WO2022025129A1 - Production method of novel anti-hbs immunoglobulin - Google Patents

Production method of novel anti-hbs immunoglobulin Download PDF

Info

Publication number
WO2022025129A1
WO2022025129A1 PCT/JP2021/027933 JP2021027933W WO2022025129A1 WO 2022025129 A1 WO2022025129 A1 WO 2022025129A1 JP 2021027933 W JP2021027933 W JP 2021027933W WO 2022025129 A1 WO2022025129 A1 WO 2022025129A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
antibody
amino acid
acid sequence
hbv
Prior art date
Application number
PCT/JP2021/027933
Other languages
French (fr)
Japanese (ja)
Inventor
正博 佐竹
里佳 古田
智津 豊田
隆太郎 飛田
輝人 安居
武春 南谷
宏樹 秋葉
浩平 津本
Original Assignee
日本赤十字社
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本赤十字社, 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 日本赤十字社
Publication of WO2022025129A1 publication Critical patent/WO2022025129A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses

Definitions

  • the present invention relates to providing a recombinant anti-HBs human immunoglobulin preparation.
  • HBV hepatitis B virus
  • HBIG anti-HBs human immunoglobulin preparations
  • blood donor plasma having extremely high titers against HBs antigen, which is a neutralizing epitope of HBV (anti-HBs antibody).
  • the vaccine is additionally inoculated to human individuals who have already acquired anti-HBs antibody by HBV vaccine, and the anti-HBs antibody titer is increased.
  • a project to secure raw material plasma by donating blood is being carried out, and the Japanese Red Cross Society has been entrusted with this project and has been implementing it so far [Sugauchi F, et al., Hepatol Res. 2006; 36: 107- 14].
  • An object of the present invention is to provide a safe and effective antibody preparation by fundamentally solving the problem of unachieved domestic self-sufficiency of raw blood of anti-HBs human immunoglobulin preparation.
  • the present invention is an anti-HBs antigen-specific monoclonal that can have neutralizing activity against HBV from in-vivo peripheral blood circulation B cells of a human individual whose antibody titer is increased by acquiring anti-HBs antibody by inoculation with HBV vaccine. It was decided to solve the above-mentioned problems by screening an antibody, isolating the gene of the antibody, and providing a recombinant anti-HBs human immunoglobulin preparation.
  • the present application provides the following aspects in order to solve the above-mentioned problems: [1]: (1) Heavy chain complementarity determining regions, CDR1 (GFMFSGHS, SEQ ID No: 1), CDR2 (IGSTGEFI, SEQ ID No: 2), and CDR3 (AREQGTRGRYYYYGLDV, SEQ ID No: 3), and Light chain complementarity determining regions, CDR1 (SQSVSTY, SEQ ID No: 4), CDR2 (DAF, SEQ ID No: 5), and CDR3 (QQRGHWPLT, SEQ ID No: 6); (2) Heavy chain complementarity determining regions, CDR1 (SGGSISGHY, SEQ ID No: 7), CDR2 (IHYSGIT, SEQ ID No: 8), and CDR3 (ARGDATYGY, SEQ ID No: 9), and light chain complementarity.
  • CDR1 GFMFSGHS, SEQ ID No: 1
  • CDR2 IGSTGEFI, SEQ ID No: 2)
  • CDR1 Sex determining regions, CDR1 (SQSLLHRNGYNY, SEQ ID No: 10), CDR2 (LGS, SEQ ID No: 11), and CDR3 (MQALRTPWT, SEQ ID No: 12); (3) Heavy chain complementarity determining regions, CDR1 (SGFSFSNYG, SEQ ID No: 13), CDR2 (IWRDGSHQ, SEQ ID No: 14), and CDR3 (AREDPAIVLPVLDH, SEQ ID No: 15), and light chain complementarity.
  • Sex determining regions CDR1 (QRINSY, SEQ ID No: 16), CDR2 (GAS, SEQ ID No: 17), and CDR3 (QQGYSTPLLS, SEQ ID No: 18); Contains the complementarity determining regions of any heavy or light chain selected from the group consisting of, has binding to HBsAg of HBV, has neutralizing activity against HBV, is not derived from blood source, Antigens or antibody derivatives; [2]: Recombinant antibody or antibody derivative according to [1]; [3]: The HBsAg is one or more selected from the group consisting of L antigen, M antigen, S antigen, HBsAg adr type, adw type, ayr type, and ayw type of HBsAg, [1].
  • Amino acid sequence, including substitutions), insertions, or deletions The antibody or antibody derivative according to any one of [1] to [4], which is selected from the above; [6]: The amino acid sequence of the light chain variable region VL domain of the antibody or antibody derivative is (1) Of the amino acid sequence of SEQ ID No: 20 or the amino acid sequence of SEQ ID No: 20, CDR1 (SEQ ID No: 4), CDR2 (SEQ ID No: 5), and CDR3 (SEQ ID No: 6). Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in parts other than).
  • the antibody or antibody derivative is (1) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 25) and a light chain (SEQ ID No: 26); (2) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 27) and a light chain (SEQ ID No: 28); (3) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 29) and a light chain (SEQ ID No: 30); Item 6.
  • [8] A pharmaceutical composition for neutralizing HBV, which comprises the antibody or antibody derivative according to any one of [1] to [7] and does not contain blood-derived components; [9]: The pharmaceutical composition according to [8], which comprises a plurality of types of the antibody or antibody derivative according to any one of [1] to [7]; [10]: The pharmaceutical composition according to [8] or [9] for preventing reactivation of hepatitis B or preventing medical infection of HBV; [11]: A step of bringing a biological sample collected from a subject into contact with the antibody or antibody derivative according to any one of [1] to [7] in vitro. A step of detecting and measuring HBV in a sample bound to the antibody or antibody derivative.
  • a method for detecting and measuring the presence / abundance of HBV in a biological sample including [12]: A kit for detecting and measuring the presence / abundance of HBV in a subject, which comprises the antibody or antibody derivative according to any one of [1] to [7].
  • an antibody expected to have safe, effective and stable activity that can fundamentally solve the problems of unachieved domestic self-sufficiency and the problems of blood products related to anti-HBs human immunoglobulin preparations derived from blood raw materials. Formulations can be provided.
  • FIG. 1 is a diagram showing a virus infection neutralization experiment in HepG2-hNTCP-C4 cells infected with genotype D HBV.
  • FIG. 2 is a diagram showing a virus infection neutralization experiment in primary human hepatocytes PXB cells infected with genotype C HBV.
  • FIG. 3 is a diagram showing an electrophoretic image in which the binding characteristics of the recombinant anti-HBs antibody were evaluated.
  • FIG. 4 is a diagram confirming that the recombinant anti-HBs antibody of the present invention also binds to the HBs antigen aggregate by the ELISA method.
  • FIG. 1 is a diagram showing a virus infection neutralization experiment in HepG2-hNTCP-C4 cells infected with genotype D HBV.
  • FIG. 2 is a diagram showing a virus infection neutralization experiment in primary human hepatocytes PXB cells infected with genotype C HBV.
  • FIG. 3 is a diagram showing an electrophoretic image in which the binding
  • FIG. 5 is a diagram analyzing the interaction of the recombinant anti-HBs antibody candidate antibody of the present invention with the recombinant HBs antigen using surface plasmon resonance (SPR) technology.
  • FIG. 6 is a diagram showing the results of confirming the non-specific binding (cross-reactivity) of the recombinant anti-HBs antibody to the human-derived component.
  • FIG. 7 is a diagram showing the results of immunostaining of human tissues using recombinant anti-HBs antibody.
  • FIG. 7a shows a histological image in which HBsAg was detected.
  • FIG. 7 is a diagram showing the results of immunostaining of human tissues using recombinant anti-HBs antibody.
  • FIG. 7b shows that no staining was observed on various normal human tissues.
  • HBsAg An antigen that is one of the proteins that make up the outer shell of HBV and is tested when determining the presence or absence of HBV infection. Antibodies to this HBsAg are found in vivo when HBV has been infected in the past but the virus has been eliminated, or when HBV vaccine is given and the antibody becomes positive (+);
  • HBIG Human anti-HBs Immunoglobulin. Commercially available HBIG is a pharmaceutical product obtained by purifying IgG from human plasma, which has a high anti-HBs antibody titer. Although it has an immediate effect, its effect lasts for about 3 months, which is relatively short.
  • the present invention is not derived from a blood source, has binding to HBsAg of HBV, has neutralizing activity against HBV, contains complementarity determining regions of heavy and light chains having a specific amino acid sequence. It has been shown that the subject of the present invention can be solved by providing an antibody or an antibody derivative.
  • This antibody or antibody derivative can be any antibody or antibody derivative as long as it has binding property to HBs antigen of HBV, has neutralizing activity against HBV, and is not derived from blood raw materials. It is included in the scope of the present invention.
  • the antibody or antibody derivative used in the present invention has various problems peculiar to blood preparations such as blood-derived antibody preparations conventionally used for the treatment of hepatitis virus (particularly, infectivity problems and immunity problems).
  • Viruses such as HBV, hepatitis C virus (HCV), and human immunodeficiency virus (HIV) that may be contained in the blood (risk of being mixed in blood preparations) for the purpose of solving the problem. It is characterized by being free of pathogens such as, and free of blood-derived components that may cause immune abnormalities in the administered individual, such as antigenic proteins contained in blood and antibodies that bind to human proteins. ..
  • immortalized cells derived from antibody-producing cells are obtained under conditions that do not contain blood-derived components, and are prepared from the cells under culture conditions that do not contain blood-derived components.
  • Antibodies and recombinant antibodies that can be prepared by recombinantly expressing the antibody protein using the DNA defining the antibody protein obtained from the immortalized cells can be used.
  • the antibody in the present invention is derived from antibody-producing cells by obtaining and immortalizing a cell clone that produces an antibody against HBs antigen derived from HBV from the blood of an individual to which the HBV vaccine has been administered in the past. It can be obtained by obtaining immortalized cells and selecting cells having an action of neutralizing HBV in vivo from the immortalized antibody-producing cells.
  • the present invention comprises obtaining an mRNA and producing a cDNA from an immortalized antibody-producing cell having an action of neutralizing HBV selected by the above-mentioned method according to a well-known method, and then producing an antibody protein. It has neutralizing activity obtained by obtaining the specified DNA sequence and expressing it in a mammalian expression system containing no blood-derived components using a vector to produce it as recombinant immunoglobulin (IgG). Monoclonal antibodies or antibody derivatives thereof can also be provided as recombinant HBIG.
  • derivatives of these antibodies can also be used.
  • an antibody variant selected from a humanized antibody, a chimeric antibody, a polyvalent antibody, and a multispecific antibody or a functional fragment thereof can be used.
  • the functional fragment for example, F (ab') 2 can be used, but the functional fragment is not limited thereto.
  • Derivatives of these antibodies can be produced according to a method well known in the art after the antibody is obtained, and can be prepared as the recombinant antibody derivative described for the antibody of the present invention described above.
  • the antibody or antibody derivative obtained by the above-mentioned method has binding property to HBs antigen derived from HBV, but in the present invention, such an antibody having binding property to HBs antigen derived from HBV.
  • screening is performed based on having an action of further neutralizing HBV from among antibody derivatives, and an antibody or antibody derivative having the neutralizing action is provided.
  • HBV is a spherical virus with a diameter of 42 nm that forms a double structure of the envelope and core.
  • proteins constituting HBV HBs antigen, HBc antigen, HBe antigen, X protein (HBx antigen) and the like are known. Since the HBc antigen is a protein in the inner core of the virus, its antibody is useful for confirming the state of infection, but it is known that it cannot be used to protect against HBV infection.
  • an antibody against the HBe antigen anti-HBe antibody
  • HBe antigen anti-HBe antibody
  • the X protein binds to enhancer and promoter regions. It is a trans-activated protein having a function of regulating the expression of various proteins, and is known not to have a function of protecting against HBV infection.
  • HBs antigen is a protein that constitutes the outer shell (envelope) of HBV, and it is known that the presence of anti-HBs antibody can protect against HBV infection.
  • HBIG is commonly used. Therefore, in the present invention, the antibody or antibody derivative needs to have binding property to HBsAg.
  • the HBsAg as a target of the antibody or antibody derivative of the present invention has three domains, S domain, Pre-S1 domain, and Pre-S2 domain, and from the combination of these, S antigen (consisting only of S domain). , -M antigen (composed of S domain and Pre-S2 domain) and-L antigen (composed of three domains, S domain, Pre-S2 domain, and Pre-S1 domain) There are three types.
  • the antibody or antibody derivative of the present invention is for the HBsAg, whether it is for the S antigen, the M antigen, or the L antigen, as long as it has a binding property to the HBs antigen. You may.
  • this HBsAg has three types of antigenic determinants, an antigenic determinant a, an antigenic determinant d or y, and an antigenic determinant r or w, and the antigenic determinant a is all. It is common to subtypes and can be classified into four subtypes, adr type, adw type, ayr type, and ayw type, depending on the combination. In Japan, adr type accounts for 70 to 90%, adw type accounts for 10 to 30%, and ayr type and ayw type are rare. This evaluation of HBs subtypes is used to elucidate the infection route of HBV and analyze coinfection.
  • the antibody or antibody derivative of the present invention targets any of these four subtypes, adr type, adw type, ayr type, and ayw type, as long as it has binding property to HBs antigen. Of these, a plurality of them may be targeted.
  • the antibody or antibody derivative of the present invention is any of the above-mentioned HBV-derived HBs antigens (for example, any of the S antigen, M antigen, and L antigen, and any of the four subtypes of adr, adw, ayr, and ayw. Anything that binds to (possibly) and has the effect of neutralizing HBV as a result can be used to achieve the object of the present invention.
  • HBIG preparations have traditionally been used for the treatment of patients suffering from HBV.
  • the antibody or antibody derivative of the present invention is characterized in that blood is superior in titer and quality stability as compared with HBIG as a raw material.
  • the antibody or antibody derivative of the present invention is intended to be used as an HBV therapeutic agent in place of the conventional HBIG, it is preferably the same as, preferably the same as, more preferably the neutralizing activity of HBV. It can have the above neutralization activity of HBV.
  • the antibody or antibody derivative of the present invention is characterized in that a plurality of antibodies or antibody derivatives can be used as a cocktail, even if a single antibody or antibody derivative has low neutralizing activity, a plurality of antibodies or antibody derivatives can be used. Can be used as a therapeutic agent in combination with the antibody or antibody derivative of.
  • the neutralizing activity of HBV is obtained by infecting cultured human liver-derived cells or primary human liver cells with HBV and adding an antibody to the cells under culture conditions. ⁇ Suppression of HBV viral load, -Inhibition of intracellular expression of HBV-derived proteins (eg, HBs antigen, HBc antigen, HBe antigen, X protein (HBx antigen), etc.), -Semi-quantitative depending on whether or not the amount of HBV-derived DNA in the cell (for example, the amount of viral DNA (capsid-associated relaxed circular DNA [rcDNA)) covered with HBV capsid in the cell) is suppressed. Can be specified in.
  • Example of antibody of the present invention> cells producing an antibody that binds to an HBs antigen derived from HBV are collected from an individual vaccinated with a known HBV vaccine in the above-mentioned ⁇ antibody or antibody derivative> and obtained.
  • the neutralizing activity against HBV was examined for the antibody or antibody derivative as described above ⁇ HBV neutralizing action>.
  • a plurality of antibodies and cells producing the antibodies were obtained from a plurality of individuals.
  • the complementarity determining regions of heavy chains and light chains having the following specific amino acid sequences: (1) Heavy chain complementarity determining regions, CDR1 (GFMFSGHS, SEQ ID No: 1), CDR2 (IGSTGEFI, SEQ ID No: 2), and CDR3 (AREQGTRGRYYYYGLDV, SEQ ID No: 3), and light chain complementarity.
  • CDR1 GFMFSGHS, SEQ ID No: 1
  • CDR2 IGSTGEFI, SEQ ID No: 2
  • CDR3 AREQGTRGRYYYYGLDV, SEQ ID No: 3
  • CDR1 Sex determining regions, CDR1 (SQSVSTY, SEQ ID No: 4), CDR2 (DAF, SEQ ID No: 5), and CDR3 (QQRGHWPLT, SEQ ID No: 6);
  • Heavy chain complementarity determining regions CDR1 (SGGSISGHY, SEQ ID No: 7), CDR2 (IHYSGIT, SEQ ID No: 8), and CDR3 (ARGDATYGY, SEQ ID No: 9), and light chain complementarity.
  • CDR1 Sex determining regions, CDR1 (SQSLLHRNGYNY, SEQ ID No: 10), CDR2 (LGS, SEQ ID No: 11), and CDR3 (MQALRTPWT, SEQ ID No: 12); (3) Heavy chain complementarity determining regions, CDR1 (SGFSFSNYG, SEQ ID No: 13), CDR2 (IWRDGSHQ, SEQ ID No: 14), and CDR3 (AREDPAIVLPVLDH, SEQ ID No: 15), and light chain complementarity.
  • CDR1 QRINSY, SEQ ID No: 16
  • CDR2 GAS, SEQ ID No: 17
  • CDR3 QQGYSTPLLS, SEQ ID No: 18
  • the present invention in one embodiment, as such an antibody or antibody derivative: (1) Of the amino acid sequence of SEQ ID No: 19 or the amino acid sequence of SEQ ID No: 19, CDR1 (SEQ ID No: 1), CDR2 (SEQ ID No: 2), and CDR3 (SEQ ID No: 3). Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in parts other than).
  • Amino acid sequence including substitutions), insertions, or deletions, The amino acid sequence of the heavy chain variable region VH domain selected from; and (1) the amino acid sequence of SEQ ID No: 20 or the amino acid sequence of SEQ ID No: 20, CDR1 (SEQ ID No: 4), CDR2 ( Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in moieties other than SEQ ID No: 5) and CDR3 (SEQ ID No: 6).
  • CDR1 SEQ ID No: 10
  • CDR2 SEQ ID No: 11
  • CDR3 SEQ ID No: 12
  • amino acid sequence containing one or several amino acid substitutions eg, conservative substitutions
  • insertions, or deletions and (3) the amino acid sequence of SEQ ID No: 24, or SEQ ID No: 24.
  • amino acid sequence of one or several amino acid substitutions (eg, conservative) in parts other than CDR1 (SEQ ID No: 16), CDR2 (SEQ ID No: 17), and CDR3 (SEQ ID No: 18).
  • Amino acid sequence, including substitutions), insertions, or deletions Amino acid sequence of light chain variable region VL domain selected from; As a more specific example, an antibody or antibody derivative containing the above can be mentioned.
  • the binding property of the antibody is determined by 6 CDRs (that is, CDR1 to CDR3 in each of the heavy chain and the light chain), and the binding property of the antibody is determined by the CDRs other than the CDRs of the heavy chain variable region and the light chain variable region.
  • the binding property of the antibody is determined by the CDRs other than the CDRs of the heavy chain variable region and the light chain variable region.
  • one or several amino acid mutations do not lose their intended binding.
  • M2-11 clone An antibody or antibody derivative containing a heavy chain variable region (SEQ ID No: 19) and a light chain variable region (SEQ ID No: 20); (2) 5A4 clone: antibody or antibody derivative containing heavy chain variable region (SEQ ID No: 21) and light chain variable region (SEQ ID No: 22); or (3) 3B6 clone: heavy chain variable region (SEQ ID) Antibodies or antibody derivatives containing No: 23) and light chain variable region (SEQ ID No: 24); or (1) M2-11 clones: heavy chain (SEQ ID No: 25) and light chain (SEQ ID No: 26).
  • ⁇ Pharmaceutical composition In one aspect of the present invention, it is also possible to provide a pharmaceutical composition containing the antibody or antibody derivative described above and for neutralizing HBV.
  • This pharmaceutical composition is used to prevent or treat the onset of symptoms caused by HBV, to prevent reactivation of hepatitis B, or to prevent the reactivation of hepatitis B, or to the mother and child of HBV, for individuals infected or suspected of being infected with HBV. It can be used to stop infections and medical infections.
  • this pharmaceutical composition may be contained in blood (there is a risk of contamination with blood preparations). Blood that does not contain pathogens such as viruses such as HBV, HCV, and HIV, and has a risk of causing immune abnormalities in administered individuals, such as antigenic proteins contained in blood and antibodies that bind to human proteins. It is characterized by not containing derived components.
  • the pharmaceutical composition in the present invention may contain one type of the above-mentioned antibody or antibody derivative, or may contain a plurality of types.
  • the antibody or antibody derivative produced in the present invention can be used for the purpose of detecting and measuring the presence / absence of HBV in a biological sample.
  • a biological sample collected from a subject is brought into contact with the antibody or antibody derivative of the present invention in vitro, and the antibody or antibody derivative of the present invention bound to HBV is obtained by a secondary antibody.
  • the presence / abundance of HBV in a biological sample can be detected / measured by detecting / measuring HBV in a sample bound to the antibody or antibody derivative.
  • HBV in a biological sample can be detected and measured by the antibody or antibody derivative of the present invention as described above, an existing anti-HBs human immunoglobulin preparation (for example, a commercially available HBIG preparation (Japan Blood Product Organization) Alternatively, it is possible to compare the performance with Nihon Pharmaceutical Co., Ltd. (sold by Takeda Pharmaceutical Co., Ltd.)).
  • the antibody or antibody derivative of the present invention can also be used as a research reagent in applications such as ELISA and Western blotting for detecting and measuring HBV in a sample.
  • applications such as ELISA and Western blotting for detecting and measuring HBV in a sample.
  • kits for detecting and measuring the presence / abundance of HBV in a subject body containing the antibody or antibody derivative of the present invention can be used as a kit for detecting and measuring the presence / abundance of HBV in a subject body containing the antibody or antibody derivative of the present invention.
  • a kit may include a labeled secondary antibody for detecting the antibody or antibody derivative.
  • Example 1 Antigen-specific single cell sorting method; AgS-SCS method) The purpose of this example was to isolate the gene for anti-HBs antibody from a human individual vaccinated with HBV vaccine.
  • B cells circulating in the peripheral blood about 60% are naive B cells that have not been stimulated with antigen, and 40% are memory B cells that express any of membrane-bound IgG, IgA, IgM, or IgE. It is known to be a cell. It is considered that the antibody sequence in Memory B cells already contains somatic hypermutation, and the binding affinity to the antigen is enhanced. Therefore, as a method for isolating the target antibody gene, only cells expressing a high-affinity antibody that specifically binds to the HBs antigen are selectively sorted from the memory B cell population that has been class-switched to IgG. We decided to isolate the anti-HBs antibody gene by adopting the antigen-specific single cell sorting method (AgS-SCS method) that isolates the antibody gene using cell cloning technology.
  • AgS-SCS method antigen-specific single cell sorting method
  • HBV vaccine booster vaccination was given to human individuals who had been vaccinated with HBV vaccine in the past.
  • the boosted HBV vaccine includes beamgen (KM biologics, Japan), which is a recombinant HBs antigen vaccine derived from yeast with HBV genotype C and serotype adr sequence, or yeast-derived group with HBV genotype A and serotype adr sequence.
  • beamgen KM biologics, Japan
  • a replacement HBsAg vaccine, Heptavax II Merck, German
  • ELISA enzyme-linked immunosorbent assay
  • the purified B cells 5.0 ⁇ 10 7 cells were stained under the following conditions, and single-cell sorted was performed on a 96-well microplate in which 8 ⁇ L of buffer for reverse transcription reaction was dispensed.
  • yeast-derived recombinant HBs antigen (HBsAg) that retains a virus-like particle (hereinafter referred to as VLP) structure with HBs antigen.
  • VLP virus-like particle
  • antibody cocktail anti-HBs polyclonal rabbit antibody (Beacle Inc), anti-rabbit IgG-Alexa488 (Jackson ImmunoReserach Laboratories, USA), anti-human IgG-APC (BD Bioscience), Anti-CD27-PE (BD Bioscience), Anti-CD19-ACP-Cy7 (BD Bioscience), Anti-CD38-PE-Cy7 (BioLegend, USA), 7-AAD7-AAD (BD Bioscience) It was mixed at the specified dose and stained with 100 ⁇ L of FACS buffer) on ice for 30 minutes.
  • antibody cocktail anti-HBs polyclonal rabbit antibody (Beacle Inc), anti-rabbit IgG-Alexa488 (Jackson ImmunoReserach Laboratories, USA), anti-human IgG-APC (BD Bioscience), Anti-CD27-PE (BD Bioscience), Anti-CD19-ACP-Cy7 (BD Bioscience), Anti-CD38-PE-Cy7 (BioLegend, USA), 7-A
  • Lymphocytes are selected from all blood cells based on the cell size by forward scattered light (FSC), cell morphology by lateral scattered light (SSC), and cell internal structure such as nuclei and granules.
  • FSC forward scattered light
  • SSC lateral scattered light
  • cell internal structure such as nuclei and granules.
  • -A live cell population (7AAD-) contained in the cells was obtained.
  • IgG + and CD19 + cells were selected and selected.
  • IgG memory B cells were obtained by selecting CD27 + and CD38- cells. From these cells, HBs antigen bound to the anti-HBs antibody expressed on the memory B cell membrane was detected by HBs antigen high gate using the anti-HBs polyclonal antibody for detection, and as a result, about 300 cells were obtained. rice field.
  • Sorted single cells are placed in individual wells of a 96-well plate containing 8 ⁇ l of reverse transcriptase buffer per well and reverse transcriptase containing reverse transcriptase primers (ATATGGATCC GGCGCGCCGT CGACTTTTTT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
  • IgG 1 expression cloning vector pIgG 1 H7 (pcDNA3.1 (+) Hyg (Invitrogen) 962 to 991)
  • a plasmid vector in which the IgG heavy chain secretion signal peptide sequence gene, the restriction enzyme recognition sequence for variable region cloning (NotI-XhoI), and the IgG 1 constant region gene were artificially synthesized and inserted as the skeleton lacking 29 bp. ) was cloned into the restriction enzyme recognition sequence (NotI-XhoI) site for cloning to obtain the desired antibody heavy chain expression vector.
  • the light chain secretion signal is obtained by deleting the PCR product from the light chain expression cloning vector pLight (pcDNA3.1 (+) Hyg (Invitrogen) from 962 to 991 at 29 bp).
  • pLight pcDNA3.1 (+) Hyg (Invitrogen) from 962 to 991 at 29 bp.
  • the one in which the entire base sequence was determined and the open reading frame was confirmed to be normal was selected as a heavy chain + light chain pair of human kidney-derived cell line 293T cells.
  • Transient gene transfer (Lipofectamin LTX, Thermo Fisher scientific) into (ATCC CRL-3216), and the amount of target antibody in the culture supernatant after 5 days is determined by a commercially available ELISA kit (Enzygnost anti-HBs II, SIEMENS, Germany) or in. Measured by house ELISA. As a result, a strongly positive antibody (M2-11) was obtained.
  • the light chain expression vector was identified as pL-M2-11.
  • Example 2 Antibody gene isolation (EBV-hybridoma method) The purpose of this example was to isolate the anti-HBs antibody gene from a human individual vaccinated with the HBV vaccine by a method different from that of Example 1.
  • PBMC Peripheral blood mononuclear cells
  • EBV Epstein-Barr virus
  • EBV-infected immortalized B cells After mixing 1.0 ⁇ 10 6 EBV-infected immortalized B cells and JMS-3 myeloma cells, collect them and add 1 mL of 50% PEG (PEG 1540, FUJIFILM Wako Pure Chemical Corporation, Japan) over 1 minute. The cells were added dropwise, 1 mL of RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) was added over 1 minute, and 10 mL of RPMI 1640 medium was added over 1 minute, mixed, and then centrifuged for recovery.
  • PEG PEG 1540, FUJIFILM Wako Pure Chemical Corporation, Japan
  • Cells were harvested, suspended in RPMI 1640 medium supplemented with 20% FCS at a cell concentration of 2.5 ⁇ 10 5 cells / mL, dispensed 0.1 mL each into 96-well plates, and the next day, 0.1 mL HAT selective medium (0.5). The culture was continued with the addition of ⁇ M vavine), and it was confirmed that the antibody was produced in the culture supernatant after 7 to 10 days.
  • Antibody-producing cells were collected from wells where antibody production was confirmed, and the antibody-producing cells were cloned by the limiting dilution method.
  • a passive hemagglutination reaction method (Passive) was performed.
  • High-throughput screening was performed using an automatic measuring device (PK7300, Beckman Coulter, USA) by Hemmaglutination: PHA) (Mycel II antibody-HBs, Special Immunology Laboratory). Since the PHA method is characterized by the fact that the strength of antibody avidity (binding ability to specific antigens) is reflected in the antibody titer, an antibody with virus neutralizing activity can be obtained by adopting screening by this method. It is more likely to be obtained. As a result, 12 strains of HBsAg aggregation-positive hybridomas were established from PBMCs of 3 individuals.
  • RNA was purified from PHA-positive hybridomas (NucleoSpin RNA (TaKaRa)) to obtain antibody heavy chain variable regions, light chain variable regions and constant regions, and carried out using the same primers as those in Example 1 above. It was cloned into a vector by the same method as in Example 1 and expressed as a recombinant antibody by transient gene transfer (Lipofectamin LTX, Thermo Fisher scientific) into human kidney-derived cell line 293T cells (ATCC CRL-3216).
  • ELISA was performed in the same manner as in Example 1.
  • three types of antibodies (5A4, 3D1 and 3B6 ) became strongly positive in ELISA, and these were designated as recombinant HBIG candidates.
  • Chain expression vector is pL-5A4, 3D1 antibody heavy chain expression vector is pIgG 1 H7-3D1, 3D1 antibody light chain expression vector is pL-3D1, 3B6 antibody heavy chain expression vector is pIgG 1 H7-3B6, 3B6 antibody
  • the light chain expression vector was identified as pL-3B6.
  • Example 3 Recombinant antibody expression and purification The purpose of this example was to express and purify four types of recombinant HBIG candidate antibodies obtained in Examples 1 and 2.
  • Heavy chain expression vector and light chain expression vector (pIgG 1 H7-M2-11 and pL-M2-11) of M2-11 antibody obtained in Example 1, and three kinds of antibodies obtained in Example 2 (pIgG 1 H7-M2-11 and pL-M2-11).
  • Heavy chain expression vector and light chain expression vector for 5A4, 3D1 and 3B6) (pIgG 1 H7-5A4 and pL-5A4 for 5A4 antibody, pIgG 1 H7-3D1 and pL-3D1 for 3D1 antibody, pL-3D1 for 3B6 antibody pIgG 1 H7-3B6 and pL-3B6) were transiently transfected into antibody-expressing cells.
  • the culture supernatant was centrifuged to remove cell debris, and filtered through hydrophilic membranes (Durapore, Merck, USA) with pore sizes of 0.45 ⁇ m and 0.22 ⁇ m to adjust the pH to 7.4.
  • affinity purification of the antibody from the culture supernatant using HiTrap Protein G HP Columns (GE Healthcare, USA) equilibrated with PBS gel filtration using Sephadex G-25 (PD-10 column, GE Healthcare) is performed. Buffer exchange to PBS and concentration were performed by the extrafiltration method (Centricon Plus-70 Centrifugal Filter, Merck).
  • purified antibodies were obtained for the four antibodies M2-11, 5A4, 3D1 and 3B6 that were strongly positive for ELISA in Example 1 and Example 2.
  • Example 4 Evaluation of Neutralizing Activity of Recombinant Antibody This Example was performed to confirm that the purified antibody obtained in Example 3 has neutralizing activity against HBV.
  • GEq genomic equivalents
  • DMEM genomic equivalents
  • FBS fetal bovine serum
  • PEG 8000 Nacalai Tesque
  • the qPCR reaction uses nucleic acid recovered from infected cells as a template, Fast SYBER Green Master Mix (Applied Biosystems, USA), primer set (forward primer 5'-gagtgtggattcgcactcc-3'(SEQ ID No: 79), and reverse primer 5'. -This was done using gaggcgagggagttcttct-3'(SEQ ID No: 80).
  • the three types of purified antibodies, M2-11, 5A4, and 3B6, showed good neutralization activity by reducing the copy number of HBV in a concentration-dependent manner, but showed good neutralization activity in 3D1.
  • the evaluation of the 3D1 antibody was terminated here because no decrease in DNA copy number was observed and no neutralizing activity was observed (Fig. 1).
  • HBIG Hebsbrin intramuscular injection 1000 units, Japan
  • Example 5 Evaluation of binding characteristics of recombinant antibody
  • 3 types of human anti-HBs recombinant monoclonal antibodies (M2-11, 5A4, 3B6 3) whose neutralizing activity was confirmed in the screening of Example 4 This was done to confirm the binding properties of the purified antibody) to HBV.
  • HBsAg-XT Recombinant HBs antigen
  • VLP virus-like particles
  • the Blue Native-PAGE method was used. That is, the above HBs antigen was adjusted to 0.1 mg / mL with Native sample buffer (Thermo Fisher Scientific), a reducing agent (50 mM DTT) was added to half of the samples, and NativePAGE 4-16% Bis-Tris. Electrophoresis was performed on Protein Gels (Thermo Fisher Scientific). The protein after electrophoresis is transferred to a PVDF membrane (iBlot 2 Transfer Stacks, PVDF, mini, Thermo Fisher Scientific), blocked at room temperature for 1 hour, and then 2 ⁇ g / mL of the antibody to be evaluated (3 types of human anti-HBs recombination). A primary reaction was performed overnight at 4 ° C. with any of the monoclonal antibodies (three purified antibodies of M2-11, 5A4, 3B6) or the comparative control HBIG or horse polyclonal antibody).
  • the HBs antigen is detected as a monomer (about 25 kDa) and a dimer (about 50 kDa) by the anti-HBs horse polyclonal antibody used as a control, but it is not reduced.
  • a signal was observed near the sample well, indicating that VLP, which is a polymer multimer, was detected under non-reducing conditions (Fig. 3, top).
  • the three monoclonal antibodies of the present invention did not bind to the monomeric and dimeric HBs antigens at all under the reducing conditions SDS-PAGE, and hardly bound to VLP even in the non-reducing state.
  • 3B6 bound weakly to the non-reduced VLP (Fig. 3, top).
  • the epitope recognized by the three monoclonal antibodies is a conformational epitope consisting of discontinuous amino acids, is not defined as a continuous peptide sequence, and at least M2-11 /. It was shown that 5A4 and 3B6 recognize different epitopes.
  • HBsAg has 8 cysteine residues in the extracellular space, and intramolecular and intermolecular disulfide bonds by these residues greatly contribute to the VLP multimer structure. Therefore, the VLP binding of M2-11 and 5A4 is reducing agent sensitive, which strongly supports that these antibodies recognize the multimeric structure itself consisting of HBsAg.
  • Example 6 Evaluation of binding properties of candidate antibodies to antigen aggregates (ELISA) Since the HBsAg may exist as an aggregate in the living body and the higher-order structure of the antigen changes in such a case, in this example, the antibody of the present invention also binds to the HBsAg aggregate. It was decided to confirm whether or not to do so by the ELISA method.
  • Recombinant HBsAg (HBsAg-XT) was heated at 100 ° C for 10 minutes and then rapidly cooled to 4 ° C to induce HBsAg aggregates.
  • the antigen aggregate 5 ⁇ g / mL thus prepared was immobilized on a 96-well plate (Corning, 9018) and allowed to stand overnight at 4 ° C. It was then washed with PBS-10xT (PBS + 0.05% Tween20) solution and then blocked with skim milk solution (adjusted with PBS-10xT to a final concentration of 5%).
  • PBS-10xT PBS + 0.05% Tween20
  • control recombinant HBsAg and heat-recombinant HBsAg detected by M2-11 antibody are referred to as “M2-11” and “M2-11 heat”, and control recombinant HBs by 5A4 antibody.
  • Antigens and heat-recombinant HBs antigens were detected as "5A4" and "5A4 heat”. Both the M2-11 antibody and the 5A4 antibody showed the same degree of binding with or without heating.
  • the binding activity concentration of each antibody at this time was as shown in Table 3 below. From this, it was shown that the antibody of the present invention binds to the aggregate of recombinant HBs antigens as well as to the recombinant HBs antigens that are not associated.
  • Example 7 Intermolecular interaction of the candidate antibody with the recombinant HBs antigen
  • the interaction of the candidate antibody with the recombinant HBs antigen was analyzed using surface plasmon resonance (SPR) technology.
  • the heated recombinant HBs antigen (aggregate) prepared in Example 6 and the recombinant HBs antigen prepared in Example 5 were used, and the antibody was neutralized by the screening of Example 4.
  • Human anti-HBs recombinant monoclonal antibody (M2-11, 5A4) with confirmed activity was used.
  • Example 8 Evaluation of cross-reactivity of candidate antibody
  • three human anti-HBs recombinant monoclonal antibodies M2-11, 5A4, 3B6 whose neutralizing activity was confirmed in the screening of Example 4 were used. This was done to confirm that there was no non-specific binding to human-derived components (no cross-reactivity).
  • the most feared side reaction to the use of antibody drugs is -If the administered antibody has a sequence derived from an animal species other than human, it must be antigenic to humans. -The antibody used is non-specific binding to normal human tissue. Since the three monoclonal antibodies isolated this time are fully human antibodies derived from human B cells obtained from the peripheral blood of vaccinated healthy human individuals, the possibility of the former side reaction is considered to be extremely low. Also, regarding the latter, since the onset of inflammation, autoimmune diseases, etc. has not been reported at all in human individuals who provided B cells derived from these three types of monoclonal antibodies, these antibodies are self-reactive. Is unlikely to indicate.
  • ELISA ELISA was performed using the Antigen-Down ELISA Development Kit (Immunochemistry technologies, Australia).
  • the components targeted by ELISA are human insulin (Fujifilm Wako Pure Drug), which is used to evaluate non-specific binding of antibody drugs to human-derived components, and patients with autoimmune diseases.
  • Genome DNA (used as human genomic DNA extracted from human cultured cell line HeLa cells (ATCC CCL-2)), which is a typical autoantibody antigen in the above, was immobilized on a 96-well plate for ELISA.
  • the three human HBs monoclonal antibodies show non-specific binding to the human-derived component immobilized on the ELISA plate even at an antibody concentration of 10 times or more the concentration at which the binding to the specific antigen HBs is saturated. There was no (Fig. 6).
  • a recombinant anti-HBs antibody mixed solution (mixed solution of M2-11, 5A4, 3B6) diluted to 10 ⁇ g / mL, and then reacted with a secondary antibody (709-035-149, Jackson ImmunoReserach Laboratories). rice field.
  • a peroxidase substrate (ImmPACTDAB, VECTORlaboratorie, USA) was added to develop color, and counterstaining was performed with Mayer's Hematoxylin.
  • the three monoclonal antibody mixed solutions clearly detected HBsAg in the liver tissue of HBV-positive individuals at an antibody concentration of 10 ⁇ g / mL (Fig. 7a), but at the same concentration, various normal human tissues were found. No staining was observed (Fig. 7b). From these results, it was clarified that the three monoclonal antibodies that are candidates for recombinant HBIG have extremely low cross-reactivity with human-derived components.
  • Example 9 Characteristics of candidate antibody CDR sequences
  • the characteristics of the amino acid sequences of the heavy chain and light chain of each HBs monoclonal antibody obtained in the present invention were analyzed.
  • variable regions VH region and VL region
  • the amino acid sequences of the heavy chain variable regions and light chain variable regions of each of these HBs monoclonal antibodies M2-11, 5A4, and 3B6 were analyzed in more detail, and the amino acids in the complementarity determining regions (CDRs) of each chain were analyzed.
  • the sequences are underlined in the following amino acid sequences (CDR1, CDR2, CDR3 in each amino acid sequence, respectively).
  • IMTG the international ImMunoGeneTics information system
  • IMTG / V-QUEST was used to extract the CDR sequences.
  • SEQ ID NOs were assigned to each CDR amino acid sequence as shown in Table 4 below.
  • an antibody expected to have safe, effective and stable activity that can fundamentally solve the problems of unachieved domestic self-sufficiency and the problems of blood products related to anti-HBs human immunoglobulin preparations derived from blood raw materials. Formulations can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention addresses the problem of providing a safe and efficacious antibody preparation so as to fundamentally overcome the difficulty that the national self-sufficiency of starting blood for producing anti-HBs human immunoglobulin preparations is still on the way. According to the present invention, the aforesaid problem is solved by providing a recombinant anti-HBs human immunoglobulin preparation that is produced by screening an anti-HBs antigen-specific monoclonal antibody capable of exhibiting a neutralizing activity against HBV from B cells in the peripheral blood circulating in the body of a human individual, said human individual having acquired anti-HBs antibody by HBV vaccination and showing an elevated antibody titer, and then isolating the gene of the antibody.

Description

新規な抗HBs免疫グロブリンの製造方法New method for producing anti-HBs immunoglobulin
 本発明は、組換え抗HBsヒト免疫グロブリン製剤を提供することに関する。 The present invention relates to providing a recombinant anti-HBs human immunoglobulin preparation.
 B型肝炎ウイルス(Hepatitis B Virus;HBV)持続感染者は世界で約3億人存在すると推定され、年間約90万人がHBV関連疾患で死亡しており、国内におけるHBVの感染率は約1%と見積もられている。出産時ないし乳幼児期においてHBVに感染すると、9割以上の症例は持続感染に移行し、そのうち約9割は若年期に非活動性キャリアとなり、ほとんどの症例で病態は安定化する。しかし、残りの約1割ではウイルスの活動性が持続して慢性肝炎の状態が続き、年率約2%で肝硬変へ移行し、肝細胞癌、肝不全に進展する。 It is estimated that there are about 300 million people with persistent hepatitis B virus (HBV) infection worldwide, and about 900,000 people die annually from HBV-related diseases, and the infection rate of HBV in Japan is about 1. It is estimated to be%. When infected with HBV during childbirth or infancy, more than 90% of cases shift to persistent infection, and about 90% of them become asymptomatic carriers in younger age, and the condition stabilizes in most cases. However, in the remaining 10%, the activity of the virus continues and the state of chronic hepatitis continues, and at an annual rate of about 2%, it shifts to liver cirrhosis and progresses to hepatocellular carcinoma and liver failure.
 近年、母子垂直感染や輸血によるHBV感染は激減したが、性行為感染症としての水平感染は若年層を中心に頻発している。一方、移植後等免疫不全状態の患者におけるHBV再活性化は高度医療が生み出した新たな肝炎発症リスクである。 In recent years, vertical transmission of mother and child and HBV infection by blood transfusion have decreased sharply, but horizontal transmission as a sexually transmitted disease is occurring frequently mainly among young people. On the other hand, HBV reactivation in patients with immunodeficiency such as after transplantation is a new risk of developing hepatitis created by advanced medical treatment.
 現在、日本においては、HBV母子感染予防、針刺し等医療事故後のHBV感染防止、さらに肝移植後のB型肝炎再発抑制および発症抑制のため、抗HBsヒト免疫グロブリン製剤(HBIG)が一般的に使用されている。HBIGは、HBVの中和エピトープであるHBs抗原に対する抗体(抗HBs抗体)の力価が極めて高い献血者の血漿から精製された免疫グロブリン製剤である。 Currently, in Japan, anti-HBs human immunoglobulin preparations (HBIG) are generally used to prevent HBV mother-to-child transmission, HBV infection after medical accidents such as needle sticks, and to suppress recurrence and onset of hepatitis B after liver transplantation. in use. HBIG is an immunoglobulin preparation purified from blood donor plasma having extremely high titers against HBs antigen, which is a neutralizing epitope of HBV (anti-HBs antibody).
 HBIGを含むヒト血液に由来する血液製剤は、血漿分画製剤を含め、その原料を国内で自給することが「安全な血液製剤の安定供給の確保等に関する法律」により定められているが、日本国内での販売開始以来、HBIG原料血液自給率は2~3%と非常に低率を推移しており、原料完全自給には程遠い状態が続いている。 For blood products derived from human blood containing HBIG, including plasma fractionation products, it is stipulated by the "Act on Ensuring a Stable Supply of Safe Blood Products, etc." that the raw materials should be self-sufficient in Japan. Since the start of sales in Japan, the HBIG raw material blood self-sufficiency rate has remained at a very low rate of 2 to 3%, which is far from being completely self-sufficient in raw materials.
 これに対して、2013年度(平成25年度)からこの問題を解決するために、HBVワクチンによりすでに抗HBs抗体を獲得しているヒト個体に対してワクチンを追加接種し、抗HBs抗体価を高めた上で献血による原料血漿を確保する事業が行われており、日本赤十字社が本事業を受託してこれまで実施している[Sugauchi F, et al., Hepatol Res. 2006; 36: 107-14]。 On the other hand, in order to solve this problem from 2013 (2013), the vaccine is additionally inoculated to human individuals who have already acquired anti-HBs antibody by HBV vaccine, and the anti-HBs antibody titer is increased. In addition, a project to secure raw material plasma by donating blood is being carried out, and the Japanese Red Cross Society has been entrusted with this project and has been implementing it so far [Sugauchi F, et al., Hepatol Res. 2006; 36: 107- 14].
 しかし、このワクチン追加接種に基づく上記事業を実施しても、確保できる原料血漿量は部分的にすぎず、完全自給には遠く及んでいない。 However, even if the above project based on this additional vaccination is implemented, the amount of raw material plasma that can be secured is only partial, and it is far from being completely self-sufficient.
 本発明は、抗HBsヒト免疫グロブリン製剤の原料血液の国内自給未達成問題の根本的解決を図り、安全で有効な抗体製剤を提供することを課題とする。 An object of the present invention is to provide a safe and effective antibody preparation by fundamentally solving the problem of unachieved domestic self-sufficiency of raw blood of anti-HBs human immunoglobulin preparation.
 本発明は、HBVワクチンの接種により抗HBs抗体を獲得し抗体力価が上昇しているヒト個体の体内末梢血循環B細胞から、HBVに対して中和活性を有し得る抗HBs抗原特異的モノクローナル抗体をスクリーニングし、当該抗体の遺伝子を単離し、組換え抗HBsヒト免疫グロブリン製剤を提供することで上記課題を解決することとした。 The present invention is an anti-HBs antigen-specific monoclonal that can have neutralizing activity against HBV from in-vivo peripheral blood circulation B cells of a human individual whose antibody titer is increased by acquiring anti-HBs antibody by inoculation with HBV vaccine. It was decided to solve the above-mentioned problems by screening an antibody, isolating the gene of the antibody, and providing a recombinant anti-HBs human immunoglobulin preparation.
 より具体的には、本件出願は、前述した課題を解決するため、以下の態様を提供する:
[1]:(1)重鎖の相補性決定領域、CDR1(GFMFSGHS、SEQ ID No: 1)、CDR2(IGSTGEFI、SEQ ID No: 2)、およびCDR3(AREQGTRGRYYYYGLDV、SEQ ID No: 3)、および
 軽鎖の相補性決定領域、CDR1(SQSVSTY、SEQ ID No: 4)、CDR2(DAF、SEQ ID No: 5)、およびCDR3(QQRGHWPLT、SEQ ID No: 6);
(2)重鎖の相補性決定領域、CDR1(SGGSISGHY、SEQ ID No: 7)、CDR2(IHYSGIT、SEQ ID No: 8)、およびCDR3(ARGDATYGY、SEQ ID No: 9)、および
 軽鎖の相補性決定領域、CDR1(SQSLLHRNGYNY、SEQ ID No: 10)、CDR2(LGS、SEQ ID No: 11)、およびCDR3(MQALRTPWT、SEQ ID No: 12);
(3)重鎖の相補性決定領域、CDR1(SGFSFSNYG、SEQ ID No: 13)、CDR2(IWRDGSHQ、SEQ ID No: 14)、およびCDR3(AREDPAIVLPVLDH、SEQ ID No: 15)、および
 軽鎖の相補性決定領域、CDR1(QRINSY、SEQ ID No: 16)、CDR2(GAS、SEQ ID No: 17)、およびCDR3(QQGYSTPLLS、SEQ ID No: 18);
からなる群から選択されるいずれかの重鎖・軽鎖の相補性決定領域を含む、HBVのHBs抗原に対して結合性を有し、HBVに対する中和活性を有する、血液原料に由来しない、抗体または抗体誘導体;
[2]:組換え型である、[1]に記載の抗体または抗体誘導体;
[3]:HBs抗原が、HBs抗原のL抗原、M抗原、S抗原、HBs抗原のadr型、adw型、ayr型、ayw型からなる群から選択される1または複数である、[1]または[2]に記載の抗体または抗体誘導体;
[4]:抗体誘導体が、ヒト化抗体、キメラ抗体、多価抗体、および多重特異性抗体から選択される抗体改変体またはその機能的断片から選択される、[1]~[3]のいずれか1項に記載の抗体または抗体誘導体;
[5]:抗体または抗体誘導体の重鎖可変領域VHドメインのアミノ酸配列が、
(1)SEQ ID No: 19のアミノ酸配列、またはSEQ ID No: 19のアミノ酸配列のうち、CDR1(SEQ ID No: 1)、CDR2(SEQ ID No: 2)、およびCDR3(SEQ ID No: 3)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
(2)SEQ ID No: 21のアミノ酸配列、またはSEQ ID No: 21のアミノ酸配列のうち、CDR1(SEQ ID No: 7)、CDR2(SEQ ID No: 8)、およびCDR3(SEQ ID No: 9)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、および
(3)SEQ ID No: 23のアミノ酸配列、またはSEQ ID No: 23のアミノ酸配列のうち、CDR1(SEQ ID No: 13)、CDR2(SEQ ID No: 14)、およびCDR3(SEQ ID No: 15)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
から選択される、[1]~[4]のいずれか1項に記載の抗体または抗体誘導体;
[6]:抗体または抗体誘導体の軽鎖可変領域VLドメインのアミノ酸配列が、
(1)SEQ ID No: 20のアミノ酸配列、またはSEQ ID No: 20のアミノ酸配列のうち、CDR1(SEQ ID No: 4)、CDR2(SEQ ID No: 5)、およびCDR3(SEQ ID No: 6)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
(2)SEQ ID No: 22のアミノ酸配列、またはSEQ ID No: 22のアミノ酸配列のうち、CDR1(SEQ ID No: 10)、CDR2(SEQ ID No: 11)、およびCDR3(SEQ ID No: 12)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、および
(3)SEQ ID No: 24のアミノ酸配列、またはSEQ ID No: 24のアミノ酸配列のうち、CDR1(SEQ ID No: 16)、CDR2(SEQ ID No: 17)、およびCDR3(SEQ ID No: 18)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
から選択される、[1]~[5]のいずれか1項に記載の抗体または抗体誘導体;
[7]:抗体または抗体誘導体が、
(1)重鎖(SEQ ID No: 25)および軽鎖(SEQ ID No: 26)を含む抗体または抗体誘導体;
(2)重鎖(SEQ ID No: 27)および軽鎖(SEQ ID No: 28)を含む抗体または抗体誘導体;
(3)重鎖(SEQ ID No: 29)および軽鎖(SEQ ID No: 30)を含む抗体または抗体誘導体;
からなる群から選択される、[1]~[6]のいずれか1項に記載の抗体または抗体誘導体;
[8]:[1]~[7]のいずれか1項に記載される抗体または抗体誘導体を含み、血液由来成分を含まない、HBVを中和するための医薬組成物;
[9]:[1]~[7]のいずれか1項に記載される抗体または抗体誘導体を複数種類含む、[8]に記載の医薬組成物;
[10]:B型肝炎の再活性化を予防し、またはHBVの医療感染を阻止するための、[8]または[9]に記載の医薬組成物;
[11]:被験体から採取された生体由来試料を、in vitroにおいて[1]~[7]のいずれか1項に記載の抗体または抗体誘導体と接触させる工程、
 前記抗体または抗体誘導体と結合した試料中のHBVを検出・測定する工程、
を含む、生体由来試料中のHBVの存在・存在量を検出・測定する方法;
[12]:[1]~[7]のいずれか1項に記載の抗体または抗体誘導体を含む、被験体体内におけるHBVの存在・存在量を検出・測定するためのキット。
More specifically, the present application provides the following aspects in order to solve the above-mentioned problems:
[1]: (1) Heavy chain complementarity determining regions, CDR1 (GFMFSGHS, SEQ ID No: 1), CDR2 (IGSTGEFI, SEQ ID No: 2), and CDR3 (AREQGTRGRYYYYGLDV, SEQ ID No: 3), and Light chain complementarity determining regions, CDR1 (SQSVSTY, SEQ ID No: 4), CDR2 (DAF, SEQ ID No: 5), and CDR3 (QQRGHWPLT, SEQ ID No: 6);
(2) Heavy chain complementarity determining regions, CDR1 (SGGSISGHY, SEQ ID No: 7), CDR2 (IHYSGIT, SEQ ID No: 8), and CDR3 (ARGDATYGY, SEQ ID No: 9), and light chain complementarity. Sex determining regions, CDR1 (SQSLLHRNGYNY, SEQ ID No: 10), CDR2 (LGS, SEQ ID No: 11), and CDR3 (MQALRTPWT, SEQ ID No: 12);
(3) Heavy chain complementarity determining regions, CDR1 (SGFSFSNYG, SEQ ID No: 13), CDR2 (IWRDGSHQ, SEQ ID No: 14), and CDR3 (AREDPAIVLPVLDH, SEQ ID No: 15), and light chain complementarity. Sex determining regions, CDR1 (QRINSY, SEQ ID No: 16), CDR2 (GAS, SEQ ID No: 17), and CDR3 (QQGYSTPLLS, SEQ ID No: 18);
Contains the complementarity determining regions of any heavy or light chain selected from the group consisting of, has binding to HBsAg of HBV, has neutralizing activity against HBV, is not derived from blood source, Antigens or antibody derivatives;
[2]: Recombinant antibody or antibody derivative according to [1];
[3]: The HBsAg is one or more selected from the group consisting of L antigen, M antigen, S antigen, HBsAg adr type, adw type, ayr type, and ayw type of HBsAg, [1]. Or the antibody or antibody derivative according to [2];
[4]: Any of [1] to [3], wherein the antibody derivative is selected from an antibody variant selected from humanized antibodies, chimeric antibodies, polyvalent antibodies, and multispecific antibodies or functional fragments thereof. Or the antibody or antibody derivative according to item 1;
[5]: The amino acid sequence of the heavy chain variable region VH domain of the antibody or antibody derivative is
(1) Of the amino acid sequence of SEQ ID No: 19 or the amino acid sequence of SEQ ID No: 19, CDR1 (SEQ ID No: 1), CDR2 (SEQ ID No: 2), and CDR3 (SEQ ID No: 3). Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in parts other than).
(2) Of the amino acid sequence of SEQ ID No: 21 or the amino acid sequence of SEQ ID No: 21, CDR1 (SEQ ID No: 7), CDR2 (SEQ ID No: 8), and CDR3 (SEQ ID No: 9) ), An amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions, and (3) the amino acid sequence of SEQ ID No: 23, or SEQ ID No: 23. Of the amino acid sequence of, one or several amino acid substitutions (eg, conservative) in parts other than CDR1 (SEQ ID No: 13), CDR2 (SEQ ID No: 14), and CDR3 (SEQ ID No: 15). Amino acid sequence, including substitutions), insertions, or deletions,
The antibody or antibody derivative according to any one of [1] to [4], which is selected from the above;
[6]: The amino acid sequence of the light chain variable region VL domain of the antibody or antibody derivative is
(1) Of the amino acid sequence of SEQ ID No: 20 or the amino acid sequence of SEQ ID No: 20, CDR1 (SEQ ID No: 4), CDR2 (SEQ ID No: 5), and CDR3 (SEQ ID No: 6). Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in parts other than).
(2) Of the amino acid sequence of SEQ ID No: 22 or the amino acid sequence of SEQ ID No: 22, CDR1 (SEQ ID No: 10), CDR2 (SEQ ID No: 11), and CDR3 (SEQ ID No: 12). ), An amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions, and (3) the amino acid sequence of SEQ ID No: 24, or SEQ ID No: 24. Of the amino acid sequence of, one or several amino acid substitutions (eg, conservative) in parts other than CDR1 (SEQ ID No: 16), CDR2 (SEQ ID No: 17), and CDR3 (SEQ ID No: 18). Amino acid sequence, including substitutions), insertions, or deletions,
The antibody or antibody derivative according to any one of [1] to [5], which is selected from the above;
[7]: The antibody or antibody derivative is
(1) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 25) and a light chain (SEQ ID No: 26);
(2) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 27) and a light chain (SEQ ID No: 28);
(3) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 29) and a light chain (SEQ ID No: 30);
Item 6. The antibody or antibody derivative according to any one of [1] to [6], which is selected from the group consisting of.
[8]: A pharmaceutical composition for neutralizing HBV, which comprises the antibody or antibody derivative according to any one of [1] to [7] and does not contain blood-derived components;
[9]: The pharmaceutical composition according to [8], which comprises a plurality of types of the antibody or antibody derivative according to any one of [1] to [7];
[10]: The pharmaceutical composition according to [8] or [9] for preventing reactivation of hepatitis B or preventing medical infection of HBV;
[11]: A step of bringing a biological sample collected from a subject into contact with the antibody or antibody derivative according to any one of [1] to [7] in vitro.
A step of detecting and measuring HBV in a sample bound to the antibody or antibody derivative.
A method for detecting and measuring the presence / abundance of HBV in a biological sample including
[12]: A kit for detecting and measuring the presence / abundance of HBV in a subject, which comprises the antibody or antibody derivative according to any one of [1] to [7].
 本発明により、血液原料由来の抗HBsヒト免疫グロブリン製剤にまつわる国内自給未達成問題や血液製剤の問題点などを根本的に解決することができる、安全で有効なそして安定した活性が期待される抗体製剤を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, an antibody expected to have safe, effective and stable activity that can fundamentally solve the problems of unachieved domestic self-sufficiency and the problems of blood products related to anti-HBs human immunoglobulin preparations derived from blood raw materials. Formulations can be provided.
図1は、遺伝子型D型のHBVに感染させた細胞HepG2-hNTCP-C4細胞でのウイルス感染中和実験を示す図である。FIG. 1 is a diagram showing a virus infection neutralization experiment in HepG2-hNTCP-C4 cells infected with genotype D HBV. 図2は、遺伝子型C型のHBVに感染させた初代ヒト肝細胞PXB細胞でのウイルス感染中和実験を示す図である。FIG. 2 is a diagram showing a virus infection neutralization experiment in primary human hepatocytes PXB cells infected with genotype C HBV. 図3は、組換え抗HBs抗体の結合特性を評価した電気泳動像を示す図である。FIG. 3 is a diagram showing an electrophoretic image in which the binding characteristics of the recombinant anti-HBs antibody were evaluated. 図4は、本発明の組換え抗HBs抗体がHBs抗原会合体に対しても結合することをELISA法にて確認した図である。FIG. 4 is a diagram confirming that the recombinant anti-HBs antibody of the present invention also binds to the HBs antigen aggregate by the ELISA method. 図5は、表面プラズモン共鳴(SPR)技術を用いて、本発明の組換え抗HBs抗体候補抗体の組換えHBs抗原との相互作用を解析した図である。FIG. 5 is a diagram analyzing the interaction of the recombinant anti-HBs antibody candidate antibody of the present invention with the recombinant HBs antigen using surface plasmon resonance (SPR) technology. 図6は、組換え抗HBs抗体のヒト由来成分に対する非特異的結合(交差反応性)を確認した結果を示す図である。FIG. 6 is a diagram showing the results of confirming the non-specific binding (cross-reactivity) of the recombinant anti-HBs antibody to the human-derived component. 図7は、組換え抗HBs抗体を使用して、ヒトの組織免疫染色をした結果を示す図である。ここで図7aは、HBs抗原を検出した組織像を示す。FIG. 7 is a diagram showing the results of immunostaining of human tissues using recombinant anti-HBs antibody. Here, FIG. 7a shows a histological image in which HBsAg was detected. 図7は、組換え抗HBs抗体を使用して、ヒトの組織免疫染色をした結果を示す図である。ここで図7bは、各種正常ヒト組織への染色がみられなかったことを示す。FIG. 7 is a diagram showing the results of immunostaining of human tissues using recombinant anti-HBs antibody. Here, FIG. 7b shows that no staining was observed on various normal human tissues.
 本発明において使用する用語を以下の通り定義する:
(a)HBs抗原:HBVの外殻を構成するタンパク質の1つであり、HBV感染の有無を判定する際に検査される抗原。過去にHBVに感染したがウイルスが排除されている場合や、HBVワクチンの接種を受けて抗体陽性(+)になった場合などに、生体内でこのHBs抗原に対する抗体が見いだされる;
(b)HBIG:抗HBsヒト免疫グロブリン(human anti-HBs Immunoglobulin)のこと。市販されているHBIGは、抗HBs抗体力価の高いヒト血漿を原料にIgGを精製した製剤で、即効性はあるが、効果持続は、約3月間と比較的短いのが特徴。
The terms used in the present invention are defined as follows:
(A) HBsAg: An antigen that is one of the proteins that make up the outer shell of HBV and is tested when determining the presence or absence of HBV infection. Antibodies to this HBsAg are found in vivo when HBV has been infected in the past but the virus has been eliminated, or when HBV vaccine is given and the antibody becomes positive (+);
(B) HBIG: Human anti-HBs Immunoglobulin. Commercially available HBIG is a pharmaceutical product obtained by purifying IgG from human plasma, which has a high anti-HBs antibody titer. Although it has an immediate effect, its effect lasts for about 3 months, which is relatively short.
 本発明は、特定のアミノ酸配列を有する重鎖・軽鎖の相補性決定領域を含む、HBVのHBs抗原に対して結合性を有し、HBVに対する中和活性を有する、血液原料に由来しない、抗体または抗体誘導体を提供することにより、本発明の課題を解決することができることを示した。この抗体または抗体誘導体は、HBVのHBs抗原に対して結合性を有し、HBVに対する中和活性を有し、血液原料に由来しないものであれば、どのような抗体または抗体誘導体であっても本発明の範囲に含まれる。 The present invention is not derived from a blood source, has binding to HBsAg of HBV, has neutralizing activity against HBV, contains complementarity determining regions of heavy and light chains having a specific amino acid sequence. It has been shown that the subject of the present invention can be solved by providing an antibody or an antibody derivative. This antibody or antibody derivative can be any antibody or antibody derivative as long as it has binding property to HBs antigen of HBV, has neutralizing activity against HBV, and is not derived from blood raw materials. It is included in the scope of the present invention.
 <抗体または抗体誘導体>
 本発明において使用する抗体または抗体誘導体は、従来肝炎ウイルスの治療のために使用されてきた血液由来抗体製剤などの血液製剤に特有の種々の問題(特に、感染性の問題、免疫性の問題)を解決することを目的とするため、血液中に含まれる可能性がある(血液製剤に混入する危険性がある)HBV、C型肝炎ウイルス(HCV)、ヒト免疫不全ウイルス(HIV)などのウイルスなどの病原体を含まず、また血液中に含まれる抗原性タンパク質やヒトタンパク質と結合する抗体など、投与された個体に免疫異常を生じさせる危険性のある血液由来成分を含まないことを特徴とする。
<Antibody or antibody derivative>
The antibody or antibody derivative used in the present invention has various problems peculiar to blood preparations such as blood-derived antibody preparations conventionally used for the treatment of hepatitis virus (particularly, infectivity problems and immunity problems). Viruses such as HBV, hepatitis C virus (HCV), and human immunodeficiency virus (HIV) that may be contained in the blood (risk of being mixed in blood preparations) for the purpose of solving the problem. It is characterized by being free of pathogens such as, and free of blood-derived components that may cause immune abnormalities in the administered individual, such as antigenic proteins contained in blood and antibodies that bind to human proteins. ..
 血液由来成分を含まない抗体または抗体誘導体として、抗体産生細胞に由来する不死化細胞を、血液由来成分を含まない条件下で取得し、その細胞から血液由来成分を含まない培養条件下で調製される抗体や、上記不死化細胞から取得した抗体タンパク質を規定するDNAを使用して組換え的に抗体タンパク質を発現させて調製することができる組換え抗体などを使用することができる。 As an antibody or antibody derivative that does not contain blood-derived components, immortalized cells derived from antibody-producing cells are obtained under conditions that do not contain blood-derived components, and are prepared from the cells under culture conditions that do not contain blood-derived components. Antibodies and recombinant antibodies that can be prepared by recombinantly expressing the antibody protein using the DNA defining the antibody protein obtained from the immortalized cells can be used.
 すなわち、一態様において、本発明における抗体は、過去にHBVワクチンを投与された個体の血液から、HBV由来のHBs抗原に対する抗体を産生する細胞クローンを取得・不死化することにより抗体産生細胞に由来する不死化細胞を得て、その不死化抗体産生細胞からin vivoにおいてHBVを中和する作用を有するものを選択することにより得ることができる。 That is, in one embodiment, the antibody in the present invention is derived from antibody-producing cells by obtaining and immortalizing a cell clone that produces an antibody against HBs antigen derived from HBV from the blood of an individual to which the HBV vaccine has been administered in the past. It can be obtained by obtaining immortalized cells and selecting cells having an action of neutralizing HBV in vivo from the immortalized antibody-producing cells.
 また別の一態様において、上述した特徴を実現するため、遺伝子組換え技術を用いて、HBVに対して中和活性を有する組換え型抗HBs抗体または抗体誘導体を提供することもできる。より具体的には、本発明は、上述した方法により選択されたHBVを中和する作用を有する不死化抗体産生細胞から、周知の方法に従って、mRNAの取得、cDNAの作成を経て、抗体タンパク質を規定するDNA配列を取得し、ベクターを使用して、血液由来成分を含まない哺乳動物発現系において発現させることにより、組換え型イムノグロブリン(IgG)として産生させて得られた中和活性のあるモノクローナル抗体あるいはその抗体誘導体を、組換え型HBIGとして提供することもできる。 In another aspect, in order to realize the above-mentioned characteristics, it is also possible to provide a recombinant anti-HBs antibody or antibody derivative having neutralizing activity against HBV by using the gene recombination technique. More specifically, the present invention comprises obtaining an mRNA and producing a cDNA from an immortalized antibody-producing cell having an action of neutralizing HBV selected by the above-mentioned method according to a well-known method, and then producing an antibody protein. It has neutralizing activity obtained by obtaining the specified DNA sequence and expressing it in a mammalian expression system containing no blood-derived components using a vector to produce it as recombinant immunoglobulin (IgG). Monoclonal antibodies or antibody derivatives thereof can also be provided as recombinant HBIG.
 本発明においては、これらの抗体の誘導体を使用することもできる。本発明において使用することができる抗体誘導体としては、例えば、ヒト化抗体、キメラ抗体、多価抗体、および多重特異性抗体から選択される抗体改変体またはその機能的断片を使用することができるが、これらには限定されない。このうち、機能的断片としては、例えば、F(ab')2を使用することができるが、これらには限定されない。 In the present invention, derivatives of these antibodies can also be used. As the antibody derivative that can be used in the present invention, for example, an antibody variant selected from a humanized antibody, a chimeric antibody, a polyvalent antibody, and a multispecific antibody or a functional fragment thereof can be used. , Not limited to these. Of these, as the functional fragment, for example, F (ab') 2 can be used, but the functional fragment is not limited thereto.
 これらの抗体の誘導体は、抗体が得られたのち、当該技術分野において周知の方法に従って作製することができ、上述した本発明の抗体について記載した組換え型の抗体誘導体として調製することができる。 Derivatives of these antibodies can be produced according to a method well known in the art after the antibody is obtained, and can be prepared as the recombinant antibody derivative described for the antibody of the present invention described above.
 上述した方法により取得した抗体または抗体誘導体は、HBV由来のHBs抗原に対して結合性を有するものであるが、本発明においては、HBV由来のHBs抗原に対して結合性を有するこのような抗体または抗体誘導体の中から、さらにHBVを中和する作用を有することに基づいてスクリーニングを行い、当該中和作用を有する抗体または抗体誘導体を提供することを特徴とする。 The antibody or antibody derivative obtained by the above-mentioned method has binding property to HBs antigen derived from HBV, but in the present invention, such an antibody having binding property to HBs antigen derived from HBV. Alternatively, it is characterized in that screening is performed based on having an action of further neutralizing HBV from among antibody derivatives, and an antibody or antibody derivative having the neutralizing action is provided.
 後述する実施例においても実際に取得した抗体を複数種類示しているが、これらに限定されるわけではない。 Although a plurality of types of antibodies actually obtained are shown in the examples described later, the present invention is not limited to these.
<抗体または抗体誘導体の標的>
 HBVは、直径42 nmの球状ウイルスで、外被(エンベロープ)とコアの二重構造を形成する。HBVを構成するタンパク質としては、HBs抗原、HBc抗原、HBe抗原、Xタンパク質(HBx抗原)などが知られている。HBc抗原はウイルスの内側のコアのタンパク質であるためその抗体は感染の状態を確認するためには有用であるが、HBVの感染防御に利用できないことが知られており、HBe抗原はHBVが肝臓で増殖する際に過剰につくられるタンパク質でありHBe抗原に対する抗体(抗HBe抗体)は、HBVの感染を防御する働きはないことが知られており、そしてXタンパク質はエンハンサーやプロモーター領域と結合し各種タンパク質の発現調節をする機能を有するトランス活性化タンパク質であり、HBVの感染を防御する働きはないことが知られている。
<Target of antibody or antibody derivative>
HBV is a spherical virus with a diameter of 42 nm that forms a double structure of the envelope and core. As proteins constituting HBV, HBs antigen, HBc antigen, HBe antigen, X protein (HBx antigen) and the like are known. Since the HBc antigen is a protein in the inner core of the virus, its antibody is useful for confirming the state of infection, but it is known that it cannot be used to protect against HBV infection. It is known that an antibody against the HBe antigen (anti-HBe antibody), which is an overproduced protein when proliferating in, does not protect against HBV infection, and the X protein binds to enhancer and promoter regions. It is a trans-activated protein having a function of regulating the expression of various proteins, and is known not to have a function of protecting against HBV infection.
 これに対してHBs抗原は、HBVの外殻(エンベロープ)を構成するタンパク質であり、抗HBs抗体が存在することにより、HBVの感染を防御することができることが知られている。現在の日本においては、HBV母子感染予防、針刺し等医療事故後のHBV感染防止、さらに肝移植後のB型肝炎再発抑制および発症抑制が必要とされる場合に、HBVの感染を防御するため、HBIGが一般的に使用されている。したがって、本発明において、抗体または抗体誘導体は、HBs抗原に対して結合性を有していることが必要である。 On the other hand, HBs antigen is a protein that constitutes the outer shell (envelope) of HBV, and it is known that the presence of anti-HBs antibody can protect against HBV infection. In Japan today, in order to prevent HBV infection when it is necessary to prevent HBV mother-to-child transmission, prevent HBV infection after medical accidents such as needle sticks, and suppress hepatitis B recurrence and onset after liver transplantation. HBIG is commonly used. Therefore, in the present invention, the antibody or antibody derivative needs to have binding property to HBsAg.
 本発明の抗体または抗体誘導体の標的としてのHBs抗原には、Sドメイン、Pre-S1ドメイン、Pre-S2ドメインの3つのドメインが存在し、これらの組み合わせから
・S抗原(Sドメインのみで構成)、
・M抗原(SドメインとPre-S2ドメインで構成)および
・L抗原(Sドメイン、Pre-S2ドメイン、およびPre-S1ドメインの3つのドメインで構成)
の3種類が存在する。本発明の抗体または抗体誘導体は、HBs抗原に対して結合性を有していれば、HBs抗原のS抗原に対するものであっても、M抗原に対するものであっても、L抗原に対するものであってもよい。
The HBsAg as a target of the antibody or antibody derivative of the present invention has three domains, S domain, Pre-S1 domain, and Pre-S2 domain, and from the combination of these, S antigen (consisting only of S domain). ,
-M antigen (composed of S domain and Pre-S2 domain) and-L antigen (composed of three domains, S domain, Pre-S2 domain, and Pre-S1 domain)
There are three types. The antibody or antibody derivative of the present invention is for the HBsAg, whether it is for the S antigen, the M antigen, or the L antigen, as long as it has a binding property to the HBs antigen. You may.
 また、このHBs抗原には、抗原決定基a、抗原決定基dまたはy、そして抗原決定基rまたはwという3種類の抗原決定基があることが知られており、抗原決定基aは全てのサブタイプに共通し、その組み合わせによりadr型、adw型、ayr型、ayw型の4つのサブタイプに分類することができる。わが国ではadr型が70~90%、adw型が10~30%を占め、ayr型、ayw型はまれである。このHBsのサブタイプの評価は、HBVの感染経路の解明や重複感染の解析などに利用されている。本発明の抗体または抗体誘導体は、HBs抗原に対して結合性を有していれば、これらadr型、adw型、ayr型、ayw型の4つのサブタイプのいずれを標的とするものであってもよく、このうちの複数を標的とするものであってもよい。 Further, it is known that this HBsAg has three types of antigenic determinants, an antigenic determinant a, an antigenic determinant d or y, and an antigenic determinant r or w, and the antigenic determinant a is all. It is common to subtypes and can be classified into four subtypes, adr type, adw type, ayr type, and ayw type, depending on the combination. In Japan, adr type accounts for 70 to 90%, adw type accounts for 10 to 30%, and ayr type and ayw type are rare. This evaluation of HBs subtypes is used to elucidate the infection route of HBV and analyze coinfection. The antibody or antibody derivative of the present invention targets any of these four subtypes, adr type, adw type, ayr type, and ayw type, as long as it has binding property to HBs antigen. Of these, a plurality of them may be targeted.
 <HBVの中和作用>
 本発明の抗体または抗体誘導体は、上述したHBV由来のHBs抗原(例えば、S抗原、M抗原、L抗原のいずれであっても、adr、adw、ayr、aywの4つのサブタイプのいずれであってもよい)に結合するものであって、結果としてHBVを中和する作用を有するものであれば、本発明の目的の達成のために使用することができる。
<Neutralizing action of HBV>
The antibody or antibody derivative of the present invention is any of the above-mentioned HBV-derived HBs antigens (for example, any of the S antigen, M antigen, and L antigen, and any of the four subtypes of adr, adw, ayr, and ayw. Anything that binds to (possibly) and has the effect of neutralizing HBV as a result can be used to achieve the object of the present invention.
 前述したように、従来より、HBVにり患した場合の治療には、HBIG製剤が使用されている。本発明の抗体または抗体誘導体は、血液が原料のHBIGと比較して、力価や品質の安定性に優れているという特徴を有している。また、本発明の抗体または抗体誘導体は、従来型のHBIGに代わるHBV治療薬として使用することを目的としていることから、HBVの中和活性と同様の、好ましくは同程度の、より好ましくはそれ以上のHBVの中和活性を有することができる。一方、本発明の抗体または抗体誘導体は、複数のものをカクテルにして使用することもできることを特徴としていることから、単一の抗体または抗体誘導体では中和活性が低い場合であっても、複数の抗体または抗体誘導体を組み合わせて治療薬として使用することができる。 As mentioned above, HBIG preparations have traditionally been used for the treatment of patients suffering from HBV. The antibody or antibody derivative of the present invention is characterized in that blood is superior in titer and quality stability as compared with HBIG as a raw material. Further, since the antibody or antibody derivative of the present invention is intended to be used as an HBV therapeutic agent in place of the conventional HBIG, it is preferably the same as, preferably the same as, more preferably the neutralizing activity of HBV. It can have the above neutralization activity of HBV. On the other hand, since the antibody or antibody derivative of the present invention is characterized in that a plurality of antibodies or antibody derivatives can be used as a cocktail, even if a single antibody or antibody derivative has low neutralizing activity, a plurality of antibodies or antibody derivatives can be used. Can be used as a therapeutic agent in combination with the antibody or antibody derivative of.
 HBVの中和活性は、ヒト肝臓由来の培養細胞あるいはヒト肝臓初代細胞に対してHBVを感染させ、その細胞に対して培養条件下で抗体を添加することにより、
・HBVのウイルス量の抑制、
・細胞内でのHBV由来タンパク質(例えば、HBs抗原、HBc抗原、HBe抗原、Xタンパク質(HBx抗原)など)の発現抑制、
・細胞内でのHBV由来DNA量(例えば、細胞内でHBVカプシドに覆われたウイルスDNA(capsid-associated relaxed circular DNA[rcDNA])量)の合成抑制
などがみられるかどうかにより、半定量的に特定することができる。
The neutralizing activity of HBV is obtained by infecting cultured human liver-derived cells or primary human liver cells with HBV and adding an antibody to the cells under culture conditions.
・ Suppression of HBV viral load,
-Inhibition of intracellular expression of HBV-derived proteins (eg, HBs antigen, HBc antigen, HBe antigen, X protein (HBx antigen), etc.),
-Semi-quantitative depending on whether or not the amount of HBV-derived DNA in the cell (for example, the amount of viral DNA (capsid-associated relaxed circular DNA [rcDNA)) covered with HBV capsid in the cell) is suppressed. Can be specified in.
 <本発明の抗体の例>
 本発明においては、過去に公知のHBVワクチンの接種を受けた個体から、HBV由来のHBs抗原に対して結合する抗体を産生する細胞を上述の<抗体または抗体誘導体>の通り採取し、得られた抗体または抗体誘導体に関して上述の<HBVの中和作用>の通りHBVに対する中和活性を調べた。その結果、複数の個体から、複数の抗体およびその抗体を産生する細胞が得られた。
<Example of antibody of the present invention>
In the present invention, cells producing an antibody that binds to an HBs antigen derived from HBV are collected from an individual vaccinated with a known HBV vaccine in the above-mentioned <antibody or antibody derivative> and obtained. The neutralizing activity against HBV was examined for the antibody or antibody derivative as described above <HBV neutralizing action>. As a result, a plurality of antibodies and cells producing the antibodies were obtained from a plurality of individuals.
 そのような中で、実施例において検討を行った具体的なものとして、以下の特定のアミノ酸配列を有する重鎖・軽鎖の相補性決定領域:
(1) 重鎖の相補性決定領域、CDR1(GFMFSGHS、SEQ ID No: 1)、CDR2(IGSTGEFI、SEQ ID No: 2)、およびCDR3(AREQGTRGRYYYYGLDV、SEQ ID No: 3)、および
 軽鎖の相補性決定領域、CDR1(SQSVSTY、SEQ ID No: 4)、CDR2(DAF、SEQ ID No: 5)、およびCDR3(QQRGHWPLT、SEQ ID No: 6);
(2) 重鎖の相補性決定領域、CDR1(SGGSISGHY、SEQ ID No: 7)、CDR2(IHYSGIT、SEQ ID No: 8)、およびCDR3(ARGDATYGY、SEQ ID No: 9)、および
 軽鎖の相補性決定領域、CDR1(SQSLLHRNGYNY、SEQ ID No: 10)、CDR2(LGS、SEQ ID No: 11)、およびCDR3(MQALRTPWT、SEQ ID No: 12);
(3) 重鎖の相補性決定領域、CDR1(SGFSFSNYG、SEQ ID No: 13)、CDR2(IWRDGSHQ、SEQ ID No: 14)、およびCDR3(AREDPAIVLPVLDH、SEQ ID No: 15)、および
 軽鎖の相補性決定領域、CDR1(QRINSY、SEQ ID No: 16)、CDR2(GAS、SEQ ID No: 17)、およびCDR3(QQGYSTPLLS、SEQ ID No: 18);
を含む組換え抗体またはこれらの抗体誘導体を提供することを例として挙げることができるが、これらのものに限定されない。
Under such circumstances, as specific examples examined in the examples, the complementarity determining regions of heavy chains and light chains having the following specific amino acid sequences:
(1) Heavy chain complementarity determining regions, CDR1 (GFMFSGHS, SEQ ID No: 1), CDR2 (IGSTGEFI, SEQ ID No: 2), and CDR3 (AREQGTRGRYYYYGLDV, SEQ ID No: 3), and light chain complementarity. Sex determining regions, CDR1 (SQSVSTY, SEQ ID No: 4), CDR2 (DAF, SEQ ID No: 5), and CDR3 (QQRGHWPLT, SEQ ID No: 6);
(2) Heavy chain complementarity determining regions, CDR1 (SGGSISGHY, SEQ ID No: 7), CDR2 (IHYSGIT, SEQ ID No: 8), and CDR3 (ARGDATYGY, SEQ ID No: 9), and light chain complementarity. Sex determining regions, CDR1 (SQSLLHRNGYNY, SEQ ID No: 10), CDR2 (LGS, SEQ ID No: 11), and CDR3 (MQALRTPWT, SEQ ID No: 12);
(3) Heavy chain complementarity determining regions, CDR1 (SGFSFSNYG, SEQ ID No: 13), CDR2 (IWRDGSHQ, SEQ ID No: 14), and CDR3 (AREDPAIVLPVLDH, SEQ ID No: 15), and light chain complementarity. Sex determining regions, CDR1 (QRINSY, SEQ ID No: 16), CDR2 (GAS, SEQ ID No: 17), and CDR3 (QQGYSTPLLS, SEQ ID No: 18);
By way of example, it is possible to provide recombinant antibodies or antibody derivatives thereof containing the above, but the present invention is not limited to these.
 本発明は一態様において、このような抗体または抗体誘導体として:
(1)SEQ ID No: 19のアミノ酸配列、またはSEQ ID No: 19のアミノ酸配列のうち、CDR1(SEQ ID No: 1)、CDR2(SEQ ID No: 2)、およびCDR3(SEQ ID No: 3)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
(2)SEQ ID No: 21のアミノ酸配列、またはSEQ ID No: 21のアミノ酸配列のうち、CDR1(SEQ ID No: 7)、CDR2(SEQ ID No: 8)、およびCDR3(SEQ ID No: 9)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、および
(3)SEQ ID No: 23のアミノ酸配列、またはSEQ ID No: 23のアミノ酸配列のうち、CDR1(SEQ ID No: 13)、CDR2(SEQ ID No: 14)、およびCDR3(SEQ ID No: 15)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
から選択される重鎖可変領域VHドメインのアミノ酸配列;および
(1)SEQ ID No: 20のアミノ酸配列、またはSEQ ID No: 20のアミノ酸配列のうち、CDR1(SEQ ID No: 4)、CDR2(SEQ ID No: 5)、およびCDR3(SEQ ID No: 6)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
(2)SEQ ID No: 22のアミノ酸配列、またはSEQ ID No: 22のアミノ酸配列のうち、CDR1(SEQ ID No: 10)、CDR2(SEQ ID No: 11)、およびCDR3(SEQ ID No: 12)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、および
(3)SEQ ID No: 24のアミノ酸配列、またはSEQ ID No: 24のアミノ酸配列のうち、CDR1(SEQ ID No: 16)、CDR2(SEQ ID No: 17)、およびCDR3(SEQ ID No: 18)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
から選択される軽鎖可変領域VLドメインのアミノ酸配列;
を含む抗体または抗体誘導体をより具体的な例として挙げることができる。ここで、抗体の結合性は、6か所のCDR(すなわち、重鎖および軽鎖のそれぞれにおけるCDR1~CDR3)により決定されるものであり、重鎖可変領域および軽鎖可変領域のCDR以外の領域においては、1または数個のアミノ酸変異(アミノ酸の置換、挿入または欠失)があってもその目的とする結合性は失われない。
The present invention, in one embodiment, as such an antibody or antibody derivative:
(1) Of the amino acid sequence of SEQ ID No: 19 or the amino acid sequence of SEQ ID No: 19, CDR1 (SEQ ID No: 1), CDR2 (SEQ ID No: 2), and CDR3 (SEQ ID No: 3). Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in parts other than).
(2) Of the amino acid sequence of SEQ ID No: 21 or the amino acid sequence of SEQ ID No: 21, CDR1 (SEQ ID No: 7), CDR2 (SEQ ID No: 8), and CDR3 (SEQ ID No: 9) ), An amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions, and (3) the amino acid sequence of SEQ ID No: 23, or SEQ ID No: 23. Of the amino acid sequence of, one or several amino acid substitutions (eg, conservative) in parts other than CDR1 (SEQ ID No: 13), CDR2 (SEQ ID No: 14), and CDR3 (SEQ ID No: 15). Amino acid sequence, including substitutions), insertions, or deletions,
The amino acid sequence of the heavy chain variable region VH domain selected from; and (1) the amino acid sequence of SEQ ID No: 20 or the amino acid sequence of SEQ ID No: 20, CDR1 (SEQ ID No: 4), CDR2 ( Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in moieties other than SEQ ID No: 5) and CDR3 (SEQ ID No: 6).
(2) Of the amino acid sequence of SEQ ID No: 22 or the amino acid sequence of SEQ ID No: 22, CDR1 (SEQ ID No: 10), CDR2 (SEQ ID No: 11), and CDR3 (SEQ ID No: 12). ), An amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions, and (3) the amino acid sequence of SEQ ID No: 24, or SEQ ID No: 24. Of the amino acid sequence of, one or several amino acid substitutions (eg, conservative) in parts other than CDR1 (SEQ ID No: 16), CDR2 (SEQ ID No: 17), and CDR3 (SEQ ID No: 18). Amino acid sequence, including substitutions), insertions, or deletions,
Amino acid sequence of light chain variable region VL domain selected from;
As a more specific example, an antibody or antibody derivative containing the above can be mentioned. Here, the binding property of the antibody is determined by 6 CDRs (that is, CDR1 to CDR3 in each of the heavy chain and the light chain), and the binding property of the antibody is determined by the CDRs other than the CDRs of the heavy chain variable region and the light chain variable region. In a region, one or several amino acid mutations (amino acid substitutions, insertions or deletions) do not lose their intended binding.
 本発明はさらに詳細な一態様として、以下の実施例において、
(1)M2-11クローン:重鎖可変領域(SEQ ID No: 19)および軽鎖可変領域(SEQ ID No: 20)を含む抗体または抗体誘導体;
(2)5A4クローン:重鎖可変領域(SEQ ID No: 21)および軽鎖可変領域(SEQ ID No: 22)を含む抗体または抗体誘導体;または
(3)3B6クローン:重鎖可変領域(SEQ ID No: 23)および軽鎖可変領域(SEQ ID No: 24)を含む抗体または抗体誘導体;もしくは
(1)M2-11クローン:重鎖(SEQ ID No: 25)および軽鎖(SEQ ID No: 26)を含む抗体または抗体誘導体;
(2)5A4クローン:重鎖(SEQ ID No: 27)および軽鎖(SEQ ID No: 28)を含む抗体または抗体誘導体;または
(3)3B6クローン:重鎖(SEQ ID No: 29)および軽鎖(SEQ ID No: 30)を含む抗体または抗体誘導体;
をより具体的な例として挙げることができる。
As a more detailed aspect of the present invention, in the following examples,
(1) M2-11 clone: An antibody or antibody derivative containing a heavy chain variable region (SEQ ID No: 19) and a light chain variable region (SEQ ID No: 20);
(2) 5A4 clone: antibody or antibody derivative containing heavy chain variable region (SEQ ID No: 21) and light chain variable region (SEQ ID No: 22); or (3) 3B6 clone: heavy chain variable region (SEQ ID) Antibodies or antibody derivatives containing No: 23) and light chain variable region (SEQ ID No: 24); or (1) M2-11 clones: heavy chain (SEQ ID No: 25) and light chain (SEQ ID No: 26). ) Containing antibodies or antibody derivatives;
(2) 5A4 clone: antibody or antibody derivative containing heavy chain (SEQ ID No: 27) and light chain (SEQ ID No: 28); or (3) 3B6 clone: heavy chain (SEQ ID No: 29) and light An antibody or antibody derivative containing a chain (SEQ ID No: 30);
Can be given as a more specific example.
 <医薬組成物>
 本発明においては、一態様において、これまでに説明した抗体または抗体誘導体を含み、HBVを中和するための医薬組成物を提供することもできる。この医薬組成物は、HBVに感染した個体または感染が疑われる個体に対して、HBVにより生じる症状の発現を予防、治療するため、B型肝炎の再活性化を予防するため、またはHBVの母子感染や医療感染を阻止するために使用することができる。
<Pharmaceutical composition>
In one aspect of the present invention, it is also possible to provide a pharmaceutical composition containing the antibody or antibody derivative described above and for neutralizing HBV. This pharmaceutical composition is used to prevent or treat the onset of symptoms caused by HBV, to prevent reactivation of hepatitis B, or to prevent the reactivation of hepatitis B, or to the mother and child of HBV, for individuals infected or suspected of being infected with HBV. It can be used to stop infections and medical infections.
 この医薬組成物に含まれる本発明の抗体または抗体誘導体は血液原料に由来しないものであることから、この医薬組成物は、血液中に含まれる可能性がある(血液製剤に混入する危険性がある)HBV、HCV、HIVなどのウイルスなどの病原体を含まず、また血液中に含まれる抗原性タンパク質やヒトタンパク質と結合する抗体など、投与された個体に免疫異常を生じさせる危険性のある血液由来成分を含まないことを特徴とする。 Since the antibody or antibody derivative of the present invention contained in this pharmaceutical composition is not derived from a blood raw material, this pharmaceutical composition may be contained in blood (there is a risk of contamination with blood preparations). Blood that does not contain pathogens such as viruses such as HBV, HCV, and HIV, and has a risk of causing immune abnormalities in administered individuals, such as antigenic proteins contained in blood and antibodies that bind to human proteins. It is characterized by not containing derived components.
 本発明における医薬組成物には、上述した抗体または抗体誘導体を1種類含んでいても、複数種類含んでいてもよい。 The pharmaceutical composition in the present invention may contain one type of the above-mentioned antibody or antibody derivative, or may contain a plurality of types.
 <抗体または抗体誘導体の他の用途>
 本発明において作製される抗体または抗体誘導体は、生体由来試料中のHBVの存在・存在量を検出・測定する目的で使用することができる。このような目的で使用する場合、被験体から採取された生体由来試料を、in vitroにおいて本発明の抗体または抗体誘導体と接触させ、HBVに結合した本発明の抗体または抗体誘導体を二次抗体により検出することにより、当該抗体または抗体誘導体と結合した試料中のHBVを検出・測定することにより、生体由来試料中のHBVの存在・存在量を検出・測定することができる。
<Other uses of antibodies or antibody derivatives>
The antibody or antibody derivative produced in the present invention can be used for the purpose of detecting and measuring the presence / absence of HBV in a biological sample. When used for such a purpose, a biological sample collected from a subject is brought into contact with the antibody or antibody derivative of the present invention in vitro, and the antibody or antibody derivative of the present invention bound to HBV is obtained by a secondary antibody. By detecting, the presence / abundance of HBV in a biological sample can be detected / measured by detecting / measuring HBV in a sample bound to the antibody or antibody derivative.
 本発明の抗体または抗体誘導体により上述したように生体試料中のHBVを検出・測定することができることから、既存の抗HBsヒト免疫グロブリン製剤(例えば、市販のHBIG製剤(一般社団法人日本血液製剤機構または日本製薬株式会社(販売:武田薬品工業株式会社)))との性能比較を行うことができる。 Since HBV in a biological sample can be detected and measured by the antibody or antibody derivative of the present invention as described above, an existing anti-HBs human immunoglobulin preparation (for example, a commercially available HBIG preparation (Japan Blood Product Organization) Alternatively, it is possible to compare the performance with Nihon Pharmaceutical Co., Ltd. (sold by Takeda Pharmaceutical Co., Ltd.)).
 また、本発明の抗体または抗体誘導体は、研究用試薬として、試料中のHBVを検出・測定するためのELISA、ウェスタンブロッティングなどの用途で使用することもできる。このような用途を利用することにより、HBVへの感染が疑われる被検体の感染の確定ができるほか、HBVワクチンの検定、抗HBV医薬品評価のための感染実験における感染抑制コントロールなどにも使用することができる。 The antibody or antibody derivative of the present invention can also be used as a research reagent in applications such as ELISA and Western blotting for detecting and measuring HBV in a sample. By using such applications, it is possible to confirm the infection of subjects suspected of being infected with HBV, and it is also used for HBV vaccine testing and infection control control in infection experiments for anti-HBV drug evaluation. be able to.
 さらに、本発明の抗体または抗体誘導体を含む、被験体体内におけるHBVの存在・存在量を検出・測定するためのキットとすることもできる。このようなキットには、当該抗体または抗体誘導体を検出するための標識化二次抗体を含んでいてもよい。 Further, it can be used as a kit for detecting and measuring the presence / abundance of HBV in a subject body containing the antibody or antibody derivative of the present invention. Such a kit may include a labeled secondary antibody for detecting the antibody or antibody derivative.
 以下、実施例を挙げて本発明を具体的に示す。下記に示す実施例はいかなる方法によっても本発明を限定するものではない。 Hereinafter, the present invention will be specifically shown with reference to examples. The examples shown below do not limit the invention in any way.
 実施例1:抗体遺伝子単離(Antigen-specific Single cell sorting法;AgS-SCS法)
 本実施例は、HBVワクチンの接種を受けたヒト個体から、抗HBs抗体の遺伝子を単離することを目的として行った。
Example 1: Antigen-specific single cell sorting method; AgS-SCS method)
The purpose of this example was to isolate the gene for anti-HBs antibody from a human individual vaccinated with HBV vaccine.
 末梢血中を循環しているB細胞のうち、約60%は抗原刺激を受けていないナイーブB細胞であり、40%が膜結合型IgG、IgA、IgM、IgEのいずれかを発現するメモリーB細胞であることが知られている。メモリーB細胞中の抗体配列にはすでに、体細胞超突然変異(somatic hypermutation)が入り、抗原への結合親和性が高まっていると考えられる。そこで目的抗体遺伝子単離法として、IgGへクラススイッチしたメモリーB細胞集団の中で、HBs抗原と特異的に結合する高親和性抗体を発現している細胞のみを選択的に分取し、1細胞クローニング技術を用いて抗体遺伝子を単離する抗原特異的単一細胞ソーティング法(AgS-SCS法)を採用して、抗HBs抗体の遺伝子を単離することとした。 Of the B cells circulating in the peripheral blood, about 60% are naive B cells that have not been stimulated with antigen, and 40% are memory B cells that express any of membrane-bound IgG, IgA, IgM, or IgE. It is known to be a cell. It is considered that the antibody sequence in Memory B cells already contains somatic hypermutation, and the binding affinity to the antigen is enhanced. Therefore, as a method for isolating the target antibody gene, only cells expressing a high-affinity antibody that specifically binds to the HBs antigen are selectively sorted from the memory B cell population that has been class-switched to IgG. We decided to isolate the anti-HBs antibody gene by adopting the antigen-specific single cell sorting method (AgS-SCS method) that isolates the antibody gene using cell cloning technology.
 過去にHBVワクチンの接種を受けたヒト個体に対して、HBVワクチンの追加接種を行った。追加接種したHBVワクチンとしては、HBV遺伝子型Cで血清型adr配列をもつ酵母由来組換えHBs抗原ワクチンであるビームゲン(KM biologics, Japan)またはHBV遺伝子型Aで血清型adw配列をもつ酵母由来組換えHBs抗原ワクチンHeptavax II(Merck, German)を使用した。なお、ヒト個体の初回接種時のワクチンについての詳細は不明であった。 HBV vaccine booster vaccination was given to human individuals who had been vaccinated with HBV vaccine in the past. The boosted HBV vaccine includes beamgen (KM biologics, Japan), which is a recombinant HBs antigen vaccine derived from yeast with HBV genotype C and serotype adr sequence, or yeast-derived group with HBV genotype A and serotype adr sequence. A replacement HBsAg vaccine, Heptavax II (Merck, German), was used. The details of the vaccine at the time of initial inoculation of human individuals were unknown.
 血漿抗HBs抗体力価が4,000 IU/L以上のヒト個体から、約30 mLの全血採血を行った。スクリーニングでの抗体力価測定は酵素免疫測定法(ELISA)で実施した。 Approximately 30 mL of whole blood was collected from a human individual with a plasma anti-HBs antibody titer of 4,000 IU / L or higher. The antibody titer measurement in the screening was performed by the enzyme-linked immunosorbent assay (ELISA).
 実験を行ったヒト個体に対してHBVワクチンを追加接種してから6日目および28日目に、それぞれ全血30 mLを採血し、磁気ビーズ(MACSxpress Whole Blood B Cell Isolation Kit (Miltenyi Biotec, Germany))を用いたネガティブセレクション法によるB細胞の1ステップ精製を行った。 On the 6th and 28th days after the additional inoculation of the HBV vaccine to the human individuals who underwent the experiment, 30 mL of whole blood was collected and magnetic beads (MACSxpress Whole Blood B Cell Isolation Kit (Miltenyi Biotec, Germany)). )) Was used for one-step purification of B cells by the negative selection method.
 精製したB細胞5.0×107個を、下記条件で染色し、逆転写反応用バッファーを8μLずつ分注した96ウエルマイクロプレートにて、シングルセルソーティングした。 The purified B cells 5.0 × 10 7 cells were stained under the following conditions, and single-cell sorted was performed on a 96-well microplate in which 8 μL of buffer for reverse transcription reaction was dispensed.
 精製B細胞を希釈したマウス血清を用いて非特異反応のブロッキングを行ったのち、HBs抗原によるウイルス様粒子(Virus Like particle:以下、VLPと呼ぶ)構造を保持する酵母由来組換えHBs抗原(HBsAg-XT, Beacle Inc, Japan)を、200 ng/mLの濃度で、ブロッキング処理したB細胞に氷上にて30分間反応させた。 After blocking non-specific reactions using mouse serum diluted with purified B cells, yeast-derived recombinant HBs antigen (HBsAg) that retains a virus-like particle (hereinafter referred to as VLP) structure with HBs antigen. -XT, Beacle Inc, Japan) was reacted with blocking-treated B cells on ice for 30 minutes at a concentration of 200 ng / mL.
 HBs抗原を結合させた細胞を、100μLの抗体カクテル(抗-HBsポリクローナルウサギ抗体(Beacle Inc)、抗-ウサギIgG-Alexa488(Jackson ImmunoReserach Laboratories, USA)、抗-ヒトIgG-APC(BD Bioscience)、抗-CD27-PE(BD Bioscience)、抗-CD19-ACP-Cy7(BD Bioscience)、抗-CD38-PE-Cy7(BioLegend, USA)、7-AAD7-AAD(BD Bioscience)を、それぞれの試薬の指定用量にて混合し、FACSバッファー100μLにしたもの)で、氷上にて30分間染色した。 100 μL antibody cocktail (anti-HBs polyclonal rabbit antibody (Beacle Inc), anti-rabbit IgG-Alexa488 (Jackson ImmunoReserach Laboratories, USA), anti-human IgG-APC (BD Bioscience), Anti-CD27-PE (BD Bioscience), Anti-CD19-ACP-Cy7 (BD Bioscience), Anti-CD38-PE-Cy7 (BioLegend, USA), 7-AAD7-AAD (BD Bioscience) It was mixed at the specified dose and stained with 100 μL of FACS buffer) on ice for 30 minutes.
 細胞ソーティング装置BD FACSAria(BD Bioscience, USA)を用いて、CD19+、CD27+、CD38-、IgG+、7-ADD-、HBsAg+のゲートを用いて、1ウェルあたり8μLのRTバッファーが入った96ウェルプレートの各ウェルに細胞を1個ずつ分取した。 Using the cell sorting device BD FACSAria (BD Bioscience, USA), using the gates of CD19 +, CD27 +, CD38-, IgG +, 7-ADD-, HBsAg +, in a 96-well plate containing 8 μL of RT buffer per well. One cell was dispensed into each well.
 具体的には、細胞ソーティングは、まず、
・前方散乱光(FSC)による細胞の大きさ、側方散乱光(SSC)による細胞の形態、核、顆粒などの細胞内部構造に基づき、全血液細胞からリンパ球を選別し、
・その細胞中に含まれる生細胞集団(7AAD-)を得た。
・その後、IgG+かつCD19+の細胞を選別し、
・さらにCD27+かつCD38-の細胞を選別する
ことにより、IgGメモリーB細胞を得た。この細胞の中から、さらにメモリーB細胞膜上に発現する抗HBs抗体に結合したHBs抗原を、検出用抗HBsポリクローナル抗体を用いてHBs antigen high gateで検出した結果、約300個の細胞が得られた。
Specifically, cell sorting is first of all
・ Lymphocytes are selected from all blood cells based on the cell size by forward scattered light (FSC), cell morphology by lateral scattered light (SSC), and cell internal structure such as nuclei and granules.
-A live cell population (7AAD-) contained in the cells was obtained.
・ After that, IgG + and CD19 + cells were selected and selected.
-Furthermore, IgG memory B cells were obtained by selecting CD27 + and CD38- cells. From these cells, HBs antigen bound to the anti-HBs antibody expressed on the memory B cell membrane was detected by HBs antigen high gate using the anti-HBs polyclonal antibody for detection, and as a result, about 300 cells were obtained. rice field.
 ソーティングした単一細胞を、逆転写反応用バッファーをウェル当たり8μl含む96ウェルプレートの個別のウェル中に入れ、逆転写用プライマー(ATATGGATCC GGCGCGCCGT CGACTTTTTT TTTTTTTTTT TTTTTTTT;SEQ ID No: 32)を含む逆転写酵素液2μLを各wellに分注し、逆転写反応を行った。 Sorted single cells are placed in individual wells of a 96-well plate containing 8 μl of reverse transcriptase buffer per well and reverse transcriptase containing reverse transcriptase primers (ATATGGATCC GGCGCGCCGT CGACTTTTTT TTTTTTTTTT TTTTTTTT; SEQ ID No: 32). 2 μL of the liquid was dispensed into each well, and a reverse transcription reaction was carried out.
 逆転写されたcDNA溶液1μLを用いて、重鎖の可変領域、および軽鎖の可変領域と定常領域について、1st PCRを行った。プライマー配列およびその使用量は以下の表1に示す通りである。 Using 1 μL of the reverse transcribed cDNA solution, 1st PCR was performed on the variable region of the heavy chain and the variable region and the constant region of the light chain. The primer sequences and their amounts are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 さらに、1st PCR後のPCR産物各2.5μLを用いて、同様に重鎖の可変領域、および軽鎖の可変領域と定常領域について、2nd PCRを行った。配列およびその使用量は以下の表2に示す通りである。 Furthermore, using 2.5 μL of each PCR product after the 1st PCR, 2nd PCR was also performed on the variable region of the heavy chain and the variable region and the constant region of the light chain. The sequences and their usage are as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 2nd PCRのPCR産物を精製(QIAquick PCR Purification Kit, QIAGEN, Germany)した後、重鎖についてはIgG1発現クローニングベクターpIgG1H7(pcDNA3.1(+)Hyg(Invitrogen)の962番から991番までの29 bpを欠失させたもの骨格として、IgG重鎖分泌シグナルペプチド配列遺伝子、可変領域クローニング用制限酵素認識配列(NotI-XhoI)、IgG1定常領域遺伝子を人工合成して、挿入したプラスミドベクター)の可変領域クローニング用制限酵素認識配列(NotI-XhoI)サイトにクローニングし、目的とする抗体重鎖発現ベクターを得た。 After purifying the PCR product of the 2nd PCR (QIAquick PCR Purification Kit, QIAGEN, Germany), for the heavy chain, IgG 1 expression cloning vector pIgG 1 H7 (pcDNA3.1 (+) Hyg (Invitrogen) 962 to 991) A plasmid vector in which the IgG heavy chain secretion signal peptide sequence gene, the restriction enzyme recognition sequence for variable region cloning (NotI-XhoI), and the IgG 1 constant region gene were artificially synthesized and inserted as the skeleton lacking 29 bp. ) Was cloned into the restriction enzyme recognition sequence (NotI-XhoI) site for cloning to obtain the desired antibody heavy chain expression vector.
 軽鎖についても、PCR産物を、軽鎖発現クローニング用ベクターpLight(pcDNA3.1(+)Hyg(Invitrogen)の962番から991番までの29 bpを欠失させたもの骨格として、軽鎖分泌シグナル配列遺伝子および軽鎖クローニング用制限酵素認識配列(NotI-XhoI)を人工合成したものを挿入したプラスミドベクター)、軽鎖クローニング用制限酵素認識配列(NotI-XhoI)サイトに組込んで抗体軽鎖発現ベクターを得た。 続いて、作成した重鎖発現ベクターおよび軽鎖発現ベクターのうち全塩基配列を決定してオープンリーディングフレームが正常と確認されたものを、重鎖+軽鎖のペアでヒト腎由来細胞株293T細胞(ATCC CRL-3216)へ一過性遺伝子導入(Lipofectamin LTX, Thermo Fisher scientific)し、5日後の培養上清中の目的抗体量を市販ELISAキット(Enzygnost anti-HBs II, SIEMENS, Germany)またはin house ELISAで測定した。この結果、強陽性の抗体(M2-11)が得られたので、これを組換えHBIG候補とし、このM2-11抗体の重鎖発現ベクターをpIgG1H7-M2-11、M2-11抗体の軽鎖発現ベクターをpL-M2-11として特定した。 As for the light chain, the light chain secretion signal is obtained by deleting the PCR product from the light chain expression cloning vector pLight (pcDNA3.1 (+) Hyg (Invitrogen) from 962 to 991 at 29 bp). A plasmid vector in which a sequence gene and an artificially synthesized restriction enzyme recognition sequence for light chain cloning (NotI-XhoI) were inserted), and an antibody light chain expressed by incorporating it into the restriction enzyme recognition sequence for light chain cloning (NotI-XhoI) site. Obtained a vector. Subsequently, among the prepared heavy chain expression vector and light chain expression vector, the one in which the entire base sequence was determined and the open reading frame was confirmed to be normal was selected as a heavy chain + light chain pair of human kidney-derived cell line 293T cells. Transient gene transfer (Lipofectamin LTX, Thermo Fisher scientific) into (ATCC CRL-3216), and the amount of target antibody in the culture supernatant after 5 days is determined by a commercially available ELISA kit (Enzygnost anti-HBs II, SIEMENS, Germany) or in. Measured by house ELISA. As a result, a strongly positive antibody (M2-11) was obtained. This was used as a candidate for recombinant HBIG, and the heavy chain expression vector of this M2-11 antibody was used as a pIgG 1 H7-M2-11 and M2-11 antibody. The light chain expression vector was identified as pL-M2-11.
 実施例2:抗体遺伝子単離(EBV-ハイブリドーマ法)
 本実施例は、HBVワクチンの接種を受けたヒト個体から、実施例1とは別法で抗HBs抗体の遺伝子を単離することを目的として行った。
Example 2: Antibody gene isolation (EBV-hybridoma method)
The purpose of this example was to isolate the anti-HBs antibody gene from a human individual vaccinated with the HBV vaccine by a method different from that of Example 1.
 HBVワクチンの接種を過去に受けたヒト個体から採取した全血から、末梢血単核球(PBMC)を密度勾配遠心分離法で精製し、その培養液中に、Epstein-Barr virus(EBV)持続感染ヒトB細胞株であるB95-8細胞の培養上清を添加することによりEBVを感染させ、B細胞を不死化した。 Peripheral blood mononuclear cells (PBMC) are purified by density gradient centrifugation from whole blood collected from human individuals previously vaccinated with HBV vaccine, and Epstein-Barr virus (EBV) persists in the culture medium. EBV was infected and B cells were immortalized by adding a culture supernatant of B95-8 cells, which are infected human B cell lines.
 1.0×106個ずつのEBV感染不死化B細胞とJMS-3ミエローマ細胞を混合した後、回収して、50%PEG(PEG 1540, FUJIFILM Wako Pure Chemical Corporation, Japan)1 mLを1分かけて滴下して加え、さらに1分かけてRPMI 1640培地(日水製薬)を1 mL、さらに1分かけて10 mLのRPMI 1640培地を加え、混和後、遠心して回収した。 After mixing 1.0 × 10 6 EBV-infected immortalized B cells and JMS-3 myeloma cells, collect them and add 1 mL of 50% PEG (PEG 1540, FUJIFILM Wako Pure Chemical Corporation, Japan) over 1 minute. The cells were added dropwise, 1 mL of RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) was added over 1 minute, and 10 mL of RPMI 1640 medium was added over 1 minute, mixed, and then centrifuged for recovery.
 細胞を回収し、20%FCSを添加したRPMI 1640培地で2.5×105個/mLの細胞濃度に懸濁し、0.1 mLずつ96ウェルプレートに分注し、翌日、0.1 mLのHAT選択培地(0.5μMウアバイン添加)を加えて培養を継続し、7~10日後に培養上清中に抗体が産生されていることを確認した。 Cells were harvested, suspended in RPMI 1640 medium supplemented with 20% FCS at a cell concentration of 2.5 × 10 5 cells / mL, dispensed 0.1 mL each into 96-well plates, and the next day, 0.1 mL HAT selective medium (0.5). The culture was continued with the addition of μM vavine), and it was confirmed that the antibody was produced in the culture supernatant after 7 to 10 days.
 抗体が産生されていることが確認されたウェルから抗体産生細胞を採取し、この抗体産生細胞を限界希釈法にてクローニングし、各ハイブリドーマの培養上清中抗体について、受身赤血球凝集反応法(Passive Hemmaglutination : PHA)(マイセルII anti-HBs、特殊免疫研究所)により、自動測定装置(PK7300, Beckman Coulter, USA)を用いたハイスループットスクリーニングを行った。PHA法では抗体のアビディティー(avidity、特異抗原との結合力)の強さが抗体価に反映されるという特徴があるため、本法によるスクリーニングを採用することでウイルス中和活性を持つ抗体を得られる可能性が高くなる。その結果、3名の個体のPBMCからHBs抗原凝集陽性のハイブリドーマを12株樹立した。 Antibody-producing cells were collected from wells where antibody production was confirmed, and the antibody-producing cells were cloned by the limiting dilution method. For the antibody in the culture supernatant of each hybridoma, a passive hemagglutination reaction method (Passive) was performed. High-throughput screening was performed using an automatic measuring device (PK7300, Beckman Coulter, USA) by Hemmaglutination: PHA) (Mycel II antibody-HBs, Special Immunology Laboratory). Since the PHA method is characterized by the fact that the strength of antibody avidity (binding ability to specific antigens) is reflected in the antibody titer, an antibody with virus neutralizing activity can be obtained by adopting screening by this method. It is more likely to be obtained. As a result, 12 strains of HBsAg aggregation-positive hybridomas were established from PBMCs of 3 individuals.
 PHA陽性となったハイブリドーマからRNAを精製し(NucleoSpin RNA (TaKaRa))、抗体重鎖可変領域および軽鎖可変領域と定常領域を取得し、上記実施例1のプライマーと同じプライマーを使用して実施例1の方法と同様の方法でベクターへクローニングし、ヒト腎由来細胞株293T細胞(ATCC CRL-3216)へ一過性遺伝子導入(Lipofectamin LTX, Thermo Fisher scientific)により組換え抗体として発現させた。 RNA was purified from PHA-positive hybridomas (NucleoSpin RNA (TaKaRa)) to obtain antibody heavy chain variable regions, light chain variable regions and constant regions, and carried out using the same primers as those in Example 1 above. It was cloned into a vector by the same method as in Example 1 and expressed as a recombinant antibody by transient gene transfer (Lipofectamin LTX, Thermo Fisher scientific) into human kidney-derived cell line 293T cells (ATCC CRL-3216).
 塩基配列の解析からIgG1であることが確認された抗体について、実施例1と同様にELISAを行った。その結果、3種の抗体(5A4、3D1および3B6)がELISAにて強陽性となり、これらを組換えHBIG候補とし、それぞれ、5A4抗体の重鎖発現ベクターをpIgG1H7-5A4、5A4抗体の軽鎖発現ベクターをpL-5A4、3D1抗体の重鎖発現ベクターをpIgG1H7-3D1、3D1抗体の軽鎖発現ベクターをpL-3D1、3B6抗体の重鎖発現ベクターをpIgG1H7-3B6、3B6抗体の軽鎖発現ベクターをpL-3B6として特定した。 For the antibody confirmed to be IgG 1 by the analysis of the base sequence, ELISA was performed in the same manner as in Example 1. As a result, three types of antibodies (5A4, 3D1 and 3B6 ) became strongly positive in ELISA, and these were designated as recombinant HBIG candidates. Chain expression vector is pL-5A4, 3D1 antibody heavy chain expression vector is pIgG 1 H7-3D1, 3D1 antibody light chain expression vector is pL-3D1, 3B6 antibody heavy chain expression vector is pIgG 1 H7-3B6, 3B6 antibody The light chain expression vector was identified as pL-3B6.
 実施例3:組換え抗体発現と精製
 本実施例は、実施例1および実施例2において得られた組換えHBIG候補の4種の抗体を発現し、精製することを目的として行った。
Example 3: Recombinant antibody expression and purification The purpose of this example was to express and purify four types of recombinant HBIG candidate antibodies obtained in Examples 1 and 2.
 実施例1で得られたM2-11抗体の重鎖発現ベクターおよび軽鎖発現ベクター(pIgG1H7-M2-11およびpL-M2-11)、および実施例2で得られた3種の抗体(5A4、3D1および3B6)についての重鎖発現ベクターおよび軽鎖発現ベクター(5A4抗体についてはpIgG1H7-5A4およびpL-5A4、3D1抗体についてはpIgG1H7-3D1およびpL-3D1、3B6抗体についてはpIgG1H7-3B6およびpL-3B6)を、抗体発現用細胞に一過性にトランスフェクションした。具体的には、浮遊系ヒト腎由来細胞株GIBCO Expi 293F cell(Thermo Fisher Scientific)1.5×108個に対して、遺伝子導入試薬GIBCO Expifectamine 293(Thermo Fisher Scientific)を用いて、45μgの重鎖発現ベクターおよび15μgの軽鎖発現ベクターを遺伝子導入し、無血清培地(Gibco Expi293 Expression Medium, Thermo Fisher Scientific)で7日間振とう培養(125 rpm、37℃、8%CO2)した後、培養上清を抗体原液として回収した。 Heavy chain expression vector and light chain expression vector (pIgG 1 H7-M2-11 and pL-M2-11) of M2-11 antibody obtained in Example 1, and three kinds of antibodies obtained in Example 2 (pIgG 1 H7-M2-11 and pL-M2-11). Heavy chain expression vector and light chain expression vector for 5A4, 3D1 and 3B6) (pIgG 1 H7-5A4 and pL-5A4 for 5A4 antibody, pIgG 1 H7-3D1 and pL-3D1 for 3D1 antibody, pL-3D1 for 3B6 antibody pIgG 1 H7-3B6 and pL-3B6) were transiently transfected into antibody-expressing cells. Specifically, 45 μg of heavy chain expression was performed using the gene transfer reagent GIBCO Expifectamine 293 (Thermo Fisher Scientific) for 1.5 × 10 8 cells of the floating human kidney-derived cell line GIBCO Expi 293F cell (Thermo Fisher Scientific). A vector and a 15 μg light chain expression vector were introduced into the gene, and the cells were cultured in a serum-free medium (Gibco Expi293 Expression Medium, Thermo Fisher Scientific) for 7 days (125 rpm, 37 ° C., 8% CO 2 ), and then the culture supernatant. Was recovered as an antibody stock solution.
 培養上清を遠心して細胞片を除き、孔径0.45μmおよび0.22μmの親水性メンブレン(Durapore, Merck, USA)で濾過を行い、pH7.4に調整した。PBSで平衡化したHiTrap Protein G HP Columns(GE Healthcare, USA)を用いて、培養上清から抗体をアフィニティ精製後、Sephadex G-25(PD-10 column、GE Healthcare)を用いてゲル濾過し、限外濾過法でPBSへのバッファー交換と濃縮を行った(Centricon Plus-70 Centrifugal Filter, Merck)。これにより、実施例1および実施例2においてELISA強陽性となった4つの抗体M2-11、5A4、3D1および3B6について、精製抗体を得た。 The culture supernatant was centrifuged to remove cell debris, and filtered through hydrophilic membranes (Durapore, Merck, USA) with pore sizes of 0.45 μm and 0.22 μm to adjust the pH to 7.4. After affinity purification of the antibody from the culture supernatant using HiTrap Protein G HP Columns (GE Healthcare, USA) equilibrated with PBS, gel filtration using Sephadex G-25 (PD-10 column, GE Healthcare) is performed. Buffer exchange to PBS and concentration were performed by the extrafiltration method (Centricon Plus-70 Centrifugal Filter, Merck). As a result, purified antibodies were obtained for the four antibodies M2-11, 5A4, 3D1 and 3B6 that were strongly positive for ELISA in Example 1 and Example 2.
 実施例4:組換え抗体の中和活性の評価
 本実施例は、実施例3で得られた精製抗体が、HBVに対する中和活性を有することを確認するために行った。
Example 4: Evaluation of Neutralizing Activity of Recombinant Antibody This Example was performed to confirm that the purified antibody obtained in Example 3 has neutralizing activity against HBV.
(4-1)遺伝子型D型のHBVに感染させた細胞を使用した1回目のスクリーニング
 中和活性の評価に際しては、まず遺伝子型D型のHBV感染細胞を使用して1回目のスクリーニングを行った。HBVの細胞レセプターであるタウロコール酸ナトリウム共輸送ポリペプチド(sodium-taurocholate co-transporting polypeptide;NTCP)を発現させたヒト肝細胞株HepG2細胞(HepG2-hNTCP-C4細胞)を12ウェルディッシュに2.5×105 cells/wellで播種した。
(4-1) First screening using cells infected with genotype D HBV When evaluating neutralization activity, first screening was performed using cells infected with genotype D HBV. rice field. Human hepatocyte line HepG2 cells (HepG2-hNTCP-C4 cells) expressing the sodium-taurocholate co-transporting polypeptide (NTCP), which is a cell receptor for HBV, were transferred to 12 well dishes 2.5 × 10 Sown at 5 cells / well.
 翌日、上記の細胞の培養液を、1,000ゲノム等価物(genome equivalents;GEq)/cell(MOI=1,000)の遺伝子型D型のHBVおよび実施例3で得られた4種の精製抗体を含む感染培地(DMEM(Nacalai Tesque, Kyoto, Japan)に、400μg/ml G418(Nacalai Tesque)、10%ウシ胎児血清(FBS)、および4% PEG 8000(Nacalai Tesque)を添加したもの)に交換して、1日培養することで細胞を感染させた。 The next day, the culture medium of the above cells was infected with 1,000 genomic equivalents (GEq) / cell (MOI = 1,000) containing HBV of genotype D and the four purified antibodies obtained in Example 3. Replace with medium (DMEM (Nacalai Tesque, Kyoto, Japan) supplemented with 400 μg / ml G418 (Nacalai Tesque), 10% fetal bovine serum (FBS), and 4% PEG 8000 (Nacalai Tesque)). The cells were infected by culturing for 1 day.
 さらに翌日、細胞を、4種の精製抗体のいずれかを含む増殖培地(DMEM(Nacalai Tesque, Kyoto, Japan)に、400μg/ml G418(Nacalai Tesque)および10%ウシ胎児血清(FBS)を添加したもの)に交換し、2日毎に継代して培養を続け、感染14日目の細胞を回収し、細胞内でHBVカプシドに覆われたウイルスDNA(capsid-associated relaxed circular DNA[rcDNA])量を定量的PCR(qPCR)で定量することにより、精製抗体が中和活性を有していたかどうかを確認した。 The next day, cells were added with 400 μg / ml G418 (Nacalai Tesque) and 10% fetal bovine serum (FBS) to a growth medium (DMEM (Nacalai Tesque, Kyoto, Japan)) containing any of the four purified antibodies. The amount of viral DNA (capsid-associated relaxed circular DNA [rcDNA]) covered with HBV capsid in the cells was collected on the 14th day of infection by exchanging with () and subculturing every 2 days. Was quantified by quantitative PCR (qPCR) to confirm whether the purified antibody had neutralizing activity.
 qPCR反応は、感染細胞から回収した核酸をテンプレートとし、Fast SYBER Green Master Mix(Applied Biosystems, USA)およびプライマーセット(フォワードプライマー5'-gagtgtggattcgcactcc-3'(SEQ ID No: 79)およびリバースプライマー5'-gaggcgagggagttcttct-3'(SEQ ID No: 80)を使用して行った。 The qPCR reaction uses nucleic acid recovered from infected cells as a template, Fast SYBER Green Master Mix (Applied Biosystems, USA), primer set (forward primer 5'-gagtgtggattcgcactcc-3'(SEQ ID No: 79), and reverse primer 5'. -This was done using gaggcgagggagttcttct-3'(SEQ ID No: 80).
 この結果、M2-11、5A4、3B6の3種類の精製抗体は、濃度依存的にHBVのDNAコピー数を減少させて良好な中和活性を示したが、3D1には濃度依存的なHBVのDNAコピー数の減少は見られず、中和活性が認められなかったため、3D1抗体の評価はここで終了した(図1)。 As a result, the three types of purified antibodies, M2-11, 5A4, and 3B6, showed good neutralization activity by reducing the copy number of HBV in a concentration-dependent manner, but showed good neutralization activity in 3D1. The evaluation of the 3D1 antibody was terminated here because no decrease in DNA copy number was observed and no neutralizing activity was observed (Fig. 1).
(4-2)遺伝子型C型のHBVに感染させた初代ヒト肝細胞による2回目のスクリーニング
 次に、遺伝子型C型のHBVに感染させた初代ヒト肝細胞を使用して、2回目のスクリーニングを行った。初代ヒト肝細胞を使用した感染実験では、24ウェルディッシュに4×105 cell/wellで培養したキメラマウス由来ヒト新鮮肝細胞PXB細胞(PhoenixBio)に対して、2×106ゲノム等価物(GEq)(MOI=5)の遺伝子型C型HBVを、組換え抗HBs抗体(M2-11、5A4、3B6の3種類の精製抗体)のいずれかまたは市販のHBIG(ヘブスブリン筋注用1000単位、日本血液製剤機構)を含む増殖培地(dHCGM培地、PhoenixBio, Japan)でプレインキュベーションし、感染させた。
(4-2) Second screening with primary human hepatocytes infected with genotype C HBV Next, a second screening using primary human hepatocytes infected with genotype C HBV. Was done. In an infection experiment using primary human hepatitis, a 2 × 10 6 genome equivalent (GEq) was obtained against chimeric mouse-derived fresh human hepatitis PXB cells (PhoenixBio) cultured at 4 × 10 5 cell / well in a 24-well dish. ) (MOI = 5) genotype C HBV, one of the recombinant anti-HBs antibodies (3 types of purified antibodies M2-11, 5A4, 3B6) or commercially available HBIG (Hebsbrin intramuscular injection 1000 units, Japan) It was preincubated and infected with a growth medium (dHCGM medium, PhoenixBio, Japan) containing blood preparation mechanism).
 感染16時間後に、細胞の培養を増殖培地で開始し、5日毎に培地交換しながら、それぞれの抗体存在下で11日間培養を行った。11日目の培養上清を回収し、HBV由来のHBe抗原量を、ELISA(CSB-E13557h, Cusabio, USA)で測定した。 16 hours after infection, cell culture was started in growth medium, and the cells were cultured for 11 days in the presence of each antibody while exchanging the medium every 5 days. The culture supernatant on the 11th day was collected, and the amount of HBe antigen derived from HBV was measured by ELISA (CSB-E13557h, Cusabio, USA).
 この結果、3種類の組換え抗HBs抗体(M2-11、5A4、3B6の精製抗体)はいずれも、濃度依存的にHBe抗原量を減少させることが示され、抗体濃度が20μg/mLの場合には3種類の抗体ともにHBe抗原量を検出限界以下に減少させることが分かった。また、M2-11、5A4、3B6の3種類いずれの精製抗体も、0.02μg/mLでのHBe抗原を減少させる効果が、0.2μg/mLの市販HBIGよりも高い(すなわち、少なくとも10倍以上の中和活性を意味する)ことが明らかになった(図2)。このように、3種類の抗HBsヒトモノクローナル抗体は強い中和活性を示し、これら抗体の単独または混合物が組換えHBIGとして有望であると示された。 As a result, it was shown that all three types of recombinant anti-HBs antibodies (purified antibodies of M2-11, 5A4, 3B6) reduced the amount of HBe antigen in a concentration-dependent manner, when the antibody concentration was 20 μg / mL. It was found that all three types of antibodies reduced the amount of HBe antigen below the detection limit. In addition, all three purified antibodies, M2-11, 5A4, and 3B6, are more effective in reducing HBe antigen at 0.02 μg / mL than commercially available HBIG at 0.2 μg / mL (ie, at least 10-fold or more). It means neutralization activity) (Fig. 2). Thus, the three anti-HBs human monoclonal antibodies showed strong neutralizing activity, indicating that either alone or a mixture of these antibodies is promising as recombinant HBIG.
 実施例5:組換え抗体の結合特性の評価
 本実施例は、実施例4のスクリーニングで中和活性の認められた3種のヒト抗HBs組換えモノクローナル抗体(M2-11、5A4、3B6の3種類の精製抗体)の、HBVに対する結合特性を確認するために行った。
Example 5: Evaluation of binding characteristics of recombinant antibody In this example, 3 types of human anti-HBs recombinant monoclonal antibodies (M2-11, 5A4, 3B6 3) whose neutralizing activity was confirmed in the screening of Example 4 This was done to confirm the binding properties of the purified antibody) to HBV.
 組換えHBs抗原(HBsAg-XT)を100℃、10分で加熱後、1℃/minの速度で20℃まで徐冷し、ウイルス様粒子(VLP)を誘導した。SDS-PAGE用には、熱処理抗原を0.1 mg/mLとなるように調整し、半数の検体に還元剤(50 mM DTT, GE Healthcare)を添加後、100℃、5分加熱し、10% Bolt Bis-Tris Plusゲル(Thermo Fisher Scientific)で電気泳動を行った。 Recombinant HBs antigen (HBsAg-XT) was heated at 100 ° C for 10 minutes and then slowly cooled to 20 ° C at a rate of 1 ° C / min to induce virus-like particles (VLP). For SDS-PAGE, adjust the heat-treated antigen to 0.1 mg / mL, add a reducing agent (50 mM DTT, GE Healthcare) to half of the samples, heat at 100 ° C for 5 minutes, and 10% Bolt. Electrophoresis was performed on a Bis-Tris Plus gel (Thermo Fisher Scientific).
 一方、Native PAGE用にはBlue Native-PAGE法を使用した。すなわち、上記HBs抗原をNative sample buffer(Thermo Fisher Scientific)にて0.1 mg/mLとなるように調整し、半数の検体に還元剤(50 mM DTT)を添加し、NativePAGE 4-16% Bis-Tris Protein Gels(Thermo Fisher Scientific)で電気泳動を行った。電気泳動後のタンパク質をPVDFメンブレン(iBlot 2 Transfer Stacks, PVDF, mini, Thermo Fisher Scientific)に転写し、室温で1時間ブロッキングした後、2μg/mLの評価対象抗体(3種のヒト抗HBs組換えモノクローナル抗体(M2-11、5A4、3B6の3種類の精製抗体)のいずれかまたは比較対照であるHBIGまたはウマポリクローナル抗体)で4℃にて一晩、一次反応を行った。 On the other hand, for Native PAGE, the Blue Native-PAGE method was used. That is, the above HBs antigen was adjusted to 0.1 mg / mL with Native sample buffer (Thermo Fisher Scientific), a reducing agent (50 mM DTT) was added to half of the samples, and NativePAGE 4-16% Bis-Tris. Electrophoresis was performed on Protein Gels (Thermo Fisher Scientific). The protein after electrophoresis is transferred to a PVDF membrane (iBlot 2 Transfer Stacks, PVDF, mini, Thermo Fisher Scientific), blocked at room temperature for 1 hour, and then 2 μg / mL of the antibody to be evaluated (3 types of human anti-HBs recombination). A primary reaction was performed overnight at 4 ° C. with any of the monoclonal antibodies (three purified antibodies of M2-11, 5A4, 3B6) or the comparative control HBIG or horse polyclonal antibody).
 次に、二次抗体(ペルオキシダーゼ標識抗ヒトIgG(709-035-149, Jackson ImmunoReserach Laboratories)またはHRP標識抗ウマIgGポリクローナル抗体(ab6921 abcam, UK))および、化学発光試薬(ECL Select, Thermo Fisher Scientific)を使用して、ゲル上のHBs抗原に対しての評価用抗体の結合性を検出した。 Next, secondary antibodies (peroxidase-labeled anti-human IgG (709-035-149, Jackson Reserach Laboratories) or HRP-labeled anti-horse IgG polyclonal antibody (ab6921 abcam, UK)) and chemical luminescent reagents (ECL Select, Thermo Fisher Scientific) ) Was used to detect the binding property of the evaluation antibody to the HBs antigen on the gel.
 この結果、SDS-PAGEの還元条件においては、HBs抗原はコントロールとして用いた抗HBsウマポリクローナル抗体によって単量体(約25 kDa)および二量体(約50 kDa)として検出されるが、非還元状態ではサンプルウェル付近にシグナルが観察されることから、非還元条件では高分子多量体であるVLPが検出されていることが示された(図3上)。 As a result, under the reduction conditions of SDS-PAGE, the HBs antigen is detected as a monomer (about 25 kDa) and a dimer (about 50 kDa) by the anti-HBs horse polyclonal antibody used as a control, but it is not reduced. In the state, a signal was observed near the sample well, indicating that VLP, which is a polymer multimer, was detected under non-reducing conditions (Fig. 3, top).
 また、本発明の3種のモノクローナル抗体は、還元条件SDS-PAGEにおいて単量体および二量体のHBs抗原とは全く結合せず、非還元状態においてもVLPとほとんど結合しなかった。ただし、3B6は非還元状態のVLPに対して弱く結合した(図3上)。 In addition, the three monoclonal antibodies of the present invention did not bind to the monomeric and dimeric HBs antigens at all under the reducing conditions SDS-PAGE, and hardly bound to VLP even in the non-reducing state. However, 3B6 bound weakly to the non-reduced VLP (Fig. 3, top).
 一方、タンパク質がSDS-PAGEより本来の構造を維持していると予想されるNative-PAGEにおいては、3種のモノクローナル抗体はすべてVLPと結合したが、M2-11と5A4では非還元状態では、VLPへ還元状態の場合より強固に結合し、3B6は還元剤の影響をほとんど受けないことが示された(図3中および下)。また、非還元状態のVLPへの結合強度を比較すると、3B6>M2-11>5A4であった。 On the other hand, in Native-PAGE, where the protein is expected to maintain its original structure from SDS-PAGE, all three monoclonal antibodies bound to VLP, but in M2-11 and 5A4, in the non-reduced state, It was shown that it binds more strongly to VLP than in the reduced state, and 3B6 is almost unaffected by the reducing agent (Fig. 3, middle and bottom). Moreover, when the binding strength to VLP in the non-reduced state was compared, it was 3B6> M2-11> 5A4.
 以上の結果より、3種のモノクローナル抗体が認識しているエピトープは不連続のアミノ酸からなる立体構造エピトープ(conformational epitopes)であること、連続したペプチド配列としては定義されないこと、さらに少なくともM2-11/5A4と3B6とは認識するエピトープが異なること、が示された。 From the above results, the epitope recognized by the three monoclonal antibodies is a conformational epitope consisting of discontinuous amino acids, is not defined as a continuous peptide sequence, and at least M2-11 /. It was shown that 5A4 and 3B6 recognize different epitopes.
 HBs抗原は細胞外領域に8個のシステイン残基を持ち、これら残基による分子内および分子間ジスルフィド結合がVLP多量体構造に大きく寄与している。そのため、M2-11と5A4のVLP結合性が還元剤感受性であることは、これらの抗体がHBs抗原からなる多量体構造そのものを認識していることを強く支持する。 HBsAg has 8 cysteine residues in the extracellular space, and intramolecular and intermolecular disulfide bonds by these residues greatly contribute to the VLP multimer structure. Therefore, the VLP binding of M2-11 and 5A4 is reducing agent sensitive, which strongly supports that these antibodies recognize the multimeric structure itself consisting of HBsAg.
 実施例6:候補抗体の抗原会合体への結合特性の評価(ELISA)
 HBs抗原は生体内において会合体で存在する場合があり、そのような場合に抗原の高次構造が変化することから、本実施例において、本発明の抗体がHBs抗原会合体に対しても結合するかどうかをELISA法にて確認することとした。
Example 6: Evaluation of binding properties of candidate antibodies to antigen aggregates (ELISA)
Since the HBsAg may exist as an aggregate in the living body and the higher-order structure of the antigen changes in such a case, in this example, the antibody of the present invention also binds to the HBsAg aggregate. It was decided to confirm whether or not to do so by the ELISA method.
 組換えHBs抗原(HBsAg-XT)を100℃、10分で加熱後、4℃まで急冷し、HBs抗原の会合体を誘導した。このように調製した抗原会合体5μg/mLを96 wellプレート(Corning, 9018)に固定化し、4℃で一晩静置した。次いで、PBS-10xT (PBS+0.05%Tween20)溶液で洗浄し、その後スキムミルク溶液(終濃度5%になるようにPBS-10xTで調整)でブロッキングした。対照として、組換えHBs抗原を実施例5の方法で作製したものを用いた。 Recombinant HBsAg (HBsAg-XT) was heated at 100 ° C for 10 minutes and then rapidly cooled to 4 ° C to induce HBsAg aggregates. The antigen aggregate 5 μg / mL thus prepared was immobilized on a 96-well plate (Corning, 9018) and allowed to stand overnight at 4 ° C. It was then washed with PBS-10xT (PBS + 0.05% Tween20) solution and then blocked with skim milk solution (adjusted with PBS-10xT to a final concentration of 5%). As a control, the recombinant HBs antigen prepared by the method of Example 5 was used.
 実施例4のスクリーニングで中和活性の認められたヒト抗HBs組換えモノクローナル抗体(M2-11、5A4)の抗体溶液(200 nM~0.0033 nM、3倍希釈系列、PBS-Tで調整)を添加し、室温にて1時間静置したのち、HRP標識された2次抗体(抗ヒトIgGマウス抗体、10000倍希釈)を添加し、発色剤TMB(SCY, TM4500)を添加し、プレートリーダー(PHERAstar Plus HTS Microplate Reader)にて発色強度を測定した。 Add an antibody solution (200 nM to 0.0033 nM, 3-fold dilution series, adjusted with PBS-T) of human anti-HBs recombinant monoclonal antibody (M2-11, 5A4) whose neutralizing activity was confirmed in the screening of Example 4. Then, after allowing to stand at room temperature for 1 hour, an HRP-labeled secondary antibody (anti-human IgG mouse antibody, diluted 10000 times) was added, a coloring agent TMB (SCY, TM4500) was added, and a plate reader (PHERAstar) was added. The color intensity was measured with PlusHTS Microplate Reader).
 結果を図4に示す。図4において、M2-11抗体により対照の組換えHBs抗原および加熱組換えHBs抗原を検出したものを、「M2-11」および「M2-11 heat」と示し、5A4抗体により対照の組換えHBs抗原および加熱組換えHBs抗原を検出したものを、「5A4」および「5A4 heat」と示した。M2-11抗体および5A4抗体ともに、加熱の有無によらず、同程度の結合性が示された。この際の各抗体の結合活性濃度は、以下の表3に示す通りであった。このことから、本発明の抗体は、組換えHBs抗原の会合体に対しても、会合していない組換えHBs抗原に対してと同様に結合することが示された。 The results are shown in Fig. 4. In FIG. 4, control recombinant HBsAg and heat-recombinant HBsAg detected by M2-11 antibody are referred to as “M2-11” and “M2-11 heat”, and control recombinant HBs by 5A4 antibody. Antigens and heat-recombinant HBs antigens were detected as "5A4" and "5A4 heat". Both the M2-11 antibody and the 5A4 antibody showed the same degree of binding with or without heating. The binding activity concentration of each antibody at this time was as shown in Table 3 below. From this, it was shown that the antibody of the present invention binds to the aggregate of recombinant HBs antigens as well as to the recombinant HBs antigens that are not associated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例7:候補抗体の組換えHBs抗原との分子間相互作用
 本実施例においては、表面プラズモン共鳴(SPR)技術を用いて、候補抗体の組換えHBs抗原との相互作用を解析した。
Example 7: Intermolecular interaction of the candidate antibody with the recombinant HBs antigen In this example, the interaction of the candidate antibody with the recombinant HBs antigen was analyzed using surface plasmon resonance (SPR) technology.
 組換えHBs抗原としては、実施例6で作製した加熱組換えHBs抗原(会合体)と、実施例5で作製した組換えHBs抗原を使用し、抗体としては、実施例4のスクリーニングで中和活性の認められたヒト抗HBs組換えモノクローナル抗体(M2-11、5A4)を使用した。 As the recombinant HBs antigen, the heated recombinant HBs antigen (aggregate) prepared in Example 6 and the recombinant HBs antigen prepared in Example 5 were used, and the antibody was neutralized by the screening of Example 4. Human anti-HBs recombinant monoclonal antibody (M2-11, 5A4) with confirmed activity was used.
 PBS-T(PBS+0.005% Tween20)溶液で表面プラズモン共鳴(SPR)装置(Cytiva, Biacore T200)を満たし、センサーチップ(Cytiva, Series S Sensor Chip Protein A)に各抗体を固定化量、約9000 RUでキャプチャーさせた。このチップに各濃度の抗原溶液(271 nM、813 nM、2439 nM(2.4μM)、7317 nM(7.3μM)、21951 nM(22μM))を低濃度から段階的に添加し(それぞれ、0秒、200秒、400秒、600秒、800秒時点で添加、図5中では、矢印で示す時点に添加)、抗原と抗体との相互作用を調べた。 Fill the surface plasmon resonance (SPR) device (Cytiva, Biacore T200) with PBS-T (PBS + 0.005% Tween20) solution, and immobilize each antibody on the sensor chip (Cytiva, Series S Sensor Chip Protein A), about 9000. I made it capture with RU. Antigen solutions of each concentration (271 nM, 813 nM, 2439 nM (2.4 μM), 7317 nM (7.3 μM), 21951 nM (22 μM)) were added to this chip stepwise from low concentration (0 seconds, respectively). Addition at 200 seconds, 400 seconds, 600 seconds, and 800 seconds, added at the time indicated by the arrow in FIG. 5), and the interaction between the antigen and the antibody was investigated.
 結果を図5に示す。いずれの抗体においても、抗原の添加後に結合反応が上昇しており、両抗体の結合活性はほぼ同等であると考えられた。一方、M2-11抗体と5A4抗体で結合強度が異なることが明らかになったが、これは抗原として使用した組換えHBs抗原が、M2-11抗体に活性を有する分子状態と、5A4抗体に活性を有する分子状態の、少なくとも2種類の異なる分子状態が混在した抗原サンプルであり、両抗体のエピトープ部位が異なることが推測された。また、抗原の加熱処理により、抗体との結合強度が低下することが示されており、このことから、加熱により、抗原性が低下することが示された。 The results are shown in Fig. 5. In all the antibodies, the binding reaction was increased after the addition of the antigen, and it was considered that the binding activities of both antibodies were almost the same. On the other hand, it was clarified that the binding strength differs between the M2-11 antibody and the 5A4 antibody, which is due to the molecular state in which the recombinant HBs antigen used as the antigen has activity on the M2-11 antibody and the activity on the 5A4 antibody. It is an antigen sample in which at least two different molecular states are mixed, and it is speculated that the epitope sites of both antibodies are different. In addition, it has been shown that the heat treatment of the antigen reduces the binding strength with the antibody, which indicates that the heating reduces the antigenicity.
 実施例8:候補抗体の交差反応性の評価
 本実施例は、実施例4のスクリーニングで中和活性の認められた3つのヒト抗HBs組換えモノクローナル抗体(M2-11、5A4、3B6)が、ヒト由来成分に対して非特異結合しないこと(交差反応性を有さないこと)を確認するために行った。
Example 8: Evaluation of cross-reactivity of candidate antibody In this example, three human anti-HBs recombinant monoclonal antibodies (M2-11, 5A4, 3B6) whose neutralizing activity was confirmed in the screening of Example 4 were used. This was done to confirm that there was no non-specific binding to human-derived components (no cross-reactivity).
 抗体医薬品の使用において最も懸念される副反応は、
・投与抗体がヒト以外の動物種由来配列を持つ場合、ヒトに対して抗原性を持つことと、
・用いた抗体がヒトの正常組織に非特異結合すること
である。今回単離した3種のモノクローナル抗体については、ワクチン接種した健康ヒト個体の末梢血から取得したヒトB細胞由来完全ヒト抗体であるため、前者の副反応の可能性は極めて低いと考えられる。また、後者についても、この3種のモノクローナル抗体の由来B細胞を提供したヒト個体において、ワクチン追加接種後に炎症・自己免疫疾患等の発症が全く報告されていないことから、これら抗体が自己反応性を示す可能性は低いと考えられる。
The most feared side reaction to the use of antibody drugs is
-If the administered antibody has a sequence derived from an animal species other than human, it must be antigenic to humans.
-The antibody used is non-specific binding to normal human tissue. Since the three monoclonal antibodies isolated this time are fully human antibodies derived from human B cells obtained from the peripheral blood of vaccinated healthy human individuals, the possibility of the former side reaction is considered to be extremely low. Also, regarding the latter, since the onset of inflammation, autoimmune diseases, etc. has not been reported at all in human individuals who provided B cells derived from these three types of monoclonal antibodies, these antibodies are self-reactive. Is unlikely to indicate.
 念のため、これらのモノクローナル抗体がヒトの正常組織に対して非特異的に結合しないこと(交差反応性を有さないこと)について検証するため、ELISAおよび組織免疫染色で3種の抗HBsモノクローナル抗体のヒト由来成分への結合を解析した。 To be on the safe side, three anti-HBs monoclonal antibodies were used in ELISA and tissue immunostaining to verify that these monoclonal antibodies did not bind non-specifically to normal human tissue (no cross-reactivity). The binding of the antibody to human-derived components was analyzed.
(8-1)ELISA
 ELISAはAntigen-Down ELISA Development Kit(Immunochemistry technologies, Australia)を用いて行った。ELISAで対象とした成分は、HBs抗原(HBAg-XT)に加えて、抗体医薬品のヒト由来成分への非特異結合評価に用いられているヒトインスリン(富士フイルム和光純薬)および自己免疫疾患患者における代表的な自己抗体抗原であるゲノムDNA(ヒト培養細胞株HeLa細胞(ATCC CCL-2)から抽出したものをヒトゲノムDNAとして使用)であり、これらをELISA用96ウェルプレートに固相化した。
(8-1) ELISA
ELISA was performed using the Antigen-Down ELISA Development Kit (Immunochemistry technologies, Australia). In addition to the HBs antigen (HBAg-XT), the components targeted by ELISA are human insulin (Fujifilm Wako Pure Drug), which is used to evaluate non-specific binding of antibody drugs to human-derived components, and patients with autoimmune diseases. Genome DNA (used as human genomic DNA extracted from human cultured cell line HeLa cells (ATCC CCL-2)), which is a typical autoantibody antigen in the above, was immobilized on a 96-well plate for ELISA.
 プレートに、希釈した3種の組換え抗HBs抗体のいずれかを各100μL/well加え、抗-ヒトIgG-HRP(709-035-149, Jackson)と反応させ、ペルオキシダーゼ基質を添加して発色させた。呈色反応結果を、吸光度測定マイクロプレートリーダー(MTP-300, CORONA Electric, Japan)を用いて、測定波長450 nm、対象波長630 nmの吸光度として測定した。 Add 100 μL / well of each of the three diluted recombinant anti-HBs antibodies to the plate, react with anti-human IgG-HRP (709-035-149, Jackson), and add a peroxidase substrate to develop color. rice field. The color reaction results were measured using an absorbance measurement microplate reader (MTP-300, CORONA Electric, Japan) as the absorbance at a measurement wavelength of 450 nm and a target wavelength of 630 nm.
 3種のヒトHBsモノクローナル抗体は、特異抗原であるHBsへの結合が飽和する濃度の10倍以上の抗体濃度においてもELISAプレートに固相化したヒト由来成分に対して非特異的な結合を示さなかった(図6)。 The three human HBs monoclonal antibodies show non-specific binding to the human-derived component immobilized on the ELISA plate even at an antibody concentration of 10 times or more the concentration at which the binding to the specific antigen HBs is saturated. There was no (Fig. 6).
(8-2)組織免疫染色
 HBV陽性ヒト肝臓組織パラフィン切片アレイ(LV1401, US Biomax Inc, USA)および正常ヒト組織パラフィン切片アレイ(T8234708-5, BioChain, USA)を脱パラフィン後、3% H2O2と反応させて内在性ペルオキシダーゼを不活化し、5% BSAで4℃にて一晩ブロッキング反応を行った。
(8-2) Tissue immunostaining HBV-positive human liver tissue paraffin section array (LV1401, US Biomax Inc, USA) and normal human tissue paraffin section array (T8234708-5, BioChain, USA) after deparaffinization, 3% H 2 The endogenous peroxidase was inactivated by reacting with O 2 , and a blocking reaction was carried out overnight at 4 ° C. with 5% BSA.
 次いで、10μg/mLに希釈した組換え抗HBs抗体混合溶液(M2-11、5A4、3B6の混合溶液)と反応させた後、二次抗体(709-035-149, Jackson ImmunoReserach Laboratories)と反応させた。ペルオキシダーゼ基質(ImmPACT DAB, VECTOR laboratorie, USA)を加えて発色させ、Mayer's Hematoxylinで対比染色を行った。 Then, it was reacted with a recombinant anti-HBs antibody mixed solution (mixed solution of M2-11, 5A4, 3B6) diluted to 10 μg / mL, and then reacted with a secondary antibody (709-035-149, Jackson ImmunoReserach Laboratories). rice field. A peroxidase substrate (ImmPACTDAB, VECTORlaboratorie, USA) was added to develop color, and counterstaining was performed with Mayer's Hematoxylin.
 この結果、3種のモノクローナル抗体混合溶液は、10μg/mLの抗体濃度でHBV陽性者の肝臓組織中にあるHBs抗原を明瞭に検出した(図7a)が、同濃度で各種正常ヒト組織への染色は認められなかった(図7b)。これらの結果から、組換えHBIG候補である3種のモノクローナル抗体は、ヒト由来成分との交差反応性が極めて低いことが明らかとなった。 As a result, the three monoclonal antibody mixed solutions clearly detected HBsAg in the liver tissue of HBV-positive individuals at an antibody concentration of 10 μg / mL (Fig. 7a), but at the same concentration, various normal human tissues were found. No staining was observed (Fig. 7b). From these results, it was clarified that the three monoclonal antibodies that are candidates for recombinant HBIG have extremely low cross-reactivity with human-derived components.
 実施例9:候補抗体CDR配列の特徴
 本実施例では、本発明において得られたそれぞれのHBsモノクローナル抗体の重鎖および軽鎖のアミノ酸配列の特徴を解析した。
Example 9: Characteristics of candidate antibody CDR sequences In this example, the characteristics of the amino acid sequences of the heavy chain and light chain of each HBs monoclonal antibody obtained in the present invention were analyzed.
 HBsモノクローナル抗体M2-11、5A4、3B6それぞれの抗体の重鎖および軽鎖のアミノ酸配列を決定したところ、それぞれの鎖の可変領域(VH領域およびVL領域)のアミノ酸配列は、以下の通りであった。 When the amino acid sequences of the heavy and light chains of the HBs monoclonal antibodies M2-11, 5A4, and 3B6 were determined, the amino acid sequences of the variable regions (VH region and VL region) of each chain were as follows. rice field.
 これらのHBsモノクローナル抗体M2-11、5A4、3B6それぞれの重鎖可変領域および軽鎖可変領域のアミノ酸配列をさらに詳細に解析し、それぞれの鎖の相補性決定領域(complementarity determining region:CDR)のアミノ酸配列を以下のアミノ酸配列に下線で示した(それぞれのアミノ酸配列において、順にCDR1、CDR2、CDR3)。CDR配列の抽出にはIMTG(the international ImMunoGeneTics information system)の抗体配列解析ソフトウエアIMTG/V-QUESTを用いた。 The amino acid sequences of the heavy chain variable regions and light chain variable regions of each of these HBs monoclonal antibodies M2-11, 5A4, and 3B6 were analyzed in more detail, and the amino acids in the complementarity determining regions (CDRs) of each chain were analyzed. The sequences are underlined in the following amino acid sequences (CDR1, CDR2, CDR3 in each amino acid sequence, respectively). IMTG (the international ImMunoGeneTics information system) antibody sequence analysis software IMTG / V-QUEST was used to extract the CDR sequences.
<M2-11クローン>
重鎖可変領域のアミノ酸配列(SEQ ID No: 19、CDR1、CDR2、CDR3に下線を引いた)
AAAVLSQVQL VESGGGLVKP GESLRLSCAA SGFMFSGHSM VWVRQAPGKG LEWVSFIGST GEFISYADSV RGRFTISRDN AKNSLYLQMN SLRADDTAVY YCAREQGTRG RYYYYGLDVW GQGTTVTVSS ASRTK
軽鎖可変領域のアミノ酸配列(SEQ ID No: 20、CDR1、CDR2、CDR3に下線を引いた)
AAAMTQTPPS LSLSPGESAT LSCRASQSVS TYLAWYQQKP GQAPRLLIYD AFNRATGIPA RFSGSGSGTD FTLTISGLEP EDFAVYYCQQ RGHWPLTFGG GTKVEIK
<5A4クローン>
重鎖可変領域のアミノ酸配列(SEQ ID No: 21、CDR1、CDR2、CDR3に下線を引いた)
AAAVLSQVQL QESGPGLVKP SDTLSLTCTV SGGSISGHYW SWIRRLPGGG LEWIGYIHYS GITNYNPSLK SRVTMSVDMS KNQFSLRLRS VTATDTAVYY CARGDATYGY WGQGAPVTVS SASRTK
軽鎖可変領域のアミノ酸配列(SEQ ID No: 22、CDR1、CDR2、CDR3に下線を引いた)
AAAMTQSPFT LPVTPGEPAS ISCRSSQSLL HRNGYNYVNW YLRKPGQSPQ LLISLGSDRA SGVPDRFRGS GAGTDFTLKI SRVEAEDVGV YYCMQALRTP WTFGQGTKVE IK
<3B6クローン>
重鎖可変領域のアミノ酸配列(SEQ ID No: 23、CDR1、CDR2、CDR3に下線を引いた)
AAAVQCEVQL VESGGGVVQP GKSLRVSCAA SGFSFSNYGM HWVRQAPGKG LEWVSVIWRD GSHQYYADSV KGRFTVSRDN ARDTLFLQMD GLRAEDTAVY YCAREDPAIV LPVLDHWGRG TLVTVSSASR TK
軽鎖可変領域のアミノ酸配列(SEQ ID No: 24、CDR1、CDR2、CDR3に下線を引いた)
AAAMTQSPVS LSASVGDRVT ITCRASQRIN SYLNWYQQKP GKAPKLLIYG ASNLPSGVPS RFSGSGSGTY FTLTISSLQP EDLATYYCQQ GYSTPLLSFG PGTKVEIK
<M2-11 clone>
Amino acid sequence of heavy chain variable region (SEQ ID No: 19, CDR1, CDR2, CDR3 underlined)
AAAVLSQVQL VESGGGLVKP GESLRLSCAA S GFMFSGHS M VWVRQAPGKG LEWVSF IGST GEFI SYADSV RGRFTISRDN AKNSLYLQMN SLRADDTAVY YC AREQGTRG RYYYYGLDV W GQGTTVTVSS ASRTK
Amino acid sequence of light chain variable region (SEQ ID No: 20, CDR1, CDR2, CDR3 are underlined)
AAAMTQTPPS LSLSPGESAT LSCRA SQSVS TY LAWYQQKP GQAPRLLIY D AF NRATGIPA RFSGSGSGTD FTLTISGLEP EDFAVYYC QQ RGHWPLT FGG GTKVEIK
<5A4 clone>
Amino acid sequence of heavy chain variable region (SEQ ID No: 21, CDR1, CDR2, CDR3 are underlined)
AAAVLSQVQL QESGPGLVKP SDTLSLTCTV SGGSISGHY W SWIRRLPGGG LEWIGY IHYS GIT NYNPSLK SRVTMSVDMS KNQFSLRLRS VTATDTAVYY C ARGDATYGY WGQGAPVTVS SASRTK
Amino acid sequence of light chain variable region (SEQ ID No: 22, CDR1, CDR2, CDR3 are underlined)
AAAMTQSPFT LPVTPGEPAS ISCRS SQSLL HRNGYNY VNW YLRKPGQSPQ LLIS LGS DRA SGVPDRFRGS GAGTDFTLKI SRVEAEDVGV YYC MQALRTP WT FGQGTKVE IK
<3B6 clone>
Amino acid sequence of heavy chain variable region (SEQ ID No: 23, CDR1, CDR2, CDR3 are underlined)
AAAVQCEVQL VESGGGVVQP GKSLRVSCAA SGFSFSNYG M HWVRQAPGKG LEWVSV IWRD GSHQ YYADSV KGRFTVSRDN ARDTLFLQMD GLRAEDTAVY YC AREDPAIV LPVLDH WGRG TLVTVSSASR TK
Amino acid sequence of light chain variable region (SEQ ID No: 24, CDR1, CDR2, CDR3 are underlined)
AAAMTQSPVS LSASVGDRVT ITCRAS QRIN SY LNWYQQKP GKAPKLLIY G AS NLPSGVPS RFSGSGSGTY FTLTISSLQP EDLATYYC QQ GYSTPLLS FG PGTKVEIK
 それぞれのCDRアミノ酸配列に対して、以下の表4に記載の通り配列番号を付与した。 The SEQ ID NOs were assigned to each CDR amino acid sequence as shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明により、血液原料由来の抗HBsヒト免疫グロブリン製剤にまつわる国内自給未達成問題や血液製剤の問題点などを根本的に解決することができる、安全で有効なそして安定した活性が期待される抗体製剤を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, an antibody expected to have safe, effective and stable activity that can fundamentally solve the problems of unachieved domestic self-sufficiency and the problems of blood products related to anti-HBs human immunoglobulin preparations derived from blood raw materials. Formulations can be provided.

