,第一分离通道1和第二分离通道2的主要参数可如下表1所示:
表1:分离通道的主要参数
Figure PCTCN2020106702-appb-000001
也就是说,在本发明实施例中,在第一分离通道的长度L 1=0.15m至0.25m,高度H 1=2500μm,高频振动发生器的频率f a1=136000Hz,产生的驻波声压幅值p 1超过1000Pa的条件下,最小能够聚集的颗粒直径为350nm,最大能够聚集的颗粒直径为1.2μm,对直径为520nm的悬浮微粒的聚集效果最佳。在第二分离通道的长度L 2=0.25m至0.35m,高度H 2=1000μm,高频振动发生器的频率f a2=340000Hz,产生的驻波声压幅值p 2超过1000Pa的条件下,能够聚集的最小颗粒直径可下探至80nm,最大能够聚集的颗粒直径为500nm,对直径为320nm的悬浮微粒的聚集效果最佳,可以有效覆盖大部分依托空气传播的病毒颗粒的直径范围。
【实施例】
本发明实施例中,对具有如下表2所示的参数的第一分离通道和第二分离通道的聚集效果进行验证。
表2:分离通道的模拟参数
Figure PCTCN2020106702-appb-000002
即,在模拟实验中,(1)对于第一分离通道,模拟微粒直径为350nm、520nm、750nm、1μm和1.2μm的聚集过程,用于验证其对直径大于500nm小于1.2μm的颗粒的聚集效果;(2)对于第二分离通道,模拟微粒直径为80nm、100nm、160nm、240nm、320nm和500nm时的聚集过程,用于验证其对直径小于500nm的颗粒的聚集效果。此外,在对第二分离通道进的聚集效果进行验证时,模拟过程重点关注对直径范围在80nm-300nm之间的颗粒(空气媒介病毒)的聚集效果。模拟中微粒的材料密度ρ mp取值为1400kg/m 3
在本发明实施例中,采用如下公式(7)~(11)所限定的数值模拟的方法对具有表2的参数的分离通道的聚集效果进行验证。
(数值模拟方法)
驻波作为颗粒运动的驱动项,以解析解的形式给出。假设驻波波长为管道高度H,则驻波的压力p g(y,t)和y方向速度v g(y,t)分别为:
Figure PCTCN2020106702-appb-000003
Figure PCTCN2020106702-appb-000004
其中,t表示驻波对颗粒的作用时间即驻波作用时间,单位为s,通过实际测定确定;y表示颗粒在驻波作用时间t时的y方向的坐标,通过实际测定确定;
对于管道内的流动,在平均流速U mean较低的条件下假设为层流。根据Couette公式,时均速度沿y方向的速度剖面分布U g(y)表示为:
Figure PCTCN2020106702-appb-000005
悬浮亚微米颗粒被看作运动的球形质点,其牛顿运动方程为:
Figure PCTCN2020106702-appb-000006
其中,
Figure PCTCN2020106702-appb-000007
Figure PCTCN2020106702-appb-000008
分别代表第i个颗粒的空间位置和速度,
Figure PCTCN2020106702-appb-000009
是气流在第i个颗粒位置处的速度大小,由驻波的速度v g(y,t)和气流的平均速度U g(y)确定,即
Figure PCTCN2020106702-appb-000010
C d为空气介质与颗粒的粘性力系数,由Stokes粘性系数给出:
Figure PCTCN2020106702-appb-000011
这样,可根据表2给出的驻波频率f a、驻波幅值p a、通道的高度H、平均流速U mean、颗粒直径d p以及微粒的材料密度ρ mp、模拟过程中测定的驻波作用时间t和对应的颗粒在y方向的坐标y,基于上述公式(7)~(11)获得每个颗粒的空间位置和速度。模拟结果可分别如图2(a)~(e)和图3(a)~(f)所示。
图2(a)~(e)中分别给出了第一分离通道内,350nm、520nm、750nm、1μm和1.2μm五种直径的微粒在驻波作用3秒后的分布和状态。从图2(a)~(c)中可以看出,本实施例对直径为350nm到750nm微粒的聚集效果十分明显。绝大部分微粒在进入通道0.1m后均被聚集于理论位置y=0,y=H/2和y=H处。对于直径为1μm和1.2μm的微粒,如图2(d)和图2(e)所示,驻波对其聚集效率稍低,但是当微粒沿轴向运动到通道出口处(0.15m)时,微粒也基本聚集在理论位置上,即第一分离通道的两壁内表面和中心线上。
图3(a)-(f)中分别给出了第二分离通道内,80nm、100nm、160nm、240nm、320nm和500nm六种直径的微粒在驻波作用3秒后的分布和状态。从图3(a)中可以看出,对于直径较小的情况(例如80nm),驻波对其聚集效率稍低,但是当微粒沿轴向运动到通道出口处(0.25m)时,微粒也基本聚集在理论位置上,即第二分离通道的两壁内表面和中心线上。图3(b)-(e)中给出了驻波对直径100nm-320nm之间的颗粒物的聚集分布,可以看出在本实施例的模拟方案下,这一直径范围内的颗粒能够在流出通道之前被聚集到理论位置。该直径范围也是流感病毒、冠状肺炎病毒等通过空气传播的流行病病毒的尺寸范围,因此也验证了本实施例的模拟方案对去除气流中 传染病原体的有效性。对于直径500nm的微粒,图3(f)说明了该模拟方案同样有很好的聚集效果,几乎所有颗粒进入通道0.1m后都很快聚集于通道的两壁内表面和中心线上。
综上,本发明实施例提供的分离空气中亚微米颗粒的装置,基于超声驻波对空气中悬浮颗粒的团聚理论,能够将流入装置通道内的亚微米悬浮颗粒聚集到通道的上壁面和下壁面以及中心线上,并对聚集的颗粒进行杀菌处理,从而能够有效去除空气中亚微米悬浮颗粒。
以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (8)

  1. 一种分离空气中亚微米颗粒的装置,其特征在于,包括依次连接的第一分离通道、第二分离通道和收集装置;
    所述第一分离通道和所述第二分离通道为两端开放的长方体结构,所述第一分离通道的高度H 1大于所述第二分离通道的高度H 2
    以第一分离通道下壁内表面最左端为坐标原点,第一分离通道的高度方向为y轴正向,第一分离通道长度方向为x轴正向,构建坐标系;
    所述第一分离通道的上壁外表面安装有第一振动声源,并且上壁和下壁的内表面设置有第一杀菌涂层;所述第一振动声源用于沿y方向产生第一驻波场,所述第一驻波场用于聚集具有第一直径d p1的颗粒,所述第一直径d p1的范围为[350nm,1.2μm];
    所述第二分离通道的上壁外表面安装有第二振动声源,并且上壁和下壁的内表面设置有第二杀菌涂层;所述第二振动声源用于沿y方向产生第二驻波场,所述第二驻波场用于聚集具有第二直径d p2的颗粒,所述第二直径d p2的范围为[80nm,500nm];
    其中,所述第一驻波场的驻波频率f a1和高度H 1之间的关系被设置为使得流入第一分离通道的颗粒聚集在第一分离通道的上壁内表面、通道y方向中心轴水平面和下壁内表面处;所述第一杀菌涂层用于吸附聚集在第一分离通道的上壁内表面和下壁内表面处的颗粒;
    所述第二驻波场的驻波频率f a2和高度H 2之间的关系被设置为使得流入第二分离通道的颗粒聚集在第二分离通道的上壁内表面、通道y方向中心轴水平面和下壁内表面处;所述第二杀菌涂层用于吸附聚集在第二分离通道的上壁内表面和下壁内表面处的颗粒;
    所述第一驻波场的驻波频率和所述第二驻波场的驻波频率和对应的聚集颗粒的直径之间的关系通过下述公式(1)至(4)确定:
    0.45≤2πf a1τ 1≤5.35   (1)
    τ 1=ρ mpd p1 2/(18μ g)   (2)
    0.06≤2πf a2τ 2≤2.32   (3)
    τ 2=ρ mpd p2 2/(18μ g)(4)
    其中,τ 1、τ 2分别为第一分离通道和第二分离通道中的空气的粘性力的弛豫时间,ρ mp为颗粒的材料密度,μ g为空气的动力粘度;
    所述收集装置用于收集聚集在所述中心面上的颗粒。
  2. 根据权利要求1所述的分离空气中亚微米颗粒的装置,其特征在于,所述第一驻波场的驻波频率f a1和高度H 1之间的关系为:f a1*H 1=c 0
    所述第二驻波场的驻波频率f a2和高度H 2之间的关系为:f a2*H 2=c 0
    c 0为空气中的声速。
  3. 根据权利要求1或2所述的分离空气中亚微米颗粒的装置,其特征在于,所述第一分离通道的高度为2500μm,所述第一驻波场的驻波频率为136000Hz;所述第二分离通道的高度为1000μm,第二驻波场的驻波频率为340000Hz。
  4. 根据权利要求1所述的分离空气中亚微米颗粒的装置,其特征在于,所述第一分离通道和所述第二分离通道之间圆滑过渡连接。
  5. 根据权利要求1所述的分离空气中亚微米颗粒的装置,其特征在于,当维持第一驻波场的驻波幅值不变时,所述第一分离通道的长度与在第一分离通道流动的颗粒的平均流速正相关;
    当维持第一分离通道流动的颗粒的平均流速不变时,所述第一分离通道的长度与第一驻波场的驻波幅值负相关;
    当维持第一分离通道的长度不变时,所述第一驻波场的驻波幅值与在第一分离通道流动的颗粒的平均流速正相关。
  6. 根据权利要求5所述的分离空气中亚微米颗粒的装置,其特征在于,
    在所述第一分离通道中流动的颗粒的平均流速为0.05m/s~0.08m/s;
    所述第一驻波场的驻波幅值大于等于1000Pa;
    所述第一分离通道的长度为0.15m~0.25m。
  7. 根据权利要求1所述的分离空气中亚微米颗粒的装置,其特征在于,当维持第二驻波场的驻波幅值不变时,所述第二分离通道的长度与在第二分离通道流动的颗粒的平均流速正相关;
    当维持第二分离通道流动的颗粒的平均流速不变时,所述第二分离通道的长度与第二驻波场的驻波幅值负相关;
    当维持第二分离通道的长度不变时,所述第二驻波场的驻波幅值与在第二分离通道流动的颗粒的平均流速正相关。
  8. 根据权利要求7所述的分离空气中亚微米颗粒的装置,其特征在于,
    在所述第二分离通道中流动的颗粒的平均流速为0.125m/s~0.2m/s;
    所述第二驻波场的驻波幅值大于等于1000Pa;
    所述第二分离通道的长度为0.25m~0.35m。
PCT/CN2020/106702 2020-08-04 2020-08-04 一种分离空气中亚微米颗粒的装置 WO2022027210A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/106702 WO2022027210A1 (zh) 2020-08-04 2020-08-04 一种分离空气中亚微米颗粒的装置
US17/424,471 US11925893B2 (en) 2020-08-04 2020-08-04 Device for separating sub-micron particles in the air
EP20913052.5A EP3978097A4 (en) 2020-08-04 2020-08-04 DEVICE FOR SEPARATION OF SUBMICROMETRIC PARTICLES IN AIR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106702 WO2022027210A1 (zh) 2020-08-04 2020-08-04 一种分离空气中亚微米颗粒的装置

Publications (1)

Publication Number Publication Date
WO2022027210A1 true WO2022027210A1 (zh) 2022-02-10

Family

ID=80119240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106702 WO2022027210A1 (zh) 2020-08-04 2020-08-04 一种分离空气中亚微米颗粒的装置

Country Status (3)

Country Link
US (1) US11925893B2 (zh)
EP (1) EP3978097A4 (zh)
WO (1) WO2022027210A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110929A (zh) * 1994-04-28 1995-11-01 王晓庆 一种利用超声分离悬浮颗粒的仪器
US6332541B1 (en) * 1997-05-03 2001-12-25 University College Cardiff Consultants Ltd Particle manipulation
CN101060898A (zh) * 2004-09-24 2007-10-24 斯派克特罗尼克股份公司 用于分离粒子的方法和装置
CN102026699A (zh) * 2007-12-05 2011-04-20 康斯乔最高科学研究公司 用于选择性和非侵入性地分离和提取多分散悬浮物中的颗粒的微型装置和方法、制造方法及其应用
CN102527488A (zh) * 2011-12-27 2012-07-04 中国矿业大学 一种微纳米颗粒超声分离装置
CN106853381A (zh) 2016-12-16 2017-06-16 苏州国科昂卓医疗科技有限公司 一种粒子分离装置、系统及粒子分离方法
CN109069966A (zh) * 2016-03-06 2018-12-21 文德普鲁索讷有限公司 通过声泳从气体中分离和/或清除气溶胶和固体颗粒和纤维以及从液体材料中分离和/或清除固体颗粒和纤维的方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339247A (en) * 1981-04-27 1982-07-13 Battelle Development Corporation Acoustic degasification of pressurized liquids
JP3487699B2 (ja) * 1995-11-08 2004-01-19 株式会社日立製作所 超音波処理方法および装置
US7340957B2 (en) * 2004-07-29 2008-03-11 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
EP2664916B1 (en) * 2007-04-02 2017-02-08 Acoustic Cytometry Systems, Inc. Method for manipulating a fluid medium within a flow cell using acoustic focusing
US8714014B2 (en) * 2008-01-16 2014-05-06 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
US8387803B2 (en) * 2008-08-26 2013-03-05 Ge Healthcare Bio-Sciences Ab Particle sorting
US9821310B2 (en) * 2011-03-31 2017-11-21 The University Of Akron Two-stage microfluidic device for acoustic particle manipulation and methods of separation
US9272234B2 (en) * 2012-03-15 2016-03-01 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
WO2014210046A1 (en) * 2013-06-24 2014-12-31 Flodesign Sonics, Inc. Fluid dynamic sonic separator
KR102450509B1 (ko) * 2014-05-08 2022-10-04 프로디자인 소닉스, 인크. 압전 트랜듀서 어레이를 구비한 음파영동 장치
WO2016201385A2 (en) * 2015-06-11 2016-12-15 Flodesign Sonics, Inc. Acoustic methods for separation cells and pathogens
EP4145101A4 (en) * 2021-07-13 2023-05-03 Beihang University TEST PLATFORM FOR GLOBAL ACOUSTIC CLADDING PERFORMANCE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110929A (zh) * 1994-04-28 1995-11-01 王晓庆 一种利用超声分离悬浮颗粒的仪器
