WO2022025228A1 - 複合体に含まれる薬物の純度評価方法及び複合体の製造方法 - Google Patents

複合体に含まれる薬物の純度評価方法及び複合体の製造方法 Download PDF

Info

Publication number
WO2022025228A1
WO2022025228A1 PCT/JP2021/028274 JP2021028274W WO2022025228A1 WO 2022025228 A1 WO2022025228 A1 WO 2022025228A1 JP 2021028274 W JP2021028274 W JP 2021028274W WO 2022025228 A1 WO2022025228 A1 WO 2022025228A1
Authority
WO
WIPO (PCT)
Prior art keywords
purity
methanol
general formula
thp
drug
Prior art date
Application number
PCT/JP2021/028274
Other languages
English (en)
French (fr)
Inventor
翼 岡野
識史 氏家
Original Assignee
東レ株式会社
一般財団法人バイオダイナミックス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社, 一般財団法人バイオダイナミックス研究所 filed Critical 東レ株式会社
Priority to US18/017,685 priority Critical patent/US20230322976A1/en
Priority to CN202180032055.9A priority patent/CN115552235A/zh
Priority to KR1020237001379A priority patent/KR20230043822A/ko
Priority to EP21850270.6A priority patent/EP4190824A1/en
Priority to CA3189814A priority patent/CA3189814A1/en
Priority to JP2021545451A priority patent/JPWO2022025228A1/ja
Priority to BR112023000886A priority patent/BR112023000886A2/pt
Priority to AU2021317978A priority patent/AU2021317978A1/en
Publication of WO2022025228A1 publication Critical patent/WO2022025228A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample

Definitions

  • the present invention relates to a method for evaluating the purity of a drug contained in a complex and a method for producing the complex.
  • THP pirarubicin
  • N- (2-hydroxypropyl) methacrylamide polymer which is one of the biocompatible polymer compounds
  • Non-Patent Document 1 a method of reacting THP with an N- (2-hydroxypropyl) methacrylamide polymer in the presence of acetic acid is disclosed.
  • Non-Patent Document 2 A method of adding hydrochloric acid to a mixture and hydrolyzing it is disclosed (Non-Patent Document 2).
  • the purity of DOX hydrochloride described in the Japanese Pharmacopoeia is defined to show a titer of 98.0 to 108.0% by a quantitative method.
  • a complex such as P-THP
  • the active drug body active molecular ingredient
  • a polymer compound eg, polymer
  • a direct active drug using the complex is used. It is technically difficult to evaluate the purity of the main body. Therefore, in order to evaluate the purity of the active drug body, it is necessary to release the active drug body from the complex.
  • THP is released from P-THP by the method described in Non-Patent Document 2
  • THP is decomposed into DOX and other decomposition products together with the release of THP, so that the purity of the active drug body contained in the complex is reduced.
  • the purity of the active drug body contained in the complex that is, the purity of the active drug body bound to the polymer compound is also referred to as "bound drug purity". .
  • the bound drug purity was evaluated for the P-THP produced by the method described in Non-Patent Document 1 by the purity evaluation method of the present invention described later, the P-THP was found in the THP purity standard (95. It was newly found that the P-THP produced by the conventional method, which does not satisfy (0% or more), has a problem in the purity of the bound drug.
  • an object of the present invention is to provide a method capable of evaluating the purity of the active drug body contained in the complex. Furthermore, an object of the present invention is to provide a method for producing an anthracycline-based drug-containing complex having a drug purity of 95.0% or more evaluated by the purity evaluation method of the present invention.
  • the present inventors have reacted a predetermined nitrogen-containing nucleophile with a complex having a hydrazone bond in a polar solvent in the presence of a protonic acid, and anthracycline.
  • a system drug By converting the system drug into a stable drug equivalent, it is possible to evaluate the purity of the bound drug, and further, the N- (2-hydroxypropyl) methacrylicamide polymer is present in the anthracycline system drug in a polar solvent with a protonic acid.
  • a high-purity composite can be produced by reacting under 10 ° C. or lower, and completed the present invention.
  • the present invention provides the following.
  • the complex represented by the general formula (I) or a pharmaceutically acceptable salt thereof contains at least one nitrogen-containing substance selected from the group consisting of hydroxylamine, O-alkylhydroxylamine and carboxylic acid hydrazide.
  • a reaction step in which the nucleophile is reacted in the presence of protonic acid An evaluation step of evaluating the purity of the reaction mixture obtained in the reaction step by high performance liquid chromatography, and an evaluation step of evaluating the purity of the reaction mixture.
  • A represents a hydrogen atom or (R) -tetrahydro-2H-pyran-2-yl group
  • b, c, d and e each independently represent a positive integer and are described by wavy lines.
  • the resulting bond indicates that either the E-form or the Z-form can be arranged.
  • the polar solvent is an alcohol solvent and is
  • the nitrogen-containing nucleophile is at least one selected from the group consisting of hydroxylamine and carboxylic acid hydrazide. The method according to [1], wherein the protonic acid is a carboxylic acid.
  • the polar solvent is methanol
  • the nitrogen-containing nucleophile is at least one selected from the group consisting of hydroxylamine, acetohydrazide, propanohydrazide, butyrohydrazide and 3-methylbutanohydrazide.
  • b is an integer of 1 to 10
  • c is an integer of 30 to 500
  • d is an integer of 1 to 50
  • e is an integer of 1 to 50.
  • A represents a hydrogen atom or (R) -tetrahydro-2H-pyran-2-yl group
  • b, c, d and e each independently represent a positive integer and are described by wavy lines.
  • the resulting bond indicates that either the E-form or the Z-form can be arranged.
  • A is a (R) -tetrahydro-2H-pyran-2-yl group
  • b is 5, the complex according to [5] or a pharmacologically acceptable salt thereof.
  • the anthracycline drug represented by the general formula (II) is reacted with the N- (2-hydroxypropyl) methacrylamide polymer represented by the general formula (III) at 10 ° C. or lower in the presence of a protonic acid.
  • A represents a hydrogen atom or (R) -tetrahydro-2H-pyran-2-yl group
  • b, c, d, e and f each independently represent a positive integer
  • the coupling described by the wavy line can be arranged in either the E-form or the Z-form.
  • the polar solvent is methanol
  • the protonic acid is acetic acid
  • b is an integer of 1 to 10
  • c is an integer of 30 to 500
  • d is an integer of 1 to 50
  • e is an integer of 1 to 50.
  • the method according to [7] or [8], which is an integer of 1 to 50 and f is the sum of d and e.
  • A represents a hydrogen atom or (R) -tetrahydro-2H-pyran-2-yl group
  • b, c, d and e each independently represent a positive integer and are described by wavy lines.
  • the resulting bond indicates that either the E-form or the Z-form can be arranged.
  • wavy line when a wavy line is included in a certain chemical formula, it means that the wavy line can take any arrangement of E-form and Z-form, and the compound is E-form. It may be alone, Z-form alone, or a mixture of E-form and Z-form.
  • A is preferably a (R) -tetrahydro-2H-pyran-2-yl group.
  • b, c, d and e are not particularly limited as long as they are positive integers, but b is an integer of 1 to 10 (for example, 5) and c is 30 to 500, particularly 50 to 500. It is preferable that d is an integer of 1 to 50 and e is an integer of 1 to 50.
  • the "complex” means that an anthracycline drug represented by the general formula (II) and an N- (2-hydroxypropyl) methacrylamide polymer represented by the general formula (III) are bound via a hydrazone bond.
  • the anthracycline-based drug-containing complex represented by the general formula (II) means the active ingredient of the complex.
  • the anthracycline drug represented by the general formula (II) means THP or DOX, and the THP and the N- (2-hydroxypropyl) methacrylamide polymer represented by the general formula (III) form a hydrazone bond.
  • a drug bound via a hydrazone bond means P-THP, and a drug in which DOX and an N- (2-hydroxypropyl) methacrylamide polymer represented by the general formula (III) are bound via a hydrazone bond is P-.
  • A represents a hydrogen atom or a (R) -tetrahydro-2H-pyran-2-yl group.
  • a drug contained in a complex represented by the general formula (I) hereinafter, complex (I) or a pharmacologically acceptable salt thereof
  • complex (I) means the above-mentioned complex or its pharmacology.
  • an anthracycline drug contained in a generally acceptable salt means the above-mentioned complex or its pharmacology.
  • bound drug purity means the estimated purity of the drug contained in the complex (I), and is based on a high performance liquid chromatography (hereinafter, HPLC) chromatogram obtained according to the following method.
  • HPLC high performance liquid chromatography
  • it means the area percentage of the peak to be measured when the area of all peaks excluding blank peaks is 100%.
  • the blank peak means a peak detected when methanol is measured under the following HPLC measurement conditions.
  • the peak to be measured differs depending on the type of anthracycline drug and the type of nitrogen-containing nucleophile, but means the peak of the equivalent of the anthracycline drug based on the molecular weight, and under the following analytical conditions.
  • the sum of the area percentages of the peaks of each isomer is taken as the area percentage of the peak to be measured.
  • the following description exemplifies the case where hydroxylamine is used as the nitrogen-containing nucleophile, methanol is used as the polar solvent, and acetic acid is used as the protic acid. May be.
  • the O-alkylhydroxylamine in the purity evaluation method according to the present invention is preferably an alkyl group having 1 to 4 carbon atoms.
  • Preferred examples include O-methylhydroxylamine, O-ethylhydroxylamine or O-propylhydroxylamine, but from the viewpoint of suppressing side reactions, O-methylhydroxylamine or O-ethylhydroxylamine is preferable, and O-ethylhydroxylamine is preferable. Methylhydroxylamine is more preferred.
  • the O-alkylhydroxylamine used in the present invention may be a single compound or may be used in combination of two or more kinds of compounds.
  • Examples of the carboxylic acid hydrazide in the purity evaluation method according to the present invention include form hydrazide, acetohydrazide, propanohydrazide, butyrohydrazide, 3-methylbutanohydrazide, 2,2-dimethylpropanohydrazide and cyclohexanecarbo. Hydrazide or adamantan-1-carbohydrazide may be mentioned, but at least one selected from the group consisting of acetohydrazide, propanohydrazide, butyrohydrazide and 3-methylbutanohydrazide is preferable from the viewpoint of suppressing side reactions. Acethydrazide is more preferred.
  • the carboxylic acid hydrazide used in the present invention may be a single compound or may be used in combination of two or more kinds of compounds.
  • At least one selected from the group consisting of hydroxylamine and carboxylic acid hydrazide is preferable, and from the group consisting of hydroxylamine, acetohydrazide, propanohydrazide, butyrohydrazide and 3-methylbutanohydrazide. At least one selected is more preferred, and at least one selected from the group consisting of hydroxylamine and acetohydrazide is even more preferred.
  • the drug When the drug is released from the complex using the above nitrogen-containing nucleophile, the drug is converted to the corresponding drug equivalent and released. Since the released drug equivalent is excellent in stability under reaction conditions, this method is suitable as a method for evaluating the purity of bound drug.
  • drug equivalent means an anthracycline drug equivalent represented by the following general formula (IV) or general formula (V).
  • A represents a hydrogen atom or (R) -tetrahydro-2H-pyran-2-yl group
  • G represents a hydrogen atom or an alkyl group and is represented by a wavy line.
  • the binding means that either the E-form or the Z-form can be arranged.
  • G is not particularly limited in the number of carbon atoms as long as it is an alkyl group, and may be linear, branched or cyclic.
  • the alkyl group include an alkyl group having 1 to 10 carbon atoms (for example, a methyl group, an ethyl group, a propyl group and an adamantyl group) and an alkyl group having 1 to 4 carbon atoms (for example, a methyl group, an ethyl group and a propyl group). Group).
  • anthracycline drug equivalent represented by the general formula (IV) or the general formula (V) may be represented by any of the following formulas.
  • the protonic acid in the purity evaluation method according to the present invention includes, for example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid or benzoic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid
  • formic acid acetic acid, propionic acid, butyric acid, valeric acid, caproic acid or benzoic acid.
  • carboxylic acids such as methanesulfonic acid, sulfonic acid such as methanesulfonic acid or p-toluenesulfonic acid, and ascorbic acid, but from the viewpoint of acidity, carboxylic acid is preferable, and acetic acid is more preferable.
  • the protonic acid used may be a single compound or may be used in combination of two or more kinds of compounds.
  • the amount of the nitrogen-containing nucleophile used is preferably 0.1 to 100 times the weight of the complex, preferably 0.5 to 100, from the viewpoint of obtaining a sufficient reaction conversion rate and suppressing side reactions. A 50x weight is more preferred.
  • the amount of protonic acid used is preferably 0.1 to 100 times the weight of the complex, and 0.5 to 50 times the weight, from the viewpoint of obtaining a sufficient reaction conversion rate and suppressing side reactions. Is more preferable.
  • the polar solvent in the drug purity evaluation method according to the present invention includes, for example, an ether solvent such as tetrahydrofuran or dimethoxyethane, a nitrile solvent such as acetonitrile or propionitrile, N, N-dimethylformamide, N, N-.
  • ether solvent such as tetrahydrofuran or dimethoxyethane
  • nitrile solvent such as acetonitrile or propionitrile
  • N, N-dimethylformamide N, N-.
  • Amido-based solvent such as dimethylacetamide or N-methylpyrrolidone
  • sulfoxide-based solvent such as dimethylsulfoxide
  • urea-based solvent such as 1,3-dimethyl-2-imidazolidinone
  • alcohol-based solvent such as methanol, ethanol or 2-propanol.
  • a mixed solvent thereof may be mentioned, but from the viewpoint of dissolving the complex, an alcohol solvent such as methanol, ethanol or 2-propanol is preferable, and methanol is more preferable.
  • the amount of the solvent used is preferably 3 to 100 times the weight of the complex, more preferably 5 to 20 times the weight, from the viewpoint of suppressing side reactions.
  • a preferred embodiment of a nitrogen-containing nucleophile, a preferred embodiment of a protonic acid, and a preferred embodiment of a polar solvent can be arbitrarily combined.
  • the combination include hydroxylamine, carboxylic acid and alcohol solvent, O-alkyl hydroxylamine and carboxylic acid and alcohol solvent, or carboxylic acid hydrazide, carboxylic acid and alcohol solvent, and hydroxylamine, acetic acid and methanol.
  • Acethydrazide and acetic acid and methanol is suitable.
  • propanohydrazide and acetic acid and methanol is suitable.
  • butyrohydrazide and acetic acid and methanol is suitable.
  • the nitrogen-containing nucleophile, the protonic acid and the polar solvent may be labeled with a radioactive isotope or may be a deuterium converter.
  • the reaction temperature in the reaction step in the purity evaluation method according to the present invention is preferably ⁇ 10 ° C. to 30 ° C., more preferably ⁇ 5 ° C. to 5 ° C. from the viewpoint of suppressing side reactions.
  • the reaction time can be appropriately selected depending on conditions such as the reaction temperature, but is preferably 1 to 40 hours, more preferably 3 to 30 hours from the viewpoint of suppressing side reactions.
  • A represents a hydrogen atom or (R) -tetrahydro-2H-pyran-2-yl group
  • b, c, d and e each independently represent a positive integer and are described by wavy lines.
  • the resulting bond indicates that either the E-form or the Z-form can be arranged.
  • A is preferably a (R) -tetrahydro-2H-pyran-2-yl group.
  • b, c, d and e are not particularly limited as long as they are positive integers, but b is an integer of 1 to 10 (for example, 5) and c is 30 to 500, particularly 50 to 500. It is preferable that d is an integer of 1 to 50 and e is an integer of 1 to 50.
  • the complex represented by the general formula (I) or a pharmacologically acceptable salt thereof may be represented by the following general formula (I').
  • c, d and e are not particularly limited as long as they are positive integers, but c is an integer of 30 to 500, particularly 50 to 500, and d is an integer of 1 to 50. It is an integer, and e is preferably an integer of 1 to 50.
  • the pharmacologically acceptable salt of the complex represented by the above general formula (I) includes, for example, an inorganic acid salt such as a hydrochloride, a sulfate, a phosphate or a hydrobromide, or a shu. Acid, malonate, citrate, fumarate, lactate, malate, succinate, tartrate, acetate, trifluoroacetate, maleate, gluconate, benzoate, salicylic acid Examples thereof include organic acid salts such as salts, xinafoate, pamoate, ascorbate, adipate, methanesulfonate, p-toluenesulfonate or silicate. In addition, their salts may form hydrates, solvates or polymorphs.
  • an inorganic acid salt such as a hydrochloride, a sulfate, a phosphate or a hydrobromide, or a shu.
  • complex (I) or a pharmacologically acceptable salt thereof may be labeled with a radioisotope or may be a deuterium converter.
  • the complex (I) or a pharmacologically acceptable salt thereof also includes their hydrates, solvates, polymorphs, labels and mixtures thereof.
  • the bound drug purity of the complex (I) according to the present invention or a pharmacologically acceptable salt thereof is used in the method for evaluating the purity of the drug contained in the complex from the viewpoint of conforming to the THP purity standard described in the Japanese Pharmacopoeia. When evaluated by the same method as described, it is 95.0% or more, preferably 96.0% or more, and more preferably 97.0% or more. Considering the viewpoint according to the purity standard of DOX hydrochloride described in the Japanese Pharmacopoeia, 98.0% or more is preferable.
  • the purity of the bound drug is preferably close to 100%, and the purity of the bound drug is up to 99.5% by the production method of the present invention described later.
  • the purity of THP is determined by the Japanese Pharmacopoeia to show a titer of 95.0% or more by a quantitative method, and high-purity pharmaceutical products are considered to be preferable in terms of quality.
  • the anthracycline drug released from the complex exerts its medicinal effect, so that the purity of the drug contained in the complex, that is, the purity of the bound drug corresponds to the purity of a general drug.
  • Evaluation of bound drug purity is very important for quality control of pharmaceutical products.
  • the bound drug purity is high in terms of quality control of the drug, and when THP is used as an anthracycline drug, it is necessary to satisfy at least the THP purity standard described in the Japanese Pharmacopoeia.
  • THP is used as an anthracycline drug
  • the amount of the complex (I) or a pharmacologically acceptable salt thereof that carries the bound drug is preferably 3 to 20 wt%, more preferably 4 to 19 wt%, still more preferably 7 to 17 wt%. ..
  • the amount of the complex (I) or its pharmacologically acceptable salt on which the bound drug is carried is preferably 4 to 20 wt%, more preferably 10 to 19 wt%, and 15 to 19 wt%. Is even more preferable.
  • the peak to be measured means the peak of the equivalent of the anthracycline drug based on the molecular weight, and when the peak of the isomer is separated under the above analysis conditions, the area of the peak of each isomer. The sum of the percentages is taken as the HPLC area value of the peak to be measured.
  • the weight average molecular weight of the complex (I) or its pharmacologically acceptable salt is preferably 25,000 to 85,000, more preferably 27,000 to 65,000, and even more preferably 30,000 to 50,000, from the viewpoint of safety.
  • weight average molecular weight means the molecular weight calculated according to the following method.
  • the preferred embodiment of the bound drug purity, the preferred embodiment of the bound drug carrying amount, and the preferred embodiment of the weight average molecular weight can be arbitrarily combined.
  • the combination for example, the complex (I) or its pharmacology having a bound drug purity of 95.0% or more, a bound drug-carrying amount of 3 to 20 wt%, and a weight average molecular weight of 25,000 to 85,000. Examples of which are acceptable salts.
  • Typical stability tests related to pharmaceutical products include severe tests, long-term storage tests, accelerated tests, etc.
  • severe tests of APIs are the identification and analysis of degradation products that may be produced from APIs. It is used for confirmation of suitability of the method, prediction of the stability of the drug substance, etc., and the rigorous test for 4 weeks under the airtight condition of 60 ° C corresponds to the stability prediction at the initial stage of development corresponding to the storage for 3 years under the airtight condition of 25 ° C. (Sumie Yoshioka, Pharmaceutical Stability, Nanedo, 1995, p. 142).
  • the complex (I) or a pharmacologically acceptable salt thereof having a bound drug purity of 95.0% or more when evaluated by the above purity evaluation method can be obtained by the following production method.
  • A represents a hydrogen atom or (R) -tetrahydro-2H-pyran-2-yl group
  • b, c, d, e and f each independently represent a positive integer, and the bond described by the wavy line represents that either the E-form or the Z-form can be arranged.
  • A is preferably a (R) -tetrahydro-2H-pyran-2-yl group.
  • b, c, d and e are not particularly limited as long as they are positive integers, but b is an integer of 1 to 10 (for example, 5) and c is 30 to 500, particularly 50 to 500. It is preferable that d is an integer of 1 to 50 and e is an integer of 1 to 50. Further, f is the sum of d and e.
  • the method for producing the complex (I) or a pharmacologically acceptable salt thereof according to the present invention has a combined drug purity of 95.0% or more, particularly when evaluated by the above-mentioned purity evaluation method. It can be used as a method for producing the body (I) or a pharmacologically acceptable salt thereof.
  • the amount of the above N- (2-hydroxypropyl) methacrylamide polymer used in the reaction step is the target amount of the bound drug carried.
  • the weight is preferably 1 to 30 times, more preferably 3 to 25 times, and further 3 to 15 times the weight of the anthracycline drug. preferable.
  • the protonic acid used in the reaction step includes, for example, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid or oxalic acid.
  • Malonic acid citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, maleic acid, gluconic acid, benzoic acid, salicylic acid, xinafoic acid, pamoic acid, ascorbic acid, adipic acid, methanesulfone
  • organic acids such as acids, p-toluenesulfonic acid and silicic acid, but from the viewpoint of acidity, organic acids are preferable, and acetic acid is more preferable.
  • the protonic acid used may be a single compound or may be used in combination of two or more kinds of compounds.
  • the amount of the protonic acid used in the reaction step is such that the anthracycline drug is used from the viewpoint of obtaining a sufficient reaction conversion rate.
  • An equivalent of 10 to 300 mol is preferable, and an equivalent of 20 to 200 mol is more preferable.
  • “molar equivalent” means the number of moles of protonic acid used per 1 mol of anthracycline drug.
  • the polar solvent used in the reaction step is, for example, an ether solvent such as tetrahydrofuran or dimethoxyethane, or a nitrile solvent such as acetonitrile or propionitrile.
  • the amount of the solvent used is preferably 10 to 200 times by weight, preferably 20 to 70 times the weight of the anthracycline drug, from the viewpoint that stirring can be easily carried out and the production efficiency per unit volume is improved. Weight is more preferred.
  • the reaction temperature in the reaction step is 10 ° C. or lower from the viewpoint of suppressing side reactions, and the production efficiency per unit time is improved. From the viewpoint of the temperature, ⁇ 30 ° C. to 10 ° C., particularly preferably ⁇ 30 ° C. to 5 ° C.
  • the reaction time can be appropriately selected depending on the conditions such as the reaction temperature, but is preferably 1 to 300 hours, more preferably 10 to 150 hours from the viewpoint of improving the production efficiency per unit time.
  • a preferred embodiment of a polar solvent, a preferred embodiment of a protonic acid, and a preferred embodiment of a reaction temperature can be arbitrarily combined.
  • the combination include an alcohol solvent, an organic acid and 10 ° C. or lower, and methanol, acetic acid and ⁇ 30 ° C. to 10 ° C., particularly ⁇ 30 ° C. to 5 ° C. are preferable.
  • the polar solvent used in the reaction step the anthracycline drug represented by the general formula (II), and the N-represented by the general formula (III).
  • the order of addition of the (2-hydroxypropyl) methacrylicamide polymer and the protonic acid is not particularly limited, but from the viewpoint of obtaining a sufficient reaction conversion rate and suppressing side reactions, the polar solvent is represented by the general formula (III). It is preferable to add the indicated N- (2-hydroxypropyl) methacrylicamide polymer to dissolve it, then add the anthracycline drug represented by the general formula (II), and then add the protonic acid.
  • anthracycline drug represented by the general formula (II) a commercially available product can be used as it is.
  • THP (A is (R) -tetrahydro-2H-pyran-2-yl group) can be purchased from Japan Microbiopharmaceutical Co., Ltd. (quantitative method: 95.0% or more).
  • DOX hydrochloride (A is a hydrogen atom) can be purchased from MedKoo Biosciences (HPLC purity: 99.0% or more).
  • N- (2-hydroxypropyl) methacrylamide polymer represented by the general formula (III) a commercially available product can be used as it is, for example, from the Institute of Polymer Chemistry, Academy of Sciences of the Czech Republic or Chemical Soft Co., Ltd. You can buy it.
  • the N- (2-hydroxypropyl) methacrylamide polymer represented by the general formula (III) is not particularly limited with respect to the position of the hydrazide group, and may be regular or random, for example, hydrazide. Two or more monomer units having a group may be continuously bonded.
  • the terminal structure of the above N- (2-hydroxypropyl) methacrylicamide polymer is a saturated or unsaturated terminal structure (unsaturated terminal by hydrogen extraction) or a dimethylnitrile terminal structure (radical initiator derived from azobisisobutyronitrile). It is considered that it is one of the terminal) and the like.
  • the complex (I) or a pharmacologically acceptable salt thereof can be purified by, for example, column chromatography, thin layer chromatography, recrystallization or reprecipitation.
  • a person skilled in the art can select or combine methods suitable for a specific target compound from these methods, and can easily optimize the purification method.
  • the complex (I) obtained by the production method according to the present invention or a pharmacologically acceptable salt thereof has few by-products and can be obtained by a simple isolation and purification operation. Further, considering commercial production, for example, recrystallization or reprecipitation with a mixed solvent of ethyl acetate and methanol is preferable.
  • a precipitation step and / or a drying step may be provided after the reaction step.
  • Examples of the solvent used in the precipitation step include an ether solvent such as tetrahydrofuran or dimethoxyethane, a nitrile solvent such as acetonitrile or propionitrile, an ester solvent such as ethyl acetate or isopropyl acetate, methanol, ethanol or 2-propanol and the like.
  • Alcohol-based solvent or a mixed solvent thereof can be mentioned, but a mixed solvent of an alcohol-based solvent and an ester-based solvent is preferable from the viewpoint of high recovery rate of the complex and easy solvent distillation, and methanol and ethyl acetate.
  • the mixed solvent of is more preferable.
  • the amount of the mixed solvent used is 50 to 1000 times the weight of the anthracycline drug represented by the general formula (II) from the viewpoint of easy stirring and improvement of production efficiency per unit volume. It is preferably 100 to 350 times by weight, more preferably.
  • the ratio of the ester solvent in the mixed solvent is preferably 1 to 10 times the weight of the alcohol solvent from the viewpoint of high complex recovery rate and removal of unreacted anthracycline drugs. ⁇ 6 times the weight is more preferable.
  • the stirring temperature in the precipitation step is preferably ⁇ 20 ° C. to 50 ° C., more preferably ⁇ 10 ° C. to 40 ° C. from the viewpoint of suppressing decomposition of the complex and removing unreacted anthracycline-based drugs.
  • the stirring time in the precipitation step is preferably 0.1 to 100 hours, more preferably 0.25 to 50 hours, from the viewpoint of suppressing the decomposition of the complex and removing the unreacted anthracycline drug. ..
  • the drying temperature in the drying step is preferably ⁇ 10 ° C. to 50 ° C., more preferably 0 ° C. to 40 ° C. from the viewpoint of suppressing decomposition of the complex and rapidly removing the residual solvent.
  • the drying method is not particularly limited, but vacuum drying is preferable from the viewpoint of quickly removing the residual solvent.
  • the degree of pressure reduction for vacuum drying is preferably 500 Pa or less from the viewpoint of quickly removing the residual solvent.
  • HPLC LC-20AD (manufactured by Shimadzu Corporation) Detector: Photodiode array detector (measurement wavelength: 488 nm)
  • Deployment conditions: A / B 75/25 (0 to 3 minutes)
  • a / B 75/25 to 37/63 (3 to 4 minutes; linear gradient)
  • a / B 37/63 (4-24 minutes)
  • a / B 37/63 to 20/80 (24 to 25 minutes; linear gradient)
  • a / B 20/80 (25-35 minutes)
  • a / B 20/80 to
  • the area percentage of the peak to be measured was calculated as the bound drug purity when all peaks excluding blank peaks were set to 100%.
  • the blank peak means a peak detected when methanol is measured under the following HPLC measurement conditions.
  • the peak to be measured means the peak of the equivalent of the anthracycline drug based on the molecular weight, and when the peak of the isomer is separated under the above analysis conditions, the area of the peak of each isomer. The sum of the percentages was taken as the area percentage of the peak to be measured.
  • Binding drug loading amount (wt%) weight of active drug body (mg) / weight of complex (mg) x 100
  • the peak to be measured means the peak of the equivalent of the anthracycline drug based on the molecular weight, and when the peak of the isomer is separated under the above analysis conditions, the area of the peak of each isomer. The sum of the percentages was taken as the HPLC area value of the peak to be measured.
  • the above-mentioned measurement target specimen can be synthesized by the following method.
  • Synthesis example 1 Synthesis of THP equivalent using hydroxylamine (measurement target): A 50 wt% hydroxylamine aqueous solution (530 ⁇ L) and acetic acid (460 ⁇ L) were added to a methanol (8.0 mL) suspension of THP (625 mg, manufactured by Nippon Microbiopharma, Inc.) at 0 ° C., and the mixture was stirred at 0 ° C. for 25 hours. .. The obtained reaction mixture was purified by silica gel column chromatography, acetonitrile (40 mL) and diisopropyl ether (100 mL) were added, and the mixture was stirred at 25 ° C. for 2 hours. The precipitated solid was collected by filtration and dried under reduced pressure at 25 ° C. to obtain a THP equivalent (yield 506 mg, yield 79%).
  • Synthesis example 2 Synthesis of DOX equivalent using hydroxylamine (measurement target): To a suspension of DOX hydrochloride (500 mg, manufactured by MedKoo Biosciences) in methanol (9.1 mL) was added 50 wt% hydroxylamine aqueous solution (610 ⁇ L) and acetic acid (530 ⁇ L) at 0 ° C., and the mixture was stirred at 0 ° C. for 25 hours. .. Methanol (1.0 mL) and acetonitrile (20 mL) were added to the obtained reaction mixture, and the mixture was stirred at 25 ° C. for 2 hours. The precipitated solid was collected by filtration and dried under reduced pressure at 25 ° C. to obtain a DOX equivalent (yield 464 mg, yield 90%).
  • Example 1 Assessment of bound drug purity Hereinafter, the examination results of the evaluation method of the bound drug purity are shown in Test Examples 1 to 11.
  • Test Example 2 Hydrolysis of P-THP (Comparative Example 1) according to the method described in Non-Patent Document 2 (reaction temperature 0 ° C., hydrochloric acid): Cooled 1 mol / L hydrochloric acid (2.0 mL, 0 ° C.) was added to P-THP (20 mg) obtained in Comparative Example 1, and the mixture was stirred at 0 ° C. for 1 hour. The obtained reaction mixture was used as a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the purity of THP was 0.2%.
  • Test Example 3 Hydrolysis of P-THP (Comparative Example 1) according to the method described in Non-Patent Document 2 (reaction temperature 0 ° C., acetic acid): A cooled 1 mol / L acetic acid aqueous solution (2.0 mL, 0 ° C.) was added to P-THP (20 mg) obtained in Comparative Example 1, and the mixture was stirred at 0 ° C. for 2 hours. The obtained reaction mixture was used as a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the purity of THP was 83.3%.
  • Test Example 4 Conversion of THP with hydroxylamine and acetic acid: A 50 wt% hydroxylamine aqueous solution (32 ⁇ L) and acetic acid (27 ⁇ L) were added to a methanol (160 ⁇ L) suspension of THP (1.0 mg, manufactured by Nippon Microbiopharma, Inc.) at 0 ° C., and the mixture was stirred at 0 ° C. for 25 hours. .. Methanol (450 ⁇ L) was added to the obtained reaction mixture (50 ⁇ L) to prepare a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the purity of the THP equivalent was 98.9%.
  • Test Example 5 THP purity evaluation: N, N-dimethylformamide (4.0 mL) was added to a methanol (6.0 mL) suspension of THP (5.0 mg, manufactured by Nippon Microbiopharma, Inc.) to prepare a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the purity of THP was 99.0%.
  • Table 1 shows the HPLC analysis results of Test Examples 1 to 5.
  • THP was released from the complex and THP was decomposed into an unknown structure (Test Example 1). Further, according to the method described in Non-Patent Document 2, under the hydrolysis condition with hydrochloric acid at a reaction temperature of 0 ° C., THP is converted to DOX together with the release of THP. It was difficult to calculate the drug purity (Test Example 2). Further, according to the method described in Non-Patent Document 2, under the hydrolysis condition with acetic acid at a reaction temperature of 0 ° C., although the conversion rate to THP is high, the conversion from THP to DOX cannot be completely suppressed.
  • Test Example 6 Evaluation of bound drug purity of P-THP (Comparative Example 1) using hydroxylamine, acetic acid and methanol: To a solution of P-THP (10 mg) in methanol (160 ⁇ L) obtained in Comparative Example 1, a 50 wt% hydroxylamine aqueous solution (32 ⁇ L) and acetic acid (27 ⁇ L) were added at 0 ° C., and the mixture was stirred at 0 ° C. for 25 hours. Methanol (450 ⁇ L) was added to the obtained reaction mixture (50 ⁇ L) to prepare a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the bound drug purity was 94.5%.
  • Test Example 7 Evaluation of bound drug purity of P-THP (Example 7) using hydroxylamine, acetic acid and methanol: To a solution of P-THP (10 mg) in methanol (160 ⁇ L) obtained in Example 7, a 50 wt% hydroxylamine aqueous solution (32 ⁇ L) and acetic acid (27 ⁇ L) were added at 0 ° C., and the mixture was stirred at 0 ° C. for 25 hours. Methanol (450 ⁇ L) was added to the obtained reaction mixture (50 ⁇ L) to prepare a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the bound drug purity was 98.9%.
  • Test Example 8 Evaluation of bound drug purity of P-THP (Example 7) using acetohydrazide, acetic acid and methanol: Acethydrazide (35 mg) and acetic acid (27 ⁇ L) were added to a solution of P-THP (10 mg) in methanol (160 ⁇ L) obtained in Example 7 at 0 ° C., and the mixture was stirred at 0 ° C. for 20 hours. Methanol (450 ⁇ L) was added to the obtained reaction mixture (50 ⁇ L) to prepare a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the bound drug purity was 97.7%.
  • Test Example 9 Evaluation of bound drug purity of P-THP (Example 7) using propanohydrazide, acetic acid and methanol: Propanohydrazide (42 mg) and acetic acid (27 ⁇ L) were added to a solution of P-THP (10 mg) in methanol (160 ⁇ L) obtained in Example 7 at 0 ° C., and the mixture was stirred at 0 ° C. for 20 hours. Methanol (450 ⁇ L) was added to the obtained reaction mixture (50 ⁇ L) to prepare a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the bound drug purity was 96.0%.
  • Test Example 10 Evaluation of bound drug purity of P-THP (Example 7) using butyrohydrazide, acetic acid and methanol: Butyrohydrazide (49 mg) and acetic acid (27 ⁇ L) were added to a solution of P-THP (10 mg) in methanol (160 ⁇ L) obtained in Example 7 at 0 ° C., and the mixture was stirred at 0 ° C. for 20 hours. Methanol (450 ⁇ L) was added to the obtained reaction mixture (50 ⁇ L) to prepare a measurement sample. When the obtained measurement sample was subjected to HPLC measurement by the above-mentioned method, the bound drug purity was 96.8%.
  • Table 2 shows the results of Test Examples 6 to 11.
  • Example 2 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer by 8.8 times weight, 40 molar equivalents of acetic acid, 24 times weight of methanol, reaction temperature of 1 to 2 ° C., and reaction time of 15 hours: N- (2-Hydroxypropyl) methacrylamide polymer (526 mg, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (1.8 mL), THP (60.0 mg, manufactured by Nippon Microbiopharma, Inc.) and Acetic acid (219 ⁇ L) was added, and the mixture was stirred at 1 to 2 ° C. for 15 hours, and then methanol (3.2 mL) was added to the reaction mixture.
  • Example 3 Method for producing P-THP under the conditions of 9.1 times weight of N- (2-hydroxypropyl) methacrylamide polymer, 32 molar equivalents of acetic acid, 58 times weight of methanol, reaction temperature of 1 to 2 ° C., and reaction time of 40 hours: N- (2-Hydroxypropyl) methacrylamide polymer (200 mg, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (1.6 mL) solution, THP (22.0 mg, manufactured by Nippon Microbiopharmaceutical Co., Ltd.) and Acetic acid (65 ⁇ L) was added, and the mixture was stirred at 1 to 2 ° C.
  • Example 4 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer by 8.8 times weight, 40 mol equivalents of acetic acid, 24 times weight of methanol, reaction temperature 1 to 5 ° C., reaction time 16 hours: THP (360 mg, manufactured by Nippon Microbiopharma, Inc.) and acetic acid (1.31 mL) in a solution of N- (2-hydroxypropyl) methacrylamide polymer (3.16 g, manufactured by Chemical Soft) in methanol (10.8 mL). Was added, and the mixture was stirred at 1-5 ° C. for 16 hours, and then methanol (19.2 mL) was added to the reaction mixture.
  • THP 360 mg, manufactured by Nippon Microbiopharma, Inc.
  • acetic acid (1.31 mL) in a solution of N- (2-hydroxypropyl) methacrylamide polymer (3.16 g, manufactured by Chemical Soft) in methanol (10.8 mL).
  • the obtained reaction mixture was added to ethyl acetate (126 mL), stirred at 19 to 22 ° C. for 2 hours, and the precipitated solid was collected by filtration.
  • the obtained solid methanol (24.0 mL) solution was added to ethyl acetate (96.0 mL), and the mixture was stirred at 17-21 ° C. for 2 hours.
  • the precipitated solid was collected by filtration and dried under reduced pressure at 30 to 37 ° C. to obtain P-THP (yield 3.43 g, yield 97.8%).
  • Example 5 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer by 8.8 times weight, 100 mol equivalents of acetic acid, 56 times weight of methanol, reaction temperature 2 to 4 ° C., reaction time 15 hours: THP (360 mg, manufactured by Nippon Microbiopharma, Inc.) and acetic acid (3.28 mL) in a solution of N- (2-hydroxypropyl) methacrylamide polymer (3.16 g, manufactured by Chemical Soft) in methanol (25.2 mL). Was added, and the mixture was stirred at 2-4 ° C. for 15 hours, and then methanol (2.8 mL) was added to the reaction mixture.
  • THP 360 mg, manufactured by Nippon Microbiopharma, Inc.
  • acetic acid 3.28 mL
  • N- (2-hydroxypropyl) methacrylamide polymer 3.16 g, manufactured by Chemical Soft
  • the obtained reaction mixture was added to ethyl acetate (126 mL), stirred at 21-22 ° C. for 2 hours, and the precipitated solid was collected by filtration.
  • the obtained solid methanol (24.0 mL) solution was added to ethyl acetate (96.0 mL), and the mixture was stirred at 21 to 24 ° C. for 2 hours.
  • the precipitated solid was collected by filtration and dried under reduced pressure at 35 to 42 ° C. to obtain P-THP (yield 3.48 g, yield 99.3%).
  • Example 6 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer by 8.8 times weight, 40 molar equivalents of acetic acid, 24 times weight of methanol, reaction temperature -10 to -9 ° C., reaction time 38 hours.
  • N- (2-Hydroxypropyl) methacrylamide polymer (526 mg, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (1.8 mL), THP (60.0 mg, manufactured by Nippon Microbiopharma, Inc.) and Acetic acid (219 ⁇ L) was added, and the mixture was stirred at ⁇ 10 to ⁇ 9 ° C. for 38 hours, and then methanol (3.2 mL) was added to the reaction mixture.
  • the obtained reaction mixture was added to ethyl acetate (21 mL), stirred at 1 to 2 ° C. for 1 hour, and the precipitated solid was collected by filtration.
  • the obtained solid methanol (4.0 mL) solution was added to ethyl acetate (16.0 mL), and the mixture was stirred at 1-5 ° C. for 1 hour.
  • the precipitated solid was collected by filtration and dried under reduced pressure at 31 to 32 ° C. to obtain P-THP (yield 541 mg, yield 92.6%).
  • Example 7 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer by 8.8 times weight, 40 mol equivalents of acetic acid, 24 times weight of methanol, reaction temperature -30 to -29 ° C., reaction time 112 hours.
  • N- (2-Hydroxypropyl) methacrylamide polymer (526 mg, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (1.8 mL), THP (60.0 mg, manufactured by Nippon Microbiopharma, Inc.) and Acetic acid (219 ⁇ L) was added, and the mixture was stirred at ⁇ 30 to ⁇ 29 ° C. for 112 hours, and then methanol (3.2 mL) was added to the reaction mixture.
  • Example 8 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer by 8.8 times weight, 40 mol equivalents of acetic acid, 24 times weight of methanol, reaction temperature 2 to 5 ° C., reaction time 15 hours: N- (2-Hydroxypropyl) methacrylamide polymer (13.2 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (45.0 mL) in methanol (1.50 g, manufactured by Nippon Microbiopharmaceutical Co., Ltd.) ) And acetic acid (5.47 mL) were added, and the mixture was stirred at 2-5 ° C.
  • the obtained reaction mixture was added to ethyl acetate (126 mL), stirred at 19-23 ° C. for 1 hour, and the precipitated solid was collected by filtration.
  • the obtained solid methanol (24.0 mL) solution was added to ethyl acetate (96.0 mL), and the mixture was stirred at 22-23 ° C. for 1 hour.
  • the precipitated solid was collected by filtration and dried under reduced pressure at 31 to 35 ° C. to obtain P-THP (yield 3.47 g, yield 98.9%).
  • Example 10 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer 24.0 times by weight, 100 mol equivalents of acetic acid, 56 times by weight of methanol, reaction temperature 4 to 7 ° C., reaction time 20 hours: N- (2-Hydroxypropyl) methacrylamide polymer (1.20 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (3.5 mL) solution, THP (50 mg, manufactured by Nippon Microbiopharmaceutical Co., Ltd.) and Acetic acid (0.46 mL) was added, and the mixture was stirred at 4 to 7 ° C. for 20 hours, and then methanol (2.0 mL) was added to the reaction mixture.
  • N- (2-hydroxypropyl) methacrylamide polymer 1.20 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences
  • THP 50 mg, manufactured by Nippon Microbiopharmaceutical Co., Ltd.
  • the obtained reaction mixture was added to ethyl acetate (25 mL), stirred at 22-23 ° C. for 1 hour, and the precipitated solid was collected by filtration.
  • the obtained solid methanol (10.0 mL) solution was added to ethyl acetate (40.0 mL), and the mixture was stirred at 21-23 ° C. for 1 hour.
  • the precipitated solid was collected by filtration and dried under reduced pressure at 23 to 24 ° C. to obtain P-THP (yield 1.11 g, yield 89.4%).
  • Example 11 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer 13.3 times by weight, 100 mol equivalents of acetic acid, 56 times by weight of methanol, reaction temperature 2 to 4 ° C., reaction time of 21 hours: N- (2-Hydroxypropyl) methacrylamide polymer (0.66 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in a methanol (3.5 mL) solution, THP (50 mg, manufactured by Nippon Microbiopharmaceutical Co., Ltd.) and Acetic acid (0.46 mL) was added, and the mixture was stirred at 2-4 ° C.
  • Example 12 Method for producing P-THP under the conditions of N- (2-hydroxypropyl) methacrylamide polymer by 8.8 times weight, 40 mol equivalents of acetic acid, 24 times weight of methanol, reaction temperature 1 to 5 ° C., reaction time 19 hours: A solution of N- (2-hydroxypropyl) methacrylamide polymer (122.8 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (420 mL), THP (14.0 g, manufactured by Nippon Microbiopharmaceutical Co., Ltd.) and Acetic acid (51.0 mL) was added, and the mixture was stirred at 1-5 ° C. for 19 hours, and then methanol (742 mL) was added to the reaction mixture.
  • N- (2-hydroxypropyl) methacrylamide polymer (122.8 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (420 mL), THP (14.0 g, manufactured by Nippon Microbiopharmaceutical Co., Ltd.
  • the obtained reaction mixture was added to ethyl acetate (4900 mL), stirred at 18 to 20 ° C. for 1 hour, and the precipitated solid was collected by filtration.
  • the obtained solid methanol (910 mL) solution was added to ethyl acetate (3640 mL), and the mixture was stirred at 18 to 20 ° C. for 1 hour.
  • the precipitated solid was collected by filtration and dried under reduced pressure at 16 to 20 ° C. to obtain P-THP (yield 130.2 g, yield 95.4%).
  • Example 13 Method for producing P-THP under the conditions of 6.7 times weight of N- (2-hydroxypropyl) methacrylamide polymer, 60 molar equivalents of acetic acid, 16 times weight of methanol, reaction temperature 4 to 7 ° C., reaction time 22 hours: N- (2-Hydroxypropyl) methacrylamide polymer (0.67 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in a methanol (2.0 mL) solution, THP (100 mg, manufactured by Nippon Microbiopharmaceutical Co., Ltd.) and Acetic acid (0.55 mL) was added, and the mixture was stirred at 4 to 7 ° C.
  • Example 14 Method for producing P-THP under the conditions of 5.0 times by weight of N- (2-hydroxypropyl) methacrylamide polymer, 60 molar equivalents of acetic acid, 16 times by weight of methanol, reaction temperature of 1 to 5 ° C., and reaction time of 20 hours: N- (2-Hydroxypropyl) methacrylamide polymer (3.00 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (12.0 mL), THP (600 mg, manufactured by Japan Microbiopharmaceutical Co., Ltd.) and Acetic acid (3.28 mL) was added, and the mixture was stirred at 1-5 ° C. for 20 hours, and then methanol (15.0 mL) was added to the reaction mixture.
  • N- (2-Hydroxypropyl) methacrylamide polymer (3.00 g, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (12.0 mL)
  • THP 600 mg, manufactured by Japan Microbiopharmac
  • the obtained reaction mixture was added to ethyl acetate (120 mL), stirred at 19-21 ° C. for 0.5 hours, and the precipitated solid was collected by filtration.
  • the obtained solid methanol (27.0 mL) solution was added to ethyl acetate (120 mL), and the mixture was stirred at 19-23 ° C. for 1 hour.
  • the precipitated solid was collected by filtration and dried under reduced pressure at 23 to 24 ° C. to obtain P-THP (yield 3.37 g, yield 93.5%).
  • Example 15 Method for producing P-THP under the conditions of 4.0 times weight of N- (2-hydroxypropyl) methacrylamide polymer, 40 molar equivalents of acetic acid, 16 times weight of methanol, reaction temperature 1 to 4 ° C., reaction time 37 hours: N- (2-Hydroxypropyl) methacrylamide polymer (200 mg, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences) in methanol (1.0 mL) solution, THP (50 mg, manufactured by Japan Microbiopharmaceutical Co., Ltd.) and acetic acid ( 0.18 mL) was added, and the mixture was stirred at 1 to 4 ° C. for 37 hours, and then methanol (0.8 mL) was added to the reaction mixture.
  • N- (2-Hydroxypropyl) methacrylamide polymer 200 mg, manufactured by Polymer Chemistry Laboratory, Czech Republic Academy of Sciences
  • THP 50 mg, manufactured by Japan Microbiopharmaceutical Co., Ltd.
  • acetic acid 0.18
  • the obtained reaction mixture was added to ethyl acetate (10 mL), stirred at 1 to 5 ° C. for 1 hour, and the precipitated solid was collected by filtration.
  • the obtained solid methanol (3.0 mL) solution was added to ethyl acetate (15 mL), and the mixture was stirred at 22-23 ° C. for 0.5 hours.
  • the precipitated solid was collected by filtration and dried under reduced pressure at 23 to 24 ° C. to obtain P-THP (yield 197 mg, yield 78.9%).
  • Table 3 shows the results of Examples 2 to 15 and Comparative Examples 1 and 2.
  • Example 16 Evaluation of storage stability under airtight conditions at 60 ° C (change over time in weight average molecular weight in short-term harsh test): The complexes (5 mg) obtained in Comparative Example 1 and Examples 12 to 15 were weighed in a vial for HPLC, covered, and allowed to stand in an oven at 60 ° C. After 2 weeks and 4 weeks, the products were delivered and the weight average molecular weight was evaluated. The weight average molecular weight at the start of the storage stability evaluation was set to 0 week, and the evaluation results at 2 weeks and 4 weeks are shown in Table 4.
  • the bound drug purity meets the purity standards of THP and DOX hydrochloride described in the Japanese Pharmacopoeia. It can be evaluated whether or not. Further, according to the production method of the present invention, it is possible to produce a high-purity complex (I) which has never existed before.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

要約 複合体に含まれる活性薬物本体の純度を評価可能な方法及び活性薬物本体の純度が95.0%以上となる、複合体の製造方法が開示されている。純度評価方法は、極性溶媒中、複合体に、ヒドロキシルアミン等の含窒素求核剤をプロトン酸存在下で反応させる反応工程と、この反応工程で得られた反応混合物の純度を高速液体クロマトグラフィーにて評価する評価工程とを備える。複合体の製造方法は、極性溶媒中、アントラサイクリン系薬物に、N-(2-ヒドロキシプロピル)メタクリルアミド重合体をプロトン酸存在下で10℃以下で反応させて複合体を得る反応工程を備える。

Description

複合体に含まれる薬物の純度評価方法及び複合体の製造方法
 本発明は、複合体に含まれる薬物の純度評価方法及び複合体の製造方法に関する。
 アントラサイクリン系薬物の1つであるピラルビシン(以下、THP)と生体親和性高分子化合物の1つであるN-(2-ヒドロキシプロピル)メタクリルアミド重合体とがヒドラゾン結合を介して結合した複合体(以下、P-THP)は、抗腫瘍剤又は制癌剤として有用な化合物である(特許文献1及び2)。
 P-THPの製造方法としては、例えば、THPにN-(2-ヒドロキシプロピル)メタクリルアミド重合体を酢酸存在下で反応させる方法が開示されている(非特許文献1)。
 また、アントラサイクリン系薬物の1つであるドキソルビシン(以下、DOX)とN-(2-ヒドロキシプロピル)メタクリルアミド重合体とがオリゴペプチドを介して結合した複合体の定量方法として、当該複合体の混合物に塩酸を加え、加水分解する方法が開示されている(非特許文献2)。
特許第5904602号明細書 国際公開第2017/191843号
Etrychら、European Journal of Pharmaceutical Sciences 、2017年、第106巻、p.10-19 Fraierら、Journal of Pharmaceuticaland Biomedical Analysis 、1995年、第13巻、p.625-633
 一般に医薬品では品質確認を目的に厳密に純度評価を実施する。例えば、日本薬局方記載のDOX塩酸塩の純度は、定量法により98.0~108.0%の力価を示すものと定められている。一方、P-THPをはじめとする複合体では、活性薬物本体(API;active pharmaceutical ingredient)が高分子化合物(例:ポリマー)等に結合しているため、複合体を用いた直接的な活性薬物本体の純度評価は技術的に困難である。そのため、活性薬物本体の純度評価を行うには複合体から活性薬物本体を遊離させる必要がある。しかしながら、例えば、非特許文献2記載の方法でP-THPからTHPを遊離させると、THPの遊離とともにTHPがDOXやその他の分解物に分解するため、複合体に含まれる活性薬物本体の純度を厳密・正確に評価することは現状困難であった(以下、複合体に含まれる活性薬物本体の純度、すなわち、高分子化合物に結合している活性薬物本体の純度を「結合薬物純度」とも称する。)。また、非特許文献1記載の方法で製造したP-THPについて、後述する本発明の純度評価方法により結合薬物純度を評価したところ、当該P-THPは日本薬局方記載のTHP純度規格(95.0%以上)を満たさず、従来方法で製造したP-THPは結合薬物純度に課題があることを新たに見出した。
 そこで本発明は、複合体に含まれる活性薬物本体の純度を評価可能な方法を提供することを目的とする。さらに本発明は、本発明の純度評価方法により評価される薬物純度が95.0%以上となる、アントラサイクリン系薬物含有複合体の製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ヒドラゾン結合を有する複合体に、極性溶媒中、所定の含窒素求核剤をプロトン酸存在下で反応させ、アントラサイクリン系薬物を安定な薬物等価体に変換することで、結合薬物純度評価を可能とし、さらに、アントラサイクリン系薬物に、極性溶媒中、N-(2-ヒドロキシプロピル)メタクリルアミド重合体をプロトン酸存在下で10℃以下で反応させることで、高純度の複合体を製造できることを見出し、本発明を完成させた。
 すなわち、本発明は以下を提供する。
[1]
 極性溶媒中、一般式(I)で示される複合体又はその薬理学的に許容される塩に、ヒドロキシルアミン、O-アルキルヒドロキシルアミン及びカルボン酸ヒドラジドからなる群から選ばれる少なくとも1種の含窒素求核剤をプロトン酸存在下で反応させる反応工程と、
 当該反応工程で得られた反応混合物の純度を高速液体クロマトグラフィーにて評価する評価工程と、
 を備える、一般式(I)で示される複合体又はその薬理学的に許容される塩に含まれる薬物の純度評価方法。
Figure JPOXMLDOC01-appb-C000006
[式中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、b、c、d及びeは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
[2]
 上記極性溶媒は、アルコール系溶媒であり、
 上記含窒素求核剤は、ヒドロキシルアミン及びカルボン酸ヒドラジドからなる群から選ばれる少なくとも1種であり、
 上記プロトン酸は、カルボン酸である、[1]記載の方法。
[3]
 上記極性溶媒は、メタノールであり、
 上記含窒素求核剤は、ヒドロキシルアミン、アセトヒドラジド、プロパノヒドラジド、ブチロヒドラジド及び3-メチルブタノヒドラジドからなる群から選ばれる少なくとも1種であり、
 上記プロトン酸は、酢酸である、[1]又は[2]記載の方法。
[4]
 上記一般式(I)中、bは、1~10の整数であり、cは、30~500の整数であり、dは、1~50の整数であり、eは、1~50の整数である、[1]~[3]のいずれか一項に記載の方法。
[5]
 [1]~[4]のいずれか一項に記載の方法で評価した場合に、一般式(I)で示される複合体又はその薬理学的に許容される塩に含まれる薬物の純度が95.0%以上である、一般式(I)で示される複合体又はその薬理学的に許容される塩。
Figure JPOXMLDOC01-appb-C000007
[式中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、b、c、d及びeは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
[6]
 Aは、(R)-テトラヒドロ-2H-ピラン-2-イル基であり、
 bは、5である、[5]記載の複合体又はその薬理学的に許容される塩。
[7]
 極性溶媒中、一般式(II)で示されるアントラサイクリン系薬物に、一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体をプロトン酸存在下で10℃以下で反応させ、一般式(I)で示される複合体又はその薬理学的に許容される塩を得る反応工程を備える、一般式(I)で示される複合体又はその薬理学的に許容される塩の製造方法。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
[式(I)及び式(II)中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、式(I)及び式(III)中、b、c、d、e及びfは、それぞれ独立して、正の整数を表し、式(I)中、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
[8]
 上記極性溶媒は、メタノールであり、
 上記プロトン酸は、酢酸であり、
 上記反応工程での反応温度は、-30℃~10℃である、[7]記載の製造方法。
[9]
 上記一般式(I)及び上記一般式(III)中、bは、1~10の整数であり、cは、30~500の整数であり、dは、1~50の整数であり、eは、1~50の整数であり、fは、d及びeの和である、[7]又は[8]記載の方法。
1.複合体に含まれる薬物の純度評価方法
 本発明に係る純度評価方法は、極性溶媒中、一般式(I)で示される複合体又はその薬理学的に許容される塩に、ヒドロキシルアミン、O-アルキルヒドロキシルアミン及びカルボン酸ヒドラジドからなる群から選ばれる含窒素求核剤をプロトン酸存在下で反応させる反応工程と、当該反応工程で得られた反応混合物の純度を高速液体クロマトグラフィーにて評価する評価工程と、を備える。
Figure JPOXMLDOC01-appb-C000011
[式中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、b、c、d及びeは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
 なお、本明細書及び特許請求の範囲において、ある化学式中に波線が含まれている場合、当該波線は、E体及びZ体のいずれの配置も取りうることを表し、当該化合物は、E体単独、Z体単独、E体とZ体の混合物のいずれであってもよい。
 トランスポーターによる輸送効率の観点から、Aは、(R)-テトラヒドロ-2H-ピラン-2-イル基であることが好ましい。
 また、b、c、d及びeは、正の整数であれば特に制限されないが、bは、1~10の整数(例えば、5)であり、cは、30~500、特には50~500の整数であり、dは、1~50の整数であり、eは、1~50の整数であることが好ましい。
 ここで「複合体」とは、一般式(II)で示されるアントラサイクリン系薬物と一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体とがヒドラゾン結合を介して結合したアントラサイクリン系薬物含有複合体を意味し、一般式(II)で示されるアントラサイクリン系薬物は複合体の有効成分を意味する。また、一般式(II)で示されるアントラサイクリン系薬物は、THP又はDOXを意味し、THPと一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体とがヒドラゾン結合を介して結合した薬物は、P-THPを意味し、DOXと一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体とがヒドラゾン結合を介して結合した薬物は、P-DOXを意味する。
Figure JPOXMLDOC01-appb-C000012
[式中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表す。]
Figure JPOXMLDOC01-appb-C000013
[式中、b、c及びfは、それぞれ独立して、正の整数を表す。]
 本明細書において、「一般式(I)で示される複合体(以下、複合体(I))又はその薬理学的に許容される塩に含まれる薬物」とは、上記複合体又はその薬理学的に許容される塩に含まれるアントラサイクリン系薬物を意味する。
 本明細書において、「結合薬物純度」とは、複合体(I)に含まれる薬物の推定純度を意味し、以下の方法に従って得られた高速液体クロマトグラフィー(以下、HPLC)のクロマトグラムを基に、ブランクピークを除く全ピークの面積を100%とした場合の測定対象ピークの面積百分率を意味する。なお、当該ブランクピークとは、以下のHPLCの測定条件にて、メタノールを測定した場合に検出されるピークを意味する。また、当該測定対象ピークは、アントラサイクリン系薬物の種類や含窒素求核剤の種類によって異なるが、分子量を根拠としたアントラサイクリン系薬物の等価体のピークを意味し、以下の分析条件下で異性体のピークが分離する場合には、各異性体のピークの面積百分率の和を測定対象ピークの面積百分率とする。なお、以下の説明は、含窒素求核剤としてヒドロキシルアミン、極性溶媒としてメタノール、プロトン酸として酢酸を用いた場合を例示するが、添加量等の各条件は、用いる試薬に応じて適宜変更してもよい。
(1)試料調製
 複合体(10mg)のメタノール(160μL)溶液に、50重量%ヒドロキシルアミン水溶液(32μL)及び酢酸(27μL)を0℃で加え、0℃で25時間撹拌する。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とする。
(2)HPLC
 上記で調製された測定試料について、HPLCを用いて、以下の測定条件で分析する。
  検出器:フォトダイオードアレイ検出器(測定波長:488nm)
  カラム:Scherzo SM-C18(インタクト社製)
  カラムサイズ:150×4.6mm(3μm)
  カラム温度:30℃
  移動相:A液 5mmol/Lギ酸アンモニウム試液/メタノール混液(95:5)
      B液 メタノール/水/ギ酸混液(90:10:0.1)
  展開条件:A/B=75/25(0~3分)
       A/B=75/25~37/63(3~4分;リニアグラジエント)
       A/B=37/63(4~24分)
       A/B=37/63~20/80(24~25分;リニアグラジエント)
       A/B=20/80(25~35分)
       A/B=20/80~0/100(35~39分;リニアグラジエント)
       A/B=0/100(39~54分)
       A/B=0/100~75/25(54~54.1分;リニアグラジエント)
       A/B=75/25(54.1~59.5分)
  流速:1.0mL/分
  注入量:20μL
  サンプルクーラー温度:4℃
 本発明に係る純度評価方法におけるO-アルキルヒドロキシルアミンとしては、アルキル基の炭素数が1~4のものが好ましい。好ましい例として、O-メチルヒドロキシルアミン、O-エチルヒドロキシルアミン又はO-プロピルヒドロキシルアミンが挙げられるが、副反応を抑制する観点から、O-メチルヒドロキシルアミン又はO-エチルヒドロキシルアミンが好ましく、O-メチルヒドロキシルアミンがより好ましい。本発明で用いられるO-アルキルヒドロキシルアミンは、単一の化合物であってもよいし、2種以上の化合物を組み合わせて用いてもよい。
 また、本発明に係る純度評価方法におけるカルボン酸ヒドラジドとしては、例えば、ホルムヒドラジド、アセトヒドラジド、プロパノヒドラジド、ブチロヒドラジド、3-メチルブタノヒドラジド、2,2-ジメチルプロパノヒドラジド、シクロヘキサンカルボヒドラジド又はアダマンタン-1-カルボヒドラジドが挙げられるが、副反応を抑制する観点から、アセトヒドラジド、プロパノヒドラジド、ブチロヒドラジド及び3-メチルブタノヒドラジドからなる群から選ばれる少なくとも1種が好ましく、アセトヒドラジドがより好ましい。本発明で用いられるカルボン酸ヒドラジドは、単一の化合物であってもよいし、2種以上の化合物を組み合わせて用いてもよい。
 含窒素求核剤としては、ヒドロキシルアミン及びカルボン酸ヒドラジドからなる群から選ばれる少なくとも1種が好ましく、ヒドロキシルアミン、アセトヒドラジド、プロパノヒドラジド、ブチロヒドラジド及び3-メチルブタノヒドラジドからなる群から選ばれる少なくとも1種がより好ましく、ヒドロキシルアミン及びアセトヒドラジドからなる群から選ばれる少なくとも1種がさらに好ましい。
 上記の含窒素求核剤を用いて複合体から薬物を遊離させる場合、薬物は対応する薬物等価体に変換されて遊離する。遊離した薬物等価体は反応条件下、安定性に優れるため、当該方法は結合薬物純度の評価方法として好適である。
 ここで「薬物等価体」とは、下記の一般式(IV)又は一般式(V)で示されるアントラサイクリン系薬物等価体を意味する。
Figure JPOXMLDOC01-appb-C000014
[式(IV)及び式(V)中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、Gは、水素原子又はアルキル基を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
 一般式(IV)又は一般式(V)中、Gは、アルキル基であればその炭素数に特に制限はなく、直鎖、分岐、環状のいずれであってもよい。上記アルキル基としては、例えば、炭素数1~10のアルキル基(例えば、メチル基、エチル基、プロピル基、アダマンチル基)、炭素数1~4のアルキル基(例えば、メチル基、エチル基やプロピル基)が挙げられる。
 好ましい実施形態では、一般式(IV)又は一般式(V)で示されるアントラサイクリン系薬物等価体は、下記式のいずれかで示されるものであってもよい。
Figure JPOXMLDOC01-appb-C000015
 また、本発明に係る純度評価方法におけるプロトン酸としては、例えば、塩酸、硫酸、リン酸若しくは臭化水素酸等の無機酸、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸若しくは安息香酸等のカルボン酸、メタンスルホン酸若しくはp-トルエンスルホン酸等のスルホン酸又はアスコルビン酸が挙げられるが、酸性度の観点から、カルボン酸が好ましく、酢酸がより好ましい。なお、用いられるプロトン酸は、単一の化合物であってもよいし、2種以上の化合物を組み合わせて用いてもよい。
 また、含窒素求核剤の使用量としては、十分な反応転化率が得られ、かつ副反応を抑制する観点から、複合体に対して0.1~100倍重量が好ましく、0.5~50倍重量がより好ましい。また、プロトン酸の使用量としては、十分な反応転化率が得られ、かつ副反応を抑制する観点から、複合体に対して0.1~100倍重量が好ましく、0.5~50倍重量がより好ましい。
 また、本発明に係る薬物純度評価方法における極性溶媒としては、例えば、テトラヒドロフラン若しくはジメトキシエタン等のエーテル系溶媒、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド若しくはN-メチルピロリドン等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、1,3-ジメチル-2-イミダゾリジノン等のウレア系溶媒、メタノール、エタノール若しくは2-プロパノール等のアルコール系溶媒又はそれらの混合溶媒が挙げられるが、複合体を溶解する観点から、メタノール、エタノール若しくは2-プロパノール等のアルコール系溶媒が好ましく、メタノールがより好ましい。また、当該溶媒の使用量としては、副反応を抑制する観点から、複合体に対して3~100倍重量が好ましく、5~20倍重量がより好ましい。
 本発明に係る純度評価方法において、含窒素求核剤の好ましい態様とプロトン酸の好ましい態様と極性溶媒の好ましい態様は任意に組み合わせることができる。その組み合わせとしては、例えば、ヒドロキシルアミンとカルボン酸とアルコール系溶媒、O-アルキルヒドロキシルアミンとカルボン酸とアルコール系溶媒又はカルボン酸ヒドラジドとカルボン酸とアルコール系溶媒が挙げられ、ヒドロキシルアミンと酢酸とメタノール、アセトヒドラジドと酢酸とメタノール、プロパノヒドラジドと酢酸とメタノール、ブチロヒドラジドと酢酸とメタノール又は3-メチルブタノヒドラジドと酢酸とメタノールが好適である。
 また、含窒素求核剤、プロトン酸及び極性溶媒は、放射性同位元素で標識されていてもよく、重水素変換体であってもよい。
 また、本発明に係る純度評価方法における反応工程での反応温度は、副反応を抑制する観点から、-10℃~30℃が好ましく、-5℃~5℃がより好ましい。また、反応時間は反応温度等の条件により適宜選択できるが、副反応を抑制する観点から、1~40時間が好ましく、3~30時間がより好ましい。
2.複合体(I)又はその薬理学的に許容される塩
 本発明に係る一般式(I)で示される複合体又はその薬理学的に許容される塩は、上記の純度評価方法で評価した場合に、複合体(I)又はその薬理学的に許容される塩に含まれる薬物の純度が95.0%以上である。
Figure JPOXMLDOC01-appb-C000016
[式中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、b、c、d及びeは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
 トランスポーターによる輸送効率の観点から、Aは、(R)-テトラヒドロ-2H-ピラン-2-イル基であることが好ましい。
 また、b、c、d及びeは、正の整数であれば特に制限されないが、bは、1~10の整数(例えば、5)であり、cは、30~500、特には50~500の整数であり、dは、1~50の整数であり、eは、1~50の整数であることが好ましい。
 また、好ましい実施形態では、一般式(I)で示される複合体又はその薬理学的に許容される塩は、以下の一般式(I’)で示されるものであってもよい。
Figure JPOXMLDOC01-appb-C000017
[式中、c、d及びeは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
 一般式(I’)において、c、d及びeは、正の整数であれば特に制限されないが、cは、30~500、特には50~500の整数であり、dは、1~50の整数であり、eは、1~50の整数であることが好ましい。
 また、上記の一般式(I)で示される複合体の薬理学的に許容される塩としては、例えば、塩酸塩、硫酸塩、リン酸塩若しくは臭化水素酸塩等の無機酸塩又はシュウ酸塩、マロン酸塩、クエン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、コハク酸塩、酒石酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、グルコン酸塩、安息香酸塩、サリチル酸塩、キシナホ酸塩、パモ酸塩、アスコルビン酸塩、アジピン酸塩、メタンスルホン酸塩、p-トルエンスルホン酸塩若しくはケイ皮酸塩等の有機酸塩が挙げられる。さらに、それらの塩は、水和物、溶媒和物又は結晶多形を形成してもよい。
 また、複合体(I)又はその薬理学的に許容される塩は、放射性同位元素で標識されていてもよく、重水素変換体であってもよい。
 複合体(I)又はその薬理学的に許容される塩は、それらの水和物、溶媒和物、結晶多形、標識体並びにそれらの混合物も包含する。
 本発明に係る複合体(I)又はその薬理学的に許容される塩の結合薬物純度は、日本薬局方記載のTHP純度規格に準ずる観点から、上記複合体に含まれる薬物の純度評価方法に記載と同様の方法で評価した場合に、95.0%以上であり、96.0%以上が好ましく、97.0%以上がより好ましい。日本薬局方記載のDOX塩酸塩の純度規格に準ずる観点も考慮すると98.0%以上が好ましい。結合薬物純度は、100%に近いほど好ましく、後述する本発明の製造方法により、結合薬物純度が99.5%のものまで得られている。
 一般に医薬品では品質確認を目的に純度評価を実施する。例えば、THPの純度は定量法により95.0%以上の力価を示すものと日本薬局方で定められており、高純度医薬品は品質上好ましいものとされている。一方、複合体を医薬品として用いる場合には、複合体から遊離したアントラサイクリン系薬物が薬効発現するため、複合体に含まれる薬物の純度、すなわち結合薬物純度が一般的な医薬品の純度に相当し、結合薬物純度の評価は、医薬品の品質管理上、非常に重要となる。そのため、当該結合薬物純度は、医薬品の品質管理上、高い方が好ましく、アントラサイクリン系薬物としてTHPを用いる場合には、少なくとも日本薬局方記載のTHPの純度規格を満たすことが必要であり、アントラサイクリン系薬物としてDOX塩酸塩を用いる場合も考慮すると、日本薬局方記載のDOX塩酸塩の純度規格を満たすことが好ましい。
 複合体(I)又はその薬理学的に許容される塩の結合薬物担持量は、薬物輸送の観点から、3~20wt%が好ましく、4~19wt%がより好ましく、7~17wt%がさらに好ましい。一方、保存安定性の観点から、複合体(I)又はその薬理学的に許容される塩の結合薬物担持量は、4~20wt%が好ましく、10~19wt%がより好ましく、15~19wt%がさらに好ましい。
 本明細書において、「結合薬物担持量」とは、複合体(I)又はその薬理学的に許容される塩に含まれる薬物の推定担持量を意味し、複合体(I)又はその薬理学的に許容される塩に含まれる薬物の純度評価方法に準じた以下の方法に従い、測定対象の定量分析により算出することができる。以下の方法に従って得られたHPLCのクロマトグラムを基に、測定対象ピークのHPLC面積値と、対応する測定対象標品から作成した検量線と、を用いて、定量分析により測定対象ピークのモル数を算出し、得られたモル数から対応する活性薬物本体の重量を算出後、以下の計算式で結合薬物担持量を算出する。
 結合薬物担持量(wt%)=活性薬物本体の重量(mg)/複合体の重量(mg)×100
 また、当該測定対象ピークは、分子量を根拠としたアントラサイクリン系薬物の等価体のピークを意味し、上記の分析条件下で異性体のピークが分離する場合には、各異性体のピークの面積百分率の和を測定対象ピークのHPLC面積値とする。
(1)試料調製
 2mLメスフラスコに、複合体(20±0.4mg)を正確に秤量し、メタノール(1mL)を加えて溶解後、50重量%ヒドロキシルアミン水溶液(320μL)及び酢酸(270μL)を加え、メタノールを用いて正確に2mLに定容する。得られた溶液を0℃で25時間撹拌し、測定試料とする。
(2)HPLC
 上記で調製された測定試料について、HPLCを用いて、以下の測定条件で分析する。
  検出器:フォトダイオードアレイ検出器(測定波長:488nm)
  カラム:Scherzo SM-C18(インタクト社製)
  カラムサイズ:150×4.6mm(3μm)
  カラム温度:30℃
  移動相:A液 5mmol/Lギ酸アンモニウム試液/メタノール混液(95:5)
      B液 メタノール/水/ギ酸混液(90:10:0.1)
  展開条件:A/B=75/25(0~3分)
       A/B=75/25~37/63(3~4分;リニアグラジエント)
       A/B=37/63(4~24分)
       A/B=37/63~20/80(24~25分;リニアグラジエント)
       A/B=20/80(25~35分)
       A/B=20/80~0/100(35~39分;リニアグラジエント)
       A/B=0/100(39~54分)
       A/B=0/100~75/25(54~54.1分;リニアグラジエント)
       A/B=75/25(54.1~59.5分)
  流速:1.0mL/分
  注入量:10μL
  サンプルクーラー温度:4℃
 また、複合体(I)又はその薬理学的に許容される塩の重量平均分子量としては、安全性の観点から、25000~85000が好ましく、27000~65000がより好ましく、30000~50000が更に好ましい。
 本明細書において、「重量平均分子量」とは、以下の方法に従って算出された分子量を意味する。
(1)試料調製
 複合体(5mg)にメタノール(500μL)を加え、測定試料とする。
(2)重量平均分子量
 上記で調製された各測定試料について、HPLC及びMALSを用いて、以下の測定条件で分析し、解析ソフトウェア[ASTRA Ver. 7.3.2.17 64-bit(Wyatt technology)]を用いて、重量平均分子量(Mw)を算出する(屈折率増分:dn/dc=0.175)。
  HPLC:LC-40(島津製作所社製)
  検出器:フォトダイオードアレイ検出器(測定波長:488nm)及び示差屈折率計
  カラム:TSKgel α-M(東ソー社製)と、
      TSKgel α-2500(東ソー社製)と、を順次2本連結
  カラムサイズ:TSKgel α-M(300×7.8mm(7μm))
         TSKgel α-2500(300×7.8mm(7μm))
  カラム温度:30℃
  移動相:メタノール:0.3mol/L酢酸ナトリウム試液(pH6.5)
      =80:20
  流速:0.8mL/分
  注入量:20μL
  サンプルクーラー温度:4℃
  インジェクター洗浄液:メタノール:水=80:20
  MALS:DAWN8(Wyatt technology)
  Light Scattering Instrument:
  校正定数:5.2929/100000[1/Vcm]
  RI Instrument:
  屈折定数:1.338
 複合体(I)又はその薬理学的に許容される塩において、上記結合薬物純度の好ましい態様と上記結合薬物担持量の好ましい態様と上記重量平均分子量の好ましい態様は任意に組み合わせることができる。その組み合わせとしては、例えば、結合薬物純度が95.0%以上であり、結合薬物担持量が3~20wt%であり、重量平均分子量が25000~85000である、複合体(I)又はその薬理学的に許容される塩が挙げられる。
 一般的に医薬品は、保存条件及び有効期間の設定のため、その安定性を評価する必要がある。医薬品に係る代表的な安定性試験としては、苛酷試験、長期保存試験、加速試験等があり、例えば、原薬の苛酷試験は、原薬から生成する可能性がある分解生成物の同定や分析方法の適合性確認、原薬の安定性の予測等に利用され、60℃気密条件での4週間の苛酷試験は、25℃気密条件での3年保存に対応した、開発初期の安定性予測に利用されている(吉岡澄江、医薬品の安定性、南江堂、1995年、p.142)。
 上記の純度評価方法で評価した場合に、結合薬物純度が95.0%以上である、複合体(I)又はその薬理学的に許容される塩は、以下の製造方法によって得ることができる。
3.複合体(I)又はその薬理学的に許容される塩の製造方法
 本発明に係る一般式(I)で示される複合体又はその薬理学的に許容される塩の製造方法は、極性溶媒中、一般式(II)で示されるアントラサイクリン系薬物に、一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体をプロトン酸存在下で10℃以下で反応させ、一般式(I)で示される複合体又はその薬理学的に許容される塩を得る反応工程を備える。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
[式(I)及び式(II)中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、式(I)及び式(III)中、b、c、d、e及びfは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
 トランスポーターによる輸送効率の観点から、Aは、(R)-テトラヒドロ-2H-ピラン-2-イル基であることが好ましい。
 また、b、c、d及びeは、正の整数であれば特に制限されないが、bは、1~10の整数(例えば、5)であり、cは、30~500、特には50~500の整数であり、dは、1~50の整数であり、eは、1~50の整数であることが好ましい。また、fは、d及びeの和である。
 本発明に係る複合体(I)又はその薬理学的に許容される塩の製造方法は、特に、上記の純度評価方法で評価した場合に、結合薬物純度が95.0%以上である、複合体(I)又はその薬理学的に許容される塩の製造方法として用いることができる。
 一般的な低分子有機化合物とは異なり、複合体(I)又はその薬理学的に許容される塩の精製においては、未反応のアントラサイクリン系薬物やヒドラゾン結合が開裂したアントラサイクリン系薬物といった低分子化合物はカラムクロマトグラフィー、薄層クロマトグラフィー、再結晶又は再沈殿といった精製操作により除去できるが、結合薬物純度を向上させることはできない。すなわち、当該複合体は、複合体上のアントラサイクリン系薬物のヒドラゾン結合を除く部分構造が分解した場合にも、ヒドラゾン結合が開裂しない限り、複合体からその薬物の分解物が分離されないため、結合薬物純度は向上しない。そのため、当該複合体を製造する際の反応工程は、品質管理上、非常に重要であり、反応工程でのアントラサイクリン系薬物の分解を如何に抑制するかが結合薬物純度を決定する。
 複合体(I)又はその薬理学的に許容される塩の製造方法において、反応工程で用いる上記N-(2-ヒドロキシプロピル)メタクリルアミド重合体の使用量としては、目的とする結合薬物担持量に併せて適宜選択することができるが、薬物輸送効率の観点から、上記アントラサイクリン系薬物に対して1~30倍重量が好ましく、3~25倍重量がより好ましく、3~15倍重量がさらに好ましい。
 複合体(I)又はその薬理学的に許容される塩の製造方法において、反応工程で用いるプロトン酸としては、例えば、塩酸、硫酸、リン酸若しくは臭化水素酸等の無機酸又はシュウ酸、マロン酸、クエン酸、フマル酸、乳酸、リンゴ酸、コハク酸、酒石酸、酢酸、トリフルオロ酢酸、マレイン酸、グルコン酸、安息香酸、サリチル酸、キシナホ酸、パモ酸、アスコルビン酸、アジピン酸、メタンスルホン酸、p-トルエンスルホン酸若しくはケイ皮酸等の有機酸が挙げられるが、酸性度の観点から、有機酸が好ましく、酢酸がより好ましい。なお、用いられるプロトン酸は、単一の化合物であってもよいし、2種以上の化合物を組み合わせて用いてもよい。
 複合体(I)又はその薬理学的に許容される塩の製造方法において、反応工程で用いるプロトン酸の使用量としては、十分な反応転化率を得る観点から、上記アントラサイクリン系薬物に対して10~300モル当量が好ましく、20~200モル当量がより好ましい。なお、ここで、「モル当量」は、アントラサイクリン系薬物1モル当りに対して使用されるプロトン酸のモル数を意味する。
 複合体(I)又はその薬理学的に許容される塩の製造方法において、反応工程で用いる極性溶媒としては、例えば、テトラヒドロフラン若しくはジメトキシエタン等のエーテル系溶媒、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド若しくはN-メチルピロリドン等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、1,3-ジメチル-2-イミダゾリジノン等のウレア系溶媒、メタノール、エタノール若しくは2-プロパノール等のアルコール系溶媒又はそれらの混合溶媒が挙げられるが、複合体を溶解する観点から、メタノール、エタノール若しくは2-プロパノール等のアルコール系溶媒が好ましく、メタノールがより好ましい。また、当該溶媒の使用量としては、撹拌を容易に実施でき、かつ単位体積当たりの製造効率を向上させる観点から、上記アントラサイクリン系薬物に対して10~200倍重量が好ましく、20~70倍重量がより好ましい。
 複合体(I)又はその薬理学的に許容される塩の製造方法において、反応工程での反応温度は、副反応を抑制する観点から、10℃以下であり、単位時間当たりの生産効率を向上させる観点から、-30℃~10℃、特には-30℃~5℃が好ましい。また、反応時間は反応温度等の条件により適宜選択できるが、単位時間当たりの製造効率を向上させる観点から、1~300時間が好ましく、10~150時間がより好ましい。
 複合体(I)又はその薬理学的に許容される塩の製造方法において、極性溶媒の好ましい態様とプロトン酸の好ましい態様と反応温度の好ましい態様は任意に組み合わせることができる。その組み合わせとしては、例えば、アルコール系溶媒と有機酸と10℃以下が挙げられ、メタノールと酢酸と-30℃~10℃、特には-30℃~5℃が好適である。
 複合体(I)又はその薬理学的に許容される塩の製造方法において、反応工程で用いる極性溶媒、一般式(II)で示されるアントラサイクリン系薬物、一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体及びプロトン酸の添加順序は特に限定されないが、十分な反応転化率が得られ、かつ副反応を抑制する観点から、極性溶媒に、一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体を加えて溶解後、次いで一般式(II)で示されるアントラサイクリン系薬物を加え、次いでプロトン酸を加えることが好ましい。
 一般式(II)で示されるアントラサイクリン系薬物は、市販品をそのまま使用することができる。例えば、THP(Aが、(R)-テトラヒドロ-2H-ピラン-2-イル基)は日本マイクロバイオファーマ社から購入することができる(定量法:95.0%以上)。また、DOX塩酸塩(Aが、水素原子)はMedKoo Biosciences社から購入することができる(HPLC純度:99.0%以上)。また、一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体は、市販品をそのまま使用することができ、例えば、チェコ共和国科学アカデミー高分子化学研究所又はケミカルソフト社から購入することができる。
 一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体は、ヒドラジド基の位置に関しては特に制限されず、規則性があっても、ランダムであってもよく、例えば、ヒドラジド基を有するモノマー単位が2以上連続して結合していてもよい。上記N-(2-ヒドロキシプロピル)メタクリルアミド重合体の末端構造は、飽和若しくは不飽和末端構造(水素引き抜きによる不均化末端)又はジメチルニトリル末端構造(アゾビスイソブチロニトリル由来のラジカル開始剤末端)等の何れかとなっていると考えられる。
 なお、チェコ共和国科学アカデミー高分子化学研究所又はケミカルソフト社から購入することができる、一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体は、重量平均分子量が20000~35000であり、共重合成分であるヒドラジド基の含量が5.0~7.0mol%である。
 複合体(I)又はその薬理学的に許容される塩は、例えば、カラムクロマトグラフィー、薄層クロマトグラフィー、再結晶又は再沈殿といった方法で精製することができる。当業者であれば、具体的な対象化合物に合った方法をこれらの方法から選択したり、組み合わせたりすることが可能であり、精製方法を容易に最適化できる。本発明に係る製造方法で得られる複合体(I)又はその薬理学的に許容される塩は、副生成物が少ないため、簡便な単離精製操作により得ることができる。また、商業生産を考慮すると、例えば、酢酸エチル及びメタノールの混合溶媒による再結晶又は再沈殿が好ましい。
 なお、複合体(I)又はその薬理学的に許容される塩の製造方法において、反応工程後に、沈殿工程及び/又は乾燥工程を備えていてもよい。
 沈殿工程で用いる溶媒としては、例えば、テトラヒドロフラン若しくはジメトキシエタン等のエーテル系溶媒、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、酢酸エチル若しくは酢酸イソプロピル等のエステル系溶媒、メタノール、エタノール若しくは2-プロパノール等のアルコール系溶媒又はそれらの混合溶媒が挙げられるが、複合体の回収率が高く、かつ溶媒留去が容易である観点から、アルコール系溶媒及びエステル系溶媒の混合溶媒が好ましく、メタノール及び酢酸エチルの混合溶媒がより好ましい。
 当該混合溶媒の使用量としては、撹拌を容易に実施でき、かつ単位体積当たりの製造効率を向上させる観点から、一般式(II)で示されるアントラサイクリン系薬物に対して50~1000倍重量が好ましく、100~350倍重量がより好ましい。また、当該混合溶媒におけるエステル系溶媒の比率としては、複合体回収率が高く、かつ未反応のアントラサイクリン系薬物を除去する観点から、アルコール系溶媒に対し、1~10倍重量が好ましく、2~6倍重量がより好ましい。
 沈殿工程での撹拌温度は、複合体の分解を抑制し、かつ未反応のアントラサイクリン系薬物を除去する観点から、-20℃~50℃が好ましく、-10℃~40℃がより好ましい。また、沈殿工程での撹拌時間は、複合体の分解を抑制し、かつ未反応のアントラサイクリン系薬物を除去する観点から、0.1~100時間が好ましく、0.25~50時間がより好ましい。
 乾燥工程での乾燥温度は、複合体の分解を抑制し、かつ残留溶媒を速やかに除去する観点から、-10℃~50℃が好ましく、0℃~40℃がより好ましい。また、乾燥方法としては、特に制限されないが、残留溶媒を速やかに除去する観点から、減圧乾燥が好ましい。また、減圧乾燥の減圧度は、残留溶媒を速やかに除去する観点から、500Pa以下が好ましい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。まず、純度評価方法について説明する。
(1)試料調製
 後述する実施例2~15並びに比較例1及び比較例2により得られた固体(10mg)のメタノール(160μL)溶液に、50重量%ヒドロキシルアミン水溶液(32μL)及び酢酸(27μL)を0℃で加え、0℃で25時間撹拌した。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とした。
(2)HPLC
 上記で調製された各測定試料について、HPLCを用いて、以下の測定条件で分析した。
  HPLC:LC-20AD(島津製作所社製)
  検出器:フォトダイオードアレイ検出器(測定波長:488nm)
  カラム:Scherzo SM-C18(インタクト社製)
  カラムサイズ:150×4.6mm(3μm)
  カラム温度:30℃
  移動相:A液 5mmol/Lギ酸アンモニウム試液/メタノール混液(95:5)
      B液 メタノール/水/ギ酸混液(90:10:0.1)
  展開条件:A/B=75/25(0~3分)
       A/B=75/25~37/63(3~4分;リニアグラジエント)
       A/B=37/63(4~24分)
       A/B=37/63~20/80(24~25分;リニアグラジエント)
       A/B=20/80(25~35分)
       A/B=20/80~0/100(35~39分;リニアグラジエント)
       A/B=0/100(39~54分)
       A/B=0/100~75/25(54~54.1分;リニアグラジエント)
       A/B=75/25(54.1~59.5分)
  流速:1.0mL/分
  注入量:20μL
  サンプルクーラー温度:4℃
  インジェクター洗浄液:アセトニトリル/水混液(60:40)
(3)結合薬物純度
 上記で測定したHPLCのクロマトグラムを基に、ブランクピークを除く全ピークを100%とした場合の測定対象ピークの面積百分率を結合薬物純度として算出した。なお、当該ブランクピークとは、以下のHPLCの測定条件にて、メタノールを測定した場合に検出されるピークを意味する。また、当該測定対象ピークは、分子量を根拠としたアントラサイクリン系薬物の等価体のピークを意味し、上記の分析条件下で異性体のピークが分離する場合には、各異性体のピークの面積百分率の和を測定対象ピークの面積百分率とした。
 続いて、結合薬物担持量の評価方法について説明する。
(1)試料調製
 2mLメスフラスコに、後述する実施例2~15並びに比較例1及び比較例2により得られた固体(20±0.4mg)を正確に秤量し、メタノール(1mL)を加えて溶解後、50重量%ヒドロキシルアミン水溶液(320μL)及び酢酸(270μL)を加え、メタノールを用いて正確に2mLに定容した。得られた溶液を0℃で25時間撹拌し、測定試料とした。
(2)HPLC
 上記で調製された測定試料について、HPLCを用いて、以下の測定条件で分析した。
  検出器:フォトダイオードアレイ検出器(測定波長:488nm)
  カラム:Scherzo SM-C18(インタクト社製)
  カラムサイズ:150×4.6mm(3μm)
  カラム温度:30℃
  移動相:A液 5mmol/Lギ酸アンモニウム試液/メタノール混液(95:5)
      B液 メタノール/水/ギ酸混液(90:10:0.1)
  展開条件:A/B=75/25(0~3分)
       A/B=75/25~37/63(3~4分;リニアグラジエント)
       A/B=37/63(4~24分)
       A/B=37/63~20/80(24~25分;リニアグラジエント)
       A/B=20/80(25~35分)
       A/B=20/80~0/100(35~39分;リニアグラジエント)
       A/B=0/100(39~54分)
       A/B=0/100~75/25(54~54.1分;リニアグラジエント)
       A/B=75/25(54.1~59.5分)
  流速:1.0mL/分
  注入量:10μL
  サンプルクーラー温度:4℃
(3)結合薬物担持量
 上記で測定したHPLCのクロマトグラムを基に、測定対象ピークのHPLC面積値と、対応する測定対象標品から作成した検量線と、を用いて、定量分析により測定対象ピークのモル数を算出し、得られたモル数から対応する活性薬物本体の重量を算出後、以下の計算式で結合薬物担持量を算出した。
 結合薬物担持量(wt%)=活性薬物本体の重量(mg)/複合体の重量(mg)×100
 また、当該測定対象ピークは、分子量を根拠としたアントラサイクリン系薬物の等価体のピークを意味し、上記の分析条件下で異性体のピークが分離する場合には、各異性体のピークの面積百分率の和を測定対象ピークのHPLC面積値とした。
 また、上記の測定対象標品は、以下の方法で合成することができる。
合成例1
ヒドロキシルアミンを用いたTHP等価体の合成(測定対象標品):
 THP(625mg、日本マイクロバイオファーマ社製)のメタノール(8.0mL)懸濁液に、0℃で50重量%ヒドロキシルアミン水溶液(530μL)及び酢酸(460μL)を加え、0℃で25時間撹拌した。得られた反応混合物をシリカゲルカラムクロマトグラフィーにて精製後、アセトニトリル(40mL)、ジイソプロピルエーテル(100mL)を加え、25℃で2時間撹拌した。析出した固体を濾取後、25℃で減圧乾燥することで、THP等価体を得た(収量506mg、収率79%)。
合成例2
ヒドロキシルアミンを用いたDOX等価体の合成(測定対象標品):
 DOX塩酸塩(500mg、MedKoo Biosciences社製)のメタノール(9.1mL)懸濁液に、0℃で50重量%ヒドロキシルアミン水溶液(610μL)及び酢酸(530μL)を加え、0℃で25時間撹拌した。得られた反応混合物にメタノール(1.0mL)、アセトニトリル(20mL)を加え、25℃で2時間撹拌した。析出した固体を濾取後、25℃で減圧乾燥することで、DOX等価体を得た(収量464mg、収率90%)。
 続いて、重量平均分子量の評価方法について説明する。
(1)試料調製
 後述する実施例2~15並びに比較例1及び比較例2により得られた固体(5mg)にメタノール(500μL)を加え、測定試料とした。
(2)重量平均分子量
 上記で調製された各測定試料について、HPLC及びMALSを用いて、以下の測定条件で分析し、解析ソフトウェア[ASTRA Ver. 7.3.2.17 64-bit(Wyatt technology)]を用いて、重量平均分子量(Mw)を算出した(屈折率増分:dn/dc=0.175)。
  HPLC:LC-40(島津製作所社製)
  検出器:フォトダイオードアレイ検出器(測定波長:488nm)及び示差屈折率計
  カラム:TSKgel α-M(東ソー社製)と、
      TSKgel α-2500(東ソー社製)と、を順次2本連結
  カラムサイズ:TSKgel α-M(300×7.8mm(7μm))
         TSKgel α-2500(300×7.8mm(7μm))
  カラム温度:30℃
  移動相:メタノール:0.3mol/L酢酸ナトリウム試液(pH6.5)
      =80:20
  流速:0.8mL/分
  注入量:20μL
  サンプルクーラー温度:4℃
  インジェクター洗浄液:メタノール:水=80:20
  MALS:DAWN8(Wyatt technology)
  Light Scattering Instrument:
  校正定数:5.2929/100000[1/Vcm]
  RI Instrument:
  屈折定数:1.338
実施例1
結合薬物純度の評価:
 以下、試験例1~11にて結合薬物純度の評価方法の検討結果を示す。
試験例1
非特許文献2記載の方法を用いたP-THP(比較例1)の加水分解:
 比較例1により得られたP-THP(20mg)に、1mol/L塩酸(2.0mL)を加え、85℃で20分間撹拌した。得られた反応混合物を測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、THPの純度は1.1%であった。
試験例2
非特許文献2記載の方法に準じたP-THP(比較例1)の加水分解(反応温度0℃、塩酸):
 比較例1により得られたP-THP(20mg)に、冷却した1mol/L塩酸(2.0mL、0℃)を加え、0℃で1時間撹拌した。得られた反応混合物を測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、THPの純度は0.2%であった。
試験例3
非特許文献2記載の方法に準じたP-THP(比較例1)の加水分解(反応温度0℃、酢酸):
 比較例1により得られたP-THP(20mg)に、冷却した1mol/L酢酸水溶液(2.0mL、0℃)を加え、0℃で2時間撹拌した。得られた反応混合物を測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、THPの純度は83.3%であった。
試験例4
ヒドロキシルアミン及び酢酸を用いたTHPの変換:
 THP(1.0mg、日本マイクロバイオファーマ社製)のメタノール(160μL)懸濁液に、0℃で50重量%ヒドロキシルアミン水溶液(32μL)及び酢酸(27μL)を加え、0℃で25時間撹拌した。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、THP等価体の純度は98.9%であった。
試験例5
THPの純度評価:
 THP(5.0mg、日本マイクロバイオファーマ社製)のメタノール(6.0mL)懸濁液に、N,N-ジメチルホルムアミド(4.0mL)を加え、測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、THPの純度は99.0%であった。
 試験例1~5のHPLC分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000021
 表1に示す通り、非特許文献2記載の方法では、複合体からTHPが遊離するとともに、THPが構造不明物に分解することがわかった(試験例1)。また、非特許文献2記載の方法に準じ、反応温度を0℃とした塩酸による加水分解条件では、THPの遊離とともに、THPがDOXに変換されてしまうため、当該方法を用いた場合にも結合薬物純度の算出は困難であった(試験例2)。また、非特許文献2記載の方法に準じ、反応温度を0℃とした酢酸による加水分解条件では、THPへの変換率は高いものの、THPからDOXへの変換を完全には抑制できず、当該方法を用いた場合にも結合薬物純度の算出は困難であった(試験例3)。一方、複合体の代わりにTHPを使用し、添加剤としてヒドロキシルアミン及び酢酸を用いた場合には、THPからDOXへの変換はほぼ進行せず、使用したTHPの純度評価結果と比較した場合にも、良好な純度でTHP等価体が得られることがわかった(試験例4、5)。以上の結果から、試験例4の反応条件で、複合体を用いた場合にも同様の反応が進行すれば、結合薬物純度を評価できる可能性があると考えられた。
試験例6
ヒドロキシルアミン、酢酸及びメタノールを用いたP-THP(比較例1)の結合薬物純度評価:
 比較例1により得られたP-THP(10mg)のメタノール(160μL)溶液に、0℃で50重量%ヒドロキシルアミン水溶液(32μL)及び酢酸(27μL)を加え、0℃で25時間撹拌した。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、結合薬物純度は94.5%であった。
試験例7
ヒドロキシルアミン、酢酸及びメタノールを用いたP-THP(実施例7)の結合薬物純度評価:
 実施例7により得られたP-THP(10mg)のメタノール(160μL)溶液に、0℃で50重量%ヒドロキシルアミン水溶液(32μL)及び酢酸(27μL)を加え、0℃で25時間撹拌した。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、結合薬物純度は98.9%であった。
試験例8
アセトヒドラジド、酢酸及びメタノールを用いたP-THP(実施例7)の結合薬物純度評価:
 実施例7により得られたP-THP(10mg)のメタノール(160μL)溶液に、0℃でアセトヒドラジド(35mg)及び酢酸(27μL)を加え、0℃で20時間撹拌した。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、結合薬物純度は97.7%であった。
試験例9
プロパノヒドラジド、酢酸及びメタノールを用いたP-THP(実施例7)の結合薬物純度評価:
 実施例7により得られたP-THP(10mg)のメタノール(160μL)溶液に、0℃でプロパノヒドラジド(42mg)及び酢酸(27μL)を加え、0℃で20時間撹拌した。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、結合薬物純度は96.0%であった。
試験例10
ブチロヒドラジド、酢酸及びメタノールを用いたP-THP(実施例7)の結合薬物純度評価:
 実施例7により得られたP-THP(10mg)のメタノール(160μL)溶液に、0℃でブチロヒドラジド(49mg)及び酢酸(27μL)を加え、0℃で20時間撹拌した。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、結合薬物純度は96.8%であった。
試験例11
3-メチルブタノヒドラジド、酢酸及びメタノールを用いたP-THP(実施例7)の結合薬物純度評価:
 実施例7により得られたP-THP(10mg)のメタノール(160μL)溶液に、0℃で3-メチルブタノヒドラジド(56mg)及び酢酸(27μL)を加え、0℃で20時間撹拌した。得られた反応混合物(50μL)にメタノール(450μL)を加え、測定試料とした。得られた測定試料について、前述の方法によりHPLC測定を行ったところ、結合薬物純度は96.6%であった。
 試験例6~11の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000022
 表2に示す通り、比較例1により得られたP-THPを試験例4の反応条件に付した結果、複合体に対する求核置換反応は良好に進行したものの、当該P-THPは95.0%以上の結合薬物純度を示さず、従来方法で製造したP-THPは結合薬物純度に課題があることがわかった(試験例6)。一方、実施例7により得られたP-THPを試験例6と同一条件に付した場合には、98.9%と高い結合薬物純度を示すことがわかった(試験例7)。また、実施例7により得られたP-THPについて、種々のカルボン酸ヒドラジドを用いて結合薬物純度を評価した場合にも良好な結合薬物純度を示すことがわかった(試験例8~11)。
実施例2
N-(2-ヒドロキシプロピル)メタクリルアミド重合体8.8倍重量、酢酸40モル当量、メタノール24倍重量、反応温度1~2℃、反応時間15時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(526mg、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(1.8mL)溶液に、THP(60.0mg、日本マイクロバイオファーマ社製)及び酢酸(219μL)を加え、1~2℃で15時間撹拌後、反応混合物にメタノール(3.2mL)を加えた。得られた反応混合物を酢酸エチル(21mL)に加え、33~34℃で24時間撹拌した。析出した固体を濾取後、31~32℃で減圧乾燥することで、P-THPを得た(収量562mg、収率96.1%)。
実施例3
N-(2-ヒドロキシプロピル)メタクリルアミド重合体9.1倍重量、酢酸32モル当量、メタノール58倍重量、反応温度1~2℃、反応時間40時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(200mg、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(1.6mL)溶液に、THP(22.0mg、日本マイクロバイオファーマ社製)及び酢酸(65μL)を加え、1~2℃で40時間撹拌後、反応混合物にメタノール(0.3mL)を加えた。得られた反応混合物を酢酸エチル(7.7mL)に加え、21~22℃で2時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(1.4mL)溶液を酢酸エチル(5.7mL)に加え、22~23℃で2時間撹拌した。析出した固体を濾取後、30~31℃で減圧乾燥することで、P-THPを得た(収量205mg、収率92.8%)。
実施例4
N-(2-ヒドロキシプロピル)メタクリルアミド重合体8.8倍重量、酢酸40モル当量、メタノール24倍重量、反応温度1~5℃、反応時間16時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(3.16g、ケミカルソフト社製)のメタノール(10.8mL)溶液に、THP(360mg、日本マイクロバイオファーマ社製)及び酢酸(1.31mL)を加え、1~5℃で16時間撹拌後、反応混合物にメタノール(19.2mL)を加えた。得られた反応混合物を酢酸エチル(126mL)に加え、19~22℃で2時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(24.0mL)溶液を酢酸エチル(96.0mL)に加え、17~21℃で2時間撹拌した。析出した固体を濾取後、30~37℃で減圧乾燥することで、P-THPを得た(収量3.43g、収率97.8%)。
実施例5
N-(2-ヒドロキシプロピル)メタクリルアミド重合体8.8倍重量、酢酸100モル当量、メタノール56倍重量、反応温度2~4℃、反応時間15時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(3.16g、ケミカルソフト社製)のメタノール(25.2mL)溶液に、THP(360mg、日本マイクロバイオファーマ社製)及び酢酸(3.28mL)を加え、2~4℃で15時間撹拌後、反応混合物にメタノール(2.8mL)を加えた。得られた反応混合物を酢酸エチル(126mL)に加え、21~22℃で2時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(24.0mL)溶液を酢酸エチル(96.0mL)に加え、21~24℃で2時間撹拌した。析出した固体を濾取後、35~42℃で減圧乾燥することで、P-THPを得た(収量3.48g、収率99.3%)。
実施例6
N-(2-ヒドロキシプロピル)メタクリルアミド重合体8.8倍重量、酢酸40モル当量、メタノール24倍重量、反応温度-10~-9℃、反応時間38時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(526mg、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(1.8mL)溶液に、THP(60.0mg、日本マイクロバイオファーマ社製)及び酢酸(219μL)を加え、-10~-9℃で38時間撹拌後、反応混合物にメタノール(3.2mL)を加えた。得られた反応混合物を酢酸エチル(21mL)に加え、1~2℃で1時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(4.0mL)溶液を酢酸エチル(16.0mL)に加え、1~5℃で1時間撹拌した。析出した固体を濾取後、31~32℃で減圧乾燥することで、P-THPを得た(収量541mg、収率92.6%)。
実施例7
N-(2-ヒドロキシプロピル)メタクリルアミド重合体8.8倍重量、酢酸40モル当量、メタノール24倍重量、反応温度-30~-29℃、反応時間112時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(526mg、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(1.8mL)溶液に、THP(60.0mg、日本マイクロバイオファーマ社製)及び酢酸(219μL)を加え、-30~-29℃で112時間撹拌後、反応混合物にメタノール(3.2mL)を加えた。得られた反応混合物を酢酸エチル(21mL)に加え、22~23℃で0.5時間撹拌した。析出した固体を濾取後、32~33℃で減圧乾燥することで、P-THPを得た(収量548mg、収率93.7%)。
実施例8
N-(2-ヒドロキシプロピル)メタクリルアミド重合体8.8倍重量、酢酸40モル当量、メタノール24倍重量、反応温度2~5℃、反応時間15時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(13.2g、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(45.0mL)溶液に、THP(1.50g、日本マイクロバイオファーマ社製)及び酢酸(5.47mL)を加え、2~5℃で15時間撹拌後、反応混合物にメタノール(79.5mL)を加えた。得られた反応混合物を酢酸エチル(525mL)に加え、20~22℃で1時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(97.5mL)溶液を酢酸エチル(390mL)に加え、22~23℃で1時間撹拌した。析出した固体を濾取後、31~32℃で減圧乾燥することで、P-THPを得た(収量14.2g、収率97.4%)。
実施例9
N-(2-ヒドロキシプロピル)メタクリルアミド重合体9.8倍重量、酢酸100モル当量、メタノール62倍重量、反応温度1~4℃、反応時間46時間条件でのP-DOX塩酸塩の製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(200mg、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(1.6mL)溶液に、DOX塩酸塩(20.3mg、MedKoo Biosciences社製)及び酢酸(200μL)を加え、1~4℃で46時間撹拌後、反応混合物にメタノール(0.3mL)を加えた。得られた反応混合物を酢酸エチル(7.7mL)に加え、21~22℃で1時間撹拌した。析出した固体を濾取後、32~33℃で減圧乾燥することで、P-DOX塩酸塩を得た(収量219mg、収率99.7%)。
比較例1
N-(2-ヒドロキシプロピル)メタクリルアミド重合体9.1倍重量、酢酸32モル当量、メタノール58倍重量、反応温度29~30℃、反応時間15時間条件でのP-THPの製造方法(特許文献1記載の温度及び非特許文献1記載の方法を参照):
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(200mg、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(1.6mL)溶液に、THP(22.0mg、日本マイクロバイオファーマ社製)及び酢酸(65μL)を加え、遮光下、29~30℃で15時間撹拌後、反応混合物にメタノール(0.3mL)を加えた。得られた反応混合物を酢酸エチル(7.7mL)に加え、29~32℃で24時間撹拌した。析出した固体を濾取後、31~34℃で減圧乾燥することで、P-THPを得た(収量209mg、収率94.3%)。
比較例2
N-(2-ヒドロキシプロピル)メタクリルアミド重合体8.8倍重量、酢酸40モル当量、メタノール56倍重量、反応温度34~35℃、反応時間17時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(3.16g、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(25.2mL)溶液に、THP(360mg、日本マイクロバイオファーマ社製)及び酢酸(1.31mL)を加え、34~35℃で17時間撹拌後、反応混合物にメタノール(4.8mL)を加えた。得られた反応混合物を酢酸エチル(126mL)に加え、19~23℃で1時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(24.0mL)溶液を酢酸エチル(96.0mL)に加え、22~23℃で1時間撹拌した。析出した固体を濾取後、31~35℃で減圧乾燥することで、P-THPを得た(収量3.47g、収率98.9%)。
実施例10
N-(2-ヒドロキシプロピル)メタクリルアミド重合体24.0倍重量、酢酸100モル当量、メタノール56倍重量、反応温度4~7℃、反応時間20時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(1.20g、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(3.5mL)溶液に、THP(50mg、日本マイクロバイオファーマ社製)及び酢酸(0.46mL)を加え、4~7℃で20時間撹拌後、反応混合物にメタノール(2.0mL)を加えた。得られた反応混合物を酢酸エチル(25mL)に加え、22~23℃で1時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(10.0mL)溶液を酢酸エチル(40.0mL)に加え、21~23℃で1時間撹拌した。析出した固体を濾取後、23~24℃で減圧乾燥することで、P-THPを得た(収量1.11g、収率89.4%)。
実施例11
N-(2-ヒドロキシプロピル)メタクリルアミド重合体13.3倍重量、酢酸100モル当量、メタノール56倍重量、反応温度2~4℃、反応時間21時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(0.66g、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(3.5mL)溶液に、THP(50mg、日本マイクロバイオファーマ社製)及び酢酸(0.46mL)を加え、2~4℃で21時間撹拌後、反応混合物にメタノール(2.0mL)を加えた。得られた反応混合物を酢酸エチル(25mL)に加え、22~23℃で1時間撹拌後、析出した固体を濾取し、22~23℃で減圧乾燥することで、P-THPを得た(収量0.70g、収率98.4%)。
実施例12
N-(2-ヒドロキシプロピル)メタクリルアミド重合体8.8倍重量、酢酸40モル当量、メタノール24倍重量、反応温度1~5℃、反応時間19時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(122.8g、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(420mL)溶液に、THP(14.0g、日本マイクロバイオファーマ社製)及び酢酸(51.0mL)を加え、1~5℃で19時間撹拌後、反応混合物にメタノール(742mL)を加えた。得られた反応混合物を酢酸エチル(4900mL)に加え、18~20℃で1時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(910mL)溶液を酢酸エチル(3640mL)に加え、18~20℃で1時間撹拌した。析出した固体を濾取後、16~20℃で減圧乾燥することで、P-THPを得た(収量130.2g、収率95.4%)。
実施例13
N-(2-ヒドロキシプロピル)メタクリルアミド重合体6.7倍重量、酢酸60モル当量、メタノール16倍重量、反応温度4~7℃、反応時間22時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(0.67g、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(2.0mL)溶液に、THP(100mg、日本マイクロバイオファーマ社製)及び酢酸(0.55mL)を加え、4~7℃で22時間撹拌後、反応混合物にメタノール(2.0mL)を加えた。得られた反応混合物を酢酸エチル(25mL)に加え、22~23℃で1時間撹拌後、析出した固体を濾取し、21~22℃で減圧乾燥することで、P-THPを得た(収量0.76g、収率98.6%)。
実施例14
N-(2-ヒドロキシプロピル)メタクリルアミド重合体5.0倍重量、酢酸60モル当量、メタノール16倍重量、反応温度1~5℃、反応時間20時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(3.00g、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(12.0mL)溶液に、THP(600mg、日本マイクロバイオファーマ社製)及び酢酸(3.28mL)を加え、1~5℃で20時間撹拌後、反応混合物にメタノール(15.0mL)を加えた。得られた反応混合物を酢酸エチル(120mL)に加え、19~21℃で0.5時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(27.0mL)溶液を酢酸エチル(120mL)に加え、19~23℃で1時間撹拌した。析出した固体を濾取後、23~24℃で減圧乾燥することで、P-THPを得た(収量3.37g、収率93.5%)。
実施例15
N-(2-ヒドロキシプロピル)メタクリルアミド重合体4.0倍重量、酢酸40モル当量、メタノール16倍重量、反応温度1~4℃、反応時間37時間条件でのP-THPの製造方法:
 N-(2-ヒドロキシプロピル)メタクリルアミド重合体(200mg、チェコ共和国科学アカデミー高分子化学研究所製)のメタノール(1.0mL)溶液に、THP(50mg、日本マイクロバイオファーマ社製)及び酢酸(0.18mL)を加え、1~4℃で37時間撹拌後、反応混合物にメタノール(0.8mL)を加えた。得られた反応混合物を酢酸エチル(10mL)に加え、1~5℃で1時間撹拌後、析出した固体を濾取した。得られた固体のメタノール(3.0mL)溶液を酢酸エチル(15mL)に加え、22~23℃で0.5時間撹拌した。析出した固体を濾取後、23~24℃で減圧乾燥することで、P-THPを得た(収量197mg、収率78.9%)。
 実施例2~15並びに比較例1及び比較例2の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000023
 ヒドロキシルアミン、酢酸及びメタノールを用いた評価方法により、実施例2~15並びに比較例1及び比較例2で得られた複合体を評価した結果、表3に示す通り、比較例1や2と比較して、反応温度を10℃以下とすることで結合薬物純度が高い目的物が得られることがわかった(実施例2~15)。また、アントラサイクリン系薬物の種類やN-(2-ヒドロキシプロピル)メタクリルアミド重合体の種類を変更した場合にも良好な結合薬物純度を示し(実施例4、5、9)、N-(2-ヒドロキシプロピル)メタクリルアミド重合体の使用量や酢酸のモル当量、メタノールの使用量を変更した場合にも98.0%以上の結合薬物純度を示したことから(実施例3、5、9)、結合薬物純度の向上には反応温度が重要であることがわかった。また、当該反応は反応温度を-10℃又は-30℃程度とした場合にも良好に進行し(実施例6、7)、スケールアップ製造も可能であることがわかった(実施例8)。
 また、アントラサイクリン系薬物に対するN-(2-ヒドロキシプロピル)メタクリルアミド重合体の使用量を大きく変更した場合にも、反応温度を10℃以下とすることで、98.0%以上の結合薬物純度を維持したまま、結合薬物担持量を変更可能であることがわかった(実施例10~15)。また、比較例1と比較して、反応温度を更に高くした場合には結合薬物純度は更に低下することがわかった(比較例2)。
実施例16
60℃気密条件下での保存安定性評価(短期苛酷試験での重量平均分子量の経時変化):
 比較例1及び実施例12~15で得られた複合体(5mg)をHPLC用バイアル瓶に秤量後、蓋をして60℃オーブン内に静置した。2週間後及び4週間後にそれぞれ出庫し、重量平均分子量を評価した。保存安定性評価開始時の重量平均分子量を0週とし、2週及び4週の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000024
 表4に示す通り、重量平均分子量の経時変化と結合薬物純度とを比較すると、結合薬物純度が95.0%未満では重量平均分子量が顕著に増加、すなわち、保存安定性が低いのに対し、結合薬物純度が95.0%以上であれば、複合体の高分子量化現象が顕著に抑制され、高い保存安定性を有することがわかった(比較例1、実施例12)。また、重量平均分子量の経時変化と結合薬物担持量とを比較すると、結合薬物担持量を15wt%以上に高めることで、複合体の高分子量化現象が更に抑制され、更に高い保存安定性を有することがわかった(実施例12~15)。
 本発明に係る複合体(I)又はその薬理学的に許容される塩に含まれる薬物の純度評価方法によれば、結合薬物純度が日本薬局方記載のTHP及びDOX塩酸塩の純度規格を満たすかどうか評価することができる。また、本発明の製造方法によれば、従来にない、高純度の複合体(I)を製造することができる。

Claims (9)

  1.  極性溶媒中、一般式(I)で示される複合体又はその薬理学的に許容される塩に、ヒドロキシルアミン、O-アルキルヒドロキシルアミン及びカルボン酸ヒドラジドからなる群から選ばれる少なくとも1種の含窒素求核剤をプロトン酸存在下で反応させる反応工程と、
     該反応工程で得られた反応混合物の純度を高速液体クロマトグラフィーにて評価する評価工程と、
     を備える、一般式(I)で示される複合体又はその薬理学的に許容される塩に含まれる薬物の純度評価方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、b、c、d及びeは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
  2.  前記極性溶媒は、アルコール系溶媒であり、
     前記含窒素求核剤は、ヒドロキシルアミン及びカルボン酸ヒドラジドからなる群から選ばれる少なくとも1種であり、
     前記プロトン酸は、カルボン酸である、請求項1記載の方法。
  3.  前記極性溶媒は、メタノールであり、
     前記含窒素求核剤は、ヒドロキシルアミン、アセトヒドラジド、プロパノヒドラジド、ブチロヒドラジド及び3-メチルブタノヒドラジドからなる群から選ばれる少なくとも1種であり、
     前記プロトン酸は、酢酸である、請求項1又は2記載の方法。
  4.  前記一般式(I)中、bは、1~10の整数であり、cは、30~500の整数であり、dは、1~50の整数であり、eは、1~50の整数である、請求項1~3のいずれか一項に記載の方法。
  5.  請求項1~4のいずれか一項に記載の方法で評価した場合に、一般式(I)で示される複合体又はその薬理学的に許容される塩に含まれる薬物の純度が95.0%以上である、一般式(I)で示される複合体又はその薬理学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000002
    [式中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、b、c、d及びeは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
  6.  Aは、(R)-テトラヒドロ-2H-ピラン-2-イル基であり、
     bは、5である、請求項5記載の複合体又はその薬理学的に許容される塩。
  7.  極性溶媒中、一般式(II)で示されるアントラサイクリン系薬物に、一般式(III)で示されるN-(2-ヒドロキシプロピル)メタクリルアミド重合体をプロトン酸存在下で10℃以下で反応させ、一般式(I)で示される複合体又はその薬理学的に許容される塩を得る反応工程を備える、一般式(I)で示される複合体又はその薬理学的に許容される塩の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    [式(I)及び式(II)中、Aは、水素原子又は(R)-テトラヒドロ-2H-ピラン-2-イル基を表し、式(I)及び式(III)中、b、c、d、e及びfは、それぞれ独立して、正の整数を表し、波線で記載した結合はE体、Z体いずれの配置も取りうることを表す。]
  8.  前記極性溶媒は、メタノールであり、
     前記プロトン酸は、酢酸であり、
     前記反応工程での反応温度は、-30℃~10℃である、請求項7記載の方法。
  9.  前記一般式(I)及び前記一般式(III)中、bは、1~10の整数であり、cは、30~500の整数であり、dは、1~50の整数であり、eは、1~50の整数であり、fは、d及びeの和である、請求項7又は8記載の方法。
PCT/JP2021/028274 2020-07-31 2021-07-30 複合体に含まれる薬物の純度評価方法及び複合体の製造方法 WO2022025228A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US18/017,685 US20230322976A1 (en) 2020-07-31 2021-07-30 Method of evaluating degree of purity of pharmaceutical substance contained in composite body, and method of producing composite body
CN202180032055.9A CN115552235A (zh) 2020-07-31 2021-07-30 复合体中包含的药物的纯度评价方法和复合体的制造方法
KR1020237001379A KR20230043822A (ko) 2020-07-31 2021-07-30 복합체에 포함되는 약물의 순도 평가 방법 및 복합체의 제조 방법
EP21850270.6A EP4190824A1 (en) 2020-07-31 2021-07-30 Method for evaluating degree of purity of pharmaceutical substance contained in composite body, and method for producing composite body
CA3189814A CA3189814A1 (en) 2020-07-31 2021-07-30 Method for evaluating degree of purity of pharmaceutical substance contained in composite body, and method for producing composite body
JP2021545451A JPWO2022025228A1 (ja) 2020-07-31 2021-07-30
BR112023000886A BR112023000886A2 (pt) 2020-07-31 2021-07-30 Método para avaliar a pureza de um fármaco, complexo ou sal farmaceuticamente aceitável do mesmo, e, método para produzir um complexo ou um sal farmaceuticamente aceitável do mesmo
AU2021317978A AU2021317978A1 (en) 2020-07-31 2021-07-30 Method for evaluating degree of purity of pharmaceutical substance contained in composite body, and method for producing composite body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020129825 2020-07-31
JP2020-129825 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022025228A1 true WO2022025228A1 (ja) 2022-02-03

Family

ID=80036356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028274 WO2022025228A1 (ja) 2020-07-31 2021-07-30 複合体に含まれる薬物の純度評価方法及び複合体の製造方法

Country Status (9)

Country Link
US (1) US20230322976A1 (ja)
EP (1) EP4190824A1 (ja)
JP (1) JPWO2022025228A1 (ja)
KR (1) KR20230043822A (ja)
CN (1) CN115552235A (ja)
AU (1) AU2021317978A1 (ja)
BR (1) BR112023000886A2 (ja)
CA (1) CA3189814A1 (ja)
WO (1) WO2022025228A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047948A1 (fr) * 2006-10-19 2008-04-24 Nanocarrier Co., Ltd. Copolymère bloc pour complexe médicamenteux et composition pharmaceutique
JP5904602B2 (ja) 2011-09-05 2016-04-13 一般財団法人バイオダイナミックス研究所 高分子型蛍光分子プローブ
WO2017191843A1 (ja) 2016-05-06 2017-11-09 一般財団法人バイオダイナミックス研究所 高分子化薬物含有医薬組成物
WO2020105701A1 (ja) * 2018-11-22 2020-05-28 京都薬品工業株式会社 新規ポリマー-活性薬物-コンジュゲート及びその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047948A1 (fr) * 2006-10-19 2008-04-24 Nanocarrier Co., Ltd. Copolymère bloc pour complexe médicamenteux et composition pharmaceutique
JP5904602B2 (ja) 2011-09-05 2016-04-13 一般財団法人バイオダイナミックス研究所 高分子型蛍光分子プローブ
WO2017191843A1 (ja) 2016-05-06 2017-11-09 一般財団法人バイオダイナミックス研究所 高分子化薬物含有医薬組成物
WO2020105701A1 (ja) * 2018-11-22 2020-05-28 京都薬品工業株式会社 新規ポリマー-活性薬物-コンジュゲート及びその用途

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CONFIGLIACCHI E., G RAZZANO, V RIZZO, A VIGEVANI: "HPLC methods for the determination of bound and free doxorubicin, and of bound and free galactosamine, in methacrylamide polymer-drug conjugates", JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, ELSEVIER B.V., AMSTERDAM, NL, vol. 15, 31 October 1996 (1996-10-31), AMSTERDAM, NL , pages 123 - 129, XP055890340, ISSN: 0731-7085, DOI: 10.1016/0731-7085(96)01825-0 *
ETRYCH ET AL., EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 106, 2017, pages 10 - 19
ETRYCH TOMáš; TSUKIGAWA KENJI; NAKAMURA HIDEAKI; CHYTIL PETR; FANG JUN; ULBRICH KAREL; OTAGIRI MASAKI; MAEDA HIROSHI: "Comparison of the pharmacological and biological properties of HPMA copolymer-pirarubicin conjugates: A single-chain copolymer conjugate and its biodegradable tandem-diblock copolymer conjugate", EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, ELSEVIER AMSTERDAM, NL, vol. 106, 18 May 2017 (2017-05-18), NL , pages 10 - 19, XP085124698, ISSN: 0928-0987, DOI: 10.1016/j.ejps.2017.05.031 *
FRAIER D., E FRIGERIO, E PIANEZZOLA, M STROLIN BENEDETTI, J CASSIDY, P VASEY: "A sensitive procedure for the quantitation of free and N-(2-hydroxypropyl)methacrylamide polymer-bound doxorubicin (PK1) and some of its metabolites, 13- dihydrodoxorubicin, 13-dihydrodoxorubicinone and doxorubicinone, in human plasma and urine by reversed-phase HPLC with fluorimetric detection", JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, ELSEVIER B.V., AMSTERDAM, NL, vol. 13, no. 4/5, 30 April 1995 (1995-04-30), AMSTERDAM, NL , pages 625 - 633, XP055890341, ISSN: 0731-7085, DOI: 10.1016/0731-7085(95)01301-z *
FRAIER ET AL., JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, vol. 13, 1995, pages 625 - 633
NAKAMURA HIDEAKI, KOZIOLOVÁ EVA, CHYTIL PETR, TSUKIGAWA KENJI, FANG JUN, HARATAKE MAMORU, ULBRICH KAREL, ETRYCH TOMÁŠ, MAEDA HIROS: "Pronounced Cellular Uptake of Pirarubicin versus That of Other Anthracyclines: Comparison of HPMA Copolymer Conjugates of Pirarubicin and Doxorubicin", MOLECULAR PHARMACEUTICS, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 12, 5 December 2016 (2016-12-05), US , pages 4106 - 4115, XP055890336, ISSN: 1543-8384, DOI: 10.1021/acs.molpharmaceut.6b00697 *
NAKAMURA HIDEAKI: " Development of Tumor-targeting Antitumor Agents Based on Polymer Effect", THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 140, no. 10, 1 October 2020 (2020-10-01), pages 1243 - 1249, XP055890344, DOI: 10.1248/yakushi.20-00158 *
SUMIE YOSHIOKA: "Stability of Medicines", 1995, NANKODO CO., LTD., pages: 142

Also Published As

Publication number Publication date
JPWO2022025228A1 (ja) 2022-02-03
AU2021317978A1 (en) 2023-02-16
EP4190824A1 (en) 2023-06-07
BR112023000886A2 (pt) 2023-02-07
US20230322976A1 (en) 2023-10-12
CA3189814A1 (en) 2022-02-03
KR20230043822A (ko) 2023-03-31
CN115552235A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US20230181741A1 (en) Rifaximin complexes
JP7086118B2 (ja) L-オルニチンフェニルアセテートおよびその製造方法
US10414829B2 (en) Process for the preparation of sugammadex and its intermediates
EP4059926A1 (en) Crystal form of tafamidis and preparation method therefor and use thereof
US11180477B2 (en) Process for the preparation of osimertinib (AZD9291) or a salt thereof, and “AZD9291 Aniline” or a salt thereof
US20230348368A1 (en) Process for preparing {6-[(diethylamino)methyl]naphthalen-2-yl}methyl [4-(hydroxycarbamoyl)phenyl]carbamate having high purity
WO2022025228A1 (ja) 複合体に含まれる薬物の純度評価方法及び複合体の製造方法
US8063250B2 (en) Crystal forms of O-desmethylvenlafaxine fumarate
EP2563355B1 (en) Process for the production of ralfinamide methanesulfonate salts or their R-enantiomers
US11267791B2 (en) Highly stable crystalline Eltrombopag monoethanolamine salt form D1
US20060128788A1 (en) Purification of tegaserod maleate
KR101928987B1 (ko) 신규한 고순도 미라베그론의 결정질 일수화물, 이의 제조방법 또는 용도
EP3498717B1 (en) Composition for hardening soft tissue
US10577341B1 (en) Beraprost-314d monohydrate crystals and methods for preparation thereof
US20070021359A1 (en) Addition salts of azithromycin and citric acid and process for preparing them
EP3377478B1 (en) Co-crystals of bilastine
WO2006090999A1 (en) Anhydrous sibutramine malates and preparation method thereof
EP3075724B1 (en) Solid form of agomelatine
JP2023552672A (ja) ヌクレオシド類似体の塩及びその結晶形、医薬組成物並びに用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545451

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3189814

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000886

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023000886

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230117

ENP Entry into the national phase

Ref document number: 2021317978

Country of ref document: AU

Date of ref document: 20210730

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021850270

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021850270

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE