WO2022025728A1 - 분광기 - Google Patents

분광기 Download PDF

Info

Publication number
WO2022025728A1
WO2022025728A1 PCT/KR2021/010022 KR2021010022W WO2022025728A1 WO 2022025728 A1 WO2022025728 A1 WO 2022025728A1 KR 2021010022 W KR2021010022 W KR 2021010022W WO 2022025728 A1 WO2022025728 A1 WO 2022025728A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
spectrometer
band
disperser
Prior art date
Application number
PCT/KR2021/010022
Other languages
English (en)
French (fr)
Inventor
조성호
프라탑 싱가젠드라
Original Assignee
주식회사 스킨어세이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스킨어세이 filed Critical 주식회사 스킨어세이
Priority to US18/018,674 priority Critical patent/US20230296435A1/en
Publication of WO2022025728A1 publication Critical patent/WO2022025728A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0275Details making use of sensor-related data, e.g. for identification of sensor parts or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/002Optical devices or arrangements for the control of light using movable or deformable optical elements the movement or the deformation controlling the frequency of light, e.g. by Doppler effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1204Grating and filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/123Indexed discrete filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1243Pivoting IF or other position variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1804Plane gratings

Definitions

  • the present technology relates to spectroscopy.
  • a spectrometer refers to a device that decomposes light, ie, electromagnetic waves, absorbed or emitted by a target material according to the difference in wavelength and measures the intensity distribution for each wavelength.
  • a spectrometer generally uses a grating, a prism, an interferometer, an optical filter, and the like to disperse electromagnetic waves by wavelength.
  • the spectrometer consists of a device that receives all of the spectral wavelengths at once by using an imaging device such as a CCD (Charged Coupled Device) or CIS (CMOS image sensor), and a single or an array of photodiodes. It is largely divided into two types: a method of receiving only a specific or some wavelengths at a time. A method that receives only a specific wavelength or only some wavelengths can perform scanning to read the entire spectrum.
  • the spectrometer that receives all the spectral wavelengths at once is convenient because all optical devices are fixed, and has the advantage of reading all wavelengths at once.
  • the method of receiving light at a specific wavelength or some wavelengths is a method that converts the light received by the photodiode into an electrical signal, is simple and inexpensive, and has the advantage of being able to adjust wavelength resolution or sensitivity by adjusting the size and scanning time of a dispersion device such as a diffraction grating
  • a dispersion device such as a diffraction grating
  • mechanical movement is required.
  • the spectrometer according to the prior art performs low-temperature cooling in order to reduce thermal noise in order to improve the signal-to-noise ratio, and thus an apparatus for this purpose is additionally required, which is complicated in configuration and expensive.
  • One of the problems to be solved by the present technology is to solve the above-described difficulties of the prior art. That is, the present technology is one of the problems to be solved to provide a spectrometer capable of improving measurement sensitivity by achieving a high signal-to-noise ratio.
  • the spectrometer includes a diffuser for dispersing the incident signal light, wherein the diffuser: a band filter for dividing the signal light by band by pivoting according to a driving signal, and a band filter for dividing the signal light for each band and a light receiving element for outputting an electrical signal.
  • the spectrometer includes a mixer that receives the electrical signal and the driving signal and mixes the electrical signal and the driving signal, and a signal of a desired band from the signal output from the mixer It further includes an electrical filter for outputting.
  • the disperser further includes a collimator for collimating the signal light and providing it to the disperser.
  • the spectrometer further includes an amplifier amplifying the electrical signal and providing it to the mixer.
  • the light receiving element includes one or more photodiodes arranged in an array or in a line.
  • the band filter is an interference filter that is coated with a material having a different refractive index a plurality of times, and transmits light of a preset band by interference.
  • the band filter pivots about one of the y-axis and the z-axis perpendicular to the x-axis, which is the optical axis of the signal light, as a pivot axis.
  • the wavelength of light output from the bandpass filter decreases.
  • the band filter As the band filter pivots, the band filter outputs the dispersed light for each band of the signal light, and the light receiving element receives the dispersed light.
  • the spectrometer includes a diffuser for dispersing the incident signal light, and the diffuser: a diffraction grating for dividing the signal light by band by pivoting according to a driving signal, and a diffraction grating for dividing the signal light for each band by receiving and corresponding and a light receiving element for outputting an electrical signal.
  • the disperser includes a mixer that receives the electrical signal and the driving signal and mixes the electrical signal and the driving signal, and a signal of a desired band from the signal output from the mixer It further includes an electrical filter for outputting.
  • the spectrometer further includes a collimator for collimating the signal light and providing the collimator to the disperser.
  • the disperser further includes an amplifier amplifying the electrical signal and providing it to the mixer.
  • the light receiving element includes one or more photodiodes arranged in an array.
  • the diffraction grating is a diffraction grating including a plurality of grating patterns formed in one direction.
  • the disperser disperses and outputs light of all bands included in the signal light.
  • the light receiving element receives the scattered light.
  • the diffraction grating pivots about one of the y-axis and z-axis perpendicular to the x-axis, which is the optical axis of the signal light, as a pivot axis.
  • the spectrometer of this embodiment is provided with the advantage that a high signal-to-noise ratio can be obtained, and a high measurement sensitivity can be obtained compared to the prior art.
  • FIG. 1 is a schematic block diagram of a spectrometer 1 according to the present embodiment.
  • FIG. 2 is a diagram schematically illustrating the configuration of the disperser 200 .
  • 3 is a diagram illustrating characteristics of transmitted light when the band filter 220 pivots.
  • FIG. 4 is a diagram illustrating a light input/output relationship when the band filter 220 pivots based on the result of FIG. 3 .
  • FIG. 5 is a diagram schematically illustrating the configuration of the disperser 200 according to another embodiment.
  • FIG. 6 is a diagram illustrating light when the diffraction grating 230 pivots.
  • each step may occur in a different order than the stated order unless the context clearly dictates a specific order. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • the spectrometer 10 receives the signal light Ls and pivots according to the driving signal DRV to include a disperser 200 including an element for splitting the signal light for each band. and a light receiving element 310 that receives the signal light and outputs a corresponding electrical signal Es.
  • the signal light Ls is an analysis target light, and may be light provided from a light source (not shown).
  • the signal light Ls may be Raman scattered light formed by Raman scattering.
  • the signal light Ls may be light including an absorption spectrum formed by absorption of a specific frequency component.
  • the signal light Ls may be light in which an optical change such as absorption of a frequency component or variation of a frequency component occurs due to reflection.
  • the spectrometer 10 of the present embodiment receives the signal light Ls, divides it, and outputs an electrical signal Es corresponding to the signal light.
  • the signal light Ls is provided to the collimator 150 , is converted into the collimated signal light Lc which is a parallel light, and is provided to the disperser 200 .
