WO2022025167A1 - 蓄電池システムおよび蓄電池の容量劣化診断方法 - Google Patents

蓄電池システムおよび蓄電池の容量劣化診断方法 Download PDF

Info

Publication number
WO2022025167A1
WO2022025167A1 PCT/JP2021/028051 JP2021028051W WO2022025167A1 WO 2022025167 A1 WO2022025167 A1 WO 2022025167A1 JP 2021028051 W JP2021028051 W JP 2021028051W WO 2022025167 A1 WO2022025167 A1 WO 2022025167A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
charge
prohibition period
discharge
management device
Prior art date
Application number
PCT/JP2021/028051
Other languages
English (en)
French (fr)
Inventor
雅浩 米元
智晃 高橋
駿弥 内藤
健志 篠宮
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022025167A1 publication Critical patent/WO2022025167A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present invention relates to a storage battery system and a method for diagnosing capacity deterioration of the storage battery.
  • Storage batteries such as lithium-ion batteries are required to accurately grasp the charge rate and use them within an appropriate range in order to suppress deterioration of the storage batteries.
  • the method of estimating the charge rate is to estimate the open circuit voltage of the battery and then estimate the charge rate by referring to the relationship between the open circuit voltage and the charge rate, and to estimate the charge rate based on the integrated value of the current. It is roughly divided into three types: a method and a method in which the above two methods are combined and calculated according to the situation.
  • an object of the present invention is to provide a technique for accurately diagnosing capacity deterioration of a storage battery that is repeatedly charged and discharged.
  • one of the representative storage battery systems of the present invention is a first charge rate (SOC (t1)) obtained by the storage battery management device from the open circuit voltage estimated value at the first time (t1). )), The second charge rate (SOC (t2)) obtained from the open circuit voltage estimated value at the second time (t2), and the current from the first time (t1) to the second time (t2).
  • the capacity deterioration rate is calculated from the integrated value of, the first charge / discharge prohibition period is set before the first time (t1), and the second charge / discharge prohibition is set before the second time (t2). It has a prohibition period setting unit that sets a period and sets any one of a charge prohibition period and a discharge prohibition period between the first time (t1) and the second charge / discharge prohibition period.
  • FIG. 1 is a diagram showing a configuration of a storage battery system according to an embodiment.
  • FIG. 2 is a diagram showing an example of SOC-OCV characteristics of a storage battery.
  • FIG. 3 is a flowchart showing an example of the operation of the storage battery management device in the capacity deterioration diagnosis mode.
  • FIG. 4A is a diagram showing an example of the transition of the charge rate (SOC) of the storage battery in the capacity deterioration diagnosis mode.
  • FIG. 4B is a diagram showing an example of the transition of the charge rate (SOC) of the storage battery in the capacity deterioration diagnosis mode.
  • FIG. 1 is a diagram showing a configuration of a storage battery system according to an embodiment.
  • the storage battery system 100 includes one or a plurality of storage batteries 101, a current sensor 102 for measuring the current value flowing through the storage battery 101, a voltage sensor 103 for measuring the voltage of the storage battery, and a temperature for measuring the temperature of the storage battery. It is composed of a sensor 104 and a storage battery management device 105, and can be connected to a host control device 106 that directly controls the charge / discharge current or charge / discharge power of the storage battery.
  • the storage battery management device 105 has a prohibition period setting unit 105a.
  • the storage battery 101 includes, but is not limited to, a lithium ion battery, a lead storage battery, a nickel hydrogen battery, a nickel cadmium battery, and the like.
  • Examples of the current sensor 102 include, but are not limited to, a hall type sensor and a shunt type sensor.
  • the storage battery management device 105 monitors the current, voltage, and temperature of the storage battery 101, estimates and calculates internal states such as the charge rate and deterioration rate of the storage battery 101, and sends them to the host control device 106. Then, the prohibition period setting unit 105a sets the charge / discharge prohibition period, the charge prohibition period, or the discharge prohibition period.
  • the upper control device 106 determines the charge / discharge current or charge / discharge power of the storage battery 101 based on the information transmitted from the storage battery management device 105 or the like, which is a lower control device.
  • the estimation of the charge rate (SOC) of the storage battery 101 will be described.
  • the closed circuit voltage of the storage battery 101 is measured by the voltage sensor 103, and the current value flowing through the storage battery 101 is measured by the current sensor 102.
  • the open circuit voltage (OCV) of the storage battery 101 is estimated from the closed circuit voltage and the current value.
  • the charge rate (SOC) of the storage battery 101 is estimated from the estimated open circuit voltage.
  • the open circuit voltage (OCV) is estimated by subtracting the product of the current value and the modeled resistance value of the storage battery 101 from the closed circuit voltage, and the open circuit voltage estimation value is used.
  • FIG. 3 is a flowchart showing an example of the operation of the storage battery management device in the capacity deterioration diagnosis mode.
  • FIGS. 4A and 4B are diagrams showing an example of the transition of the charge rate (SOC) of the storage battery in the capacity deterioration diagnosis mode.
  • FIG. 4A is an example in which the charge rate (SOC) reaches the first threshold value (SOCth1) after entering the capacity deterioration diagnosis mode
  • FIG. 4B shows the charge rate (SOC) after entering the capacity deterioration diagnosis mode. Is shown as an example of the case where the second threshold value (SOCth2) is reached.
  • a first threshold value (SOCth1) and a second threshold value (SOCth2) are set within the range of the charge rate (SOC) in which the storage battery is used.
  • SOC charge rate
  • SOCth2 the first threshold value
  • SOCth2 the second threshold value
  • the charge rate (SOC) of the storage battery 101 can be accurately estimated by referring to the SOC-OCV characteristic of the storage battery 101 from the estimated value of the open circuit voltage.
  • the first threshold value (SOCth1) and the second threshold value (SOCth2) it is preferable to select a position where the difference between the first threshold value (SOCth1) and the second threshold value (SOCth2) is large. This makes it possible to accurately estimate the capacity deterioration rate of the storage battery 101.
  • the storage battery management device 105 diagnoses capacity deterioration when, for example, a predetermined time has passed since the previous diagnosis or the temperature of the storage battery 101 is within a predetermined range. You can enter diagnostic mode. Then, after entering the capacity deterioration diagnosis mode, the operation shown in FIG. 3 is started. After entering the capacity deterioration diagnosis mode, the charge rate (SOC) reaches the first threshold value (SOCth1) as shown in FIG. 4A and the second threshold value (SOCth2) as shown in FIG. 4B. May reach.
  • SOC charge rate
  • the prohibition period setting unit 105a shown in FIG. 1 sets the first charge / discharge prohibition period a (the first period divided by the alternate long and short dash line in FIG. 4A).
  • the charge rate (SOC) reaches the first threshold value (SOCth1), charging / discharging is prohibited for a predetermined time, for example, 10 minutes, and the influence of the past current becomes small. This makes it possible to estimate an accurate open circuit voltage.
  • step 202 the end of the first charge / discharge prohibition period is set as the first time (t1), and the storage battery management device 105 sets the first charge rate from the open circuit voltage estimated value at the first time (t1). (SOC (t1)) is obtained, and current integration is started.
  • step 203 the prohibition period setting unit 105a sets the charge prohibition period b (the second period divided by the alternate long and short dash line in FIG. 4A) after the first time (t1). As a result, the charge rate (SOC) can reach the second threshold value (SOCth2) in a short time.
  • SOC the charge rate
  • SOCth2 the second threshold value
  • the prohibition period setting unit 105a sets the second charge / discharge prohibition period c (the third period divided by the alternate long and short dash line in FIG. 4A) after the charge prohibition period.
  • the charge rate (SOC) reaches the second threshold value (SOCth2)
  • SOCth2 the second threshold value
  • charging / discharging is prohibited for a predetermined time, for example, 10 minutes, and the influence of the past current becomes small. This makes it possible to estimate an accurate open circuit voltage.
  • step 205 the end of the second charge / discharge prohibition period is set as the second time (t2), and the storage battery management device 105 sets the second charge rate from the open circuit voltage estimated value at the second time (t2). (SOC (t2)) is obtained, and the current integration is completed.
  • the storage battery management device 105 calculates the capacity deterioration rate from the first charge rate (SOC (t1)), the second charge rate (SOC (t2)), and the integrated value of the current. For example, the integrated value of the current is divided by the difference between the first charge rate (SOC (t1)) and the second charge rate (SOC (t2)), and further divided by the initial capacity to obtain the capacity deterioration rate.
  • step 201, step 203, and step 204 in FIG. 3 will be referred to as step 201a, step 203a, and step 204a, respectively.
  • step 201a the prohibition period setting unit 105a sets the first charge / discharge prohibition period A (the first period divided by the alternate long and short dash line in FIG. 4B).
  • SOC charge rate
  • SOCth2 second threshold value
  • step 203a the prohibition period setting unit 105a sets the discharge prohibition period B (the second period divided by the alternate long and short dash line in FIG. 4B) after the first time (t1).
  • the charge rate (SOC) can reach the first threshold value (SOCth1) in a short time.
  • step 204a the prohibition period setting unit 105a sets the second charge / discharge prohibition period C (the third period divided by the alternate long and short dash line in FIG. 4B) after the discharge prohibition period.
  • the charge rate (SOC) reaches the first threshold value (SOCth1), charging / discharging is prohibited for a predetermined time, for example, 10 minutes, and the influence of the past current becomes small. This makes it possible to estimate an accurate open circuit voltage.
  • the storage battery management device 105 can accurately estimate the capacity deterioration rate.
  • the storage battery management device 105 may set the permissible charge power or the permissible discharge power to a predetermined value, for example, 0 during the charge / discharge prohibition period, the charge prohibition period, or the discharge prohibition period, and transmit the power to the host control device 106. ..
  • the allowable charge power and the allowable discharge power may be set to predetermined values, for example, 0 during the charge / discharge prohibition period and transmitted to the host control device 106, and the allowable charge power may be predetermined during the charge prohibition period.
  • the value of, for example, may be set to 0 and transmitted to the upper control device 106, or the allowable discharge power may be set to a predetermined value, for example, 0 and transmitted to the upper control device 106 during the discharge prohibition period.
  • the charge / discharge prohibition period, the charge prohibition period, or the discharge prohibition period can be freely set without changing the configuration of the host control device 106.
  • the storage battery management device 105 may transmit the charge rate information having a value higher than the charge rate estimated value to the upper control device 106 during the charge prohibition period, and the charge having a value lower than the charge rate estimated value during the discharge prohibition period may be transmitted.
  • the rate information may be transmitted to the upper control device 106.
  • the present invention can be applied not only to applications such as hybrid vehicles and hybrid diesel railcars, but also to storage battery systems in general.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • the charge rate (SOC) reaches the first threshold value (SOCth1) as shown in FIG. 4A and the second threshold value as shown in FIG. 4B.
  • SOCth1 the first threshold value
  • SOCth2 the configuration for estimating the capacity deterioration rate in both cases where (SOCth2) is reached
  • a configuration in which the capacity deterioration rate is estimated only in either case may be used.
  • 100 Storage battery system, 101 ... Storage battery, 102 ... Current sensor, 103 ... Voltage sensor, 104 ... Temperature sensor, 105 ... Storage battery management device, 105a ... Prohibition period setting unit, 106 ... Upper control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本発明は、充放電が繰り返される蓄電池について、正確に容量劣化を診断する技術を提供することを目的とする。このため、本発明の蓄電池システムは、蓄電池管理装置が、第1の時刻(t1)において開回路電圧推定値から求める第1の充電率(SOC(t1))と、第2の時刻(t2)において開回路電圧推定値から求める第2の充電率(SOC(t2))と、第1の時刻(t1)から第2の時刻(t2)までの電流の積算値とから、容量劣化率を演算し、第1の時刻(t1)の前に第1の充放電禁止期間を設定し、第2の時刻(t2)の前に第2の充放電禁止期間を設定し、第1の時刻(t1)と第2の充放電禁止期間の間に充電禁止期間と放電禁止期間のいずれか1つを設定する禁止期間設定部を有する。

Description

蓄電池システムおよび蓄電池の容量劣化診断方法
 本発明は、蓄電池システムおよび蓄電池の容量劣化診断方法に関する。
 リチウムイオン電池を代表とする蓄電池は、蓄電池の劣化を抑制するために充電率を正確に把握し、適切な範囲で使用することが求められる。充電率の推定方法は、電池の開回路電圧を推定してから、開回路電圧と充電率の関係を参照して充電率を推定する方式と、電流の積算値を基に充電率を推定する方式と、前記2方式を状況に応じて組み合わせて演算する方式の3種類に大別される。
 大電流の充放電中は、電流の積算値を基に充電率を演算する方式が有効であるが、この方式は蓄電池の容量劣化を加味する必要があり、この点で蓄電池の容量劣化診断技術が重要となる。
 そこで、蓄電池の容量劣化診断のために、2つの時刻(t1,t2)において開回路電圧推定値から求める2つの充電率(SOCv(t1),SOCv(t2))と、前記2つの時刻(t1,t2)の間の電流積算値と、から容量劣化を診断することが一般的に行われている。
 例えば、特許文献1には、蓄電池の充電前後の開回路電圧推定値から求める2つの充電率(SOCv(t1),SOCv(t2))と、2つの時刻(t1,t2)の間の電流積算値と、から容量劣化を診断する技術が開示される。
特許第5673654号公報
 蓄電池のみを動力源とするEVや蓄電池電車などの場合は、蓄電池の使用率が高いことから、短時間で急速充電を行うことが多い。そして、急速充電時には、短時間のうちに充電率が大きく変化するため、このタイミングで上記の容量劣化診断手法を適用するのが有効である。
 一方、エンジン出力を蓄電池がアシストするようなハイブリッド自動車やハイブリッド気動車などの場合は、外部電源を用いた急速充電のようなケースが少なく、EVや蓄電池電車に比べて、狭い充電率の範囲で充放電が繰り返されることが多い。そして、このような充放電管理は、上位制御装置によって制御される。
 このため、ハイブリッド自動車やハイブリッド気動車などの場合は、容量劣化診断に適したタイミングが存在しないことから、十分な容量劣化診断精度を確保できないといった課題がある。
 そこで、本発明は、充放電が繰り返される蓄電池について、正確に容量劣化を診断する技術を提供することを目的とする。
 上記課題を解決するために、代表的な本発明の蓄電池システムの一つは、蓄電池管理装置が、第1の時刻(t1)において開回路電圧推定値から求める第1の充電率(SOC(t1))と、第2の時刻(t2)において開回路電圧推定値から求める第2の充電率(SOC(t2))と、第1の時刻(t1)から第2の時刻(t2)までの電流の積算値とから、容量劣化率を演算し、第1の時刻(t1)の前に第1の充放電禁止期間を設定し、第2の時刻(t2)の前に第2の充放電禁止期間を設定し、第1の時刻(t1)と第2の充放電禁止期間の間に充電禁止期間と放電禁止期間のいずれか1つを設定する禁止期間設定部を有する。
 本発明によれば、充放電が繰り返される蓄電池について、正確に容量劣化を診断することが可能となる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
図1は、実施例の蓄電池システムの構成を示す図である。 図2は、蓄電池のSOC-OCV特性の例を示す図である。 図3は、容量劣化診断モードにおける蓄電池管理装置の動作の例を示すフローチャートである。 図4Aは、容量劣化診断モードにおける蓄電池の充電率(SOC)の推移の例を示す図である。 図4Bは、容量劣化診断モードにおける蓄電池の充電率(SOC)の推移の例を示す図である。
 以下、図を参照して本発明を実施するための形態について説明する。
<蓄電池システムの全体構成>
 まず、実施例の蓄電池システムの全体構成について説明する。
 図1は、実施例の蓄電池システムの構成を示す図である。同図において、蓄電池システム100は、1つまたは複数の蓄電池101と、蓄電池101に流れる電流値を測定する電流センサ102と、蓄電池の電圧を測定する電圧センサ103と、蓄電池の温度を測定する温度センサ104と、蓄電池管理装置105から構成され、蓄電池の充放電電流、または充放電電力を直接制御する上位制御装置106に接続可能である。そして、蓄電池管理装置105は、禁止期間設定部105aを有する。
 蓄電池101は、リチウムイオン電池や、鉛蓄電池、ニッケル水素電池、ニッケルカドミウム電池などが挙げられるが、これらに限定されない。
 電流センサ102は、ホール型センサやシャント型センサなどが挙げられるが、これらに限定されない。
 蓄電池管理装置105は、蓄電池101の電流、電圧、温度を監視し、蓄電池101の充電率や劣化率等の内部状態を推定演算し、上位制御装置106に送る。そして、禁止期間設定部105aは、充放電禁止期間、充電禁止期間または放電禁止期間を設定する。
 上位制御装置106は、下位制御装置である蓄電池管理装置105などから送信された情報を基に蓄電池101の充放電電流または充放電電力を決定する。
<充電率(SOC)の推定>
 次に、蓄電池101の充電率(SOC)の推定について説明する。
 まず、電圧センサ103により蓄電池101の閉回路電圧を測定し、電流センサ102により蓄電池101に流れる電流値を測定する。そして、閉回路電圧と電流値とから、蓄電池101の開回路電圧(OCV)を推定する。次に、開回路電圧推定値から、蓄電池101の充電率(SOC)を推定する。
 推定の方法としては、例えば、閉回路電圧から、電流値と蓄電池101のモデル化した抵抗値との積を差し引いて、開回路電圧(OCV)を推定し、そして、開回路電圧推定値から、図2に示すような蓄電池101のSOC-OCV特性を参照して、蓄電池101の充電率(SOC)を推定する方法などがある。
<蓄電池管理装置の動作>
 次に、蓄電池管理装置105の動作について説明する。
 図3は、容量劣化診断モードにおける蓄電池管理装置の動作の例を示すフローチャートである。
 また、図4Aおよび図4Bは、容量劣化診断モードにおける蓄電池の充電率(SOC)の推移の例を示す図である。図4Aは、容量劣化診断モードに入った後に充電率(SOC)が第1の閾値(SOCth1)に達する場合の例であり、図4Bは、容量劣化診断モードに入った後に充電率(SOC)が第2の閾値(SOCth2)に達する場合の例を示したものである。
 まず、蓄電池管理装置105を動作させる前に、蓄電池を使用する充電率(SOC)の範囲内に、第1の閾値(SOCth1)および第2の閾値(SOCth2)を設定する。図4Aおよび図4Bに示すように、第1の閾値(SOCth1)は第2の閾値(SOCth2)より大きいとする。第1の閾値(SOCth1)および第2の閾値(SOCth2)は、SOC-OCV特性の傾き(dOCV/dSOC)が大きい位置を選ぶとよい。これにより、開回路電圧推定値から蓄電池101のSOC-OCV特性を参照して、蓄電池101の充電率(SOC)を正確に推定することができる。
 また、第1の閾値(SOCth1)および第2の閾値(SOCth2)は、第1の閾値(SOCth1)と第2の閾値(SOCth2)の差が大きい位置を選ぶとよい。これにより、蓄電池101の容量劣化率を正確に推定することができる。
 なお、蓄電池管理装置105は、例えば、前回の診断から所定の時間が経過した、あるいは、蓄電池101の温度が所定の範囲内にあるなどの条件を満たした場合に、容量劣化を診断する容量劣化診断モードに入ることができる。そして、容量劣化診断モードに入った後に、図3に示す動作を開始する。容量劣化診断モードとなった後、充電率(SOC)は、図4Aに示すように、第1の閾値(SOCth1)に達する場合と、図4Bに示すように、第2の閾値(SOCth2)に達する場合とがある。
<<充電率が第1の閾値に達する場合>>
 まず、図4Aに示すように、容量劣化診断モードとなった後、充電率(SOC)が第1の閾値(SOCth1)に達する場合について説明する。
 ステップ201では、図1に示す禁止期間設定部105aが、第1の充放電禁止期間a(図4Aにおいて、一点鎖線により区分された第1の期間)を設定する。充電率(SOC)が第1の閾値(SOCth1)に達すると、所定の時間、例えば10分間充放電を禁止して、過去の電流の影響が小さくなるのを待つ。これにより、正確な開回路電圧を推定することができる。
 ステップ202では、第1の充放電禁止期間の終了時を第1の時刻(t1)とし、蓄電池管理装置105が、第1の時刻(t1)において、開回路電圧推定値から第1の充電率(SOC(t1))を求め、電流の積算を開始する。
 ステップ203では、禁止期間設定部105aが、第1の時刻(t1)の後に、充電禁止期間b(図4Aにおいて、一点鎖線により区分された第2の期間)を設定する。これにより、短時間で充電率(SOC)が第2の閾値(SOCth2)に達することができる。
 ステップ204では、禁止期間設定部105aが、充電禁止期間の後に第2の充放電禁止期間c(図4Aにおいて、一点鎖線により区分された第3の期間)を設定する。充電率(SOC)が第2の閾値(SOCth2)に達すると、所定の時間、例えば10分間充放電を禁止して、過去の電流の影響が小さくなるのを待つ。これにより、正確な開回路電圧を推定することができる。
 ステップ205では、第2の充放電禁止期間の終了時を第2の時刻(t2)とし、蓄電池管理装置105が、第2の時刻(t2)において、開回路電圧推定値から第2の充電率(SOC(t2))を求め、電流の積算を終了する。
 ステップ206では、蓄電池管理装置105が、第1の充電率(SOC(t1))と、第2の充電率(SOC(t2))と、電流の積算値とから、容量劣化率を演算する。例えば、電流の積算値を第1の充電率(SOC(t1))と第2の充電率(SOC(t2))の差で除し、さらに初期容量で除して、容量劣化率を求める。
<<充電率が第2の閾値に達する場合>>
 次に、図4Bに示すように、容量劣化診断モードとなった後、充電率(SOC)が第2の閾値(SOCth2)に達する場合について説明する。
 なお、以下では図3のステップ201、ステップ203およびステップ204をそれぞれ、ステップ201a、ステップ203aおよびステップ204aと読み替えて説明する。
 ステップ201aでは、禁止期間設定部105aが、第1の充放電禁止期間A(図4Bにおいて、一点鎖線により区分された第1の期間)を設定する。充電率(SOC)が第2の閾値(SOCth2)に達すると、所定の時間、例えば10分間充放電を禁止して、過去の電流の影響が小さくなるのを待つ。これにより、正確な開回路電圧を推定することができる。
 ステップ203aでは、禁止期間設定部105aが、第1の時刻(t1)の後に、放電禁止期間B(図4Bにおいて、一点鎖線により区分された第2の期間)を設定する。これにより、短時間で充電率(SOC)が第1の閾値(SOCth1)に達することができる。
 ステップ204aでは、禁止期間設定部105aが、放電禁止期間の後に第2の充放電禁止期間C(図4Bにおいて、一点鎖線により区分された第3の期間)を設定する。充電率(SOC)が第1の閾値(SOCth1)に達すると、所定の時間、例えば10分間充放電を禁止して、過去の電流の影響が小さくなるのを待つ。これにより、正確な開回路電圧を推定することができる。
 以上のとおりの動作により、蓄電池管理装置105は、正確な容量劣化率を推定することができる。
 なお、蓄電池管理装置105は、充放電禁止期間、充電禁止期間または放電禁止期間において、許容充電電力または許容放電電力を所定の値、例えば0に設定して上位制御装置106へ送信してもよい。具体的には、充放電禁止期間において、許容充電電力および許容放電電力を所定の値、例えば0に設定して上位制御装置106へ送信してもよく、充電禁止期間において、許容充電電力を所定の値、例えば0に設定して上位制御装置106へ送信してもよく、放電禁止期間において、許容放電電力を所定の値、例えば0に設定して上位制御装置106へ送信してもよい。
 このようにすると、上位制御装置106の構成を変更することなく、充放電禁止期間、充電禁止期間または放電禁止期間を自在に設定することができる。
 また、蓄電池管理装置105は、充電禁止期間において充電率推定値よりも高い値の充電率情報を上位制御装置106へ送信してもよく、放電禁止期間において充電率推定値よりも低い値の充電率情報を上位制御装置106へ送信してもよい。
 このようにすると、充電禁止期間または放電禁止期間を確実に設定することができる。
 当然ながら、本発明は、ハイブリッド自動車やハイブリッド気動車などの用途に限らず、蓄電池システム一般に適用することが可能である。
 また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。実施例では、容量劣化診断モードとなった後、充電率(SOC)が、図4Aに示すように、第1の閾値(SOCth1)に達する場合と、図4Bに示すように、第2の閾値(SOCth2)に達する場合との両方の場合に容量劣化率を推定する構成について説明したが、いずれか一方の場合にのみ容量劣化率を推定する構成としてもよい。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
100…蓄電池システム、101…蓄電池、102…電流センサ、103…電圧センサ、104…温度センサ、105…蓄電池管理装置、105a…禁止期間設定部、106…上位制御装置

Claims (14)

  1.  蓄電池と、
     前記蓄電池に流れる電流を測定する電流センサと、
     前記蓄電池の電圧を測定する電圧センサと、
     前記蓄電池の電流および電圧を監視し、前記蓄電池の充電率を推定し、容量劣化率を演算する蓄電池管理装置と、
     を有する蓄電池システムであって、
     前記蓄電池管理装置は、第1の時刻において開回路電圧推定値から求める第1の充電率と、第2の時刻において開回路電圧推定値から求める第2の充電率と、前記第1の時刻から前記第2の時刻までの電流の積算値とから、容量劣化率を演算し、
     前記第1の時刻の前に第1の充放電禁止期間を設定し、前記第2の時刻の前に第2の充放電禁止期間を設定し、前記第1の時刻と前記第2の充放電禁止期間の間に充電禁止期間と放電禁止期間のいずれか1つを設定する禁止期間設定部を有する、
     蓄電池システム。
  2.  請求項1に記載の蓄電池システムであって、
     前記蓄電池の充放電電流または充放電電力を制御する上位制御装置に接続可能であり、
     前記蓄電池管理装置は、前記第1の充放電禁止期間、前記第2の充放電禁止期間、前記充電禁止期間または前記放電禁止期間において、許容充電電力または許容放電電力を所定の値に設定し、設定された許容充電電力または許容放電電力を前記上位制御装置へ送信する、
     蓄電池システム。
  3.  請求項2に記載の蓄電池システムであって、
     前記蓄電池管理装置は、前記第1の充放電禁止期間または前記第2の充放電禁止期間において、許容充電電力および許容放電電力を所定の値に設定し、設定された許容充電電力および許容放電電力を前記上位制御装置へ送信する、
     蓄電池システム。
  4.  請求項2または請求項3に記載の蓄電池システムであって、
     前記蓄電池管理装置は、前記充電禁止期間において、許容充電電力を所定の値に設定し、設定された許容充電電力を前記上位制御装置へ送信する、
     蓄電池システム。
  5.  請求項2ないし請求項4のいずれか一項に記載の蓄電池システムであって、
     前記蓄電池管理装置は、前記放電禁止期間において、許容放電電力を所定の値に設定し、設定された許容放電電力を前記上位制御装置へ送信する、
     蓄電池システム。
  6.  請求項2に記載の蓄電池システムであって、
     前記蓄電池管理装置は、前記充電禁止期間において充電率推定値よりも高い値の充電率情報を前記上位制御装置へ送信する、
     蓄電池システム。
  7.  請求項2に記載の蓄電池システムであって、
     前記蓄電池管理装置は、前記放電禁止期間において充電率推定値よりも低い値の充電率情報を前記上位制御装置へ送信する、
     蓄電池システム。
  8.  蓄電池と、
     前記蓄電池に流れる電流を測定する電流センサと、
     前記蓄電池の電圧を測定する電圧センサと、
     前記蓄電池の電流および電圧を監視し、前記蓄電池の充電率を推定し、容量劣化率を演算する蓄電池管理装置と、
     を有する蓄電池システムにおける蓄電池の容量劣化診断方法であって、
     前記蓄電池管理装置が禁止期間設定部を有し、
     前記禁止期間設定部が、第1の充放電禁止期間を設定するステップと、
     前記第1の充放電禁止期間の終了時を第1の時刻とし、前記蓄電池管理装置が、前記第1の時刻において、開回路電圧推定値から第1の充電率を求め、電流の積算を開始するステップと、
     前記禁止期間設定部が、前記第1の時刻の後に、充電禁止期間と放電禁止期間のいずれか1つを設定するステップと、
     前記禁止期間設定部が、前記充電禁止期間と前記放電禁止期間のいずれか1つの後に第2の充放電禁止期間を設定するステップと、
     前記第2の充放電禁止期間の終了時を第2の時刻とし、前記蓄電池管理装置が、前記第2の時刻において、開回路電圧推定値から第2の充電率を求め、電流の積算を終了するステップと、
     前記蓄電池管理装置が、前記第1の充電率と、前記第2の充電率と、電流の積算値とから、容量劣化率を演算するステップと、
     を有する蓄電池の容量劣化診断方法。
  9.  請求項8に記載の蓄電池の容量劣化診断方法であって、
     前記蓄電池システムは、前記蓄電池の充放電電流または充放電電力を制御する上位制御装置に接続可能であり、
     前記蓄電池管理装置が、前記第1の充放電禁止期間、前記第2の充放電禁止期間、前記充電禁止期間または前記放電禁止期間において、許容充電電力または許容放電電力を所定の値に設定し、設定された許容充電電力または許容放電電力を前記上位制御装置へ送信するステップ、
     を有する蓄電池の容量劣化診断方法。
  10.  請求項9に記載の蓄電池の容量劣化診断方法であって、
     前記蓄電池管理装置が、前記第1の充放電禁止期間または前記第2の充放電禁止期間において、許容充電電力および許容放電電力を所定の値に設定し、設定された許容充電電力および許容放電電力を前記上位制御装置へ送信するステップ、
     を有する蓄電池の容量劣化診断方法。
  11.  請求項9または請求項10に記載の蓄電池の容量劣化診断方法であって、
     前記蓄電池管理装置が、前記充電禁止期間において、許容充電電力を所定の値に設定し、設定された許容充電電力を前記上位制御装置へ送信するステップ、
     を有する蓄電池の容量劣化診断方法。
  12.  請求項9ないし請求項11のいずれか一項に記載の蓄電池の容量劣化診断方法であって、
     前記蓄電池管理装置が、前記放電禁止期間において、許容放電電力を所定の値に設定し、設定された許容放電電力を前記上位制御装置へ送信するステップ、
     を有する蓄電池の容量劣化診断方法。
  13.  請求項9に記載の蓄電池の容量劣化診断方法であって、
     前記蓄電池管理装置が、前記充電禁止期間において充電率推定値よりも高い値の充電率情報を前記上位制御装置へ送信するステップ、
     を有する蓄電池の容量劣化診断方法。
  14.  請求項9に記載の蓄電池の容量劣化診断方法であって、
     前記蓄電池管理装置が、前記放電禁止期間において充電率推定値よりも低い値の充電率情報を前記上位制御装置へ送信するステップ、
     を有する蓄電池の容量劣化診断方法。
PCT/JP2021/028051 2020-07-30 2021-07-29 蓄電池システムおよび蓄電池の容量劣化診断方法 WO2022025167A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-128903 2020-07-30
JP2020128903A JP2022025810A (ja) 2020-07-30 2020-07-30 蓄電池システムおよび蓄電池の容量劣化診断方法

Publications (1)

Publication Number Publication Date
WO2022025167A1 true WO2022025167A1 (ja) 2022-02-03

Family

ID=80036279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028051 WO2022025167A1 (ja) 2020-07-30 2021-07-29 蓄電池システムおよび蓄電池の容量劣化診断方法

Country Status (2)

Country Link
JP (1) JP2022025810A (ja)
WO (1) WO2022025167A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171789A (ja) * 2008-01-18 2009-07-30 Fujitsu Ten Ltd 電子制御装置
JP5673654B2 (ja) * 2012-11-16 2015-02-18 トヨタ自動車株式会社 蓄電システムおよび満充電容量算出方法
JP2018077999A (ja) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 電池システム
JP2020061904A (ja) * 2018-10-12 2020-04-16 本田技研工業株式会社 診断システム、診断方法、及びプログラム
JP2020101470A (ja) * 2018-12-24 2020-07-02 株式会社デンソー 電池装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171789A (ja) * 2008-01-18 2009-07-30 Fujitsu Ten Ltd 電子制御装置
JP5673654B2 (ja) * 2012-11-16 2015-02-18 トヨタ自動車株式会社 蓄電システムおよび満充電容量算出方法
JP2018077999A (ja) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 電池システム
JP2020061904A (ja) * 2018-10-12 2020-04-16 本田技研工業株式会社 診断システム、診断方法、及びプログラム
JP2020101470A (ja) * 2018-12-24 2020-07-02 株式会社デンソー 電池装置

Also Published As

Publication number Publication date
JP2022025810A (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
US10553896B2 (en) Battery capacity degradation resolution methods and systems
CN107533109B (zh) 电池控制装置以及电动车辆系统
US9925888B2 (en) Battery cell state of charge initialization in a presence of voltage measurement uncertainty
US10461545B2 (en) Battery system
US9354277B2 (en) Apparatus of SOC estimation during plug-in charge mode
JP5393837B2 (ja) バッテリの充電率推定装置
US9880224B2 (en) Battery system monitoring device
US11814030B2 (en) Electrified vehicle control using battery state of charge and power capability strategy
CN105083037A (zh) 电池单元荷电状态估计
CN104364116A (zh) 蓄电系统和均衡方法
US20170057372A1 (en) Electric or hybrid vehicle battery pack voltage measurement
WO2015093361A1 (ja) 電池充電率推定装置及び電池充電率推定方法
US10393823B2 (en) Battery system monitoring apparatus
JPWO2020129478A1 (ja) 電池状態推定装置、電池状態推定方法、及び電池システム
CN107472049B (zh) 在线车辆电池容量诊断系统与方法
Vennam et al. A novel coupled electro-thermal-aging model for simultaneous SOC, SOH, and parameter estimation of lithium-ion batteries
US20230039183A1 (en) Battery control apparatus and battery system
TWI736373B (zh) 動態電池健康程度偵測方法
WO2022025167A1 (ja) 蓄電池システムおよび蓄電池の容量劣化診断方法
US20220131400A1 (en) Battery control apparatus
JPWO2020129477A1 (ja) 電池状態推定装置、電池状態推定方法、及び電池システム
US11135939B2 (en) System and method for hybrid-electric vehicle battery capacity estimation
US20220212545A1 (en) Electrified vehicle control using battery electrochemical equilibrium based state of charge and power capability estimates
KR102255466B1 (ko) 배터리의 soc 추정 방법 및 시스템
US11899070B2 (en) Battery control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848891

Country of ref document: EP

Kind code of ref document: A1