WO2022025135A1 - Wear-resistant steel - Google Patents

Wear-resistant steel Download PDF

Info

Publication number
WO2022025135A1
WO2022025135A1 PCT/JP2021/027960 JP2021027960W WO2022025135A1 WO 2022025135 A1 WO2022025135 A1 WO 2022025135A1 JP 2021027960 W JP2021027960 W JP 2021027960W WO 2022025135 A1 WO2022025135 A1 WO 2022025135A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
wear
content
resistant steel
steel
Prior art date
Application number
PCT/JP2021/027960
Other languages
French (fr)
Japanese (ja)
Inventor
雄三 川本
仁秀 吉村
学 星野
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021571043A priority Critical patent/JPWO2022025135A1/ja
Priority to KR1020237001354A priority patent/KR20230024381A/en
Priority to CN202180048820.6A priority patent/CN115989326A/en
Publication of WO2022025135A1 publication Critical patent/WO2022025135A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Definitions

  • This disclosure relates to wear-resistant steel. It was
  • wear-resistant steel Since wear-resistant steel is required to have hardness near the surface layer, it contains an element that enhances hardenability. Cr, Ni, and Mo are elements that enhance hardenability. Conventionally, wear-resistant steels containing Cr, Ni, Mo and the like have been proposed (see, for example, Patent Documents 1 to 4). Further, a steel sheet having high strength and improved toughness has been proposed (see, for example, Patent Document 5).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-204575
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-102185
  • Patent Document 3 Japanese Patent Application Laid-Open No. 59-129724
  • Patent Document 4 Japanese Patent Application Laid-Open No. 59-707421
  • Patent Document 5 International Publication No. 2019/050010
  • the wear-resistant steels of Patent Document 1 and Patent Document 2 contain 1.0% by mass or more of Mo.
  • the wear-resistant steels of Patent Documents 3 and 4 contain 2.0% by mass or more of Ni.
  • Ni and Mo are expensive elements, and reduction is desired from the viewpoint of alloy cost.
  • the high-strength steel plate of Patent Document 5 is intended to improve toughness, but wear resistance is not taken into consideration. In view of such circumstances, an object of the present disclosure is to provide a wear-resistant steel having excellent wear resistance and low-temperature toughness while suppressing the use of expensive elements such as Ni and Mo.
  • the gist of this disclosure is as follows.
  • the chemical composition is mass%. C: 0.08% or more, 0.20% or less, Si: 0.01% or more, 0.50% or less, Mn: 0.10% or more, 2.00% or less, P: 0.015% or less, S: 0.0300% or less, Cr: 2.10% or more, 8.00% or less, N: 0.008% or less, Cu: 0% or more, 0.50% or less, Ni: 0% or more, 0.50% or less, Mo: 0% or more, 0.50% or less, V: 0% or more, 0.500% or less, W: 0% or more, 0.50% or less, B: 0% or more, 0.0050% or less, Al: 0% or more, 0.300% or less, Ti: 0% or more, 0.100% or less, Nb: 0% or more, 0.100% or less, Ca: 0% or more, 0.0100% or less, Mg: 0% or more, 0.0100% or less, REM: 0% or more, 0.0100% or less, and the balance
  • the thickness when the thickness is t, when t is less than 16 mm, it is 1 / 2t from the surface, and when t is 16 mm or more, it is 1 / 4t from the surface.
  • the carbide contained in the metal structure is 0% or more and 0.5% or less in area%, and the average circle equivalent diameter of the carbide is 500 nm or less.
  • the average grain size of 10 crystal grains is 40 ⁇ m or less in descending order of grain size, and at -40 ° C.
  • Crystall absorption energy is 27J or more
  • the surface hardness at a position 0.7 mm in the thickness direction from the surface is 360 HV10 or more and 634 ⁇ [C] 1/2 + 140 HV10 or more.
  • Worn steel. (2) The wear-resistant steel according to claim 1, wherein the hardness of the central portion in the central portion in the thickness direction is 360 HV10 or more and 634 ⁇ [C] 1/2 + 140 HV10 or more.
  • wear-resistant steel having excellent wear resistance and low-temperature toughness is provided while suppressing the use of expensive elements such as Ni and Mo.
  • expensive elements such as Ni and Mo.
  • the present embodiment a steel sheet will be mainly described.
  • the upper limit of the numerical range described in one step may be replaced with the upper limit value of the numerical range described in another step.
  • the lower limit of the range may be replaced with the lower limit of the numerical range described in other steps.
  • the upper limit value or the lower limit value may be replaced with the value shown in the embodiment.
  • the term "process” is included in this term not only in an independent process but also in the case where the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • Cr is an element that is cheaper than Ni and Mo. By suppressing the Ni and Mo contents and increasing the Cr content, it is possible to reduce the cost of wear-resistant steel. As a result of the studies by the present inventors, Cr required for alloy-saving wear-resistant steel when Ni and Mo are not intentionally contained or the Ni and Mo contents are suppressed to 0.50% or less, respectively. It was found that the content was 2.10% or more. Further, it was found that by increasing the Cr content in this way, the corrosion resistance is also improved, which contributes to the extension of the life of the wear-resistant steel used in the wet environment. On the other hand, in order to secure the surface hardness of the wear-resistant steel, it is preferable to increase the C content, but there is a problem that the toughness is lowered.
  • the present inventors have succeeded in achieving both surface hardness and toughness of wear-resistant steel by suppressing precipitation and coarsening of carbides.
  • the precipitation and coarsening of carbides are suppressed and the toughness is ensured by limiting the C content and the quenching stop temperature.
  • the precipitation and coarsening of carbides can be effectively suppressed by setting the C content to 0.20% or less and the quenching stop temperature to 200 ° C. or less.
  • the surface hardness is 360 HV10 or more and 634 ⁇ [C] in Vickers hardness.
  • the total area ratio of one or both of martensite and lower bainite was found to be 95% or more.
  • C is an element that enhances the hardenability of steel and increases its hardness.
  • the C content is 0.08% or more from the viewpoint of ensuring hardness.
  • the C content is preferably 0.10% or more.
  • C is an element that produces carbides.
  • the C content is 0.20% or less from the viewpoint of ensuring toughness.
  • the C content is preferably 0.18% or less, more preferably 0.15% or less.
  • Si 0.01% or more, 0.50% or less
  • Si silicon
  • the Si content is 0.01% or more from the viewpoint of obtaining the effect of deoxidation.
  • the Si content is preferably 0.05% or more, more preferably 0.10% or more.
  • the Si content is 0.50% or less from the viewpoint of ensuring toughness.
  • the Si content is preferably 0.40% or less, more preferably 0.30% or less.
  • Mn manganese
  • Mn manganese
  • the Mn content is 0.10% or more from the viewpoint of ensuring hardness.
  • the Mn content is preferably 0.50% or more, more preferably 0.80% or more, still more preferably 1.00% or more.
  • Mn is an element that embrittles the grain boundaries of steel.
  • the Mn content is 2.00% or less from the viewpoint of ensuring toughness.
  • the Mn content is preferably 1.80% or less, more preferably 1.60% or less.
  • P phosphorus
  • the P content is 0.015% or less from the viewpoint of ensuring toughness.
  • the P content is preferably 0.012% or less, more preferably 0.010% or less.
  • the P content is preferably reduced, and the lower limit is not limited, but it may be more than 0% from the viewpoint of manufacturing cost.
  • the P content may be 0.001% or more.
  • S sulfur
  • S is an element mixed with steel in raw materials and manufacturing processes.
  • the S content is 0.0300% or less from the viewpoint of ensuring toughness.
  • the S content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • the S content is preferably reduced, and the lower limit is not limited, but it may be more than 0% from the viewpoint of manufacturing cost.
  • the S content may be 0.0001% or more.
  • Cr 2.10% or more, 8.00% or less
  • Cr chromium
  • Cr is an element that enhances the hardenability of steel. Cr is an important element from the viewpoint of suppressing the content of expensive elements such as Ni and Mo and ensuring the hardness and toughness of wear-resistant steel.
  • the Cr content is 2.10% or more from the viewpoint of ensuring hardenability.
  • the Cr content is preferably 2.20% or more, more preferably 2.40% or more.
  • the Cr content is 8.00% or less and may be 7.50% or less from the viewpoint of cost.
  • the Cr content is preferably 5.00% or less, more preferably 3.00% or less.
  • N nitrogen
  • the N content is 0.0080% or less from the viewpoint of ensuring toughness.
  • the N content is preferably 0.0070% or less, more preferably 0.0060% or less.
  • the N content is preferably reduced, and the lower limit is not limited, but it may be more than 0% from the viewpoint of manufacturing cost.
  • Al or Ti is contained, it is combined with N to form fine nitrides such as AlN and TiN.
  • the N content is preferably 0.0010% or more, more preferably 0.0020% or more, from the viewpoint of miniaturization of the metal structure by the nitride.
  • one or more of Cu, Ni, Mo, V, W and B are described below as necessary. It may be contained within the range of.
  • Cu is an element that enhances the hardenability of steel.
  • the lower limit of the Cu content is not limited and may be 0%.
  • the Cu content is preferably 0.01% or more, more preferably 0.03% or more.
  • the Cu content is 0.50% or less from the viewpoint of cost.
  • the Cu content is preferably 0.30% or less, 0.10% or less, and may be 0.05% or less.
  • Ni 0% or more, 0.50% or less
  • Ni nickel
  • the lower limit of the Ni content is not limited and may be 0%. In order to obtain the effect, the Ni content is preferably 0.01% or more, more preferably 0.03% or more. On the other hand, the Ni content is 0.50% or less from the viewpoint of cost. The Ni content is preferably 0.30% or less, more preferably 0.10% or less, still more preferably 0.05% or less.
  • Mo molybdenum
  • Mo molybdenum
  • the lower limit of the Mo content is not limited and may be 0%.
  • the Mo content is preferably 0.01% or more, more preferably 0.03% or more.
  • the Mo content is 0.50% or less from the viewpoint of cost. It is preferably 0.30% or less, more preferably 0.10% or less, still more preferably 0.05% or less.
  • V vanadium
  • V (vanadium) is an element that forms a precipitate such as a carbide or a nitride, and has an effect of enhancing hardenability.
  • the lower limit of the V content is not limited and may be 0%.
  • the V content is preferably 0.003% or more, more preferably 0.005% or more.
  • the V content is 0.500% or less from the viewpoint of cost. It is preferably 0.300% or less, more preferably 0.100% or less, and further preferably 0.050% or less.
  • W tungsten
  • the lower limit of the W content is not limited and may be 0%.
  • the W content is preferably 0.01% or more, more preferably 0.03% or more.
  • the W content is 0.50% or less from the viewpoint of cost.
  • the W content is preferably 0.30% or less, more preferably 0.10% or less, still more preferably 0.05% or less.
  • B 0% or more, 0.0050% or less
  • B is an element that significantly enhances the hardenability of steel even in a trace amount.
  • the lower limit of the B content is not limited and may be 0%.
  • the B content is preferably 0.0003% or more, more preferably 0.0005% or more, still more preferably 0.0008% or more.
  • the B content is preferably 0.0045% or less, more preferably 0.0040% or less.
  • the wear-resistant steel according to the present embodiment contains one or more of Al, Ti, Nb, Ca, Mg and REM that form compounds such as carbides, nitrides, oxides and sulfides, if necessary. It may be contained.
  • Al 0% or more, 0.300% or less
  • Al (aluminum) is a deoxidizing element and is also an element forming a nitride.
  • the lower limit of the Al content is not limited and may be 0%.
  • the Al content is preferably 0.005% or more.
  • the Al content is more preferably 0.010% or more.
  • the Al content is 0.300% or less.
  • the Al content is preferably 0.100% or less, more preferably 0.070% or less.
  • Ti 0% or more, 0.100% or less
  • Ti titanium
  • Ti is a deoxidizing element and is also an element forming a nitride. Further, when Ti is contained in steel, Ti is used to suppress the formation of BN and improve hardenability.
  • the lower limit of the Ti content is not limited and may be 0%. In order to obtain the deoxidizing effect, the Ti content is preferably 0.003% or more. From the viewpoint of miniaturization of the metal structure by TiN, the Ti content is more preferably 0.005% or more, still more preferably 0.010% or more. On the other hand, the Ti content is 0.100% or less from the viewpoint of suppressing the formation of coarse inclusions.
  • the Ti content is more preferably 0.050% or less, still more preferably 0.030% or less.
  • Nb 0% or more, 0.100% or less
  • Nb niobium
  • the lower limit of the Nb content is not limited and may be 0%. From the viewpoint of miniaturization of the metal structure due to the precipitate, the Nb content is preferably 0.003% or more, more preferably 0.005% or more, still more preferably 0.010% or more. On the other hand, even if Nb is excessively contained, the effect is saturated, so that the Nb content is 0.100% or less.
  • the Nb content is preferably 0.050% or less, more preferably 0.030% or less.
  • Ca 0% or more, 0.0100% or less
  • Ca is an element that forms oxides or sulfides and controls the morphology of inclusions.
  • the lower limit of the Ca content is not limited and may be 0%.
  • the Ca content is preferably 0.0003% or more.
  • the Ca content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • the Ca content is 0.0100% or less.
  • the Ca content is preferably 0.0080% or less, more preferably 0.0060% or less.
  • Mg 0% or more, 0.0100% or less
  • Mg magnesium
  • the lower limit of the Mg content is not limited and may be 0%.
  • the Mg content is preferably 0.0003% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • the Mg content is 0.0100% or less.
  • the Mg content is preferably 0.0080% or less, more preferably 0.0060% or less.
  • REM 0% or more, 0.0100% or less
  • REM rare earth element
  • the REM content means the total content of the 17 elements.
  • REM is an element that forms oxides or sulfides and controls the morphology of inclusions.
  • the lower limit of the REM content is not limited and may be 0%.
  • the REM content is preferably 0.0003% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • the REM content is 0.0100% or less.
  • the REM content is preferably 0.0080% or less, more preferably 0.0060% or less.
  • the rest of the chemical composition of the steel according to this embodiment is Fe and impurities.
  • the impurities are components that are not intentionally contained when the wear-resistant steel according to the present embodiment is industrially manufactured, but are mixed by raw materials such as ore and scrap or various factors in the manufacturing process. ..
  • the inclusion of impurities is permitted within a range that does not adversely affect the characteristics of the wear-resistant steel according to the present embodiment.
  • O oxygen
  • the O content is preferably 0.0060% or less.
  • the O content is more preferably 0.0050% or less, still more preferably 0.0040% or less.
  • the O content is preferably reduced, and the lower limit is not limited, but it may be more than 0% from the viewpoint of manufacturing cost.
  • the O content may be 0.0020% or more.
  • the wear-resistant steel according to the present embodiment contains 0% or more and 0.5% or less of carbides in the metal structure in terms of area%.
  • the average circle-equivalent diameter of the carbide is 500 nm or less.
  • Large-angle grain boundaries sometimes called "high-angle grain boundaries" of 15 ° or more in the region of 400 ⁇ m ⁇ 400 ⁇ m.
  • the average grain size of the 10 crystal grains is 40 ⁇ m or less in descending order of grain size.
  • the carbide include cementite (Fe 3 C), Cr carbide, and Fe 2 C, but the carbide in the present disclosure is mainly cementite.
  • the metallographic structure of the wear-resistant steel according to the present embodiment may be such that the area ratio of carbides, the average diameter equivalent to a circle, and the average particle size of crystals are within the above-mentioned ranges.
  • the area ratio of carbides increases and it tends to be coarsened.
  • the hardness tends to be insufficient, which may reduce toughness.
  • Retained austenite may become hard martensite (work-induced martensite) due to deformation and reduce toughness. Therefore, it is preferable that the metallographic structure of the wear-resistant steel according to the present embodiment is composed of one or both of martensite and lower bainite.
  • the total area ratio of martensite and lower bainite is preferably 95% or more.
  • the rest, excluding martensite and lower bainite consists of one or more of ferrite, pearlite, retained austenite and upper bainite.
  • the upper bainite is a structure having a particle size of 40 ⁇ m or more in which cementite or retained austenite is precipitated at the grain boundaries without containing carbides in the grains. Martensite and lower bainite are lath-like hard phases and are generally discriminated by the presence or absence of carbides.
  • the metal structure of the wear-resistant steel according to the present embodiment consists of martensite and lower bainite
  • the metal structure containing carbides is regarded as lower bainite. In this embodiment, it is not necessary to distinguish between martensite and lower bainite. If ferrite, pearlite, retained austenite and upper bainite are not observed by light microscopy, it is determined that the metallographic structure consists of one or both of martensite and lower bainite.
  • the wear-resistant steel according to the present embodiment may contain a metal structure other than martensite and lower bainite as long as the area ratio of carbides, the diameter equivalent to an average circle, and the average particle size of crystals are within the above-mentioned ranges.
  • the metallographic structure is observed at a portion halved in the thickness direction from the surface (hereinafter, also referred to as "1 / 2t portion”).
  • “1 / 2t” is synonymous with “t / 2”).
  • a portion of 1/4 of the thickness hereinafter, also referred to as "1 / 4t portion” in the thickness direction from the surface is referred to as "1 / 4t”. Is synonymous with "t / 4"), where the metallographic structure is observed.
  • the observation surface of the sample used for observing the metallographic structure is a cross section cut in the thickness direction along the L (longitudinal) direction (rolling direction) of the sample (hereinafter referred to as "L (longitudinal) cross section of the sample”). It may be referred to as), and is subjected to wet polishing and etching with Nital.
  • the metallographic structure is observed at a magnification of 400 times, and the presence or absence of ferrite, pearlite, retained austenite and upper bainite is determined by observing 5 fields of view. Retained austenite is observed by repeller corrosion performed in a 1% to 10% sodium metabisulfite solution.
  • the area ratio of carbides is 0%.
  • the metal structure of the wear-resistant steel according to the present embodiment is composed of martensite and lower bainite
  • the metal structure containing carbides is regarded as lower bainite.
  • the area ratio of carbides is 0.5% or less from the viewpoint of ensuring toughness.
  • the area ratio of the carbide is preferably 0.4% or less, more preferably 0.3% or less.
  • the area ratio of charcoal is measured by a scanning electron microscope (hereinafter referred to as "SEM").
  • SEM scanning electron microscope
  • the area ratio of carbides is measured in 1 / 2t portions when the thickness of the wear-resistant steel is less than 16 mm. When the thickness of the wear-resistant steel is 16 mm or more, the area ratio of carbides is measured at 1 / 4t portion.
  • the observation surface of the sample used to measure the area ratio of carbides is the L (longitudinal) cross section of the sample and is subjected to electrolytic etching.
  • the area ratio of carbides is measured by image analysis (binarization by image processing) of photographs taken at 30,000 times.
  • electrolytic etching is carried out at 20 to 40 V for 10 to 30 seconds in a solution in which 62 cc of perchloric acid, 700 cc of ethanol, 137 cc of distilled water and 100 cc of Brucelsolve are mixed.
  • a threshold is set so that carbides deposited in the martensite block can be visually separated.
  • the average circle-equivalent diameter of the carbide is 500 nm or less from the viewpoint of ensuring toughness.
  • the average circle-equivalent diameter of the carbide is preferably 300 nm or less.
  • the average circle-equivalent diameter of the carbide may be 50 nm or more, or 100 nm or more.
  • the average circle-equivalent diameter of the carbide is calculated from the area (total) of the carbide obtained by image analysis of the SEM photograph used for measuring the area ratio, and the number of carbides. That is, the average circle-equivalent diameter is calculated from the average area of carbides obtained by dividing the total area of carbides by the number of carbides.
  • the diameter corresponding to the average circle is 0 nm.
  • the quenching stop temperature is lowered, the formation of upper bainite and pearlite is suppressed, and the diameter corresponding to the average circle of carbide becomes smaller.
  • the carbides contained in the upper bainite and pearlite have a large diameter and area ratio equivalent to an average circle. If the area ratio of the carbide is 0.5% or less and the diameter corresponding to the average circle is 500 nm or less, it may be determined that the total area ratio of the upper bainite and pearlite is less than 5%.
  • the average of the top 10 grain sizes (10 crystal grain sizes in descending order of grain size) surrounded by large tilt angle grain boundaries of 15 ° or more in the region of 400 ⁇ m ⁇ 400 ⁇ m is 40 ⁇ m or less.
  • the grain size surrounded by the large tilt angle grain boundaries having a crystal orientation difference of 15 ° or more is referred to as a large tilt angle grain size.
  • the large tilt grain size is large, fracture is likely to occur, and when the large tilt grain size is small, the toughness is improved.
  • the large tilt angle grain size is evaluated by the average value of the top 10 crystals (10 from the largest) among the crystal grains in the region of 400 ⁇ m ⁇ 400 ⁇ m.
  • the average of the top 10 particles having a large tilt angle particle size is more preferably 30 ⁇ m or less.
  • the large tilt angle particle size is measured by an electron backscattered diffraction pattern (hereinafter, also referred to as “EBSD”). Measurements by EBSD are performed with a field of view of 400 ⁇ m ⁇ 400 ⁇ m and a pitch of 0.4 ⁇ m. The particle size distribution is displayed by commercially available analysis software (OIM-Anysis manufactured by TSL), and the average of the top 10 particle sizes of the crystal grains surrounded by the large tilt angle grain boundaries of 15 ° or more is calculated. The measurement by EBSD is performed in the 1 / 2t portion when the thickness of the wear-resistant steel is less than 16 mm. When the thickness is 16 mm or more, the measurement by EBSD is performed in the 1 / 4t portion.
  • EBSD electron backscattered diffraction pattern
  • the sample used for the measurement by EBSD has an observation surface of 10 mm square, and is cut out from a position (1/4 width) of the plate width from the end portion in the width direction of the steel plate.
  • the observation surface is a cross section in the L (longitudinal) direction of the sample, and is subjected to electrolytic polishing.
  • the surface hardness of the wear-resistant steel according to the present embodiment is 360 HV10 or more and 634 ⁇ [C] 1/2 + 140 HV10 or more in Vickers hardness in order to secure wear resistance.
  • [C] is the C content in the wear-resistant steel.
  • the surface hardness of the wear-resistant steel is preferably 360 HV10 or more and 634 ⁇ [C] 1/2 + 160 HV10 or more, and more preferably 360 HV10 or more and 634 ⁇ [C] 1/2 + 180 HV10 or more. The higher the surface hardness, the more preferable, and the upper limit is not limited.
  • the surface hardness of the wear-resistant steel may be 634 ⁇ [C] 1/2 + 230HV10 or less from the viewpoint of ensuring toughness.
  • the surface hardness of the wear-resistant steel is measured at a position of 0.7 mm in the thickness direction from the surface of the wear-resistant steel in consideration of the influence of decarburization.
  • the Vickers hardness test is performed according to JIS Z 2244: 2009, and the load is 10 kgf. Vickers hardness is the average value of three points measured in the L (longitudinal) cross section of the sample.
  • the surface hardness is 360 HV10 or more and 634 ⁇ [C] 1/2 + 140 HV10 or more in Vickers hardness, it may be determined that the total area ratio of ferrite and retained austenite is less than 5%.
  • the surface hardness of the wear-resistant steel according to the present embodiment is determined from the viewpoint of ensuring absolute wear resistance regardless of the C content, rather than the relative wear resistance in consideration of the C content. It may be 380 HV10 or more, 400 HV10 or more, or 450 HV10 or more.
  • the central portion in the thickness direction of the wear-resistant steel is synonymous with the 1 / 2t portion, and hereinafter, the hardness of the central portion in the central portion in the thickness direction of the wear-resistant steel is also referred to as the 1 / 2t portion hardness.
  • the 1 / 2t portion hardness is preferably 360HV10 or more and 634 ⁇ [C] 1/2 + 140HV10 or more, more preferably 360HV10 or more and 634 ⁇ [Vickers hardness.
  • the 1 / 2t portion hardness is more preferably 360 HV10 or more and 634 ⁇ [C] 1/2 + 180 HV10 or more, and the higher the hardness, the more preferable, and the upper limit is not limited.
  • the hardness of the 1 / 2t portion may be 634 ⁇ [C] 1/2 + 230HV10 or less from the viewpoint of ensuring toughness.
  • the Vickers hardness test is performed according to JIS Z 2244: 2009, and the load is 10 kgf. Vickers hardness is the average value of three points measured in the L (longitudinal) cross section of the sample.
  • the hardness of 1 / 2t portion is ensured by increasing the content of the alloy that enhances hardenability and increasing the cooling rate of quenching.
  • the hardness may be 380 HV10 or more, 400 HV10 or more, or 450 HV10 or more.
  • Abrasion resistant steel may be used in cold or highlands. Wear-resistant steel is required to have toughness at -40 ° C in order to suppress fracture due to impact during processing and use. From such a viewpoint, the wear-resistant steel according to the present embodiment has an average value of Charpy absorption energy at ⁇ 40 ° C. of 27 J or more.
  • the average value of Charpy absorption energy at ⁇ 40 ° C. is preferably 50 J or more. The higher the average value of the Charpy absorption energy at ⁇ 40 ° C. is, the more preferable it is, and the upper limit is not limited, but it may be 100 J or less.
  • the Charpy test is carried out in accordance with JIS Z 2242: 2018 using a full-size test piece provided with a V notch.
  • a test piece having a subsize of 5 mm is used.
  • the collection position of the Charpy test piece is 1 / 4t part for wear-resistant steel having a plate thickness of 16 mm or more, and 1 / 2t part for wear-resistant steel having a plate thickness of less than 16 mm.
  • the longitudinal direction of the Charpy test piece is the rolling direction. Considering the variation of the measured values, the average value of the Charpy absorbed energy is the arithmetic mean of the measured values of the three test pieces.
  • the shape of the wear-resistant steel according to the present embodiment is not particularly limited, and is a steel plate, a steel strip, a shaped steel, a steel pipe, a steel bar, a steel wire, or the like.
  • the thickness of steel materials such as steel plates, strips, shaped steels, and steel pipes is not particularly limited, and is, for example, 8 mm or more and 50 mm or less.
  • the thickness of the steel material may be 10 mm or more, and may be 16 mm or more.
  • the thickness of the steel material may be 45 mm or less, and may be 40 mm or less.
  • the wear-resistant steel according to this embodiment is also excellent in corrosion resistance.
  • the solution is carried out with a 1/100 diluted artificial sea aqueous solution based on the test methods of JASO M609 and JASO M610. Two hours of salt spraying, four hours of drying, and two hours of wetting are defined as one cycle. After corrosion treatment by 504 cycles, rust is removed by pickling treatment, and the corrosion rate is compared from the weight change before and after corrosion. In such a corrosion resistance test, the wear-resistant steel according to the present embodiment can be suppressed to a corrosion rate of less than 80% as compared with the SM490 of ordinary steel.
  • the wear-resistant steel according to the present embodiment is manufactured using steel pieces obtained by melting steel, adjusting the components, and then casting as a steel material.
  • the steel material is hot rolled and either quenched or air cooled as is. After air cooling, it is reheated and quenched. After hot rolling and quenching, reheating and quenching may be performed.
  • the method for producing the steel material used for producing the wear-resistant steel according to the present embodiment is not limited, and the steel material is produced by a known method.
  • steel pieces are melted by a normal refining process such as a converter or an electric furnace, and then manufactured by a known method such as a continuous casting method or an ingot-breaking method.
  • the steel pieces are preferably cooled after casting, reheated to a temperature equal to or higher than the Ac3 transformation point, and hot-rolled.
  • coarse austenite generated during casting may remain in the steel pieces after heating.
  • it is preferable that the steel pieces after continuous casting are once cooled to 400 ° C. or lower.
  • Hot rolling is performed in a temperature range in which the temperature of the surface of the material to be rolled is equal to or higher than the Ar3 transformation point.
  • the Ar3 transformation point is the temperature at which the transformation from austenite to ferrite begins during cooling.
  • the heating temperature of the steel material before hot rolling is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and further preferably 1100 ° C. or higher.
  • the heating temperature is preferably 1330 ° C. or lower in order to suppress the coarsening of crystal grains.
  • the heating temperature is more preferably 1200 ° C. or lower, still more preferably 1150 ° C. or lower.
  • the reduction rate in the temperature range of 1000 ° C. or higher is preferably 50% or higher.
  • the reduction rate in the temperature range of 1000 ° C. or higher (simply referred to as reduction rate) is obtained by the following formula from the thickness of the steel material before hot rolling and the thickness of the material to be rolled at 1000 ° C.
  • Rolling ratio (%) 100 ⁇ ⁇ (thickness of steel material)-(thickness of material to be rolled at 1000 ° C) ⁇ / thickness of steel material
  • the end temperature of hot rolling is equal to or higher than the Ar3 transformation point from the viewpoint of preventing the formation of ferrite.
  • the end temperature of hot rolling is 770 ° C. or higher.
  • the end temperature of hot rolling is preferably 900 ° C. or lower, more preferably 850 ° C. or lower, from the viewpoint of miniaturization of the metal structure.
  • the thickness of the material to be rolled after the completion of hot rolling is the thickness of the wear-resistant steel, for example, 8 mm or more and 50 mm or less.
  • the thickness is 50 mm or less, insufficient toughness is suppressed.
  • the thickness is 8 mm or more, sufficient strength can be ensured as wear-resistant steel.
  • the material to be rolled after hot rolling is either quenched or air-cooled as it is.
  • the air-cooled material to be rolled is reheated and quenched.
  • the process of quenching the material to be rolled after hot rolling as it is is called direct quenching.
  • the process in which the material to be rolled after hot rolling is air-cooled, reheated, and quenched is called reheating quenching.
  • the material to be rolled, which has been hardened after hot rolling may be reheated and hardened.
  • the reheating temperature may be a temperature equal to or higher than the Ac3 transformation point from the viewpoint of preventing the formation of ferrite.
  • the reheating temperature is preferably 850 ° C. or higher, more preferably 900 ° C. or higher. From the viewpoint of miniaturization of the metal structure, the reheating temperature is preferably 1150 ° C. or lower.
  • the reheating temperature is more preferably 1050 ° C. or lower, still more preferably
  • the quenching start temperature is 770 ° C. or higher from the viewpoint of preventing the formation of ferrite.
  • the cooling rate of quenching is 3 ° C./sec or more at the surface temperature of the material to be rolled from the viewpoint of preventing the formation of ferrite and suppressing the precipitation and growth of carbides. The faster the cooling rate is, the more preferable it is, but there is a limit depending on the capacity of the cooling equipment, the thickness of the material to be rolled, and the like, and the cooling rate may be 50 ° C./sec or less.
  • the cooling rate is a value calculated by the following formula.
  • Cooling rate (Surface temperature at the start of cooling-Surface temperature at the stop of cooling) / Cooling time
  • the "surface temperature at the stop of cooling” is the surface temperature of the material to be rolled at the time of the stop of water cooling (at the reheat temperature). No).
  • the quenching stop temperature is 200 ° C. or lower at the surface temperature of the material to be rolled from the viewpoint of preventing the formation of ferrite and suppressing the precipitation and growth of carbides.
  • the quenching stop temperature is preferably 100 ° C. or lower at the surface temperature of the material to be rolled, particularly from the viewpoint of suppressing the growth of carbides.
  • Ac3 is the transformation start temperature during heating calculated below
  • Ar3 is the transformation start temperature during cooling calculated below, which is calculated using the chemical composition of steel.
  • a c3 (° C.) 902-255 x C + 19 x Si-11 x Mn-5 x Cr + 13 x Mo-20 x Ni + 55 x V
  • Ar3 (° C.) 868-396 ⁇ C + 24.6 ⁇ Si-68.1 ⁇ Mn-24.8 ⁇ Cr C, Si, Mn, Cr, Mo, Ni, and V in the above formula mean the content expressed in% by mass.
  • Example 1 is an example of direct quenching
  • Example 2 is an example of reheating quenching.
  • Example 1 The thickness of the steel pieces produced by melting and continuous casting of steel by a converter is 245 mm.
  • a sample is taken from a piece of steel and chemically composed using fluorescent X-ray analysis, combustion-infrared absorption, inert gas melting, inductively coupled plasma mass spectrometry (ICP mass spectrometry), etc. was analyzed. The results are shown in Table 1.
  • the blank means that it was less than the lower limit of analysis.
  • the content of O which is an impurity, was 20 ppm to 60 ppm.
  • underline means values or conditions outside the scope of the present disclosure.
  • the steel pieces were hot-rolled, and the material to be rolled was hardened as they were to produce steel sheets (wear-resistant steel).
  • the heating temperature of hot rolling is above the Ac3 transformation point, and the end temperature is above the Ar3 transformation point.
  • the material to be rolled was rolled so that the rolling reduction ratio was 50% or more in a temperature range of 1000 ° C. or higher.
  • Steel No. of steel pieces used for hot rolling The quenching start temperature, cooling rate, stop temperature and sheet steel thickness are shown in Table 2.
  • the Cr carbide is a carbide that is deposited when it is held at a high temperature for a long time, but in the production process in the present disclosure, it is cooled before the precipitation of the Cr carbide.
  • the solid solution Cr decreases, the hardenability decreases, and the amount of the solid solution C decreases, so that it is considered that the hardness as a wear-resistant steel does not appear.
  • Fe 2 C is considered to be precipitated by low temperature tempering (100 to 200 ° C.), but it is a minute size observed by TEM (transmission electron microscope) and is not observed by SEM. From these findings, the carbide observed in the examples is cementite.
  • EBSD Measurement of effective crystal grain size
  • EBSD measured the average of the top 10 grain sizes surrounded by large grain boundaries of 15 ° or higher. Measurements by EBSD were performed with a field of view of 400 ⁇ m ⁇ 400 ⁇ m and a pitch of 0.4 ⁇ m. The average of the top 10 grain sizes surrounded by large tilt angle grain boundaries of 15 ° or more was determined by OIM-Analysis manufactured by TSL. The average of the top 10 grain sizes surrounded by the large grain boundaries of 15 ° or more is shown in Table 2 as the effective grain size.
  • Vickers hardness test In the L (longitudinal) cross section of the sample, the Vickers hardness of the wear-resistant steel was measured at a position 0.7 mm in the thickness direction from the surface of the wear-resistant steel and at 1 / 2t portion.
  • the Vickers hardness test was performed in accordance with JIS Z 2244: 2009 with a load of 10 kgf. Vickers hardness is the average value of any three measured points. If the surface hardness is 360 HV10 or more and 634 ⁇ [C] 1/2 + 140 HV10 or more, the wear resistance is good, and if the hardness of the 1 / 2t portion is 360 HV10 or more and 634 ⁇ [C] 1/2 + 140 HV10 or more. If so, the deterioration of wear resistance is also suppressed well.
  • the Charpy test was carried out in accordance with JIS Z 2242: 2018 using a full size test piece provided with a V notch.
  • the average value of Charpy absorbed energy is the arithmetic mean of the measured values of the three test pieces.
  • the longitudinal direction of the Charpy test piece is the rolling direction of the steel sheet.
  • the collection position of the Charpy test piece is 1 / 4t part for wear-resistant steel having a plate thickness of 16 mm or more, and 1 / 2t part for wear-resistant steel having a plate thickness of less than 16 mm.
  • Vickers hardness (surface hardness and 1 / 2t hardness) and Charpy absorption energy (KV 2 ) are shown in Table 2. If the Charpy absorption energy is 27 J or more, the low temperature toughness is good.
  • the corrosion resistance test was carried out by diluting the solution with a 1/100 diluted artificial sea aqueous solution based on the test methods of JASO M609 and JASO M610. Two hours of salt spraying, four hours of drying, and two hours of wetting were set as one cycle, and after corrosion treatment by 504 cycles, rust was removed by pickling treatment, and the corrosion rate was compared from the weight change before and after corrosion.
  • the steel material having a corrosion rate of less than 80% was evaluated by A, and the steel material having a corrosion rate of 80% or more was evaluated by B.
  • Example 2 The steel pieces whose components are shown in Table 1 were hot-rolled, air-cooled, and then reheat-quenched to the material to be rolled to produce a steel sheet.
  • the heating temperature of hot rolling is above the Ac3 transformation point, and the end temperature is above the Ar3 transformation point.
  • the material to be rolled was rolled so that the rolling reduction ratio was 50% or more in a temperature range of 1000 ° C. or higher.
  • the heating temperature for reheating and quenching is equal to or higher than the Ac3 transformation point.
  • the quenching start temperature, cooling rate, stop temperature and sheet steel thickness are shown in Table 3.
  • the steel sheets satisfying the requirements of the present disclosure do not contain Ni and Mo or have a content of 0.50% or less, respectively, and have wear resistance, corrosion resistance and low temperature. Has excellent toughness.
  • Manufacturing No. In 101 since the C content is high, the carbides are coarsened and the target low temperature toughness is not obtained.
  • Manufacturing No. In 102 since the Cr content is low, the carbides are coarsened and the target low temperature toughness is not obtained.
  • Manufacturing No. In 103 since the C content is low, the surface hardness is insufficient, and the target wear resistance is not obtained. Manufacturing No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Wear-resistant steel which contains, in mass%, from 0.08% to 0.20% of C, from 0.01% to 0.50% of Si, from 0.10% to 2.00% of Mn and from 2.10% to 8.00% of Cr, while containing 0.5% by area or less of carbides in the metal structure. With respect to this wear-resistant steel, the average circle-equivalent diameter of the carbides is 500 nm or less; the average grain size of ten crystal grains in descending order of grain size among the crystal grains surrounded by large angle grain boundaries of 15° or more is 40 μm or less; the Charpy absorbed energy at -40°C is 27 J or more; and the surface hardness is 360 Hv or more and 634 × (C)1/2 + 140 HV10 or more.

Description

耐摩耗鋼Wear resistant steel
 本開示は、耐摩耗鋼に関するものである。  This disclosure relates to wear-resistant steel. It was
 耐摩耗鋼は、表層近傍の硬さが要求されるため、焼入れ性を高める元素を含有する。Cr、Ni、Moは、焼入れ性を高める元素である。従来からCr、Ni、Moなどを含有する耐摩耗鋼が提案されている(例えば、特許文献1~特許文献4、参照)。
 また、高強度であり、靭性の向上を図った鋼板が提案されている(例えば、特許文献5参照)。
Since wear-resistant steel is required to have hardness near the surface layer, it contains an element that enhances hardenability. Cr, Ni, and Mo are elements that enhance hardenability. Conventionally, wear-resistant steels containing Cr, Ni, Mo and the like have been proposed (see, for example, Patent Documents 1 to 4).
Further, a steel sheet having high strength and improved toughness has been proposed (see, for example, Patent Document 5).
 特許文献1:特開平10-204575号公報
 特許文献2:特開平10-102185号公報
 特許文献3:特開昭59-129724号公報
 特許文献4:特開昭59-70721号公報
 特許文献5:国際公開第2019/050010号
Patent Document 1: Japanese Patent Application Laid-Open No. 10-204575 Patent Document 2: Japanese Patent Application Laid-Open No. 10-102185 Patent Document 3: Japanese Patent Application Laid-Open No. 59-129724 Patent Document 4: Japanese Patent Application Laid-Open No. 59-707421 Patent Document 5: International Publication No. 2019/050010
 特許文献1及び特許文献2の耐摩耗鋼は、1.0質量%以上のMoを含有する。特許文献3及び特許文献4の耐摩耗鋼は、2.0質量%以上のNiを含有する。Ni及びMoは高価な元素であり、合金コストの観点から、削減が望まれる。
 また、特許文献5の高強度鋼板は、靭性の向上を図っているが、耐摩耗性が考慮されていない。
 本開示の課題は、このような実情に鑑み、Ni、Moなどの高価な元素の使用を抑制しつつ、耐摩耗性及び低温靭性に優れた耐摩耗鋼を提供することである。
The wear-resistant steels of Patent Document 1 and Patent Document 2 contain 1.0% by mass or more of Mo. The wear-resistant steels of Patent Documents 3 and 4 contain 2.0% by mass or more of Ni. Ni and Mo are expensive elements, and reduction is desired from the viewpoint of alloy cost.
Further, the high-strength steel plate of Patent Document 5 is intended to improve toughness, but wear resistance is not taken into consideration.
In view of such circumstances, an object of the present disclosure is to provide a wear-resistant steel having excellent wear resistance and low-temperature toughness while suppressing the use of expensive elements such as Ni and Mo.
 本開示の要旨は、以下のとおりである。 The gist of this disclosure is as follows.
(1) 化学組成が、質量%で、
C:0.08%以上、0.20%以下、
Si:0.01%以上、0.50%以下、
Mn:0.10%以上、2.00%以下、
P:0.015%以下、
S:0.0300%以下、
Cr:2.10%以上、8.00%以下、
N:0.008%以下、
Cu:0%以上、0.50%以下、
Ni:0%以上、0.50%以下、
Mo:0%以上、0.50%以下、
V:0%以上、0.500%以下、
W:0%以上、0.50%以下、
B:0%以上、0.0050%以下、
Al:0%以上、0.300%以下、
Ti:0%以上、0.100%以下、
Nb:0%以上、0.100%以下、
Ca:0%以上、0.0100%以下、
Mg:0%以上、0.0100%以下、
REM:0%以上、0.0100%以下、並びに
残部:Fe及び不純物
からなり、
 厚さ方向の断面であって、厚さをtとした場合に、tが16mm未満の場合は表面から1/2tの位置、tが16mm以上の場合は表面から1/4tの位置において、
 金属組織に含まれる炭化物が、面積%で、0%以上、0.5%以下であり、前記炭化物の平均円相当直径が500nm以下であり、
 400μm×400μmの領域において、15°以上の大傾角粒界で囲まれた結晶粒のうち、粒径が大きい順に10個の結晶粒の平均粒径が40μm以下であり、及び
-40℃でのシャルピー吸収エネルギーが27J以上であり、
 質量%でのC含有量を[C]とした場合に、表面から厚さ方向に0.7mmの位置における表面硬さが、360HV10以上かつ634×[C]1/2+140HV10以上である、耐摩耗鋼。
(2) 厚さ方向の中央部における中央部硬さが、360HV10以上かつ634×[C]1/2+140HV10以上である、請求項1に記載の耐摩耗鋼。
(3) 質量%で、
Cu:0.01%以上、0.50%以下、
Ni:0.01%以上、0.50%以下、
Mo:0.01%以上、0.50%以下、
V:0.003%以上、0.500%以下、
W:0.01%以上、0.50%以下、
B:0.0003%以上、0.0050%以下、
Al:0.005%以上、0.300%以下、
Ti:0.003%以上、0.100%以下、
Nb:0.003%以上、0.100%以下、
Ca:0.0003%以上、0.0100%以下、
Mg:0%以上、0.0100%以下、及び
REM:0.0003%以上、0.0100%以下、
からなる群より選ばれる少なくとも1種を含む(1)又は(2)に記載の耐摩耗鋼。
(4) 鋼板である(1)~(3)のいずれか1つに記載の耐摩耗鋼。
(5) 板厚が、8mm以上、50mm以下である(4)に記載の耐摩耗鋼。
(1) The chemical composition is mass%.
C: 0.08% or more, 0.20% or less,
Si: 0.01% or more, 0.50% or less,
Mn: 0.10% or more, 2.00% or less,
P: 0.015% or less,
S: 0.0300% or less,
Cr: 2.10% or more, 8.00% or less,
N: 0.008% or less,
Cu: 0% or more, 0.50% or less,
Ni: 0% or more, 0.50% or less,
Mo: 0% or more, 0.50% or less,
V: 0% or more, 0.500% or less,
W: 0% or more, 0.50% or less,
B: 0% or more, 0.0050% or less,
Al: 0% or more, 0.300% or less,
Ti: 0% or more, 0.100% or less,
Nb: 0% or more, 0.100% or less,
Ca: 0% or more, 0.0100% or less,
Mg: 0% or more, 0.0100% or less,
REM: 0% or more, 0.0100% or less, and the balance: Fe and impurities.
In the cross section in the thickness direction, when the thickness is t, when t is less than 16 mm, it is 1 / 2t from the surface, and when t is 16 mm or more, it is 1 / 4t from the surface.
The carbide contained in the metal structure is 0% or more and 0.5% or less in area%, and the average circle equivalent diameter of the carbide is 500 nm or less.
In the region of 400 μm × 400 μm, among the crystal grains surrounded by large tilt angle grain boundaries of 15 ° or more, the average grain size of 10 crystal grains is 40 μm or less in descending order of grain size, and at -40 ° C. Crystall absorption energy is 27J or more,
When the C content in% by mass is [C], the surface hardness at a position 0.7 mm in the thickness direction from the surface is 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more. Worn steel.
(2) The wear-resistant steel according to claim 1, wherein the hardness of the central portion in the central portion in the thickness direction is 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more.
(3) By mass%,
Cu: 0.01% or more, 0.50% or less,
Ni: 0.01% or more, 0.50% or less,
Mo: 0.01% or more, 0.50% or less,
V: 0.003% or more, 0.500% or less,
W: 0.01% or more, 0.50% or less,
B: 0.0003% or more, 0.0050% or less,
Al: 0.005% or more, 0.300% or less,
Ti: 0.003% or more, 0.100% or less,
Nb: 0.003% or more, 0.100% or less,
Ca: 0.0003% or more, 0.0100% or less,
Mg: 0% or more, 0.0100% or less, and REM: 0.0003% or more, 0.0100% or less,
The wear-resistant steel according to (1) or (2), which comprises at least one selected from the group consisting of.
(4) The wear-resistant steel according to any one of (1) to (3), which is a steel plate.
(5) The wear-resistant steel according to (4), wherein the plate thickness is 8 mm or more and 50 mm or less.
 本開示によれば、Ni、Moなどの高価な元素の使用を抑制しつつ、耐摩耗性及び低温靭性に優れた耐摩耗鋼が提供される。耐摩耗鋼の合金コストが削減されたことにより、安価な耐摩耗鋼の提供が可能になる。したがって、本開示は産業上の貢献が極めて顕著である。 According to the present disclosure, wear-resistant steel having excellent wear resistance and low-temperature toughness is provided while suppressing the use of expensive elements such as Ni and Mo. By reducing the alloy cost of wear-resistant steel, it becomes possible to provide inexpensive wear-resistant steel. Therefore, this disclosure is extremely significant in terms of industrial contribution.
 以下、本開示の一実施形態(以下、「本実施形態」と称する。)に係る耐摩耗鋼として、主に鋼板について説明する。
 本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値に置き換えてもよく、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値に置き換えてもよい。上限値又は下限値を実施例に示されている値に置き換えてもよい。
 「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 まず、本開示を完成するに至った本発明者らの検討結果、得られた新たな知見について詳述する。
Hereinafter, as the wear-resistant steel according to one embodiment of the present disclosure (hereinafter, referred to as “the present embodiment”), a steel sheet will be mainly described.
In the numerical range described stepwise in the present specification, the upper limit of the numerical range described in one step may be replaced with the upper limit value of the numerical range described in another step. The lower limit of the range may be replaced with the lower limit of the numerical range described in other steps. The upper limit value or the lower limit value may be replaced with the value shown in the embodiment.
The term "process" is included in this term not only in an independent process but also in the case where the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
First, the new findings obtained as a result of the studies by the present inventors who have completed the present disclosure will be described in detail.
 Crは、Ni及びMoに比べて安価な元素である。Ni及びMoの含有量の抑制及びCr含有量の増加により、耐摩耗鋼のコストの削減が可能である。本発明者らの検討の結果、Ni、Moを意図的に含有させない、あるいはNi、Moの含有量をそれぞれ0.50%以下に抑えた場合の省合金型耐摩耗鋼に必要とされるCr含有量は、2.10%以上であるという知見が得られた。さらに、このようにCr含有量を高くすることで耐食性も向上し、湿式環境で利用される耐摩耗鋼の長寿命化に資することが分かった。
 一方、耐摩耗鋼の表面硬さを確保するために、C含有量を増加させることが好ましいが、靭性が低下するという問題が生じた。
Cr is an element that is cheaper than Ni and Mo. By suppressing the Ni and Mo contents and increasing the Cr content, it is possible to reduce the cost of wear-resistant steel. As a result of the studies by the present inventors, Cr required for alloy-saving wear-resistant steel when Ni and Mo are not intentionally contained or the Ni and Mo contents are suppressed to 0.50% or less, respectively. It was found that the content was 2.10% or more. Further, it was found that by increasing the Cr content in this way, the corrosion resistance is also improved, which contributes to the extension of the life of the wear-resistant steel used in the wet environment.
On the other hand, in order to secure the surface hardness of the wear-resistant steel, it is preferable to increase the C content, but there is a problem that the toughness is lowered.
 本発明者らは、炭化物の析出及び粗大化の抑制によって、耐摩耗鋼の表面硬さと靭性との両立に成功した。本発明者らの検討の結果、C含有量及び焼入れの停止温度の制限によって、炭化物の析出及び粗大化が抑制され、靭性が確保されることがわかった。具体的には、炭化物の析出及び粗大化は、C含有量を0.20%以下、焼入れの停止温度を200℃以下にすれば効果的に抑制できることがわかった。炭化物の面積率が0.5%以下、かつ平均円相当直径が500nm以下であり、C含有量を[C]としたときに、表面硬さがビッカース硬さで360HV10以上かつ634×[C]1/2+140HV10以上である場合、マルテンサイト及び下部ベイナイトの一方又は両方の面積率の合計は、95%以上であることがわかった。 The present inventors have succeeded in achieving both surface hardness and toughness of wear-resistant steel by suppressing precipitation and coarsening of carbides. As a result of the studies by the present inventors, it was found that the precipitation and coarsening of carbides are suppressed and the toughness is ensured by limiting the C content and the quenching stop temperature. Specifically, it was found that the precipitation and coarsening of carbides can be effectively suppressed by setting the C content to 0.20% or less and the quenching stop temperature to 200 ° C. or less. When the area ratio of carbide is 0.5% or less, the average circle equivalent diameter is 500 nm or less, and the C content is [C], the surface hardness is 360 HV10 or more and 634 × [C] in Vickers hardness. When it was 1/2 + 140 HV10 or more, the total area ratio of one or both of martensite and lower bainite was found to be 95% or more.
<化学組成>
 次に、本実施形態に係る鋼板の化学組成を構成する合金元素について説明する。以下の合金元素の説明において、含有量の「%」は、「質量%」を意味する。
<Chemical composition>
Next, the alloying elements constituting the chemical composition of the steel sheet according to the present embodiment will be described. In the following description of alloying elements, "%" of content means "mass%".
[C:0.08%以上、0.20%以下]
 C(炭素)は、鋼の焼入れ性を高め、硬度を上昇させる元素である。C含有量は、硬度の確保という観点から、0.08%以上である。C含有量は、好ましくは0.10%以上である。一方、Cは、炭化物を生成する元素である。C含有量は、靭性の確保という観点から0.20%以下である。C含有量は、好ましくは0.18%以下であり、より好ましくは0.15%以下である。
[C: 0.08% or more, 0.20% or less]
C (carbon) is an element that enhances the hardenability of steel and increases its hardness. The C content is 0.08% or more from the viewpoint of ensuring hardness. The C content is preferably 0.10% or more. On the other hand, C is an element that produces carbides. The C content is 0.20% or less from the viewpoint of ensuring toughness. The C content is preferably 0.18% or less, more preferably 0.15% or less.
[Si:0.01%以上、0.50%以下]
 Si(ケイ素)は、脱酸元素である。Si含有量は、脱酸の効果を得るという観点から、0.01%以上である。Si含有量は、好ましくは0.05%以上であり、より好ましくは0.10%以上である。一方、Si含有量は、靭性の確保という観点から0.50%以下である。Si含有量は、好ましくは0.40%以下であり、より好ましくは0.30%以下である。
[Si: 0.01% or more, 0.50% or less]
Si (silicon) is a deoxidizing element. The Si content is 0.01% or more from the viewpoint of obtaining the effect of deoxidation. The Si content is preferably 0.05% or more, more preferably 0.10% or more. On the other hand, the Si content is 0.50% or less from the viewpoint of ensuring toughness. The Si content is preferably 0.40% or less, more preferably 0.30% or less.
[Mn:0.10%以上、2.00%以下]
 Mn(マンガン)は、鋼の焼入れ性を高める元素である。Mn含有量は、硬度の確保という観点から、0.10%以上である。Mn含有量は、好ましくは0.50%以上であり、より好ましくは0.80%以上であり、更に好ましくは1.00%以上である。一方、Mnは、鋼の結晶粒界を脆化させる元素である。Mn含有量は、靭性の確保という観点から、2.00%以下である。Mn含有量は、好ましくは1.80%以下であり、より好ましくは1.60%以下である。
[Mn: 0.10% or more, 2.00% or less]
Mn (manganese) is an element that enhances the hardenability of steel. The Mn content is 0.10% or more from the viewpoint of ensuring hardness. The Mn content is preferably 0.50% or more, more preferably 0.80% or more, still more preferably 1.00% or more. On the other hand, Mn is an element that embrittles the grain boundaries of steel. The Mn content is 2.00% or less from the viewpoint of ensuring toughness. The Mn content is preferably 1.80% or less, more preferably 1.60% or less.
[P:0.015%以下]
 P(リン)は、原料及び製造工程において、鋼に混入する元素である。P含有量は、靭性の確保という観点から、0.015%以下である。P含有量は、好ましくは0.012%以下であり、より好ましくは0.010%以下である。P含有量は、低減させることが好ましく、下限は限定されないが、製造コストの観点から、0%超であってよい。P含有量は、0.001%以上であってもよい。
[P: 0.015% or less]
P (phosphorus) is an element mixed with steel in raw materials and manufacturing processes. The P content is 0.015% or less from the viewpoint of ensuring toughness. The P content is preferably 0.012% or less, more preferably 0.010% or less. The P content is preferably reduced, and the lower limit is not limited, but it may be more than 0% from the viewpoint of manufacturing cost. The P content may be 0.001% or more.
[S:0.0300%以下]
 S(硫黄)は、原料及び製造工程において、鋼に混入する元素である。S含有量は、靭性の確保という観点から、0.0300%以下である。S含有量は、好ましくは0.0050%以下であり、より好ましくは0.0030%以下である。S含有量は、低減させることが好ましく、下限は限定されないが、製造コストの観点から、0%超であってよい。S含有量は、0.0001%以上であってもよい。
[S: 0.0300% or less]
S (sulfur) is an element mixed with steel in raw materials and manufacturing processes. The S content is 0.0300% or less from the viewpoint of ensuring toughness. The S content is preferably 0.0050% or less, more preferably 0.0030% or less. The S content is preferably reduced, and the lower limit is not limited, but it may be more than 0% from the viewpoint of manufacturing cost. The S content may be 0.0001% or more.
[Cr:2.10%以上、8.00%以下]
 Cr(クロム)は、鋼の焼入れ性を高める元素である。Crは、Ni、Moなどの高価な元素の含有量を抑えて、耐摩耗鋼の硬度及び靭性を確保するという観点から重要な元素である。Cr含有量は、焼入れ性の確保という観点から、2.10%以上である。Cr含有量は、好ましくは2.20%以上であり、より好ましくは2.40%以上である。一方、Cr含有量は、コストの観点から、8.00%以下であり、7.50%以下であってもよい。Cr含有量は、好ましくは5.00%以下であり、より好ましくは3.00%以下である。
[Cr: 2.10% or more, 8.00% or less]
Cr (chromium) is an element that enhances the hardenability of steel. Cr is an important element from the viewpoint of suppressing the content of expensive elements such as Ni and Mo and ensuring the hardness and toughness of wear-resistant steel. The Cr content is 2.10% or more from the viewpoint of ensuring hardenability. The Cr content is preferably 2.20% or more, more preferably 2.40% or more. On the other hand, the Cr content is 8.00% or less and may be 7.50% or less from the viewpoint of cost. The Cr content is preferably 5.00% or less, more preferably 3.00% or less.
[N:0.0080%以下]
 N(窒素)は、原料及び製造工程において、鋼に混入する元素である。N含有量は、靭性の確保という観点から、0.0080%以下である。N含有量は、好ましくは0.0070%以下であり、より好ましくは0.0060%以下である。N含有量は、低減させることが好ましく、下限は限定されないが、製造コストの観点から、0%超であってよい。Al又はTiを含有させる場合、Nと結合して、AlN、TiNなどの微細な窒化物が形成される。N含有量は、窒化物による金属組織の微細化という観点から、好ましくは0.0010%以上であり、より好ましくは0.0020%以上である。
[N: 0.0080% or less]
N (nitrogen) is an element mixed with steel in raw materials and manufacturing processes. The N content is 0.0080% or less from the viewpoint of ensuring toughness. The N content is preferably 0.0070% or less, more preferably 0.0060% or less. The N content is preferably reduced, and the lower limit is not limited, but it may be more than 0% from the viewpoint of manufacturing cost. When Al or Ti is contained, it is combined with N to form fine nitrides such as AlN and TiN. The N content is preferably 0.0010% or more, more preferably 0.0020% or more, from the viewpoint of miniaturization of the metal structure by the nitride.
 本実施形態に係る耐摩耗鋼は、製造コストを過剰に上昇させずに焼入れ性を高めるため、必要に応じて、Cu、Ni、Mo、V、W及びBの1種又は2種以上を下記の範囲内で含有させてもよい。 In the wear-resistant steel according to the present embodiment, in order to improve hardenability without excessively increasing the manufacturing cost, one or more of Cu, Ni, Mo, V, W and B are described below as necessary. It may be contained within the range of.
[Cu:0%以上、0.50%以下]
 Cu(銅)は、鋼の焼入性を高める元素である。Cu含有量の下限は限定されず0%でもよい。効果を確実に得るために、Cu含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。一方、Cu含有量は、コストの観点から、0.50%以下である。Cu含有量は、好ましくは0.30%以下であり、0.10%以下であり、0.05%以下であってもよい。
[Cu: 0% or more, 0.50% or less]
Cu (copper) is an element that enhances the hardenability of steel. The lower limit of the Cu content is not limited and may be 0%. In order to surely obtain the effect, the Cu content is preferably 0.01% or more, more preferably 0.03% or more. On the other hand, the Cu content is 0.50% or less from the viewpoint of cost. The Cu content is preferably 0.30% or less, 0.10% or less, and may be 0.05% or less.
[Ni:0%以上、0.50%以下]
 Ni(ニッケル)は、鋼の焼入性を高める元素である。Ni含有量の下限は限定されず0%でもよい。効果を得るために、Ni含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。一方、Ni含有量は、コストの観点から、0.50%以下である。Ni含有量は、好ましくは0.30%以下であり、より好ましくは0.10%以下であり、更に好ましくは0.05%以下である。
[Ni: 0% or more, 0.50% or less]
Ni (nickel) is an element that enhances the hardenability of steel. The lower limit of the Ni content is not limited and may be 0%. In order to obtain the effect, the Ni content is preferably 0.01% or more, more preferably 0.03% or more. On the other hand, the Ni content is 0.50% or less from the viewpoint of cost. The Ni content is preferably 0.30% or less, more preferably 0.10% or less, still more preferably 0.05% or less.
[Mo:0%以上、0.50%以下]
 Mo(モリブデン)は、鋼の焼入性を高める元素である。Mo含有量の下限は限定されず0%でもよい。効果を得るために、Mo含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。一方、Mo含有量は、コストの観点から、0.50%以下である。好ましくは0.30%以下であり、より好ましくは0.10%以下であり、更に好ましくは0.05%以下である。
[Mo: 0% or more, 0.50% or less]
Mo (molybdenum) is an element that enhances the hardenability of steel. The lower limit of the Mo content is not limited and may be 0%. In order to obtain the effect, the Mo content is preferably 0.01% or more, more preferably 0.03% or more. On the other hand, the Mo content is 0.50% or less from the viewpoint of cost. It is preferably 0.30% or less, more preferably 0.10% or less, still more preferably 0.05% or less.
[V:0%以上、0.500%以下]
 V(バナジウム)は、炭化物又は窒化物などの析出物を形成する元素であり、焼入れ性を高める効果を有する。V含有量の下限は限定されず0%でもよい。効果を得るために、V含有量は、好ましくは0.003%以上であり、より好ましくは0.005%以上である。一方、V含有量は、コストの観点から、0.500%以下である。好ましくは0.300%以下であり、より好ましくは0.100%以下であり、更に好ましくは0.050%以下である。
[V: 0% or more, 0.500% or less]
V (vanadium) is an element that forms a precipitate such as a carbide or a nitride, and has an effect of enhancing hardenability. The lower limit of the V content is not limited and may be 0%. In order to obtain the effect, the V content is preferably 0.003% or more, more preferably 0.005% or more. On the other hand, the V content is 0.500% or less from the viewpoint of cost. It is preferably 0.300% or less, more preferably 0.100% or less, and further preferably 0.050% or less.
[W:0%以上、0.50%以下]
 W(タングステン)は、鋼の焼入性を高める元素である。W含有量の下限は限定されず0%でもよい。効果を確実に得るために、W含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。一方、W含有量は、コストの観点から、0.50%以下である。W含有量は、好ましくは0.30%以下であり、より好ましくは0.10%以下であり、更に好ましくは0.05%以下である。
[W: 0% or more, 0.50% or less]
W (tungsten) is an element that enhances the hardenability of steel. The lower limit of the W content is not limited and may be 0%. In order to surely obtain the effect, the W content is preferably 0.01% or more, more preferably 0.03% or more. On the other hand, the W content is 0.50% or less from the viewpoint of cost. The W content is preferably 0.30% or less, more preferably 0.10% or less, still more preferably 0.05% or less.
[B:0%以上、0.0050%以下]
 B(ホウ素)は、微量であっても鋼の焼入性を顕著に高める元素である。B含有量の下限は限定されず0%でもよい。効果を得るために、B含有量は、好ましくは0.0003%以上であり、より好ましくは0.0005%以上であり、更に好ましくは0.0008%以上である。一方、Bを過剰に含有させても効果が飽和するので、B含有量は、0.0050%以下である。B含有量は、好ましくは0.0045%以下であり、より好ましくは0.0040%以下である。
[B: 0% or more, 0.0050% or less]
B (boron) is an element that significantly enhances the hardenability of steel even in a trace amount. The lower limit of the B content is not limited and may be 0%. In order to obtain the effect, the B content is preferably 0.0003% or more, more preferably 0.0005% or more, still more preferably 0.0008% or more. On the other hand, even if B is excessively contained, the effect is saturated, so that the B content is 0.0050% or less. The B content is preferably 0.0045% or less, more preferably 0.0040% or less.
 本実施形態に係る耐摩耗鋼は、必要に応じて、炭化物、窒化物、酸化物、硫化物などの化合物を形成するAl、Ti、Nb、Ca、Mg及びREMの1種又は2種以上を含有させてもよい。 The wear-resistant steel according to the present embodiment contains one or more of Al, Ti, Nb, Ca, Mg and REM that form compounds such as carbides, nitrides, oxides and sulfides, if necessary. It may be contained.
[Al:0%以上、0.300%以下]
 Al(アルミニウム)は、脱酸元素であり、窒化物を形成する元素でもある。Al含有量の下限は限定されず0%でもよい。脱酸の効果を得るために、Al含有量は、好ましくは0.005%以上である。AlNによる金属組織の微細化という観点から、Al含有量は、より好ましくは0.010%以上である。一方、粗大な介在物の生成の抑制という観点から、Al含有量は0.300%以下である。Al含有量は、好ましくは0.100%以下であり、より好ましくは0.070%以下である。
[Al: 0% or more, 0.300% or less]
Al (aluminum) is a deoxidizing element and is also an element forming a nitride. The lower limit of the Al content is not limited and may be 0%. In order to obtain the effect of deoxidation, the Al content is preferably 0.005% or more. From the viewpoint of miniaturization of the metal structure by AlN, the Al content is more preferably 0.010% or more. On the other hand, from the viewpoint of suppressing the formation of coarse inclusions, the Al content is 0.300% or less. The Al content is preferably 0.100% or less, more preferably 0.070% or less.
[Ti:0%以上、0.100%以下]
 Ti(チタン)は、脱酸元素であり、窒化物を形成する元素でもある。また、Tiは、鋼にBが含まれる場合、BNの形成を抑制して焼入れ性を高めるために利用される。Ti含有量の下限は限定されず0%でもよい。脱酸の効果を得るために、Ti含有量は、好ましくは0.003%以上である。TiNによる金属組織の微細化という観点から、Ti含有量は、より好ましくは0.005%以上であり、更に好ましくは0.010%以上である。一方、粗大な介在物の生成の抑制という観点から、Ti含有量は0.100%以下である。Ti含有量は、より好ましくは、0.050%以下であり、更に好ましくは0.030%以下である。
[Ti: 0% or more, 0.100% or less]
Ti (titanium) is a deoxidizing element and is also an element forming a nitride. Further, when Ti is contained in steel, Ti is used to suppress the formation of BN and improve hardenability. The lower limit of the Ti content is not limited and may be 0%. In order to obtain the deoxidizing effect, the Ti content is preferably 0.003% or more. From the viewpoint of miniaturization of the metal structure by TiN, the Ti content is more preferably 0.005% or more, still more preferably 0.010% or more. On the other hand, the Ti content is 0.100% or less from the viewpoint of suppressing the formation of coarse inclusions. The Ti content is more preferably 0.050% or less, still more preferably 0.030% or less.
[Nb:0%以上、0.100%以下]
 Nb(ニオブ)は、炭化物又は窒化物などの析出物を形成する元素である。Nb含有量の下限は限定されず0%でもよい。析出物による金属組織の微細化という観点から、Nb含有量は、好ましくは0.003%以上であり、より好ましくは0.005%以上であり、更に好ましくは0.010%以上である。一方、Nbを過剰に含有させても効果が飽和するので、Nb含有量は0.100%以下である。Nb含有量は、好ましくは0.050%以下であり、更に好ましくは0.030%以下である。
[Nb: 0% or more, 0.100% or less]
Nb (niobium) is an element that forms a precipitate such as a carbide or a nitride. The lower limit of the Nb content is not limited and may be 0%. From the viewpoint of miniaturization of the metal structure due to the precipitate, the Nb content is preferably 0.003% or more, more preferably 0.005% or more, still more preferably 0.010% or more. On the other hand, even if Nb is excessively contained, the effect is saturated, so that the Nb content is 0.100% or less. The Nb content is preferably 0.050% or less, more preferably 0.030% or less.
[Ca:0%以上、0.0100%以下]
 Ca(カルシウム)は、酸化物又は硫化物を形成し、介在物の形態を制御する元素である。Ca含有量の下限は限定されず0%でもよい。効果を得るために、Ca含有量は、好ましくは0.0003%以上である。Ca含有量は、より好ましくは0.0005%以上であり、更に好ましくは0.0010%以上である。一方、粗大な介在物の生成の抑制という観点から、Ca含有量は0.0100%以下である。Ca含有量は、好ましくは0.0080%以下であり、より好ましくは0.0060%以下である。
[Ca: 0% or more, 0.0100% or less]
Ca (calcium) is an element that forms oxides or sulfides and controls the morphology of inclusions. The lower limit of the Ca content is not limited and may be 0%. In order to obtain the effect, the Ca content is preferably 0.0003% or more. The Ca content is more preferably 0.0005% or more, still more preferably 0.0010% or more. On the other hand, from the viewpoint of suppressing the formation of coarse inclusions, the Ca content is 0.0100% or less. The Ca content is preferably 0.0080% or less, more preferably 0.0060% or less.
[Mg:0%以上、0.0100%以下]
 Mg(マグネシウム)は、酸化物又は硫化物を形成し、介在物の形態を制御する元素である。Mg含有量の下限は限定されず0%でもよい。効果を得るために、Mg含有量は、好ましくは0.0003%以上であり、より好ましくは0.0005%以上であり、更に好ましくは0.0010%以上である。一方、コストの観点から、Mg含有量は0.0100%以下である。Mg含有量は、好ましくは0.0080%以下であり、より好ましくは0.0060%以下である。
[Mg: 0% or more, 0.0100% or less]
Mg (magnesium) is an element that forms oxides or sulfides and controls the morphology of inclusions. The lower limit of the Mg content is not limited and may be 0%. In order to obtain the effect, the Mg content is preferably 0.0003% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more. On the other hand, from the viewpoint of cost, the Mg content is 0.0100% or less. The Mg content is preferably 0.0080% or less, more preferably 0.0060% or less.
[REM:0%以上、0.0100%以下]
 REM(希土類元素)とは、Sc、Yの2元素と、La、Ce、Ndなどのランタノイド15元素との合計17元素の総称を意味する。REM含有量とは、前記17元素の合計含有量を意味する。
 REMは、酸化物又は硫化物を形成し、介在物の形態を制御する元素である。REM含有量の下限は限定されず0%でもよい。効果を得るために、REM含有量は、好ましくは0.0003%以上であり、より好ましくは0.0005%以上であり、更に好ましくは0.0010%以上である。一方、コストの観点から、REM含有量は0.0100%以下である。REM含有量は、好ましくは0.0080%以下であり、より好ましくは0.0060%以下である。
[REM: 0% or more, 0.0100% or less]
REM (rare earth element) is a general term for a total of 17 elements including two elements Sc and Y and 15 lanthanoid elements such as La, Ce and Nd. The REM content means the total content of the 17 elements.
REM is an element that forms oxides or sulfides and controls the morphology of inclusions. The lower limit of the REM content is not limited and may be 0%. In order to obtain the effect, the REM content is preferably 0.0003% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more. On the other hand, from the viewpoint of cost, the REM content is 0.0100% or less. The REM content is preferably 0.0080% or less, more preferably 0.0060% or less.
 本実施形態に係る鋼の上記化学組成の残部は、Fe及び不純物である。ここで、不純物とは、本実施形態に係る耐摩耗鋼を工業的に製造する際に、意図的に含有させないが、鉱石、スクラップ等の原料又は製造工程における種々の要因によって混入する成分である。不純物の含有は、本実施形態に係る耐摩耗鋼の特性に悪影響を与えない範囲で許容される。 The rest of the chemical composition of the steel according to this embodiment is Fe and impurities. Here, the impurities are components that are not intentionally contained when the wear-resistant steel according to the present embodiment is industrially manufactured, but are mixed by raw materials such as ore and scrap or various factors in the manufacturing process. .. The inclusion of impurities is permitted within a range that does not adversely affect the characteristics of the wear-resistant steel according to the present embodiment.
 不純物として、例えばO(酸素)は、原料及び製造工程において、鋼に混入する元素である。Oは不純物であるため、O含有量は、0.0060%以下であることが好ましい。O含有量は、より好ましくは0.0050%以下であり、さらに好ましくは0.0040%以下である。O含有量は、低減させることが好ましく、下限は限定されないが、製造コストの観点から、0%超であってよい。O含有量は、0.0020%以上であってもよい。 As an impurity, for example, O (oxygen) is an element mixed in steel in raw materials and manufacturing processes. Since O is an impurity, the O content is preferably 0.0060% or less. The O content is more preferably 0.0050% or less, still more preferably 0.0040% or less. The O content is preferably reduced, and the lower limit is not limited, but it may be more than 0% from the viewpoint of manufacturing cost. The O content may be 0.0020% or more.
<金属組織>
 次に、本実施形態に係る耐摩耗鋼の金属組織について説明する。以下において、金属組織の「%」は、「面積%」である。
 本実施形態に係る耐摩耗鋼は、金属組織に含まれる炭化物が、面積%で、0%以上、0.5%以下である。炭化物の平均円相当直径は500nm以下である。400μm×400μmの領域において、15°以上の大傾角粒界(large-angle grain boundary、「高角粒界」と呼ばれることもある。)で囲まれた領域(これを結晶粒と見なす)のうち、粒径が大きい順に10個の結晶粒の平均粒径が40μm以下である。なお、炭化物として、セメンタイト(FeC)、Cr炭化物、FeCが挙げられるが、本開示における炭化物は主にセメンタイトである。
<Metal structure>
Next, the metallographic structure of the wear-resistant steel according to the present embodiment will be described. In the following, "%" of the metallographic structure is "area%".
The wear-resistant steel according to the present embodiment contains 0% or more and 0.5% or less of carbides in the metal structure in terms of area%. The average circle-equivalent diameter of the carbide is 500 nm or less. Of the regions (considered as crystal grains) surrounded by large-angle grain boundaries (sometimes called "high-angle grain boundaries") of 15 ° or more in the region of 400 μm × 400 μm. The average grain size of the 10 crystal grains is 40 μm or less in descending order of grain size. Examples of the carbide include cementite (Fe 3 C), Cr carbide, and Fe 2 C, but the carbide in the present disclosure is mainly cementite.
 本実施形態に係る耐摩耗鋼の金属組織は、炭化物の面積率及び平均円相当直径並びに結晶の平均粒径が上述した範囲であればよい。しかしながら、上部ベイナイト又はパーライトが生成すると、炭化物の面積率が増加し、粗大化し易い。フェライトが生成すると硬さ不足となり易く、靭性を低下させる場合がある。残留オーステナイトは、変形により硬質のマルテンサイト(加工誘起マルテンサイト)となり、靭性を低下させる場合がある。そのため、本実施形態に係る耐摩耗鋼の金属組織はマルテンサイト及び下部ベイナイトの一方又は両方からなることが好ましい。マルテンサイト及び下部ベイナイトの面積率の合計は、好ましくは、95%以上である。マルテンサイト及び下部ベイナイトを除く残部は、フェライト、パーライト、残留オーステナイト及び上部ベイナイトの1種又は2種以上からなる。 The metallographic structure of the wear-resistant steel according to the present embodiment may be such that the area ratio of carbides, the average diameter equivalent to a circle, and the average particle size of crystals are within the above-mentioned ranges. However, when upper bainite or pearlite is formed, the area ratio of carbides increases and it tends to be coarsened. When ferrite is formed, the hardness tends to be insufficient, which may reduce toughness. Retained austenite may become hard martensite (work-induced martensite) due to deformation and reduce toughness. Therefore, it is preferable that the metallographic structure of the wear-resistant steel according to the present embodiment is composed of one or both of martensite and lower bainite. The total area ratio of martensite and lower bainite is preferably 95% or more. The rest, excluding martensite and lower bainite, consists of one or more of ferrite, pearlite, retained austenite and upper bainite.
 なお、上部ベイナイトは、粒内に炭化物を含まず、粒界にセメンタイト、もしくは残留オーステナイトが析出した40μm以上の粒径の組織である。マルテンサイト及び下部ベイナイトは、ラス状の硬質相であり、一般に、炭化物の有無によって判別される。本実施形態に係る耐摩耗鋼の金属組織がマルテンサイト及び下部ベイナイトからなる場合、炭化物が含まれる金属組織は下部ベイナイトと見做される。本実施形態においては、マルテンサイトと下部ベイナイトとを判別する必要はない。光学顕微鏡によって、フェライト、パーライト、残留オーステナイト及び上部ベイナイトが観察されない場合、金属組織がマルテンサイト及び下部ベイナイトの一方又は両方からなると判断される。
 本実施形態に係る耐摩耗鋼は、炭化物の面積率及び平均円相当直径並びに結晶の平均粒径が上述した範囲であれば、マルテンサイト及び下部ベイナイト以外の金属組織を含んでもよい。
The upper bainite is a structure having a particle size of 40 μm or more in which cementite or retained austenite is precipitated at the grain boundaries without containing carbides in the grains. Martensite and lower bainite are lath-like hard phases and are generally discriminated by the presence or absence of carbides. When the metal structure of the wear-resistant steel according to the present embodiment consists of martensite and lower bainite, the metal structure containing carbides is regarded as lower bainite. In this embodiment, it is not necessary to distinguish between martensite and lower bainite. If ferrite, pearlite, retained austenite and upper bainite are not observed by light microscopy, it is determined that the metallographic structure consists of one or both of martensite and lower bainite.
The wear-resistant steel according to the present embodiment may contain a metal structure other than martensite and lower bainite as long as the area ratio of carbides, the diameter equivalent to an average circle, and the average particle size of crystals are within the above-mentioned ranges.
 金属組織の観察は、耐摩耗鋼の厚さが16mm未満の場合は、表面から厚さ方向に、厚さの1/2の部位(以下、「1/2t部」とも称される。なお、「1/2t」は「t/2」と同義である。)において行われる。耐摩耗鋼の厚さが16mm以上である場合は、表面から厚さ方向に、厚さの1/4の部位(以下、「1/4t部」とも称される。なお、「1/4t」は「t/4」と同義である。)において金属組織の観察が行われる。金属組織の観察に使用される試料の観察面は、試料のL(長手)方向(圧延方向)に沿って厚さ方向に切断された断面(以下、「試料のL(長手)方向断面」と称する場合がある。)であり、湿式研磨、ナイタールによるエッチングが施される。金属組織の観察は、400倍の倍率で行われ、5視野の観察によってフェライト、パーライト、残留オーステナイト及び上部ベイナイトの有無が判定される。なお、残留オーステナイトは、1%~10%ピロ亜硫酸溶液にて実施されるレペラー腐食によって観察される。 When the thickness of the wear-resistant steel is less than 16 mm, the metallographic structure is observed at a portion halved in the thickness direction from the surface (hereinafter, also referred to as "1 / 2t portion"). "1 / 2t" is synonymous with "t / 2"). When the thickness of the wear-resistant steel is 16 mm or more, a portion of 1/4 of the thickness (hereinafter, also referred to as "1 / 4t portion") in the thickness direction from the surface is referred to as "1 / 4t". Is synonymous with "t / 4"), where the metallographic structure is observed. The observation surface of the sample used for observing the metallographic structure is a cross section cut in the thickness direction along the L (longitudinal) direction (rolling direction) of the sample (hereinafter referred to as "L (longitudinal) cross section of the sample"). It may be referred to as), and is subjected to wet polishing and etching with Nital. The metallographic structure is observed at a magnification of 400 times, and the presence or absence of ferrite, pearlite, retained austenite and upper bainite is determined by observing 5 fields of view. Retained austenite is observed by repeller corrosion performed in a 1% to 10% sodium metabisulfite solution.
[炭化物の面積率:0%以上、0.5%以下]
 本実施形態に係る耐摩耗鋼の金属組織がマルテンサイトからなる場合、炭化物の面積率は0%である。本実施形態に係る耐摩耗鋼の金属組織が、マルテンサイト及び下部ベイナイトからなる場合、炭化物が含まれる金属組織は、下部ベイナイトと見做される。炭化物の面積率は、靭性の確保という観点から、0.5%以下である。炭化物の面積率は、好ましくは0.4%以下であり、より好ましくは0.3%以下である。焼入れ停止温度を低下させると、上部ベイナイト及びパーライトの生成が抑制され、炭化物の面積率が減少する。
[Area ratio of carbides: 0% or more, 0.5% or less]
When the metal structure of the wear-resistant steel according to the present embodiment is made of martensite, the area ratio of carbides is 0%. When the metal structure of the wear-resistant steel according to the present embodiment is composed of martensite and lower bainite, the metal structure containing carbides is regarded as lower bainite. The area ratio of carbides is 0.5% or less from the viewpoint of ensuring toughness. The area ratio of the carbide is preferably 0.4% or less, more preferably 0.3% or less. When the quenching stop temperature is lowered, the formation of upper bainite and pearlite is suppressed, and the area ratio of carbides is reduced.
 炭化物の面積率は、走査型電子顕微鏡(Scanning Electron Microscope、以下、「SEM」と称される)によって測定される。炭化物の面積率は、耐摩耗鋼の厚さが16mm未満の場合は、1/2t部において行われる。耐摩耗鋼の厚さが16mm以上である場合は、1/4t部において炭化物の面積率が測定される。炭化物の面積率の測定に使用される試料の観察面は、試料のL(長手)方向断面であり、電解エッチングが施される。炭化物の面積率は、30000倍で撮影された写真の画像解析(画像処理による二値化)によって測定される。ここで、電解エッチングは過塩素酸62cc、エタノール700cc、蒸留水137cc、ブルセルソルブ100ccを混合した溶液にて、20~40V、10秒~30秒実施する。画像処理による2値化は目視にてマルテンサイトのブロック内に析出した炭化物が分離できるよう閾値を設ける。 The area ratio of charcoal is measured by a scanning electron microscope (hereinafter referred to as "SEM"). The area ratio of carbides is measured in 1 / 2t portions when the thickness of the wear-resistant steel is less than 16 mm. When the thickness of the wear-resistant steel is 16 mm or more, the area ratio of carbides is measured at 1 / 4t portion. The observation surface of the sample used to measure the area ratio of carbides is the L (longitudinal) cross section of the sample and is subjected to electrolytic etching. The area ratio of carbides is measured by image analysis (binarization by image processing) of photographs taken at 30,000 times. Here, electrolytic etching is carried out at 20 to 40 V for 10 to 30 seconds in a solution in which 62 cc of perchloric acid, 700 cc of ethanol, 137 cc of distilled water and 100 cc of Brucelsolve are mixed. For binarization by image processing, a threshold is set so that carbides deposited in the martensite block can be visually separated.
[炭化物の平均円相当直径:500nm以下]
 炭化物の平均円相当直径は、靭性の確保という観点から、500nm以下である。炭化物の平均円相当直径は、好ましくは300nm以下である。炭化物の平均円相当直径は、50nm以上であってもよく、100nm以上であってもよい。炭化物の平均円相当直径は、面積率の測定に使用されたSEM写真の画像解析によって求められる炭化物の面積(合計)、及び炭化物の個数から算出される。すなわち、炭化物の合計面積を炭化物の個数で除した炭化物の平均面積から平均円相当直径が算出される。炭化物の面積率が0%である場合、平均円相当直径は0nmである。焼入れ停止温度を低下させると、上部ベイナイト及びパーライトの生成が抑制され、炭化物の平均円相当直径が小さくなる。上部ベイナイト及びパーライトに含まれる炭化物は、平均円相当直径及び面積率が大きい。炭化物の面積率が0.5%以下であり、平均円相当直径が500nm以下であれば、上部ベイナイト及びパーライトの面積率の合計は5%未満であると判断してよい。
[Average circle-equivalent diameter of carbide: 500 nm or less]
The average circle-equivalent diameter of the carbide is 500 nm or less from the viewpoint of ensuring toughness. The average circle-equivalent diameter of the carbide is preferably 300 nm or less. The average circle-equivalent diameter of the carbide may be 50 nm or more, or 100 nm or more. The average circle-equivalent diameter of the carbide is calculated from the area (total) of the carbide obtained by image analysis of the SEM photograph used for measuring the area ratio, and the number of carbides. That is, the average circle-equivalent diameter is calculated from the average area of carbides obtained by dividing the total area of carbides by the number of carbides. When the area ratio of the carbide is 0%, the diameter corresponding to the average circle is 0 nm. When the quenching stop temperature is lowered, the formation of upper bainite and pearlite is suppressed, and the diameter corresponding to the average circle of carbide becomes smaller. The carbides contained in the upper bainite and pearlite have a large diameter and area ratio equivalent to an average circle. If the area ratio of the carbide is 0.5% or less and the diameter corresponding to the average circle is 500 nm or less, it may be determined that the total area ratio of the upper bainite and pearlite is less than 5%.
[15°以上の大傾角粒界で囲まれた粒径上位10個の平均:40μm以下]
 400μm×400μmの領域において15°以上の大傾角粒界で囲まれた粒径上位10個(粒径が大きい順に10個の結晶粒径)の平均は、40μm以下である。以下では、結晶方位差が15°以上の大傾角粒界で囲まれた粒径を大傾角粒径と称する。大傾角粒径が大きくなると破壊が発生しやすくなり、大傾角粒径が小さくなると靭性が向上する。大傾角粒径は、400μm×400μmの領域内の結晶粒のうち上位10個(大きい方から10個)の平均値で評価される。大傾角粒径の上位10個の平均は、より好ましくは30μm以下である。
[Average of the top 10 grain sizes surrounded by large tilt angle grain boundaries of 15 ° or more: 40 μm or less]
The average of the top 10 grain sizes (10 crystal grain sizes in descending order of grain size) surrounded by large tilt angle grain boundaries of 15 ° or more in the region of 400 μm × 400 μm is 40 μm or less. Hereinafter, the grain size surrounded by the large tilt angle grain boundaries having a crystal orientation difference of 15 ° or more is referred to as a large tilt angle grain size. When the large tilt grain size is large, fracture is likely to occur, and when the large tilt grain size is small, the toughness is improved. The large tilt angle grain size is evaluated by the average value of the top 10 crystals (10 from the largest) among the crystal grains in the region of 400 μm × 400 μm. The average of the top 10 particles having a large tilt angle particle size is more preferably 30 μm or less.
 本実施形態では、大傾角粒径は電子線後方散乱回折法(Electron Back Scattered Diffraction Pattern、以下、「EBSD」とも称される)によって測定される。EBSDによる測定は、400μm×400μmの視野で、0.4μmのピッチで行われる。市販の解析ソフト(TSL社製 OIM-Analysis)によって粒径分布が表示され、15°以上の大傾角粒界で囲まれた結晶粒のうち、上位10個の粒径の平均が算出される。EBSDによる測定は、耐摩耗鋼の厚さが16mm未満の場合は、1/2t部において行われる。厚さが16mm以上である場合は、1/4t部においてEBSDによる測定が行われる。EBSDによる測定に使用される試料は、観察面が10mm角であり、鋼板における幅方向の端部から板幅の1/4の位置(1/4幅)から切り出される。観察面は、試料のL(長手)方向断面であり、電解研磨が施される。 In this embodiment, the large tilt angle particle size is measured by an electron backscattered diffraction pattern (hereinafter, also referred to as “EBSD”). Measurements by EBSD are performed with a field of view of 400 μm × 400 μm and a pitch of 0.4 μm. The particle size distribution is displayed by commercially available analysis software (OIM-Anysis manufactured by TSL), and the average of the top 10 particle sizes of the crystal grains surrounded by the large tilt angle grain boundaries of 15 ° or more is calculated. The measurement by EBSD is performed in the 1 / 2t portion when the thickness of the wear-resistant steel is less than 16 mm. When the thickness is 16 mm or more, the measurement by EBSD is performed in the 1 / 4t portion. The sample used for the measurement by EBSD has an observation surface of 10 mm square, and is cut out from a position (1/4 width) of the plate width from the end portion in the width direction of the steel plate. The observation surface is a cross section in the L (longitudinal) direction of the sample, and is subjected to electrolytic polishing.
 次に、本実施形態に係る耐摩耗鋼の表面硬さ、1/2t部における硬さ、及び耐摩耗鋼の低温靭性について説明する。 Next, the surface hardness of the wear-resistant steel, the hardness at the 1 / 2t portion, and the low-temperature toughness of the wear-resistant steel according to the present embodiment will be described.
[表面硬さ:360HV10以上かつ634×[C]1/2+140HV10以上]
 本実施形態に係る耐摩耗鋼の表面硬さは、耐摩耗性を確保するために、ビッカース硬さで360HV10以上かつ634×[C]1/2+140HV10以上である。[C]は、耐摩耗鋼におけるC含有量である。耐摩耗鋼の表面硬さは、好ましくは360HV10以上かつ634×[C]1/2+160HV10以上であり、さらに好ましくは360HV10以上かつ634×[C]1/2+180HV10以上である。表面硬さは、高いほど好ましく、上限は限定されない。耐摩耗鋼の表面硬さは、靭性の確保という観点から、634×[C]1/2+230HV10以下であってもよい。
 耐摩耗鋼の表面硬さは、脱炭の影響を考慮して、耐摩耗鋼の表面から厚さ方向に0.7mmの位置で測定される。ビッカース硬さ試験は、JIS Z 2244:2009に準拠して行われ、荷重は10kgfである。ビッカース硬さは、試料のL(長手)方向断面において測定された3点の平均値である。表面硬さがビッカース硬さで360HV10以上かつ634×[C]1/2+140HV10以上である場合、フェライト及び残留オーステナイトの面積率の合計は5%未満であると判断してよい。
 なお、C含有量を考慮した相対的な耐摩耗性ではなく、C含有量に依らずに絶対的な耐摩耗性を確保する観点から、本実施形態に係る耐摩耗鋼の表面硬さは、380HV10以上、400HV10以上、又は450HV10以上でもよい。
[Surface hardness: 360 HV10 or more and 634 x [C] 1/2 + 140 HV10 or more]
The surface hardness of the wear-resistant steel according to the present embodiment is 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more in Vickers hardness in order to secure wear resistance. [C] is the C content in the wear-resistant steel. The surface hardness of the wear-resistant steel is preferably 360 HV10 or more and 634 × [C] 1/2 + 160 HV10 or more, and more preferably 360 HV10 or more and 634 × [C] 1/2 + 180 HV10 or more. The higher the surface hardness, the more preferable, and the upper limit is not limited. The surface hardness of the wear-resistant steel may be 634 × [C] 1/2 + 230HV10 or less from the viewpoint of ensuring toughness.
The surface hardness of the wear-resistant steel is measured at a position of 0.7 mm in the thickness direction from the surface of the wear-resistant steel in consideration of the influence of decarburization. The Vickers hardness test is performed according to JIS Z 2244: 2009, and the load is 10 kgf. Vickers hardness is the average value of three points measured in the L (longitudinal) cross section of the sample. When the surface hardness is 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more in Vickers hardness, it may be determined that the total area ratio of ferrite and retained austenite is less than 5%.
The surface hardness of the wear-resistant steel according to the present embodiment is determined from the viewpoint of ensuring absolute wear resistance regardless of the C content, rather than the relative wear resistance in consideration of the C content. It may be 380 HV10 or more, 400 HV10 or more, or 450 HV10 or more.
[厚さ方向の中央部における中央部硬さ:360HV10以上かつ634×[C]1/2+140HV10以上]
 耐摩耗鋼の厚さ方向の中央部は、1/2t部と同義であり、以下では、耐摩耗鋼の厚さ方向の中央部における中央部硬さを1/2t部硬さとも称する。1/2t部硬さは、使用による耐摩耗性の劣化の防止という観点から、好ましくはビッカース硬さで360HV10以上かつ634×[C]1/2+140HV10以上、より好ましくは360HV10以上かつ634×[C]1/2+160HV10以上である。1/2t部硬さは、さらに好ましくは360HV10以上かつ634×[C]1/2+180HV10以上であり、高いほど好ましく、上限は限定されない。1/2t部硬さは、靭性の確保という観点から、634×[C]1/2+230HV10以下であってもよい。ビッカース硬さ試験は、JIS Z 2244:2009に準拠して行われ、荷重は10kgfである。ビッカース硬さは、試料のL(長手)方向断面において測定された3点の平均値である。1/2t部硬さは、焼入れ性を高める合金の含有量の増加、焼入れの冷却速度の上昇によって確保される。
 なお、C含有量を考慮した相対的な耐摩耗性ではなく、C含有量に依らずに絶対的な耐摩耗性を確保する観点から、本実施形態に係る耐摩耗鋼の中央部における中央部硬さは、380HV10以上、400HV10以上、又は450HV10以上でもよい。
[Center hardness in the central part in the thickness direction: 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more]
The central portion in the thickness direction of the wear-resistant steel is synonymous with the 1 / 2t portion, and hereinafter, the hardness of the central portion in the central portion in the thickness direction of the wear-resistant steel is also referred to as the 1 / 2t portion hardness. From the viewpoint of preventing deterioration of wear resistance due to use, the 1 / 2t portion hardness is preferably 360HV10 or more and 634 × [C] 1/2 + 140HV10 or more, more preferably 360HV10 or more and 634 × [Vickers hardness. C] 1/2 +160HV10 or more. The 1 / 2t portion hardness is more preferably 360 HV10 or more and 634 × [C] 1/2 + 180 HV10 or more, and the higher the hardness, the more preferable, and the upper limit is not limited. The hardness of the 1 / 2t portion may be 634 × [C] 1/2 + 230HV10 or less from the viewpoint of ensuring toughness. The Vickers hardness test is performed according to JIS Z 2244: 2009, and the load is 10 kgf. Vickers hardness is the average value of three points measured in the L (longitudinal) cross section of the sample. The hardness of 1 / 2t portion is ensured by increasing the content of the alloy that enhances hardenability and increasing the cooling rate of quenching.
From the viewpoint of ensuring absolute wear resistance regardless of the C content, rather than the relative wear resistance in consideration of the C content, the central portion of the wear resistant steel according to the present embodiment. The hardness may be 380 HV10 or more, 400 HV10 or more, or 450 HV10 or more.
[-40℃でのシャルピー吸収エネルギーの平均値:27J以上]
 耐摩耗鋼は、寒冷地又は高地で使用される場合がある。加工時及び使用時の衝撃による破壊を抑制するため、耐摩耗鋼は-40℃での靭性の確保が必要とされる。このような観点から、本実施形態に係る耐摩耗鋼は、-40℃でのシャルピー吸収エネルギーの平均値が27J以上である。-40℃でのシャルピー吸収エネルギーの平均値は、好ましくは50J以上である。-40℃でのシャルピー吸収エネルギーの平均値は、高いほど好ましく、上限は限定されないが、100J以下であってもよい。
[Average value of Charpy absorption energy at -40 ° C: 27J or more]
Abrasion resistant steel may be used in cold or highlands. Wear-resistant steel is required to have toughness at -40 ° C in order to suppress fracture due to impact during processing and use. From such a viewpoint, the wear-resistant steel according to the present embodiment has an average value of Charpy absorption energy at −40 ° C. of 27 J or more. The average value of Charpy absorption energy at −40 ° C. is preferably 50 J or more. The higher the average value of the Charpy absorption energy at −40 ° C. is, the more preferable it is, and the upper limit is not limited, but it may be 100 J or less.
 シャルピー試験は、JIS Z 2242:2018に準拠し、Vノッチを設けたフルサイズの試験片を用いて行われる。耐摩耗鋼の厚さが12mm以下である場合は、5mmのサブサイズの試験片が用いられる。シャルピー試験片の採取位置は、板厚16mm以上の耐摩耗鋼は1/4t部であり、板厚16mm未満の耐摩耗鋼は1/2t部である。シャルピー試験片の長手方向は、圧延方向である。測定値のばらつきを考慮し、シャルピー吸収エネルギーの平均値は、3本の試験片の測定値の算術平均である。 The Charpy test is carried out in accordance with JIS Z 2242: 2018 using a full-size test piece provided with a V notch. When the thickness of the wear-resistant steel is 12 mm or less, a test piece having a subsize of 5 mm is used. The collection position of the Charpy test piece is 1 / 4t part for wear-resistant steel having a plate thickness of 16 mm or more, and 1 / 2t part for wear-resistant steel having a plate thickness of less than 16 mm. The longitudinal direction of the Charpy test piece is the rolling direction. Considering the variation of the measured values, the average value of the Charpy absorbed energy is the arithmetic mean of the measured values of the three test pieces.
 本実施形態に係る耐摩耗鋼の形状は、特に限定されず、鋼板、鋼帯、形鋼、鋼管、棒鋼、鋼線等である。鋼板、鋼帯、形鋼、鋼管等の鋼材の厚さは、特に限定されず、例えば、8mm以上、50mm以下である。鋼材の厚さは、10mm以上であってよく、16mm以上であってもよい。鋼材の厚さは、45mm以下であってよく、40mm以下であってもよい。
 本実施形態に係る耐摩耗鋼が棒鋼の場合は、直径を厚さとみなして、ビッカース硬さ測定、シャルピー試験を行えばよい。
The shape of the wear-resistant steel according to the present embodiment is not particularly limited, and is a steel plate, a steel strip, a shaped steel, a steel pipe, a steel bar, a steel wire, or the like. The thickness of steel materials such as steel plates, strips, shaped steels, and steel pipes is not particularly limited, and is, for example, 8 mm or more and 50 mm or less. The thickness of the steel material may be 10 mm or more, and may be 16 mm or more. The thickness of the steel material may be 45 mm or less, and may be 40 mm or less.
When the wear-resistant steel according to the present embodiment is a steel bar, the Vickers hardness measurement and the Charpy test may be performed by regarding the diameter as the thickness.
 また、本実施形態に係る耐摩耗鋼は、耐食性にも優れる。本実施形態に係る耐摩耗鋼の耐食性を評価する場合、JASO M609、及びJASO M610の試験法をベースに、溶液を1/100希釈の人工海水溶液で実施する。2時間の塩水噴霧、4時間の乾燥、2時間の湿潤を1サイクルとし、504サイクルによる腐食処理後、酸洗処理にて錆を落とし、腐食前後の重量変化から腐食速度を比較する。このような耐食性試験において、本実施形態に係る耐摩耗鋼は、普通鋼のSM490と比較し、腐食速度が80%未満に抑制されることも可能である。 The wear-resistant steel according to this embodiment is also excellent in corrosion resistance. When evaluating the corrosion resistance of the wear-resistant steel according to the present embodiment, the solution is carried out with a 1/100 diluted artificial sea aqueous solution based on the test methods of JASO M609 and JASO M610. Two hours of salt spraying, four hours of drying, and two hours of wetting are defined as one cycle. After corrosion treatment by 504 cycles, rust is removed by pickling treatment, and the corrosion rate is compared from the weight change before and after corrosion. In such a corrosion resistance test, the wear-resistant steel according to the present embodiment can be suppressed to a corrosion rate of less than 80% as compared with the SM490 of ordinary steel.
<製造方法>
 次に、本実施形態に係る耐摩耗鋼の製造方法を説明する。
<Manufacturing method>
Next, a method for manufacturing wear-resistant steel according to this embodiment will be described.
 本実施形態に係る耐摩耗鋼は、鋼を溶製し、成分の調整後、鋳造して得られた鋼片を鋼素材として製造される。鋼素材は熱間圧延され、そのまま焼入れが施されるか、又は空冷される。空冷後は、再加熱され、焼入れが施される。熱間圧延後に焼入れが施された後、再加熱及び焼入れが施されてもよい。 The wear-resistant steel according to the present embodiment is manufactured using steel pieces obtained by melting steel, adjusting the components, and then casting as a steel material. The steel material is hot rolled and either quenched or air cooled as is. After air cooling, it is reheated and quenched. After hot rolling and quenching, reheating and quenching may be performed.
 本実施形態に係る耐摩耗鋼の製造に使用される鋼素材の製法は限定されず、公知の方法で製造される。
 例えば、鋼片は、転炉、電気炉等の通常の精錬プロセスで溶製した後、連続鋳造法、造塊-分塊法等の公知の方法で製造される。
 鋼片は、好ましくは、鋳造後に冷却され、Ac3変態点以上の温度に再加熱されて、熱間圧延が施される。連続鋳造後の鋼片は、400℃以下に冷却されずにホットチャージで加熱炉に装入されると、鋳造時に生成した粗大なオーステナイトが加熱後の鋼片にも残存する場合がある。耐摩耗鋼の組織の微細化を促進させるために、連続鋳造後の鋼片は、一旦、400℃以下まで冷却されることが好ましい。
The method for producing the steel material used for producing the wear-resistant steel according to the present embodiment is not limited, and the steel material is produced by a known method.
For example, steel pieces are melted by a normal refining process such as a converter or an electric furnace, and then manufactured by a known method such as a continuous casting method or an ingot-breaking method.
The steel pieces are preferably cooled after casting, reheated to a temperature equal to or higher than the Ac3 transformation point, and hot-rolled. When the steel pieces after continuous casting are charged into a heating furnace by hot charging without being cooled to 400 ° C. or lower, coarse austenite generated during casting may remain in the steel pieces after heating. In order to promote the miniaturization of the structure of the wear-resistant steel, it is preferable that the steel pieces after continuous casting are once cooled to 400 ° C. or lower.
 熱間圧延は、被圧延材の表面の温度がAr3変態点以上である温度域で行われる。Ar3変態点は冷却時にオーステナイトからフェライトへの変態が開始する温度である。熱間圧延前の鋼素材の加熱温度は、好ましくは900℃以上であり、より好ましくは1000℃以上であり、さらに好ましくは1100℃以上である。加熱温度は、結晶粒の粗大化を抑制するために、好ましくは1330℃以下である。加熱温度は、より好ましくは1200℃以下であり、更に好ましくは1150℃以下である。 Hot rolling is performed in a temperature range in which the temperature of the surface of the material to be rolled is equal to or higher than the Ar3 transformation point. The Ar3 transformation point is the temperature at which the transformation from austenite to ferrite begins during cooling. The heating temperature of the steel material before hot rolling is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and further preferably 1100 ° C. or higher. The heating temperature is preferably 1330 ° C. or lower in order to suppress the coarsening of crystal grains. The heating temperature is more preferably 1200 ° C. or lower, still more preferably 1150 ° C. or lower.
 耐摩耗鋼の熱間圧延では、低温靭性の確保という観点から、再結晶を促進させて、オーステナイトの粒径を小さくすることが好ましい。再結晶を促進させるために、1000℃以上の温度域における圧下率は、好ましくは、50%以上である。1000℃以上の温度域における圧下率(単に圧下率と称する)は、熱間圧延前の鋼素材の厚さと、1000℃における被圧延材の厚さとから、以下の式で求められる。
 圧下率(%)=100×{(鋼素材の厚み)-(1000℃における被圧延材の厚み)}/鋼素材の厚み
In hot rolling of wear-resistant steel, it is preferable to promote recrystallization and reduce the grain size of austenite from the viewpoint of ensuring low temperature toughness. In order to promote recrystallization, the reduction rate in the temperature range of 1000 ° C. or higher is preferably 50% or higher. The reduction rate in the temperature range of 1000 ° C. or higher (simply referred to as reduction rate) is obtained by the following formula from the thickness of the steel material before hot rolling and the thickness of the material to be rolled at 1000 ° C.
Rolling ratio (%) = 100 × {(thickness of steel material)-(thickness of material to be rolled at 1000 ° C)} / thickness of steel material
 熱間圧延の終了温度は、フェライトの生成を防止するという観点から、Ar3変態点以上である。熱間圧延の終了後、そのまま、被圧延材に焼入れが施される場合は、熱間圧延の終了温度は770℃以上である。一方、熱間圧延の終了温度は、金属組織の微細化という観点から、好ましくは900℃以下であり、より好ましくは850℃以下である。
 熱間圧延の終了後の被圧延材の厚さは、耐摩耗鋼の厚さであり、例えば、8mm以上、50mm以下である。熱間圧延での圧下率が小さく、厚さが大き過ぎる場合、γ粒径が粗大化して靭性が不足し、また、焼入れ性が足りない領域が出て上部ベイナイトが生成して靭性が不足する可能性がある。厚さが50mm以下であれば、靭性が不足することが抑制される。一方、厚さが8mm以上であれば、耐摩耗鋼として十分な強度を確保することができる。
The end temperature of hot rolling is equal to or higher than the Ar3 transformation point from the viewpoint of preventing the formation of ferrite. When the material to be rolled is quenched as it is after the completion of hot rolling, the end temperature of hot rolling is 770 ° C. or higher. On the other hand, the end temperature of hot rolling is preferably 900 ° C. or lower, more preferably 850 ° C. or lower, from the viewpoint of miniaturization of the metal structure.
The thickness of the material to be rolled after the completion of hot rolling is the thickness of the wear-resistant steel, for example, 8 mm or more and 50 mm or less. If the rolling reduction in hot rolling is small and the thickness is too large, the γ grain size becomes coarse and the toughness is insufficient, and there are areas where the hardenability is insufficient and upper bainite is generated and the toughness is insufficient. there is a possibility. When the thickness is 50 mm or less, insufficient toughness is suppressed. On the other hand, if the thickness is 8 mm or more, sufficient strength can be ensured as wear-resistant steel.
 熱間圧延後の被圧延材は、そのまま焼入れが施されるか、空冷される。空冷された被圧延材は、再加熱され、焼入れが施される。熱間圧延後の被圧延材に、そのまま焼入れが施される工程は、直接焼入れと称される。熱間圧延後の被圧延材が空冷され、再加熱され、焼入れが施される工程は、再加熱焼入れと称される。熱間圧延後に焼入れが施された被圧延材に、再加熱及び焼入れが施されてもよい。再加熱温度は、フェライトの生成を防止するという観点から、Ac3変態点以上の温度であればよい。再加熱温度は、好ましくは850℃以上であり、より好ましくは900℃以上である。金属組織の微細化という観点から、再加熱温度は、好ましくは1150℃以下である。再加熱温度は、より好ましくは1050℃以下であり、更に好ましくは1000℃以下である。 The material to be rolled after hot rolling is either quenched or air-cooled as it is. The air-cooled material to be rolled is reheated and quenched. The process of quenching the material to be rolled after hot rolling as it is is called direct quenching. The process in which the material to be rolled after hot rolling is air-cooled, reheated, and quenched is called reheating quenching. The material to be rolled, which has been hardened after hot rolling, may be reheated and hardened. The reheating temperature may be a temperature equal to or higher than the Ac3 transformation point from the viewpoint of preventing the formation of ferrite. The reheating temperature is preferably 850 ° C. or higher, more preferably 900 ° C. or higher. From the viewpoint of miniaturization of the metal structure, the reheating temperature is preferably 1150 ° C. or lower. The reheating temperature is more preferably 1050 ° C. or lower, still more preferably 1000 ° C. or lower.
 以下の焼入れの開始温度、冷却速度、停止温度の説明には、直接焼入れ及び再加熱焼入れの工程による違いはない。焼入れの開始温度は、フェライトの生成を防止するという観点から、770℃以上である。焼入れの冷却速度は、フェライトの生成を防止、炭化物の析出及び成長の抑制という観点から、被圧延材の表面温度で、3℃/秒以上である。冷却速度は、速いほど好ましいが、冷却設備の能力、被圧延材の厚さなどによって限界があり、50℃/秒以下であってよい。なお、冷却速度は、下記式によって算出される値である。
 冷却速度=(冷却開始時の表面温度-冷却停止時の表面温度)/冷却時間
 ここで「冷却停止時の表面温度」は、水冷停止時点の被圧延材の表面温度である(復熱温度ではない)。
The following description of the quenching start temperature, cooling rate, and stopping temperature does not differ depending on the direct quenching and reheating quenching steps. The quenching start temperature is 770 ° C. or higher from the viewpoint of preventing the formation of ferrite. The cooling rate of quenching is 3 ° C./sec or more at the surface temperature of the material to be rolled from the viewpoint of preventing the formation of ferrite and suppressing the precipitation and growth of carbides. The faster the cooling rate is, the more preferable it is, but there is a limit depending on the capacity of the cooling equipment, the thickness of the material to be rolled, and the like, and the cooling rate may be 50 ° C./sec or less. The cooling rate is a value calculated by the following formula.
Cooling rate = (Surface temperature at the start of cooling-Surface temperature at the stop of cooling) / Cooling time Here, the "surface temperature at the stop of cooling" is the surface temperature of the material to be rolled at the time of the stop of water cooling (at the reheat temperature). No).
 焼入れの停止温度は、フェライトの生成を防止、炭化物の析出及び成長の抑制という観点から、被圧延材の表面温度で200℃以下である。焼入れの停止温度は、特に炭化物の成長の抑制という観点から、好ましくは、被圧延材の表面温度で100℃以下である。 The quenching stop temperature is 200 ° C. or lower at the surface temperature of the material to be rolled from the viewpoint of preventing the formation of ferrite and suppressing the precipitation and growth of carbides. The quenching stop temperature is preferably 100 ° C. or lower at the surface temperature of the material to be rolled, particularly from the viewpoint of suppressing the growth of carbides.
 ここで、Ac3は下記で計算される加熱時の変態開始温度、Ar3は下記で計算される冷却時の変態開始温度であり、鋼の化学組成を用いて計算される。 Here, Ac3 is the transformation start temperature during heating calculated below, and Ar3 is the transformation start temperature during cooling calculated below, which is calculated using the chemical composition of steel.
c3(℃)=902-255×C+19×Si-11×Mn-5×Cr+13×Mo-20×Ni+55×V
r3(℃)=868-396×C+24.6×Si-68.1×Mn-24.8×Cr
 上式におけるC、Si、Mn、Cr、Mo、Ni、Vは質量%で表した含有量を意味する。
A c3 (° C.) = 902-255 x C + 19 x Si-11 x Mn-5 x Cr + 13 x Mo-20 x Ni + 55 x V
Ar3 (° C.) = 868-396 × C + 24.6 × Si-68.1 × Mn-24.8 × Cr
C, Si, Mn, Cr, Mo, Ni, and V in the above formula mean the content expressed in% by mass.
 以下に本開示の実施例を示す。ただし、以下に示す実施例は本開示の一例であり、本開示は以下に説明する実施例に制限されるものではない。実施例1は直接焼入れの一例であり、実施例2は再加熱焼入れの一例である。 Examples of the present disclosure are shown below. However, the examples shown below are examples of the present disclosure, and the present disclosure is not limited to the examples described below. Example 1 is an example of direct quenching, and Example 2 is an example of reheating quenching.
<実施例1>
 転炉による鋼の溶製、連続鋳造によって製造された鋼片の厚さは245mmである。鋼片から試料が採取され、蛍光X線分析法、燃焼-赤外線吸収法、不活性ガス融解法、誘導結合プラズマ質量分析法(Inductively Coupled Plasma Mass Spectrometry、ICP質量分析法)などを用いて化学組成の分析が行われた。結果は表1に示されている。表1において、空欄は分析下限値未満であったことを意味する。なお、表1に記載はないが、不純物であるOの含有量は20ppm~60ppmであった。表1~表3において、下線は本開示の範囲外の値又は条件であることを意味する。
<Example 1>
The thickness of the steel pieces produced by melting and continuous casting of steel by a converter is 245 mm. A sample is taken from a piece of steel and chemically composed using fluorescent X-ray analysis, combustion-infrared absorption, inert gas melting, inductively coupled plasma mass spectrometry (ICP mass spectrometry), etc. Was analyzed. The results are shown in Table 1. In Table 1, the blank means that it was less than the lower limit of analysis. Although not shown in Table 1, the content of O, which is an impurity, was 20 ppm to 60 ppm. In Tables 1 to 3, underline means values or conditions outside the scope of the present disclosure.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 鋼片に、熱間圧延が施され、そのまま、被圧延材に焼入れが施され、 鋼板(耐摩耗鋼)が製造された。熱間圧延の加熱温度はAc3変態点以上であり、終了温度はAr3変態点以上である。熱間圧延工程において、被圧延材には1000℃以上の温度域における圧下率が50%以上となる圧延が施された。
 熱間圧延に使用された鋼片の鋼No.、焼入れの開始温度、冷却速度、停止温度及び鋼板の板厚は表2に示されている。
The steel pieces were hot-rolled, and the material to be rolled was hardened as they were to produce steel sheets (wear-resistant steel). The heating temperature of hot rolling is above the Ac3 transformation point, and the end temperature is above the Ar3 transformation point. In the hot rolling step, the material to be rolled was rolled so that the rolling reduction ratio was 50% or more in a temperature range of 1000 ° C. or higher.
Steel No. of steel pieces used for hot rolling. The quenching start temperature, cooling rate, stop temperature and sheet steel thickness are shown in Table 2.
(金属組織観察)
 得られた各厚鋼板の金属組織の観察は、耐摩耗鋼の厚さが16mm未満の場合は1/2t部において、耐摩耗鋼の厚さが16mm以上である場合は、1/4t部において行われた。観察面は、試料のL(長手)方向断面であり、湿式研磨、ナイタールによるエッチングが施された。金属組織の観察は、400倍の倍率で行われ、5視野の観察によってフェライト、パーライト、上部ベイナイト、及び残留オーステナイトの有無が判定された。下部ベイナイト及びマルテンサイト以外の組織が観察された場合、下記記号により表2に示し、下記の組織が観察されなかった場合は「‐」を記した。
α:フェライト
P:パーライト
uB:上部ベイナイト
γ:残留オーステナイト
(Observation of metal structure)
Observation of the metallographic structure of each of the obtained thick steel sheets was carried out in the 1 / 2t portion when the thickness of the wear-resistant steel was less than 16 mm, and in the 1 / 4t portion when the thickness of the wear-resistant steel was 16 mm or more. It was conducted. The observation surface is a cross section in the L (longitudinal) direction of the sample, and was subjected to wet polishing and etching with nital. The metallographic structure was observed at a magnification of 400 times, and the presence or absence of ferrite, pearlite, upper bainite, and retained austenite was determined by observing 5 fields of view. When tissues other than lower bainite and martensite were observed, they are shown in Table 2 by the following symbols, and when the following tissues were not observed, "-" was marked.
α: Ferrite P: Pearlite uB: Upper bainite γ: Retained austenite
(炭化物の面積率及び平均円相当直径の測定)
 金属組織の観察に用いた試料に電解研磨が施され、SEMによって炭化物の面積率及び円相当直径が測定された。30000倍で撮影された写真の画像解析によって炭化物の面積、及び炭化物の個数が測定され、炭化物の面積率及び平均円相当直径が算出された。炭化物の面積率及び平均円相当直径は表2に示されている。
 なお、炭化物は、セメンタイト(FeC)のほか、Cr炭化物とFeCが考えられる。Cr炭化物は、高温で長時間保持した場合に析出される炭化物であるが、本開示における製造プロセスでは、Cr炭化物の析出前に冷却される。Cr炭化物が析出されると、固溶Crが減少し焼入れ性が落ちると共に、固溶C量が減少するため、耐摩耗鋼としての硬さが出ないと考えられる。
 FeCは低温焼き戻し(100~200℃)で析出すると考えられるが、TEM(透過電子顕微鏡)で観察される微小なサイズであり、SEMでは観察されない。
 これらの知見から、実施例で観察された炭化物はセメンタイトである。
(Measurement of area ratio of carbides and diameter equivalent to average circle)
The sample used for observing the metallographic structure was electropolished, and the area ratio of carbides and the equivalent diameter of the circle were measured by SEM. The area of carbides and the number of carbides were measured by image analysis of photographs taken at 30,000 times, and the area ratio of carbides and the diameter corresponding to the average circle were calculated. The area ratio of carbides and the diameter equivalent to the average circle are shown in Table 2.
In addition to cementite (Fe 3 C), Cr carbide and Fe 2 C can be considered as carbides. The Cr carbide is a carbide that is deposited when it is held at a high temperature for a long time, but in the production process in the present disclosure, it is cooled before the precipitation of the Cr carbide. When Cr carbide is deposited, the solid solution Cr decreases, the hardenability decreases, and the amount of the solid solution C decreases, so that it is considered that the hardness as a wear-resistant steel does not appear.
Fe 2 C is considered to be precipitated by low temperature tempering (100 to 200 ° C.), but it is a minute size observed by TEM (transmission electron microscope) and is not observed by SEM.
From these findings, the carbide observed in the examples is cementite.
(有効結晶粒径の測定)
 更に、EBSDによって、15°以上の大傾角粒界で囲まれた粒径上位10個の平均が測定された。EBSDによる測定は、400μm×400μmの視野で、0.4μmのピッチで行われた。15°以上の大傾角粒界で囲まれた粒径上位10個の平均が、TSL社製のOIM-Analysisによって求められた。15°以上の大傾角粒界で囲まれた粒径上位10個の平均は有効結晶粒径として表2に示されている。
(Measurement of effective crystal grain size)
In addition, EBSD measured the average of the top 10 grain sizes surrounded by large grain boundaries of 15 ° or higher. Measurements by EBSD were performed with a field of view of 400 μm × 400 μm and a pitch of 0.4 μm. The average of the top 10 grain sizes surrounded by large tilt angle grain boundaries of 15 ° or more was determined by OIM-Analysis manufactured by TSL. The average of the top 10 grain sizes surrounded by the large grain boundaries of 15 ° or more is shown in Table 2 as the effective grain size.
(ビッカース硬さ試験)
 試料のL(長手)方向断面において、耐摩耗鋼の表面から厚さ方向に0.7mmの位置及び1/2t部で耐摩耗鋼のビッカース硬さが測定された。ビッカース硬さ試験は、JIS Z 2244:2009に準拠し、10kgfの荷重で行われた。ビッカース硬さは、測定された任意の3点の平均値である。表面硬さが360HV10以上かつ634×[C]1/2+140HV10以上であれば耐摩耗性が良好であり、さらに1/2t部の硬さが360HV10以上かつ634×[C]1/2+140HV10以上であれば耐摩耗性の劣化抑制も良好である。
(Vickers hardness test)
In the L (longitudinal) cross section of the sample, the Vickers hardness of the wear-resistant steel was measured at a position 0.7 mm in the thickness direction from the surface of the wear-resistant steel and at 1 / 2t portion. The Vickers hardness test was performed in accordance with JIS Z 2244: 2009 with a load of 10 kgf. Vickers hardness is the average value of any three measured points. If the surface hardness is 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more, the wear resistance is good, and if the hardness of the 1 / 2t portion is 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more. If so, the deterioration of wear resistance is also suppressed well.
(シャルピー試験)
 シャルピー試験は、JIS Z 2242:2018に準拠し、Vノッチを設けたフルサイズの試験片を用いて行われた。シャルピー吸収エネルギーの平均値は、3本の試験片の測定値の算術平均である。シャルピー試験片の長手方向は、鋼板の圧延方向である。
 耐摩耗鋼の厚さが12mm以下である場合は、5mmのサブサイズの試験片が用いられた。シャルピー試験片の採取位置は、板厚16mm以上の耐摩耗鋼は1/4t部であり、板厚16mm未満の耐摩耗鋼は1/2t部である。ビッカース硬さ(表面硬さ及び1/2t硬さ)及びシャルピー吸収エネルギー(KV)は表2に示されている。シャルピー吸収エネルギーが27J以上であれば低温靭性が良好である。
(Charpy test)
The Charpy test was carried out in accordance with JIS Z 2242: 2018 using a full size test piece provided with a V notch. The average value of Charpy absorbed energy is the arithmetic mean of the measured values of the three test pieces. The longitudinal direction of the Charpy test piece is the rolling direction of the steel sheet.
When the thickness of the wear-resistant steel was 12 mm or less, a test piece having a subsize of 5 mm was used. The collection position of the Charpy test piece is 1 / 4t part for wear-resistant steel having a plate thickness of 16 mm or more, and 1 / 2t part for wear-resistant steel having a plate thickness of less than 16 mm. Vickers hardness (surface hardness and 1 / 2t hardness) and Charpy absorption energy (KV 2 ) are shown in Table 2. If the Charpy absorption energy is 27 J or more, the low temperature toughness is good.
(耐食性試験)
 耐食性試験はJASO M609、及びJASO M610の試験法をベースに、溶液を1/100希釈の人工海水溶液で実施した。2時間の塩水噴霧、4時間の乾燥、2時間の湿潤を1サイクルとし、504サイクルによる腐食処理後、酸洗処理にて錆を落とし、腐食前後の重量変化から腐食速度を比較した。普通鋼のSM490と比較し、腐食速度が80%未満の鋼材をA、80%以上の鋼材をBで評価した。
(Corrosion resistance test)
The corrosion resistance test was carried out by diluting the solution with a 1/100 diluted artificial sea aqueous solution based on the test methods of JASO M609 and JASO M610. Two hours of salt spraying, four hours of drying, and two hours of wetting were set as one cycle, and after corrosion treatment by 504 cycles, rust was removed by pickling treatment, and the corrosion rate was compared from the weight change before and after corrosion. Compared with SM490 of ordinary steel, the steel material having a corrosion rate of less than 80% was evaluated by A, and the steel material having a corrosion rate of 80% or more was evaluated by B.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
<実施例2>
 表1に成分が示される鋼片に、熱間圧延が施され、空冷後、被圧延材に再加熱焼入れが施され、 鋼板が製造された。熱間圧延の加熱温度はAc3変態点以上であり、終了温度はAr3変態点以上である。熱間圧延工程において、被圧延材には1000℃以上の温度域における圧下率が50%以上となる圧延が施された。再加熱焼入れの加熱温度はAc3変態点以上である。
 熱間圧延に使用された鋼片の鋼No.、焼入れの開始温度、冷却速度、停止温度及び鋼板の板厚は表3に示されている。
<Example 2>
The steel pieces whose components are shown in Table 1 were hot-rolled, air-cooled, and then reheat-quenched to the material to be rolled to produce a steel sheet. The heating temperature of hot rolling is above the Ac3 transformation point, and the end temperature is above the Ar3 transformation point. In the hot rolling step, the material to be rolled was rolled so that the rolling reduction ratio was 50% or more in a temperature range of 1000 ° C. or higher. The heating temperature for reheating and quenching is equal to or higher than the Ac3 transformation point.
Steel No. of steel pieces used for hot rolling. The quenching start temperature, cooling rate, stop temperature and sheet steel thickness are shown in Table 3.
 実施例1と同様に、得られた各厚鋼板の金属組織の観察、炭化物の面積率及び平均円相当直径の測定、有効結晶粒径の測定、ビッカース硬さ及びシャルピー吸収エネルギーの測定、さらに耐食性試験が行われた。結果は表3に示されている。 Similar to Example 1, observation of the metal structure of each obtained thick steel plate, measurement of carbide area ratio and average circle equivalent diameter, measurement of effective crystal grain size, measurement of Vickers hardness and Charpy absorption energy, and corrosion resistance. The test was done. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
 表2及び表3に示されるように、本開示の要件を満たす鋼板は、Ni、Moを含まないか、含有量がそれぞれ0.50%以下に抑えられており、耐摩耗性、耐食性及び低温靭性に優れている。
 製造No.101では、C含有量が高いため、炭化物が粗大化し、目標とする低温靭性が得られていない。
 製造No.102では、Cr含有量が低いため、炭化物が粗大化し、目標とする低温靭性が得られていない。
 製造No.103では、C含有量が低いため、表面硬さが不足し、目標とする耐摩耗性が得られていない。
 製造No.104では、Mn含有量が高いため、脆性破壊の起点となるMnSが多く析出し、目標とする低温靭性が得られていない。
 製造No.105では、焼入れ開始温度が低いため、フェライトが生成し、目標とする耐摩耗性及び低温靭性が得られていない。
 製造No.106では、冷却速度が遅いため、フェライトが生成し、炭化物が粗大化し、目標とする耐摩耗性及び低温靭性が得られていない。
 製造No.107では、焼入れ停止温度が高いため、炭化物が粗大化し、目標とする低温靭性が得られていない。
 製造No.108では、C含有量が高いため、炭化物が粗大化し、目標とする低温靭性が得られていない。
 製造No.109では、Cr含有量が低いため、炭化物が粗大化し、目標とする低温靭性が得られていない。
 製造No.110では、C含有量が低いため、表面硬さが不足して目標とする耐摩耗性が得られず、低温靭性も不十分である。
 製造No.111では、Mn含有量が高いため、目標とする低温靭性が得られていない。
 製造No.112では、焼入れ停止温度が高いため、目標とする低温靭性が得られていない。
 製造No.113では、焼入れ停止温度が低いため、フェライトが生成して表面硬さが不足し、目標とする耐摩耗性が得られず、低温靭性も不十分である。
 製造No.114では、冷却速度が遅いため、フェライトが生成し、炭化物が粗大化し、目標とする耐摩耗性及び低温靭性が得られていない。
 製造No.115では、焼入れ停止温度が高いため、炭化物が粗大化し、目標とする低温靭性が得られていない。
As shown in Tables 2 and 3, the steel sheets satisfying the requirements of the present disclosure do not contain Ni and Mo or have a content of 0.50% or less, respectively, and have wear resistance, corrosion resistance and low temperature. Has excellent toughness.
Manufacturing No. In 101, since the C content is high, the carbides are coarsened and the target low temperature toughness is not obtained.
Manufacturing No. In 102, since the Cr content is low, the carbides are coarsened and the target low temperature toughness is not obtained.
Manufacturing No. In 103, since the C content is low, the surface hardness is insufficient, and the target wear resistance is not obtained.
Manufacturing No. In 104, since the Mn content is high, a large amount of MnS, which is the starting point of brittle fracture, is deposited, and the target low temperature toughness is not obtained.
Manufacturing No. In 105, since the quenching start temperature is low, ferrite is generated, and the target wear resistance and low temperature toughness are not obtained.
Manufacturing No. In 106, since the cooling rate is slow, ferrite is generated, carbides are coarsened, and the target wear resistance and low temperature toughness are not obtained.
Manufacturing No. In 107, since the quenching stop temperature is high, the carbides are coarsened and the target low temperature toughness is not obtained.
Manufacturing No. In No. 108, since the C content is high, the carbides are coarsened and the target low temperature toughness is not obtained.
Manufacturing No. In 109, since the Cr content is low, the carbides are coarsened and the target low temperature toughness is not obtained.
Manufacturing No. In 110, since the C content is low, the surface hardness is insufficient to obtain the target wear resistance, and the low temperature toughness is also insufficient.
Manufacturing No. In 111, the target low temperature toughness is not obtained because the Mn content is high.
Manufacturing No. In 112, the target low temperature toughness is not obtained because the quenching stop temperature is high.
Manufacturing No. In 113, since the quenching stop temperature is low, ferrite is generated and the surface hardness is insufficient, the target wear resistance cannot be obtained, and the low temperature toughness is also insufficient.
Manufacturing No. At 114, since the cooling rate is slow, ferrite is generated, carbides are coarsened, and the target wear resistance and low temperature toughness are not obtained.
Manufacturing No. In 115, since the quenching stop temperature is high, the carbides are coarsened and the target low temperature toughness is not obtained.
 2020年7月28日に出願された日本特許出願2020-127724の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The entire disclosure of Japanese patent application 2020-127724, filed July 28, 2020, is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are referenced herein to the same extent as if individual documents, patent applications, and technical standards were specifically and individually described. Is taken in by.

Claims (5)

  1.  化学組成が、質量%で、
    C:0.08%以上、0.20%以下、
    Si:0.01%以上、0.50%以下、
    Mn:0.10%以上、2.00%以下、
    P:0.015%以下、
    S:0.0300%以下、
    Cr:2.10%以上、8.00%以下、
    N:0.0080%以下、
    Cu:0%以上、0.50%以下、
    Ni:0%以上、0.50%以下、
    Mo:0%以上、0.50%以下、
    V:0%以上、0.500%以下、
    W:0%以上、0.50%以下、
    B:0%以上、0.0050%以下、
    Al:0%以上、0.300%以下、
    Ti:0%以上、0.100%以下、
    Nb:0%以上、0.100%以下、
    Ca:0%以上、0.0100%以下、
    Mg:0%以上、0.0100%以下、
    REM:0%以上、0.0100%以下、並びに
    残部:Fe及び不純物
    からなり、
     厚さ方向の断面であって、厚さをtとした場合に、tが16mm未満の場合は表面から1/2tの位置、tが16mm以上の場合は表面から1/4tの位置において、
     金属組織に含まれる炭化物が、面積%で、0%以上、0.5%以下であり、前記炭化物の平均円相当直径が500nm以下であり、
     400μm×400μmの領域において、15°以上の大傾角粒界で囲まれた結晶粒のうち、粒径が大きい順に10個の結晶粒の平均粒径が40μm以下であり、及び
     -40℃でのシャルピー吸収エネルギーが27J以上であり、
     質量%でのC含有量を[C]とした場合に、表面から厚さ方向に0.7mmの位置における表面硬さが、360HV10以上かつ634×[C]1/2+140HV10以上である、耐摩耗鋼。
    The chemical composition is by mass%,
    C: 0.08% or more, 0.20% or less,
    Si: 0.01% or more, 0.50% or less,
    Mn: 0.10% or more, 2.00% or less,
    P: 0.015% or less,
    S: 0.0300% or less,
    Cr: 2.10% or more, 8.00% or less,
    N: 0.0080% or less,
    Cu: 0% or more, 0.50% or less,
    Ni: 0% or more, 0.50% or less,
    Mo: 0% or more, 0.50% or less,
    V: 0% or more, 0.500% or less,
    W: 0% or more, 0.50% or less,
    B: 0% or more, 0.0050% or less,
    Al: 0% or more, 0.300% or less,
    Ti: 0% or more, 0.100% or less,
    Nb: 0% or more, 0.100% or less,
    Ca: 0% or more, 0.0100% or less,
    Mg: 0% or more, 0.0100% or less,
    REM: 0% or more, 0.0100% or less, and the balance: Fe and impurities.
    In the cross section in the thickness direction, when the thickness is t, when t is less than 16 mm, it is 1 / 2t from the surface, and when t is 16 mm or more, it is 1 / 4t from the surface.
    The carbide contained in the metal structure is 0% or more and 0.5% or less in area%, and the average circle equivalent diameter of the carbide is 500 nm or less.
    In the region of 400 μm × 400 μm, among the crystal grains surrounded by large tilt angle grain boundaries of 15 ° or more, the average grain size of 10 crystal grains is 40 μm or less in descending order of grain size, and at -40 ° C. Crystall absorption energy is 27J or more,
    When the C content in% by mass is [C], the surface hardness at a position 0.7 mm in the thickness direction from the surface is 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more. Worn steel.
  2.  厚さ方向の中央部における中央部硬さが、360HV10以上かつ634×[C]1/2+140HV10以上である、請求項1に記載の耐摩耗鋼。 The wear-resistant steel according to claim 1, wherein the hardness of the central portion in the central portion in the thickness direction is 360 HV10 or more and 634 × [C] 1/2 + 140 HV10 or more.
  3.  質量%で、
    Cu:0.01%以上、0.50%以下、
    Ni:0.01%以上、0.50%以下、
    Mo:0.01%以上、0.50%以下、
    V:0.003%以上、0.500%以下、
    W:0.01%以上、0.50%以下、
    B:0.0003%以上、0.0050%以下、
    Al:0.005%以上、0.300%以下、
    Ti:0.003%以上、0.100%以下、
    Nb:0.003%以上、0.100%以下、
    Ca:0.0003%以上、0.0100%以下、
    Mg:0%以上、0.0100%以下、及び
    REM:0.0003%以上、0.0100%以下、
    からなる群より選ばれる少なくとも1種を含む請求項1又は請求項2に記載の耐摩耗鋼。
    By mass%,
    Cu: 0.01% or more, 0.50% or less,
    Ni: 0.01% or more, 0.50% or less,
    Mo: 0.01% or more, 0.50% or less,
    V: 0.003% or more, 0.500% or less,
    W: 0.01% or more, 0.50% or less,
    B: 0.0003% or more, 0.0050% or less,
    Al: 0.005% or more, 0.300% or less,
    Ti: 0.003% or more, 0.100% or less,
    Nb: 0.003% or more, 0.100% or less,
    Ca: 0.0003% or more, 0.0100% or less,
    Mg: 0% or more, 0.0100% or less, and REM: 0.0003% or more, 0.0100% or less,
    The wear-resistant steel according to claim 1 or 2, which comprises at least one selected from the group consisting of.
  4.  鋼板である請求項1~請求項3のいずれか1項に記載の耐摩耗鋼。 The wear-resistant steel according to any one of claims 1 to 3, which is a steel plate.
  5.  板厚が、8mm以上、50mm以下である請求項4に記載の耐摩耗鋼。
     
    The wear-resistant steel according to claim 4, wherein the plate thickness is 8 mm or more and 50 mm or less.
PCT/JP2021/027960 2020-07-28 2021-07-28 Wear-resistant steel WO2022025135A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021571043A JPWO2022025135A1 (en) 2020-07-28 2021-07-28
KR1020237001354A KR20230024381A (en) 2020-07-28 2021-07-28 wear resistant steel
CN202180048820.6A CN115989326A (en) 2020-07-28 2021-07-28 Wear-resistant steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-127724 2020-07-28
JP2020127724A JP2024015532A (en) 2020-07-28 2020-07-28 wear resistant steel

Publications (1)

Publication Number Publication Date
WO2022025135A1 true WO2022025135A1 (en) 2022-02-03

Family

ID=80035651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027960 WO2022025135A1 (en) 2020-07-28 2021-07-28 Wear-resistant steel

Country Status (4)

Country Link
JP (2) JP2024015532A (en)
KR (1) KR20230024381A (en)
CN (1) CN115989326A (en)
WO (1) WO2022025135A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194042A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof
JP2016222969A (en) * 2015-05-29 2016-12-28 Jfeスチール株式会社 Wear resistant steel sheet excellent in low temperature toughness and corrosive wear resistance
JP2018123409A (en) * 2017-02-03 2018-08-09 Jfeスチール株式会社 Abrasion resistant steel sheet, and method for producing the same
KR20190076762A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2019181130A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Wear-resistant steel and method for producing same
WO2021054015A1 (en) * 2019-09-17 2021-03-25 Jfeスチール株式会社 Wear-resistant steel sheet and method for producing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970721A (en) 1982-10-18 1984-04-21 Nippon Steel Corp Manufacture of thick tough steel
JPH064889B2 (en) 1983-01-14 1994-01-19 新日本製鐵株式会社 Method for manufacturing thick ultra high strength steel
JPH10102185A (en) 1996-10-02 1998-04-21 Nippon Steel Corp Production of member with high toughness and high temperature wear resistance and thick steel plate therefor
JPH10204575A (en) 1997-01-16 1998-08-04 Nippon Steel Corp Production of wear resistant member with high toughness and thick steel plate
JP7135465B2 (en) * 2017-06-08 2022-09-13 日本製鉄株式会社 Wear-resistant thick steel plate
WO2019050010A1 (en) 2017-09-08 2019-03-14 Jfeスチール株式会社 Steel sheet and method for producing same
JP6477983B1 (en) * 2018-03-29 2019-03-06 新日鐵住金株式会社 Austenitic wear-resistant steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194042A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof
JP2016222969A (en) * 2015-05-29 2016-12-28 Jfeスチール株式会社 Wear resistant steel sheet excellent in low temperature toughness and corrosive wear resistance
JP2018123409A (en) * 2017-02-03 2018-08-09 Jfeスチール株式会社 Abrasion resistant steel sheet, and method for producing the same
KR20190076762A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2019181130A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Wear-resistant steel and method for producing same
WO2021054015A1 (en) * 2019-09-17 2021-03-25 Jfeスチール株式会社 Wear-resistant steel sheet and method for producing same

Also Published As

Publication number Publication date
CN115989326A (en) 2023-04-18
KR20230024381A (en) 2023-02-20
JP2024015532A (en) 2024-02-06
JPWO2022025135A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
RU2627830C2 (en) Wear-resistant heavy plates with excellent low-temperature impact strength and method of their production
RU2627826C2 (en) Wear-resistant sheet steel with excellent low-temperature impact strength and resistance to hydrogen attack and method of its manufacture
JP6787483B2 (en) Martensitic stainless steel
KR101126151B1 (en) Brake disk excellent in temper softening resistance and toughness
CN106661689B (en) Hot rolled steel plate
WO2018168248A1 (en) Abrasion-resistant steel sheet and method for producing abrasion-resistant steel sheet
JP6540764B2 (en) Wear-resistant steel plate and method of manufacturing the same
JP2006241528A (en) Steel for high strength spring having excellent cold workability and quality stability
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
WO2010150448A1 (en) Pearlite–based high-carbon steel rail having excellent ductility and process for production thereof
JPWO2020070810A1 (en) Manufacturing method of carburized steel sheet and carburized steel sheet
JP2021507091A (en) Steel section with a thickness of at least 100 mm and its manufacturing method
JP7088407B2 (en) Wear-resistant steel sheet and its manufacturing method
WO2015174424A1 (en) Seamless steel pipe for line pipe, and method for producing same
CN115698359B (en) Steel sheet and method for producing same
WO2021241606A1 (en) Wear resistant steel sheet and method for producing wear resistant steel sheet
WO2020039485A1 (en) Steel sheet and production method therefor
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
WO2022025135A1 (en) Wear-resistant steel
JP2020132914A (en) Wear-resistant thick steel plate
JP7063419B1 (en) Manufacturing method of wear-resistant steel sheet and wear-resistant steel sheet
JP7063420B1 (en) Manufacturing method of wear-resistant steel sheet and wear-resistant steel sheet
JP7201136B1 (en) Steel sheet pile and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571043

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237001354

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850391

Country of ref document: EP

Kind code of ref document: A1