US6332541B1 (en) * 1997-05-03 2001-12-25 University College Cardiff Consultants Ltd Particle manipulation
CN101060898A (zh) * 2004-09-24 2007-10-24 斯派克特罗尼克股份公司 用于分离粒子的方法和装置
CN102026699A (zh) * 2007-12-05 2011-04-20 康斯乔最高科学研究公司 用于选择性和非侵入性地分离和提取多分散悬浮物中的颗粒的微型装置和方法、制造方法及其应用
CN102527488A (zh) * 2011-12-27 2012-07-04 中国矿业大学 一种微纳米颗粒超声分离装置
CN109069966A (zh) * 2016-03-06 2018-12-21 文德普鲁索讷有限公司 通过声泳从气体中分离和/或清除气溶胶和固体颗粒和纤维以及从液体材料中分离和/或清除固体颗粒和纤维的方法和装置
CN106853381A (zh) 2016-12-16 2017-06-16 苏州国科昂卓医疗科技有限公司 一种粒子分离装置、系统及粒子分离方法

Also Published As

Publication number Publication date
EP3978097A1 (en) 2022-04-06
US11925893B2 (en) 2024-03-12
US20220305426A1 (en) 2022-09-29
EP3978097A4 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
Zhou et al. Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment
CN104587789B (zh) 基于亥姆霍兹共鸣器阵列的悬浮颗粒声波团聚系统及方法
JP2019507681A (ja) 音響泳動により、エアロゾルと、ガスからの固形物粒子および繊維と、流体からの固形物粒子および繊維とを分離および/または清浄化するための方法および機器
US5419877A (en) Acoustic barrier separator
Yao Research and applications of ultrasound in HVAC field: A review
CN107810039B (zh) 筛帘阵列和沉降装置以及废气处理方法
Sun et al. Coupling effect of gas jet and acoustic wave on inhalable particle agglomeration
CN104190199A (zh) 声波与相变耦合作用脱除细颗粒的装置和方法
Khmelev et al. Revealing of optimum modes of ultrasonic coagulation of submicron particles and determining of the shape of the aggregates by mathematical modeling
WO2022027210A1 (zh) 一种分离空气中亚微米颗粒的装置
CN107355970A (zh) 一种组合式低噪音百级层流系统
RU2740899C1 (ru) Способ ультразвуковой коагуляции субмикронных частиц
Reethof Acoustic agglomeration of power plant fly ash for environmental and hot gas clean-up
KR100473196B1 (ko) 초음파를 이용한 유해 배기가스 및 매연 집진장치
Noorpoor et al. Influence of acoustic waves on deposition and coagulation of fine particles
CN108771938A (zh) 一种超声波空气净化方法及系统
WO2022072819A1 (en) Air purifier/conditioner (arc)
Yang et al. Agglomeration of oil droplets assisted by low-frequency sonic pretreatment
KR102264465B1 (ko) 다중 주파수 음파를 이용한 미세입자 응집 제거 방법
CN204973331U (zh) 颗粒凝聚惯性除尘处理装置
CN215446696U (zh) 无滤网过滤器及空气消毒装置、中央空调
CN106076053A (zh) 基于共振腔的分离式声团聚悬浮细颗粒减排系统
CN206045709U (zh) 基于共振腔的分离式声团聚悬浮细颗粒减排系统
Noorpoor et al. Experimental study on diesel exhaust particles agglomeration using acoustic waves
CN207162774U (zh) 一种静电式空气净化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020913052

Country of ref document: EP

Effective date: 20210726

NENP Non-entry into the national phase

Ref country code: DE