WO2022025646A1 - Optical transmission and reception module capable of distinguishing wavelength of 40 nm by using polarizing plate - Google Patents
Optical transmission and reception module capable of distinguishing wavelength of 40 nm by using polarizing plate Download PDFInfo
- Publication number
- WO2022025646A1 WO2022025646A1 PCT/KR2021/009838 KR2021009838W WO2022025646A1 WO 2022025646 A1 WO2022025646 A1 WO 2022025646A1 KR 2021009838 W KR2021009838 W KR 2021009838W WO 2022025646 A1 WO2022025646 A1 WO 2022025646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical
- filter
- wavelength band
- polarization
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
Definitions
- the present invention relates to an optical transmission/reception module capable of distinguishing a wavelength of 40 nm by using a polarizing plate.
- the optical transmission/reception module refers to a module that accommodates various optical communication functions in one package to enable connection with an optical fiber.
- the optical transceiver module generally includes an optical transmitter using a laser diode as a light source that consumes less power and can be used over a long distance, and an optical receiver that performs optical communication using a photodiode.
- the optical transmit/receive module basically includes an optical transmitter, an optical receiver, and a receptacle.
- an isolator is mounted in the optical transmission/reception module.
- optical transceiver module can be used in various devices, it can be exposed to various environments.
- the optical transceiver module may be exposed to a high temperature of 60°C or higher, or may be exposed to a low temperature of -20°C or lower.
- the conventional optical transceiver module has a strong characteristic in a high temperature environment, but the optical characteristic is significantly deteriorated in a low temperature environment of -20°C or less.
- Conventional optical transmission/reception modules that maintain optical characteristics in a low-temperature environment have a problem of being difficult to be distributed because they are quite expensive. Accordingly, there is a demand for an optical transmission/reception module that is inexpensive and has excellent optical characteristics at a low temperature.
- an optical isolator is included therein.
- the optical isolator is a fairly expensive component that accounts for about 30% of the cost of the optical transmission/reception module, and occupies a significant proportion in the cost increase of the optical transmission/reception module.
- the optical isolator occupies a certain proportion in the optical transmission/reception module spatially, causing spatial and cost inefficiency of the optical transmission/reception module.
- An embodiment of the present invention has an object to provide an optical transmission/reception module capable of separating optical signals at short wavelength intervals while being robust at low temperatures.
- Another object of the present invention is to provide an optical transmission/reception module that can be manufactured at low cost while being robust at low temperatures.
- a light source unit for irradiating linearly polarized light and a polarizing filter that passes only light having a preset polarization direction, passes light of a preset wavelength band but reflects light of the remaining wavelength band, and the light source unit;
- An antireflection unit that is disposed on the optical path of the polarizing filter and passes only light traveling through the polarizing filter, a ferrule that outputs light that has passed through the polarizing filter to the outside, and a wavelength band other than a preset wavelength band output from the outside It provides an optical transmission/reception module comprising a receiving end for receiving the light reflected from the polarization filter.
- the anti-reflection unit is characterized in that it includes a polarizing plate that passes only light in a preset polarization direction and a quarter-wave plate that converts the polarization direction of incident light by 45°.
- the polarizing plate is characterized in that it is disposed in front of the 1/4 wave plate on the light path irradiated from the light source unit.
- the polarizing plate is characterized in that the light irradiated from the light source unit passes, but does not pass the light passing through the 1/4 wave plate.
- a relatively inexpensive device can be used while being robust to a low temperature, and an optical signal can be separated at a short wavelength interval.
- the present invention can be manufactured at a low cost using a relatively inexpensive device, and has an advantage of being robust at low temperature.
- FIG. 1 is a diagram illustrating an optical transmission/reception module according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of an optical transmitter, an optical receiver and a receptacle according to a first embodiment of the present invention.
- 3 and 4 are graphs showing transmittance according to wavelength of the filter according to the first embodiment of the present invention and the conventional filter.
- FIG. 5 is a cross-sectional view of an optical transmitter, an optical receiver and a receptacle according to a second embodiment of the present invention.
- FIG. 6 is a view showing an anti-reflection unit according to a second embodiment of the present invention.
- FIG. 7 is a view showing a heater unit according to an embodiment of the present invention.
- first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
- each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not technically contradict each other.
- FIG. 1 is a diagram illustrating an optical transmission/reception module according to an embodiment of the present invention.
- an optical transceiving module 100 includes an optical transmitter 110 , an optical receiver 120 , a receptacle 130 , and a heater unit 140 .
- the optical transmitter 110 irradiates linearly polarized light of a preset wavelength band.
- the optical transmitter 110 generates and irradiates light to be transmitted to another optical transmission/reception module.
- the irradiated light has a preset wavelength band by a WDM (Wavelength Division Multiplexing) method, is linearly polarized in a constant polarization direction, and is irradiated.
- WDM Widelength Division Multiplexing
- the optical receiver 120 is positioned in a direction perpendicular to the optical transmitter 110 and receives light irradiated from another optical transceiving module.
- Linearly polarized light of a wavelength band different from a preset wavelength band is irradiated from another optical transmission/reception module.
- Light irradiated from other optical transmission/reception modules is linearly polarized and has a wavelength band different from a preset wavelength band. Accordingly, the corresponding light proceeds not to the optical transmitter 110 but to the optical receiver 120 positioned in a direction perpendicular to the optical transmitter 110 .
- the optical receiver 120 receives incident light.
- the receptacle 130 outputs the light irradiated from the optical transmitter 110 to the outside, and receives the light irradiated from the outside.
- the receptacle 130 includes a stub therein, so that the light irradiated from the optical transmitter 110 can be output through a preset path.
- the receptacle 130 allows light irradiated from other optical transmission/reception modules to be introduced into a preset path.
- the heater unit 140 applies heat to the optical transmitter 110 so that the optical transmitter 110 can operate smoothly even at a low temperature.
- the wavelength of the light irradiated from the optical transmitter 110 is shifted according to the temperature.
- the light source included in the optical transmitter may operate in a wide temperature range of -40°C to 85°C, but the light source for operating in such a wide temperature range is quite expensive. Accordingly, a light source having a narrow temperature range for operation is used in an optical transmitter that is relatively inexpensive and widely used. In particular, such a light source has significantly lower operating performance at a lower temperature than at a higher temperature. To prevent this, the heater unit 140 is connected to the optical transmitter 110 in the opposite direction to which light is irradiated from the optical transmitter 110 .
- the heater unit 140 may be connected to the optical transmitter 110 by a separate adhesive material such as solder, or may be structurally directly connected to the optical transmitter 110 by using a connection medium such as a screw.
- the heater unit 140 is connected to the optical transmitter 110 to apply heat to the optical transmitter 110 . Since it is directly or indirectly connected to the optical transmitter 110 and is connected in close proximity to a portion irradiating light, the heater unit 140 does not require a separate excessive space for arrangement and is a high-cost light source having high efficiency. Even if it is not included, the operating performance of the optical transmitter 110 may be improved.
- the heater unit 140 may be implemented as a flexible printed circuit board (FPCB).
- the heater unit 140 is implemented as a flexible printed circuit board, and includes a means for heat generation therein, and applies heat to the optical transmitter 110 .
- a specific structure of the heater unit 140 will be described later with reference to FIG. 7 .
- FIG. 2 is a cross-sectional view of an optical transmitter, an optical receiver and a receptacle according to a first embodiment of the present invention.
- the optical transmitter 110 includes a stem 210 , a photodiode 212 , a light source 214 , a lens 216 , and a housing 218 .
- the stem 210 supports components within the optical transmitter 110 .
- the stem 210 is disposed at the lower end of the optical transmitter 110 (in the +x-axis direction in FIG. 2 ), and supports the components in the optical transmitter 110 .
- the stem 210 is implemented with a material with high thermal conductivity, and transfers heat generated from the heater unit disposed at the lower end of the optical transmitter 110 (in the +x-axis direction in FIG. 2 ) to the optical transmitter 110 , The heat generated in (110) is discharged to the outside.
- the photodiode 212 receives a portion of the light irradiated from the light source 214 and monitors the light irradiated from the light source 214 .
- the photodiode 212 is disposed on the submount 213 positioned on the stem 210 to receive a portion of the light to be irradiated.
- the photodiode 212 senses the received light to monitor the light to be irradiated.
- the light source 214 irradiates linearly polarized light of a preset wavelength band.
- the light source 214 irradiates light polarized in one direction.
- the light irradiated from the light source 214 has a polarization direction having a phase difference of 90° from a polarization direction passed by a polarization filter 234 to be described later. Since the irradiated light has a polarization direction in the corresponding direction, it can pass through the polarization filter 234 without loss due to other components passing through and incident on the polarization filter 234 .
- light has P polarization and S polarization, and the P polarization component is generally the polarization direction of the light. That is, the light irradiated from the light source 214 is irradiated so that the P polarization direction has a 90° phase difference from the polarization direction that the polarization filter 234 passes.
- the light source 214 irradiates light of a preset wavelength band.
- the light of the preset wavelength band is a wavelength band through which the polarization filter 234 passes.
- the light source 214 irradiates light of a preset wavelength band so that the light can pass through the polarization filter 234 and be irradiated to the outside of the receptacle 130 .
- the light source 214 may be implemented as a laser diode (LD), but is not limited thereto.
- LD laser diode
- the lens 216 is disposed in front (-x-axis direction) on the path on which the light is irradiated from the light source 214 to focus the light irradiated from the light source 214 .
- the lens 216 focuses the light irradiated from the light source 214 so that most of the irradiated light is not dispersed and is incident on the half-wave plate 230 to be described later.
- the housing 218 is disposed outside the optical transmitter 110 , and protects the internal configuration of the optical transmitter 110 from external forces, and prevents the internal configuration of the optical transmitter 110 from escaping to the outside.
- the optical receiver 120 includes an optical filter 220 , a lens 222 , a photodiode 224 and a stem 226 .
- the optical filter 220 is disposed at the front end on the optical path incident to the optical receiver 120 to filter clutter other than the light irradiated from other optical transmission/reception modules.
- the lens 222 is disposed behind (on the optical path) (+y-axis direction) of the optical filter 220 to focus the light passing through the optical filter 220 to the photodiode 224 .
- the photodiode 224 receives light that is output from another optical transmission/reception module and flows into the optical transmission/reception module 100 .
- the photodiode 224 receives and senses the light output from the other optical transceiving module, thereby receiving a signal transmitted by the other optical transceiving module.
- the stem 226 supports the internal components of the optical receiver 120 , particularly the photodiode 224 , and radiates heat generated from the photodiode 224 to the outside.
- the half-wave plate 230 is disposed in front (-x-axis direction) of the optical transmitter 110 on the optical path, and sets the polarization direction of the light irradiated from the optical transmitter 110 in a certain direction (eg, clockwise). direction) by 45°.
- the optical isolator 232 is disposed in front (-x-axis direction) of the half-wave plate 230 on the optical path, and passes the light passing through the half-wave plate 230 but does not pass the light incident from the polarizing filter 234 .
- the optical isolator 232 includes a first polarizer that passes only light having a polarization direction rotated by 45° in a predetermined direction by the half-wave plate 230 at an end close to the optical transmitter 110 .
- the optical isolator 232 includes a second polarizer that passes only light having a polarization direction rotated by 45° in a predetermined direction from the polarization direction of the aforementioned polarizer at the other end (end close to the polarizing filter 234). do.
- the optical isolator 232 includes a configuration that rotates the polarization direction of the light introduced between both polarizers by 45° in a constant direction again. Accordingly, the light irradiated from the optical transmitter 110 to the optical isolator 232 passes through the first polarizer, passes the above-described configuration, and the polarization direction is rotated by 45° (in a constant direction), and passes through the second polarizer. do.
- the light entering the second polarizer of the optical isolator passes through the above-described configuration and the polarization direction is rotated by 45° (in a constant direction), and the difference between the first polarizer and the polarization direction of 90° is reduced by the rotation of the polarization direction. is generated and does not pass through the first polarizer.
- the light output from the optical transmitter 110 passes through the half-wave plate 230 and the optical isolator 232 and proceeds with the polarization axis rotated 90° in a certain direction.
- the polarizing filter 234 is disposed in front of the optical isolator 232 on the optical path, so that the light passing through the optical isolator 232 is passed, but the light entering through the receptacle 130 is reflected.
- the polarization filter 234 reflects only light in a preset polarization direction and filters light in other directions.
- the polarizing filter 234 passes light of a preset wavelength band, but reflects light other than the preset wavelength band (adjacent wavelength band).
- the polarization direction passed by the polarization filter 234 corresponds to a direction having a difference of 90° from the polarization direction of the light irradiated from the light transmitter 110 , in particular, the light source 214 .
- the polarization filter 234 passes only a polarization component (P polarization) that matches the polarization direction of light, and does not pass a polarization component (S polarization) that is perpendicular to the polarization direction of light. Since the (transmission) light irradiated from the optical transmitter 110 has a preset wavelength band, the P polarization component of the preset wavelength band passes through the polarization filter 234 and proceeds to the receptacle 130 . Conversely, the light introduced from the outside into the receptacle 130 has the same polarization component (P polarization) and is output from other optical transceiving modules, while preventing interference with the light output from the optical transceiving module 100 in a wavelength band.
- P polarization polarization component
- S polarization polarization component
- the optical transmission/reception module 100 may transmit/receive light having a narrower wavelength than that of a conventional optical transmission/reception module.
- light was mainly transmitted and received using a wavelength band having a wavelength of 60 nm.
- the transmitted light is light having a wavelength band of 1270 to 1330 nm
- the received light is 1210 to 1270 nm or light having a wavelength band of 1330 to 1390 nm is used. Due to the characteristics of the conventional optical transceiver module (particularly, the separation filter), the light in the 40nm wavelength band could be distinguished.
- the transmit/receive light must have a wavelength of 60 nm.
- the optical transmission/reception module 100 includes the polarization filter 234 , it is possible to prevent interference of transmitted/received light even if it has a wavelength width of 40 nm which is narrower than the conventional wavelength width. This can be confirmed from the graphs of FIGS. 3 and 4 .
- 3 and 4 are graphs showing transmittance according to wavelength of the filter according to the first embodiment of the present invention and the conventional filter.
- the polarization filter 234 since the polarization filter 234 passes only light in a specific polarization direction, an adverse effect due to an afterimage in an adjacent wavelength band is minimized. Accordingly, for example, if the polarizing filter 234 is a filter that passes light having a wavelength band of 1270 to 1310 nm, the transmittance starts to decrease rapidly from the 1280 nm band, and the transmittance converges to almost 0% within 1300 nm. do. For this reason, even in consideration of shift due to temperature change, even if the optical transmission/reception module 100 including the polarization filter 234 has a wavelength of 40 nm, interference of transmission/reception light can be prevented.
- the optical transmission/reception module including the conventional polarizing filter must have a wavelength of at least 60 nm to prevent interference of transmitted/received light.
- the light reflection unit 236 is disposed vertically below the polarization filter 234 (in a direction opposite to the direction in which light is reflected from the polarization filter, in the -y-axis direction).
- the light reflection unit 236 is a structure formed in a housing in which the light isolator 232 and the polarization filter 234 are disposed, and changes the direction of light incident thereon.
- the light reflection unit 236 may have a structure that is concave vertically below the polarization filter 234 or a structure that protrudes convexly.
- the light output from the optical transmitter 110 and incident on the polarization filter 234 should completely pass through the polarization filter 234 , but in reality, the light output from the optical transmitter 110 uses a very small proportion of the polarization filter. (234) is reflected in the case occurs. If the light reflection unit 236 does not exist, the light reflected from the polarization filter 234 is reflected by the housing and flows into the optical receiver 120 . When the light reflected from the polarization filter 234 flows into the optical receiver 120, distortion of the result occurs. To prevent this, the light reflection unit 236 changes the path of the reflected light (unintentionally) from the vertically downward direction of the polarizing filter 234 to the vertical downward direction. The light whose path is changed by the light reflection unit 236 does not enter the optical receiver 120 .
- the receptacle 130 includes a stub 240 and a housing 242 .
- the stub 240 is disposed in the housing 242 , outputs the light output from the optical transmitter 110 to the outside, and transmits the light introduced from the outside to the polarization filter 234 .
- the housing 242 includes the stub 240 therein, and protects the stub 240 from external force and fixes the stub 240 .
- FIG. 5 is a cross-sectional view of an optical transmitter, an optical receiver and a receptacle according to a second embodiment of the present invention.
- the optical transmitter 110 includes a stem 510 , a photodiode 512 , a light source 514 , a lens 516 , and a housing 518 .
- the stem 510 supports components within the optical transmitter 110 .
- the stem 510 is disposed at the lower end of the optical transmitter 110 (in the +x-axis direction in FIG. 5 ), and supports components in the optical transmitter 110 .
- the stem 510 is implemented with a material having high thermal conductivity, and transfers heat generated from the heater unit disposed at the lower end of the optical transmitter 110 (in the +x-axis direction in FIG. 5 ) to the optical transmitter 110 , Heat generated in 110 is discharged to the outside.
- the photodiode 512 receives a portion of the light irradiated from the light source 514 and monitors the light irradiated from the light source 514 .
- the photodiode 512 is disposed on the submount 513 positioned on the stem 510 to receive a portion of the light to be irradiated.
- the photodiode 512 senses the received light to monitor the light to be irradiated.
- the light source 514 irradiates linearly polarized light of a preset wavelength band.
- the light source 514 irradiates light polarized in one direction.
- the light irradiated from the light source 514 has a polarization direction through which the anti-reflection unit 230 to be described later passes.
- As the irradiated light has a polarization direction in the corresponding direction, it may pass through the anti-reflection unit 530 .
- light has P polarization and S polarization, and the P polarization component is generally the polarization direction of the light. That is, the light irradiated from the light source 514 is irradiated so that the P-polarization direction passes through the anti-reflection unit 530 .
- the light source 514 irradiates light of a preset wavelength band.
- the light of the preset wavelength band is a wavelength band through which the filter 534 passes.
- the light source 514 irradiates light of a preset wavelength band so that the light passes through the filter 534 and is irradiated to the outside of the receptacle 130 .
- the light source 514 may be implemented as a laser diode (LD), but is not limited thereto.
- LD laser diode
- the lens 516 is disposed in front (-x-axis direction) on the path on which the light is irradiated from the light source 514 to focus the light irradiated from the light source 514 .
- the lens 516 focuses the light irradiated from the light source 514 so that most of the irradiated light is not dispersed and is incident to the anti-reflection unit 530 to be described later.
- the housing 518 is disposed outside the optical transmitter 110 , and protects the internal configuration of the optical transmitter 110 from external forces, and prevents the internal configuration of the optical transmitter 110 from escaping to the outside.
- the optical receiver 120 includes an optical filter 520 , a lens 522 , a photodiode 524 , and a stem 526 .
- the optical filter 520 is disposed at the frontmost end on the optical path incident to the optical receiver 120 to filter clutter other than the light emitted from other optical transceiving modules.
- the lens 520 is disposed behind (on the optical path) (+y-axis direction) of the optical filter 520 to focus the light passing through the optical filter 520 to the photodiode 524 .
- the photodiode 524 receives light that is output from another optical transceiver module and flows into the optical transceiver module 100 .
- the photodiode 524 receives and senses the light output from the other optical transceiving module, thereby receiving a signal transmitted by the other optical transceiving module.
- the stem 526 supports the internal components of the optical receiver 120 , particularly the photodiode 524 , and radiates heat generated in the photodiode 524 to the outside.
- the anti-reflection unit 530 is disposed in front (-x-axis direction) of the optical transmitter 110 on the optical path, and passes the light irradiated from the optical transmitter 110 but is reflected by the filter 534 or the filter 534 The light passing through and entering the optical transmitter 110 is blocked.
- the anti-reflection unit 530 has the structure shown in FIG. 6 .
- FIG. 6 is a view showing an anti-reflection unit according to an embodiment of the present invention.
- the anti-reflection unit 530 includes a polarizing plate 610 and a quarter wave plate 620 .
- the polarizing plate 610 transmits only light in the same direction as the polarization direction of the light output from the optical transmitter 110 .
- the quarter wave plate 620 converts the polarization direction of the incident light by 45°.
- the light incident from the optical transmitter 110 passes through the polarizing plate 610 and the quarter-wave plate 620 and proceeds with the polarization direction changed.
- the polarization direction is changed by 45°. The light whose polarization direction is converted does not pass through the polarizing plate 610 .
- the anti-reflection unit 530 includes a polarizing plate 610 and a quarter-wave plate 620 , and passes light incident from the optical transmitter 110 , but is reflected and travels to the optical transmitter 110 . can be blocked. Since the anti-reflection unit 530 is implemented only with the polarizing plate 610 and the quarter-wave plate 620 , it can operate while occupying a relatively small space and can be implemented at a fairly low cost.
- the filter 534 is disposed in front of the anti-reflection unit 530 on the light path, so that light passing through the anti-reflection unit 530 passes but the light entering through the receptacle 130 is reflect
- the filter 534 passes light of a preset wavelength band, but reflects light other than the preset wavelength band (adjacent wavelength band). According to this characteristic, since the (transmission) light irradiated from the optical transmitter 110 has a preset wavelength band, it passes through the filter 534 and proceeds to the receptacle 130 .
- the light introduced from the outside into the receptacle 130 has a wavelength band adjacent to a preset wavelength band so that interference with the light output from the optical transceiver module 100 does not occur. According to this characteristic, the (received) light that flows into the filter 534 through the receptacle 130 from the outside is reflected from the filter 534 to the optical receiver 120 .
- a light reflection unit 536 is disposed vertically below the filter 534 (the direction opposite to the direction in which light is reflected from the filter, -y-axis direction).
- the light reflection unit 536 is a structure formed in a housing in which the antireflection unit 530 and the filter 534 are disposed, and changes the direction of light incident thereon.
- the light reflection unit 536 may have a structure that is concave vertically below the filter 534 or a structure that protrudes convexly. Theoretically, the light output from the optical transmitter 110 and incident on the filter 534 should completely pass through the filter 534, but in reality, the light output from the optical transmitter 110 has a very small ratio to the filter 534.
- the light reflection unit 536 (unintentionally) changes the path of the reflected light from the vertically downward direction of the filter 534 to the vertical downward direction. The light whose path is changed by the light reflection unit 536 does not enter the optical receiver 120 .
- the receptacle 130 includes a stub 540 and a housing 542 .
- the stub 540 is disposed in the housing 542 to output the light output from the optical transmitter 110 to the outside, and transmits the light introduced from the outside to the filter 534 .
- the housing 542 includes a stub 540 therein, and protects the stub 540 from external force and fixes the stub 540 .
- FIG. 7 is a view showing a heater unit according to an embodiment of the present invention.
- the heater unit 140 may be implemented as a flexible printed circuit board, and is connected to the rear of the optical transmitter.
- the heater unit 140 improves the activity of the optical transmitter at a low temperature and reduces the cost.
- the heater unit 140 includes a micro heater 710 therein, thereby compensating for the low temperature temperature of the optical transmitter.
- the heater unit 140 may include a patterned thin film resistor 720 and a micro strip line therein to provide heat.
- the present invention is not necessarily limited thereto, and the heater unit 140 may include a coil therein.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Disclosed is an optical transmission and reception module capable of distinguishing a wavelength of 40 nm by using a polarizing plate. According to one embodiment of the present invention, provided is the optical transmission and reception module which is powerful at a low temperature, can separate optical signals into short wavelength intervals, and can be manufactured at a low production cost.
Description
본 발명은 편광판을 활용하여 40nm 파장 구분이 가능한 광 송수신 모듈에 관한 것이다.The present invention relates to an optical transmission/reception module capable of distinguishing a wavelength of 40 nm by using a polarizing plate.
이 부분에 기술된 내용은 단순히 본 발명의 일 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section merely provides background information on an embodiment of the present invention and does not constitute the prior art.
일반적으로, 광 송수신 모듈은 각종 광통신 기능을 하나의 패키지 내에 수용하여 광섬유와 연결이 가능하도록 모듈화한 것을 말한다. 광 송수신 모듈은 일반적으로 전력 소비가 적고 장거리에 활용 가능한 레이저 다이오드를 광원으로 이용한 광 송신기 및 포토 다이오드를 이용하여 광통신을 하는 광 수신기를 포함한다.In general, the optical transmission/reception module refers to a module that accommodates various optical communication functions in one package to enable connection with an optical fiber. The optical transceiver module generally includes an optical transmitter using a laser diode as a light source that consumes less power and can be used over a long distance, and an optical receiver that performs optical communication using a photodiode.
광 송수신 모듈은 기본적으로 광 송신기, 광 수신기 및 리셉터클 등을 포함한다. 또한, 반사 노이즈에 의해 레이저 다이오드의 특성이 불안해지는 것을 방지하기 위해 아이솔레이터가 광 송수신 모듈 내에 장착된다.The optical transmit/receive module basically includes an optical transmitter, an optical receiver, and a receptacle. In addition, in order to prevent the characteristics of the laser diode from being unstable due to reflected noise, an isolator is mounted in the optical transmission/reception module.
이와 같은 광 송수신 모듈은 다양한 장치 내에서 사용될 수 있기에, 다양한 환경에 노출될 수 있다. 광 송수신 모듈은 60℃ 이상의 고온에 노출될 수도 있고, -20℃ 이하의 저온에 노출될 수도 있다. Since such an optical transceiver module can be used in various devices, it can be exposed to various environments. The optical transceiver module may be exposed to a high temperature of 60°C or higher, or may be exposed to a low temperature of -20°C or lower.
종래의 광 송수신 모듈은 고온의 환경에서는 강인한 특성을 가지나, -20℃ 이하의 저온의 환경에서는 광 특성이 현저히 저하되는 모습을 보였다. 저온의 환경에서 광 특성을 유지하는 종래의 광 송수신 모듈은 상당히 고가라 보급되기 곤란한 문제가 존재하였으며, 상대적으로 저렴한 광 송수신 모듈은 저온의 환경에서 광 특성이 현저히 저하되는 모습을 보였다. 이에, 저렴하면서도 저온에서 우수한 광 특성을 갖는 광 송수신 모듈에 대한 수요가 존재한다.The conventional optical transceiver module has a strong characteristic in a high temperature environment, but the optical characteristic is significantly deteriorated in a low temperature environment of -20°C or less. Conventional optical transmission/reception modules that maintain optical characteristics in a low-temperature environment have a problem of being difficult to be distributed because they are quite expensive. Accordingly, there is a demand for an optical transmission/reception module that is inexpensive and has excellent optical characteristics at a low temperature.
또한, 종래의 광 송수신 모듈 내에는 외부로 조사될 광이 다시 광원 내로 유입되는 것을 방지하기 위해, 내부에 광 아이솔레이터를 포함하였다. 그러나 광 이이솔레이터는 광 송수신 모듈 원가의 약 30%를 차지하는 상당히 고가의 구성으로서, 광 송수신 모듈의 원가 상승에 상당한 비중을 차지한다. 또한, 광 이이솔레이터는 공간적으로도 광 송수신 모듈 내에서 일정 비중을 차지하고 있어, 광 송수신 모듈의 공간적·비용적 비효율을 야기한다.In addition, in order to prevent the light to be irradiated to the outside from flowing back into the light source in the conventional optical transceiver module, an optical isolator is included therein. However, the optical isolator is a fairly expensive component that accounts for about 30% of the cost of the optical transmission/reception module, and occupies a significant proportion in the cost increase of the optical transmission/reception module. In addition, the optical isolator occupies a certain proportion in the optical transmission/reception module spatially, causing spatial and cost inefficiency of the optical transmission/reception module.
본 발명의 일 실시예는, 저온에 강인하면서도 짧은 파장 간격으로 광 신호를 분리할 수 있는 광 송수신 모듈을 제공하는 데 일 목적이 있다.An embodiment of the present invention has an object to provide an optical transmission/reception module capable of separating optical signals at short wavelength intervals while being robust at low temperatures.
또한, 본 발명의 일 실시예는, 저온에 강인하면서도 낮은 원가로 제조될 수 있는 광 송수신 모듈을 제공하는 데 일 목적이 있다.Another object of the present invention is to provide an optical transmission/reception module that can be manufactured at low cost while being robust at low temperatures.
본 발명의 일 측면에 의하면, 선편광된 광을 조사하는 광원부와 기 설정된 편광방향을 갖는 광만을 통과시키며, 기 설정된 파장대역의 광은 통과시키되 나머지 파장대역의 광은 반사시키는 편광필터와 상기 광원부와 상기 편광필터의 광경로 상에 배치되어, 상기 편광필터로 진행하는 광만을 통과시키는 반사 방지부와 상기 편광필터를 거친 광을 외부로 출력하는 페룰 및 외부에서 출력되어 기 설정된 파장대역 이외의 파장대역을 가져 상기 편광필터로부터 반사된 광을 수광하는 수신단을 포함하는 것을 특징으로 하는 광 송수신 모듈을 제공한다.According to one aspect of the present invention, a light source unit for irradiating linearly polarized light and a polarizing filter that passes only light having a preset polarization direction, passes light of a preset wavelength band but reflects light of the remaining wavelength band, and the light source unit; An antireflection unit that is disposed on the optical path of the polarizing filter and passes only light traveling through the polarizing filter, a ferrule that outputs light that has passed through the polarizing filter to the outside, and a wavelength band other than a preset wavelength band output from the outside It provides an optical transmission/reception module comprising a receiving end for receiving the light reflected from the polarization filter.
본 발명의 일 측면에 의하면, 상기 반사방지부는 기 설정된 편광방향의 광만을 통과시키는 편광판 및 입사하는 광의 편광방향을 45°변환시키는 1/4파장판을 포함하는 것을 특징으로 한다.According to one aspect of the present invention, the anti-reflection unit is characterized in that it includes a polarizing plate that passes only light in a preset polarization direction and a quarter-wave plate that converts the polarization direction of incident light by 45°.
본 발명의 일 측면에 의하면, 상기 편광판은 상기 광원부로부터 조사되는 광 경로상에서 상기 1/4파장판의 전방에 배치되는 것을 특징으로 한다.According to one aspect of the present invention, the polarizing plate is characterized in that it is disposed in front of the 1/4 wave plate on the light path irradiated from the light source unit.
본 발명의 일 측면에 의하면, 상기 편광판은 상기 광원부로부터 조사되는 광은 통과시키되, 상기 1/4파장판을 거친 광은 통과시키지 않는 것을 특징으로 한다.According to one aspect of the present invention, the polarizing plate is characterized in that the light irradiated from the light source unit passes, but does not pass the light passing through the 1/4 wave plate.
이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 상대적으로 저렴한 소자를 사용하면서도 저온에 강인할 수 있으며, 짧은 파장 간격으로 광 신호를 분리할 수 있는 장점이 있다.As described above, according to one aspect of the present invention, there are advantages in that a relatively inexpensive device can be used while being robust to a low temperature, and an optical signal can be separated at a short wavelength interval.
또한, 본 발명의 일 측면에 따르면, 상대적으로 저렴한 소자를 사용하여 낮은 원가로 제조될 수 있으면서도 저온에 강인한 장점이 있다.In addition, according to one aspect of the present invention, it can be manufactured at a low cost using a relatively inexpensive device, and has an advantage of being robust at low temperature.
도 1은 본 발명의 일 실시예에 따른 광 송수신 모듈을 도시한 도면이다.1 is a diagram illustrating an optical transmission/reception module according to an embodiment of the present invention.
도 2는 본 발명의 제1 실시예에 따른 광 송신기, 광 수신기 및 리셉터클의 단면도이다.2 is a cross-sectional view of an optical transmitter, an optical receiver and a receptacle according to a first embodiment of the present invention.
도 3 및 도 4는 본 발명의 제1 실시예에 따른 필터와 종래의 필터의 파장에 따른 투과율을 도시한 그래프이다.3 and 4 are graphs showing transmittance according to wavelength of the filter according to the first embodiment of the present invention and the conventional filter.
도 5는 본 발명의 제2 실시예에 따른 광 송신기, 광 수신기 및 리셉터클의 단면도이다.5 is a cross-sectional view of an optical transmitter, an optical receiver and a receptacle according to a second embodiment of the present invention.
도 6은 본 발명의 제2 실시예에 따른 반사 방지부를 도시한 도면이다.6 is a view showing an anti-reflection unit according to a second embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 히터부를 도시한 도면이다.7 is a view showing a heater unit according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but it is understood that other components may exist in between. it should be On the other hand, when a certain element is referred to as being “directly connected” or “directly connected” to another element, it should be understood that no other element is present in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. It should be understood that terms such as “comprise” or “have” in the present application do not preclude in advance the possibility of the presence or addition of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호간 모순되지 않는 범위 내에서 공유될 수 있다.In addition, each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not technically contradict each other.
도 1은 본 발명의 일 실시예에 따른 광 송수신 모듈을 도시한 도면이다.1 is a diagram illustrating an optical transmission/reception module according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광 송수신 모듈(100)은 광 송신기(110), 광 수신기(120), 리셉터클(130) 및 히터부(140)를 포함한다. Referring to FIG. 1 , an optical transceiving module 100 according to an embodiment of the present invention includes an optical transmitter 110 , an optical receiver 120 , a receptacle 130 , and a heater unit 140 .
광 송신기(110)는 기 설정된 파장대역의 선편광된 광을 조사한다. 광 송신기(110)는 다른 광 송수신 모듈로 전송할 광을 생성하여 조사한다. 이때, 조사되는 광은 WDM(Wavelength Division Multiplexing) 방식에 의해, 기 설정된 파장대역을 가지며 일정한 편광방향으로 선편광되어 조사된다.The optical transmitter 110 irradiates linearly polarized light of a preset wavelength band. The optical transmitter 110 generates and irradiates light to be transmitted to another optical transmission/reception module. At this time, the irradiated light has a preset wavelength band by a WDM (Wavelength Division Multiplexing) method, is linearly polarized in a constant polarization direction, and is irradiated.
광 수신기(120)는 광 송신기(110)와 수직한 방향에 위치하여, 다른 광 송수신 모듈로부터 조사된 광을 수신한다. 다른 광 송수신 모듈로부터 기 설정된 파장대역과 상이한 파장대역의 선편광된 광이 조사된다. 다른 광 송수신 모듈로부터 조사된 광은 선편광되어 있으며, 기 설정된 파장대역과 상이한 파장대역을 갖는다. 이에, 해당 광은 광 송신기(110)가 아닌 그와 수직한 방향으로 위치한 광 수신기(120)로 진행하게 된다. 광 수신기(120)는 입사하는 광을 수광한다.The optical receiver 120 is positioned in a direction perpendicular to the optical transmitter 110 and receives light irradiated from another optical transceiving module. Linearly polarized light of a wavelength band different from a preset wavelength band is irradiated from another optical transmission/reception module. Light irradiated from other optical transmission/reception modules is linearly polarized and has a wavelength band different from a preset wavelength band. Accordingly, the corresponding light proceeds not to the optical transmitter 110 but to the optical receiver 120 positioned in a direction perpendicular to the optical transmitter 110 . The optical receiver 120 receives incident light.
리셉터클(130)은 광 송신기(110)에서 조사되는 광을 외부로 출력하고, 외부에서 조사된 광을 입사받는다. 리셉터클(130)은 내부에 스터브(Stub)를 포함하여, 광 송신기(110)에서 조사되는 광이 기 설정된 경로로 출력될 수 있도록 한다. 또한, 리셉터클(130)은 다른 광 송수신 모듈로부터 조사되는 광이 기 설정된 경로로 유입될 수 있도록 한다.The receptacle 130 outputs the light irradiated from the optical transmitter 110 to the outside, and receives the light irradiated from the outside. The receptacle 130 includes a stub therein, so that the light irradiated from the optical transmitter 110 can be output through a preset path. In addition, the receptacle 130 allows light irradiated from other optical transmission/reception modules to be introduced into a preset path.
히터부(140)는 광 송신기(110)에 열을 가하여, 광 송신기(110)가 저온에서도 원활히 동작할 수 있도록 한다. 광 송신기(110)에서 조사되는 광의 파장은 온도에 따라 천이된다. 또한, 광 송신기 내 포함되는 광원은 -40℃ 내지 85℃의 넓은 온도 범위에서 동작할 수도 있으나, 이처럼 넓은 온도 범위에서 동작하기 위한 광원은 상당히 고가이다. 이에, 상대적으로 저렴하면서 널리 보급되는 광 송신기 내에는 그보다는 동작을 위한 온도 범위가 좁은 광원이 사용된다. 이러한 광원은 특히, 높은 온도보다는 낮은 온도에서의 동작 성능이 현저히 떨어진다. 이를 방지하기 위해, 히터부(140)는 광 송신기(110)에서 광이 조사되는 반대 방향에서 광 송신기(110)와 연결된다. 히터부(140)는 솔더 등 별도의 접착 물질에 의해 광 송신기(110)와 연결될 수도 있고, 나사 등의 연결매체를 이용해 구조적으로 직접 광 송신기(110)와 연결될 수도 있다. 히터부(140)는 광 송신기(110)와 연결되어, 광 송신기(110)로 열을 가한다. 광 송신기(110)와 직·간접적으로 연결되며 광을 조사하는 부위와 근접하여 연결되기 때문에, 히터부(140)는 배치를 위한 별도의 과도한 공간을 요하지 않으면서, 높은 효율을 갖는 고비용의 광원이 포함되지 않더라도 광 송신기(110)의 동작 성능을 향상시킬 수 있다.The heater unit 140 applies heat to the optical transmitter 110 so that the optical transmitter 110 can operate smoothly even at a low temperature. The wavelength of the light irradiated from the optical transmitter 110 is shifted according to the temperature. In addition, the light source included in the optical transmitter may operate in a wide temperature range of -40°C to 85°C, but the light source for operating in such a wide temperature range is quite expensive. Accordingly, a light source having a narrow temperature range for operation is used in an optical transmitter that is relatively inexpensive and widely used. In particular, such a light source has significantly lower operating performance at a lower temperature than at a higher temperature. To prevent this, the heater unit 140 is connected to the optical transmitter 110 in the opposite direction to which light is irradiated from the optical transmitter 110 . The heater unit 140 may be connected to the optical transmitter 110 by a separate adhesive material such as solder, or may be structurally directly connected to the optical transmitter 110 by using a connection medium such as a screw. The heater unit 140 is connected to the optical transmitter 110 to apply heat to the optical transmitter 110 . Since it is directly or indirectly connected to the optical transmitter 110 and is connected in close proximity to a portion irradiating light, the heater unit 140 does not require a separate excessive space for arrangement and is a high-cost light source having high efficiency. Even if it is not included, the operating performance of the optical transmitter 110 may be improved.
제조의 편의성 및 광 송신기(110)와의 연결의 편이성을 확보할 수 있도록, 히터부(140)는 연성인쇄회로기판(FPCB: Flexible Printed Circuits Board)으로 구현될 수 있다. 히터부(140)는 연성인쇄회로기판으로 구현되며, 내부에 발열을 위한 수단을 포함하여 광 송신기(110)로 열을 가한다. 히터부(140)의 구체적인 구조는 도 7을 참조하여 후술한다.In order to secure the convenience of manufacturing and the convenience of connection with the optical transmitter 110 , the heater unit 140 may be implemented as a flexible printed circuit board (FPCB). The heater unit 140 is implemented as a flexible printed circuit board, and includes a means for heat generation therein, and applies heat to the optical transmitter 110 . A specific structure of the heater unit 140 will be described later with reference to FIG. 7 .
도 2는 본 발명의 제1 실시예에 따른 광 송신기, 광 수신기 및 리셉터클의 단면도이다.2 is a cross-sectional view of an optical transmitter, an optical receiver and a receptacle according to a first embodiment of the present invention.
광 송신기(110)는 스템(210), 포토다이오드(212), 광원(214), 렌즈(216) 및 하우징(218)을 포함한다.The optical transmitter 110 includes a stem 210 , a photodiode 212 , a light source 214 , a lens 216 , and a housing 218 .
스템(210)은 광 송신기(110) 내 구성들을 지지한다. 스템(210)은 광 송신기(110)의 하단(도 2에서는 +x축 방향)에 배치되어, 광 송신기(110) 내 구성들을 지지한다. 스템(210)은 열 전도율이 높은 물질로 구현되어, 광 송신기(110) 하단(도 2에서는 +x축 방향)에 배치된 히터부로부터 발생하는 열을 광 송신기(110)로 전달하고, 광 송신기(110)에서 발생하는 열을 외부로 방출한다.The stem 210 supports components within the optical transmitter 110 . The stem 210 is disposed at the lower end of the optical transmitter 110 (in the +x-axis direction in FIG. 2 ), and supports the components in the optical transmitter 110 . The stem 210 is implemented with a material with high thermal conductivity, and transfers heat generated from the heater unit disposed at the lower end of the optical transmitter 110 (in the +x-axis direction in FIG. 2 ) to the optical transmitter 110 , The heat generated in (110) is discharged to the outside.
포토 다이오드(212)는 광원(214)으로부터 조사되는 광 일부를 수광하여, 광원(214)으로부터 조사되는 광을 모니터링한다. 포토 다이오드(212)는 스템(210) 상에 위치한 서브마운트(213) 상에 배치되어, 조사될 광 일부를 수광한다. 포토 다이오드(212)는 수광한 광을 센싱하여, 조사될 광을 모니터링할 수 있도록 한다.The photodiode 212 receives a portion of the light irradiated from the light source 214 and monitors the light irradiated from the light source 214 . The photodiode 212 is disposed on the submount 213 positioned on the stem 210 to receive a portion of the light to be irradiated. The photodiode 212 senses the received light to monitor the light to be irradiated.
광원(214)은 선편광된 기 설정된 파장대역의 광을 조사한다. The light source 214 irradiates linearly polarized light of a preset wavelength band.
광원(214)은 일 방향으로 편광된 광을 조사한다. 여기서, 광원(214)에서 조사되는 광은 후술할 편광필터(234)가 통과시키는 편광방향과 90° 위상차를 갖는 편광방향을 갖는다. 조사되는 광이 해당 방향의 편광방향을 가짐으로써, 편광필터(234)로 입사하며 거치는 다른 구성들에 의해 손실없이 편광필터(234)를 통과할 수 있다. 여기서, 광은 P 편광과 S 편광을 갖는데, P 편광 성분이 일반적으로 광의 편광 방향이 된다. 즉, 광원(214)으로부터 조사되는 광은 P 편광방향이 편광필터(234)가 통과시키는 편광방향과 90° 위상차를 갖는 방향을 갖도록 조사된다.The light source 214 irradiates light polarized in one direction. Here, the light irradiated from the light source 214 has a polarization direction having a phase difference of 90° from a polarization direction passed by a polarization filter 234 to be described later. Since the irradiated light has a polarization direction in the corresponding direction, it can pass through the polarization filter 234 without loss due to other components passing through and incident on the polarization filter 234 . Here, light has P polarization and S polarization, and the P polarization component is generally the polarization direction of the light. That is, the light irradiated from the light source 214 is irradiated so that the P polarization direction has a 90° phase difference from the polarization direction that the polarization filter 234 passes.
광원(214)은 기 설정된 파장대역의 광을 조사한다. 여기서, 기 설정된 파장대역의 광은 편광필터(234)가 통과시키는 파장대역이다. 광원(214)은 기 설정된 파장대역의 광을 조사함으로써, 광이 편광필터(234)를 통과하여 리셉터클(130) 외부로 조사될 수 있도록 한다. The light source 214 irradiates light of a preset wavelength band. Here, the light of the preset wavelength band is a wavelength band through which the polarization filter 234 passes. The light source 214 irradiates light of a preset wavelength band so that the light can pass through the polarization filter 234 and be irradiated to the outside of the receptacle 130 .
여기서, 광원(214)은 레이저 다이오드(LD: Laser Diode)로 구현될 수 있으나, 반드시 이에 한정되는 것은 아니다.Here, the light source 214 may be implemented as a laser diode (LD), but is not limited thereto.
렌즈(216)는 광원(214)에서 광이 조사되는 경로 상의 전방(-x축 방향)에 배치되어, 광원(214)으로부터 조사되는 광을 포커싱한다. 렌즈(216)는 광원(214)에서 조사되는 광을 포커싱함으로써, 조사된 대부분의 광이 분산되지 않고 후술할 반파장판(230)으로 입사할 수 있도록 한다.The lens 216 is disposed in front (-x-axis direction) on the path on which the light is irradiated from the light source 214 to focus the light irradiated from the light source 214 . The lens 216 focuses the light irradiated from the light source 214 so that most of the irradiated light is not dispersed and is incident on the half-wave plate 230 to be described later.
하우징(218)은 광 송신기(110) 외부에 배치되어, 광 송신기(110) 내부 구성을 외력으로부터 보호하며, 내부 구성의 광 송신기(110) 외부로의 이탈을 방지한다.The housing 218 is disposed outside the optical transmitter 110 , and protects the internal configuration of the optical transmitter 110 from external forces, and prevents the internal configuration of the optical transmitter 110 from escaping to the outside.
광 수신기(120)는 광 필터(220), 렌즈(222), 포토 다이오드(224) 및 스템(226)을 포함한다.The optical receiver 120 includes an optical filter 220 , a lens 222 , a photodiode 224 and a stem 226 .
광 필터(220)는 광 수신기(120)로 입사하는 광 경로 상의 가장 앞단에 배치되어, 다른 광 송수신 모듈로부터 조사된 광 이외의 잡광들을 필터링한다. The optical filter 220 is disposed at the front end on the optical path incident to the optical receiver 120 to filter clutter other than the light irradiated from other optical transmission/reception modules.
렌즈(222)는 광 필터(220)의 (광 경로 상의) 후방(+y축 방향)에 배치되어, 광 필터(220)를 거친 광을 포토 다이오드(224)로 포커싱한다.The lens 222 is disposed behind (on the optical path) (+y-axis direction) of the optical filter 220 to focus the light passing through the optical filter 220 to the photodiode 224 .
포토 다이오드(224)는 다른 광 송수신 모듈로부터 출력되어 광 송수신 모듈(100)로 유입되는 광을 수광한다. 포토 다이오드(224)는 다른 광 송수신 모듈로부터 출력된 광을 수광하여 센싱함으로써, 다른 광 송수신 모듈이 전송한 신호를 수신한다.The photodiode 224 receives light that is output from another optical transmission/reception module and flows into the optical transmission/reception module 100 . The photodiode 224 receives and senses the light output from the other optical transceiving module, thereby receiving a signal transmitted by the other optical transceiving module.
스템(226)은 광 수신기(120) 내 구성, 특히 포토 다이오드(224)를 지지하며, 포토 다이오드(224)에서 발생하는 열을 외부로 방출한다.The stem 226 supports the internal components of the optical receiver 120 , particularly the photodiode 224 , and radiates heat generated from the photodiode 224 to the outside.
반파장판(230, Half Wave Plate)은 광 경로상에서 광 송신기(110)의 전방(-x축 방향)에 배치되어, 광 송신기(110)로부터 조사되는 광의 편광 방향을 일정한 방향(예를 들어, 시계방향)으로 45°만큼 회전시킨다.The half-wave plate 230 is disposed in front (-x-axis direction) of the optical transmitter 110 on the optical path, and sets the polarization direction of the light irradiated from the optical transmitter 110 in a certain direction (eg, clockwise). direction) by 45°.
광 아이솔레이터(232)는 광 경로상에서 반파장판(230)의 전방(-x축 방향)에 배치되어, 반파장판(230)을 거친 광은 통과시키되 편광필터(234)에서 입사하는 광은 통과시키지 않는다. 광 아이솔레이터(232)는 광 송신기(110)와 가까운 끝단에서, 반파장판(230)에 의해 일정한 방향으로 45°만큼 회전된 편광방향을 갖는 광만을 통과시키는 제1 편광자를 포함한다. 한편, 광 아이솔레이터(232)는 다른 일 끝단(편광필터(234)와 가까운 끝단)에서는 전술한 편광자의 편광방향으로부터 일정한 방향으로 45°만큼 회전된 편광방향을 갖는 광만을 통과시키는 제2 편광자를 포함한다. 광 아이솔레이터(232)는 양 편광자들 사이에 유입된 광의 편광방향을 다시 일정한 방향으로 45°만큼 회전시키는 구성을 포함한다. 이에 따라, 광 송신기(110)로부터 광 아이솔레이터(232)로 조사되는 광은 제1 편광자를 통과하여 전술한 구성을 지나 편광방향이 45°만큼 (일정한 방향으로) 회전하며, 제2 편광자를 통과하게 된다. 반면, 광 아이솔레이터의 제2 편광자로 진입하는 광은 전술한 구성을 지나 편광방향이 45°만큼 (일정한 방향으로) 회전하며, 편광방향의 회전에 의해 제1 편광자와 90°의 편광방향의 차이가 발생하게 되어 제1 편광자를 통과하지 못하게 된다. The optical isolator 232 is disposed in front (-x-axis direction) of the half-wave plate 230 on the optical path, and passes the light passing through the half-wave plate 230 but does not pass the light incident from the polarizing filter 234 . . The optical isolator 232 includes a first polarizer that passes only light having a polarization direction rotated by 45° in a predetermined direction by the half-wave plate 230 at an end close to the optical transmitter 110 . On the other hand, the optical isolator 232 includes a second polarizer that passes only light having a polarization direction rotated by 45° in a predetermined direction from the polarization direction of the aforementioned polarizer at the other end (end close to the polarizing filter 234). do. The optical isolator 232 includes a configuration that rotates the polarization direction of the light introduced between both polarizers by 45° in a constant direction again. Accordingly, the light irradiated from the optical transmitter 110 to the optical isolator 232 passes through the first polarizer, passes the above-described configuration, and the polarization direction is rotated by 45° (in a constant direction), and passes through the second polarizer. do. On the other hand, the light entering the second polarizer of the optical isolator passes through the above-described configuration and the polarization direction is rotated by 45° (in a constant direction), and the difference between the first polarizer and the polarization direction of 90° is reduced by the rotation of the polarization direction. is generated and does not pass through the first polarizer.
광 송신기(110)에서 출력된 광은 반파장판(230)과 광 아이솔레이터(232)를 거치며 편광축이 일정한 방향으로 90°회전된 채로 진행하게 된다. The light output from the optical transmitter 110 passes through the half-wave plate 230 and the optical isolator 232 and proceeds with the polarization axis rotated 90° in a certain direction.
편광필터(234)는 광 경로상에서 광 아이솔레이터(232)의 전방에 배치되어, 광 아이솔레이터(232)를 통과하는 광은 통과시키되 리셉터클(130)을 거쳐 유입되는 광은 반사시킨다. 편광필터(234)는 기 설정된 편광방향의 광만을 반사시키고 다른 방향의 광은 필터링한다. 이와 동시에, 편광필터(234)는 기 설정된 파장대역의 광은 통과시키되, 기 설정된 파장대역 이외의 광(인접한 파장대역)은 반사시킨다. 편광필터(234)가 통과시키는 편광 방향은 광 송신기(110), 특히, 광원(214)에서 조사되는 광의 편광방향과 90° 차이를 갖는 방향에 해당한다. 이러한 특징에 따라, 편광필터(234)는 광의 편광방향과 일치하는 편광성분(P 편광)만을 통과시키고, 광의 편광방향과 수직인 편광성분(S 편광)은 통과시키지 않는다. 광 송신기(110)에서 조사된 (송신)광은 기 설정된 파장대역을 갖기 때문에, 기 설정된 파장대역의 P 편광성분이 편광필터(234)를 통과하여 리셉터클(130)로 진행하게 된다. 반대로, 외부에서 리셉터클(130)로 유입된 광은 다른 광 송수신 모듈에서 동일한 편광성분(P 편광)을 가지며 출력되는 한편, 광 송수신 모듈(100)에서 출력되는 광과의 간섭이 발생하지 않도록 파장대역이 기 설정된 파장대역과 인접한 파장대역을 갖는다. 이러한 특징에 따라, 외부에서 리셉터클(130)을 거쳐 편광필터(234)로 유입되는 (수신)광은 편광필터(234)로부터 광 수신기(120)로 반사된다.The polarizing filter 234 is disposed in front of the optical isolator 232 on the optical path, so that the light passing through the optical isolator 232 is passed, but the light entering through the receptacle 130 is reflected. The polarization filter 234 reflects only light in a preset polarization direction and filters light in other directions. At the same time, the polarizing filter 234 passes light of a preset wavelength band, but reflects light other than the preset wavelength band (adjacent wavelength band). The polarization direction passed by the polarization filter 234 corresponds to a direction having a difference of 90° from the polarization direction of the light irradiated from the light transmitter 110 , in particular, the light source 214 . According to this feature, the polarization filter 234 passes only a polarization component (P polarization) that matches the polarization direction of light, and does not pass a polarization component (S polarization) that is perpendicular to the polarization direction of light. Since the (transmission) light irradiated from the optical transmitter 110 has a preset wavelength band, the P polarization component of the preset wavelength band passes through the polarization filter 234 and proceeds to the receptacle 130 . Conversely, the light introduced from the outside into the receptacle 130 has the same polarization component (P polarization) and is output from other optical transceiving modules, while preventing interference with the light output from the optical transceiving module 100 in a wavelength band. It has a wavelength band adjacent to this preset wavelength band. According to this characteristic, (received) light that flows into the polarization filter 234 through the receptacle 130 from the outside is reflected from the polarization filter 234 to the optical receiver 120 .
편광필터(234)가 기 설정된 편광방향의 광만을 반사시킴으로써, 광 송수신 모듈(100)은 종래의 광 송수신 모듈보다 좁은 파장폭을 갖는 광을 송수신할 수 있다. 종래에는 주로 60nm 파장폭을 갖는 파장대역을 이용하여 광을 송수신하곤 했다. 예를 들어, 송신광이 1270 내지 1330 nm의 파장대역을 갖는 광이라면, 수신광은 1210 내지 1270nm이거나 1330 내지 1390nm의 파장대역을 갖는 광이 이용되었다. 이는 종래의 광 송수신 모듈 내 구성(특히, 분리필터)의 특성상 40nm 파장대역의 광들은 구분될 수 있었다. 다만, 광의 송·수신 과정에서 온도의 변화로 인한 파장의 시프트(Shift)가 약 6 내지 6.5nm 가량 발생할 수 있어, 간섭의 최소화를 위해 송·수신 광은 반드시 60nm 파장폭을 가져야만 했다. 그러나 광 송수신 모듈(100)은 편광필터(234)를 포함함으로써, 종래의 파장폭보다 좁은 40nm 파장폭을 갖더라도 송·수신 광의 간섭을 방지할 수 있다. 이는 도 3 및 도 4의 그래프로부터 확인할 수 있다.As the polarization filter 234 reflects only light in a preset polarization direction, the optical transmission/reception module 100 may transmit/receive light having a narrower wavelength than that of a conventional optical transmission/reception module. Conventionally, light was mainly transmitted and received using a wavelength band having a wavelength of 60 nm. For example, if the transmitted light is light having a wavelength band of 1270 to 1330 nm, the received light is 1210 to 1270 nm or light having a wavelength band of 1330 to 1390 nm is used. Due to the characteristics of the conventional optical transceiver module (particularly, the separation filter), the light in the 40nm wavelength band could be distinguished. However, in the process of transmitting and receiving light, a shift in wavelength due to a change in temperature may occur about 6 to 6.5 nm. Therefore, in order to minimize interference, the transmit/receive light must have a wavelength of 60 nm. However, since the optical transmission/reception module 100 includes the polarization filter 234 , it is possible to prevent interference of transmitted/received light even if it has a wavelength width of 40 nm which is narrower than the conventional wavelength width. This can be confirmed from the graphs of FIGS. 3 and 4 .
도 3 및 도 4는 본 발명의 제1 실시예에 따른 필터와 종래의 필터의 파장에 따른 투과율을 도시한 그래프이다.3 and 4 are graphs showing transmittance according to wavelength of the filter according to the first embodiment of the present invention and the conventional filter.
도 3을 참조하면, 편광필터(234)는 특정 편광방향의 광만을 통과시키기 때문에, 인접 파장대역으로의 잔상으로 인한 악영향이 최소화된다. 이에 따라, 예를 들어, 편광필터(234)가 1270 내지 1310nm의 파장대역을 갖는 광을 통과시키는 필터라면, 1280nm 대역부터 투과율이 급격히 감소하기 시작하여, 1300nm 내외에서 투과율이 거의 0%에 수렴하게 된다. 이로 인해, 온도 변화로 인한 시프트까지 고려하더라도, 편광필터(234)를 포함하는 광 송수신 모듈(100)은 40nm 파장폭을 갖더라도 송·수신 광의 간섭을 방지할 수 있다.Referring to FIG. 3 , since the polarization filter 234 passes only light in a specific polarization direction, an adverse effect due to an afterimage in an adjacent wavelength band is minimized. Accordingly, for example, if the polarizing filter 234 is a filter that passes light having a wavelength band of 1270 to 1310 nm, the transmittance starts to decrease rapidly from the 1280 nm band, and the transmittance converges to almost 0% within 1300 nm. do. For this reason, even in consideration of shift due to temperature change, even if the optical transmission/reception module 100 including the polarization filter 234 has a wavelength of 40 nm, interference of transmission/reception light can be prevented.
반면, 도 4를 참조하면, 종래의 편광필터는 1290nm 대역부터 투과율이 완만하게 감소하기 시작하여, 1320nm 내외에서야 비로소 투과율이 거의 0%에 수렴하고 있음을 확인할 수 있다. 따라서, 종래의 편광필터는 온도 변화로 인한 시프트까지 고려하면, 종래의 편광필터를 포함하는 광 송수신 모듈은 적어도 60nm 파장폭을 가져야만 송·수신 광의 간섭을 방지할 수 있다.On the other hand, referring to FIG. 4 , it can be seen that the transmittance of the conventional polarizing filter starts to gradually decrease from the band of 1290 nm, and the transmittance converges to almost 0% only at around 1320 nm. Therefore, considering the shift due to temperature change in the conventional polarizing filter, the optical transmission/reception module including the conventional polarizing filter must have a wavelength of at least 60 nm to prevent interference of transmitted/received light.
다시 도 2를 참조하면, 편광필터(234)의 연직 하방(편광필터로부터 광이 반사되는 방향과 반대되는 방향, -y축 방향)에는 광 반사부(236)가 배치된다. 광 반사부(236)는 광 아이솔레이터(232) 및 편광필터(234)가 배치되는 하우징 내에 형성된 구조로서, 자신에 입사하는 광의 방향을 가변시킨다. 광 반사부(236)는 편광필터(234)의 연직 하방에 오목하게 패인 구조일 수도 있고 볼록하게 돌출된 구조일 수 있다. 이론적으로는 광 송신기(110)에서 출력되어 편광필터(234)로 입사하는 광은 편광필터(234)를 온전히 통과하여야 하지만, 현실적으로는 광 송신기(110)에서 출력된 광이 아주 적은 비율로 편광 필터(234)에서 반사되는 경우가 발생한다. 광 반사부(236)가 존재하지 않는다면, 편광 필터(234)에서 반사된 광은 하우징에 반사되어 광 수신기(120)로 유입되게 된다. 편광 필터(234)에서 반사된 광이 광 수신기(120)로 유입되는 경우, 결과의 왜곡이 발생하게 된다. 이를 방지하고자, 광 반사부(236)는 편광필터(234)의 연직 하방에서 연직 하방으로 (의도치 않게) 반사된 광의 경로를 가변시킨다. 광 반사부(236)에 의해 경로가 가변된 광은 광 수신기(120)로 입사하지 못하게 된다.Referring again to FIG. 2 , the light reflection unit 236 is disposed vertically below the polarization filter 234 (in a direction opposite to the direction in which light is reflected from the polarization filter, in the -y-axis direction). The light reflection unit 236 is a structure formed in a housing in which the light isolator 232 and the polarization filter 234 are disposed, and changes the direction of light incident thereon. The light reflection unit 236 may have a structure that is concave vertically below the polarization filter 234 or a structure that protrudes convexly. Theoretically, the light output from the optical transmitter 110 and incident on the polarization filter 234 should completely pass through the polarization filter 234 , but in reality, the light output from the optical transmitter 110 uses a very small proportion of the polarization filter. (234) is reflected in the case occurs. If the light reflection unit 236 does not exist, the light reflected from the polarization filter 234 is reflected by the housing and flows into the optical receiver 120 . When the light reflected from the polarization filter 234 flows into the optical receiver 120, distortion of the result occurs. To prevent this, the light reflection unit 236 changes the path of the reflected light (unintentionally) from the vertically downward direction of the polarizing filter 234 to the vertical downward direction. The light whose path is changed by the light reflection unit 236 does not enter the optical receiver 120 .
리셉터클(130)은 스터브(Stub, 240) 및 하우징(242)을 포함한다.The receptacle 130 includes a stub 240 and a housing 242 .
스터브(240)는 하우징(242) 내에 배치되어, 광 송신기(110)로부터 출력되는 광을 외부로 출력하며, 외부에서 유입되는 광을 편광필터(234)로 전달한다.The stub 240 is disposed in the housing 242 , outputs the light output from the optical transmitter 110 to the outside, and transmits the light introduced from the outside to the polarization filter 234 .
하우징(242)는 내부에 스터브(240)를 포함하여, 스터브(240)를 외력으로부터 보호하며 스터브(240)를 고정시킨다.The housing 242 includes the stub 240 therein, and protects the stub 240 from external force and fixes the stub 240 .
도 5는 본 발명의 제2 실시예에 따른 광 송신기, 광 수신기 및 리셉터클의 단면도이다.5 is a cross-sectional view of an optical transmitter, an optical receiver and a receptacle according to a second embodiment of the present invention.
도 5를 참조하면, 광 송신기(110)는 스템(510), 포토다이오드(512), 광원(514), 렌즈(516) 및 하우징(518)을 포함한다.Referring to FIG. 5 , the optical transmitter 110 includes a stem 510 , a photodiode 512 , a light source 514 , a lens 516 , and a housing 518 .
스템(510)은 광 송신기(110) 내 구성들을 지지한다. 스템(510)은 광 송신기(110)의 하단(도 5에서는 +x축 방향)에 배치되어, 광 송신기(110) 내 구성들을 지지한다. 스템(510)은 열 전도율이 높은 물질로 구현되어, 광 송신기(110) 하단(도 5에서는 +x축 방향)에 배치된 히터부로부터 발생하는 열을 광 송신기(110)로 전달하고, 광 송신기(110)에서 발생하는 열은 외부로 방출한다.The stem 510 supports components within the optical transmitter 110 . The stem 510 is disposed at the lower end of the optical transmitter 110 (in the +x-axis direction in FIG. 5 ), and supports components in the optical transmitter 110 . The stem 510 is implemented with a material having high thermal conductivity, and transfers heat generated from the heater unit disposed at the lower end of the optical transmitter 110 (in the +x-axis direction in FIG. 5 ) to the optical transmitter 110 , Heat generated in 110 is discharged to the outside.
포토 다이오드(512)는 광원(514)으로부터 조사되는 광 일부를 수광하여, 광원(514)으로부터 조사되는 광을 모니터링한다. 포토 다이오드(512)는 스템(510) 상에 위치한 서브마운트(513) 상에 배치되어, 조사될 광 일부를 수광한다. 포토 다이오드(512)는 수광한 광을 센싱하여, 조사될 광을 모니터링할 수 있도록 한다.The photodiode 512 receives a portion of the light irradiated from the light source 514 and monitors the light irradiated from the light source 514 . The photodiode 512 is disposed on the submount 513 positioned on the stem 510 to receive a portion of the light to be irradiated. The photodiode 512 senses the received light to monitor the light to be irradiated.
광원(514)은 선편광된 기 설정된 파장대역의 광을 조사한다. The light source 514 irradiates linearly polarized light of a preset wavelength band.
광원(514)은 일 방향으로 편광된 광을 조사한다. 여기서, 광원(514)에서 조사되는 광은 후술할 반사 방지부(230)가 통과시키는 편광방향을 갖는다. 조사되는 광이 해당 방향의 편광방향을 가짐으로써, 반사 방지부(530)를 통과할 수 있다. 여기서, 광은 P 편광과 S 편광을 갖는데, P 편광 성분이 일반적으로 광의 편광 방향이 된다. 즉, 광원(514)으로부터 조사되는 광은 P 편광 방향이 반사 방지부(530)를 통과하는 방향을 갖도록 조사된다.The light source 514 irradiates light polarized in one direction. Here, the light irradiated from the light source 514 has a polarization direction through which the anti-reflection unit 230 to be described later passes. As the irradiated light has a polarization direction in the corresponding direction, it may pass through the anti-reflection unit 530 . Here, light has P polarization and S polarization, and the P polarization component is generally the polarization direction of the light. That is, the light irradiated from the light source 514 is irradiated so that the P-polarization direction passes through the anti-reflection unit 530 .
광원(514)은 기 설정된 파장대역의 광을 조사한다. 여기서, 기 설정된 파장대역의 광은 필터(534)가 통과시키는 파장대역이다. 광원(514)은 기 설정된 파장대역의 광을 조사함으로써, 광이 필터(534)를 통과하여 리셉터클(130) 외부로 조사될 수 있도록 한다. The light source 514 irradiates light of a preset wavelength band. Here, the light of the preset wavelength band is a wavelength band through which the filter 534 passes. The light source 514 irradiates light of a preset wavelength band so that the light passes through the filter 534 and is irradiated to the outside of the receptacle 130 .
여기서, 광원(514)은 레이저 다이오드(LD: Laser Diode)로 구현될 수 있으나, 반드시 이에 한정되는 것은 아니다.Here, the light source 514 may be implemented as a laser diode (LD), but is not limited thereto.
렌즈(516)는 광원(514)에서 광이 조사되는 경로 상의 전방(-x축 방향)에 배치되어, 광원(514)으로부터 조사되는 광을 포커싱한다. 렌즈(516)는 광원(514)에서 조사되는 광을 포커싱함으로써, 조사된 대부분의 광이 분산되지 않고 후술할 반사 방지부(530)로 입사할 수 있도록 한다.The lens 516 is disposed in front (-x-axis direction) on the path on which the light is irradiated from the light source 514 to focus the light irradiated from the light source 514 . The lens 516 focuses the light irradiated from the light source 514 so that most of the irradiated light is not dispersed and is incident to the anti-reflection unit 530 to be described later.
하우징(518)은 광 송신기(110) 외부에 배치되어, 광 송신기(110) 내부 구성을 외력으로부터 보호하며, 내부 구성의 광 송신기(110) 외부로의 이탈을 방지한다.The housing 518 is disposed outside the optical transmitter 110 , and protects the internal configuration of the optical transmitter 110 from external forces, and prevents the internal configuration of the optical transmitter 110 from escaping to the outside.
도 5를 참조하면, 광 수신기(120)는 광 필터(520), 렌즈(522), 포토 다이오드(524) 및 스템(526)을 포함한다.Referring to FIG. 5 , the optical receiver 120 includes an optical filter 520 , a lens 522 , a photodiode 524 , and a stem 526 .
광 필터(520)는 광 수신기(120)로 입사하는 광 경로 상의 가장 앞단에 배치되어, 다른 광 송수신 모듈로부터 조사된 광 이외의 잡광들을 필터링한다. The optical filter 520 is disposed at the frontmost end on the optical path incident to the optical receiver 120 to filter clutter other than the light emitted from other optical transceiving modules.
렌즈(520)는 광 필터(520)의 (광 경로 상의) 후방(+y축 방향)에 배치되어, 광 필터(520)를 거친 광을 포토 다이오드(524)로 포커싱한다.The lens 520 is disposed behind (on the optical path) (+y-axis direction) of the optical filter 520 to focus the light passing through the optical filter 520 to the photodiode 524 .
포토 다이오드(524)는 다른 광 송수신 모듈로부터 출력되어 광 송수신 모듈(100)로 유입되는 광을 수광한다. 포토 다이오드(524)는 다른 광 송수신 모듈로부터 출력된 광을 수광하여 센싱함으로써, 다른 광 송수신 모듈이 전송한 신호를 수신한다.The photodiode 524 receives light that is output from another optical transceiver module and flows into the optical transceiver module 100 . The photodiode 524 receives and senses the light output from the other optical transceiving module, thereby receiving a signal transmitted by the other optical transceiving module.
스템(526)은 광 수신기(120) 내 구성, 특히 포토 다이오드(524)를 지지하며, 포토 다이오드(524)에서 발생하는 열을 외부로 방출한다.The stem 526 supports the internal components of the optical receiver 120 , particularly the photodiode 524 , and radiates heat generated in the photodiode 524 to the outside.
반사 방지부(530)는 광 경로상에서 광 송신기(110)의 전방(-x축 방향)에 배치되어, 광 송신기(110)로부터 조사되는 광은 통과시키되 필터(534)에서 반사되거나 필터(534)를 통과하여 광 송신기(110)로 진입하는 광은 차단한다. 반사 방지부(530)는 도 6에 도시된 구조를 갖는다.The anti-reflection unit 530 is disposed in front (-x-axis direction) of the optical transmitter 110 on the optical path, and passes the light irradiated from the optical transmitter 110 but is reflected by the filter 534 or the filter 534 The light passing through and entering the optical transmitter 110 is blocked. The anti-reflection unit 530 has the structure shown in FIG. 6 .
도 6은 본 발명의 일 실시예에 따른 반사 방지부를 도시한 도면이다.6 is a view showing an anti-reflection unit according to an embodiment of the present invention.
도 6을 참조하면, 본 발명의 일 실시예에 따른 반사 방지부(530)는 편광판(610) 및 1/4파장판(620)을 포함한다.Referring to FIG. 6 , the anti-reflection unit 530 according to an embodiment of the present invention includes a polarizing plate 610 and a quarter wave plate 620 .
편광판(610)은 광 송신기(110)에서 출력되는 광의 편광방향과 동일한 방향의 광만을 투과시킨다. The polarizing plate 610 transmits only light in the same direction as the polarization direction of the light output from the optical transmitter 110 .
1/4파장판(620)은 입사하는 광의 편광방향을 45° 변환시킨다. The quarter wave plate 620 converts the polarization direction of the incident light by 45°.
광 송신기(110)로부터 입사하는 광은 편광판(610)을 지나 1/4파장판(620)을 거치며 편광 방향이 변환된 채 진행하게 된다. 반면, 1/4파장판(620)에서 출력된 광이 필터(534) 등에 반사되어 다시 1/4파장판(620)으로 입사하는 경우, 해당 광은 1/4파장판(620)을 거치며 다시 편광 방향이 45° 변환된다. 편광 방향이 변환된 광은 편광판(610)을 통과하지 못하게 된다.The light incident from the optical transmitter 110 passes through the polarizing plate 610 and the quarter-wave plate 620 and proceeds with the polarization direction changed. On the other hand, when the light output from the quarter-wave plate 620 is reflected by the filter 534 and the like and is incident on the quarter-wave plate 620 again, the corresponding light passes through the quarter-wave plate 620 and is returned again. The polarization direction is changed by 45°. The light whose polarization direction is converted does not pass through the polarizing plate 610 .
즉, 반사 방지부(530)는 편광판(610)과 1/4파장판(620)을 포함하여, 광 송신기(110)로부터 입사되는 광은 통과시키되, 반사되어 광 송신기(110)로 진행하는 광은 차단할 수 있다. 반사 방지부(530)는 편광판(610)과 1/4파장판(620)만으로 구현되기에, 상대적으로 좁은 공간만을 차지하면서 동작할 수 있고, 상당히 저렴한 비용으로도 구현될 수 있다.That is, the anti-reflection unit 530 includes a polarizing plate 610 and a quarter-wave plate 620 , and passes light incident from the optical transmitter 110 , but is reflected and travels to the optical transmitter 110 . can be blocked. Since the anti-reflection unit 530 is implemented only with the polarizing plate 610 and the quarter-wave plate 620 , it can operate while occupying a relatively small space and can be implemented at a fairly low cost.
다시 도 5를 참조하면, 필터(534)는 광 경로상에서 반사 방지부(530)의 전방에 배치되어, 반사 방지부(530)를 통과하는 광은 통과시키되 리셉터클(130)을 거쳐 유입되는 광은 반사시킨다. 필터(534)는 기 설정된 파장대역의 광은 통과시키되, 기 설정된 파장대역 이외의 광(인접한 파장대역)은 반사시킨다. 이러한 특징에 따라, 광 송신기(110)에서 조사된 (송신)광은 기 설정된 파장대역을 갖기 때문에, 필터(534)를 통과하여 리셉터클(130)로 진행하게 된다. 반대로, 외부에서 리셉터클(130)로 유입된 광은 광 송수신 모듈(100)에서 출력되는 광과의 간섭이 발생하지 않도록 파장대역이 기 설정된 파장대역과 인접한 파장대역을 갖는다. 이러한 특징에 따라, 외부에서 리셉터클(130)을 거쳐 필터(534)로 유입되는 (수신)광은 필터(534)로부터 광 수신기(120)로 반사된다.Referring back to FIG. 5 , the filter 534 is disposed in front of the anti-reflection unit 530 on the light path, so that light passing through the anti-reflection unit 530 passes but the light entering through the receptacle 130 is reflect The filter 534 passes light of a preset wavelength band, but reflects light other than the preset wavelength band (adjacent wavelength band). According to this characteristic, since the (transmission) light irradiated from the optical transmitter 110 has a preset wavelength band, it passes through the filter 534 and proceeds to the receptacle 130 . Conversely, the light introduced from the outside into the receptacle 130 has a wavelength band adjacent to a preset wavelength band so that interference with the light output from the optical transceiver module 100 does not occur. According to this characteristic, the (received) light that flows into the filter 534 through the receptacle 130 from the outside is reflected from the filter 534 to the optical receiver 120 .
필터(534)의 연직 하방(필터로부터 광이 반사되는 방향과 반대되는 방향, -y축 방향)에는 광 반사부(536)가 배치된다. 광 반사부(536)는 반사 방지부(530) 및 필터(534)가 배치되는 하우징 내에 형성된 구조로서, 자신에 입사하는 광의 방향을 가변시킨다. 광 반사부(536)는 필터(534)의 연직 하방에 오목하게 패인 구조일 수도 있고 볼록하게 돌출된 구조일 수 있다. 이론적으로는 광 송신기(110)에서 출력되어 필터(534)로 입사하는 광은 필터(534)를 온전히 통과하여야 하지만, 현실적으로는 광 송신기(110)에서 출력된 광이 아주 적은 비율로 필터(534)에서 반사되는 경우가 발생한다. 광 반사부(536)가 존재하지 않는다면, 필터(534)에서 반사된 광은 하우징에 반사되어 광 수신기(120)로 유입되게 된다. 필터(534)에서 반사된 광이 광 수신기(120)로 유입되는 경우, 결과의 왜곡이 발생하게 된다. 이를 방지하고자, 광 반사부(536)는 필터(534)의 연직 하방에서 연직 하방으로 (의도치 않게) 반사된 광의 경로를 가변시킨다. 광 반사부(536)에 의해 경로가 가변된 광은 광 수신기(120)로 입사하지 못하게 된다.A light reflection unit 536 is disposed vertically below the filter 534 (the direction opposite to the direction in which light is reflected from the filter, -y-axis direction). The light reflection unit 536 is a structure formed in a housing in which the antireflection unit 530 and the filter 534 are disposed, and changes the direction of light incident thereon. The light reflection unit 536 may have a structure that is concave vertically below the filter 534 or a structure that protrudes convexly. Theoretically, the light output from the optical transmitter 110 and incident on the filter 534 should completely pass through the filter 534, but in reality, the light output from the optical transmitter 110 has a very small ratio to the filter 534. reflection occurs from If the light reflection unit 536 does not exist, the light reflected from the filter 534 is reflected by the housing and flows into the light receiver 120 . When the light reflected from the filter 534 flows into the optical receiver 120, distortion of the result occurs. To prevent this, the light reflection unit 536 (unintentionally) changes the path of the reflected light from the vertically downward direction of the filter 534 to the vertical downward direction. The light whose path is changed by the light reflection unit 536 does not enter the optical receiver 120 .
리셉터클(130)은 스터브(Stub, 540) 및 하우징(542)을 포함한다.The receptacle 130 includes a stub 540 and a housing 542 .
스터브(540)는 하우징(542) 내에 배치되어, 광 송신기(110)로부터 출력되는 광을 외부로 출력하며, 외부에서 유입되는 광을 필터(534)로 전달한다.The stub 540 is disposed in the housing 542 to output the light output from the optical transmitter 110 to the outside, and transmits the light introduced from the outside to the filter 534 .
하우징(542)는 내부에 스터브(540)를 포함하여, 스터브(540)를 외력으로부터 보호하며 스터브(540)를 고정시킨다.The housing 542 includes a stub 540 therein, and protects the stub 540 from external force and fixes the stub 540 .
도 7은 본 발명의 일 실시예에 따른 히터부를 도시한 도면이다.7 is a view showing a heater unit according to an embodiment of the present invention.
도 7을 참조하면, 히터부(140)는 연성인쇄회로기판으로 구현될 수 있으며, 광 송신기의 후방에 연결된다. 히터부(140)는 저온에서 광 송신기의 활성을 향상시키며, 원가를 절감할 수 있도록 한다.Referring to FIG. 7 , the heater unit 140 may be implemented as a flexible printed circuit board, and is connected to the rear of the optical transmitter. The heater unit 140 improves the activity of the optical transmitter at a low temperature and reduces the cost.
도 7(a)와 같이, 히터부(140)는 내부에 마이크로 히터(710)를 포함함으로써, 광 송신기의 저온에서의 온도를 보상할 수도 있다. 또는, 도 7(b)와 같이, 히터부(140)는 내부에 패턴형 박막저항(720) 및 마이크로 스트립 라인을 포함하여 열을 제공할 수도 있다. 다만, 반드시 이에 한정되는 것은 아니고, 히터부(140)는 내부에 코일을 포함할 수도 있다.As shown in FIG. 7A , the heater unit 140 includes a micro heater 710 therein, thereby compensating for the low temperature temperature of the optical transmitter. Alternatively, as shown in FIG. 7B , the heater unit 140 may include a patterned thin film resistor 720 and a micro strip line therein to provide heat. However, the present invention is not necessarily limited thereto, and the heater unit 140 may include a coil therein.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of this embodiment, and a person skilled in the art to which this embodiment belongs may make various modifications and variations without departing from the essential characteristics of the present embodiment. Accordingly, the present embodiments are intended to explain rather than limit the technical spirit of the present embodiment, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The protection scope of this embodiment should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be interpreted as being included in the scope of the present embodiment.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
*본 특허출원은 2020년 7월 31일 한국에 출원한 특허출원번호 제10-2020-0096216호 및 특허출원번호 제10-2020-0096320호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.*This patent application is based on Article 119(a) of the United States Patent Act (35 USC § 119 for Patent Application No. 10-2020-0096216 and Patent Application No. 10-2020-0096320 filed in Korea on July 31, 2020) If priority is claimed under (a)), all contents thereof are incorporated into this patent application by reference. In addition, if this patent application claims priority for countries other than the United States for the same reason as above, all contents thereof are incorporated into this patent application by reference.
Claims (4)
- 선편광된 광을 조사하는 광원부;a light source for irradiating linearly polarized light;기 설정된 편광방향을 갖는 광만을 통과시키며, 기 설정된 파장대역의 광은 통과시키되 나머지 파장대역의 광은 반사시키는 편광필터;a polarizing filter that passes only light having a preset polarization direction, passes light of a preset wavelength band but reflects light of the remaining wavelength band;상기 광원부와 상기 편광필터의 광경로 상에 배치되어, 상기 편광필터로 진행하는 광만을 통과시키는 반사 방지부;an anti-reflection unit disposed on the optical path of the light source unit and the polarizing filter to pass only light traveling through the polarizing filter;상기 편광필터를 거친 광을 외부로 출력하는 페룰; 및a ferrule for outputting the light passing through the polarizing filter to the outside; and외부에서 출력되어 기 설정된 파장대역 이외의 파장대역을 가져 상기 편광필터로부터 반사된 광을 수광하는 수신단A receiving end that receives light reflected from the polarizing filter having a wavelength band other than a preset wavelength band output from the outside을 포함하는 것을 특징으로 하는 광 송수신 모듈.An optical transceiver module comprising a.
- .제1항에 있어서,.2. The method of claim 1,상기 반사방지부는,The anti-reflection unit,기 설정된 편광방향의 광만을 통과시키는 편광판 및 입사하는 광의 편광방향을 45°변환시키는 1/4파장판을 포함하는 것을 특징으로 하는 광 송수신 모듈.An optical transceiver module comprising: a polarizing plate that passes only light in a preset polarization direction; and a quarter-wave plate that converts the polarization direction of incident light by 45°.
- 제2항에 있어서,3. The method of claim 2,상기 편광판은,The polarizing plate is상기 광원부로부터 조사되는 광 경로상에서 상기 1/4파장판의 전방에 배치되는 것을 특징으로 하는 광 송수신 모듈.The optical transceiver module, characterized in that it is disposed in front of the 1/4 wave plate on the light path irradiated from the light source unit.
- 제3항에 있어서,4. The method of claim 3,상기 편광판은,The polarizing plate is상기 광원부로부터 조사되는 광은 통과시키되, 상기 1/4파장판을 거친 광은 통과시키지 않는 것을 특징으로 하는 광 송수신 모듈.The light transmitting and receiving module, characterized in that the light irradiated from the light source unit passes through, but does not pass the light passing through the 1/4 wave plate.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200096320A KR102242474B1 (en) | 2020-07-31 | 2020-07-31 | Optical Transceiver with Improved Spatial and Cost-Effectiveness |
KR10-2020-0096320 | 2020-07-31 | ||
KR10-2020-0096216 | 2020-07-31 | ||
KR1020200096216A KR102242441B1 (en) | 2020-07-31 | 2020-07-31 | Optical Transceiver with Low Temperature Toughness and Enhanced Signal Separation Performance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022025646A1 true WO2022025646A1 (en) | 2022-02-03 |
Family
ID=80035891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/009838 WO2022025646A1 (en) | 2020-07-31 | 2021-07-28 | Optical transmission and reception module capable of distinguishing wavelength of 40 nm by using polarizing plate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022025646A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150044313A (en) * | 2013-10-16 | 2015-04-24 | 한국전자통신연구원 | Optical fiber current sensor |
JP2017211419A (en) * | 2016-05-23 | 2017-11-30 | オプト エレクトロニクス ソリューションズ | Optical module |
KR20180002135A (en) * | 2016-06-28 | 2018-01-08 | 주식회사 오이솔루션 | Optical module |
KR101920320B1 (en) * | 2017-11-09 | 2019-02-11 | 주식회사 오이솔루션 | Optical transmitter and optical module including the same |
KR102242474B1 (en) * | 2020-07-31 | 2021-04-20 | 주식회사 지오스테크놀러지 | Optical Transceiver with Improved Spatial and Cost-Effectiveness |
-
2021
- 2021-07-28 WO PCT/KR2021/009838 patent/WO2022025646A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150044313A (en) * | 2013-10-16 | 2015-04-24 | 한국전자통신연구원 | Optical fiber current sensor |
JP2017211419A (en) * | 2016-05-23 | 2017-11-30 | オプト エレクトロニクス ソリューションズ | Optical module |
KR20180002135A (en) * | 2016-06-28 | 2018-01-08 | 주식회사 오이솔루션 | Optical module |
KR101920320B1 (en) * | 2017-11-09 | 2019-02-11 | 주식회사 오이솔루션 | Optical transmitter and optical module including the same |
KR102242474B1 (en) * | 2020-07-31 | 2021-04-20 | 주식회사 지오스테크놀러지 | Optical Transceiver with Improved Spatial and Cost-Effectiveness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7325983B1 (en) | 10GBASE-LX4 optical transceiver in XFP package | |
US6951426B2 (en) | Pad architecture for backwards compatibility for bi-directional transceiver module | |
US7832944B2 (en) | Optoelectronic subassembly with integral thermoelectric cooler driver | |
US8913889B2 (en) | Optical module | |
US11405108B2 (en) | Multi-channel, bi-directional optical communication module | |
WO2022037511A1 (en) | Light source module and optical communication device | |
US20090226138A1 (en) | Fibre-Optic Module | |
TW201525545A (en) | Opto-electrical transceiver module and active optical cable | |
CN218728198U (en) | Optical module | |
CN115718351A (en) | Optical module | |
US12050351B2 (en) | Compact optical module including multiple active components and path changer component | |
WO2022025646A1 (en) | Optical transmission and reception module capable of distinguishing wavelength of 40 nm by using polarizing plate | |
CN114200576B (en) | Photonic integrated circuit chip | |
CN213302590U (en) | Optical module | |
KR102242474B1 (en) | Optical Transceiver with Improved Spatial and Cost-Effectiveness | |
JP2003143077A (en) | Optical transmission system and optical signal modulator used in the same | |
TWM639388U (en) | Circulator and optical module | |
KR102242441B1 (en) | Optical Transceiver with Low Temperature Toughness and Enhanced Signal Separation Performance | |
JP2010072534A (en) | Optical transmitting/receiving module and optical transmitting/receiving device | |
CN218866167U (en) | Optical module | |
CN221351784U (en) | Bidirectional shared isolation assembly, optical emission assembly and optical transceiver module | |
CN114488425B (en) | Optical module | |
JP2012063460A (en) | Optical transmission and reception module | |
WO2024103573A1 (en) | Optical module | |
CN113917612B (en) | Optical circulator and wavelength division multiplexer combined device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21850295 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21850295 Country of ref document: EP Kind code of ref document: A1 |