  • the disperser 200 receives the optical system 210 including a condensing lens or condensing mirror for condensing the collimated signal light Lc provided by the collimator 150, and a driving signal DRV. and a dispersion element that pivots at an angle of
  • the dispersion element is a bandpass filter 220 .
  • the dispersion element is provided with a driving signal, and may include a driving unit for pivotally driving the dispersion element with respect to a pivot axis in response to the driving signal.
  • the band filter 220 is coated with materials having different refractive indices a plurality of times.
  • the band filter 220 having such a configuration is an interference type band pass filter that transmits light of a preset band and cancels light outside the preset band by interfering with each other.
  • the band filter 220 pivots about a pivot axis A to correspond to the provided driving signal DRV.
  • the pivot axis may be either a y-axis or a z-axis perpendicular to the x-axis.
  • the pivot axis A is a straight line including a point where the optical axis of the collimated signal light Lc meets the band filter 220 , and may be a straight line perpendicular to the optical axis of the collimated signal light Lc.
  • the pivot axis A is a straight line perpendicular to the optical axis of the signal light Lc collimated by a straight line including a point at one end of the bandpass filter 220 , or any outside of the bandpass filter 220 .
  • a straight line including a point it may be a straight line perpendicular to the optical axis of the collimated signal light Lc.
  • the band filter 220 pivots back and forth about the optical axis of the signal light Lc along the pivot axis A.
  • the driving signal DRV may be, for example, a sinusoidal wave or a square wave having a preset frequency and amplitude.
  • the band filter 220 may perform a pivot motion according to the driving signal DRV.
  • the driving signal DRV is a sine wave
  • the band filter 220 is locked and pivoted at the frequency of the driving signal DRV.
  • the driving signal is a square wave
  • the number of square wave pulses included in the driving signal may be counted and pivoted to correspond to the counting result.
  • the light receiving element 310 receives various wavelength components provided while the band filter 220 pivots.
  • FIG. 3 is a diagram illustrating characteristics of transmitted light when the band filter 220 pivots.
  • the bandpass filter 220 when the bandpass filter 220 is vertically arranged with respect to the optical axis of the collimated signal light Lc and pivoted by 5 degrees, 10 degrees, ..., 25 degrees, the bandpass filter 220 ) the wavelength of the light output is shown.
  • the pivot angle of the bandpass filter 220 increases, it can be seen that the wavelength of the light transmitted from the bandpass filter 220 decreases.
  • FIG. 4 is a diagram illustrating a light input/output relationship when the band filter 220 pivots based on the result of FIG. 3 .
  • the bandpass filter 220 when the bandpass filter 220 does not pivot or the pivot angle is small, the bandpass filter 220 transmits light ⁇ 1 of a predetermined band from the collimated signal light. However, as the pivot angle increases, the band filter 220 transmits the light ⁇ 2 having a shorter wavelength (higher frequency) than the band of the transmitted light in FIG. 4A .
  • the optical axis of the transmitted light is shifted from the optical axis of the collimated signal light L2 due to the difference between the refractive index of the bandpass filter and the refractive index of air.
  • the band filter 220 transmits light of a shorter (higher frequency) than the band of transmitted light than the case illustrated in FIG. 4( b ). through ( ⁇ 3). Furthermore, the optical axis of the transmitted light in a state where the band filter 220 is pivoted is further shifted from the optical axis of the transmitted light in the case illustrated in FIG. 4(b).
  • the disperser 200 receives the optical system 210 including a condensing lens or condensing mirror for condensing the collimated signal light Lc provided by the collimator 150, and a driving signal DRV. and a dispersion element that pivots at an angle of
  • the dispersing element is a diffraction grating 230 that provides a diffraction grating of the collimated signal light L2 .
  • the diffraction grating 230 disperses and provides light of all bands included in the signal light.
  • the diffraction grating 230 includes a plurality of grating patterns formed in one direction.
  • the pivot axis A on which the diffraction grating 230 pivots includes a point at which the collimated signal light Lc meets the diffraction grating, and may be a straight line parallel to the direction in which the grating pattern is formed.
  • the pivot axis A is a straight line perpendicular to the optical axis of the signal light Lc collimated by a straight line including a point at one end of the diffraction grating 230 , or the diffraction grating 230 . ), which is a straight line including any one point outside the , and may be a straight line perpendicular to the optical axis of the collimated signal light Lc.
  • the band filter 220 pivots back and forth about the optical axis of the signal light Lc along the pivot axis A.
  • the driving signal DRV may be, for example, a sinusoidal wave or a square wave having a preset frequency and amplitude.
  • the diffraction grating 230 may pivot according to the amplitude and/or frequency of the driving signal DRV.
  • the driving signal DRV is a sinusoidal wave
  • the diffraction grating 230 is locked and pivoted at the frequency of the driving signal DRV.
  • the driving signal is a square wave
  • the number of square wave pulses included in the driving signal may be counted and may be pivoted to correspond to the counting result. while receiving the various wavelength components provided.
  • the light receiving element 310 may include one or more photodiodes arranged in a row or an array form, for example, may be combined with a cooling device (not shown) to reduce thermal noise. have.
  • FIG. 6 is a diagram illustrating light when the diffraction grating 230 pivots. 6(a) and 6(b), in a state in which the light receiving element 310 is fixed, the light receiving element 310 receives different wavelengths as the diffraction grating pivots, and corresponds to the received light.
  • An electrical signal Es is output.
  • the light receiving element 310 when light of a specific wavelength band is to be received, it is preferable to dispose the light receiving element 310 at a position of the wavelength band provided by the diffraction grating 230 being dispersed when pivoting.
  • the light receiving element 310 (refer to FIG. 1 ) may have a size capable of receiving all of the light provided through the diffraction grating 230 .
  • the diffuser includes a reflective grating.
  • the light receiving element 310 forms an electrical signal Es corresponding to the received light and provides it to the amplifier 320 .
  • the amplifier 320 amplifies the provided signal with a predetermined gain and outputs the amplified signal to the mixer 330 .
  • the mixer 330 down-converts the signal output from the amplifier 320 using the driving signal DRV. For example, if the frequency of the signal output by the amplifier 320 is f 1 and the frequency of the driving signal DRV is f DRV , the output signal OUT of the mixer can be expressed as in Equation 1 below. have.
  • the output signal OUT of the mixer 330 is a signal having a frequency component corresponding to a frequency difference between the output signal of the amplifier 320 and the driving signal, and a frequency corresponding to the sum of the frequencies of the output signal and the driving signal of the amplifier 320 . It can be expressed as the sum of signals having components.
  • a signal component having a frequency component corresponding to the sum of the frequencies of the amplifier 320 output signal and the driving signal is cut off, and the amplifier 320 output signal and driving signal are blocked.
  • a signal having a frequency component corresponding to a frequency difference between the signals may be obtained.
  • the signal output from the filter is an electrical signal corresponding to the signal light, and has a high signal-to-noise ratio.
  • the dispersion element is modulated with a driving signal (DRV) having a specific frequency to pivot, and then down-converted by a mixer using the spectral signal and the driving signal, an advantage is provided that a spectral signal having a high signal-to-noise ratio can be obtained.
  • DUV driving signal

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

본 실시예에 의한 분광기는 입사한 신호광을 분산시키는 분산기를 포함하며, 상기 분산기는: 구동 신호에 따라 피봇(pivot)하여 상기 신호광을 대역별로 분광하는 대역 필터 및 대역별로 분광된 신호광을 수광하여 상응하는 전기적 신호를 출력하는 수광 소자를 포함한다.

Description

분광기
본 기술은 분광기와 관련된다.
분광기는 타겟 물질이 흡수 또는 방출하는 빛 즉 전자기파를 파장의 차이에 따라 분해하고 그 파장별 강도 분포를 측정하는 기구를 말한다. 분광기는 전자기파의 파장별 분산을 위해서 일반적으로 회절격자(Grating), 프리즘(Prism), 간섭기(Interferometer), 광필터(Optical Filter) 등을 사용한다.
분광기는 회절격자에 의한 분광을 CCD(Charged coupled device), CIS(CMOS image sensor) 등의 촬상소자를 이용하여 분광된 파장 전부를 한번에 수광하는 장치와 단일 혹은 어레이로 배열된 포토 다이오드(Photodiode)로 한번에 특정 또는 일부 파장만 수광하는 방식의 두 방식으로 크게 나뉜다. 특정 파장 또는 일부 파장 만 수광하는 방식은 스캐닝을 수행하여 전체 분광을 읽을 수 있다.
분광된 파장 전부를 한번에 수광하는 분광기는 모든 광학 장치가 고정되어 있어서 편리하고 모든 파장을 한꺼번에 읽을 수 있는 장점이 있으나 화소수가 많은 CCD, CIS가 필요하고 장치가 복잡하고 고가이다.
특정 파장 또는 일부 파장만 수광하는 방식은 포토 다이오드가 수광한 광을 전기적 신호로 변환하며, 간단하면서 저가이며, 크기 및 회절 격자 등 분산장치의 스캐닝 시간을 조절하여 파장 분해능이나 감도를 조절할 수 있는 장점이 있으나 기계적인 움직임이 필요한 단점이 있다.
종래 기술에 의한 분광기는 신호대 잡음비를 향상시키기 위하여 열잡음을 감소시키기 위하여 저온 냉각 등을 수행하므로, 이를 위한 장치가 추가적으로 필요하여 구성이 복잡하고, 고가이다.
본 기술로 해결하고자 하는 과제 중 하나는 상기한 종래 기술의 난점을 해소하기 위한 것이다. 즉, 본 기술은 높은 신호대잡음비를 달성하여 측정 감도를 향상시킬 수 있는 분광기를 제공하는 것이 해결하고자 하는 과제 중 하나이다.
본 실시예에 의한 분광기는 입사한 신호광을 분산시키는 분산기를 포함하며, 상기 분산기는: 구동 신호에 따라 피봇(pivot)하여 상기 신호광을 대역별로 분광하는 대역 필터 및 대역별로 분광된 신호광을 수광하여 상응하는 전기적 신호를 출력하는 수광 소자를 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 분광기는, 상기 전기적 신호와 상기 구동 신호를 제공받고 상기 전기적 신호와 상기 구동 신호를 믹싱하는 믹서(mixer)와, 상기 믹서에서 출력된 신호에서 목적하는 대역의 신호를 출력하는 전기적 필터를 더 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 분산기는 상기 신호광을 시준하여 상기 분산기에 제공하는 시준기(collimator)를 더 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 분광기는, 상기 전기적 신호를 증폭하여 상기 믹서에 제공하는 증폭기를 더 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 수광 소자는, 어레이 또는 일렬로 배열된 하나 이상의 포토 다이오드들을 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 대역 필터는, 굴절율이 다른 물질이 복수회 코팅되고, 간섭에 의하여 미리 설정된 대역의 광을 투과하는 간섭 필터인 분광기.
본 실시예의 어느 한 모습에 의하면 상기 대역 필터는, 신호광의 광축인 x 축과 서로 수직한 y 축 및 z 축 중 어느 하나의 축을 피봇 축으로 피봇운동한다.
본 실시예의 어느 한 모습에 의하면 상기 대역 필터의 피봇각이 증가함에 따라, 상기 대역 필터에서 출력되는 광의 파장은 감소한다.
본 실시예의 어느 한 모습에 의하면 상기 대역 필터가 피봇함에 따라, 상기 대역 필터는 신호광의 대역 별로 분산된 광을 출력하며, 상기 수광 소자는 상기 분산된 광을 수광한다.
본 실시예에 의한 분광기는 입사한 신호광을 분산시키는 분산기를 포함하며, 상기 분산기는: 구동 신호에 따라 피봇(pivot)하여 상기 신호광을 대역별로 분광하는 회절 격자 및 대역별로 분광된 신호광을 수광하여 상응하는 전기적 신호를 출력하는 수광 소자를 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 분산기는, 상기 전기적 신호와 상기 구동 신호를 제공받고 상기 전기적 신호와 상기 구동 신호를 믹싱하는 믹서(mixer)와, 상기 믹서에서 출력된 신호에서 목적하는 대역의 신호를 출력하는 전기적 필터를 더 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 분광기는 상기 신호광을 시준하여 상기 분산기에 제공하는 시준기(collimator)를 더 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 분산기는, 상기 전기적 신호를 증폭하여 상기 믹서에 제공하는 증폭기를 더 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 수광 소자는, 어레이로 배열된 하나 이상의 포토 다이오드들을 포함한다.
본 실시예의 어느 한 모습에 의하면 상기 회절 격자는, 어느 한 방향으로 형성된 복수의 격자 패턴들을 포함하는 회절 격자인 분광기.
본 실시예의 어느 한 모습에 의하면 상기 분산기는 상기 신호광에 포함된 모든 대역의 광을 분산하여 출력한다.
본 실시예의 어느 한 모습에 의하면 상기 수광 소자는 상기 분산된 광을 수광한다.
본 실시예의 어느 한 모습에 의하면 상기 회절 격자는,신호광의 광축인 x 축과 서로 수직한 y 축 및 z 축 중 어느 하나의 축을 피봇 축으로 피봇운동한다.
본 실시예의 분광기는 높은 신호대잡음비를 얻을 수 있으며, 종래 기술에 비하여 높은 측정 감도를 얻을 수 있다는 장점이 제공된다.
도 1은 본 실시예에 의한 분광기(1)의 개요적 블록도이다.
도 2는 분산기(200)의 구성을 개요적으로 도시한 도면이다.
도 3은 대역 필터(220)가 피봇할 때의 투과광의 특성을 도시한 도면이다.
도 4는 도 3의 결과에 기초하여 대역 필터(220)가 피봇할 때의 광의 입출력 관계를 도시한 도면이다.
도 5는 다른 실시예에 따른 분산기(200)의 구성을 개요적으로 도시한 도면이다.
도 6은 회절 격자(230)가 피봇할 때의 광을 도시한 도면이다.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
본 개시의 실시예들을 설명하기 위하여 참조되는 도면은 설명의 편의 및 이해의 용이를 위하여 의도적으로 크기, 높이, 두께 등이 과장되어 표현되어 있으며, 비율에 따라 확대 또는 축소된 것이 아니다. 또한, 도면에 도시된 어느 구성요소는 의도적으로 축소되어 표현하고, 다른 구성요소는 의도적으로 확대되어 표현될 수 있다.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
이하에서는 첨부된 도면들을 참조하여 본 실시예를 설명하도록 한다. 도 1은 본 실시예에 의한 분광기(1)의 개요적 블록도이다. 도 1을 참조하면, 분광기(10)는 신호광(Ls)을 제공받고, 구동 신호(DRV)에 따라 피봇하여 신호광을 대역별로 분광하는 요소를 포함하는 분산기(200)를 포함하며, 대역별로 분광된 신호광을 수광하여 상응하는 전기적 신호(Es)를 출력하는 수광 소자(310)를 포함한다.
일 실시예로, 신호광(Ls)은 분석 대상 광으로, 광원(미도시)에서 제공된 광일 수 있다. 다른 실시예로, 신호광(Ls)은 라만 산란(Raman scattering)에 의하여 형성된 라만 산란광일 수 있다. 또 다른 예로, 신호광(Ls)은 특정 주파수 성분이 흡수되어 형성된 흡수 스펙트럼을 포함하는 광일 수 있다. 또 다른 예로, 신호광(Ls)은 반사에 의하여 주파수 성분의 흡수, 주파수 성분의 변이 등 광학적 변화가 발생한 광일 수 있다. 다만, 상기한 신호광(Ls)의 유형은 예시일 따름이며, 본 발명의 범위를 제한하지 않는다. 본 실시예의 분광기(10)는 신호광(Ls)을 제공받고, 이를 분광하여 신호광에 상응하는 전기적 신호(Es)를 출력한다.
신호광(Ls)은 시준기(150, collimator)에 제공되어 평행광인 시준된 신호광(Lc)으로 변환되어 분산기(200)에 제공된다.
도 2는 분산기(200)의 구성을 개요적으로 도시한 도면이다. 도 2를 참조하면, 분산기(200)는 시준기(150)가 제공한 시준된 신호광(Lc)을 집광하는 집광 렌즈 또는 집광 거울을 포함하는 광학계(210)와, 구동 신호(DRV)를 제공받고 상응하는 각도로 피봇하는 분산 요소(dispersion element)를 포함한다. 도 2로 예시된 실시예에서, 분산 요소는 대역 필터(220)이다. 도시되지는 않았으나, 분산 요소에는 구동 신호가 제공되며, 구동 신호에 상응하여 피봇 축에 대하여 분산 요소를 피봇 구동하는 구동부를 포함할 수 있다.
대역 필터(220)에는 굴절율이 다른 물질들이 복수회 코팅된다. 이러한 구성을 가지는 대역 필터(220)는 미리 설정된 대역의 광을 투과시키고, 미리 정해진 대역 외의 광들은 서로 간섭하여 소멸시키는 간섭형 대역 통과 필터이다.
대역 필터(220)는 제공된 구동 신호(DRV)에 상응하도록 피봇 축(pivot axis, A)를 기준으로 피봇(pivot)한다. 일 실시예로, 시준된 신호광의 광축을 x축이라 하면, 피봇축은 x 축과 수직인 y 축 또는 z 축 중 어느 하나일 수 있다.
도시된 예에서, 피봇 축(A)은 시준된 신호광(Lc)의 광축이 대역 필터(220)와 만나는 점을 포함하는 직선으로, 시준된 신호광(Lc)의 광축과 수직인 직선일 수 있다. 도시되지 않은 예에서, 피봇 축(A)은 대역 필터(220)의 일 단부의 점을 포함하는 직선으로 시준된 신호광(Lc)의 광축과 수직인 직선이거나, 대역 필터(220)의 외부의 어느 한 점을 포함하는 직선으로, 시준된 신호광(Lc)의 광축과 수직인 직선일 수 있다. 대역 필터(220)는 피봇 축(A)을 따라 신호광(Lc)의 광축의 전후로 피봇 운동한다.
구동 신호(DRV)는 일 실시예로, 미리 설정된 주파수와 진폭을 가지는 정현파(sinusoidal wave) 나 구형파(Square wave) 등 일 수 있다.
대역 필터(220)는 구동 신호(DRV)에 따라 피봇 운동을 수행할 수 있다. 일 실시예에서, 구동 신호(DRV)가 정현파인 경우에, 대역 필터(220)는 구동 신호(DRV)의 주파수에 고정(Lock-in)되어 피봇한다. 다른 실시예에서 구동 신호가 구형파인 경우에 구동 신호에 포함된 구형파 펄스의 개수를 계수(count)하고, 계수 결과에 상응하도록 피봇할 수 있다. 수광 소자(310)는 대역 필터(220)가 피봇하면서 제공한 여러가지 파장성분을 수광한다.
도 3은 대역 필터(220)가 피봇할 때의 투과광의 특성을 도시한 도면이다. 도 3에서, 시준된 신호광(Lc)의 광축에 대하여 대역 필터(220)를 수직으로 배열한 상태에서 5도, 10도, ..., 25도까지 피봇(pivot)한 경우에 대역 필터(220)가 출력하는 광의 파장이 도시되었다. 도 3에 도시된 바와 같이 대역 필터(220)의 피봇 각도가 증가할수록 대역 필터(220)에서 투과된 광의 파장은 감소하는 것을 확인할 수 있다.
도 4는 도 3의 결과에 기초하여 대역 필터(220)가 피봇할 때의 광의 입출력 관계를 도시한 도면이다. 도 4(a)를 참조하면, 대역 필터(220)가 피봇하지 않거나, 피봇 각도가 작은 경우에 대역 필터(220)는 시준된 신호광에서 미리 정해진 대역의 광(λ1)을 투과한다. 그러나, 피봇 각도가 증가함에 따라 대역 필터(220)는 도 4(a)에서 투과된 광의 대역보다 짧은 파장(더 큰 진동수)의 광(λ2)을 투과한다. 나아가 대역 필터(220)의 피봇 각도가 증가할수록 대역 필터의 굴절율과 공기의 굴절율 차이에 의하여 투과된 광의 광축은 시준된 신호광(L2)의 광축에서 편이된다.
도 4(c))와 같이 대역 필터(220)의 피봇 각도가 더욱 증가함에 따라 대역 필터(220)는 도 4(b)로 예시된 경우보다 투과된 광의 대역보다 짧은(더 큰 진동수)의 광(λ3)을 투과한다. 나아가 대역 필터(220)가 피봇된 상태에서 투과된 광의 광축은 도 4(b)로 예시된 경우에서 투과된 광의 광축에서 더욱 편이된다.
도 5는 다른 실시예에 따른 분산기(200)의 구성을 개요적으로 도시한 도면이다. 다만 도 5로 예시된 실시예와 이전에 설명되었던 실시예와 동일하거나 유사한 요소에 대하여는 그 설명을 생략할 수 있다. 도 5를 참조하면, 분산기(200)는 시준기(150)가 제공한 시준된 신호광(Lc)을 집광하는 집광 렌즈 또는 집광 거울을 포함하는 광학계(210)와, 구동 신호(DRV)를 제공받고 상응하는 각도로 피봇하는 분산 요소(dispersion element)를 포함한다. 도 5로 예시된 실시예에서, 분산 요소는 시준된 신호광(L2)를 분광하여 제공하는 회절 격자(diffraction grating, 230)이다. 회절 격자(230)는 신호광에 포함된 모든 대역의 광을 분산하여 제공한다.
회절 격자(230)는 일 방향으로 형성된 격자 패턴들을 복수개 포함한다. 회절 격자(230)가 피봇 운동하는 피봇 축(A)은 시준된 신호광(Lc)이 회절 격자와 만나는 점을 포함하며, 격자 패턴이 형성된 방향과 평행한 직선일 수 있다.
다른 실시예에서, 도시되지 않은 예에서, 피봇 축(A)은 회절 격자(230)의 일 단부의 점을 포함하는 직선으로 시준된 신호광(Lc)의 광축과 수직인 직선이거나, 회절 격자(230)의 외부의 어느 한 점을 포함하는 직선으로, 시준된 신호광(Lc)의 광축과 수직인 직선일 수 있다. 대역 필터(220)는 피봇 축(A)을 따라 신호광(Lc)의 광축의 전후로 피봇 운동한다.
구동 신호(DRV)는 일 실시예로, 미리 설정된 주파수와 진폭을 가지는 정현파(sinusoidal wave) 또는 구형파(Square wave) 등 일 수 있다. 회절 격자(230)는 구동 신호(DRV)의 진폭 및/또는 주파수에 따라 피봇 운동을 수행할 수 있다. 일 실시예에서, 구동 신호(DRV)가 정현파인 경우에, 회절 격자(230)는 구동 신호(DRV)의 주파수에 고정(Lock-in)되어 피봇한다. 다른 실시예에서 구동 신호가 구형파인 경우에 구동 신호에 포함된 구형파 펄스의 개수를 계수(count)하고, 계수 결과에 상응하도록 피봇할 수 있다.수광 소자(310)는 대역 필터(220)가 피봇하면서 제공한 여러가지 파장 성분을 수광한다.
일 실시예로, 수광 소자(310)는 하나의 열로 배치되거나, 어레이 형태로 배치된 하나 이상의 포토 다이오드들을 포함할 수 있으며, 일 예로, 열잡음을 감소시키기 위하여 냉각 장치(미도시)와 결합될 수 있다.
도 6은 회절 격자(230)가 피봇할 때의 광을 도시한 도면이다. 도 6(a)와 도 6(b)를 참조하면, 수광 소자(310)가 고정된 상태에서 수광 소자(310)는 회절 격자가 피봇함에 따라 서로 다른 파장을 수광하고, 수광한 광에 상응하는 전기적 신호(Es)를 출력한다.
따라서, 특정한 파장 대역의 광을 수광하고자 하는 경우에는 회절 격자(230)가 피봇시 분산하여 제공하는 파장 대역의 위치에 수광 소자(310)를 배치하는 것이 바람직하다. 다른 실시예로, 수광 소자(310, 도 1 참조)는 회절 격자(230)가 투과시켜 제공하는 광을 모두 수광할 수 있는 크기를 가질 수 있다.
도 5 및 도 6으로 도시된 실시예는 투과형 회절 격자를 예시하나, 도시되지 않은 다른 실시예에서 분산기는 반사형 회절 격자를 포함한다.
다시 도 1을 참조하면, 수광 소자(310)는 수광한 광에 상응하는 전기적 신호(Es)를 형성하고 증폭기(320)에 제공한다. 증폭기(320)는 제공된 신호를 미리 정해진 이득으로 증폭하여 믹서(330)에 출력한다.
믹서(330)는 구동 신호(DRV)를 이용하여 증폭기(320)가 출력한 신호를 하향 변환(down conversion)한다. 일 예로, 증폭기(320)가 출력한 신호의 주파수를 f1이라 하고, 구동 신호(DRV)의 주파수를 fDRV라고 하면, 믹서의 출력 신호(OUT)는 아래의 수학식 1과 같이 표시될 수 있다.
[수학식 1]
Figure PCTKR2021010022-appb-img-000001
즉, 믹서(330)의 출력 신호(OUT)는 증폭기(320) 출력 신호와 구동 신호의 주파수 차이에 상응하는 주파수 성분을 가지는 신호와 증폭기(320) 출력 신호와 구동 신호의 주파수 합에 상응하는 주파수 성분을 가지는 신호의 합으로 표시될 수 있다.
저역 통과 필터(LPF, low pass filter)등의 전기적 필터를 이용하면 증폭기(320) 출력 신호와 구동 신호의 주파수 합에 상응하는 주파수 성분을 가지는 신호 성분을 차단하고, 증폭기(320) 출력 신호와 구동 신호의 주파수 차이에 상응하는 주파수 성분을 가지는 신호를 얻을 수 있다.
필터에서 출력된 신호는 신호광에 상응하는 전기적 신호로, 높은 신호대 잡음비를 가진다.
이와 같이 분산 요소를 특정 주파수를 가지는 구동 신호(DRV)로 변조하여 피봇 운동시키고, 분광 신호와 구동 신호를 이용하여 믹서로 하향 변환하면 높은 신호대잡음비의 분광 신호를 얻을 수 있다는 장점이 제공된다.
본 발명에 대한 이해를 돕기 위하여 도면에 도시된 실시 예를 참고로 설명되었으나, 이는 실시를 위한 실시예로, 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.

Claims (18)

  1. 분광기는 입사한 신호광을 분산시키는 분산기를 포함하며,
    상기 분산기는:
    구동 신호에 따라 피봇(pivot)하여 상기 신호광을 대역별로 분광하는 대역 필터 및
    대역별로 분광된 신호광을 수광하여 상응하는 전기적 신호를 출력하는 수광 소자를 포함하는 분광기.
  2. 제1항에 있어서,
    상기 분광기는,
    상기 전기적 신호와 상기 구동 신호를 제공받고 상기 전기적 신호와 상기 구동 신호를 믹싱하는 믹서(mixer)와,
    상기 믹서에서 출력된 신호에서 목적하는 대역의 신호를 출력하는 전기적 필터를 더 포함하는 분광기.
  3. 제1항에 있어서,
    상기 분산기는
    상기 신호광을 시준하여 상기 분산기에 제공하는 시준기(collimator)를 더 포함하는 분광기.
  4. 제1항에 있어서,
    상기 분광기는,
    상기 전기적 신호를 증폭하여 상기 믹서에 제공하는 증폭기를 더 포함하는 분광기.
  5. 제1항에 있어서,
    상기 수광 소자는,
    어레이 또는 일렬로 배열된 하나 이상의 포토 다이오드들을 포함하는 분광기.
  6. 제1항에 있어서,
    상기 대역 필터는,
    굴절율이 다른 물질이 복수회 코팅되고, 간섭에 의하여 미리 설정된 대역의 광을 투과하는 간섭 필터인 분광기.
  7. 제1항에 있어서,
    상기 대역 필터는,
    신호광의 광축인 x 축과 서로 수직한 y 축 및 z 축 중 어느 하나의 축을 피봇 축으로 피봇운동하는 분광기.
  8. 제1항에 있어서,
    상기 대역 필터의 피봇각이 증가함에 따라,
    상기 대역 필터에서 출력되는 광의 파장은 감소하는 분광기.
  9. 제1항에 있어서,
    상기 대역 필터가 피봇함에 따라,
    상기 대역 필터는 신호광의 대역 별로 분산된 광을 출력하며,
    상기 수광 소자는 상기 분산된 광을 수광하는 분광기.
  10. 입사한 신호광을 분산시키는 분산기를 포함하며,
    상기 분산기는:
    구동 신호에 따라 피봇(pivot)하여 상기 신호광을 대역별로 분광하는 회절 격자 및
    대역별로 분광된 신호광을 수광하여 상응하는 전기적 신호를 출력하는 수광 소자를 포함하는 분광기.
  11. 제10항에 있어서,
    상기 분산기는,
    상기 전기적 신호와 상기 구동 신호를 제공받고 상기 전기적 신호와 상기 구동 신호를 믹싱하는 믹서(mixer)와,
    상기 믹서에서 출력된 신호에서 목적하는 대역의 신호를 출력하는 전기적 필터를 더 포함하는 분광기.
  12. 제10항에 있어서,
    상기 분광기는
    상기 신호광을 시준하여 상기 분산기에 제공하는 시준기(collimator)를 더 포함하는 분광기.
  13. 제10항에 있어서,
    상기 분산기는,
    상기 전기적 신호를 증폭하여 상기 믹서에 제공하는 증폭기를 더 포함하는 분광기.
  14. 제10항에 있어서,
    상기 수광 소자는,
    어레이로 배열된 하나 이상의 포토 다이오드들을 포함하는 분광기.
  15. 제10항에 있어서,
    상기 회절 격자는,
    어느 한 방향으로 형성된 복수의 격자 패턴들을 포함하는 회절 격자인 분광기.
  16. 제10항에 있어서,
    상기 분산기는
    상기 신호광에 포함된 모든 대역의 광을 분산하여 출력하는 분광기.
  17. 제10항에 있어서,
    상기 수광 소자는 상기 분산된 광을 수광하는 분광기.
  18. 제10항에 있어서,
    상기 회절 격자는,
    격자 패턴 방향과 평행한 방향으로 피봇운동하는 분광기.
PCT/KR2021/010022 2020-07-30 2021-07-30 분광기 WO2022025728A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/018,674 US20230296435A1 (en) 2020-07-30 2021-07-30 Spectroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0095321 2020-07-30
KR20200095321 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022025728A1 true WO2022025728A1 (ko) 2022-02-03

Family

ID=80035921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010022 WO2022025728A1 (ko) 2020-07-30 2021-07-30 분광기

Country Status (3)

Country Link
US (1) US20230296435A1 (ko)
KR (1) KR20220015361A (ko)
WO (1) WO2022025728A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286346A (ja) * 2009-06-11 2010-12-24 Shimadzu Corp 分光器
JP5584488B2 (ja) * 2010-02-16 2014-09-03 株式会社相馬光学 走査型回折格子分光器
KR101619143B1 (ko) * 2015-12-15 2016-05-10 동우옵트론 주식회사 콘케이브형 회절격자의 최적화 방법을 이용한 혼합시료 분석시스템
JP5945400B2 (ja) * 2011-11-18 2016-07-05 オリンパス株式会社 検出光学系および走査型顕微鏡
JP2016205889A (ja) * 2015-04-17 2016-12-08 ミツミ電機株式会社 分光器および生体情報測定装置
JP6257926B2 (ja) * 2013-05-31 2018-01-10 Hoya株式会社 波長可変光バンドパスフィルタモジュール、波長可変光源装置及び分光内視鏡装置
US20200149964A1 (en) * 2018-11-09 2020-05-14 Shimadzu Corporation Monochromator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286346A (ja) * 2009-06-11 2010-12-24 Shimadzu Corp 分光器
JP5584488B2 (ja) * 2010-02-16 2014-09-03 株式会社相馬光学 走査型回折格子分光器
JP5945400B2 (ja) * 2011-11-18 2016-07-05 オリンパス株式会社 検出光学系および走査型顕微鏡
JP6257926B2 (ja) * 2013-05-31 2018-01-10 Hoya株式会社 波長可変光バンドパスフィルタモジュール、波長可変光源装置及び分光内視鏡装置
JP2016205889A (ja) * 2015-04-17 2016-12-08 ミツミ電機株式会社 分光器および生体情報測定装置
KR101619143B1 (ko) * 2015-12-15 2016-05-10 동우옵트론 주식회사 콘케이브형 회절격자의 최적화 방법을 이용한 혼합시료 분석시스템
US20200149964A1 (en) * 2018-11-09 2020-05-14 Shimadzu Corporation Monochromator

Also Published As

Publication number Publication date
KR20220015361A (ko) 2022-02-08
US20230296435A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2013033982A1 (zh) 一种光纤束光谱仪
EP0413939B1 (en) Improved grating spectrometer
CN101806625B (zh) 静态傅立叶变换干涉成像光谱全偏振探测装置
WO2002088645A3 (en) Color measuring sensor assembly for spectrometer devices
US20130050697A1 (en) Tunable optical filter and spectrometer
CN202255624U (zh) 一种光纤束光谱仪
US11231270B2 (en) Optical measuring device
US4936684A (en) Spectrometer with photodetector array detecting uniform bandwidth intervals
WO2022025728A1 (ko) 분광기
CN113906274B (zh) 拉曼光谱测量系统的方法、系统、和装置
US20150022810A1 (en) Spectrophotometer and image partial extraction device
JPS6038644B2 (ja) 分光光度計
CN201788150U (zh) 基于固定光栅和ccd技术的近红外检测器
CN106840008A (zh) 一种光纤间距测量系统及测量方法
CN217236980U (zh) 一种基于光纤式的多光谱系统结构
CN101187628A (zh) 宽光谱高分辨率微型光谱仪
CN105865626A (zh) 一种基于旋转滤光片单色器的高光谱成像仪
CN108871572B (zh) 双折射傅里叶变换成像光谱波段扩展方法及其成像装置
JPH11101692A (ja) 分光測色装置
CN111307284A (zh) 一种基于双探测器的微型近红外光纤光谱仪
WO2024111873A1 (ko) 광 계측기
JP3711294B2 (ja) 火炎検出および燃焼診断装置
WO2024106966A1 (ko) 듀얼 포토 다이오드 복사계
CN219265506U (zh) 一种激光波长检测仪
CN219266096U (zh) 凝血分析仪及其凝血光路系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850953

Country of ref document: EP

Kind code of ref document: A1