Claims (12)

  1. (1) 重鎖の相補性決定領域、CDR1(GFMFSGHS、SEQ ID No: 1)、CDR2(IGSTGEFI、SEQ ID No: 2)、およびCDR3(AREQGTRGRYYYYGLDV、SEQ ID No: 3)、および
     軽鎖の相補性決定領域、CDR1(SQSVSTY、SEQ ID No: 4)、CDR2(DAF、SEQ ID No: 5)、およびCDR3(QQRGHWPLT、SEQ ID No: 6);
    (2) 重鎖の相補性決定領域、CDR1(SGGSISGHY、SEQ ID No: 7)、CDR2(IHYSGIT、SEQ ID No: 8)、およびCDR3(ARGDATYGY、SEQ ID No: 9)、および
     軽鎖の相補性決定領域、CDR1(SQSLLHRNGYNY、SEQ ID No: 10)、CDR2(LGS、SEQ ID No: 11)、およびCDR3(MQALRTPWT、SEQ ID No: 12);
    (3) 重鎖の相補性決定領域、CDR1(SGFSFSNYG、SEQ ID No: 13)、CDR2(IWRDGSHQ、SEQ ID No: 14)、およびCDR3(AREDPAIVLPVLDH、SEQ ID No: 15)、および
     軽鎖の相補性決定領域、CDR1(QRINSY、SEQ ID No: 16)、CDR2(GAS、SEQ ID No: 17)、およびCDR3(QQGYSTPLLS、SEQ ID No: 18);
    からなる群から選択されるいずれかの重鎖・軽鎖の相補性決定領域を含む、B型肝炎ウイルス(HBV)のHBs抗原に対して結合性を有し、HBVに対する中和活性を有する、血液原料に由来しない、抗体または抗体誘導体。
    (1) Heavy chain complementarity determining regions, CDR1 (GFMFSGHS, SEQ ID No: 1), CDR2 (IGSTGEFI, SEQ ID No: 2), and CDR3 (AREQGTRGRYYYYGLDV, SEQ ID No: 3), and light chain complementarity. Sex determining regions, CDR1 (SQSVSTY, SEQ ID No: 4), CDR2 (DAF, SEQ ID No: 5), and CDR3 (QQRGHWPLT, SEQ ID No: 6);
    (2) Heavy chain complementarity determining regions, CDR1 (SGGSISGHY, SEQ ID No: 7), CDR2 (IHYSGIT, SEQ ID No: 8), and CDR3 (ARGDATYGY, SEQ ID No: 9), and light chain complementarity. Sex determining regions, CDR1 (SQSLLHRNGYNY, SEQ ID No: 10), CDR2 (LGS, SEQ ID No: 11), and CDR3 (MQALRTPWT, SEQ ID No: 12);
    (3) Heavy chain complementarity determining regions, CDR1 (SGFSFSNYG, SEQ ID No: 13), CDR2 (IWRDGSHQ, SEQ ID No: 14), and CDR3 (AREDPAIVLPVLDH, SEQ ID No: 15), and light chain complementarity. Sex determining regions, CDR1 (QRINSY, SEQ ID No: 16), CDR2 (GAS, SEQ ID No: 17), and CDR3 (QQGYSTPLLS, SEQ ID No: 18);
    It has binding to the HBsAg of hepatitis B virus (HBV) and has neutralizing activity against HBV, including the complementarity determining regions of any of the heavy and light chains selected from the group consisting of. Antigens or antibody derivatives that are not derived from blood sources.
  2.  組換え型である、請求項1に記載の抗体または抗体誘導体。 The antibody or antibody derivative according to claim 1, which is a recombinant type.
  3.  HBs抗原が、HBs抗原のL抗原、M抗原、S抗原、HBs抗原のadr型、adw型、ayr型、ayw型からなる群から選択される1または複数である、請求項1または2に記載の抗体または抗体誘導体。 The invention according to claim 1 or 2, wherein the HBsAg is one or a plurality selected from the group consisting of L antigen, M antigen, S antigen, HBsAg adr type, adw type, ayr type, and ayw type of HBsAg. Antigen or antibody derivative of.
  4.  抗体誘導体が、ヒト化抗体、キメラ抗体、多価抗体、および多重特異性抗体から選択される抗体改変体またはその機能的断片から選択される、請求項1~3のいずれか1項に記載の抗体または抗体誘導体。 The invention according to any one of claims 1 to 3, wherein the antibody derivative is selected from an antibody variant selected from a humanized antibody, a chimeric antibody, a polyvalent antibody, and a multispecific antibody or a functional fragment thereof. Antibodies or antibody derivatives.
  5.  抗体または抗体誘導体の重鎖可変領域VHドメインのアミノ酸配列が、
    (1)SEQ ID No: 19のアミノ酸配列、またはSEQ ID No: 19のアミノ酸配列のうち、CDR1(SEQ ID No: 1)、CDR2(SEQ ID No: 2)、およびCDR3(SEQ ID No: 3)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
    (2)SEQ ID No: 21のアミノ酸配列、またはSEQ ID No: 21のアミノ酸配列のうち、CDR1(SEQ ID No: 7)、CDR2(SEQ ID No: 8)、およびCDR3(SEQ ID No: 9)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、および
    (3)SEQ ID No: 23のアミノ酸配列、またはSEQ ID No: 23のアミノ酸配列のうち、CDR1(SEQ ID No: 13)、CDR2(SEQ ID No: 14)、およびCDR3(SEQ ID No: 15)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
    から選択される、請求項1~4のいずれか1項に記載の抗体または抗体誘導体。
    The amino acid sequence of the heavy chain variable region VH domain of an antibody or antibody derivative,
    (1) Of the amino acid sequence of SEQ ID No: 19 or the amino acid sequence of SEQ ID No: 19, CDR1 (SEQ ID No: 1), CDR2 (SEQ ID No: 2), and CDR3 (SEQ ID No: 3). Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in parts other than).
    (2) Of the amino acid sequence of SEQ ID No: 21 or the amino acid sequence of SEQ ID No: 21, CDR1 (SEQ ID No: 7), CDR2 (SEQ ID No: 8), and CDR3 (SEQ ID No: 9) ), An amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions, and (3) the amino acid sequence of SEQ ID No: 23, or SEQ ID No: 23. Of the amino acid sequence of, one or several amino acid substitutions (eg, conservative) in parts other than CDR1 (SEQ ID No: 13), CDR2 (SEQ ID No: 14), and CDR3 (SEQ ID No: 15). Amino acid sequence, including substitutions), insertions, or deletions,
    The antibody or antibody derivative according to any one of claims 1 to 4, which is selected from the above.
  6.  抗体または抗体誘導体の軽鎖可変領域VLドメインのアミノ酸配列が、
    (1)SEQ ID No: 20のアミノ酸配列、またはSEQ ID No: 20のアミノ酸配列のうち、CDR1(SEQ ID No: 4)、CDR2(SEQ ID No: 5)、およびCDR3(SEQ ID No: 6)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
    (2)SEQ ID No: 22のアミノ酸配列、またはSEQ ID No: 22のアミノ酸配列のうち、CDR1(SEQ ID No: 10)、CDR2(SEQ ID No: 11)、およびCDR3(SEQ ID No: 12)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、および
    (3)SEQ ID No: 24のアミノ酸配列、またはSEQ ID No: 24のアミノ酸配列のうち、CDR1(SEQ ID No: 16)、CDR2(SEQ ID No: 17)、およびCDR3(SEQ ID No: 18)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列、
    から選択される、請求項1~5のいずれか1項に記載の抗体または抗体誘導体。
    The amino acid sequence of the light chain variable region VL domain of an antibody or antibody derivative,
    (1) Of the amino acid sequence of SEQ ID No: 20 or the amino acid sequence of SEQ ID No: 20, CDR1 (SEQ ID No: 4), CDR2 (SEQ ID No: 5), and CDR3 (SEQ ID No: 6). Amino acid sequences containing substitutions (eg, conservative substitutions), insertions, or deletions of one or several amino acids in parts other than).
    (2) Of the amino acid sequence of SEQ ID No: 22 or the amino acid sequence of SEQ ID No: 22, CDR1 (SEQ ID No: 10), CDR2 (SEQ ID No: 11), and CDR3 (SEQ ID No: 12). ), An amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions, and (3) the amino acid sequence of SEQ ID No: 24, or SEQ ID No: 24. Of the amino acid sequence of, one or several amino acid substitutions (eg, conservative) in parts other than CDR1 (SEQ ID No: 16), CDR2 (SEQ ID No: 17), and CDR3 (SEQ ID No: 18). Amino acid sequence, including substitutions), insertions, or deletions,
    The antibody or antibody derivative according to any one of claims 1 to 5, which is selected from the above.
  7.  抗体または抗体誘導体が、
    (1)重鎖(SEQ ID No: 25)および軽鎖(SEQ ID No: 26)を含む抗体または抗体誘導体;
    (2)重鎖(SEQ ID No: 27)および軽鎖(SEQ ID No: 28)を含む抗体または抗体誘導体;
    (3)重鎖(SEQ ID No: 29)および軽鎖(SEQ ID No: 30)を含む抗体または抗体誘導体;
    からなる群から選択される、請求項1~6のいずれか1項に記載の抗体または抗体誘導体。
    Antibodies or antibody derivatives
    (1) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 25) and a light chain (SEQ ID No: 26);
    (2) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 27) and a light chain (SEQ ID No: 28);
    (3) An antibody or antibody derivative containing a heavy chain (SEQ ID No: 29) and a light chain (SEQ ID No: 30);
    The antibody or antibody derivative according to any one of claims 1 to 6, which is selected from the group consisting of.
  8.  請求項1~7のいずれか1項に記載される抗体または抗体誘導体を含み、血液由来成分を含まない、HBVを中和するための医薬組成物。 A pharmaceutical composition for neutralizing HBV, which comprises the antibody or antibody derivative according to any one of claims 1 to 7 and does not contain blood-derived components.
  9.  請求項1~7のいずれか1項に記載される抗体または抗体誘導体を複数種類含む、請求項8に記載の医薬組成物。 The pharmaceutical composition according to claim 8, which comprises a plurality of types of the antibody or antibody derivative according to any one of claims 1 to 7.
  10.  B型肝炎の再活性化を予防し、またはHBVの医療感染を阻止するための、請求項8または9に記載の医薬組成物。 The pharmaceutical composition according to claim 8 or 9, for preventing reactivation of hepatitis B or preventing medical infection of HBV.
  11.  被験体から採取された生体由来試料を、in vitroにおいて請求項1~7のいずれか1項に記載の抗体または抗体誘導体と接触させる工程、
     前記抗体または抗体誘導体と結合した試料中のHBVを検出・測定する工程、
    を含む、生体由来試料中のHBVの存在・存在量を検出・測定する方法。
    A step of in vitro contacting a biological sample collected from a subject with the antibody or antibody derivative according to any one of claims 1 to 7.
    A step of detecting and measuring HBV in a sample bound to the antibody or antibody derivative.
    A method for detecting and measuring the presence / abundance of HBV in a biological sample including.
  12.  請求項1~7のいずれか1項に記載の抗体または抗体誘導体を含む、被験体体内におけるHBVの存在・存在量を検出・測定するためのキット。
     
     
     

     
    A kit for detecting and measuring the presence / absence of HBV in a subject, which comprises the antibody or antibody derivative according to any one of claims 1 to 7.




PCT/JP2021/027933 2020-07-29 2021-07-28 Production method of novel anti-hbs immunoglobulin WO2022025129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020127957A JP2023133647A (en) 2020-07-29 2020-07-29 Production method of novel anti-hbs immunoglobulin
JP2020-127957 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022025129A1 true WO2022025129A1 (en) 2022-02-03

Family

ID=80035743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027933 WO2022025129A1 (en) 2020-07-29 2021-07-28 Production method of novel anti-hbs immunoglobulin

Country Status (2)

Country Link
JP (1) JP2023133647A (en)
WO (1) WO2022025129A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263522A (en) * 2013-05-31 2016-01-20 赛特瑞恩股份有限公司 Binding molecule able to neutralise hepatitis b virus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263522A (en) * 2013-05-31 2016-01-20 赛特瑞恩股份有限公司 Binding molecule able to neutralise hepatitis b virus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HEHLE VERENA, BERETTA MAXIME, BOURGINE MARYLINE, AIT-GOUGHOULTE MALIKA, PLANCHAIS CYRIL, MORISSE SOLEN, VESIN BENJAMIN, LORIN VAL&: "Potent human broadly neutralizing antibodies to hepatitis B virus from natural controllers", JOURNAL OF EXPERIMENTAL MEDICINE, ROCKEFELLER UNIVERSITY PRESS, US, vol. 217, no. 10, 5 October 2020 (2020-10-05), US , pages 20200840, XP055836281, ISSN: 0022-1007, DOI: 10.1084/jem.20200840 *
HEIJTINK R.A., KRUINING J., VAN BERGEN P., DE RAVE S., VAN HATTUM J., SCHUTTEN M., OSTERHAUS A.D.M.E.: "Characterization of a human monoclonal antibody obtained after immunization with plasma vaccine and a booster with recombinant-DNA hepatitis B vaccine", JOURNAL OF MEDICAL VIROLOGY, JOHN WILEY & SONS, INC., US, vol. 66, no. 3, 1 March 2002 (2002-03-01), US , pages 304 - 311, XP055892669, ISSN: 0146-6615, DOI: 10.1002/jmv.2146 *
WANG QIAO; MICHAILIDIS ELEFTHERIOS; YU YINGPU; WANG ZIJUN; HURLEY ARLENE M.; OREN DEENA A.; MAYER CHRISTIAN T.; GAZUMYAN ANNA; LIU: "A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations", CELL HOST & MICROBE, ELSEVIER, NL, vol. 28, no. 2, 5 June 2020 (2020-06-05), NL , pages 335, XP086247146, ISSN: 1931-3128, DOI: 10.1016/j.chom.2020.05.010 *

Also Published As

Publication number Publication date
JP2023133647A (en) 2023-09-27

Similar Documents

Publication Publication Date Title
CN111690058B (en) Antibodies with neutralizing activity against coronaviruses and uses thereof
Hehle et al. Potent human broadly neutralizing antibodies to hepatitis B virus from natural controllers
JP6869968B2 (en) Antibodies that strongly neutralize hepatitis B virus and their use
Wang et al. A combination of human broadly neutralizing antibodies against hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations
JP5154949B2 (en) Compositions and methods for treating viral infections
KR20180012245A (en) A multivalent hepatitis B virus antigen binding molecule and its use
CN105263522B (en) The binding molecule of hepatitis B can be neutralized
Colucci et al. Identification of a major hepatitis B core antigen (HBcAg) determinant by using synthetic peptides and monoclonal antibodies.
Golsaz Shirazi et al. Monoclonal antibodies to various epitopes of hepatitis B surface antigen inhibit hepatitis B virus infection
JP2022031634A (en) Epitope of hepatitis b virus surface antigen and binding molecule specifically binding to same for neutralizing hepatitis b virus
EP1724285B1 (en) Anti-HBs monoclonal antibodies
JP4118955B2 (en) Hepatitis B monoclonal antibody
Mutsvunguma et al. Identification of multiple potent neutralizing and non-neutralizing antibodies against Epstein-Barr virus gp350 protein with potential for clinical application and as reagents for mapping immunodominant epitopes
WO2021070883A1 (en) Human ntcp-binding antibody capable of inhibiting infection of hepatitis b virus (hbv) to human hepatocytes
US8993228B2 (en) Antibody binding to envelope protein 2 of hepatitis C virus and method for identifying genotype of hepatitis C virus using the same
JP5033298B2 (en) Human monoclonal antibody against hepatitis C virus E2 glycoprotein
WO2022025129A1 (en) Production method of novel anti-hbs immunoglobulin
AU2019201405A1 (en) HIV anitgens and antibodies
US20220396612A1 (en) New antibody targeting the vp-1 protein, fragments thereof, and uses of same for detecting infection with the bk polyomavirus
Takahashi et al. Production of monoclonal antibodies against the ORF3 protein of rat hepatitis E virus (HEV) and demonstration of the incorporation of the ORF3 protein into enveloped rat HEV particles
Zhang et al. Establishment of monoclonal antibodies broadly neutralize infection of hepatitis B virus
EP4021503A1 (en) Compositions and methods related to human neutralizing antibodies to hepatitis b
US10888615B2 (en) Neutralizing human monoclonal antibody 8D6 against HCV infection
Eng et al. Newly discovered hepatitis C virus minicores circulate in human blood
CN118076630A (en) Anti-HBV antibodies and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP