WO2022024660A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2022024660A1
WO2022024660A1 PCT/JP2021/025010 JP2021025010W WO2022024660A1 WO 2022024660 A1 WO2022024660 A1 WO 2022024660A1 JP 2021025010 W JP2021025010 W JP 2021025010W WO 2022024660 A1 WO2022024660 A1 WO 2022024660A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchange
temperature
air conditioner
heat exchanger
Prior art date
Application number
PCT/JP2021/025010
Other languages
English (en)
French (fr)
Inventor
寛 佐々木
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to EP21848773.4A priority Critical patent/EP4191155A4/en
Priority to CN202180043609.5A priority patent/CN115698609A/zh
Priority to US18/010,949 priority patent/US20230235933A1/en
Priority to AU2021316340A priority patent/AU2021316340B2/en
Publication of WO2022024660A1 publication Critical patent/WO2022024660A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 An air conditioner that determines the amount of refrigerant using the amount of operating condition that can be detected by the refrigerant circuit has been proposed.
  • the degree of supercooling at the outlet of the condenser is used in a state where the degree of superheat at the outlet of the evaporator of the refrigerant circuit during the cooling cycle and the pressure of the evaporator are set to predetermined values (hereinafter referred to as the default state).
  • the amount of refrigerant is determined.
  • a sensor that measures the amount of operating condition is required when determining the amount of refrigerant using the amount of operating condition such as the degree of supercooling.
  • the amount of refrigerant such as the degree of supercooling.
  • the degree of supercooling can be calculated using the sensor values of the temperature sensors at the heat exchange intermediate and heat exchange outlets for the indoor heat exchanger and the outdoor heat exchanger, respectively.
  • the sensor mounted on the air conditioner is an air conditioner from the viewpoint of cost reduction. It will be limited to the minimum necessary for driving.
  • a sensor for detecting the refrigerant temperature in the middle portion of the indoor heat exchanger and a refrigerant temperature on the refrigerant outlet side of the outdoor heat exchanger are detected.
  • an object of the present invention to provide an air conditioner capable of estimating the amount of refrigerant remaining in the refrigerant circuit (hereinafter referred to as the amount of residual refrigerant) even when only a limited number of sensors are provided.
  • One embodiment of the air conditioner has a refrigerant circuit configured by connecting an indoor unit having an indoor heat exchanger to an outdoor unit having a compressor, an outdoor heat exchanger and an expansion valve with a refrigerant pipe.
  • the refrigerant circuit is filled with a predetermined amount of refrigerant.
  • the air conditioner has at least the number of revolutions of the compressor, the refrigerant discharge temperature of the compressor, the heat exchanger temperature, the opening degree of the expansion valve, and the outside air temperature among the operating state quantities indicating the operating states during the air conditioning operation.
  • the indoor heat exchanger includes a first indoor heat exchange port through which the refrigerant flows, a second indoor heat exchange port through which the refrigerant flows, a first indoor heat exchange port, and the second indoor heat.
  • An indoor heat exchange intermediate sensor that detects the temperature of the refrigerant passing through the indoor heat exchange intermediate portion among the heat exchanger temperatures provided in the indoor heat exchange intermediate portion connecting the exchange port and the indoor heat exchange intermediate portion. And have.
  • the outdoor heat exchanger has a first outdoor heat exchange port through which the refrigerant flows, a second outdoor heat exchange port through which the refrigerant flows, a first outdoor heat exchange port, and the second outdoor heat.
  • the heat exchanger temperature passes through the outdoor heat exchange outlet of the second outdoor heat exchange port during cooling operation. It has an outdoor heat exchange outlet sensor that detects the temperature of the refrigerant.
  • the amount of residual refrigerant can be estimated using a limited sensor.
  • FIG. 1 is an explanatory diagram showing an example of the air conditioner of this embodiment.
  • FIG. 2 is an explanatory diagram showing an example of an outdoor unit and an indoor unit.
  • FIG. 3 is a block diagram showing an example of a control circuit of an outdoor unit.
  • FIG. 4 is a Moriel diagram showing a state of change in the refrigerant of the air conditioner.
  • FIG. 5 is a flowchart showing an example of the processing operation of the control circuit related to the estimation processing.
  • FIG. 6 is an explanatory diagram showing an example of teacher data used in the multiple regression analysis method.
  • FIG. 7 is an explanatory diagram showing an example of teacher data used for generating an estimation model for classifying whether the amount of residual refrigerant is normal or abnormal.
  • FIG. 8 is an explanatory diagram showing an example of the air conditioning system of the second embodiment.
  • FIG. 1 is an explanatory diagram showing an example of the air conditioner 1 of the present embodiment.
  • the air conditioner 1 shown in FIG. 1 is, for example, a home-use air conditioner having one outdoor unit 2 and one indoor unit 3.
  • the outdoor unit 2 is connected to the indoor unit 3 by a liquid pipe 4 and a gas pipe 5.
  • the outdoor unit 2 and the indoor unit 3 are connected by a refrigerant pipe such as a liquid pipe 4 and a gas pipe 5, so that the refrigerant circuit 6 of the air conditioner 1 is formed.
  • FIG. 2 is an explanatory diagram showing an example of the outdoor unit 2 and the indoor unit 3.
  • the outdoor unit 2 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, an accumulator 15, an outdoor unit fan 16, and a control circuit 17.
  • a compressor 11, four-way valve 12, outdoor heat exchanger 13, expansion valve 14, and accumulator 15 outdoor refrigerants that are interconnected by each refrigerant pipe described in detail below and form a part of the refrigerant circuit 6. Form a circuit.
  • the compressor 11 is, for example, a high-pressure container type compressor with variable capacity that can change the operating capacity according to the drive of a motor (not shown) whose rotation speed is controlled by an inverter.
  • the refrigerant discharge side of the compressor 11 is connected to the first port 12A of the four-way valve 12 by a discharge pipe 21. Further, the refrigerant suction side of the compressor 11 is connected to the refrigerant outflow side of the accumulator 15 by a suction pipe 22.
  • the four-way valve 12 is a valve for switching the flow direction of the refrigerant in the refrigerant circuit 6, and includes a first port 12A to a fourth port 12D.
  • the first port 12A is connected to the refrigerant discharge side of the compressor 11 by a discharge pipe 21.
  • the second port 12B is connected to one of the refrigerant inlets / outlets of the outdoor heat exchanger 13 (corresponding to the first outdoor heat exchange port 13A described later) by the outdoor refrigerant pipe 23.
  • the third port 12C is connected to the refrigerant inflow side of the accumulator 15 by an outdoor refrigerant pipe 26.
  • the fourth port 12D is connected to the indoor heat exchanger 51 by an outdoor gas pipe 24.
  • the outdoor heat exchanger 13 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor unit fan 16.
  • the outdoor heat exchanger 13 includes a first outdoor heat exchange port 13A as one of the refrigerant inlets and outlets, a second outdoor heat exchange port 13B as the other refrigerant inlet and outlet, and the first outdoor heat exchange port 13A. It has an outdoor heat exchange intermediate portion 13C connecting between the second outdoor heat exchange port portion 13B.
  • the first outdoor heat exchange port 13A is connected to the second port 12B of the four-way valve 12 by an outdoor refrigerant pipe 23.
  • the second outdoor heat exchange port 13B is connected to the expansion valve 14 by the outdoor liquid pipe 25.
  • the outdoor heat exchange intermediate portion 13C is connected to the first outdoor heat exchange port 13A and the second outdoor heat exchange port 13B.
  • the outdoor heat exchanger 13 functions as a condenser when the air conditioner 1 performs a cooling operation, and functions as an evaporator when the air conditioner 1 performs a heating operation.
  • the expansion valve 14 is an electronic expansion valve provided in the outdoor liquid pipe 25 and driven by a pulse motor (not shown).
  • the opening degree of the expansion valve 14 is adjusted according to the number of pulses given to the pulse motor, so that the amount of refrigerant flowing from the expansion valve 14 into the refrigerant circuit 6 (flowing from the outdoor heat exchanger 13 into the indoor heat exchanger 51).
  • the amount of refrigerant to be applied or the amount of refrigerant flowing from the indoor heat exchanger 51 to the outdoor heat exchanger 13) is adjusted.
  • the opening degree of the expansion valve 14 is adjusted so that the discharge temperature (refrigerant discharge temperature) of the refrigerant of the compressor 11 reaches a target temperature, which is a predetermined temperature, when the air conditioner 1 is in the heating operation. ..
  • the accumulator 15 has its refrigerant inflow side connected to the third port 12C of the four-way valve 12 by an outdoor refrigerant pipe 26. Further, the accumulator 15 is connected to the refrigerant inflow side of the compressor 11 by a suction pipe 22 on the refrigerant outflow side. The accumulator 15 separates the refrigerant flowing into the accumulator 15 from the outdoor refrigerant pipe 26 into a gas refrigerant and a liquid refrigerant, and causes only the gas refrigerant to be sucked into the compressor 11.
  • the outdoor unit fan 16 is made of a resin material and is arranged in the vicinity of the outdoor heat exchanger 13.
  • the outdoor unit fan 16 takes in outside air from a suction port (not shown) into the inside of the outdoor unit 2 in response to the rotation of a fan motor (not shown), and exchanges heat with the refrigerant in the outdoor heat exchanger 13 from an outlet (not shown) to the outside. It is released to the outside of the machine 2.
  • a discharge temperature sensor 31 for detecting the temperature of the refrigerant discharged from the compressor 11, that is, the discharge temperature is arranged in the discharge pipe 21.
  • An outdoor heat exchange outlet sensor 32 for detecting the temperature of the refrigerant flowing out from the unit 13B is arranged.
  • an outside air temperature sensor 33 for detecting the temperature of the outside air flowing into the inside of the outdoor unit 2, that is, the outside air temperature is arranged near the suction port (not shown) of the outdoor unit 2.
  • the control circuit 17 controls the outdoor unit 2 in response to an instruction from the control circuit 18 of the indoor unit 3 described later.
  • the control circuit 17 of the outdoor unit 2 has a communication unit (not shown), a storage unit, and a control unit.
  • the communication unit is a communication interface that communicates with the communication unit of the indoor unit 3.
  • the storage unit is, for example, a flash memory, which is an operating state quantity such as a detection value corresponding to a control program of the outdoor unit 2 and detection signals from various sensors, a driving state of the compressor 11 and the outdoor unit fan 16, and an outdoor unit.
  • the rated capacity of 2 and the required capacity of each indoor unit 3 are stored.
  • the indoor unit 3 has an indoor heat exchanger 51, a gas pipe connecting portion 52, a liquid pipe connecting portion 53, an indoor unit fan 54, and a control circuit 18.
  • the indoor heat exchanger 51, the gas pipe connecting portion 52, and the liquid pipe connecting portion 53 are connected to each other by each refrigerant pipe described later to form an indoor unit refrigerant circuit forming a part of the refrigerant circuit 6.
  • the indoor heat exchanger 51 exchanges heat between the refrigerant and the indoor air taken into the interior of the indoor unit 3 from a suction port (not shown) by the rotation of the indoor unit fan 54.
  • the indoor heat exchanger 51 has a first indoor heat exchange port 51A as one refrigerant inlet / outlet, a second indoor heat exchange port 51B as the other refrigerant inlet / outlet, and a first indoor heat exchange port 51A and a second. It has an indoor heat exchange intermediate portion 51C that connects between the indoor heat exchange port portion 51B and the indoor heat exchange port 51B.
  • the first indoor heat exchange port 51A is connected to the gas pipe connecting portion 52 by the indoor gas pipe 56.
  • the second indoor heat exchange port 51B is connected to the liquid pipe connecting portion 53 by the indoor liquid pipe 57.
  • the indoor heat exchange intermediate portion 51C is connected to the first indoor heat exchange port 51A and the second indoor heat exchange port 51B.
  • the indoor heat exchanger 51 functions as a condenser when the air conditioner 1 performs a heating operation.
  • the indoor heat exchanger 51 functions as an evaporator when the air conditioner 1 performs the cooling operation.
  • the indoor unit fan 54 is made of a resin material and is arranged in the vicinity of the indoor heat exchanger 51.
  • the indoor unit fan 54 is rotated by a fan motor (not shown) to take indoor air into the indoor unit 3 from a suction port (not shown), and an outlet (not shown) that exchanges heat with the refrigerant in the indoor heat exchanger 51. Is released into the room.
  • the indoor unit 3 is provided with various sensors.
  • an indoor heat exchange intermediate sensor 61 for detecting the temperature of the refrigerant passing through the indoor heat exchange intermediate portion 51C among the heat exchanger temperatures, that is, the indoor heat exchange intermediate temperature is arranged.
  • a suction temperature sensor 62 for detecting the temperature of the indoor air flowing into the indoor unit 3, that is, the suction temperature, is arranged in the vicinity of the suction port (not shown) of the indoor unit 3.
  • FIG. 3 is a block diagram showing an example of the control circuit 18 of the indoor unit 1.
  • the control circuit 18 includes an acquisition unit 41, a communication unit 42, a storage unit 43, and a control unit 44.
  • the acquisition unit 41 acquires the sensor values of the various sensors described above.
  • the communication unit 42 is a communication interface that communicates with the communication unit of the outdoor unit 2.
  • the storage unit 43 is, for example, a flash memory, and has an operating state amount such as a detection value corresponding to a control program of the indoor unit 3 and detection signals from various sensors, a drive state of the indoor unit fan 54, and transmission from the outdoor unit 2.
  • the operation information to be performed for example, the operation / stop information of the compressor 11, the driving state of the outdoor unit fan 16, etc.), the rated capacity of the outdoor unit 2, the required capacity of each indoor unit 3, and the like are stored.
  • the storage unit 43 stores an estimation model for estimating the amount of refrigerant remaining in the refrigerant circuit 6.
  • a relative amount of refrigerant is used as the amount of refrigerant remaining in the refrigerant circuit 6.
  • the storage unit 43 of this embodiment refers to the refrigerant shortage rate of the refrigerant circuit 6 (when 100% is filled with a specified amount of refrigerant, the amount of decrease from this specified amount is described below. It remembers an estimation model that estimates (similarly).
  • the estimation model has an estimation model 43A for cooling and an estimation model 43B for heating.
  • the control unit 44 periodically (for example, every 30 seconds) captures the detected values of various sensors.
  • the control unit 44 controls the entire air conditioner 1 based on the various input information. Further, the control unit 44 estimates the refrigerant shortage rate using each of the above estimation models.
  • the four-way valve 12 switches so that the first port 12A and the fourth port 12D communicate with each other, and the second port 12B and the third port 12C communicate with each other. (The state shown by the solid line in FIG. 2).
  • the refrigerant circuit 6 becomes a heating cycle in which the indoor heat exchanger 51 functions as a condenser and the outdoor heat exchanger 13 functions as an evaporator.
  • the flow of the refrigerant during the heating operation is indicated by the solid arrow shown in FIG.
  • the refrigerant discharged from the compressor 11 flows through the discharge pipe 21 and flows into the four-way valve 12, flows from the four-way valve 12 through the outdoor gas pipe 24, and is a gas. It flows into the pipe 5.
  • the refrigerant flowing through the gas pipe 5 flows into the indoor unit 3 via the gas pipe connecting portion 52.
  • the refrigerant that has flowed into the indoor unit 3 flows through the indoor gas pipe 56 and flows into the indoor heat exchanger 51.
  • the refrigerant flowing into the indoor heat exchanger 51 is condensed by exchanging heat with the indoor air taken into the indoor unit 3 by the rotation of the indoor unit fan 54. That is, the indoor heat exchanger 51 functions as a condenser, and the indoor unit 3 is blown into the room from an outlet (not shown) heated by heat exchange with the refrigerant in the indoor heat exchanger 51.
  • the installed room is heated.
  • the refrigerant flowing from the indoor heat exchanger 51 into the indoor liquid pipe 57 flows out to the liquid pipe 4 via the liquid pipe connecting portion 53.
  • the refrigerant that has flowed into the liquid pipe 4 flows into the outdoor unit 2.
  • the refrigerant flowing into the outdoor unit 2 flows through the outdoor liquid pipe 25, passes through the expansion valve 14, and is depressurized.
  • the refrigerant decompressed by the expansion valve 14 flows through the outdoor liquid pipe 25 and flows into the outdoor heat exchanger 13, and heat exchanges with the outside air flowing in from the suction port (not shown) of the outdoor unit 2 by the rotation of the outdoor unit fan 16. Evaporates.
  • the refrigerant flowing out from the outdoor heat exchanger 13 to the outdoor refrigerant pipe 26 flows into the four-way valve 12, the outdoor refrigerant pipe 26, the accumulator 15 and the suction pipe 22 in this order, is sucked into the compressor 11, is compressed again, and is compressed again. It flows out to the outdoor gas pipe 24 via the first port 12A and the fourth port 12D of the twelve.
  • the four-way valve 12 communicates with the first port 12A and the second port 12B, and communicates with the third port 12C and the fourth port 12D. It is switched to.
  • the refrigerant circuit 6 becomes a cooling cycle in which the indoor heat exchanger 51 functions as an evaporator and the outdoor heat exchanger 13 functions as a condenser.
  • the flow of the refrigerant during the cooling operation is indicated by the broken line arrow shown in FIG.
  • the refrigerant discharged from the compressor 11 flows through the discharge pipe 21 and flows into the four-way valve 12, flows from the four-way valve 12 through the outdoor refrigerant pipe 23, and is outdoors. It flows into the heat exchanger 13.
  • the refrigerant flowing into the outdoor heat exchanger 13 is condensed by exchanging heat with the outdoor air taken into the inside of the outdoor unit 2 by the rotation of the outdoor unit fan 16. That is, the outdoor heat exchanger 13 functions as a condenser, and the indoor air heated by the refrigerant in the outdoor heat exchanger 13 is blown out to the outside from an outlet (not shown).
  • the refrigerant flowing from the outdoor heat exchanger 13 to the outdoor liquid pipe 25 passes through the expansion valve 14 and is depressurized.
  • the refrigerant decompressed by the expansion valve 14 flows through the liquid pipe 4 and flows into the indoor unit 3.
  • the refrigerant that has flowed into the indoor unit 3 flows through the indoor liquid pipe 57 and flows into the indoor heat exchanger 51, and heat exchanges with the indoor air that has flowed in from the suction port (not shown) of the indoor unit 3 by rotating the indoor unit fan 54.
  • the installed room is cooled.
  • the refrigerant flowing from the indoor heat exchanger 51 to the gas pipe 5 via the gas pipe connection portion 52 flows into the outdoor gas pipe 24 of the outdoor unit 2 and flows into the fourth port 12D of the four-way valve 12.
  • the refrigerant that has flowed into the fourth port 12D of the four-way valve 12 flows into the refrigerant inflow side of the accumulator 15 from the third port 12C.
  • the refrigerant that has flowed in from the refrigerant inflow side of the accumulator 15 flows in through the suction pipe 22, is sucked into the compressor 11, and is compressed again.
  • the acquisition unit 41 in the control circuit 18 acquires the sensor values of the discharge temperature sensor 31, the outdoor heat exchange outlet sensor 32, and the outside air temperature sensor 33 via the control circuit 17 of the outdoor unit 2. Further, the acquisition unit 41 acquires the sensor values of the indoor heat exchange intermediate sensor 61 and the suction temperature sensor 62 of the indoor unit 3.
  • FIG. 4 is a Moriel diagram showing the refrigeration cycle of the air conditioner 1.
  • the outdoor heat exchanger 13 functions as a condenser
  • the indoor heat exchanger 51 functions as an evaporator.
  • the outdoor heat exchanger 13 functions as an evaporator
  • the indoor heat exchanger 51 functions as a condenser.
  • the compressor 11 compresses the low-temperature low-pressure gas refrigerant (refrigerant in the state of point A in FIG. 4) flowing from the evaporator and discharges the high-temperature and high-pressure gas refrigerant (refrigerant in the state of point B in FIG. 4). do.
  • the temperature of the gas refrigerant discharged by the compressor 11 is the discharge temperature, and the discharge temperature is detected by the discharge temperature sensor 31.
  • the condenser heat-exchanges high-temperature and high-pressure gas refrigerant from the compressor 11 with air to condense it.
  • the temperature of the liquid refrigerant drops due to the sensible heat change and the state becomes overcooled (state of point C in FIG. 4).
  • the temperature at which the gas refrigerant changes to the liquid refrigerant due to the latent heat change is the condensation temperature
  • the temperature of the refrigerant in the overcooled state at the outlet of the condenser is the heat exchange outlet temperature.
  • the heat exchange outlet temperature is detected by the outdoor heat exchange outlet sensor 32 during the cooling operation.
  • the flow of the refrigerant is opposite to that in the cooling operation, and the outdoor heat exchanger 13 functions as an evaporator.
  • the outdoor heat exchange outlet sensor 32 is used to detect the temperature of the outdoor heat exchanger 13 to detect freezing and to control the defrosting operation.
  • the expansion valve 14 depressurizes the low-temperature and high-pressure refrigerant flowing out of the condenser.
  • the refrigerant decompressed by the expansion valve 14 is a gas-liquid two-phase refrigerant in which gas and liquid are mixed (refrigerant in the state of point D in FIG. 4).
  • the evaporator evaporates the inflowing gas-liquid two-phase refrigerant by heat exchange with air.
  • the temperature of the gas refrigerant rises due to the sensible heat change and becomes an overheated state (state of point A in FIG. 4), and is compressed. It is sucked into the machine 11.
  • the temperature at which the liquid refrigerant changes to the gas refrigerant due to the latent heat change is the evaporation temperature.
  • the evaporation temperature is the indoor heat exchange intermediate temperature detected by the indoor heat exchange intermediate sensor 61 during the cooling operation.
  • the temperature of the refrigerant that is overheated by the evaporator and sucked into the compressor 11 is the suction temperature.
  • the flow of the refrigerant is opposite to that during the cooling operation, and the indoor heat exchanger 51 functions as a condenser.
  • the detection result of the indoor heat exchange intermediate sensor 61 is used to calculate the target discharge temperature.
  • the estimation model is generated by a multiple regression analysis method, which is a kind of regression analysis method, using an arbitrary operating state quantity (feature quantity) among a plurality of operating state quantities.
  • the multiple regression analysis method the test result using an actual air conditioner (hereinafter referred to as the actual machine) (what kind of value is the operating state amount when the amount of the refrigerant remaining in the refrigerant circuit is changed by using the actual machine).
  • Regression obtained from the results of multiple simulations (results of reproducing the refrigerant circuit by numerical calculation and calculating the value of the operating state amount with respect to the remaining amount of refrigerant).
  • the P value value indicating the degree of influence of the operating state amount on the accuracy of the generated estimated model (predetermined weight parameter)
  • the correction value R2 indicating the accuracy of the generated estimated model
  • a regression equation having a value) of 0.9 or more and 1.0 or less is selected and generated as an estimation model.
  • the P value and the correction value R2 are values related to the accuracy of the estimation model when the estimation model is generated by the multiple regression analysis method, and the smaller the P value, the more the correction value R2 is 1.0. The closer the value is to, the more accurate the generated estimation model will be.
  • the estimation model is a residual refrigerant amount estimation model that estimates the residual refrigerant amount remaining in the refrigerant circuit 6.
  • the residual refrigerant amount estimation model has an estimation model 43A for cooling and an estimation model 43B for heating.
  • each of these estimation models is generated using test results using an actual machine as described later, and is stored in advance in the control circuit 18 of the air conditioner 1.
  • the cooling estimation model 43A is the first regression equation that can estimate the refrigerant shortage rate during cooling operation with high accuracy.
  • the coefficients ⁇ 1 to ⁇ 6 shall be determined when the estimation model is generated.
  • the control unit 44 uses the current rotation speed of the compressor 11 acquired by the acquisition unit 41, the opening degree of the expansion valve 14, the discharge temperature of the compressor 11, the outdoor heat exchange outlet temperature, and the outside air. By substituting the temperature, the current refrigerant shortage rate of the refrigerant circuit 6 is calculated.
  • the reason for substituting the number of revolutions of the compressor 11, the opening degree of the expansion valve, the discharge temperature of the compressor 11, the outdoor heat exchange outlet temperature, and the outside air temperature is the feature amount used when the estimation model 43A for cooling was generated. To do.
  • the rotation speed of the compressor 11 is detected by, for example, a rotation speed sensor (not shown) of the compressor 11.
  • the opening degree of the expansion valve is adjusted by, for example, a pulse signal input from the control unit 44 to the stepping motor (not shown) of the expansion valve.
  • the discharge temperature of the compressor 11 is detected by the discharge temperature sensor 31.
  • the heat exchange outlet temperature is detected by the outdoor heat exchange outlet sensor 32.
  • the outside air temperature is detected by the outside air temperature sensor 33.
  • the heating estimation model 43B is a second regression equation that can estimate the refrigerant shortage rate during heating operation with high accuracy.
  • the coefficients ⁇ 11 to ⁇ 15 shall be determined when the estimation model is generated.
  • the control unit 44 substitutes the current rotation speed of the compressor 11 acquired by the acquisition unit 41, the opening degree of the expansion valve 14, the discharge temperature of the compressor 11, and the indoor heat exchange intermediate temperature into the second regression equation. By doing so, the refrigerant shortage rate of the refrigerant circuit 6 at the present time is calculated.
  • the reason for substituting the number of revolutions of the compressor 11, the opening degree of the expansion valve 14, the discharge temperature of the compressor 11 and the intermediate temperature of the indoor heat exchange is that the feature amount used at the time of generating the estimation model 43B for heating is used. Is.
  • the rotation speed of the compressor 11 is detected by a rotation speed sensor (not shown) of the compressor 11.
  • the opening degree of the expansion valve is adjusted by, for example, a pulse signal input from the control unit 44 to the stepping motor (not shown) of the expansion valve.
  • the discharge temperature of the compressor 11 is detected by the discharge temperature sensor 31.
  • the indoor heat exchange intermediate temperature is detected by the indoor heat exchange intermediate sensor 61.
  • the refrigerant shortage rate is estimated using the first regression equation. Further, during the heating operation, the refrigerant shortage rate is estimated using the second regression equation.
  • FIG. 5 is a flowchart showing an example of the processing operation of the control circuit 18 related to the estimation processing.
  • the control circuit 18 holds the pre-generated estimation model 43A for cooling and the estimation model 43B for heating.
  • the control unit 44 in the control circuit 18 collects the operation state quantity as operation data through the acquisition unit 41 (step S11).
  • the control unit 44 executes a data filtering process for extracting an arbitrary operating state quantity from the collected operating data (step S12). Further, the control unit 44 executes the data cleansing process excluding the abnormal value and the protruding value (step S13).
  • the control unit 44 calculates the current refrigerant shortage rate of the refrigerant circuit 6 using each regression equation (step S14), and ends the processing operation shown in FIG.
  • the data filtering process does not use all of the plurality of operating state quantities, but only a part of the plurality of operating status quantities required to calculate the refrigerant shortage rate based on predetermined filter conditions. To extract. By substituting the operating state quantity that has undergone data cleansing processing (excluding abnormal values and protrusion values) into each regression equation of the generated estimation model, the refrigerant shortage rate can be estimated more accurately.
  • the predetermined filter condition has a first filter condition, a second filter condition, and a third filter condition.
  • the first filter condition is, for example, a filter condition for data to be extracted in common to all operation modes of the air conditioner 1.
  • the second filter condition is a filter condition for data extracted during cooling operation.
  • the third filter condition is a filter condition for data extracted during heating operation.
  • the first filter condition changes, for example, with respect to the driving state of the compressor 11, identification of the operation mode, elimination of special operation, elimination of missing values in the acquired values, and the amount of operating state having a large influence on the generation of each regression equation. Selection of a small amount, etc.
  • the drive state of the compressor 11 is a condition that needs to be determined because the refrigerant shortage rate cannot be estimated unless the refrigerant is circulated in the refrigerant circuit 6 because the compressor is operating stably. It is a filter condition that excludes the operating state amount detected in the transitional period such as at the time of rising of 11, and extracts only the operating state amount that has reached the target temperature at which the discharge temperature is a predetermined temperature, for example.
  • the filter condition for example, the operating state amount when the absolute value of the difference between the discharge temperature and the target temperature is larger than the predetermined value is excluded, and the operating state when the absolute value of the difference between the discharge temperature and the target temperature is equal to or less than the predetermined value. Extract the amount.
  • the predetermined value the absolute value of the difference between the target discharge temperature and the detected discharge temperature is, for example, 2 ° C. or less.
  • the operation mode identification is a filter condition for extracting only the operating state quantity acquired during the cooling operation and the heating operation. Therefore, the operating state quantity acquired during the dehumidifying operation or the blowing operation is excluded.
  • Exclusion of special operation is a filter condition for excluding the amount of operating state acquired during special operation in which the state of the refrigerant circuit 6 is significantly different from that during cooling operation or heating operation such as oil recovery operation and defrosting operation. .. Elimination of missing values (values that could not be obtained) means that if there is a missing value in the operating state quantity used to determine the refrigerant shortage rate, it is accurate if each regression equation is generated using the operating state quantity. Is a filter condition that excludes the operating state quantity including missing values.
  • the selection of a value with a small change amount for the operating state amount to be substituted into each regression equation is a filter condition for extracting only the operating state amount in the state where the operating state of the air conditioner 1 is stable, and is based on each regression equation. This is a necessary condition for improving the estimation accuracy.
  • the second filter condition includes, for example, exclusion of heat exchange outlet temperature, abnormality of discharge temperature, and the like.
  • the outside air temperature sensor 33 and the outdoor heat exchange outlet sensor 32 are arranged close to each other, so that the heat exchange outlet temperature detected by the outdoor heat exchange outlet sensor 32 during the cooling operation is the outside air temperature. It is a filter condition considering that the temperature does not become lower than the outside air temperature detected by the sensor 33, and is a filter condition excluding the heat exchange outlet temperature lower than the outside air temperature.
  • the abnormality of the discharge temperature is a filter condition that excludes the discharge temperature detected when the suction refrigerant is in a reduced state in which the amount of the refrigerant sucked into the compressor 11 is reduced due to the small cooling load.
  • the third filter condition is, for example, an abnormality in the discharge temperature.
  • the discharge temperature becomes high due to the magnitude of the heating load during the heating operation and the discharge temperature protection control is executed, for example, the discharge temperature drops by lowering the rotation speed of the compressor 11, so that at this time.
  • It is a filter condition that excludes the discharge temperature detected in.
  • the data cleansing process is a process for excluding the operating state amount that may be erroneously estimated, instead of using all the acquired operating state amounts for estimating the refrigerant shortage rate.
  • the acquired operating state amount is smoothed to suppress noise and limit the number of data.
  • Noise suppression by smoothing data is a process of suppressing noise by calculating the average value of the corresponding section and taking, for example, a moving average of the suction temperature in each model.
  • the data number limit is, for example, a process of excluding data having a small number of data because the reliability is low.
  • the refrigerant shortage rate can be estimated more accurately by substituting the operating state quantity excluding the abnormal value and the protrusion value into each regression equation of the estimation model.
  • the control circuit 18 substitutes, for example, the current operating state amount (sensor value) after the data filtering process and the data cleansing process into each regression equation of the estimation model and each refrigerant shortage rate calculation equation, so that the current refrigerant circuit 6 Calculate the refrigerant shortage rate of.
  • the control unit 44 in the control circuit 18 determines whether or not the cooling operation is currently in progress. When the cooling operation is currently in progress, the control unit 44 substitutes the current operating state quantity into the cooling estimation model 43A, and calculates the current refrigerant shortage rate.
  • control unit 44 When the control unit 44 is not currently in the cooling operation, that is, in the heating operation, the control unit 44 substitutes the current operating state quantity into the heating estimation model 43B and calculates the current refrigerant shortage rate.
  • the feature quantities used when generating the first regression equation by the multiple regression analysis method include, for example, the rotation speed of the compressor 11 and the opening degree of the expansion valve 14. , The discharge temperature of the compressor 11, the outdoor heat exchange outlet temperature, and the outside air temperature are used. Then, for each of these operating state quantities, the test results using the actual machine are used. Further, in the heating operation using the second regression equation, the feature quantities of the multiple regression analysis are, for example, the rotation speed of the compressor 11, the opening degree of the expansion valve 14, the discharge temperature of the compressor 11, and the intermediate heat exchange between the chambers. Each operating state quantity of temperature is used. Then, for each of these operating state quantities, the test results using the actual machine are used.
  • the indoor unit 3 when the indoor unit 3 is operating, a test using the actual machine is performed with different outside air temperature, indoor temperature and refrigerant filling amount, and the feature amount is used. Obtain the relationship with the refrigerant shortage rate.
  • the outside air temperature is changed to 20 ° C, 25 ° C, 30 ° C, 35 ° C and 40 ° C.
  • other parameters of the outside air temperature may be added.
  • any operating condition quantity (feature amount) used for the estimation model will be obtained from the test results (hereinafter referred to as teacher data) showing the relationship between the plurality of operating condition quantities and the refrigerant filling amount.
  • the teacher data includes teacher data (teacher data used to generate an estimation model in the multiple regression analysis method) that links the amount of residual refrigerant and each operating state amount, and a state in which the amount of residual refrigerant is not excessively insufficient (). For example, even if the amount of residual refrigerant is smaller than the initial filling amount of refrigerant, the cooling capacity and heating capacity required by the user can be maintained (normal state), or the amount of residual refrigerant is insufficient.
  • the teacher data (teacher data used to generate an estimation model that classifies normal and abnormal) is the one that links the cooling capacity and heating capacity required by the user with each operating state quantity (abnormal state). be.
  • FIG. 6 is an explanatory diagram showing an example of teacher data used in the multiple regression analysis method.
  • the operating state amount used for the teacher data includes, for example, the operating state amount of the compressor 11, the indoor unit 3, and the outdoor unit 2.
  • the operating state amount of the compressor 11 includes, for example, a rotation speed, a target rotation speed, an operation time, a discharge temperature, a target discharge temperature, an output voltage, and the like.
  • the operating state quantity of the indoor unit 3 includes, for example, a fan rotation speed, a fan target rotation speed, a heat exchanger intermediate sensor temperature, and the like.
  • the operating state amount of the outdoor unit 2 includes, for example, a fan rotation speed, a fan target rotation speed, an expansion valve opening degree, an expansion valve target opening degree, a heat exchanger outlet sensor temperature, and the like.
  • FIG. 7 is an explanatory diagram showing an example of teacher data used for generating an estimation model for classifying whether the amount of residual refrigerant is normal or abnormal.
  • the estimation model generated by the multiple regression analysis method using the operating state quantity related to the estimation of the refrigerant shortage rate of the refrigerant filled in the refrigerant circuit 6 and the limited sensor are obtained.
  • the current operating state amount compressor rotation speed, compressor refrigerant discharge temperature, heat exchanger temperature (indoor heat exchange intermediate temperature, outdoor heat exchange outlet temperature), expansion valve opening and outside air temperature
  • To estimate the refrigerant shortage rate Since the operating state quantity used when generating the estimation model was obtained by operating the air conditioner 1 on a trial basis under various environments as described above, this estimation model is used.
  • the estimated refrigerant shortage rate can be estimated using the amount of operating state obtained when the user normally operates the air conditioner 1 (cooling operation, heating operation, etc.). As a result, even in the air conditioner 1 for home use, the current refrigerant shortage rate can be estimated without adjusting the refrigerant circuit 6 to the default state.
  • the estimation model mounted on the air conditioner 1 uses a regression analysis method in advance using an operating state amount that has a large effect on the estimation of the refrigerant shortage rate of the refrigerant filled in the refrigerant circuit 6 among a plurality of operating state quantities. Generated.
  • the estimation model is generated by selecting the operation state quantity that has a large influence on the estimation model instead of using all the operation state quantities, so that a highly accurate estimation model can be generated.
  • the air conditioner 1 uses regression analysis using the number of revolutions of the compressor 11, the opening degree of the expansion valve, the discharge temperature of the compressor 11, the heat exchange outlet temperature, and the outside air temperature as the operating state quantities that are greatly affected during the cooling operation. Generated by law. As a result, it is possible to generate a highly accurate estimation model for cooling during cooling operation.
  • the air conditioner 1 uses a regression analysis method using the number of revolutions of the compressor 11, the opening degree of the expansion valve 14, the discharge temperature of the compressor 11, and the intermediate temperature of the indoor heat exchange as the amount of operating conditions that are greatly affected during the heating operation. Generated by. As a result, it is possible to generate a highly accurate estimation model for heating during heating operation.
  • the air conditioner 1 estimates the refrigerant shortage rate during the cooling operation by using the estimation model for cooling and the current operating state amount during the cooling operation, and also estimates the estimation model for heating and the current operating state during the heating operation.
  • the refrigerant shortage rate during heating operation is estimated using the amount of operating conditions. As a result, even in the air conditioner 1 for home use, the refrigerant shortage rate can be estimated with high accuracy by using an estimation model different for each operating state.
  • the current operating state quantity (sensor value) after the data filtering process and data cleansing process is substituted into each regression equation of the estimation model.
  • the features obtained by the simulation are used to generate each regression equation of the estimation model, and the features obtained by the simulation include abnormal values and values that are significantly larger or smaller than others. Not done.
  • Data filtering processing and data cleansing processing are performed on each regression equation of the estimation model generated using the feature quantity that does not include the abnormal value or the protrusion value, and the operating state quantity excluding the abnormal value or the protrusion value is calculated. By substituting, the refrigerant shortage rate can be estimated more accurately.
  • each operating state quantity is obtained by a test using an actual machine at the design stage of the air conditioner 1, and the estimation is obtained by learning the test result on a terminal such as a server having a learning function.
  • a terminal such as a server having a learning function.
  • the control circuit 18 stores the model in advance.
  • the estimation model obtained by learning the simulation result may be stored in advance.
  • a server 120 connected to the air conditioner 1 by a communication network 110, and the server 120 generates a first regression equation and a second regression equation and transmits them to the air conditioner 1. You may. This embodiment will be described below.
  • FIG. 8 is an explanatory diagram showing an example of the air conditioning system 100 of the second embodiment.
  • the same configuration as that of the air conditioner 1 of the first embodiment is designated by the same reference numeral, and the description of the overlapping configuration and operation will be omitted.
  • the air conditioning system 100 shown in FIG. 8 includes an air conditioner 1, a communication network 110, and a server 120.
  • the air conditioner 1 has an outdoor unit 2 having a compressor 11, an outdoor heat exchanger 13 and an expansion valve 14, and an indoor unit 3 having an indoor heat exchanger 51.
  • the air conditioner 1 includes a refrigerant circuit 6 in which an outdoor unit 2 and an indoor unit 3 are connected by a refrigerant pipe such as a liquid pipe 4 and a gas pipe 5, and the refrigerant circuit 6 is filled with a predetermined amount of refrigerant.
  • the server 120 has a generation unit 121 and a transmission unit 122.
  • the generation unit 121 generates an estimation model by a multiple regression analysis method using the operating state quantity related to the estimation of the refrigerant shortage rate of the refrigerant filled in the refrigerant circuit 6.
  • the estimation model includes, for example, the cooling estimation model 43A described in the first embodiment and the heating estimation model 43B.
  • the transmission unit 122 transmits each estimation model generated by the generation unit 121 to the air conditioner 1 via the communication network 110.
  • the control circuit 18 in the air conditioner 1 calculates the refrigerant shortage rate in the refrigerant circuit 6 of the air conditioner 1 using each of the received estimation models.
  • the generation unit 121 in the server 120 is an operating state quantity during cooling operation periodically from the standard machine of the air conditioner 1 (installed in the test room of the manufacturer or the like) that can actually measure the refrigerant shortage rate in the refrigerant circuit 6. Is collected, and the estimation model 43A for cooling is generated or updated by using the comparison result between the refrigerant shortage rate estimated by each estimation model and the measured refrigerant shortage rate and the collected operating state quantity. Then, the transmission unit 122 in the server 120 periodically transmits the generated or updated cooling estimation model 43A to the air conditioner 1.
  • the operating state quantity used for generating each estimated model may be obtained by simulation, and each estimated model may be generated by using the operating state quantity obtained by the generation unit 121 in the simulation.
  • the generation unit 121 in the server 120 periodically collects the operating state quantity during the heating operation from the standard machine of the air conditioner 1 described above, and compares the refrigerant shortage rate estimated by the estimation model with the measured refrigerant shortage rate.
  • the estimation model 43B for heating is generated by using the result and the collected operating state quantity.
  • the transmission unit 122 in the server 120 periodically transmits the generated estimation model 43B for heating to the air conditioner 1.
  • the operating state quantity used for generating each estimated model may be obtained by simulation, and each estimated model may be generated by using the operating state quantity obtained by the generation unit 121 in the simulation.
  • the server 120 of the second embodiment generates an estimation model for estimating the refrigerant shortage rate by using the multiple regression analysis method using the operating state quantity related to the estimation of the refrigerant shortage rate of the refrigerant filled in the refrigerant circuit 6. , The generated estimation model is transmitted to the air conditioner 1.
  • the air conditioner 1 estimates the refrigerant shortage rate using the estimation model received from the server 120 and the current operating state quantity. As a result, even in the air conditioner 1 for home use, the current refrigerant shortage rate can be estimated using a highly accurate estimation model.
  • the relative amount of refrigerant is estimated as representing the amount of refrigerant remaining in the refrigerant circuit 6
  • the refrigerant shortage rate which is the ratio of the amount of refrigerant leaked to the outside from the refrigerant circuit 6, is estimated and provided with respect to the filling amount (initial value) when the refrigerant circuit 6 is filled with the refrigerant. ..
  • the present invention is not limited to this, and the estimated amount of refrigerant shortage may be multiplied by an initial value to provide the amount of refrigerant leaked to the outside from the refrigerant circuit 6.
  • an estimation model for estimating the absolute amount of refrigerant leaked to the outside from the refrigerant circuit 6 or the absolute amount of refrigerant remaining in the refrigerant circuit 6 may be generated, and the estimation result by this estimation model may be provided. ..
  • the outdoor The volume of the heat exchanger 13 and the indoor heat exchanger 51 and the volume of the liquid pipe 4 may be taken into consideration.
  • ⁇ Modification example> the case where the control circuit 18 provided in the indoor unit 3 controls the entire air conditioner 1 is illustrated, but the control circuit 18 may be provided in the outdoor unit 2 or the cloud side.
  • the case where the estimation model is generated by the server 120 is illustrated, but a person may calculate the estimation model from the simulation result instead of the server 120.
  • the case where the control circuit 18 of the indoor unit 3 estimates the amount of the refrigerant by using the estimation model is illustrated, but the server 120 that generates the estimation model may estimate the amount of the refrigerant.
  • each component of each part shown in the figure does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each part is not limited to the one shown in the figure, and all or part of them may be functionally or physically distributed / integrated in any unit according to various loads and usage conditions. Can be configured.
  • each device is all or arbitrary parts on the CPU (Central Processing Unit) (or microcomputers such as MPU (Micro Processing Unit) and MCU (Micro Controller Unit)). You may try to do it. Further, the various processing functions may be executed in whole or in any part on a program to be analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or on hardware by wired logic. Needless to say.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • MCU Micro Controller Unit
  • the refrigerant shortage rate is defined as a decrease from the specified amount when the specified amount of the refrigerant is filled to 100%.
  • the refrigerant shortage rate may be estimated by the method described in this embodiment, and the estimation result may be set to 100%.
  • the refrigerant shortage rate estimated immediately after the refrigerant circuit 6 is filled with the specified amount of the refrigerant is 90%, that is, when the amount of the refrigerant filled in the refrigerant circuit 6 is estimated to be 10% less than the specified amount of the refrigerant is filled.
  • the amount of the refrigerant, which is 10% less than the specified amount of filling may be set to 100%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

空気調和機では、圧縮機、室外熱交換器及び膨張弁を有する室外機に、室内熱交換器を有する室内機が冷媒配管で接続されて構成される冷媒回路に所定量の冷媒が充填されている。空気調和機は、運転時の運転状態を示す運転状態量の内、少なくとも圧縮機の回転数、圧縮機の冷媒吐出温度、熱交換器温度、膨張弁の開度及び外気温度を用いて、冷媒回路に残存している残存冷媒量を推定する推定モデルを有する。室内熱交換器は、第1の室内熱交口部と第2の室内熱交口部とを繋ぐ室内熱交中間部に備え、室内熱交中間部を通過する冷媒の温度を検出するセンサと、第1の室外熱交口部と第2の室外熱交口部とを繋ぐ室外熱交中間部と、第2の室外熱交口部に備え、冷房運転時の第2の室外熱交口部の室外熱交出口を通過する冷媒の温度を検出するセンサとを有する。限られたセンサしか備えていない場合でも、残存冷媒量を推定する空気調和機を提供する。

Description

空気調和機
 本発明は、空気調和機に関する。
 冷媒回路で検知できる運転状態量を用いて冷媒量の判定を行う空気調和機が提案されている。特許文献1では、例えば、冷房サイクル時の冷媒回路の蒸発器出口の過熱度や蒸発器の圧力を所定の値にした状態(以下、デフォルト状態という)で凝縮器出口の過冷却度を用いて冷媒量を判定している。
特開2006-23072号公報
 空気調和機では、過冷却度等の運転状態量を用いて冷媒量を判定する場合には運転状態量を測定するセンサが必要となる。例えば、1台の室外機に多数の室内機が接続されて商業施設やオフィスビルなどの大規模な建物に設置される業務用の空気調和機には、多数の室内機を制御する必要性から多くのセンサが搭載されているため、各センサ値を用いて運転状態量を算出することができる。例えば、室内熱交換器及び室外熱交換器の夫々に熱交中間及び熱交出口の温度センサのセンサ値を用いて過冷却度を算出できる。
 しかしながら、例えば、1台の室外機に1台の室内機が接続されて主に住居に設置される家庭用の空気調和機では、コストを抑制する観点から、搭載されるセンサは空気調和機の運転に必要な範囲内で最小限に限られることになる。例えば、家庭用の空気調和機では、室内熱交換器及び室外熱交換器について、室内熱交換器の中間部の冷媒温度を検出するセンサと室外熱交換器の冷媒出口側における冷媒温度を検出するセンサの2個の温度センサしかない場合があり、この場合は、凝縮器出口の過冷却度が算出できず、凝縮器出口の過冷却度を用いて冷媒量を判定できない。
 そこで、限られたセンサしか備えていない空気調和機であっても、冷媒量を推定できる方法が求められている。
 本発明ではこのような問題に鑑み、限られたセンサしか備えていない場合でも、冷媒回路に残存する冷媒量(以下、残存冷媒量)を推定できる空気調和機を提供することを目的とする。
 一つの態様の空気調和機は、圧縮機、室外熱交換器及び膨張弁を有する室外機に、室内熱交換器を有する室内機が冷媒配管で接続されて構成される冷媒回路を有し、前記冷媒回路に所定量の冷媒が充填されている。空気調和機は、空気調和運転時の運転状態を示す運転状態量のうち、少なくとも前記圧縮機の回転数、前記圧縮機の冷媒吐出温度、熱交換器温度、前記膨張弁の開度及び外気温度を用いて、前記冷媒回路に残存している残存冷媒量を推定する残存冷媒量推定モデルを有する。前記室内熱交換器は、前記冷媒が流通する第1の室内熱交口部と、前記冷媒が流通する第2の室内熱交口部と、前記第1の室内熱交口部と前記第2の室内熱交口部とをつなぐ室内熱交中間部と、前記室内熱交中間部に備え、前記熱交換器温度の内、前記室内熱交中間部を通過する前記冷媒の温度を検出する室内熱交中間センサとを有する。前記室外熱交換器は、前記冷媒が流通する第1の室外熱交口部と、前記冷媒が流通する第2の室外熱交口部と、前記第1の室外熱交口部と前記第2の室外熱交口部とをつなぐ室外熱交中間部と、前記第2の室外熱交口部に備え、前記熱交換器温度の内、冷房運転時の前記第2の室外熱交口部の室外熱交出口を通過する前記冷媒の温度を検出する室外熱交出口センサとを有する。
 一つの側面として、限られたセンサを用いて残存冷媒量を推定できる。
図1は、本実施例の空気調和機の一例を示す説明図である。 図2は、室外機及び室内機の一例を示す説明図である。 図3は、室外機の制御回路の一例を示すブロック図である。 図4は、空気調和機の冷媒変化の状態を示すモリエル線図である。 図5は、推定処理に関わる制御回路の処理動作の一例を示すフローチャートである。 図6は、重回帰分析法に用いる教師データの一例を示す説明図である。 図7は、残存冷媒量が正常か異常かを分類する推定モデルの生成に用いる教師データの一例を示す説明図である。 図8は、実施例2の空気調和システムの一例を示す説明図である。
 以下、図面に基づいて、本願の開示する空気調和機等の実施例を詳細に説明する。尚、本実施例により、開示技術が限定されるものではない。また、以下に示す各実施例は、矛盾を起こさない範囲で適宜変形しても良い。
<空気調和機の構成>
 図1は、本実施例の空気調和機1の一例を示す説明図である。図1に示す空気調和機1は、1台の室外機2と、1台の室内機3とを有する、例えば、家庭用の空気調和機である。室外機2は、液管4及びガス管5で室内機3と接続される。そして、室外機2と室内機3とが液管4及びガス管5等の冷媒配管で接続されることで、空気調和機1の冷媒回路6が形成されている。
<室外機の構成>
 図2は、室外機2および室内機3の一例を示す説明図である。室外機2は、圧縮機11と、四方弁12と、室外熱交換器13と、膨張弁14と、アキュムレータ15と、室外機ファン16と、制御回路17とを有する。これら圧縮機11、四方弁12、室外熱交換器13、膨張弁14及びアキュムレータ15を用いて、以下で詳述する各冷媒配管で相互に接続されて冷媒回路6の一部を成す室外側冷媒回路を形成する。
 圧縮機11は、例えば、インバータにより回転数が制御される図示しないモータの駆動に応じて、運転容量を可変できる高圧容器型の能力可変型圧縮機である。圧縮機11は、その冷媒吐出側が四方弁12の第1のポート12Aと吐出管21で接続されている。また、圧縮機11は、その冷媒吸入側がアキュムレータ15の冷媒流出側と吸入管22で接続されている。
 四方弁12は、冷媒回路6における冷媒の流れる方向を切替えるための弁であって、第1のポート12A~第4のポート12Dを備えている。第1のポート12Aは、圧縮機11の冷媒吐出側と吐出管21で接続されている。第2のポート12Bは、室外熱交換器13の一方の冷媒出入口(後述する第1の室外熱交口部13Aに相当する)と室外冷媒管23で接続されている。第3のポート12Cは、アキュムレータ15の冷媒流入側と室外冷媒管26で接続されている。そして、第4のポート12Dは、室内熱交換器51と室外ガス管24で接続されている。
 室外熱交換器13は、冷媒と、室外機ファン16の回転により室外機2の内部に取り込まれた外気とを熱交換させる。室外熱交換器13は、前記一方の冷媒出入口としての第1の室外熱交口部13Aと、他方の冷媒出入口としての第2の室外熱交口部13Bと、前記第1の室外熱交口部13Aと第2の室外熱交口部13Bとの間をつなぐ室外熱交中間部13Cとを有する。第1の室外熱交口部13Aは、四方弁12の第2のポート12Bと室外冷媒管23で接続される。第2の室外熱交口部13Bは、膨張弁14と室外液管25で接続される。室外熱交中間部13Cは、第1の室外熱交口部13Aと第2の室外熱交口部13Bと接続される。室外熱交換器13は、空気調和機1が冷房運転を行う場合に凝縮器として機能し、空気調和機1が暖房運転を行う場合に蒸発器として機能する。
 膨張弁14は、室外液管25に設けられており、図示しないパルスモータで駆動する電子膨張弁である。膨張弁14は、パルスモータに与えられるパルス数に応じて開度が調整されることで、膨張弁14から冷媒回路6内を流れる冷媒量(室外熱交換器13から室内熱交換器51に流入する冷媒量、又は、室内熱交換器51から室外熱交換器13に流入する冷媒量)を調整するものである。膨張弁14の開度は、空気調和機1が暖房運転を行っている場合、圧縮機11の冷媒の吐出温度(冷媒吐出温度)が所定の温度である目標温度に到達させるように調整される。
 アキュムレータ15は、その冷媒流入側が四方弁12の第3のポート12Cと室外冷媒管26で接続されている。更に、アキュムレータ15は、その冷媒流出側が圧縮機11の冷媒流入側と吸入管22で接続されている。アキュムレータ15は、室外冷媒管26からアキュムレータ15の内部に流入した冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒のみを圧縮機11に吸入させる。
 室外機ファン16は、樹脂材で形成されており、室外熱交換器13の近傍に配置されている。室外機ファン16は、図示しないファンモータの回転に応じて、図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器13において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。
 また、室外機2には、複数のセンサが配置されている。吐出管21には、圧縮機11から吐出された冷媒の温度、すなわち吐出温度を検出する吐出温度センサ31が配置されている。室外熱交換器13と膨張弁14との間の室外液管25には、熱交換器温度の内、第2の室外熱交口部13Bに流入する冷媒の温度、又は、第2の室外熱交口部13Bから流出する冷媒の温度を検出するための室外熱交出口センサ32が配置されている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ33が配置されている。
 制御回路17は、後述する室内機3の制御回路18からの指示を受けて室外機2を制御する。室外機2の制御回路17は、図示しない通信部と、記憶部と、制御部とを有する。通信部は、室内機3の通信部と通信する通信インタフェースである。記憶部は、例えば、フラッシュメモリであって、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値等の運転状態量、圧縮機11や室外機ファン16の駆動状態、室外機2の定格能力及び各室内機3の要求能力、などを記憶する。
<室内機の構成>
 図2に示すように、室内機3は、室内熱交換器51と、ガス管接続部52と、液管接続部53と、室内機ファン54と、制御回路18とを有する。これら室内熱交換器51、ガス管接続部52及び液管接続部53は、後述する各冷媒配管で相互に接続されて、冷媒回路6の一部を成す室内機冷媒回路を構成する。
 室内熱交換器51は、冷媒と、室内機ファン54の回転により図示しない吸込口から室内機3の内部に取り込まれた室内空気とを熱交換させる。室内熱交換器51は、一方の冷媒出入口としての第1の室内熱交口部51Aと、他方の冷媒出入口としての第2の室内熱交口部51Bと、第1の室内熱交口部51Aと第2の室内熱交口部51Bとの間をつなぐ室内熱交中間部51Cとを有する。第1の室内熱交口部51Aは、ガス管接続部52と室内ガス管56で接続される。第2の室内熱交口部51Bは、液管接続部53と室内液管57で接続される。室内熱交中間部51Cは、第1の室内熱交口部51Aと第2の室内熱交口部51Bと接続される。室内熱交換器51は、空気調和機1が暖房運転を行う場合、凝縮器として機能する。これに対して、室内熱交換器51は、空気調和機1が冷房運転を行う場合、蒸発器として機能する。
 室内機ファン54は、樹脂材で形成されており、室内熱交換器51の近傍に配置されている。室内機ファン54は、図示しないファンモータによって回転することで、図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器51において冷媒と熱交換した室内空気を図示しない吹出口から室内へ放出する。
 室内機3には各種のセンサが設けられている。室内熱交中間部51Cには、熱交換器温度の内、室内熱交中間部51Cを通過する冷媒の温度、すなわち室内熱交中間温度を検出する室内熱交中間センサ61が配置されている。室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち吸込温度を検出する吸込温度センサ62が配置されている。
 制御回路18は、空気調和機1全体を制御する。図3は、室内機1の制御回路18の一例を示すブロック図である。制御回路18は、取得部41と、通信部42と、記憶部43と、制御部44とを有する。取得部41は、前述した各種センサのセンサ値を取得する。通信部42は、室外機2の通信部と通信する通信インタフェースである。記憶部43は、例えば、フラッシュメモリであって、室内機3の制御プログラムや各種センサからの検出信号に対応した検出値等の運転状態量、室内機ファン54の駆動状態、室外機2から送信される運転情報(例えば、圧縮機11の運転・停止情報、室外機ファン16の駆動状態等を含む)、室外機2の定格能力及び各室内機3の要求能力、などを記憶する。
 また、記憶部43は冷媒回路6に残存する冷媒量を推定する推定モデルを記憶している。本実施例では、冷媒回路6に残存する冷媒量として、例えば相対的な冷媒量を用いている。具体的には、本実施例の記憶部43は冷媒回路6の冷媒不足率(規定量の冷媒が充填されているときを100%としたとき、この規定量からの減少分を指す。以下、同様)を推定する推定モデルを記憶している。推定モデルは、冷房用推定モデル43Aと、暖房用推定モデル43Bとを有する。
 制御部44は、各種センサでの検出値を定期的(例えば、30秒毎)に取り込む。制御部44は、これら入力された各種情報に基づいて、空気調和機1全体を制御する。更に、制御部44は、上述した各推定モデルを用いて冷媒不足率を推定する。
<冷媒回路の動作>
 次に、本実施形態における空気調和機1の空調運転時の冷媒回路6における冷媒の流れや各部の動作について説明する。
 空気調和機1が暖房運転を行う場合、四方弁12は、第1のポート12Aと第4のポート12Dとが連通し、第2のポート12Bと第3のポート12Cとが連通するように切替えている(図2に実線で示す状態)。これにより、冷媒回路6は、室内熱交換器51が凝縮器として機能し、室外熱交換器13が蒸発器として機能する暖房サイクルとなる。尚、説明の便宜上、暖房運転時の冷媒の流れは、図2に示す実線矢印で表記する。
 冷媒回路6がこの状態で圧縮機11が駆動すると、圧縮機11から吐出された冷媒は、吐出管21を流れて四方弁12に流入し、四方弁12から室外ガス管24を流れて、ガス管5へと流入する。ガス管5を流れる冷媒は、ガス管接続部52を介して室内機3に流入する。室内機3に流入した冷媒は、室内ガス管56を流れて室内熱交換器51に流入する。室内熱交換器51に流入した冷媒は、室内機ファン54の回転により室内機3の内部に取り込まれた室内空気との間で熱交換することで凝縮する。つまり、室内熱交換器51が凝縮器として機能し、室内熱交換器51で冷媒と熱交換することによって加熱された室内空気が図示しない吹出口から室内に吹き出されることで、室内機3が設置された室内の暖房が行われる。
 室内熱交換器51から室内液管57に流入した冷媒は、液管接続部53を介して液管4に流出する。液管4に流入した冷媒は、室外機2に流入する。室外機2に流入した冷媒は、室外液管25を流れ、膨張弁14を通過して減圧される。膨張弁14で減圧された冷媒は、室外液管25を流れて室外熱交換器13に流入し、室外機ファン16の回転によって室外機2の図示しない吸込口から流入した外気と熱交換を行って蒸発する。室外熱交換器13から室外冷媒管26へと流出した冷媒は、四方弁12、室外冷媒管26、アキュムレータ15及び吸入管22の順に流入し、圧縮機11に吸入されて再び圧縮され、四方弁12の第1のポート12A及び第4のポート12D経由で室外ガス管24に流出する。
 また、空気調和機1が冷房運転を行う場合、四方弁12は、第1のポート12Aと第2のポート12Bとが連通し、第3のポート12Cと第4のポート12Dとが連通するように切替えている。これにより、冷媒回路6は、室内熱交換器51が蒸発器として機能し、室外熱交換器13が凝縮器として機能する冷房サイクルとなる。尚、説明の便宜上、冷房運転時の冷媒の流れは、図2に示す破線矢印で表記する。
 冷媒回路6がこの状態で圧縮機11が駆動すると、圧縮機11から吐出された冷媒は、吐出管21を流れて四方弁12に流入し、四方弁12から室外冷媒管23を流れて、室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外機ファン16の回転により室外機2の内部に取り込まれた室外空気との間で熱交換することで凝縮する。つまり、室外熱交換器13が凝縮器として機能し、室外熱交換器13で冷媒によって加熱された室内空気が図示しない吹出口から室外に吹き出す。
 室外熱交換器13から室外液管25へと流入した冷媒は、膨張弁14を通過して減圧される。膨張弁14で減圧された冷媒は、液管4を流れて室内機3に流入する。室内機3に流入した冷媒は、室内液管57を流れて室内熱交換器51に流入し、室内機ファン54の回転によって室内機3の図示しない吸入口から流入した室内空気と熱交換を行って蒸発する。つまり、室内熱交換器51が蒸発器として機能し、室内熱交換器51で冷媒と熱交換することによって冷却された室内空気が図示しない吹出口から室内に吹き出されることで、室内機3が設置された室内の冷房が行われる。
 室内熱交換器51からガス管接続部52を介してガス管5へ流れる冷媒は、室外機2の室外ガス管24に流れて四方弁12の第4のポート12Dに流入する。四方弁12の第4のポート12Dに流入した冷媒は、第3のポート12Cからアキュムレータ15の冷媒流入側に流入する。アキュムレータ15の冷媒流入側から流入した冷媒は、吸入管22を介して流入し、圧縮機11に吸入されて再び圧縮されることになる。
 制御回路18内の取得部41は、吐出温度センサ31、室外熱交出口センサ32及び外気温度センサ33のセンサ値を室外機2の制御回路17を介して取得する。更に、取得部41は、室内機3の室内熱交中間センサ61及び吸込温度センサ62のセンサ値を取得する。
 図4は、空気調和機1の冷凍サイクルを示すモリエル線図である。空気調和機1の冷房運転時は、室外熱交換器13が凝縮器として機能し、室内熱交換器51が蒸発器として機能する。また、空気調和機1の暖房運転時は、室外熱交換器13が蒸発器として機能し、室内熱交換器51が凝縮器として機能する。
 圧縮機11は、蒸発器から流入する低温低圧のガス冷媒(図4の点Aの状態の冷媒)を圧縮して高温高圧のガス冷媒(図4の点Bの状態になった冷媒)を吐出する。尚、圧縮機11が吐出するガス冷媒の温度が吐出温度であり、吐出温度は、吐出温度センサ31で検出する。
 凝縮器は、圧縮機11からの高温高圧のガス冷媒を空気と熱交換して凝縮させる。この際、凝縮器では、潜熱変化によってガス冷媒が全て液冷媒となった後は顕熱変化によって液冷媒の温度が低下して過冷却状態となる(図4の点Cの状態)。尚、ガス冷媒が潜熱変化で液冷媒へと変化している際の温度が凝縮温度であり、凝縮器の出口における過冷却状態となっている冷媒の温度が熱交出口温度である。熱交換器温度の内、熱交出口温度は、冷房運転時の室外熱交出口センサ32で検出する。なお、暖房運転時は冷媒の流れが冷房運転時と逆になり、室外熱交換器13は蒸発器として機能する。暖房運転時には、室外熱交出口センサ32は室外熱交換器13の温度を検出して結氷を検知したり、除霜運転を制御したりする際に用いられる。
 膨張弁14は、凝縮器から流出した低温高圧の冷媒を減圧する。膨張弁14で減圧された冷媒は、ガスと液とが混合した気液二相冷媒(図4の点Dの状態になった冷媒)となる。
 蒸発器は、流入した気液二相冷媒を空気と熱交換して蒸発させる。この際、蒸発器では、潜熱変化によって気液二相冷媒が全てガス冷媒となった後は顕熱変化によってガス冷媒の温度が上昇して過熱状態(図4の点Aの状態)となり、圧縮機11に吸入される。尚、液冷媒が潜熱変化でガス冷媒へと変化している際の温度が蒸発温度である。蒸発温度は、冷房運転時の室内熱交中間センサ61で検出する室内熱交中間温度である。また、蒸発器で過熱されて圧縮機11に吸入される冷媒の温度が吸入温度である。なお、暖房運転時は冷媒の流れが冷房運転時と逆になり、室内熱交換器51は凝縮器として機能する。暖房運転時には、室内熱交中間センサ61の検出結果は目標吐出温度の算出に用いられる。
<推定モデルの構成>
 推定モデルは、複数の運転状態量の内、任意の運転状態量(特徴量)を用いて回帰分析法の一種である重回帰分析法で生成されている。重回帰分析法では、実際の空気調和機(以下、実機)を用いた試験結果(実機を用いて冷媒回路に残存する冷媒量を変化させた場合に、運転状態量がどのような値となるかを試験した結果)や複数のシミュレーション結果(数値計算により冷媒回路を再現して、残存する冷媒量に対して運転状態量がどのような値となるかを計算した結果)から得られた回帰式のうち、P値(生成した推定モデルの精度に運転状態量が与える影響度合いを示す値(所定の重みパラメータ))が一番小さく、かつ、補正値R2(生成した推定モデルの精度を示す値)が0.9以上1.0以下の間のできるだけ大きい値となる回帰式を選択して推定モデルとして生成する。ここで、P値および補正値R2は、重回帰分析法で推定モデルを生成する際に、当該推定モデルの精度に関わる値であり、P値が小さいほど、また、補正値R2が1.0に近い値であるほど、生成された推定モデルの精度が高くなる。
 推定モデルは、冷媒回路6に残存している残存冷媒量を推定する残存冷媒量推定モデルである。例えば残存冷媒量推定モデルは、冷房用推定モデル43Aと、暖房用推定モデル43Bとを有する。本実施例では、これら各推定モデルは、後述するように実機を用いた試験結果を用いて生成されて、予め空気調和機1の制御回路18に記憶されている。
 冷房用推定モデル43Aは、冷房運転時の冷媒不足率を高精度に推定できる第1の回帰式である。
Figure JPOXMLDOC01-appb-M000001
 係数α1~α6は、推定モデル生成の際に決定されるものとする。制御部44は、第1の回帰式に、取得部41にて取得された現在の圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度、室外熱交出口温度及び外気温度を代入することで、現時点での冷媒回路6の冷媒不足率を算出する。尚、圧縮機11の回転数、膨張弁の開度、圧縮機11の吐出温度、室外熱交出口温度及び外気温度を代入する理由は、冷房用推定モデル43Aの生成時に使用した特徴量を使用するためである。圧縮機11の回転数は、例えば圧縮機11の図示しない回転数センサで検出する。膨張弁の開度は、例えば制御部44から膨張弁のステッピングモータ(図示しない)に入力されるパルス信号によって調整される。圧縮機11の吐出温度は、吐出温度センサ31で検出する。熱交換器温度の内、熱交出口温度は、室外熱交出口センサ32で検出する。外気温度は、外気温度センサ33で検出する。
 暖房用推定モデル43Bは、暖房運転時の冷媒不足率を高精度に推定できる第2の回帰式である。
Figure JPOXMLDOC01-appb-M000002
 係数α11~α15は、推定モデル生成の際に決定されるものとする。制御部44は、第2の回帰式に、取得部41にて取得された現在の圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度及び室内熱交中間温度を代入することで、現時点での冷媒回路6の冷媒不足率を算出する。尚、圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度及び室内熱交中間温度を代入する理由は、暖房用推定モデル43Bの生成時に使用した特徴量を使用するためである。圧縮機11の回転数は、圧縮機11の図示しない回転数センサで検出する。膨張弁の開度は、例えば制御部44から膨張弁のステッピングモータ(図示しない)に入力されるパルス信号によって調整される。圧縮機11の吐出温度は、吐出温度センサ31で検出する。熱交換器温度の内、室内熱交中間温度は、室内熱交中間センサ61で検出する。
 以上に説明したように、冷房運転時は、第1の回帰式を使用して冷媒不足率を推定する。また、暖房運転時は、第2の回帰式を使用して冷媒不足率を推定する。
<推定処理の動作>
 図5は、推定処理に関わる制御回路18の処理動作の一例を示すフローチャートである。尚、制御回路18は、本実施形態の場合、事前に生成された冷房用推定モデル43A及び暖房用推定モデル43Bを保持しているものとする。図5において制御回路18内の制御部44は、取得部41を通じて運転状態量を運転データとして収集する(ステップS11)。制御部44は、収集した運転データから任意の運転状態量を抽出するデータフィルタリング処理を実行する(ステップS12)。また制御部44は、異常値や突出値を除いたデータクレンジング処理を実行する(ステップS13)。制御部44は、各回帰式を用いて、現時点の冷媒回路6の冷媒不足率を算出し(ステップS14)、図5に示す処理動作を終了する。
 データフィルタリング処理は、複数の運転状態量の全てを使用するのではなく、所定フィルタ条件に基づき、複数の運転状態量の内、冷媒不足率を算出するのに必要な一部の運転状態量のみを抽出する。生成された推定モデルの各回帰式に、データクレンジング処理を行った(異常値や突出値を除いた)運転状態量を代入することで、より正確に冷媒不足率を推定できる。
 所定のフィルタ条件は、第1のフィルタ条件と、第2のフィルタ条件と、第3のフィルタ条件とを有する。第1のフィルタ条件は、例えば、空気調和機1の全運転モード共通に抽出するデータのフィルタ条件である。第2のフィルタ条件は、冷房運転時に抽出するデータのフィルタ条件である。第3のフィルタ条件は、暖房運転時に抽出するデータのフィルタ条件である。
 第1のフィルタ条件は、例えば、圧縮機11の駆動状態、運転モードの識別、特殊運転の排除、取得した値における欠損値の排除、各回帰式の生成に際し与える影響の大きい運転状態量について変化量が小さい値の選択、等である。圧縮機11の駆動状態は、圧縮機が安定して運転していることで冷媒回路6に冷媒が循環していないと冷媒不足率を推定できないために判断する必要のある条件であり、圧縮機11の立ち上がり時等の過渡期に検出した運転状態量を除外し、例えば、吐出温度が所定の温度である目標温度に到達した運転状態量のみを抽出するフィルタ条件である。フィルタ条件として、例えば吐出温度と目標温度との差の絶対値が所定値より大きいときの運転状態量を除外し、吐出温度と目標温度との差の絶対値が所定値以下のときの運転状態量を抽出する。前記所定値としては、目標吐出温度と検出した吐出温度との差の絶対値が例えば2℃以下である。
 運転モードの識別とは、冷房運転時及び暖房運転時に取得した運転状態量のみを抽出するためのフィルタ条件である。従って、除湿運転時や送風運転時に取得した運転状態量は除外される。特殊運転の排除とは、例えば、油回収運転や除霜運転といった冷房運転時や暖房運転時と比べて冷媒回路6の状態が大きく異なる特殊運転時に取得した運転状態量を除外するフィルタ条件である。欠損値(取得できなかった値のこと)の排除とは、冷媒不足率の判定に使用する運転状態量に欠損値があった場合、当該運転状態量を用いて各回帰式を生成すれば精度が落ちる可能性があるため、欠損値を含む運転状態量を除外するフィルタ条件である。
 各回帰式に代入する運転状態量について変化量が小さい値の選択とは、空気調和機1の運転状態が安定している状態の運転状態量のみを抽出するフィルタ条件であり、各回帰式による推定精度を上げるために必要な条件である。
 第2のフィルタ条件には、例えば、熱交出口温度の排除、吐出温度の異常等がある。
 熱交出口温度の排除は、外気温度センサ33と室外熱交出口センサ32とが近い場所に配置されていることにより、冷房運転時に室外熱交出口センサ32で検出した熱交出口温度が外気温度センサ33で検出した外気温度より低くなることがないことを考慮したフィルタ条件であり、外気温度より低い熱交出口温度を除外するフィルタ条件である。
 吐出温度の異常は、冷房負荷が小さいことに起因して圧縮機11に吸入される冷媒量が減少する吸入冷媒減少状態時に検出した吐出温度を除外するフィルタ条件である。
 第3のフィルタ条件は、例えば、吐出温度の異常等である。暖房運転時に暖房負荷の大きさに起因して吐出温度が高くなって吐出温度保護制御が実行されると、例えば、圧縮機11の回転数を低下させることで吐出温度が低下するため、このときに検出した吐出温度を除外するフィルタ条件である。
 データクレンジング処理は、取得した全ての運転状態量を冷媒不足率の推定に使用するのではなく、誤った推定を行うおそれがある運転状態量を除外するための処理である。具体的には、取得した運転状態量を平滑化してノイズ抑制やデータ数制限等がある。データの平滑化によるノイズ抑制とは、該当区間の平均値を算出し、各モデルにおいて例えば吸入温度の移動平均をとることで、ノイズを抑える処理である。データ数制限とは、例えば、データ数が少ないものは信頼性が低いため排除する処理である。例えば、1日分の入力データをフィルタリング処理して残ったデータ数がX個以上であれば冷媒不足率の推定に使用、それより少なければ、その日のデータはすべて使用しない。つまり、データクレンジング処理では、推定モデルの各回帰式に異常値や突出値を除いた運転状態量を代入することで、より正確に冷媒不足率を推定できる。
 制御回路18は、例えば、データフィルタリング処理及びデータクレンジング処理後の現在の運転状態量(センサ値)を推定モデルの各回帰式や各冷媒不足率算出式に代入することで、現時点の冷媒回路6の冷媒不足率を算出する。制御回路18内の制御部44は、現在が冷房運転中であるか否かを判定する。制御部44は、現在が冷房運転中の場合、冷房用推定モデル43Aに現在の運転状態量を代入し、現時点での冷媒不足率を算出する。
 制御部44は、現在が冷房運転中でない場合、すなわち暖房運転中の場合、暖房用推定モデル43Bに現在の運転状態量を代入し、現時点での冷媒不足率を算出する。
<回帰式の生成方法>
 次に第1の回帰式及び第2の回帰式の生成に使用する特徴量について説明する。第1の回帰式を使用する冷房運転時では、重回帰分析法により第1の回帰式の生成を行う際に使用する特徴量として、例えば、圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度、室外熱交出口温度及び外気温度の各運転状態量を用いる。そして、これら各運転状態量は、実機を用いた試験結果を使用する。また、第2の回帰式を使用する暖房運転時では、重回帰分析の特徴量として、例えば、圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度及び室内熱交中間温度の各運転状態量を用いる。そして、これら各運転状態量は、実機を用いた試験結果を使用する。
 具体的には、空気調和機1の設計段階で、一例として室内機3が運転している場合に外気温度、室内温度や冷媒充填量を異ならせて実機を用いた試験を行い、特徴量と冷媒不足率との関係を取得する。実機を用いた試験を行う際の条件としては、例えば、外気温度を20℃、25℃、30℃、35℃及び40℃と変化させる。なお、実機を用いた試験を行うに際しては、外気温度の他のパラメータを加えてもよい。
 複数の運転状態量の内、推定モデルに使用する任意の運転状態量(特徴量)は、複数の運転状態量と冷媒充填量との関係を示す試験結果(以下、教師データ)から得ることになる。尚、教師データとしては、残存冷媒量と各運転状態量とを紐づけた教師データ(重回帰分析法での推定モデル生成に用いる教師データ)と、残存冷媒量が不足し過ぎていない状態(例えば、残存冷媒量が初期の冷媒充填量よりも減少していてもユーザーが求める冷房能力や暖房能力は維持できている状態(正常な状態))であるか残存冷媒量が不足している状態(ユーザーが求める冷房能力や暖房能力が維持できない状態(異常な状態))であるかを各運転状態量と紐づけた教師データ(正常と異常を分類する推定モデル生成に用いる教師データ)とがある。
 重回帰分析法では、例えば、冷媒充填量を異ならせて実機を用いた試験を行い、外気温度毎に異なる各運転状態量を取得し、冷媒充填量毎のデータに分類する。図6は、重回帰分析法に用いる教師データの一例を示す説明図である。教師データに使用する運転状態量としては、例えば、圧縮機11、室内機3及び室外機2の運転状態量がある。圧縮機11の運転状態量としては、例えば、回転数、目標回転数、運転時間、吐出温度、目標吐出温度、出力電圧等がある。また、室内機3の運転状態量としては、例えば、ファン回転数、ファン目標回転数や熱交換器中間センサ温度等がある。また、室外機2の運転状態量としては、例えば、ファン回転数、ファン目標回転数、膨張弁開き度、膨張弁目標開き度や熱交換器出口センサ温度等がある。そして、図6に示すように、冷媒充填量毎のデータを教師データとして機械学習を行うことで、残存冷媒量を推定するための任意の運転状態量(特徴量)を抽出すると共に係数を導出して、推定モデルを生成する。
 図7は、残存冷媒量が正常か異常かを分類する推定モデルの生成に用いる教師データの一例を示す説明図である。図7に示すように教師データを用いて機械学習を行うことで、残存冷媒量が正常か否かを推定するための任意の運転状態量(特徴量)を抽出すると共に係数を導出して、推定モデルを生成する。
<実施例1の効果>
 実施例1の空気調和機1では、冷媒回路6に充填された冷媒の冷媒不足率の推定に関わる運転状態量を用いて重回帰分析法で生成された推定モデルと、限られたセンサで得た現在の運転状態量(圧縮機の回転数、圧縮機の冷媒吐出温度、熱交換器温度(室内熱交中間温度、室外熱交出口温度)、膨張弁の開度及び外気温度)とを用いて、冷媒不足率を推定する。推定モデルを生成する際に使用する運転状態量は、前述したように空気調和機1を様々な環境下で実機を試験的に運転させることによって求められたものであるため、この推定モデルを用いた冷媒不足率の推定は、空気調和機1を利用者が通常運転(冷房運転や暖房運転など)させた状態で得られる運転状態量を用いて推定が行える。その結果、家庭用の空気調和機1であっても、冷媒回路6をデフォルト状態に整えることなく、現時点の冷媒不足率を推定できる。
 空気調和機1に搭載される推定モデルは、複数の運転状態量の内、冷媒回路6に充填された冷媒の冷媒不足率の推定に与える影響の大きい運転状態量を用いて回帰分析法で予め生成される。この推定モデルでは、全ての運転状態量を使用するのではなく、推定モデルに与える影響の大きい運転状態量を選択して推定モデルを生成するため、高精度な推定モデルを生成できる。
 空気調和機1は、冷房運転時の影響の大きい運転状態量として、圧縮機11の回転数、膨張弁の開度、圧縮機11の吐出温度、熱交出口温度及び外気温度を用いて回帰分析法で生成される。その結果、冷房運転時の高精度な冷房用推定モデルを生成できる。
 空気調和機1は、暖房運転時の影響の大きい運転状態量として、圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度及び室内熱交中間温度を用いて回帰分析法で生成される。その結果、暖房運転時の高精度な暖房用推定モデルを生成できる。
 空気調和機1は、冷房用推定モデルと、冷房運転時の現在の運転状態量とを用いて、冷房運転時の冷媒不足率を推定すると共に、暖房用推定モデルと、暖房運転時の現在の運転状態量とを用いて、暖房運転時の冷媒不足率を推定する。その結果、家庭用の空気調和機1であっても、運転状態毎に異なる推定モデルを使用することで、冷媒不足率を高精度に推定できる。
 重回帰分析処理において、データフィルタリング処理及びデータクレンジング処理後の現在の運転状態量(センサ値)を推定モデルの各回帰式に代入する。本実施例では、推定モデルの各回帰式の生成は、シミュレーションで得た特徴量を用いており、シミュレーションで得た特徴量には異常な値や他と比べて突出して大きいあるいは小さい値は含まれていない。このような、異常値や突出値を含まない特徴量を用いて生成された推定モデルの各回帰式に、データフィルタリング処理及びデータクレンジング処理を行って異常値や突出値を除いた運転状態量を代入することで、より正確に冷媒不足率を推定できる。
 尚、以上に説明した実施例では、空気調和機1の設計段階で各運転状態量を実機を用いた試験により求め、学習機能を有するサーバなどの端末に試験結果を学習させて得られた推定モデルを制御回路18が予め記憶している場合を例示した。これに代えて、シミュレーション結果を学習させて得られた推定モデルを予め記憶してもよい。さらに、空気調和機1との間を通信網110で接続するサーバ120が存在し、このサーバ120が第1の回帰式及び第2の回帰式を生成して空気調和機1に送信するようにしてもよい。この実施の形態につき、以下に説明する。
<空気調和システムの構成>
 図8は、実施例2の空気調和システム100の一例を示す説明図である。尚、実施例1の空気調和機1と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。図8に示す空気調和システム100は、空気調和機1と、通信網110と、サーバ120とを有する。空気調和機1は、圧縮機11、室外熱交換器13及び膨張弁14を有する室外機2と、室内熱交換器51を有する室内機3とを有する。空気調和機1は、室外機2と室内機3とが液管4及びガス管5等の冷媒配管で接続されて構成する冷媒回路6を備え、当該冷媒回路6に所定量の冷媒が充填される。
 サーバ120は、生成部121と、送信部122とを有する。生成部121は、冷媒回路6に充填された冷媒の冷媒不足率の推定に関わる運転状態量を用いて重回帰分析法で推定モデルを生成する。尚、推定モデルは、例えば、第1の実施例で説明した冷房用推定モデル43Aと、暖房用推定モデル43Bとを有する。送信部122は、生成部121にて生成した各推定モデルを通信網110経由で空気調和機1に送信する。空気調和機1内の制御回路18は、受信した各推定モデルを用いて空気調和機1の冷媒回路6における冷媒不足率を算出する。
 サーバ120内の生成部121は、冷媒回路6における冷媒不足率を実測できる空気調和機1の標準機(製造メーカの試験室などに設置されている)から定期的に冷房運転時の運転状態量を収集し、各推定モデルで推定した冷媒不足率と実測した冷媒不足率との比較結果と収集した運転状態量とを用いて、冷房用推定モデル43Aを生成あるいは更新する。そして、サーバ120内の送信部122は、生成あるいは更新した冷房用推定モデル43Aを空気調和機1に定期的に送信する。なお、実施例1のように、各推定モデルの生成に使用する運転状態量をシミュレーションで得て、生成部121がシミュレーションで得た運転状態量を用いて各推定モデルを生成してもよい。
 サーバ120内の生成部121は、上述した空気調和機1の標準機から定期的に暖房運転時の運転状態量を収集し、推定モデルで推定した冷媒不足率と実測した冷媒不足率との比較結果と収集した運転状態量とを用いて、暖房用推定モデル43Bを生成する。そして、サーバ120内の送信部122は、生成した暖房用推定モデル43Bを空気調和機1に定期的に送信する。なお、実施例1のように、各推定モデルの生成に使用する運転状態量をシミュレーションで得て、生成部121がシミュレーションで得た運転状態量を用いて各推定モデルを生成してもよい。
<実施例2の効果>
 実施例2のサーバ120は、冷媒回路6に充填された冷媒の冷媒不足率の推定に関わる運転状態量を用いて重回帰分析法を使用して、冷媒不足率を推定する推定モデルを生成し、生成した推定モデルを空気調和機1に送信する。空気調和機1は、サーバ120から受信した推定モデルと、現在の運転状態量とを用いて、冷媒不足率を推定する。その結果、家庭用の空気調和機1でも、高精度な推定モデルを用いて現時点の冷媒不足率を推定できる。
 また、本実施例では、冷媒回路6に残存する冷媒量を表すものとして相対的な冷媒量を推定する場合を説明した。具体的には、冷媒回路6に冷媒を充填した際の充填量(初期値)に対する、冷媒回路6から外部に漏洩した冷媒量の割合である冷媒不足率を推定して提供する場合を説明した。しかし、本発明はこれに限られるものではなく、推定した冷媒不足率に初期値を乗じて、冷媒回路6から外部に漏洩した冷媒量を提供するようにしてもよい。また、冷媒回路6から外部に漏洩した絶対的な冷媒量あるいは冷媒回路6に残留する絶対的な冷媒量を推定する推定モデルを生成し、この推定モデルによる推定結果を提供するようにしてもよい。冷媒回路6から外部に漏洩した絶対的な冷媒量あるいは冷媒回路6に残留する絶対的な冷媒量を推定する推定モデルを生成する場合は、ここまでに説明した各運転状態量に加えて、室外熱交換器13及び室内熱交換器51の容積や液管4の容積を考慮すればよい。
<変形例>
 本実施例では、室内機3に備えた制御回路18が空気調和機1全体を制御する場合を例示したが、制御回路18は室外機2やクラウド側に備えても良い。本実施例では、推定モデルは、サーバ120で生成する場合を例示したが、サーバ120ではなく、人がシミュレーション結果から推定モデルを算出しても良い。また、本実施例では、室内機3の制御回路18が推定モデルを用いて冷媒量を推定する場合を例示したが、推定モデルを生成するサーバ120で冷媒量を推定しても良い。また、本実施例では、重回帰分析法を用いて各推定モデルを生成する場合を例示したが、一般の回帰分析法を行える機械学習手法のSVR(Support Vector Regression)、NN(Neural Network)などを用いて推定モデルを生成しても良い。その際、特徴量選択に当たっては重回帰分析法で用いたP値や補正値R2の代わりに、推定モデルの精度が向上するよう特徴量を選択する一般の手法(Forward Feature Selection法、Backward feature Eliminationなど)を使えばよい。
 また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
 更に、各装置で行われる各種処理機能は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしても良い。また、各種処理機能は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしても良いことは言うまでもない。
 また、以上に説明した各実施例では、冷媒不足率を、冷媒が規定量充填されているときを100%としたとき、この規定量からの減少分とした。これに代えて、冷媒回路6に冷媒を規定量充填した直後に、本実施例に記載した方法で冷媒不足率を推定し、この推定結果を100%としてもよい。例えば、冷媒回路6に冷媒を規定量充填した直後に推定した冷媒不足率が90%である場合、つまり、冷媒回路6に充填されている冷媒量が規定量充填より10%少ないと推定した場合、この規定量充填より10%少ない冷媒量を100%としてもよい。このように100%とする冷媒量を推定結果に合わせることで、これ以降の冷媒不足率をより正確に推定できる。
 1 空気調和機
 2 室外機
 3 室内機
 4 液管
 5 ガス管
 11 圧縮機
 12 四方弁
 13 室外熱交換器
 13A 第1の室外熱交口部
 13B 第2の室外熱交口部
 13C 室外熱交中間部
 14 膨張弁
 18 制御回路
 31 吐出温度センサ
 32 室外熱交出口センサ
 33 外気温度センサ
 41 取得部
 43A 冷房用推定モデル
 43B 暖房用推定モデル
 44 制御部
 51 室内熱交換器
 51A 第1の室内熱交口部
 51B 第2の室内熱交口部
 51C 室内熱交中間部
 61 室内熱交中間センサ
 62 吸込温度センサ

Claims (6)

  1.  圧縮機、室外熱交換器及び膨張弁を有する室外機に、室内熱交換器を有する室内機が冷媒配管で接続されて構成される冷媒回路を有し、前記冷媒回路に所定量の冷媒が充填された空気調和機であって、
     前記空気調和機は、
     空気調和運転時の運転状態を示す運転状態量のうち、少なくとも前記圧縮機の回転数、前記圧縮機の冷媒吐出温度、熱交換器温度、前記膨張弁の開度及び外気温度を用いて、前記冷媒回路に残存している残存冷媒量を推定する残存冷媒量推定モデルを有し、
     前記室内熱交換器は、
     前記冷媒が流通する第1の室内熱交口部と、前記冷媒が流通する第2の室内熱交口部と、前記第1の室内熱交口部と前記第2の室内熱交口部とをつなぐ室内熱交中間部と、前記室内熱交中間部に備え、前記熱交換器温度の内、前記室内熱交中間部を通過する前記冷媒の温度を検出する室内熱交中間センサとを有し、
     前記室外熱交換器は、
     前記冷媒が流通する第1の室外熱交口部と、前記冷媒が流通する第2の室外熱交口部と、前記第1の室外熱交口部と前記第2の室外熱交口部とをつなぐ室外熱交中間部と、前記第2の室外熱交口部に備え、前記熱交換器温度の内、冷房運転時の前記第2の室外熱交口部の室外熱交出口を通過する前記冷媒の温度を検出する室外熱交出口センサと
     を有することを特徴とする空気調和機。
  2.  前記室外機、前記室内機及び前記膨張弁は、
     夫々一つずつであることを特徴とする請求項1に記載の空気調和機。
  3.  前記残存冷媒量推定モデルは、
     前記圧縮機の冷媒吐出温度と目標温度との差の絶対値が所定値以下のときの運転状態量を用いて前記残存冷媒量を推定することを特徴とする請求項1又は2に記載の空気調和機。
  4.  前記残存冷媒量推定モデルは、
     教師データとして前記圧縮機の回転数、前記圧縮機の冷媒吐出温度、前記熱交換器温度、前記膨張弁の開度、前記外気温度、及び前記冷媒回路に残存している残存冷媒量を用いて機械学習を行うことを特徴とする請求項1~3の何れか一つに記載の空気調和機。
  5.  前記残存冷媒量推定モデルは、
     線形の回帰式であることを特徴とする請求項4に記載の空気調和機。
  6.  前記残存冷媒量推定モデルは、
     教師データとして、前記圧縮機の回転数、前記圧縮機の冷媒吐出温度、前記熱交換器温度、前記膨張弁の開度、前記外気温度、及び前記冷媒回路に残存している残存冷媒量が正常か否かの判定結果、を用いて機械学習を行うことを特徴とする請求項1~3の何れか一つに記載の空気調和機。
PCT/JP2021/025010 2020-07-29 2021-07-01 空気調和機 WO2022024660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21848773.4A EP4191155A4 (en) 2020-07-29 2021-07-01 AIR CONDITIONER
CN202180043609.5A CN115698609A (zh) 2020-07-29 2021-07-01 空调机
US18/010,949 US20230235933A1 (en) 2020-07-29 2021-07-01 Air conditioner
AU2021316340A AU2021316340B2 (en) 2020-07-29 2021-07-01 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020128371A JP7124851B2 (ja) 2020-07-29 2020-07-29 空気調和機
JP2020-128371 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022024660A1 true WO2022024660A1 (ja) 2022-02-03

Family

ID=80035431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025010 WO2022024660A1 (ja) 2020-07-29 2021-07-01 空気調和機

Country Status (6)

Country Link
US (1) US20230235933A1 (ja)
EP (1) EP4191155A4 (ja)
JP (2) JP7124851B2 (ja)
CN (1) CN115698609A (ja)
AU (1) AU2021316340B2 (ja)
WO (1) WO2022024660A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186170A (ja) * 1989-12-13 1991-08-14 Hitachi Ltd 冷凍装置及び冷凍装置における冷媒量表示方法
JPH11182990A (ja) * 1997-12-18 1999-07-06 Yamaha Motor Co Ltd 冷媒循環式熱移動装置
JP2006023072A (ja) 2004-06-11 2006-01-26 Daikin Ind Ltd 空気調和装置
JP2008096051A (ja) * 2006-10-13 2008-04-24 Mitsubishi Heavy Ind Ltd マルチ空調システムの冷媒封入量判定方法および冷媒漏洩検知方法
JP2008232579A (ja) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp 冷媒充填方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721374B2 (ja) * 1986-01-08 1995-03-08 株式会社日立製作所 冷媒量検知装置を備えた空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186170A (ja) * 1989-12-13 1991-08-14 Hitachi Ltd 冷凍装置及び冷凍装置における冷媒量表示方法
JPH11182990A (ja) * 1997-12-18 1999-07-06 Yamaha Motor Co Ltd 冷媒循環式熱移動装置
JP2006023072A (ja) 2004-06-11 2006-01-26 Daikin Ind Ltd 空気調和装置
JP2008096051A (ja) * 2006-10-13 2008-04-24 Mitsubishi Heavy Ind Ltd マルチ空調システムの冷媒封入量判定方法および冷媒漏洩検知方法
JP2008232579A (ja) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp 冷媒充填方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191155A4

Also Published As

Publication number Publication date
CN115698609A (zh) 2023-02-03
AU2021316340A1 (en) 2023-02-23
JP7124851B2 (ja) 2022-08-24
EP4191155A4 (en) 2024-03-27
JP2022025509A (ja) 2022-02-10
EP4191155A1 (en) 2023-06-07
US20230235933A1 (en) 2023-07-27
JP2022093691A (ja) 2022-06-23
AU2021316340B2 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
JP6359423B2 (ja) 空調システムの制御装置、空調システム、及び空調システムの制御装置の異常判定方法
Kim et al. Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics
WO2006090451A1 (ja) 空気調和装置
KR20070017269A (ko) 멀티 에어컨시스템의 배관점검운전방법 및 배관점검방법
JP2021156528A (ja) 空気調和機及び空気調和システム
WO2022024660A1 (ja) 空気調和機
JP7435156B2 (ja) 空気調和機
WO2022085691A1 (ja) 空気調和機
JP7435157B2 (ja) 空気調和機
JP7435155B2 (ja) 空気調和機
US20240142125A1 (en) Air conditioning system, abnormality estimation method for air conditioning system, air conditioner, and abnormality estimation method for air conditioner
JP7147909B1 (ja) 空気調和システム、空気調和システムの冷媒量推定方法、空気調和機及び空気調和機の冷媒量推定方法
JP7380663B2 (ja) 空気調和機及び空気調和システム
JP2021156530A (ja) 空気調和機
JP2021156531A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021316340

Country of ref document: AU

Date of ref document: 20210701

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021848773

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021848773

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE