WO2022025360A1 - Apparatus and system for measuring water quality on basis of ai learning scheme and floating matter vector information - Google Patents

Apparatus and system for measuring water quality on basis of ai learning scheme and floating matter vector information Download PDF

Info

Publication number
WO2022025360A1
WO2022025360A1 PCT/KR2020/017970 KR2020017970W WO2022025360A1 WO 2022025360 A1 WO2022025360 A1 WO 2022025360A1 KR 2020017970 W KR2020017970 W KR 2020017970W WO 2022025360 A1 WO2022025360 A1 WO 2022025360A1
Authority
WO
WIPO (PCT)
Prior art keywords
water quality
information
deep learning
measuring device
quality measuring
Prior art date
Application number
PCT/KR2020/017970
Other languages
French (fr)
Korean (ko)
Inventor
이동욱
Original Assignee
주식회사 에스엠티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200115819A external-priority patent/KR102467523B1/en
Application filed by 주식회사 에스엠티 filed Critical 주식회사 에스엠티
Publication of WO2022025360A1 publication Critical patent/WO2022025360A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/64Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by measuring electrical currents passing through the fluid flow; measuring electrical potential generated by the fluid flow, e.g. by electrochemical, contact or friction effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to an apparatus and system for measuring water quality, and more particularly, to an apparatus and system for determining water quality based on AI learning method and floating vector information.
  • Water is an essential element for human life.
  • the act of drinking water or washing with water is an essential act for human survival or social life.
  • the actual water quality may not be good even for normal water, and it is difficult to visually check the pipe through which the fluid flows because it is sealed.
  • the prior art document (Republic of Korea Patent Publication No. 10-2120427) discloses a pipe-attached water quality sensor having a structure that measures water quality through residual chlorine concentration, electrical conductivity, and water temperature information, and then provides it to a user.
  • An object of the present invention is to provide an apparatus and system for measuring water quality having a structure capable of solving the above-described problems.
  • Another object of the present invention is to provide a water quality measuring device and a water quality measuring system including the same, which are installed at a place where the fluid flows and can provide information on the water quality of the fluid to a user.
  • an object of the present invention is to provide a water quality measuring device and a water quality measuring system including the same, in which information on the water quality of a fluid is analyzed by a machine learning algorithm and provided to a user.
  • an object of the present invention is to provide a water quality measurement device in which a machine learning algorithm for analyzing the water quality of a fluid can be continuously updated by learning information of the deep learning algorithm, and a water quality measurement system including the same.
  • Another object of the present invention is to provide a water quality measuring device that is switched to and driven in a low power mode when the fluid does not flow, and a water quality measuring system including the same.
  • Another object of the present invention is to provide a water quality measuring apparatus capable of providing water quality information in a visually recognizable form to a user or a user terminal, and a water quality measuring system including the same.
  • an object of the present invention is to provide a water quality measuring device that can be driven through self-generation using the kinetic energy of a fluid and a water quality measuring system including the same.
  • the water quality is primarily determined by the machine learning algorithm, and the water quality is secondarily determined as the acquired image data is analyzed based on the deep learning algorithm, and the determined water quality can be provided to the user. Its purpose is to provide
  • Another object of the present invention is to provide a water quality measurement system that learns based on data received from a plurality of water quality measurement devices and updates a machine learning algorithm of the water quality measurement device based on the learned data.
  • Another object of the present invention is to provide a water quality measurement system that updates a machine learning algorithm of a water quality measurement device at preset time intervals.
  • the water quality measuring device is configured to measure the water quality of a fluid flowing in an internal space, and is a water quality measuring device energably connected to a deep learning server,
  • the water quality measuring device includes: an image capturing unit for capturing an image of a fluid flowing therein; and and a control unit connected to the image capturing unit to be energized and configured to acquire information about at least one of turbidity, pH, and floating matter of the fluid from the image based on a previously learned machine learning algorithm.
  • control unit determines the water quality based on the information on at least one of the turbidity, pH, and float, and transmits information on at least one of the turbidity, pH, and float to the deep learning server, the deep learning
  • the previously learned machine learning algorithm is updated based on the learning information received from the server.
  • control unit is connected to the energization of the control unit, further comprising a flow sensor for detecting the flow of the fluid in the inner space, wherein the control unit, when the flow of the fluid is not detected by the flow sensor, the Control the water quality measurement device to switch to the low power mode.
  • the water quality measuring device is energably connected to the user terminal, and when the connection with the deep learning server is blocked, the control unit transmits the determined information on the water quality to the user terminal.
  • it may further include a notification unit connected to the control unit energized and providing a visually recognizable danger signal to the user.
  • the controller may control the notification unit to provide the danger signal.
  • the water quality measurement device may further include a power generation unit configured to convert the kinetic energy of the flowing fluid into electrical energy to supply the electrical energy to the water quality measurement device.
  • the water quality measuring system according to an embodiment of the present invention, the water quality measuring device according to the embodiment of the present invention; and a deep learning server energably connected to the water quality measurement device.
  • the deep learning server based on a Convolutional Neural Network (CNN) algorithm, analyzes information on at least one of the turbidity and pH, and based on a Recurrent Nueral Network (RNN) algorithm, information on the float Analyze and learn by generating learning data based on the analyzed results.
  • CNN Convolutional Neural Network
  • RNN Recurrent Nueral Network
  • the learning information may be information learned by the deep learning server by the learning data.
  • the deep learning server determines the water quality based on the analyzed result, and when the connection between the water quality measuring device and the deep learning server is maintained, the deep learning server determines the water quality based on the analyzed result transmits information on to the user terminal, and when the connection between the water quality measuring device and the deep learning server is blocked, the water quality measuring device is information is transmitted to the user terminal.
  • the Recurrent Nueral Network (RNN) algorithm may be an algorithm based on vector information of both ends of the recognized floating object and a midpoint between the two end points.
  • the deep learning server may transmit the learning information to the water quality measuring device at preset time intervals.
  • water quality information about a fluid to drink or contact may be provided to a user.
  • the water quality determination of the water quality measuring device is performed by a machine learning algorithm previously learned, relatively little power is consumed and the size of the water quality measuring device can be miniaturized. Accordingly, the restriction of the installation place is reduced, and further, it can be installed in various places of the flow path used by the user in real life.
  • the fluid when the fluid does not flow, it is switched to a low power mode and driven, so that electrical energy consumed for driving the water quality measuring device is reduced, thereby reducing the size of the water quality measuring device.
  • the water quality measuring device since consumed electrical energy is reduced, the water quality measuring device can be driven only by self-generation using the kinetic energy of the fluid.
  • the deep learning server is learned based on data received from a plurality of water quality measurement devices, the accuracy of water quality determination can be improved as the number of users and usage time increase.
  • FIG. 1 is a block diagram showing the configuration of a water quality measurement system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a specific configuration of the water quality measuring device and the deep learning server according to FIG. 1 .
  • FIG. 3 is a perspective view illustrating an embodiment of the water quality measuring device according to FIG. 1 .
  • FIG. 4 is a perspective view illustrating another embodiment of the water quality measuring device according to FIG. 1 .
  • FIG. 5 is a flowchart specifically illustrating an operation process of the water quality measuring device according to FIG. 1 .
  • FIG. 6 is a flowchart specifically illustrating an operation process of the deep learning server according to FIG. 1 .
  • FIG. 7 is a flowchart specifically illustrating an operation process of the water quality measurement system according to FIG. 1 .
  • FIG. 8 is a flowchart illustrating an example of an RNN algorithm according to the present invention.
  • energized means electrically connected to each other or connected to enable information communication.
  • FIG. 1 the components of a water quality measurement system according to an embodiment of the present invention are shown.
  • the water quality measurement system includes a water quality measurement device configured to measure water quality, and a deep learning server 200 and a user terminal 300 that receives information about the measured water quality.
  • the user terminal 300 is communicatively connected to the water quality measuring device 100 and the deep learning server 200, and receives information on water quality from them.
  • the user terminal 300 is a computer, UMPC (Ultra Mobile PC), workstation, net-book (net-book), PDA (Personal Digital Assistants), portable (portable) computer, web tablet (web tablet), It may be one of electronic devices such as a wireless phone, a mobile phone, a smart phone, and a portable multimedia player (PMP).
  • UMPC Ultra Mobile PC
  • net-book net-book
  • PDA Personal Digital Assistants
  • portable (portable) computer web tablet (web tablet)
  • It may be one of electronic devices such as a wireless phone, a mobile phone, a smart phone, and a portable multimedia player (PMP).
  • PMP portable multimedia player
  • the present invention is not limited thereto, and various electronic devices capable of receiving information from the water quality measuring apparatus 100 and the deep learning server 200 and providing the received information in a visually recognizable form to the user may be employed. .
  • the water quality measuring apparatus 100 has a predetermined space provided therein, and acquires image information about a fluid flowing in the predetermined space.
  • the water quality measuring apparatus 100 is configured to determine the water quality of the fluid by using the obtained image information.
  • the water quality measuring device 100 includes a control unit 110 , an image capturing unit 120 , a flow sensor 130 , a notification unit 140 , a database unit 150 , a communication unit 160 , and a power supply unit 170 . ) and a power generation unit 180 may be included.
  • the components of the water quality measuring device 100 are electrically connected to each other.
  • communication between the control unit 110 and the database unit 150 may be performed through a wired/wireless network.
  • a wired/wireless network may use standard communication technologies and/or protocols.
  • controller 110 may be controlled by the controller 110 .
  • the control unit 110 may also be referred to as a processor, a controller, a microcontroller, a microprocessor, a microcomputer, etc., and the control unit 110 is hardware or It may be implemented by firmware, software, or a combination thereof.
  • information obtained or calculated by the components of the water quality measuring apparatus 100 described below may be stored in the database unit 150 and then transferred to other components.
  • the database unit 190 is a flash memory type (flash memory type), hard disk type (hard disk type), multimedia card micro type (multimedia card micro type), card type memory (for example, SD or XD memory, etc.), RAM (RAM, Random Access Memory) SRAM (Static Random Access Memory), ROM (Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory) It may include at least one type of storage medium among a magnetic memory, a magnetic disk, and an optical disk.
  • the image capturing unit 120 is configured to detect image information about a fluid flowing in the space inside the water quality measuring device 100 .
  • the image capturing unit 120 may be implemented as a variety of devices capable of continuously sensing preset image information on a flowing fluid.
  • the image capturing unit 120 may be implemented as a small image camera.
  • the image capturing unit 120 may include a light source module (not shown).
  • the image information detected by the image capturing unit 120 is analyzed by a pre-learned machine learning algorithm provided in the control unit 110 . In this regard, it will be described in detail later.
  • the flow sensor 130 detects the flow of fluid in the space inside the water quality measuring device 100 .
  • the flow sensor 130 may be implemented as a mechanical type, an electronic type, or a combination thereof.
  • the flow sensor 130 may be configured as a sensor for detecting the water level.
  • control unit 110 may convert the water quality measuring apparatus 100 to a low power mode to reduce power consumption. In this regard, it will be described in detail later.
  • the water quality measuring device 100 can be downsized. Accordingly, the fluid pipe provided at home, the water quality measuring device 100 may be coupled to the end of the fluid pipe.
  • the notification unit 140 is configured to notify the user of the water quality in a visually recognizable form when the water quality is lower than a preset reference water quality.
  • the notification unit 140 may be in the form of notifying that the water quality is lower than a preset reference water quality using LED light emission.
  • the notification unit 140 may include a light source module that emits light when the control unit 110 determines that the water quality is lower than the preset reference water quality.
  • the light source module may be provided in plurality, and as water quality deteriorates step by step, each light source module may be configured to emit light corresponding to each step.
  • the notification unit 140 may include a notification unit in the form of a display device.
  • the notification unit 140 may display visual information indicating that the water quality is dangerous under the control of the controller 110 .
  • the visual information may include at least one of a numerical value, text, and image indicating the degree of water quality, and may include a current image of the fluid captured by the image capturing unit 120 .
  • the water quality measuring apparatus 100 may be configured except for the notification unit 140 .
  • the power supply unit 170 is configured to supply the stored electrical energy to each component of the water quality measurement device 100 .
  • the power supply unit 170 may be implemented in the form of a secondary battery (battery).
  • the present invention is not limited thereto.
  • the power generation unit 180 is configured to convert the kinetic energy of the flowing fluid into electrical energy and supply it to each component of the water quality measuring device 100 .
  • the power generation unit 180 may be implemented in various forms for generating electromotive force by electromagnetic induction by using the kinetic energy of the fluid.
  • the electrical energy generated by the power generation unit 180 may be stored in the power supply unit 170 .
  • the power generation unit 180 has its own electrical energy storage module (not shown), and the electrical energy generated by the power generation unit 180 may be stored in the electrical energy storage module.
  • the water quality measuring apparatus 100 determines the water quality by a pre-learned machine learning algorithm that consumes relatively little power, and is converted to a low power mode when the flow of the fluid is not detected.
  • the water quality measuring apparatus 100 may be driven by the power supply unit 170 and the power generation unit 180 having a relatively small capacity.
  • the water quality measuring apparatus 100 may be driven by itself without external power supply.
  • the water quality measuring device 100 may be driven by the power generation unit 180 .
  • the control unit 110 is configured to receive image information from the image capturing unit 120 to determine water quality.
  • the water quality may be determined through the machine learning module 111 and the water quality determination module 114 .
  • the machine learning module 111 includes a turbidity analysis unit 1111 , a pH analysis unit 1112 , and a floating matter analysis unit 1113 that analyze image information based on a previously learned machine learning algorithm.
  • the turbidity analysis unit 1111 analyzes the turbidity of the fluid included in the received image.
  • the turbidity analysis unit 1111 may analyze the turbidity by obtaining values for the three primary colors of light, Red, Green, and Blue, from pixels included in the image information. have. For example, if the value for the red/green/blue color is increased, it is determined that the turbidity is high, and the value for the red/green/blue color is When this is lowered, it can be determined that the turbidity is low.
  • the present invention is not limited thereto.
  • the pH analysis unit 1112 analyzes the pH of the fluid included in the received image.
  • the pH analysis unit 1112 may perform pH analysis based on a machine learning algorithm learned by analyzing RGB patterns included in image information of fluids having different pH values.
  • the present invention is not limited thereto.
  • the floating matter analysis unit 1113 analyzes the floating matter of the fluid included in the received image.
  • the floating material analysis unit 1113 may analyze the floating material based on the machine learning algorithm learned by analyzing the pattern of the floating material included in the image. For example, floating material analysis may be performed based on the learned algorithm by separating the patterns in the case of live larvae, dead larvae, and sludge. That is, information on the number of larvae and sludge included in the image can be obtained.
  • the present invention is not limited thereto.
  • the information analyzed by the machine learning module 111 is transmitted to the deep learning server 200 through the communication unit 160 .
  • the deep learning server 200 receives the information analyzed from the plurality of water quality measurement devices 100 and learns by the deep learning algorithm, and based on the learned data, the machine learning algorithm of the machine learning module 111 can be updated. have.
  • the accuracy of the machine learning algorithm applied to the water quality measuring apparatus 100 may be improved.
  • the water quality determination module 114 determines water quality using the analysis information received from the machine learning module 111 .
  • the water quality determination module 114 may determine that the fluid is harmful to the user (not drinkable or unusable).
  • the water quality determination module 114 may determine that the fluid is harmful to the user (not drinkable or unusable).
  • the water quality determination module 114 may determine that the fluid is harmful to the user (not drinkable or not usable).
  • the preset floating object standard may be defined as the number of inanimate objects/living matter.
  • the water quality determination module 114 may be included in the machine learning module 111 .
  • control unit 110 transmits information on water quality to the deep learning server 200, and the deep learning server 200 uses the received information to determine the water quality secondarily and then transmits it to the user.
  • the pre-processing module 112 pre-processes image information, information analyzed by the machine learning module 111, and information determined by the water quality determination module 114 in order to transmit data to the deep learning server 200 .
  • the pre-processed information may be used for analysis and learning of the deep learning server 200 .
  • control unit 110 When communication with the deep learning server 200 is blocked, the control unit 110 provides information about the water quality determined by the water quality determination module 114 to the user.
  • control unit 110 may control the notification unit 140 to transmit information on water quality to the user in a visually recognizable form.
  • the notification unit 140 may be controlled to emit light of a preset color.
  • the controller 110 may transmit information on water quality to the user terminal 300 .
  • the user terminal 300 receives information on water quality and provides it to the user in a visually recognizable form.
  • information on water quality may be displayed in the user terminal 300 .
  • information on water quality may be provided to the user.
  • the user may be provided with information on water quality as long as the water quality measuring apparatus 100 is operating.
  • controller 110 controls the water quality measuring device 100 to switch to the low power mode when the flow of the fluid is not detected by the flow sensor 130 .
  • the mode conversion module 113 may convert the water quality measuring apparatus 100 to a low power mode. As described above, since the amount of power consumed to drive the water quality measuring device 100 is reduced, the water quality measuring device 100 can be downsized. In addition, it may be continuously driven by the relatively small power supply unit 170 and the power generation unit 180 .
  • Information sensed by the water quality measuring device 100 or calculated by the controller 110 may be transmitted to and stored in the database 150 .
  • control unit 110 may pre-process the analysis information and determination information stored in the database unit 150 for a preset time and transmit the pre-processing to the deep learning server 200 .
  • control unit 110 may transmit the analysis information and the determination information to the deep learning server 200 in real time.
  • the present invention is not limited thereto, and the water quality measuring apparatus 100 may be implemented in various shapes.
  • the water quality measuring device 100 is coupled to the end of the fluid pipe through which the fluid flows and is configured to measure the water quality of the fluid immediately before being supplied to the user.
  • the water quality measuring device 100 includes a body part 105 constituting the outer shape of the water quality measuring device 100 .
  • the body portion 105 has one end coupled to the end of the fluid pipe, and includes a columnar gripper extending in the only direction.
  • the grip part is formed through the inside so that the fluid can pass through the grip part, and a filter for filtering the fluid passing through the grip part may be provided in the inner space.
  • the body portion 105 includes a grip portion and a head portion.
  • the inner space 105a of the head part communicates with the space of the grip part.
  • an injection hole for injecting the fluid in the internal space to the outside is formed on one side of the head part.
  • the injection hole is formed through the inner space of the head toward the outside.
  • the injection hole is provided in plurality, and various patterns may be formed.
  • the internal space 105a of the head part is divided into a first space in which a fluid flows and a second space in which the fluid does not come into contact.
  • the second space may include an image capture unit 120 , a power supply unit 170 , and a control unit 110 .
  • the communication unit 160 , the database unit 150 , and the power generation unit 180 may be disposed in the second space.
  • the flow sensor 130 may be disposed in the first space.
  • the notification unit 140 may be disposed at a position that can be visually recognized by the user. That is, at least a part of the notification unit 140 may be disposed to protrude from the outer surface of the head unit or the filter unit.
  • the water quality measuring device 100 is coupled to the middle of the fluid pipe through which the fluid flows and is configured to measure the water quality of the fluid before being supplied to the user.
  • the water quality measuring device 100 includes a body portion 105 that forms an outer shape of the water quality measuring device 100 .
  • a predetermined space 105a through which a fluid can flow is formed in the body 105 .
  • fluid pipes are respectively coupled to both sides of the body 105 .
  • Each fluid pipe and the internal space 105a of the body 105 are communicatively connected to each other, whereby the fluid pipes on both sides communicate with each other through the internal space 105a of the body 105 .
  • One side of the body 105 is formed to transmit light, and the image capturing unit 120 is disposed at a position facing the one side of the body 105 .
  • the image capturing unit 120 is formed to protrude from the outer surface of the body portion 105 in a “L” shape. An image of a fluid flowing through a portion of the image capturing unit 120 facing one side of the body 105 may be detected.
  • the communication unit 160 is formed to protrude from the outer surface of the body portion (105).
  • the power supply unit 170 and the power generation unit 180 may be disposed at positions that do not come into contact with the fluid.
  • the flow sensor 130 may be disposed in the inner space 105a of the body 105 .
  • the notification unit 140 may be disposed at a location that is visually recognizable to the user.
  • the notification unit 140 may be disposed such that at least a part thereof is exposed to the outside of the body unit 105 .
  • the deep learning server 200 receives information pre-processed by the control unit 110 of the water quality measurement device 100 .
  • the deep learning server 200 secondaryly analyzes the received information based on the deep learning algorithm and determines the water quality.
  • Information including determination of water quality may be provided to the user through the user terminal 300 .
  • the deep learning server 200 may include a control unit 210 , a communication unit 220 , and a database unit 230 .
  • the components of the deep learning server 200 are electrically connected to each other.
  • communication between the control unit 210 and the database unit 230 may be performed through a wired/wireless network.
  • a wired/wireless network may use standard communication technologies and/or protocols.
  • controller 210 may be controlled by the controller 210 .
  • the control unit 210 may also be referred to as a processor, a controller, a microcontroller, a microprocessor, a microcomputer, etc., and the control unit 110 is hardware or It may be implemented by firmware, software, or a combination thereof.
  • information obtained or calculated by the components of the deep learning server 200 described below may be stored in the database unit 230 and then transferred to other components.
  • the database unit 230 is a flash memory type (flash memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), a card type memory (for example, SD or XD memory, etc.), RAM (RAM, Random Access Memory) SRAM (Static Random Access Memory), ROM (Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory) It may include at least one type of storage medium among a magnetic memory, a magnetic disk, and an optical disk.
  • control unit 210 of the deep learning server 200 will be described in detail.
  • the control unit 210 includes a deep learning module 211 that analyzes the information transmitted and pre-processed by the water quality measurement device 100 .
  • the deep learning module 211 includes a CNN analysis unit 2111 configured to analyze information on at least one of turbidity and pH, based on a Convolutional Neural Network (CNN) algorithm.
  • CNN Convolutional Neural Network
  • the CNN algorithm may include a convolution layer, a pooling layer, a ReLu layer, and a fully connected layer.
  • the CNN analysis unit 2111 uses at least one of RGB information included in the image information of the fluid, information analyzed by the water quality measurement device 100, and determination information on water quality for turbidity and pH values. analysis can be performed.
  • the deep learning module 211 includes an RNN analysis unit 2112, configured to analyze information about the float, based on a Recurrent Nueral Network (RNN) algorithm.
  • RNN Recurrent Nueral Network
  • the RNN analysis module 2112 may analyze information on the floating object based on the skeleton vector of both ends and the middle point of the floating object.
  • the RNN analysis module 2112 extracts the floating object from the image, and then sets both ends of the floating object and a midpoint between the two end points.
  • the RNN analysis module 2112 determines whether the vectors of both end points are simultaneously increased or decreased in the same or opposite directions.
  • the RNN analysis module 2112 determines whether the vectors of the midpoints are changed. If the vector at the midpoint is changed, the extracted float can be classified as a living larva. On the other hand, if the vector at the midpoint does not change, the extracted suspension may be classified as sludge.
  • the RNN analysis module 2112 determines whether the distance between the both end points is equal to or greater than a preset length.
  • the preset length may be 3 mm.
  • the extracted suspended matter may be classified as sludge.
  • the RNN analysis module 2112 determines whether the vectors of both end points point in the same direction. If not directed in the same direction, the extracted suspension may be classified as sludge. On the other hand, if they face the same direction, the extracted float can be classified as a dead larva. Since the information sensed by the image capturing unit 120 is secondaryly analyzed by the deep learning module 211, more precisely determined information on turbidity, pH, and suspended matter can be provided to the user.
  • the deep learning module 211 may include a learning data generating unit 2113 that generates learning data based on the information analyzed by the CNN analysis unit 2111 and the RNN analysis unit 2112 .
  • the deep learning algorithm of the deep learning module 211 is learned based on the generated learning data.
  • the weights of the CNN algorithm and the RNN algorithm are corrected by the generated learning data, whereby the algorithms for turbidity analysis, pH analysis, and floating matter analysis may be modified.
  • the update module 212 transmits the learning information learned by the learning data to the machine learning module 111 of the water quality measurement device 100, and each machine learning algorithm of the machine learning module 111 is based on the received learning information. can be updated.
  • the accuracy of the analysis of the water quality measuring apparatus 100 may be continuously improved.
  • the mode conversion module 113 controls the water quality measuring device 100 to be switched from the low power mode to the normal state.
  • the update module 212 may transmit learning information at preset time intervals.
  • the time for which the water quality measuring apparatus 100 is driven in the low power mode may be increased, and thus, the amount of power consumed for driving the water quality measuring apparatus 100 may be reduced.
  • control unit 210 may include a water quality determination module 213 that determines the water quality by using the information analyzed by the deep learning module 211 .
  • the water quality determination module 213 determines that the fluid is harmful to the user when the analyzed turbidity, pH, and suspended matter do not meet preset criteria. Specific details may be understood with reference to the description of the water quality determination module 114 of the water quality measuring apparatus 100 .
  • the deep learning module 211 may include a water quality determination module 213 .
  • control unit 210 may transmit information on water quality to the user terminal 300 .
  • the user terminal 300 receives information on water quality and provides it to the user in a visually recognizable form.
  • information on water quality may be displayed in the user terminal 300 .
  • FIG. 5 a detailed flow S100 of the operation process of the water quality measuring device 100 is illustrated.
  • control unit 110 determines whether the flow is detected by the flow sensor 130 (S110).
  • the mode conversion module 113 of the control unit 110 controls the water quality measuring apparatus 100 to be switched to the low power mode (S190).
  • the controller 110 activates the image capturing unit 120 , and based on the image information of the fluid flowing in the water quality measuring device 100 captured through the activated image capturing unit 120 . , the fluid is sensed (S120). That is, in the present invention, unnecessary power consumption can be prevented by activating the image capturing unit 120 such as a camera only when a flow is detected.
  • control unit 110 When the image information is detected, the control unit 110 performs a primary analysis on turbidity, pH, and suspended matter based on a machine learning algorithm previously learned through the machine learning module 111 (S130).
  • control unit 110 determines the water quality based on the primary analysis result through the water quality determination module 114 (S140).
  • control unit 110 checks whether the water quality measurement device 100 and the deep learning server 200 are communicatively connected (S150), and when the connection is blocked, the water quality determination result is visually recognizable to the user. provided (S160).
  • the water quality determination result may be provided to the user through the notification unit 140 or may be provided to the user through the user terminal 300 .
  • control unit 110 pre-processes image information and information analyzed and determined by the control unit 110 (S170).
  • control unit 110 transmits the pre-processed information to the deep learning server 200 through the communication unit 160 (S180).
  • FIG. 6 a detailed flow S200 of the operation process of the deep learning server 200 is shown.
  • the deep learning server 200 receives the pre-processed data from the water quality measurement device (S210).
  • the deep learning server 200 determines what type of data the preprocessed data is (S220).
  • the deep learning server 200 secondaryly analyzes it based on the CNN algorithm (S224). In addition, in the case of floating data, the deep learning server 200 secondaryly analyzes it based on the RNN algorithm (S226).
  • the deep learning server 200 When the analysis is completed, the deep learning server 200 generates training data based on the analyzed data, and uses this to revise the algorithm (S228). That is, the deep learning server 200 is learned based on the learning data.
  • the machine learning module 111 of the water quality measuring apparatus 100 is updated based on the learning information (S230).
  • the deep learning server 200 determines the water quality based on the secondary analysis result and provides it to the user (S240).
  • the water quality determination result may be provided to the user through the user terminal 300 .
  • FIG. 7 a detailed flow of the operation process of the water quality measuring device 100 and the deep learning server 200 is shown.
  • FIG. 8 an example of a classification method by the RNN analysis module 2112 is illustrated.
  • the RNN analysis module 2112 extracts a floating object from the image (S2261), and sets both ends of the floating object and a midpoint between the two end points (S2262).
  • the RNN analysis module 2112 determines whether the vectors of both end points are simultaneously increased or decreased in the same or opposite directions (S2263).
  • the RNN analysis module 2112 determines whether the vectors at the midpoints are changed ( S2264 ). When the vector of the intermediate point is changed, the extracted float may be classified as a living larva (S2267). On the other hand, when the vector of the intermediate point does not change, the extracted suspended matter may be classified as sludge (S2268).
  • the RNN analysis module 2112 determines whether the distance between the both end points is equal to or greater than a preset length (S2265).
  • the preset length may be 3 mm.
  • the extracted floating matter may be classified as sludge (S2268).
  • the RNN analysis module 2112 determines whether the vectors of both end points point in the same direction (S2266). If they do not face the same direction, the extracted suspended matter may be classified as sludge (S2268). On the other hand, when facing the same direction, the extracted float may be classified as a dead larva (S2269).
  • a software module may include random access memory (RAM), read only memory (ROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, hard disk, removable disk, CD-ROM, or It may reside in any type of computer-readable recording medium well known in the art to which the present invention pertains.
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable ROM
  • EEPROM electrically erasable programmable ROM
  • flash memory hard disk, removable disk, CD-ROM, or It may reside in any type of computer-readable recording medium well known in the art to which the present invention pertains.
  • control unit 110 control unit
  • control unit 210 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Pathology (AREA)
  • Software Systems (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Tourism & Hospitality (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Emergency Management (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medicinal Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Food Science & Technology (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)

Abstract

Provided are an apparatus and a system for measuring water quality on the basis of an AI learning scheme and floating matter vector information. The water quality measurement system comprises a water quality measurement apparatus and a deep learning server. The water quality measurement apparatus comprises: an image capturing unit for capturing an image of fluid flowing therein; and a control unit which is electrically connected to the image capturing unit and which acquires information about at least one from among a turbidity level, pH, and floating matter of the fluid from the image on the basis of a pre-trained machine learning algorithm, wherein the control unit transmits the information about the at least one from among a turbidity level, pH, and floating matter to the deep learning server, and the deep learning server updates the pre-trained machine learning algorithm on the basis of the received training information.

Description

AI 학습법 및 부유물 벡터 정보에 기초한 수질 측정 장치 및 시스템Water quality measurement device and system based on AI learning method and floating vector information
본 발명은 수질 측정 장치 및 시스템에 관한 것으로서, 구체적으로 AI 학습법 및 부유물 벡터 정보에 기초한 수질 판단 장치 및 시스템에 관한 것이다. The present invention relates to an apparatus and system for measuring water quality, and more particularly, to an apparatus and system for determining water quality based on AI learning method and floating vector information.
물은 인간이 생활하는데 필수적 요소이다. 특히, 물을 마시거나 물을 이용하여 씻는 행위는 인간이 생존 또는 사회적으로 생활하는데 있어서 필수적은 행위이다. Water is an essential element for human life. In particular, the act of drinking water or washing with water is an essential act for human survival or social life.
따라서, 인간이 음용하나 직접적으로 접촉하는 물의 수질이 과도하게 저하된다면, 이는 인간에게도 유해한 영향을 끼칠 수 있다. Therefore, if the quality of water that humans drink but come into direct contact with is excessively degraded, it may have a detrimental effect on humans as well.
다만, 인간의 눈으로 바라볼 때 정상적인 물이라도 실제 수질은 좋지 못할 수 있으며, 유체가 유동하는 관속은 밀폐되어 있으므로 눈으로 확인하기 어렵다.However, when viewed with the human eye, the actual water quality may not be good even for normal water, and it is difficult to visually check the pipe through which the fluid flows because it is sealed.
따라서, 직접 접촉하거나 음용하는 물이 안전한지에 대한 정보를 제공해줄 수 있는 장치 또는 시스템이 요구된다. Accordingly, there is a need for a device or system capable of providing information on whether water to be directly touched or to be drunk is safe.
선행기술문헌(대한민국 등록특허공보 제10-2120427호)는 잔류염소 농도, 전기전도도 및 수온 정보를 통하여 수질을 측정한 후, 이를 사용자에게 제공하는 구조의 관로 부착형 수질센서를 개시한다.The prior art document (Republic of Korea Patent Publication No. 10-2120427) discloses a pipe-attached water quality sensor having a structure that measures water quality through residual chlorine concentration, electrical conductivity, and water temperature information, and then provides it to a user.
다만, 잔류염소 농도, 전기전도도 및 수온 정보는 수질을 직접적으로 나타내는 정보가 아니고, 부유물 등에 대한 정보를 식별할 수 없으므로, 측정의 신뢰성이 감소되는 문제가 발생될 수 있다. However, since residual chlorine concentration, electrical conductivity, and water temperature information are not information directly indicating water quality, and information on floating matter cannot be identified, a problem of reduced reliability of measurement may occur.
본 발명은 상술한 문제점을 해결할 수 있는 구조의 수질 측정 장치 및 시스템을 제공하는 것을 일 목적으로 한다. An object of the present invention is to provide an apparatus and system for measuring water quality having a structure capable of solving the above-described problems.
또한, 유체가 유동되는 장소에 설치되어 유체의 수질에 대한 정보를 사용자에게 제공할 수 있는 수질 측정 장치 및 이를 포함하는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다.Another object of the present invention is to provide a water quality measuring device and a water quality measuring system including the same, which are installed at a place where the fluid flows and can provide information on the water quality of the fluid to a user.
또한, 유체의 수질에 대한 정보가 머신러닝 알고리즘에 의해 분석되어 사용자에게 제공될 수 있는 수질 측정 장치 및 이를 포함하는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다.In addition, an object of the present invention is to provide a water quality measuring device and a water quality measuring system including the same, in which information on the water quality of a fluid is analyzed by a machine learning algorithm and provided to a user.
또한, 유체의 수질을 분석하는 머신러닝 알고리즘이 딥 러닝 알고리즘의 학습 정보에 의해 지속적으로 업데이트될 수 있는 수질 측정 장치 및 이를 포함하는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다.In addition, an object of the present invention is to provide a water quality measurement device in which a machine learning algorithm for analyzing the water quality of a fluid can be continuously updated by learning information of the deep learning algorithm, and a water quality measurement system including the same.
또한, 유체가 유동되지 않는 경우 저전력 모드로 전환되어 구동되는 수질 측정 장치 및 이를 포함하는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다.Another object of the present invention is to provide a water quality measuring device that is switched to and driven in a low power mode when the fluid does not flow, and a water quality measuring system including the same.
또한, 사용자 또는 사용자 단말에 시각적으로 인식 가능한 형태의 수질 정보를 제공할 수 있는 수질 측정 장치 및 이를 포함하는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다.Another object of the present invention is to provide a water quality measuring apparatus capable of providing water quality information in a visually recognizable form to a user or a user terminal, and a water quality measuring system including the same.
또한, 유체의 운동에너지를 이용한 자가발전을 통해 구동될 수 있는 수질 측정 장치 및 이를 포함하는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다.In addition, an object of the present invention is to provide a water quality measuring device that can be driven through self-generation using the kinetic energy of a fluid and a water quality measuring system including the same.
또한, 수질이 머신 러닝 알고리즘에 의해 1차적으로 판단되고, 취득된 영상 자료를 딥러닝 알고리즘에 기반하여 분석함에 따라 수질이 2차적으로 판단되며, 판단된 수질이 사용자에게 제공될 수 있는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다. In addition, the water quality is primarily determined by the machine learning algorithm, and the water quality is secondarily determined as the acquired image data is analyzed based on the deep learning algorithm, and the determined water quality can be provided to the user. Its purpose is to provide
또한, 복수의 수질 측정 장치에서 전송받은 데이터에 기초하여 학습하고, 학습된 데이터에 기초하여 수질 측정 장치의 머신러닝 알고리즘을 업데이트 하는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다. Another object of the present invention is to provide a water quality measurement system that learns based on data received from a plurality of water quality measurement devices and updates a machine learning algorithm of the water quality measurement device based on the learned data.
또한, 기 설정된 시간 간격으로 수질 측정 장치의 머신러닝 알고리즘의 업데이트를 수행하는 수질 측정 시스템을 제공하는 것을 일 목적으로 한다.Another object of the present invention is to provide a water quality measurement system that updates a machine learning algorithm of a water quality measurement device at preset time intervals.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상술한 과제를 해결하기 위하여, 본 발명의 실시 예에 따른 수질 측정 장치는, 내부 공간에 유동하는 유체의 수질을 측정할 수 있도록 구성되고, 딥러닝 서버와 통전 가능하게 연결되는 수질 측정 장치로서, 상기 수질 측정 장치는, 내부에 유동하는 유체의 영상을 촬영하는 영상 촬영부; 및 상기 영상 촬영부와 통전 가능하게 연결되고, 기 학습된 머신러닝 알고리즘에 기초하여, 상기 영상으로부터 상기 유체의 탁도, pH 및 부유물 중 적어도 하나에 대한 정보를 취득하는 제어부;를 포함한다.In order to solve the above problems, the water quality measuring device according to an embodiment of the present invention is configured to measure the water quality of a fluid flowing in an internal space, and is a water quality measuring device energably connected to a deep learning server, The water quality measuring device includes: an image capturing unit for capturing an image of a fluid flowing therein; and and a control unit connected to the image capturing unit to be energized and configured to acquire information about at least one of turbidity, pH, and floating matter of the fluid from the image based on a previously learned machine learning algorithm.
또한, 상기 제어부는, 상기 탁도, pH 및 부유물 중 적어도 하나에 대한 정보에 기초하여 수질을 판단하고, 상기 탁도, pH 및 부유물 중 적어도 하나에 대한 정보를 상기 딥러닝 서버로 송신하며, 상기 딥러닝 서버에서 수신된 학습 정보에 기초하여 상기 기 학습된 머신러닝 알고리즘을 업데이트한다.In addition, the control unit determines the water quality based on the information on at least one of the turbidity, pH, and float, and transmits information on at least one of the turbidity, pH, and float to the deep learning server, the deep learning The previously learned machine learning algorithm is updated based on the learning information received from the server.
또한, 상기 제어부와 통전 가능하게 연결되고, 상기 내부 공간에서의 유체의 유동을 감지하는 유동감지센서를 더 포함하고, 상기 제어부는, 상기 유동감지센서에서 상기 유체의 유동이 감지되지 않은 경우, 상기 수질 측정 장치가 저전력 모드로 전환되도록 제어한다.In addition, it is connected to the energization of the control unit, further comprising a flow sensor for detecting the flow of the fluid in the inner space, wherein the control unit, when the flow of the fluid is not detected by the flow sensor, the Control the water quality measurement device to switch to the low power mode.
또한, 상기 수질 측정 장치는 사용자 단말과 통전 가능하게 연결되고, 상기 딥러닝 서버와의 연결이 차단된 경우, 상기 제어부는 상기 판단된 수질에 대한 정보를 상기 사용자 단말에 송신한다.In addition, the water quality measuring device is energably connected to the user terminal, and when the connection with the deep learning server is blocked, the control unit transmits the determined information on the water quality to the user terminal.
또한, 상기 제어부와 통전 가능하게 연결되고, 사용자에게 시각적으로 인식 가능한 형태의 위험 신호를 제공하는 알림부를 더 포함할 수 있다.In addition, it may further include a notification unit connected to the control unit energized and providing a visually recognizable danger signal to the user.
또한, 상기 제어부는, 상기 판단된 수질이 기 설정된 기준 수질보다 낮은 경우, 상기 알림부가 상기 위험 신호를 제공하도록 제어할 수 있다. Also, when the determined water quality is lower than a preset reference water quality, the controller may control the notification unit to provide the danger signal.
또한, 상기 수질 측정 장치는, 유동하는 유체의 운동에너지를 전기에너지로 변환하여 상기 수질 측정 장치에 상기 전기에너지를 공급하도록 구성되는 발전부를 더 포함할 수 있다.In addition, the water quality measurement device may further include a power generation unit configured to convert the kinetic energy of the flowing fluid into electrical energy to supply the electrical energy to the water quality measurement device.
또, 본 발명의 실시 예에 따른 수질 측정 시스템은, 본 발명의 실시 예에 따른 수질 측정 장치; 및 상기 수질 측정 장치와 통전 가능하게 연결되는 딥러닝 서버를 포함한다.In addition, the water quality measuring system according to an embodiment of the present invention, the water quality measuring device according to the embodiment of the present invention; and a deep learning server energably connected to the water quality measurement device.
또한, 상기 딥러닝 서버는, CNN(Convolutional Neural Network) 알고리즘에 기초하여, 상기 탁도 및 pH 중 적어도 하나에 대한 정보를 분석하고, RNN(Recurrent Nueral Network) 알고리즘에 기초하여, 상기 부유물에 대한 정보를 분석하며, 분석된 결과에 기초하는 학습 데이터를 생성하여 학습한다.In addition, the deep learning server, based on a Convolutional Neural Network (CNN) algorithm, analyzes information on at least one of the turbidity and pH, and based on a Recurrent Nueral Network (RNN) algorithm, information on the float Analyze and learn by generating learning data based on the analyzed results.
또한, 상기 학습 정보는 상기 학습 데이터에 의해 상기 딥러닝 서버가 학습된 정보일 수 있다. In addition, the learning information may be information learned by the deep learning server by the learning data.
또한, 상기 딥러닝 서버는 상기 분석된 결과에 기초하여 수질을 판단하고, 상기 수질 측정 장치와 상기 딥러닝 서버의 연결이 유지되는 경우, 상기 딥러닝 서버는 상기 분석된 결과에 기초하여 판단된 수질에 대한 정보를 사용자 단말로 전송하며, 상기 수질 측정 장치와 상기 딥러닝 서버의 연결이 차단되는 경우, 상기 수질 측정 장치는 상기 탁도, pH 및 부유물 중 적어도 하나에 대한 정보에 기초하여 판단된 수질에 대한 정보를 사용자 단말로 전송한다.In addition, the deep learning server determines the water quality based on the analyzed result, and when the connection between the water quality measuring device and the deep learning server is maintained, the deep learning server determines the water quality based on the analyzed result transmits information on to the user terminal, and when the connection between the water quality measuring device and the deep learning server is blocked, the water quality measuring device is information is transmitted to the user terminal.
또한, 상기 RNN(Recurrent Nueral Network) 알고리즘은 인식된 부유물의 양끝 지점 및 상기 양끝 지점의 중간 지점의 벡터 정보에 기반하는 알고리즘일 수 있다.In addition, the Recurrent Nueral Network (RNN) algorithm may be an algorithm based on vector information of both ends of the recognized floating object and a midpoint between the two end points.
또한, 상기 딥러닝 서버는 상기 학습 정보를 기 설정된 시간간격으로 상기 수질 측정 장치에 송신할 수 있다. In addition, the deep learning server may transmit the learning information to the water quality measuring device at preset time intervals.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the invention are included in the detailed description and drawings.
상술한 해결 수단에 따르면 다음과 같은 효과가 도출될 수 있다. According to the above-described solution, the following effects can be derived.
먼저, 사용자에게 음용 또는 접촉하는 유체에 대한 수질 정보가 제공될 수 있다. First, water quality information about a fluid to drink or contact may be provided to a user.
또한, 수질 측정 장치의 수질 판단은 기 학습된 머신 러닝 알고리즘에 의해 수행되므로, 상대적으로 적은 전력이 소요되고 수질 측정 장치의 크기가 소형화될 수 있다. 따라서, 설치 장소의 제약이 적어지며, 나아가 사용자가 실생활에서 사용하는 유로의 곳곳에 설치될 수 있다. In addition, since the water quality determination of the water quality measuring device is performed by a machine learning algorithm previously learned, relatively little power is consumed and the size of the water quality measuring device can be miniaturized. Accordingly, the restriction of the installation place is reduced, and further, it can be installed in various places of the flow path used by the user in real life.
또한, 머신러닝 알고리즘이 딥 러닝 알고리즘의 학습 정보에 의해 지속적으로 업데이트되므로, 수질 판단의 정확도가 점차 상승될 수 있다. In addition, since the machine learning algorithm is continuously updated by the learning information of the deep learning algorithm, the accuracy of water quality determination can be gradually increased.
또한, 유체가 유동되지 않는 경우 저전력 모드로 전환되어 구동되므로, 수질 측정 장치의 구동에 소모되는 전기 에너지가 감소되며, 이에 의해 수질 측정 장치가 소형화될 수 있다. 또한, 소모되는 전기 에너지가 감소되므로, 유체의 운동에너지를 이용한 자가발전 만으로도 수질 측정 장치가 구동될 수 있다.In addition, when the fluid does not flow, it is switched to a low power mode and driven, so that electrical energy consumed for driving the water quality measuring device is reduced, thereby reducing the size of the water quality measuring device. In addition, since consumed electrical energy is reduced, the water quality measuring device can be driven only by self-generation using the kinetic energy of the fluid.
또한, 딥러닝 서버와의 연결여부와 무관하게, 수질판단의 정보가 사용자에게 지속적으로 제공될 수 있다. In addition, regardless of whether the connection to the deep learning server is connected, information on water quality judgment can be continuously provided to the user.
또한, 수질이 머신 러닝 알고리즘에 의해 1차적으로 판단되고, 딥러닝 알고리즘에 의해 2차적으로 판단되므로, 사용자에게 정확한 수질 정보가 제공될 수 있다. In addition, since the water quality is primarily determined by the machine learning algorithm and secondarily determined by the deep learning algorithm, accurate water quality information can be provided to the user.
또한, 딥러닝 서버가 복수의 수질 측정 장치에서 전송받은 데이터에 기초하여 학습되므로, 사용자의 수 및 사용시간이 증가될수록 수질 판단의 정확도가 향상될 수 있다. In addition, since the deep learning server is learned based on data received from a plurality of water quality measurement devices, the accuracy of water quality determination can be improved as the number of users and usage time increase.
또한, 머신러닝 알고리즘의 업데이트가 실시간으로 수행되는 것이 아니라 기 설정된 시간 간격으로 수행되므로, 수질 측정 장치의 구동에 소모되는 전기 에너지가 절감될 수 있다. In addition, since the update of the machine learning algorithm is performed at preset time intervals rather than in real time, electrical energy consumed for driving the water quality measuring device can be reduced.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 실시 예에 따른 수질 측정 시스템의 구성을 도시하는 블록도이다. 1 is a block diagram showing the configuration of a water quality measurement system according to an embodiment of the present invention.
도 2는 도 1에 따른 수질 측정 장치 및 딥러닝 서버의 구체적인 구성을 도시하는 블록도이다.FIG. 2 is a block diagram illustrating a specific configuration of the water quality measuring device and the deep learning server according to FIG. 1 .
도 3은 도 1에 따른 수질 측정 장치의 일 실시 예를 도시하는 사시도이다.3 is a perspective view illustrating an embodiment of the water quality measuring device according to FIG. 1 .
도 4는 도 1에 따른 수질 측정 장치의 다른 실시 예를 도시하는 사시도이다.4 is a perspective view illustrating another embodiment of the water quality measuring device according to FIG. 1 .
도 5는 도 1에 따른 수질 측정 장치의 작동과정을 구체적으로 도시하는 흐름도이다.5 is a flowchart specifically illustrating an operation process of the water quality measuring device according to FIG. 1 .
도 6은 도 1에 따른 딥러닝 서버의 작동과정을 구체적으로 도시하는 흐름도이다.6 is a flowchart specifically illustrating an operation process of the deep learning server according to FIG. 1 .
도 7은 도 1에 따른 수질 측정 시스템의 작동과정을 구체적으로 도시하는 흐름도이다. 7 is a flowchart specifically illustrating an operation process of the water quality measurement system according to FIG. 1 .
도 8은 본 발명에 따른 RNN 알고리즘의 일 예를 도시하는 흐름도이다.8 is a flowchart illustrating an example of an RNN algorithm according to the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the present embodiments allow the disclosure of the present invention to be complete, and those of ordinary skill in the art to which the present invention pertains. It is provided to fully understand the scope of the present invention to those skilled in the art, and the present invention is only defined by the scope of the claims.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.The terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and/or “comprising” does not exclude the presence or addition of one or more other components in addition to the stated components. Like reference numerals refer to like elements throughout, and "and/or" includes each and every combination of one or more of the recited elements. Although "first", "second", etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from another. Accordingly, it goes without saying that the first component mentioned below may be the second component within the spirit of the present invention.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein will have the meaning commonly understood by those of ordinary skill in the art to which this invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless specifically defined explicitly.
아래에서 사용되는 “통전”이라는 용어는 상호 간에 전기적으로 연결퇴거나, 정보통신 가능하도록 연결되는 것을 의미한다. The term “energized” used below means electrically connected to each other or connected to enable information communication.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1을 참조하면, 본 발명의 실시 예에 따른 수질 측정 시스템의 구성요소가 도시된다.Referring to FIG. 1 , the components of a water quality measurement system according to an embodiment of the present invention are shown.
본 실시 예에 따른 수질 측정 시스템은 수질 측정 가능하게 구성되는 수질 측정 장치 및, 딥러닝 서버(200)와 측정된 수질에 대한 정보를 수신받는 사용자 단말(300)을 포함한다.The water quality measurement system according to the present embodiment includes a water quality measurement device configured to measure water quality, and a deep learning server 200 and a user terminal 300 that receives information about the measured water quality.
사용자 단말(300)은 수질 측정 장치(100) 및 딥러닝 서버(200)와 통신 가능하게 연결되며, 이들로부터 수질에 대한 정보를 수신한다. The user terminal 300 is communicatively connected to the water quality measuring device 100 and the deep learning server 200, and receives information on water quality from them.
일 실시 예에서, 사용자 단말(300)은 컴퓨터, UMPC(Ultra Mobile PC), 워크스테이션, 넷북(net-book), PDA(Personal Digital Assistants), 포터블(portable) 컴퓨터, 웹 타블렛(web tablet), 무선 전화기(wireless phone), 모바일 폰(mobile phone), 스마트폰(smart phone), PMP(portable multimedia player) 같은 전자 장치 중 하나일 수 있다. In one embodiment, the user terminal 300 is a computer, UMPC (Ultra Mobile PC), workstation, net-book (net-book), PDA (Personal Digital Assistants), portable (portable) computer, web tablet (web tablet), It may be one of electronic devices such as a wireless phone, a mobile phone, a smart phone, and a portable multimedia player (PMP).
다만 이에 한정되는 것은 아니며, 수질 측정 장치(100) 및 딥러닝 서버(200)로부터 정보를 수신하고, 수신한 정보를 사용자에게 시각적으로 인식 가능한 형태로 제공해줄 수 있는 다양한 전자 장치가 채용될 수 있다. However, the present invention is not limited thereto, and various electronic devices capable of receiving information from the water quality measuring apparatus 100 and the deep learning server 200 and providing the received information in a visually recognizable form to the user may be employed. .
아래에서는 도 2 내지 도 4를 참조하여, 수질 측정 장치(100) 및 딥러닝 서버(200)의 구체적인 구성에 대해 설명한다.Hereinafter, detailed configurations of the water quality measuring apparatus 100 and the deep learning server 200 will be described with reference to FIGS. 2 to 4 .
1. 본 발명의 실시 예에 따른 수질 측정 장치(100)의 설명1. Description of the water quality measuring device 100 according to an embodiment of the present invention
수질 측정 장치(100)는 내부에 구비된 소정의 공간이 구비되며, 상기 소정의 공간에서 유동하는 유체에 대한 영상정보를 획득한다. The water quality measuring apparatus 100 has a predetermined space provided therein, and acquires image information about a fluid flowing in the predetermined space.
또한, 수질 측정 장치(100)는 획득한 영상정보를 이용하여 유체의 수질을 판단할 수 있도록 구성된다. In addition, the water quality measuring apparatus 100 is configured to determine the water quality of the fluid by using the obtained image information.
이를 위하여, 수질 측정 장치(100)는 제어부(110), 영상 촬영부(120), 유동감지센서(130), 알림부(140), 데이터베이스부(150), 통신부(160), 전력 공급부(170) 및 발전부(180)를 포함할 수 있다. To this end, the water quality measuring device 100 includes a control unit 110 , an image capturing unit 120 , a flow sensor 130 , a notification unit 140 , a database unit 150 , a communication unit 160 , and a power supply unit 170 . ) and a power generation unit 180 may be included.
수질 측정 장치(100)의 구성들은 서로 통전 가능하게 연결된다. 예를 들어, 제어부(110) 및 데이터베이스부(150) 사이의 통신은 유/무선 네트워크를 통해 수행될 수 있다. 유/무선 네트워크는 표준 통신 기술 및/또는 프로토콜들이 사용될 수 있다.The components of the water quality measuring device 100 are electrically connected to each other. For example, communication between the control unit 110 and the database unit 150 may be performed through a wired/wireless network. A wired/wireless network may use standard communication technologies and/or protocols.
또한, 아래에서 설명하는 각 구성들의 다양한 기능은 제어부(110)에 의해 제어될 수 있다.In addition, various functions of each configuration described below may be controlled by the controller 110 .
제어부(110)는 프로세서(Processor), 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있으며, 제어부(110)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어 또는 이들의 결합에 의해 구현될 수 있다. The control unit 110 may also be referred to as a processor, a controller, a microcontroller, a microprocessor, a microcomputer, etc., and the control unit 110 is hardware or It may be implemented by firmware, software, or a combination thereof.
또한, 아래에서 설명하는 수질 측정 장치(100)의 구성들이 획득하거나 연산한 정보는 데이터베이스부(150)에 저장된 후 다른 구성들로 전달될 수 있다. In addition, information obtained or calculated by the components of the water quality measuring apparatus 100 described below may be stored in the database unit 150 and then transferred to other components.
일 실시 예에서, 데이터베이스부(190)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(RAM, Random Access Memory) SRAM(Static Random Access Memory), 롬(ROM, Read-Only Memory), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory) 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.In one embodiment, the database unit 190 is a flash memory type (flash memory type), hard disk type (hard disk type), multimedia card micro type (multimedia card micro type), card type memory (for example, SD or XD memory, etc.), RAM (RAM, Random Access Memory) SRAM (Static Random Access Memory), ROM (Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory) It may include at least one type of storage medium among a magnetic memory, a magnetic disk, and an optical disk.
아래에서는, 수질을 측정하기 위한 수질 측정 장치(100)의 구성들에 대해 구체적으로 설명한다.Hereinafter, the components of the water quality measuring device 100 for measuring the water quality will be described in detail.
(1) 영상 촬영부(120)의 설명(1) Description of the image capturing unit 120
영상 촬영부(120)는 수질 측정 장치(100) 내부의 공간에 유동하는 유체에 대한 영상 정보를 감지하도록 구성된다.The image capturing unit 120 is configured to detect image information about a fluid flowing in the space inside the water quality measuring device 100 .
영상 촬영부(120)는 기 설정된 유동하는 유체에 대한 영상정보를 연속적으로 감지할 수 있는 다양한 장치로 구현될 수 있다. 일 실시 예에서, 영상 촬영부(120)는 소형 영상 카메라로 구현될 수 있다. The image capturing unit 120 may be implemented as a variety of devices capable of continuously sensing preset image information on a flowing fluid. In an embodiment, the image capturing unit 120 may be implemented as a small image camera.
일 실시 예에서, 유동하는 유체의 명확한 영상을 얻기 위하여, 영상 촬영부(120)는 광원모듈(미도시)을 구비할 수 있다. In an embodiment, in order to obtain a clear image of a flowing fluid, the image capturing unit 120 may include a light source module (not shown).
영상 촬영부(120)에서 감지된 영상정보는 제어부(110)에 구비된 기 학습된 머신러닝 알고리즘에 의하여 분석된다. 이와 관련하여 뒤에서 상세히 설명한다.The image information detected by the image capturing unit 120 is analyzed by a pre-learned machine learning algorithm provided in the control unit 110 . In this regard, it will be described in detail later.
(2) 유동감지센서(130)의 설명 (2) Description of the flow sensor 130
유동감지센서(130)는 수질 측정 장치(100) 내부의 공간에 유체의 유동을 감지한다. 유동감지센서(130)는 기계식, 전자식 또는 이들의 조합으로 구현될 수 있다. 일 실시 예에서, 유동감지센서(130)는 수위를 감지하는 형태의 센서로 구성될 수 있다. The flow sensor 130 detects the flow of fluid in the space inside the water quality measuring device 100 . The flow sensor 130 may be implemented as a mechanical type, an electronic type, or a combination thereof. In an embodiment, the flow sensor 130 may be configured as a sensor for detecting the water level.
유동감지센서(130)에 의해 유체의 유동이 감지되지 않는 경우, 제어부(110)는 수질 측정 장치(100)를 저전력 모드로 전환하여 전력 소모를 절감시킬 수 있다. 이와 관련하여 뒤에서 자세히 설명한다.When the flow of the fluid is not detected by the flow sensor 130 , the control unit 110 may convert the water quality measuring apparatus 100 to a low power mode to reduce power consumption. In this regard, it will be described in detail later.
수질 측정 장치(100)에 소모되는 전력이 절감되므로, 수질 측정 장치(100)가 소형화될 수 있다. 이에 의해, 가정에서 구비되는 유체관, 유체관의 단부에 수질 측정 장치(100)가 결합될 수 있다. Since the power consumed by the water quality measuring device 100 is reduced, the water quality measuring device 100 can be downsized. Accordingly, the fluid pipe provided at home, the water quality measuring device 100 may be coupled to the end of the fluid pipe.
(3) 알림부(140)의 설명 (3) Description of the notification unit 140
알림부(140)는 수질이 기 설정된 기준 수질보다 낮은 경우 사용자에게 이를 시각적으로 인식 가능한 형태로 알려주도록 구성된다. The notification unit 140 is configured to notify the user of the water quality in a visually recognizable form when the water quality is lower than a preset reference water quality.
일 실시 예에서, 상기 알림부(140)는 LED발광을 이용하여 수질이 기 설정된 기준 수질보다 낮음을 알리는 형태일 수 있다. In one embodiment, the notification unit 140 may be in the form of notifying that the water quality is lower than a preset reference water quality using LED light emission.
알림부(140)는 제어부(110)에서 수질이 기 설정된 기준 수질보다 낮은 것으로 판단된 경우 발광하는 광원모듈을 포함할 수 있다. 상기 광원모듈은 복수 개로 구비될 수 있으며, 수질이 단계적으로 악화됨에 따라 각 광원모듈이 각 단계에 대응하여 발광하도록 구성될 수 있다. The notification unit 140 may include a light source module that emits light when the control unit 110 determines that the water quality is lower than the preset reference water quality. The light source module may be provided in plurality, and as water quality deteriorates step by step, each light source module may be configured to emit light corresponding to each step.
이를 통해, 즉각적으로 수질에 대한 정보를 인식할 수 있다. Through this, information on water quality can be recognized immediately.
나아가, 사용자가 인체에 해로운 유체와 접촉되거나 이를 마시는 것이 예방될 수 있다. Furthermore, it can be prevented that the user comes into contact with or drinks a fluid harmful to the human body.
또한, 알림부(140)는 디스플레이 디바이스 형태의 알림부를 포함할 수 있다. 이 경우, 알림부(140)는 수질이 기 설정된 기준 수질보다 낮은 경우, 상기 수질이 위험함을 나타내는 시각 정보를 제어부(110)의 제어에 따라 표시할 수 있다. 상기 시각 정보는 상기 수질의 나쁨 정도를 나타내는 수치, 텍스트 및 이미지 중 적어도 하나를 포함할 수 있고, 영상 촬영부(120)에 의해 촬용된 유체의 현재 이미지를 포함할 수도 있다.Also, the notification unit 140 may include a notification unit in the form of a display device. In this case, when the water quality is lower than the preset reference water quality, the notification unit 140 may display visual information indicating that the water quality is dangerous under the control of the controller 110 . The visual information may include at least one of a numerical value, text, and image indicating the degree of water quality, and may include a current image of the fluid captured by the image capturing unit 120 .
다만, 후술하는 바와 같이, 수질에 대한 정보는 사용자 단말(300)로 직접 제공되므로, 수질 측정 장치(100)는 알림부(140)를 제외하고 구성될 수 있다. However, as will be described later, since information on water quality is directly provided to the user terminal 300 , the water quality measuring apparatus 100 may be configured except for the notification unit 140 .
(3) 전력 공급부(170) 및 발전부(180)의 설명(3) Description of the power supply unit 170 and the power generation unit 180
전력 공급부(170) 저장된 전기에너지를 수질 측정 장치(100)의 각 구성에 공급하도록 구성된다. 일 실시 예에서, 전력 공급부(170)는 2차 전지(배터리)의 형태로 구현될 수 있다. 다만, 이에 한정되는 것은 아니다. The power supply unit 170 is configured to supply the stored electrical energy to each component of the water quality measurement device 100 . In an embodiment, the power supply unit 170 may be implemented in the form of a secondary battery (battery). However, the present invention is not limited thereto.
또한, 발전부(180)는 유동하는 유체의 운동에너지를 전기에너지로 변환하여 수질 측정 장치(100)의 각 구성에 공급하도록 구성된다. 일 실시 예에서, 발전부(180)는 유체의 운동에너지를 이용하여 전자기유도작용으로 기전력을 발생시키는 다양한 형태로 구현될 수 있다. In addition, the power generation unit 180 is configured to convert the kinetic energy of the flowing fluid into electrical energy and supply it to each component of the water quality measuring device 100 . In one embodiment, the power generation unit 180 may be implemented in various forms for generating electromotive force by electromagnetic induction by using the kinetic energy of the fluid.
일 실시 예에서, 발전부(180)에서 생선된 전기에너지는 전력 공급부(170)에 저장될 수 있다. In an embodiment, the electrical energy generated by the power generation unit 180 may be stored in the power supply unit 170 .
일 실시 예에서, 발전부(180)는 자체적인 전기 에너지 저장모듈(미도시)을 구비하며, 발전부(180)에서 생성된 전기에너지는 전기 에너지 저장모듈에 저장될 수 있다. In an embodiment, the power generation unit 180 has its own electrical energy storage module (not shown), and the electrical energy generated by the power generation unit 180 may be stored in the electrical energy storage module.
본 실시 예에 따른 수질 측정 장치(100)는 상대적으로 전력 소모량이 적은 기 학습된 머신러닝 알고리즘에 의해 수질을 판단하고, 유체의 유동이 감지되지 않는 경우 저전력 모드로 변환된다. The water quality measuring apparatus 100 according to the present embodiment determines the water quality by a pre-learned machine learning algorithm that consumes relatively little power, and is converted to a low power mode when the flow of the fluid is not detected.
이에 의해, 수질 측정 장치(100)는 상대적으로 적은 용량의 전력 공급부(170) 및 발전부(180)에 의해 구동될 수 있다. Accordingly, the water quality measuring apparatus 100 may be driven by the power supply unit 170 and the power generation unit 180 having a relatively small capacity.
즉, 수질 측정 장치(100)가 외부의 전력공급 없이 자체적으로 구동될 수 있다. That is, the water quality measuring apparatus 100 may be driven by itself without external power supply.
일 실시 예에서, 수질 측정 장치(100)는 발전부(180)에 의해 구동될 수 있다. In an embodiment, the water quality measuring device 100 may be driven by the power generation unit 180 .
(4) 제어부(110)의 설명(4) Description of the control unit 110
제어부(110)는 영상 촬영부(120)에서 영상정보를 수신받아 수질을 판단하도록 구성된다. The control unit 110 is configured to receive image information from the image capturing unit 120 to determine water quality.
수질은 머신 러닝 모듈(111) 및 수질 판단 모듈(114)을 통해 판단될 수 있다. The water quality may be determined through the machine learning module 111 and the water quality determination module 114 .
머신 러닝 모듈(111)은 기 학습된 머신 러닝 알고리즘에 기초하여 영상 정보를 분석하는 탁도 분석 유닛(1111), pH 분석 유닛(1112) 및 부유물 분석 유닛(1113)을 포함한다.The machine learning module 111 includes a turbidity analysis unit 1111 , a pH analysis unit 1112 , and a floating matter analysis unit 1113 that analyze image information based on a previously learned machine learning algorithm.
탁도 분석 유닛(1111)은 전달받은 영상에 포함된 유체의 탁도를 분석한다. The turbidity analysis unit 1111 analyzes the turbidity of the fluid included in the received image.
일 실시 예에서, 탁도 분석 유닛(1111)은 영상정보에 포함된 픽셀에서 빛의 3원색인 적(Red)/녹(Green)/청(Blue) 색에 대한 값을 획득하여 탁도를 분석할 수 있다. 예를 들어, 적(Red)/녹(Green)/청(Blue)색에 대한 값이 증가되면 탁도가 높은 것으로 판단하고, 적(Red)/녹(Green)/청(Blue)색에 대한 값이 낮아지면 탁도가 낮은 것으로 판단할 수 있다. 다만, 이에 한정되는 것은 아니다. In an embodiment, the turbidity analysis unit 1111 may analyze the turbidity by obtaining values for the three primary colors of light, Red, Green, and Blue, from pixels included in the image information. have. For example, if the value for the red/green/blue color is increased, it is determined that the turbidity is high, and the value for the red/green/blue color is When this is lowered, it can be determined that the turbidity is low. However, the present invention is not limited thereto.
pH 분석 유닛(1112)은 전달받은 영상에 포함된 유체의 pH를 분석한다. The pH analysis unit 1112 analyzes the pH of the fluid included in the received image.
일 실시 예에서, pH 분석 유닛(1112)은 서로 다른 pH값을 갖는 유체의 영상 정보에 포함된 RGB패턴을 분석하여 학습된 머신러닝 알고리즘에 기반하여 pH분석을 수행할 수 있다. 다만, 이에 한정되는 것은 아니다.In an embodiment, the pH analysis unit 1112 may perform pH analysis based on a machine learning algorithm learned by analyzing RGB patterns included in image information of fluids having different pH values. However, the present invention is not limited thereto.
부유물 분석 유닛(1113)은 전달받은 영상에 포함된 유체의 부유물을 분석한다. The floating matter analysis unit 1113 analyzes the floating matter of the fluid included in the received image.
일 실시 예에서, 부유물 분석 유닛(1113)은 영상에 포함된 부유물들의 패턴을 분석하여 학습된 머신러닝 알고리즘에 기반하여 부유물 분석을 수행할 수 있다. 예를 들어, 살아있는 유충, 죽어있는 유충 및 슬러지인 경우의 패턴을 분리하여 학습된 알고리즘에 기반하여 부유물 분석이 수행될 수 있다. 즉, 영상에 포함된 유충 및 슬러지의 개수에 대한 정보가 획득될 수 있다. 다만, 이에 한정되는 것은 아니다.In an embodiment, the floating material analysis unit 1113 may analyze the floating material based on the machine learning algorithm learned by analyzing the pattern of the floating material included in the image. For example, floating material analysis may be performed based on the learned algorithm by separating the patterns in the case of live larvae, dead larvae, and sludge. That is, information on the number of larvae and sludge included in the image can be obtained. However, the present invention is not limited thereto.
머신 러닝 모듈(111)에서 분석된 정보는 통신부(160)를 통해 딥러닝 서버(200)에 전달된다. The information analyzed by the machine learning module 111 is transmitted to the deep learning server 200 through the communication unit 160 .
딥러닝 서버(200)는 복수 개의 수질 측정 장치(100)에서 분석된 정보를 전달받아 딥 러닝 알고리즘에 의해 학습하며, 학습된 데이터에 기반하여 머신 러닝 모듈(111)의 머신 러닝 알고리즘을 업데이트 할 수 있다. The deep learning server 200 receives the information analyzed from the plurality of water quality measurement devices 100 and learns by the deep learning algorithm, and based on the learned data, the machine learning algorithm of the machine learning module 111 can be updated. have.
이에 의해, 수질 측정 장치(100)를 사용하는 사용자가 많아지고 사용하는 기간이 증가될수록, 수질 측정 장치(100)에 적용되는 머신러닝 알고리즘의 정확성이 향상될 수 있다. Accordingly, as the number of users who use the water quality measuring apparatus 100 increases and the period of use thereof increases, the accuracy of the machine learning algorithm applied to the water quality measuring apparatus 100 may be improved.
수질 판단 모듈(114)은 머신 러닝 모듈(111)에서 전달받은 분석 정보를 이용하여 수질에 대한 판단을 수행한다. The water quality determination module 114 determines water quality using the analysis information received from the machine learning module 111 .
일 실시 예에서, 분석된 탁도 값이 기 설정된 기준 탁도 값보다 낮은 경우, 수질 판단 모듈(114)은 유체가 사용자에게 유해한 것(음용불가 또는 사용불가)으로 판단할 수 있다. In an embodiment, when the analyzed turbidity value is lower than a preset reference turbidity value, the water quality determination module 114 may determine that the fluid is harmful to the user (not drinkable or unusable).
일 실시 예에서, 분석된 pH 값이 기 설정된 기준 탁도 값보다 낮거나 높은 경우, 수질 판단 모듈(114)은 유체가 사용자에게 유해한 것(음용불가 또는 사용불가)으로 판단할 수 있다.In one embodiment, when the analyzed pH value is lower than or higher than the preset reference turbidity value, the water quality determination module 114 may determine that the fluid is harmful to the user (not drinkable or unusable).
일 실시 예에서, 분석된 부유물 정보가 기 설정된 부유물 기준보다 높은 경우, 수질 판단 모듈(114)은 유체가 사용자에게 유해한 것(음용불가 또는 사용불가)으로 판단할 수 있다. 상기 기 설정된 부유물 기준은 무생물/생물의 개수로 정의될 수 있다. In an embodiment, when the analyzed floating material information is higher than the preset floating material standard, the water quality determination module 114 may determine that the fluid is harmful to the user (not drinkable or not usable). The preset floating object standard may be defined as the number of inanimate objects/living matter.
일 실시 예에서, 수질 판단 모듈(114)은 머신 러닝 모듈(111)에 포함될 수 있다. In an embodiment, the water quality determination module 114 may be included in the machine learning module 111 .
또한, 제어부(110)는 수질에 대한 정보를 딥러닝 서버(200)로 전달하며, 딥러닝 서버(200)는 전달받은 정보를 이용하여 수질에 대해 2차적으로 판단한 후 사용자에게 이를 전송한다. In addition, the control unit 110 transmits information on water quality to the deep learning server 200, and the deep learning server 200 uses the received information to determine the water quality secondarily and then transmits it to the user.
전처리 모듈(112)은 딥러닝 서버(200)에 데이터를 전송하기 위하여, 영상 정보, 머신 러닝 모듈(111)에서 분석된 정보 및 수질 판단 모듈(114)에서 판단된 정보를 전처리한다. 전처리된 정보는 딥러닝 서버(200)의 분석 및 학습에 사용될 수 있다. The pre-processing module 112 pre-processes image information, information analyzed by the machine learning module 111, and information determined by the water quality determination module 114 in order to transmit data to the deep learning server 200 . The pre-processed information may be used for analysis and learning of the deep learning server 200 .
딥러닝 서버(200)와의 통신이 차단된 경우, 제어부(110)는 수질 판단 모듈(114)에서 판단된 수질에 대한 정보를 사용자에게 제공한다. When communication with the deep learning server 200 is blocked, the control unit 110 provides information about the water quality determined by the water quality determination module 114 to the user.
일 실시 예에서, 제어부(110)는 알림부(140)가 사용자에게 수질에 대한 정보를 시각적으로 인식 가능한 형태로 전달하도록 제어할수 있다. 예를 들어, 알림부(140)가 기 설정된 색의 빛을 발광하도록 제어할 수 있다. In an embodiment, the control unit 110 may control the notification unit 140 to transmit information on water quality to the user in a visually recognizable form. For example, the notification unit 140 may be controlled to emit light of a preset color.
일 실시 예에서, 제어부(110)는 사용자 단말(300)에 수질에 대한 정보를 전달할 수 있다. 사용자 단말(300)은 수질에 대한 정보를 전달받아 사용자에게 시각적으로 인식 가능한 형태로 제공한다. 일 실시 예에서, 수질에 대한 정보는 사용자 단말(300)에서 디스플레이될 수 있다. In an embodiment, the controller 110 may transmit information on water quality to the user terminal 300 . The user terminal 300 receives information on water quality and provides it to the user in a visually recognizable form. In an embodiment, information on water quality may be displayed in the user terminal 300 .
딥러닝 서버(200)와 수질 측정 장치(100)의 연결상태에 무관하게, 사용자에게 수질에 대한 정보가 사용자에게 제공될 수 있다. 결과적으로, 사용자는 수질 측정 장치(100)가 동작하고 있는 한 수질에 대한 정보를 제공받을 수 있다. Regardless of the connection state between the deep learning server 200 and the water quality measurement device 100 , information on water quality may be provided to the user. As a result, the user may be provided with information on water quality as long as the water quality measuring apparatus 100 is operating.
또한, 제어부(110)는 유동감지센서(130)에서 유체의 유동이 감지되지 않는 경우 수질 측정 장치(100)를 저전력 모드로 전환하도록 제어한다. In addition, the controller 110 controls the water quality measuring device 100 to switch to the low power mode when the flow of the fluid is not detected by the flow sensor 130 .
유동감지센서(130)에서 유체의 유동이 감지되지 않는 경우, 모드 전환 모듈(113)은 수질 측정 장치(100)를 저전력 모드로 변환할 수 있다. 상술한 바와 같이, 수질 측정 장치(100)를 구동하는데 소모되는 전력의 양이 감소되므로 수질 측정 장치(100)가 소형화될 수 있다. 또한, 상대적으로 소형의 전력 공급부(170)와 발전부(180)에 의해 지속적으로 구동될 수 있다. When the flow of the fluid is not detected by the flow sensor 130 , the mode conversion module 113 may convert the water quality measuring apparatus 100 to a low power mode. As described above, since the amount of power consumed to drive the water quality measuring device 100 is reduced, the water quality measuring device 100 can be downsized. In addition, it may be continuously driven by the relatively small power supply unit 170 and the power generation unit 180 .
수질 측정 장치(100)에서 감지되거나 제어부(110)에서 연산된 정보는 데이터베이스부(150)에 전달되어 저장될 수 있다. Information sensed by the water quality measuring device 100 or calculated by the controller 110 may be transmitted to and stored in the database 150 .
일 실시 예에서, 제어부(110)는 기 설정된 시간 동안 데이터베이스부(150)에 저장된 분석 정보 및 판단 정보를 전처리하여 딥러닝 서버(200)로 송신할 수 있다. In an embodiment, the control unit 110 may pre-process the analysis information and determination information stored in the database unit 150 for a preset time and transmit the pre-processing to the deep learning server 200 .
일 실시 예에서, 제어부(110)는 분석 정보 및 판단 정보를 실시간으로 딥러닝 서버(200)로 송신할 수 있다. In an embodiment, the control unit 110 may transmit the analysis information and the determination information to the deep learning server 200 in real time.
(5) 수질 측정 장치(100)의 구조의 설명(5) Description of the structure of the water quality measuring device 100
도 3 및 도 4 참조하면, 수질 측정 장치(100)의 구조에 대한 실시 예가 도시된다. 다만, 이에 한정되는 것은 아니며, 수질 측정 장치(100)는 다양한 형상으로 구현될 수 있다. 3 and 4 , an embodiment of the structure of the water quality measuring apparatus 100 is shown. However, the present invention is not limited thereto, and the water quality measuring apparatus 100 may be implemented in various shapes.
도 3을 참조하면, 수질 측정 장치(100)는 유체가 유동하는 유체관의 단부에 결합되어 사용자에게 공급되기 직전 유체의 수질을 측정하도록 구성된다. Referring to FIG. 3 , the water quality measuring device 100 is coupled to the end of the fluid pipe through which the fluid flows and is configured to measure the water quality of the fluid immediately before being supplied to the user.
도 3에 따른 수질 측정 장치(100)는 수질 측정 장치(100)의 외형을 구성하는 몸체부(105)를 포함한다.The water quality measuring device 100 according to FIG. 3 includes a body part 105 constituting the outer shape of the water quality measuring device 100 .
몸체부(105)는 일 단이 유체관의 단부와 결합되고, 유일 방향으로 연장되는 기둥형상의 파지부를 포함한다. The body portion 105 has one end coupled to the end of the fluid pipe, and includes a columnar gripper extending in the only direction.
파지부는 유체가 파지부를 통과할 수 있도록 내부가 관통형성되며, 내부 공간에는 파지부를 통과하는 유체를 거르는 필터가 구비될 수 있다. The grip part is formed through the inside so that the fluid can pass through the grip part, and a filter for filtering the fluid passing through the grip part may be provided in the inner space.
파지부의 타 단에는 내부의 소정의 공간이 형성된 헤드부가 형성된다. 즉, 몸체부(105)는 파지부 및 헤드부를 포함한다. 헤드부의 내부 공간(105a)은 파지부의 공간과 연통된다.At the other end of the gripping portion, a head portion having a predetermined internal space is formed. That is, the body portion 105 includes a grip portion and a head portion. The inner space 105a of the head part communicates with the space of the grip part.
또한, 헤드부의 일측에는 내부 공간의 유체를 외부로 분사하는 분사홀이 형성된다. 분사홀은 헤드부의 내부 공간에서 외부를 향하여 관통형성된다. 분사홀은 복수 개로 구비되며, 다양한 패턴을 형성될 수 있다. In addition, an injection hole for injecting the fluid in the internal space to the outside is formed on one side of the head part. The injection hole is formed through the inner space of the head toward the outside. The injection hole is provided in plurality, and various patterns may be formed.
헤드부의 내부 공간(105a)은 유체가 유동하는 제1 공간과 유체와 접촉되지 않는 제2 공간으로 분리된다. 제2 공간에는 영상 촬영부(120), 전력 공급부(170) 및 제어부(110)가 포함될 수 있다. 도시되지 않은 실시 예에서, 통신부(160), 데이터베이스부(150) 및 발전부(180)는 제2 공간에 배치될 수 있다.The internal space 105a of the head part is divided into a first space in which a fluid flows and a second space in which the fluid does not come into contact. The second space may include an image capture unit 120 , a power supply unit 170 , and a control unit 110 . In an embodiment not shown, the communication unit 160 , the database unit 150 , and the power generation unit 180 may be disposed in the second space.
또한, 도시되지 않은 실시 예에서, 유동감지센서(130)는 제1 공간에 배치될 수 있다.Also, in an embodiment not shown, the flow sensor 130 may be disposed in the first space.
또한, 도시되지 않은 실시 예에서, 알림부(140)는 사용자에게 시각적으로 인지될 수 있는 위치에 배치될 수 있다. 즉, 알림부(140)는 적어도 일부가 헤드부 또는 필터부의 외면으로 돌출되도록 배치될 수 있다. Also, in an embodiment not shown, the notification unit 140 may be disposed at a position that can be visually recognized by the user. That is, at least a part of the notification unit 140 may be disposed to protrude from the outer surface of the head unit or the filter unit.
도 4를 참조하면, 수질 측정 장치(100)는 유체가 유동하는 유체관의 중간에 결합되어 사용자에게 공급되기 전 유체의 수질을 측정하도록 구성된다. Referring to FIG. 4 , the water quality measuring device 100 is coupled to the middle of the fluid pipe through which the fluid flows and is configured to measure the water quality of the fluid before being supplied to the user.
도 4에 따른 수질 측정 장치(100)는 수질 측정 장치(100)의 외형을 형성하는 몸체부(105)를 포함한다.The water quality measuring device 100 according to FIG. 4 includes a body portion 105 that forms an outer shape of the water quality measuring device 100 .
몸체부(105)에는 내부에 유체가 유동할 수 있는 소정의 공간(105a)이 형성된다. A predetermined space 105a through which a fluid can flow is formed in the body 105 .
또한, 유체가 유동되는 방향으로, 몸체부(105)의 양측에는 유체관이 각각 결합된다. 각 유체관과 몸체부(105)의 내부 공간(105a)은 서로 연통 가능하게 연결되며, 이에 의해, 양측의 유체관이 몸체부(105)의 내부 공간(105a)을 통해 서로 연통된다. In addition, in the direction in which the fluid flows, fluid pipes are respectively coupled to both sides of the body 105 . Each fluid pipe and the internal space 105a of the body 105 are communicatively connected to each other, whereby the fluid pipes on both sides communicate with each other through the internal space 105a of the body 105 .
몸체부(105)의 일측 면은 빛이 투과가능하도록 형성되며, 몸체부(105)의 일측 면과 마주하는 위치에 영상 촬영부(120)가 배치된다. One side of the body 105 is formed to transmit light, and the image capturing unit 120 is disposed at a position facing the one side of the body 105 .
도시된 실시 예에서, 영상 촬영부(120)는 몸체부(105)의 외면에서 “ㄱ”형태로 돌출되어 형성된다. 영상 촬영부(120)의 부분 중 몸체부(105)의 일측 면과 마주보는 부분을 통해 유동되는 유체의 영상이 감지될 수 있다. In the illustrated embodiment, the image capturing unit 120 is formed to protrude from the outer surface of the body portion 105 in a “L” shape. An image of a fluid flowing through a portion of the image capturing unit 120 facing one side of the body 105 may be detected.
또한, 몸체부(105)의 외면에서 통신부(160)가 돌출형성된다. In addition, the communication unit 160 is formed to protrude from the outer surface of the body portion (105).
도시되지 않은 실시 예에서, 전력 공급부(170) 및 발전부(180)는 유체와 접촉되지 않는 위치에 배치될 수 있다. In an embodiment not shown, the power supply unit 170 and the power generation unit 180 may be disposed at positions that do not come into contact with the fluid.
도시되지 않은 실시 예에서, 유동감지센서(130)는 몸체부(105)의 내부 공간(105a)에 배치될 수 있다. In an embodiment not shown, the flow sensor 130 may be disposed in the inner space 105a of the body 105 .
도시되지 않은 실시 예에서, 알림부(140)는 사용자에게 시각적으로 인식 가능한 위치에 배치될 수 있다. 예를 들어, 알림부(140)는 적어도 일부가 몸체부(105)의 외부에 노출되도록 배치될 수 있다. In an embodiment not shown, the notification unit 140 may be disposed at a location that is visually recognizable to the user. For example, the notification unit 140 may be disposed such that at least a part thereof is exposed to the outside of the body unit 105 .
2. 본 발명의 실시 예에 따른 딥러닝 서버(200)의 설명2. Description of the deep learning server 200 according to an embodiment of the present invention
딥러닝 서버(200)는 수질 측정 장치(100)의 제어부(110)에서 전처리된 정보를 수신한다. 딥러닝 서버(200)는 딥러닝 알고리즘에 기반하여 수신한 정보를 2차적으로 분석하고 수질에 대해 판단한다. The deep learning server 200 receives information pre-processed by the control unit 110 of the water quality measurement device 100 . The deep learning server 200 secondaryly analyzes the received information based on the deep learning algorithm and determines the water quality.
수질에 대해 판단을 포함하는 정보는 사용자 단말(300)을 통해 사용자에게 제공될 수 있다. Information including determination of water quality may be provided to the user through the user terminal 300 .
도 2를 참조하면, 딥러닝 서버(200)는 제어부(210), 통신부(220) 및 데이터베이스부(230)를 구비할 수 있다. Referring to FIG. 2 , the deep learning server 200 may include a control unit 210 , a communication unit 220 , and a database unit 230 .
딥러닝 서버(200)의 구성들은 서로 통전 가능하게 연결된다. 예를 들어, 제어부(210) 및 데이터베이스부(230) 사이의 통신은 유/무선 네트워크를 통해 수행될 수 있다. 유/무선 네트워크는 표준 통신 기술 및/또는 프로토콜들이 사용될 수 있다.The components of the deep learning server 200 are electrically connected to each other. For example, communication between the control unit 210 and the database unit 230 may be performed through a wired/wireless network. A wired/wireless network may use standard communication technologies and/or protocols.
또한, 아래에서 설명하는 각 구성들의 다양한 기능은 제어부(210)에 의해 제어될 수 있다.In addition, various functions of each configuration described below may be controlled by the controller 210 .
제어부(210)는 프로세서(Processor), 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있으며, 제어부(110)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어 또는 이들의 결합에 의해 구현될 수 있다. The control unit 210 may also be referred to as a processor, a controller, a microcontroller, a microprocessor, a microcomputer, etc., and the control unit 110 is hardware or It may be implemented by firmware, software, or a combination thereof.
또한, 아래에서 설명하는 딥러닝 서버(200)의 구성들이 획득하거나 연산한 정보는 데이터베이스부(230)에 저장된 후 다른 구성들로 전달될 수 있다. In addition, information obtained or calculated by the components of the deep learning server 200 described below may be stored in the database unit 230 and then transferred to other components.
일 실시 예에서, 데이터베이스부(230)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(RAM, Random Access Memory) SRAM(Static Random Access Memory), 롬(ROM, Read-Only Memory), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory) 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.In one embodiment, the database unit 230 is a flash memory type (flash memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), a card type memory (for example, SD or XD memory, etc.), RAM (RAM, Random Access Memory) SRAM (Static Random Access Memory), ROM (Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory) It may include at least one type of storage medium among a magnetic memory, a magnetic disk, and an optical disk.
아래에서는, 딥러닝 서버(200)의 제어부(210)에 대해 구체적으로 설명한다. Below, the control unit 210 of the deep learning server 200 will be described in detail.
제어부(210)는 수질 측정 장치(100)에서 전처리되어 전달된 정보를 분석하는 딥러닝 모듈(211)을 포함한다.The control unit 210 includes a deep learning module 211 that analyzes the information transmitted and pre-processed by the water quality measurement device 100 .
딥러닝 모듈(211)은 CNN(Convolutional Neural Network) 알고리즘에 기초하여, 탁도 및 pH 중 적어도 하나에 대한 정보를 분석하도록 구성되는 CNN 분석 유닛(2111)을 포함한다.The deep learning module 211 includes a CNN analysis unit 2111 configured to analyze information on at least one of turbidity and pH, based on a Convolutional Neural Network (CNN) algorithm.
일 실시 예에서, CNN 알고리즘은 합성곱레이어(Convolution Layer), 풀링 레이어(Pooling Layer), ReLu layer, 전연결 레이어(Fully Connected Layer)을 포함할 수 있다. In an embodiment, the CNN algorithm may include a convolution layer, a pooling layer, a ReLu layer, and a fully connected layer.
일 실시 예에서, CNN 분석 유닛(2111)은 유체의 영상 정보에 포함된 RGB 정보, 수질 측정 장치(100)에서 분석된 정보 및 수질에 대한 판단 정보 중 적어도 하나를 이용하여 탁도 및 pH 값에 대한 분석을 수행할 수 있다.In an embodiment, the CNN analysis unit 2111 uses at least one of RGB information included in the image information of the fluid, information analyzed by the water quality measurement device 100, and determination information on water quality for turbidity and pH values. analysis can be performed.
또한, 딥러닝 모듈(211)은 RNN(Recurrent Nueral Network) 알고리즘에 기초하여, 부유물에 대한 정보를 분석하도록 구성되는 RNN 분석 유닛(2112)을 포함한다. Further, the deep learning module 211 includes an RNN analysis unit 2112, configured to analyze information about the float, based on a Recurrent Nueral Network (RNN) algorithm.
일 실시 예에서, RNN 분석 모듈(2112)은 부유물의 양끝 지점 및 중간 지점의 스켈레톤 벡터에 기반하여 부유물에 대한 정보를 분석할 수 있다. In an embodiment, the RNN analysis module 2112 may analyze information on the floating object based on the skeleton vector of both ends and the middle point of the floating object.
상기 일 실시 예에서, RNN 분석 모듈(2112)은 영상에서 부유물을 추출한 후, 부유물의 양끝 지점 및 상기 양끝 지점의 중간 지점을 설정한다. In the embodiment, the RNN analysis module 2112 extracts the floating object from the image, and then sets both ends of the floating object and a midpoint between the two end points.
양끝 지점 및 중간 지점이 설정되면, RNN 분석 모듈(2112)이 양끝 지점의 벡터가 동일 또는 반대 방향으로 동시에 증감되는지 여부를 판단한다.When both end points and midpoints are set, the RNN analysis module 2112 determines whether the vectors of both end points are simultaneously increased or decreased in the same or opposite directions.
양끝 지점의 벡터가 동일 또는 반대방향으로 동시에 증감되는 경우, RNN 분석 모듈(2112)이 중간 지점의 벡터가 변화되는지 여부를 판단한다. 중간 지점의 벡터가 변화되는 경우, 추출된 부유물은 살아있는 유충으로 분류될 수 있다. 반면, 중간 지점의 벡터가 변화되지 않는 경우, 추출된 부유물은 슬러지로 분류될 수 있다. When the vectors of both ends are simultaneously increased or decreased in the same or opposite directions, the RNN analysis module 2112 determines whether the vectors of the midpoints are changed. If the vector at the midpoint is changed, the extracted float can be classified as a living larva. On the other hand, if the vector at the midpoint does not change, the extracted suspension may be classified as sludge.
양끝 지점의 벡터가 동일 또는 반대방향으로 동시에 증감되지 않는 경우, RNN 분석 모듈(2112)이 양끝 지점 사이의 거리가 기 설정된 길이 이상인지 판단한다. 예를 들어, 기 설정된 길이는 3mm일 수 있다. 양끝 지점 사이의 거리가 기 설정된 길이 미만인 경우, 추출된 부유물은 슬러지로 분류될 수 있다. When the vectors of both end points are not simultaneously increased or decreased in the same or opposite directions, the RNN analysis module 2112 determines whether the distance between the both end points is equal to or greater than a preset length. For example, the preset length may be 3 mm. When the distance between the both ends is less than a preset length, the extracted suspended matter may be classified as sludge.
양끝 지점 사이의 거리가 기 설정된 길이 이상인 경우, RNN 분석 모듈(2112)이 양끝 지점의 벡터가 동일한 방향을 향하는지 판단한다. 동일한 방향을 향하지 않는 경우, 추출된 부유물은 슬러지로 분류될 수 있다. 반면에, 동일한 방향을 향하는 경우, 추출된 부유물은 죽어있는 유충으로 분류될 수 있다. 영상 촬영부(120)에서 감지된 정보가 딥러닝 모듈(211)에서 2차적으로 분석되므로, 사용자에게 탁도, pH, 부유물에 대해 보다 정밀하게 판단된 정보가 제공될 수 있다. When the distance between the two end points is equal to or greater than a preset length, the RNN analysis module 2112 determines whether the vectors of both end points point in the same direction. If not directed in the same direction, the extracted suspension may be classified as sludge. On the other hand, if they face the same direction, the extracted float can be classified as a dead larva. Since the information sensed by the image capturing unit 120 is secondaryly analyzed by the deep learning module 211, more precisely determined information on turbidity, pH, and suspended matter can be provided to the user.
또한, 딥러닝 모듈(211)은 CNN 분석 유닛(2111) 및 RNN 분석 유닛(2112)에서 분석된 정보에 기초하여 학습 데이터를 생성하는 학습 데이터 생성 유닛(2113)을 포함할 수 있다. Further, the deep learning module 211 may include a learning data generating unit 2113 that generates learning data based on the information analyzed by the CNN analysis unit 2111 and the RNN analysis unit 2112 .
딥러닝 모듈(211)의 딥러닝 알고리즘은 생성된 학습 데이터에 기초하여 학습된다. 일 실시 예에서, 생성된 학습 데이터에 의해 CNN 알고리즘 및 RNN 알고리즘의 가중치가 보정되며, 이에 의해 탁도 분석, pH 분석 및 부유물 분석에 대한 알고리즘이 수정될 수 있다. The deep learning algorithm of the deep learning module 211 is learned based on the generated learning data. In an embodiment, the weights of the CNN algorithm and the RNN algorithm are corrected by the generated learning data, whereby the algorithms for turbidity analysis, pH analysis, and floating matter analysis may be modified.
업데이트 모듈(212)은 학습데이터에 의해 학습된 학습 정보를 수질 측정 장치(100)의 머신 러닝 모듈(111)로 송신하며, 머신 러닝 모듈(111)의 각 머신러닝 알고리즘은 수신한 학습 정보에 기초하여 업데이트될 수 있다. The update module 212 transmits the learning information learned by the learning data to the machine learning module 111 of the water quality measurement device 100, and each machine learning algorithm of the machine learning module 111 is based on the received learning information. can be updated.
이에 의해, 수질 측정 장치(100)의 분석의 정확성이 지속적으로 향상될 수 있다. Accordingly, the accuracy of the analysis of the water quality measuring apparatus 100 may be continuously improved.
수질 측정 장치(100)에 학습 정보가 수신되면, 모드 전환 모듈(113)은 수질 측정 장치(100)가 저전력 모드에 정상 상태로 전환되도록 제어한다. When the learning information is received by the water quality measuring device 100 , the mode conversion module 113 controls the water quality measuring device 100 to be switched from the low power mode to the normal state.
일 실시 예에서, 업데이트 모듈(212)은 기 설정된 시간간격을 두고 학습 정보를 송신할 수 있다. In an embodiment, the update module 212 may transmit learning information at preset time intervals.
이를 통해, 수질 측정 장치(100)가 저전력 모드로 구동되는 시간을 증가시키고, 이를 통해 수질 측정 장치(100)의 구동에 소모되는 전력량을 절감시킬 수 있다. Through this, the time for which the water quality measuring apparatus 100 is driven in the low power mode may be increased, and thus, the amount of power consumed for driving the water quality measuring apparatus 100 may be reduced.
또한, 제어부(210)는 딥러닝 모듈(211)에서 분석된 정보를 이용하여 수질을 판단하는 수질 판단 모듈(213)을 포함할 수 있다. In addition, the control unit 210 may include a water quality determination module 213 that determines the water quality by using the information analyzed by the deep learning module 211 .
수질 판단 모듈(213)은 분석된 탁도, pH 및 부유물이 기 설정된 기준에 부합하지 않는 경우, 유체가 사용자에게 유해한 것으로 판단한다. 구체적인 내용은, 수질 측정 장치(100)의 수질 판단 모듈(114)에 대한 설명을 참조하여 이해될 수 있다. The water quality determination module 213 determines that the fluid is harmful to the user when the analyzed turbidity, pH, and suspended matter do not meet preset criteria. Specific details may be understood with reference to the description of the water quality determination module 114 of the water quality measuring apparatus 100 .
일 실시 예에서, 딥러닝 모듈(211)은 수질 판단 모듈(213)을 포함할 수 있다. In an embodiment, the deep learning module 211 may include a water quality determination module 213 .
일 실시 예에서, 제어부(210)는 사용자 단말(300)에 수질에 대한 정보를 전달할 수 있다. 사용자 단말(300)은 수질에 대한 정보를 전달받아 사용자에게 시각적으로 인식 가능한 형태로 제공한다. 일 실시 예에서, 수질에 대한 정보는 사용자 단말(300)에서 디스플레이될 수 있다.In an embodiment, the control unit 210 may transmit information on water quality to the user terminal 300 . The user terminal 300 receives information on water quality and provides it to the user in a visually recognizable form. In an embodiment, information on water quality may be displayed in the user terminal 300 .
3. 본 발명의 실시 예에 따른 수질 측정 시스템의 작동과정에 대한 설명3. Description of the operation process of the water quality measurement system according to an embodiment of the present invention
도 5 내지 도 7을 참조하면, 본 발명의 실시 예에 따른 수질 측정 시스템의 작동의 구체적인 흐름이 도시된다.5 to 7 , a detailed flow of the operation of the water quality measurement system according to an embodiment of the present invention is shown.
도 5를 참조하면, 수질 측정 장치(100)의 작동과정의 구체적인 흐름(S100)이 도시된다.Referring to FIG. 5 , a detailed flow S100 of the operation process of the water quality measuring device 100 is illustrated.
먼저, 제어부(110)가 유동감지센서(130)에서 유동이 감지되는지 여부를 판단한다(S110). First, the control unit 110 determines whether the flow is detected by the flow sensor 130 (S110).
유동이 감지되지 않는 경우, 제어부(110)의 모드 전환 모듈(113)이 수질 측정 장치(100)가 저전력 모드로 전환되도록 제어한다(S190).When the flow is not detected, the mode conversion module 113 of the control unit 110 controls the water quality measuring apparatus 100 to be switched to the low power mode (S190).
유동이 감지되는 경우, 제어부(110)는 영상 촬영부(120)를 활성화시키고, 상기 활성화된 영상 촬영부(120)를 통해 촬영된 수질 측정 장치(100) 내부에 유동하는 유체의 영상 정보를 기반으로, 상기 유체를 감지한다(S120). 즉, 본 발명에서는 유동이 감지되는 경우에만 카메라와 같은 영상 촬영부(120)를 활성화시킴에 따라 불필요한 전력 소모를 방지할 수도 있다.When a flow is detected, the controller 110 activates the image capturing unit 120 , and based on the image information of the fluid flowing in the water quality measuring device 100 captured through the activated image capturing unit 120 . , the fluid is sensed (S120). That is, in the present invention, unnecessary power consumption can be prevented by activating the image capturing unit 120 such as a camera only when a flow is detected.
영상 정보가 감지되면, 제어부(110)는 머신 러닝 모듈(111)을 통해 기 학습된 머신 러닝 알고리즘에 기초하여 탁도, pH 및 부유물에 대한 1차 분석을 수행한다(S130).When the image information is detected, the control unit 110 performs a primary analysis on turbidity, pH, and suspended matter based on a machine learning algorithm previously learned through the machine learning module 111 (S130).
분석이 완료되면, 제어부(110)는 수질 판단 모듈(114)을 통해 1차 분석 결과에 기초하여 수질을 판단한다(S140). When the analysis is completed, the control unit 110 determines the water quality based on the primary analysis result through the water quality determination module 114 (S140).
또한, 제어부(110)는 수질 측정 장치(100)와 딥러닝 서버(200)가 통신 가능하게 연결되어 있는지 확인하고(S150), 연결이 차단된 경우 사용자에게 수질 판단 결과를 시각적으로 인식 가능한 형태로 제공한다(S160).In addition, the control unit 110 checks whether the water quality measurement device 100 and the deep learning server 200 are communicatively connected (S150), and when the connection is blocked, the water quality determination result is visually recognizable to the user. provided (S160).
수질 판단 결과는 알림부(140)를 통해 사용자에게 제공되거나, 사용자 단말(300)을 통해 사용자에게 제공될 수 있다.The water quality determination result may be provided to the user through the notification unit 140 or may be provided to the user through the user terminal 300 .
딥러닝 서버(200)와 수질 측정 장치(100)가 통신 가능하게 연결된 경우, 제어부(110)는 영상 정보, 제어부(110)에서 분석 및 판단된 정보를 전처리한다(S170).When the deep learning server 200 and the water quality measurement device 100 are communicatively connected, the control unit 110 pre-processes image information and information analyzed and determined by the control unit 110 (S170).
또한, 제어부(110)는 전처리된 정보를 통신부(160)를 통해 딥러닝 서버(200)로 송신한다(S180).In addition, the control unit 110 transmits the pre-processed information to the deep learning server 200 through the communication unit 160 (S180).
도 6을 참조하면, 딥러닝 서버(200)의 작동과정의 구체적인 흐름(S200)이 도시된다.Referring to FIG. 6 , a detailed flow S200 of the operation process of the deep learning server 200 is shown.
먼저, 딥러닝 서버(200)가 수질 측정 장치로부터 전처리된 데이터를 수신한다(S210). First, the deep learning server 200 receives the pre-processed data from the water quality measurement device (S210).
데이터가 수신되면, 딥러닝 서버(200)는 전처리된 데이터가 어떤 유형의 데이터인지 판단한다(S220).When data is received, the deep learning server 200 determines what type of data the preprocessed data is (S220).
탁도 또는 pH에 대한 데이터인 경우, 딥러닝 서버(200)는 CNN알고리즘에 기초하여 이를 2차적으로 분석한다(S224). 또한, 부유물에 대한 데이터인 경우, 딥러닝 서버(200)는 RNN알고리즘에 기초하여 이를 2차적으로 분석한다(S226).In the case of turbidity or pH data, the deep learning server 200 secondaryly analyzes it based on the CNN algorithm (S224). In addition, in the case of floating data, the deep learning server 200 secondaryly analyzes it based on the RNN algorithm (S226).
분석이 완료되면, 딥러닝 서버(200)는 분석된 데이터를 기초로 학습 데이터를 생성하고, 이를 이용하여 알고리즘을 수정한다(S228). 즉, 학습 데이터에 기초하여 딥러닝 서버(200)가 학습된다. When the analysis is completed, the deep learning server 200 generates training data based on the analyzed data, and uses this to revise the algorithm (S228). That is, the deep learning server 200 is learned based on the learning data.
딥러닝 서버(200)의 학습이 완료되면, 학습 정보를 기초로 수질 측정 장치(100)의 머신 러닝 모듈(111)이 업데이트 된다(S230). When the learning of the deep learning server 200 is completed, the machine learning module 111 of the water quality measuring apparatus 100 is updated based on the learning information (S230).
또한, 딥러닝 서버(200)는 2차 분석 결과에 기초하여 수질을 판단한 후 이를 사용자에게 제공한다(S240). 수질 판단의 결과는 사용자 단말(300)을 통해 사용자에게 제공될 수 있다.In addition, the deep learning server 200 determines the water quality based on the secondary analysis result and provides it to the user (S240). The water quality determination result may be provided to the user through the user terminal 300 .
도 7을 참조하면, 수질 측정 장치(100) 및 딥러닝 서버(200)의 작동과정의 구체적인 흐름이 도시된다. Referring to FIG. 7 , a detailed flow of the operation process of the water quality measuring device 100 and the deep learning server 200 is shown.
도 8을 참조하면, RNN 분석 모듈(2112)에 의한 분류방법의 일 예가 도시된다. Referring to FIG. 8 , an example of a classification method by the RNN analysis module 2112 is illustrated.
도시된 실시 예에서, RNN 분석 모듈(2112)은 영상에서 부유물을 추출한 후(S2261), 부유물의 양끝 지점 및 상기 양끝 지점의 중간 지점을 설정한다(S2262). In the illustrated embodiment, the RNN analysis module 2112 extracts a floating object from the image (S2261), and sets both ends of the floating object and a midpoint between the two end points (S2262).
양끝 지점 및 중간 지점이 설정되면, RNN 분석 모듈(2112)이 양끝 지점의 벡터가 동일 또는 반대 방향으로 동시에 증감되는지 여부를 판단한다(S2263).When both end points and the midpoint are set, the RNN analysis module 2112 determines whether the vectors of both end points are simultaneously increased or decreased in the same or opposite directions (S2263).
양끝 지점의 벡터가 동일 또는 반대방향으로 동시에 증감되는 경우, RNN 분석 모듈(2112)이 중간 지점의 벡터가 변화되는지 여부를 판단한다(S2264). 중간 지점의 벡터가 변화되는 경우, 추출된 부유물은 살아있는 유충으로 분류될 수 있다(S2267). 반면, 중간 지점의 벡터가 변화되지 않는 경우, 추출된 부유물은 슬러지로 분류될 수 있다(S2268). When the vectors at both ends are simultaneously increased or decreased in the same or opposite directions, the RNN analysis module 2112 determines whether the vectors at the midpoints are changed ( S2264 ). When the vector of the intermediate point is changed, the extracted float may be classified as a living larva (S2267). On the other hand, when the vector of the intermediate point does not change, the extracted suspended matter may be classified as sludge (S2268).
양끝 지점의 벡터가 동일 또는 반대방향으로 동시에 증감되지 않는 경우, RNN 분석 모듈(2112)이 양끝 지점 사이의 거리가 기 설정된 길이 이상인지 판단한다(S2265). 예를 들어, 기 설정된 길이는 3mm일 수 있다. 양끝 지점 사이의 거리가 기 설정된 길이 미만인 경우, 추출된 부유물은 슬러지로 분류될 수 있다(S2268). When the vectors of both end points are not simultaneously increased or decreased in the same or opposite directions, the RNN analysis module 2112 determines whether the distance between the both end points is equal to or greater than a preset length (S2265). For example, the preset length may be 3 mm. When the distance between the two ends is less than a preset length, the extracted floating matter may be classified as sludge (S2268).
양끝 지점 사이의 거리가 기 설정된 길이 이상인 경우, RNN 분석 모듈(2112)이 양끝 지점의 벡터가 동일한 방향을 향하는지 판단한다(S2266). 동일한 방향을 향하지 않는 경우, 추출된 부유물은 슬러지로 분류될 수 있다(S2268). 반면에, 동일한 방향을 향하는 경우, 추출된 부유물은 죽어있는 유충으로 분류될 수 있다(S2269).When the distance between the two end points is equal to or greater than a preset length, the RNN analysis module 2112 determines whether the vectors of both end points point in the same direction (S2266). If they do not face the same direction, the extracted suspended matter may be classified as sludge (S2268). On the other hand, when facing the same direction, the extracted float may be classified as a dead larva (S2269).
본 발명의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수도 있다.The steps of a method or algorithm described in connection with an embodiment of the present invention may be implemented directly in hardware, as a software module executed by hardware, or by a combination thereof. A software module may include random access memory (RAM), read only memory (ROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, hard disk, removable disk, CD-ROM, or It may reside in any type of computer-readable recording medium well known in the art to which the present invention pertains.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다. In the above, embodiments of the present invention have been described with reference to the accompanying drawings, but those of ordinary skill in the art to which the present invention pertains can realize that the present invention can be embodied in other specific forms without changing the technical spirit or essential features thereof. you will be able to understand Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
[부호의 설명][Explanation of code]
100: 수질 측정 장치100: water quality measurement device
110: 제어부110: control unit
111: 머신러닝 모듈111: machine learning module
1111: 탁도 분석 유닛1111: turbidity analysis unit
1112: pH 분석 유닛1112: pH analysis unit
1113: 부유물 분석 유닛1113: floating material analysis unit
112: 전처리 모듈112: preprocessing module
113: 모드 전환 모듈113: mode switching module
114: 수질 판단 모듈114: water quality judgment module
120: 영상 촬영부120: video recording unit
130: 유동감지센서130: flow detection sensor
140: 알림부140: notification unit
150: 데이터베이스부150: database unit
160: 통신부160: communication department
170: 전력 공급부170: power supply
180: 발전부180: power generation unit
200: 딥러닝 서버200: deep learning server
210: 제어부210: control unit
211: 딥러닝 모듈211: deep learning module
2111: CNN 분석 유닛2111: CNN analysis unit
2112: RNN 분석 유닛2112: RNN analysis unit
2113: 학습 데이터 생성 유닛2113: training data generating unit
212: 업데이트 모듈212: update module
213: 수질 판단 모듈213: water quality determination module
220: 통신부220: communication department
230: 데이터베이스부230: database unit

Claims (9)

  1. 내부 공간에 유동하는 유체의 수질을 측정할 수 있도록 구성되고, 딥러닝 서버와 통신 가능한 수질 측정 장치로서, As a water quality measuring device configured to measure the water quality of a fluid flowing in the internal space and capable of communicating with a deep learning server,
    상기 수질 측정 장치는, The water quality measurement device,
    상기 딥러닝 서버와 통신을 수행하는 통신부;a communication unit configured to communicate with the deep learning server;
    내부에 유동하는 유체의 영상을 촬영하는 영상 촬영부; 및an image capturing unit for capturing an image of a fluid flowing therein; and
    기 학습된 머신러닝 알고리즘에 기초하여, 상기 영상 촬영부를 통해 촬영된 영상으로부터 상기 유체의 탁도, pH 및 부유물 중 적어도 하나에 대한 정보를 취득하는 제어부;를 포함하고, A control unit for acquiring information on at least one of turbidity, pH, and floating matter of the fluid from the image captured through the image capturing unit based on a previously learned machine learning algorithm;
    상기 제어부는, The control unit is
    상기 탁도, pH 및 부유물 중 적어도 하나에 대한 정보에 기초하여 수질을 판단하고,Determining the water quality based on the information on at least one of the turbidity, pH and suspended matter,
    상기 탁도, pH 및 부유물 중 적어도 하나에 대한 정보가 상기 딥러닝 서버로 송신되도록 상기 통신부를 제어하며,Controls the communication unit so that information on at least one of the turbidity, pH, and float is transmitted to the deep learning server,
    상기 통신부를 통해 상기 딥러닝 서버로부터 수신된 학습 정보에 기초하여 상기 머신러닝 알고리즘을 업데이트하는, Updating the machine learning algorithm based on the learning information received from the deep learning server through the communication unit,
    수질 측정 장치. Water quality measuring device.
  2. 제1항에 있어서,According to claim 1,
    상기 내부 공간에서의 유체의 유동을 감지하는 유동감지센서;를 더 포함하고, Further comprising; a flow sensor for detecting the flow of the fluid in the inner space;
    상기 제어부는,The control unit is
    상기 유동감지센서를 통해 상기 유체의 유동이 감지되지 않은 경우, 상기 수질 측정 장치가 저전력 모드로 전환되도록 제어하는,When the flow of the fluid is not detected through the flow sensor, controlling the water quality measuring device to switch to a low power mode,
    수질 측정 장치.Water quality measuring device.
  3. 제1항에 있어서,According to claim 1,
    상기 제어부는,The control unit is
    상기 딥러닝 서버와의 연결이 차단된 경우, 상기 판단된 수질에 대한 정보가 외부의 사용자 단말에 송신되도록 상기 통신부를 제어하는,When the connection with the deep learning server is blocked, controlling the communication unit to transmit information on the determined water quality to an external user terminal,
    수질 측정 장치. Water quality measuring device.
  4. 제1항에 있어서,According to claim 1,
    사용자에게 시각적으로 인식 가능한 형태의 위험 신호를 제공하는 알림부를 더 포함하고,Further comprising a notification unit that provides a visually recognizable danger signal to the user,
    상기 제어부는,The control unit is
    상기 판단된 수질이 기 설정된 기준 수질보다 낮은 경우, 상기 판단된 수질이 위험함을 나타내는 정보가 상기 알림부 상에 표시되도록 제어하는, When the determined water quality is lower than a preset reference water quality, controlling information indicating that the determined water quality is dangerous to be displayed on the notification unit,
    수질 측정 장치. Water quality measuring device.
  5. 제1항에 있어서,According to claim 1,
    유동하는 유체의 운동에너지를 전기에너지로 변환하여 상기 수질 측정 장치에 상기 전기에너지를 공급하도록 구성되는 발전부를 더 포함하는,Further comprising a power generation unit configured to convert the kinetic energy of the flowing fluid into electrical energy to supply the electrical energy to the water quality measuring device,
    수질 측정 장치.Water quality measuring device.
  6. 제1항 내지 제5항 중 어느 한 항에 따른 수질 측정 장치; 및 The water quality measuring device according to any one of claims 1 to 5; and
    상기 수질 측정 장치와 통전 가능하게 연결되는 딥러닝 서버를 포함하고,상기 딥러닝 서버는,A deep learning server operably connected to the water quality measurement device, wherein the deep learning server,
    CNN(Convolutional Neural Network) 알고리즘에 기초하여, 상기 탁도 및 pH 중 적어도 하나에 대한 정보를 분석하고, Based on a CNN (Convolutional Neural Network) algorithm, analyzing information about at least one of the turbidity and pH,
    RNN(Recurrent Nueral Network) 알고리즘에 기초하여, 상기 부유물에 대한 정보를 분석하며,Based on the RNN (Recurrent Nueral Network) algorithm, the information on the floating object is analyzed,
    상기 분석된 적어도 하나의 정보 및 상기 부유물에 대한 정보에 기반한 학습 데이터를 생성하여 학습하고, To learn by generating learning data based on the analyzed at least one information and information on the floating object,
    상기 학습 정보는 상기 학습 데이터에 의해 상기 딥러닝 서버가 학습된 정보인, The learning information is information learned by the deep learning server by the learning data,
    수질 측정 시스템. Water quality measurement system.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 딥러닝 서버는, 상기 분석된 적어도 하나의 정보 및 상기 부유물에 대한 정보에 기반하여 수질을 판단하고, 상기 수질 측정 장치와 통신 연결이 유지되는 경우, 상기 판단된 수질에 대한 정보를 사용자 단말로 전송하며,The deep learning server determines the water quality based on the analyzed at least one piece of information and information on the floating matter, and when the communication connection with the water quality measuring device is maintained, the determined information on the water quality to the user terminal transmit,
    상기 수질 측정 장치는, 상기 수질 측정 장치와 통신 연결이 차단된 경우, 상기 탁도, pH 및 부유물 중 적어도 하나에 대한 정보에 기초하여 판단된 수질에 대한 정보를 사용자 단말로 전송하는,The water quality measuring device, when the communication connection with the water quality measuring device is cut off, transmitting information about the water quality determined based on information on at least one of the turbidity, pH, and floating matter to the user terminal,
    수질 측정 시스템.Water quality measurement system.
  8. 제6항에 있어서,7. The method of claim 6,
    상기 RNN(Recurrent Nueral Network) 알고리즘은 인식된 부유물의 양끝 지점 및 상기 양끝 지점의 중간 지점의 벡터 정보에 기반하는 알고리즘인,The RNN (Recurrent Nueral Network) algorithm is an algorithm based on vector information of both ends of the recognized floating object and the midpoint between the two ends,
    수질 측정 시스템.Water quality measurement system.
  9. 제6항에 있어서,7. The method of claim 6,
    상기 딥러닝 서버는 상기 학습 정보를 기 설정된 시간간격으로 상기 수질 측정 장치에 송신하는, The deep learning server transmits the learning information to the water quality measurement device at preset time intervals,
    수질 측정 시스템. Water quality measurement system.
PCT/KR2020/017970 2020-07-28 2020-12-09 Apparatus and system for measuring water quality on basis of ai learning scheme and floating matter vector information WO2022025360A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200093751 2020-07-28
KR10-2020-0093751 2020-07-28
KR1020200115819A KR102467523B1 (en) 2020-07-28 2020-09-10 Water quality measuring device and system based on ai learning method and floating object vector information
KR10-2020-0115819 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022025360A1 true WO2022025360A1 (en) 2022-02-03

Family

ID=80035594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017970 WO2022025360A1 (en) 2020-07-28 2020-12-09 Apparatus and system for measuring water quality on basis of ai learning scheme and floating matter vector information

Country Status (1)

Country Link
WO (1) WO2022025360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116206426A (en) * 2023-05-06 2023-06-02 长春市城建维护集团股份有限公司 Mobile water level monitoring alarm system based on Internet of things

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052697A (en) * 2003-08-06 2005-03-03 Hitachi Ltd Water quality monitoring system
KR101405027B1 (en) * 2013-12-12 2014-06-12 파워테크주식회사 Method for remote water quality management of facility
KR101761540B1 (en) * 2017-04-28 2017-08-04 (주)큰나무 small scale hydropower
KR20170112404A (en) * 2016-03-31 2017-10-12 광주과학기술원 Method for predicting concentration of pathogenic microorganism using remote sensing hiperspectral images
JP2019175409A (en) * 2018-03-30 2019-10-10 国立大学法人横浜国立大学 Operation control device and operation control method of water treatment facility
KR20200071857A (en) * 2018-12-05 2020-06-22 이규진 Device and system for monitoring water quality based on IoT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052697A (en) * 2003-08-06 2005-03-03 Hitachi Ltd Water quality monitoring system
KR101405027B1 (en) * 2013-12-12 2014-06-12 파워테크주식회사 Method for remote water quality management of facility
KR20170112404A (en) * 2016-03-31 2017-10-12 광주과학기술원 Method for predicting concentration of pathogenic microorganism using remote sensing hiperspectral images
KR101761540B1 (en) * 2017-04-28 2017-08-04 (주)큰나무 small scale hydropower
JP2019175409A (en) * 2018-03-30 2019-10-10 国立大学法人横浜国立大学 Operation control device and operation control method of water treatment facility
KR20200071857A (en) * 2018-12-05 2020-06-22 이규진 Device and system for monitoring water quality based on IoT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116206426A (en) * 2023-05-06 2023-06-02 长春市城建维护集团股份有限公司 Mobile water level monitoring alarm system based on Internet of things
CN116206426B (en) * 2023-05-06 2023-07-07 长春市城建维护集团股份有限公司 Mobile water level monitoring alarm system based on Internet of things

Similar Documents

Publication Publication Date Title
WO2017007229A1 (en) Automatic water supply device
WO2019151735A1 (en) Vision inspection management method and vision inspection system
WO2015122677A1 (en) Device and method for opening trunk of car, and recording medium for recording program for executing method
WO2022025360A1 (en) Apparatus and system for measuring water quality on basis of ai learning scheme and floating matter vector information
WO2021006556A1 (en) Moving robot and control method thereof
WO2014175605A1 (en) Cleaning robot, home monitoring apparatus, and method for controlling the cleaning robot
WO2013147501A1 (en) Motion gesture sensing module and motion gesture sensing method
WO2021020917A1 (en) Artificial intelligence robot cleaner, and robot system including same
WO2018230864A2 (en) Method for sensing depth of object by considering external light and device implementing same
WO2015182938A1 (en) Communication device and lighting device comprising same
WO2019143129A1 (en) Robotic cleaner and control method therefor
WO2020091505A1 (en) Electronic device and method for intelligent interaction thereof
WO2012002742A2 (en) Camera module and method for driving the same
WO2020004837A1 (en) Automatic polarization control device and method
WO2021256677A1 (en) Electronic apparatus and controlling method thereof
WO2019225854A1 (en) Diaper having urine and feces sensing function, excretion sensing sheet for diaper, and excretion sensing device
WO2021029606A1 (en) Blender
WO2021006671A1 (en) Mobile robot using artificial intelligence and control method thereof
WO2021029608A1 (en) Blender
WO2020222321A1 (en) Swimming robot, and display device for charging same
WO2019231203A1 (en) Oil detecting device for compressor and compressor including same
WO2021215688A1 (en) Robot cleaner and controlling method thereof
WO2016190622A1 (en) Monitoring system for automatically setting and automatically cutting off standby current of outlet due to insertion of plug and control method therefor, plug insertion detecting unit, and usb plug insertion detection module
WO2021150093A1 (en) Display apparatus and method of controlling the same
WO2023282574A1 (en) Ipl sterilization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20946946

Country of ref document: EP

Kind code of ref document: A1