WO2022024342A1 - Refrigeration cycle apparatus and compressor - Google Patents

Refrigeration cycle apparatus and compressor Download PDF

Info

Publication number
WO2022024342A1
WO2022024342A1 PCT/JP2020/029430 JP2020029430W WO2022024342A1 WO 2022024342 A1 WO2022024342 A1 WO 2022024342A1 JP 2020029430 W JP2020029430 W JP 2020029430W WO 2022024342 A1 WO2022024342 A1 WO 2022024342A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
refrigerant
compressor
trifluoroiodomethane
less
Prior art date
Application number
PCT/JP2020/029430
Other languages
French (fr)
Japanese (ja)
Inventor
研吾 平塚
悟 外山
健嗣 小島
愛実 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/029430 priority Critical patent/WO2022024342A1/en
Publication of WO2022024342A1 publication Critical patent/WO2022024342A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • This disclosure relates to a refrigeration cycle device and a compressor.
  • R410A is a pseudo-azeotropic mixed refrigerant of difluoromethane (R32) and pentafluoroethane (R125), and GWP is 2088.
  • R466A is a refrigerant in which R32, R125 and trifluoroiodomethane (R13I1) are mixed at a mass ratio of 49.0% by mass, 11.5% by mass and 39.5% by mass, respectively, and has a higher GWP than 733 and R410A. It is low and nonflammable. As described above, R466A is a refrigerant having both low GWP and nonflammability.
  • Patent Document 1 Patent No. 65453308
  • Patent Document 2 Patent No. 65453307 disclose a refrigerating cycle apparatus using a refrigerant mixed with R32, R125 and trifluoroiodomethane. There is.
  • This mixed refrigerant also has a GWP of 750 or less, a lower GWP than R410A, and a lower combustibility than R32, and is a refrigerant having both low GWP and low combustibility.
  • the CI bond contained in trifluoroiodomethane has a lower binding energy than the CF bond contained in R32 and R125, and trifluoroiodomethane is thermally unstable as compared with R32 and R125. ..
  • a trifluoromethyl radical (CF 3 ⁇ ) and an iodine radical (I ⁇ ) are generated.
  • the generated trifluoromethyl radicals and iodine radicals include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and polybutylene naphthalate (PBN), which are used as insulating films in compressors. Reacts with polyester to accelerate the deterioration of the compressor in the refrigeration cycle device.
  • the present disclosure has been made in view of the above problems, and provides a refrigerating cycle apparatus and a compressor capable of suppressing the generation of radicals due to the decomposition of trifluoroiodomethane and ensuring reliability over a long period of time.
  • the purpose is a refrigerating cycle apparatus and a compressor capable of suppressing the generation of radicals due to the decomposition of trifluoroiodomethane and ensuring reliability over a long period of time.
  • the refrigerating cycle apparatus includes a refrigerating circuit including a compressor, and a refrigerant is sealed in the refrigerating circuit.
  • the refrigerant contains trifluoroiodomethane and has a global warming potential of 750 or less.
  • the compressor includes a compression mechanism unit that compresses the refrigerant and a motor that drives the compression mechanism unit.
  • the motor comprises a rotor and a stator, the stator including an insulating film made of polyester.
  • the compressor is filled with refrigerating machine oil, and the refrigerating machine oil contains alkylnaphthalene as an additive in the oil.
  • the compressor according to the present disclosure is a compressor used in a refrigeration cycle device including a refrigeration circuit in which a refrigerant circulates, and includes a compression mechanism unit for compressing the refrigerant and a motor for driving the compression mechanism unit.
  • the refrigerant contains trifluoroiodomethane and has a global warming potential of 750 or less.
  • the motor comprises a rotor and a stator, the stator including an insulating film made of polyester.
  • the compressor is filled with refrigerating machine oil, and the refrigerating machine oil contains alkylnaphthalene as an additive in the oil.
  • FIG. 1 It is a schematic block diagram which shows the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the motor of the compressor which concerns on Embodiment 1.
  • FIG. 1 is a schematic configuration diagram showing a refrigeration cycle apparatus according to the first embodiment.
  • the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4 are connected by a refrigerant pipe 5, respectively, and the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4 are connected.
  • a refrigeration cycle in which the refrigerant circulates inside is configured in the order of the compressor 1.
  • the one connecting the compressor 1 and the condenser 2 is the refrigerant pipe 5a
  • the one connecting the condenser 2 and the expansion valve 3 is the refrigerant pipe 5b
  • the expansion valve 3 and the evaporator 4 are connected.
  • the one connected to the refrigerant pipe 5c is referred to as a refrigerant pipe 5c
  • the one connected to the evaporator 4 and the compressor 1 is referred to as a refrigerant pipe 5d.
  • the refrigerant that circulates in the refrigeration cycle device 100 according to the first embodiment is not particularly limited, but is determined to be any one refrigerant depending on the application of the refrigeration cycle device 100 and the like.
  • the compressor 1 sucks in the refrigerant, compresses it, makes it into a high-temperature and high-pressure gas state, and discharges it.
  • the compressor 1 may be configured such that the rotation speed is controlled by, for example, an inverter circuit or the like, and the discharge amount of the refrigerant can be adjusted by controlling the rotation speed.
  • the refrigerant compressed by the compressor 1 into a high-temperature and high-pressure gas state flows in, and heat exchange is performed between the refrigerant and the heat source to cool the refrigerant into a low-temperature and high-pressure liquid state.
  • the heat source include air, water, brine, and the like.
  • the heat source of the condenser 2 is outside air, which is outdoor air, and the condenser 2 exchanges heat between the outside air and the refrigerant.
  • the condenser blower 6 is provided to blow outside air to the condenser 2 when the refrigerant is circulating in the refrigeration cycle device 100.
  • the condenser blower 6 may be configured so that the air volume can be adjusted.
  • the expansion valve 3 is filled with a low-temperature, high-pressure liquid-state refrigerant cooled by the condenser 2, and the refrigerant is decompressed and expanded to a low-temperature, low-pressure liquid state.
  • the expansion valve 3 is composed of, for example, a refrigerant flow rate control means such as an electronic expansion valve or a temperature-sensitive expansion valve, a capillary tube, or the like.
  • a low-temperature low-pressure liquid refrigerant expanded under reduced pressure by the expansion valve 3 flows in, exchanges heat between the refrigerant and the cooling target, absorbs the heat of the cooling target into the refrigerant, and cools the target. To cool.
  • the refrigerant evaporates to a high temperature and low pressure gas state.
  • the cooling target is indoor air
  • the evaporator 4 exchanges heat between the indoor air and the refrigerant.
  • the evaporator blower 7 is provided to blow indoor air to the evaporator 4 when the refrigerant is circulating in the refrigeration cycle device 100. ..
  • the evaporator blower 7 may be configured so that the air volume can be adjusted.
  • the compressor 1 sucks the refrigerant that has become a high-temperature and low-pressure gas state by the evaporator 4, and compresses it again, so that the refrigerant circulates in the refrigeration cycle device 100.
  • the refrigerating cycle device 100 may be, for example, any device capable of performing both cooling and heating, a device capable of only cooling, or a device capable of only heating, and may be used in various refrigerating and air-conditioning devices. Applicable.
  • the refrigerant contains trifluoroiodomethane.
  • it may be a single refrigerant of trifluoroiodomethane, or it may be a mixed refrigerant in which trifluoroiodomethane is mixed with another refrigerant.
  • an additive may be added to the refrigerant, or an additive may not be added to the refrigerant.
  • Trifluoroiodomethane has an extremely low GWP of 0.4, and is classified as nonflammable (Class 1) in ANSI / ASHRAE Standard 34-2019. Therefore, by including trifluoroiodomethane, the refrigerant can obtain the characteristics of low combustibility with GWP.
  • the refrigerant has a GWP of 750 or less.
  • the refrigerant has excellent environmental performance and is highly compliant with legal regulations.
  • the refrigerant having a GWP of 750 or less can be used as a refrigerating cycle device not only in a refrigerator but also in an air conditioner.
  • the value (100-year value) of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) is used.
  • the value described in other known documents may be used, or the value calculated or measured by using a known method may be used.
  • the refrigerant is preferably a refrigerant whose combustibility classification is classified as non-combustible (Class 1) in ANSI / ASHRAE Standard 34-2019.
  • a refrigerant classified as nonflammable the means, equipment or structure for diffusing the leaked refrigerant to the refrigeration cycle device, the sensor for detecting the refrigerant leak, and the alarm issued when the sensor detects the refrigerant leak.
  • Refrigerants classified as nonflammable can also be used in areas where the use of flammable refrigerants is not permitted by legal regulations.
  • the refrigerant contains R32. By including R32, high refrigerating capacity and high energy efficiency can be ensured. Further, it is more preferable that the refrigerant further contains R125 in addition to R32. By including R125, the temperature gradient, which is the temperature difference between the start temperature and the end temperature of the phase change of the refrigerant, can be reduced. Therefore, the mixed refrigerant of trifluoroiodomethane, R32 and R125 can obtain the characteristics of low flammability with GWP. Further, by using a mixed refrigerant, a refrigerating cycle device having excellent refrigerating capacity and energy efficiency can be obtained.
  • the refrigerant is more preferably a refrigerant containing 40% by mass or less of trifluoroiodomethane. This is because the refrigerant is a mixed refrigerant having an operating pressure close to that of R410A, and is a refrigerant that can be easily used as a substitute refrigerant for R410A. Further, in the case of a refrigerant containing 40% by mass or less of trifluoroiodomethane, the ratio of trifluoroiodomethane decreases, so that the amount of radicals generated by the decomposition of trifluoroiodomethane decreases, and the insulating film described later Degradation reaction is suppressed.
  • the ratio of trifluoroiodomethane in the refrigerant is 40% by mass or more, the amount of radicals generated by the decomposition of trifluoroiodomethane increases and the deterioration reaction of the insulating film occurs, so that the tensile stress of the insulating film occurs. May be significantly reduced and the insulating film may become brittle.
  • the saturated vapor pressure of trifluoroiodomethane is 0.49 MPa at 25 ° C, while the saturated vapor pressure of R410A is 1.66 MPa at 25 ° C.
  • trifluoroiodomethane is a very low pressure refrigerant. Therefore, when the ratio of trifluoroiodomethane in the refrigerant is high, the operating pressure of the mixed refrigerant may be much lower than that of R410A.
  • the refrigerant contains 39% by mass or more and 40% by mass or less of trifluoroiodomethane, R32 47% by mass or more and 49.5% by mass or less, and R125 11% by mass or more and 13.5% by mass or less, and has a mass ratio of trifluoroiodomethane.
  • the sum of the mass ratio of difluoromethane and the mass ratio of pentafluoroethane is preferably 100% by mass.
  • the refrigerant contains 39.5% by mass of trifluoroiodomethane, 49% by mass of R32 and 11.5% by mass of R125.
  • the refrigerant having such a composition has a GWP of 733 and is classified into a non-combustible category (Class 1).
  • the refrigerant may be a mixed refrigerant of a halogenated hydrocarbon having an unsaturated bond and trifluoroiodomethane, or a refrigerant obtained by mixing them with hydrofluorocarbons such as R32, R125, R134a, R152a and R41.
  • a halogenated hydrocarbon having an unsaturated bond has at least one carbon-carbon double bond or carbon-carbon triple bond and further has at least one halogen element (F, Cl, Br or I). It is a hydrocarbon.
  • Halogenated hydrocarbons having unsaturated bonds have a lower GWP than hydrofluorocarbons such as R32 and R125, and can be mixed to lower the GWP of the refrigerant.
  • halogenated hydrocarbon having an unsaturated bond examples include hydrofluoroolefins such as HFO1141, R1132a, HFO1132 (E), HFO1132 (Z), and HFO1123, HFO1225ye (Z), HFO1225ye (E), HFO1225zc, and R1234yf.
  • hydrofluoroethylene or hydrofluoropropylene is preferable among the halogenated hydrocarbons having unsaturated bonds, and among them, R1132a, HFO1132 (E) and HFO1132 ( Z), HFO1123, HFO1225ye (Z), HFO1225ye (E), HFO1225zc, R1234yf, R1234ze (E), HFO1234ze (Z), HFO1234ye (Z), HFO1234ye (E) are preferable.
  • the effect of suppressing deterioration of the insulating film due to the radical scavenging effect of alkylnaphthalene, which will be described later, is also effective for the above-mentioned halogenated hydrocarbon having an unsaturated bond.
  • the halogenated hydrocarbon having an unsaturated bond has low compatibility with alkylnaphthalene, which will be described later.
  • halogenated hydrocarbon having an unsaturated bond is an example of a halogenated hydrocarbon having an unsaturated bond according to the present disclosure, and the present disclosure is not limited to these examples.
  • FIG. 2 is a cross-sectional view showing a motor of the compressor according to the first embodiment.
  • the compressor 1 includes a closed container 8.
  • the closed container 8 is provided with a compression mechanism portion 9 inside, and a suction pipe 10 for inflowing the refrigerant into the inside and a discharge pipe 11 for flowing out the refrigerant to the outside are connected to each other.
  • the compression mechanism unit 9 is configured to compress the refrigerant contained in the closed container 8 from the suction pipe 10 and discharge it from the discharge pipe 11.
  • the motor 16 includes a rotor 17 and a stator 18.
  • the rotor 17 is a cylindrical component provided with a magnet, and is arranged in a hole of a ring-shaped stator 18. By supplying electric power to the stator 18, the rotor 17 rotates about the central axis of the motor 16.
  • the rotor 17 is provided with a hole for the refrigerant compressed by the compression mechanism portion 9 to pass through, and the refrigerant is discharged from the discharge pipe 11 to the refrigerant pipe 5a after passing through the hole.
  • Trifluoroiodomethane cleaves CI bonds at high temperatures to generate trifluoromethyl radicals (CF 3 ⁇ ) and iodine radicals (I ⁇ ).
  • CF 3 ⁇ trifluoromethyl radicals
  • I ⁇ iodine radicals
  • the product extracts hydrogen atoms from the organic compound in the refrigeration circuit to produce R23 (CHF 3 ) and hydrogen iodide (HI).
  • R23 CHF 3
  • HI hydrogen iodide
  • the charge is biased in the molecule due to the oxygen atom having a high electronegativity, and the hydrogen atom bonded to the carbon atom on both sides of the ester bond is supplied to the radical. , May be disassembled.
  • the reaction of extracting a hydrogen atom from an ester by a trifluoromethyl radical is shown below (the wavy line in the chemical formula is an arbitrary substituent).
  • the ester compound radicalized by the above reaction extracts hydrogen atoms from the surrounding molecules in the refrigeration cycle apparatus 100, and is converted into peroxy radicals (ROO ⁇ ) or radicals by the reaction with the oxygen molecules mixed in the refrigeration cycle apparatus 100. Due to a chain reaction such as recombination between each other, the compound changes to a different compound, and the characteristics change.
  • ester compound in the refrigeration cycle apparatus 100 examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polybutylene naphthalate (PBN), which are used as insulating films in the stator 18 of the motor 16. ) And the like.
  • radicals (CF 3 and I) generated by decomposition of trifluoroiodomethane are made by setting the trifluoroiodomethane content in the refrigerant to 40% by mass or less in order to suppress the deterioration reaction of the insulating film. ⁇ ) Suppress the amount of production.
  • alkylnaphthalene is mixed as an additive in oil in the refrigerating machine oil so as not to deteriorate the polyester in the refrigerating cycle apparatus 100, and radicals are generated by the radical scavenging effect of alkylnaphthalene. Reduce the amount.
  • Alkylnaphthalene is a polycyclic aromatic hydrocarbon compound represented by the following chemical formula 2.
  • R 1 to R 8 are an alkyl group or a hydrogen atom.
  • R 1 to R 8 may be the same or different.
  • the physical properties such as viscosity and pour point differ depending on the structure of R 1 to R 8 .
  • the structures of R 1 to R 8 may be any structure, but those having excellent low temperature fluidity are preferable.
  • the molecular weight of alkylnaphthalene is preferably 268 g / mol or more and 423 g / mol or less, and more preferably 296 g / mol or more and 353 g / mol or less.
  • the number of naphthalene carbon atoms substituted with an alkyl group is preferably 1 to 3, and more preferably 2.
  • alkylnaphthalene having a molecular weight of 296 g / mol and having two carbon atoms substituted with an alkyl group is shown below.
  • the content of alkylnaphthalene in the refrigerating machine oil is preferably 1% by mass or more and 20% by mass or less, and more preferably 4% by mass or more and 10% by mass or less with respect to the mass of the refrigerating machine oil.
  • the content of alkylnaphthalene in the refrigerating machine oil is less than 1% by mass with respect to the mass of the refrigerating machine oil, the radicals generated by the decomposition of trifluoroiodomethane cannot be sufficiently captured, and the insulating film due to the reaction with the radicals cannot be sufficiently captured. A deterioration reaction may occur, the tensile stress of the insulating film may be significantly reduced, and the insulating film may become brittle.
  • refrigerator oil the refrigerating machine oil filled to lubricate the sliding portion in the compressor 1
  • the refrigerating machine oil is stored in the lower part of the closed container 8, and the portion is referred to as an oil storage unit 13.
  • the refrigerating machine oil include commonly used refrigerating machine oils (ester-based lubricating oil, ether-based lubricating oil, fluorine-based lubricating oil, mineral-based lubricating oil, hydrocarbon-based lubricating oil, and the like). In that case, it is preferable to select a refrigerating machine oil which is excellent in terms of compatibility with the refrigerant and stability.
  • refrigerating machine oil examples include, but are not limited to, polyol ester oil, polyvinyl ether oil, polyalkylene glycol oil, alkylbenzene oil, mineral oil, poly ⁇ -olefin or a mixture thereof.
  • Refrigerating machine oil may contain an antioxidant, an acid scavenger or an extreme pressure agent (anti-wear agent) as an additive in the oil.
  • Antioxidants include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,2'-methylenebis (4-methyl-6-tert).
  • -Phenols such as butylphenol), phenyl- ⁇ -naphthylamine, N. Examples thereof include amines such as N'-di-phenyl-p-phenylenediamine.
  • Examples of the acid trapping agent include epoxy compounds such as phenylglycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil, but glycidyl ester, glycidyl ether, and epoxidized soybean oil are preferable. At least one of ⁇ -olefin oxides.
  • Examples of the extreme pressure agent (wear inhibitor) include phosphorus-based extreme pressure agents such as phosphoric acid ester, acidic phosphoric acid ester, phosphite ester, acidic sulphate ester and amine salts thereof, but they are preferable.
  • the water content in the refrigerating machine oil to be filled is controlled to 100 mass ppm or less in order to accelerate the deterioration of the refrigerant, the refrigerating machine oil and the material in the compressor.
  • the deterioration (chemical stability) of the insulating film in the first embodiment was confirmed by an experimental method based on JIS K2211: 2009 (Appendix C autoclave test).
  • the autoclave test is a kind of chemical stability test method with a refrigerant, and specifically, it is a test performed by the procedure described below. Put iron, copper and aluminum as catalysts in the test container, inject the sample and refrigerant, and seal. Next, the sealed test container is heated at 125 to 200 ° C. for a certain period of time, and then the chemical stability of the sample is evaluated by the color of the sample and the like.
  • trifluoroiodomethane (manufactured by Taiyo Nippon Sanso Co., Ltd.) is 40% by mass
  • R32 manufactured by Daikin Industries, Ltd.
  • R125 manufactured by Daikin Industries, Ltd.
  • a mixture was used.
  • PVE oil commercially available polyvinyl ether oil (PVE oil) (manufactured by Idemitsu Kosan Co., Ltd.) was used.
  • PVE oil polyvinyl ether oil
  • alkylnaphthalene was mixed at a ratio of 1% by mass, 4% by mass, 10% by mass and 20% by mass with respect to the mass of PVE oil.
  • alkylnaphthalene a commercially available alkylnaphthalene-based lubricating oil (KR-007A manufactured by King Industries Inc.) was used. The water content of the refrigerating machine oil was removed by nitrogen bubbling so that the water content was less than 50 ppm.
  • a PET film was used as a sample. Since the PET film may contain water during storage, it was dried for 4 hours while being heated to 100 ° C. in an oven (SPH-201S manufactured by ESPEC CORPORATION) before being sealed in a test container. The shape of the PET film is the size conforming to the test piece type 5 of JIS K 7127: 1999.
  • As the catalyst iron, copper and aluminum were used as materials specified in JIS, each having a diameter of 1.6 mm and a length of 300 mm.
  • a 200 cm 3 test container (portable reactor manufactured by Pressure Resistant Glass Industry Co., Ltd.) was filled with 40 g of the above-mentioned refrigerant, 40 g of alkylnaphthalene-containing PVE oil mixed at each ratio, three PET films, and the above-mentioned catalyst (Test Example 1). ⁇ 4), using an oven (SPH-201S manufactured by Espec Co., Ltd.), the mixture was heated at a temperature of 140 ° C. for 14 days.
  • the tensile stress of the heated sample was measured by an experimental method based on JIS K 7127: 1999. An autograph (AG-100kNI manufactured by Shimadzu Corporation) was used for the measurement.
  • the retention rate of the tensile stress of the insulating film is based on the maximum value of the tensile stress of the film in the state before the test (170 MPa in the average value of three sheets), and the ratio of the maximum value of the tensile stress after the test (after the test).
  • the average value of the maximum points of the tensile stress of the three films of No. 1/170) was used for the determination. The evaluation results are shown in Table 1 below.
  • the refrigerant, refrigerating machine oil, and alkylnaphthalene used were those described in Evaluation Test 1, respectively.
  • PVE oil is not mixed with alkylnaphthalene and is mixed with alkylnaphthalene at a ratio of 1% by mass, 4% by mass, 10% by mass, 20% by mass and 25% by mass with respect to the mass of PVE oil. It was used.
  • Alkylnaphthalene-containing PVE in which 42.5 g of the above-mentioned refrigerant and 7.5 g of PVE oil (without alkylnaphthalene) are mixed in a 96 cm 3 pressure-resistant glass test container (hyper-glass cylinder manufactured by Pressure-resistant Glass Industry Co., Ltd.). 7.5 g of oil was filled (Test Examples 5 to 10), and the state of the above mixture during cooling was visually observed using an ultra-low temperature circulator (FW95-SL manufactured by JULABO GmbH). The cooling temperature was set so that the mixture of the refrigerant and the refrigerating machine oil would be ⁇ 50 ° C. in the refrigerating cycle apparatus 100. The evaluation results are shown in Table 2 below.
  • ⁇ Evaluation test 3> The durability test of the compressor 1 was carried out using two refrigeration cycle devices 100.
  • R466A R32, R125: manufactured by Daikin Industries, Ltd., R13I1: manufactured by Taiyo Nippon Sanso Co., Ltd. was mixed
  • the refrigerating machine oil a commercially available polyol ester oil (POE oil) (manufactured by JXTG Energy Co., Ltd.) was used.
  • POE oil polyol ester oil
  • alkylnaphthalene was mixed at a ratio of 4% by mass and 10% by mass with respect to the mass of the POE oil.
  • the alkylnaphthalene the one described in the evaluation test 1 was used.
  • PET was used as the insulating film.
  • the length of the refrigerant pipes 5a to 5d was 2 m, 13 kg of R466A and 3000 cm 3 of alkylnaphthalene-containing POE oil were used.
  • the refrigeration cycle device 100 was operated for a total of 2000 hours while switching between cooling operation and heating operation every 500 hours.
  • Compressor 1 Compressor, 2 Condenser, 3 Expansion valve, 4 Evaporator, 5 Refrigerant piping, 5a-5d Refrigerant piping, 6 Condenser blower, 7 Evaporator blower, 8 Sealed container, 9 Compression mechanism, 10 Suction pipe, 11 Discharge pipe, 12 spindle, 13 oil reservoir, 14 short bearing, 15 long bearing, 16 motor, 17 rotor, 18 stator, 100 refrigeration cycle device.

Abstract

This refrigeration cycle apparatus comprises a refrigeration circuit that includes a compressor, wherein a refrigerant is sealed inside the refrigeration circuit. The refrigerant contains trifluoroiodomethane and has a global warming potential of not more than 750. The compressor is provided with a compressing mechanism unit that compresses the refrigerant and a motor that drives the compressing mechanism unit. The motor is provided with a rotor and a stator. The stator includes an insulating film made of polyester. In the refrigeration cycle apparatus, the inside of the compressor is filled with refrigerator oil. The refrigerator oil contains alkylnaphthalene as an in-oil additive. Also provided is a compressor for use in a refrigeration cycle apparatus that is provided with a refrigeration circuit in which a refrigerant circulates, said compressor comprising: a compressing mechanism unit that compresses the refrigerant; and a motor that drives the compressing mechanism unit. The refrigerant contains trifluoroiodomethane and has a global warming potential of not more than 750. The motor is provided with a rotor and a stator. The stator includes an insulating film made of polyester. The inside of the compressor is filled with refrigerator oil. The refrigerator oil contains alkylnaphthalene as an in-oil additive.

Description

冷凍サイクル装置および圧縮機Refrigeration cycle device and compressor
 本開示は、冷凍サイクル装置および圧縮機に関する。 This disclosure relates to a refrigeration cycle device and a compressor.
 従来、地球温暖化防止のために気候変動に対する種々の方策が国際的に報じられている。特に冷凍サイクル装置に用いられる冷媒については、従来主に用いられていたR410Aよりも地球温暖化係数(GWP)が低い冷媒へ代替が進められている。R410Aとは、ジフルオロメタン(R32)とペンタフルオロエタン(R125)の擬似共沸混合冷媒のことであり、GWPは2088である。 Conventionally, various measures against climate change have been reported internationally to prevent global warming. In particular, the refrigerant used in the refrigeration cycle apparatus is being replaced with a refrigerant having a lower global warming potential (GWP) than R410A, which has been mainly used in the past. R410A is a pseudo-azeotropic mixed refrigerant of difluoromethane (R32) and pentafluoroethane (R125), and GWP is 2088.
 近年では、日本や欧州等の可燃性冷媒が使用可能な地域では、R410AからR32(GWP:675)への代替が進んでいる。しかしR32は微燃性の冷媒であるため、可燃性冷媒を使用が法的に規制されている北米等では、R32を使用することはできない。 In recent years, in areas where flammable refrigerants can be used, such as Japan and Europe, the replacement of R410A with R32 (GWP: 675) is progressing. However, since R32 is a slightly flammable refrigerant, R32 cannot be used in North America and the like where the use of flammable refrigerant is legally regulated.
 そして、一般的にGWPと燃焼性は相反関係にあるため、低GWPと不燃性の両立は困難である。このため、低GWPと不燃性を両立した冷媒の開発が望まれている。 And since GWP and flammability are generally in a contradictory relationship, it is difficult to achieve both low GWP and nonflammability at the same time. Therefore, it is desired to develop a refrigerant having both low GWP and nonflammability.
 このような状況下、R466Aが提案されている。R466Aは、R32、R125およびトリフルオロヨードメタン(R13I1)がそれぞれ質量比49.0質量%、11.5質量%および39.5質量%で混合された冷媒であり、GWPが733とR410Aよりも低く、不燃性である。このように、R466Aは低GWPと不燃性を両立した冷媒である。 Under such circumstances, R466A has been proposed. R466A is a refrigerant in which R32, R125 and trifluoroiodomethane (R13I1) are mixed at a mass ratio of 49.0% by mass, 11.5% by mass and 39.5% by mass, respectively, and has a higher GWP than 733 and R410A. It is low and nonflammable. As described above, R466A is a refrigerant having both low GWP and nonflammability.
 また、特許文献1(特許第6545338号公報)および特許文献2(特許第6545337号公報)には、R32、R125およびトリフルオロヨードメタンとを混合させた冷媒を用いた冷凍サイクル装置が開示されている。この混合冷媒も、GWPが750以下とR410AよりもGWPが低く、さらにR32よりも燃焼性が低く、低GWPと低燃焼性を両立した冷媒である。 Further, Patent Document 1 (Patent No. 6545338) and Patent Document 2 (Patent No. 6545337) disclose a refrigerating cycle apparatus using a refrigerant mixed with R32, R125 and trifluoroiodomethane. There is. This mixed refrigerant also has a GWP of 750 or less, a lower GWP than R410A, and a lower combustibility than R32, and is a refrigerant having both low GWP and low combustibility.
特許第6545338号公報Japanese Patent No. 6545338 特許第6545337号公報Japanese Patent No. 6545337
 しかしながら、トリフルオロヨードメタンに含まれるC-I結合はR32およびR125に含まれるC-F結合よりも結合エネルギーが小さく、トリフルオロヨードメタンはR32およびR125と比較して熱的に不安定である。高温環境下でトリフルオロヨードメタンのC-I結合が開裂すると、トリフルオロメチルラジカル(CF・)およびヨウ素ラジカル(I・)が生成される。生成されたトリフルオロメチルラジカルおよびヨウ素ラジカルは、圧縮機に絶縁フィルムとして使用されるポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)およびポリブチレンナフタレート(PBN)等のポリエステルと反応して、冷凍サイクル装置内の圧縮機の劣化が促進される。 However, the CI bond contained in trifluoroiodomethane has a lower binding energy than the CF bond contained in R32 and R125, and trifluoroiodomethane is thermally unstable as compared with R32 and R125. .. When the CI bond of trifluoroiodomethane is cleaved in a high temperature environment, a trifluoromethyl radical (CF 3 ·) and an iodine radical (I ·) are generated. The generated trifluoromethyl radicals and iodine radicals include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and polybutylene naphthalate (PBN), which are used as insulating films in compressors. Reacts with polyester to accelerate the deterioration of the compressor in the refrigeration cycle device.
 したがって、トリフルオロヨードメタンの熱分解に伴い、冷凍サイクル装置の性能が低下するだけでなく、圧縮機の信頼性も確保できなくなる可能性があった。特に、圧縮機内におけるモータ部は高温になるため、トリフルオロヨードメタンを含む冷媒がモータ部周辺を通過する際に温度が上昇し、上記熱分解を起こす結果、様々な弊害を発生させる問題があった。 Therefore, with the thermal decomposition of trifluoroiodomethane, not only the performance of the refrigeration cycle device deteriorates, but also the reliability of the compressor may not be ensured. In particular, since the temperature of the motor part in the compressor becomes high, the temperature rises when the refrigerant containing trifluoroiodomethane passes around the motor part, and as a result of the above-mentioned thermal decomposition, there is a problem of causing various harmful effects. rice field.
 本開示は、上記課題に鑑みてなされたものであり、トリフルオロヨードメタンの分解によるラジカルの生成を抑制し、長期にわたって信頼性を確保することができる冷凍サイクル装置および圧縮機を提供することを目的とする。 The present disclosure has been made in view of the above problems, and provides a refrigerating cycle apparatus and a compressor capable of suppressing the generation of radicals due to the decomposition of trifluoroiodomethane and ensuring reliability over a long period of time. The purpose.
 本開示に係る冷凍サイクル装置は、圧縮機を含む冷凍回路を備え、冷凍回路内に冷媒が封入されている。冷媒は、トリフルオロヨードメタンを含み、かつ、地球温暖化係数が750以下である。圧縮機は、冷媒を圧縮する圧縮機構部と、圧縮機構部を駆動させるモータを備える。モータは、回転子および固定子を備え、固定子は、ポリエステル製の絶縁フィルムを含む。圧縮機内に冷凍機油が充填されており、冷凍機油は、油中添加剤としてアルキルナフタレンを含有する。 The refrigerating cycle apparatus according to the present disclosure includes a refrigerating circuit including a compressor, and a refrigerant is sealed in the refrigerating circuit. The refrigerant contains trifluoroiodomethane and has a global warming potential of 750 or less. The compressor includes a compression mechanism unit that compresses the refrigerant and a motor that drives the compression mechanism unit. The motor comprises a rotor and a stator, the stator including an insulating film made of polyester. The compressor is filled with refrigerating machine oil, and the refrigerating machine oil contains alkylnaphthalene as an additive in the oil.
 本開示に係る圧縮機は、冷媒が循環する冷凍回路を備える冷凍サイクル装置に用いられる圧縮機であって、冷媒を圧縮する圧縮機構部と、圧縮機構部を駆動させるモータを備える。冷媒は、トリフルオロヨードメタンを含み、かつ、地球温暖化係数が750以下である。モータは、回転子および固定子を備え、固定子は、ポリエステル製の絶縁フィルムを含む。圧縮機内に冷凍機油が充填されており、冷凍機油は、油中添加剤としてアルキルナフタレンを含有する。 The compressor according to the present disclosure is a compressor used in a refrigeration cycle device including a refrigeration circuit in which a refrigerant circulates, and includes a compression mechanism unit for compressing the refrigerant and a motor for driving the compression mechanism unit. The refrigerant contains trifluoroiodomethane and has a global warming potential of 750 or less. The motor comprises a rotor and a stator, the stator including an insulating film made of polyester. The compressor is filled with refrigerating machine oil, and the refrigerating machine oil contains alkylnaphthalene as an additive in the oil.
 本開示によれば、トリフルオロヨードメタンの分解によるラジカルの生成を抑制し、長期にわたって信頼性を確保することができる冷凍サイクル装置および圧縮機を提供できる。 According to the present disclosure, it is possible to provide a refrigerating cycle apparatus and a compressor capable of suppressing the generation of radicals due to the decomposition of trifluoroiodomethane and ensuring reliability over a long period of time.
実施の形態1に係る冷凍サイクル装置を示す概略構成図である。It is a schematic block diagram which shows the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る圧縮機のモータを示す断面図である。It is sectional drawing which shows the motor of the compressor which concerns on Embodiment 1. FIG.
 以下、本開示の実施の形態を図面に基づいて説明する。
 実施の形態1.
 まず、本実施の形態の冷凍サイクル装置の概要について簡単に説明する。図1は、実施の形態1に係る冷凍サイクル装置を示す概略構成図である。冷凍サイクル装置100は、圧縮機1と、凝縮器2と、膨張弁3と、蒸発器4とが冷媒配管5でそれぞれ接続され、圧縮機1、凝縮器2、膨張弁3、蒸発器4、圧縮機1の順に内部で冷媒が循環する冷凍サイクルが構成されている。冷媒配管5のうち、圧縮機1と凝縮器2を接続しているものを冷媒配管5a、凝縮器2と膨張弁3を接続しているものを冷媒配管5b、膨張弁3と蒸発器4を接続しているものを冷媒配管5c、蒸発器4と圧縮機1を接続しているものを冷媒配管5dとそれぞれ称する。なお、実施の形態1に係る冷凍サイクル装置100を循環する冷媒は、特に限定されないが、冷凍サイクル装置100の用途等に応じて任意の一つの冷媒に決定される。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
Embodiment 1.
First, the outline of the refrigerating cycle apparatus of this embodiment will be briefly described. FIG. 1 is a schematic configuration diagram showing a refrigeration cycle apparatus according to the first embodiment. In the refrigeration cycle device 100, the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4 are connected by a refrigerant pipe 5, respectively, and the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4 are connected. A refrigeration cycle in which the refrigerant circulates inside is configured in the order of the compressor 1. Of the refrigerant pipes 5, the one connecting the compressor 1 and the condenser 2 is the refrigerant pipe 5a, the one connecting the condenser 2 and the expansion valve 3 is the refrigerant pipe 5b, and the expansion valve 3 and the evaporator 4 are connected. The one connected to the refrigerant pipe 5c is referred to as a refrigerant pipe 5c, and the one connected to the evaporator 4 and the compressor 1 is referred to as a refrigerant pipe 5d. The refrigerant that circulates in the refrigeration cycle device 100 according to the first embodiment is not particularly limited, but is determined to be any one refrigerant depending on the application of the refrigeration cycle device 100 and the like.
 圧縮機1は、冷媒を吸入し、圧縮して高温高圧のガス状態にして吐出する。圧縮機1は、例えばインバータ回路等によって回転数を制御され、回転数の制御によって冷媒の吐出量が調整できるもので構成してもよい。 The compressor 1 sucks in the refrigerant, compresses it, makes it into a high-temperature and high-pressure gas state, and discharges it. The compressor 1 may be configured such that the rotation speed is controlled by, for example, an inverter circuit or the like, and the discharge amount of the refrigerant can be adjusted by controlling the rotation speed.
 凝縮器2は、圧縮機1で圧縮されて高温高圧のガス状態になった冷媒が流入し、冷媒と熱源との間で熱交換を行って、冷媒を低温高圧の液状態に冷却させる。熱源としては、空気、水、ブライン等が挙げられ、実施の形態1では凝縮器2の熱源は屋外の空気である外気であり、凝縮器2は外気と冷媒との間で熱交換を行う。さらに、実施の形態1では凝縮器2の熱交換を促すために、冷媒が冷凍サイクル装置100内を循環している際に凝縮器2へ外気を送風する凝縮器送風機6を有している。凝縮器送風機6は風量を調節できるもので構成してもよい。 In the condenser 2, the refrigerant compressed by the compressor 1 into a high-temperature and high-pressure gas state flows in, and heat exchange is performed between the refrigerant and the heat source to cool the refrigerant into a low-temperature and high-pressure liquid state. Examples of the heat source include air, water, brine, and the like. In the first embodiment, the heat source of the condenser 2 is outside air, which is outdoor air, and the condenser 2 exchanges heat between the outside air and the refrigerant. Further, in the first embodiment, in order to promote heat exchange of the condenser 2, the condenser blower 6 is provided to blow outside air to the condenser 2 when the refrigerant is circulating in the refrigeration cycle device 100. The condenser blower 6 may be configured so that the air volume can be adjusted.
 膨張弁3は、凝縮器2で冷却された低温高圧の液状態の冷媒が流入し、冷媒を低温低圧の液状態に減圧膨張させる。膨張弁3としては、例えば電子式膨張弁や感温式膨張弁等の冷媒流量制御手段や、毛細管(キャピラリチューブ)等で構成される。 The expansion valve 3 is filled with a low-temperature, high-pressure liquid-state refrigerant cooled by the condenser 2, and the refrigerant is decompressed and expanded to a low-temperature, low-pressure liquid state. The expansion valve 3 is composed of, for example, a refrigerant flow rate control means such as an electronic expansion valve or a temperature-sensitive expansion valve, a capillary tube, or the like.
 蒸発器4は、膨張弁3で減圧膨張された低温低圧の液状態の冷媒が流入し、冷媒と冷却対象との間で熱交換を行い、冷却対象の熱を冷媒に吸熱させて、冷却対象を冷却する。冷却対象を冷却する際に、冷媒は蒸発し高温低圧のガス状態になる。実施の形態1では、冷却対象としては屋内の空気であり、蒸発器4は屋内の空気と冷媒との間で熱交換を行う。さらに、実施の形態1では蒸発器4の熱交換を促すため、冷媒が冷凍サイクル装置100内を循環している際に蒸発器4へ屋内の空気を送風する蒸発器送風機7を有している。蒸発器送風機7は風量を調節できるもので構成してもよい。 In the evaporator 4, a low-temperature low-pressure liquid refrigerant expanded under reduced pressure by the expansion valve 3 flows in, exchanges heat between the refrigerant and the cooling target, absorbs the heat of the cooling target into the refrigerant, and cools the target. To cool. When cooling the object to be cooled, the refrigerant evaporates to a high temperature and low pressure gas state. In the first embodiment, the cooling target is indoor air, and the evaporator 4 exchanges heat between the indoor air and the refrigerant. Further, in the first embodiment, in order to promote heat exchange of the evaporator 4, the evaporator blower 7 is provided to blow indoor air to the evaporator 4 when the refrigerant is circulating in the refrigeration cycle device 100. .. The evaporator blower 7 may be configured so that the air volume can be adjusted.
 圧縮機1は、蒸発器4で高温低圧のガス状態になった冷媒を吸引し、再度圧縮することで冷凍サイクル装置100内を冷媒が循環する。 The compressor 1 sucks the refrigerant that has become a high-temperature and low-pressure gas state by the evaporator 4, and compresses it again, so that the refrigerant circulates in the refrigeration cycle device 100.
 なお、冷凍サイクル装置100は、例えば、冷房および暖房の両方が実施可能な装置、冷房のみが実施可能な装置または暖房のみが実施可能な装置のいずれであってもよく、各種の冷凍空調装置に適用可能である。 The refrigerating cycle device 100 may be, for example, any device capable of performing both cooling and heating, a device capable of only cooling, or a device capable of only heating, and may be used in various refrigerating and air-conditioning devices. Applicable.
 (冷媒)
 次に、本実施の形態において、冷凍回路内に封入されている冷媒について説明する。冷媒は、トリフルオロヨードメタンを含んでいる。例えば、トリフルオロヨードメタンの単一冷媒でもよいし、他の冷媒とトリフルオロヨードメタンが混合された混合冷媒でもよい。また、冷媒には添加剤が添加されていてもよいし、添加剤が添加されていなくてもよい。トリフルオロヨードメタンはGWPが0.4と極めて低く、ANSI/ASHRAE Standard 34―2019において燃焼性区分が不燃性(Class 1)に分類される。したがって、トリフルオロヨードメタンを含むことによって冷媒はGWPと燃焼性が低い特性を得ることができる。
(Refrigerant)
Next, in the present embodiment, the refrigerant enclosed in the refrigeration circuit will be described. The refrigerant contains trifluoroiodomethane. For example, it may be a single refrigerant of trifluoroiodomethane, or it may be a mixed refrigerant in which trifluoroiodomethane is mixed with another refrigerant. Further, an additive may be added to the refrigerant, or an additive may not be added to the refrigerant. Trifluoroiodomethane has an extremely low GWP of 0.4, and is classified as nonflammable (Class 1) in ANSI / ASHRAE Standard 34-2019. Therefore, by including trifluoroiodomethane, the refrigerant can obtain the characteristics of low combustibility with GWP.
 また、冷媒は、GWPが750以下である。GWPが750以下であると環境性能に優れた冷媒となり、法令上の規制に対する適合性が高い。また、GWPが750以下である冷媒は冷凍サイクル装置として冷凍機のみでなく空気調和機にも使用可能となる。なお、GWPとしては、気候変動に関する政府間パネル(IPCC)第五次評価報告書(AR5)の値(100年値)が用いられる。また、AR5に記載されていない冷媒のGWPとしては、他の公知文献に記載された値を用いてもよいし、公知の方法を用いて算出または測定した値を用いてもよい。 Further, the refrigerant has a GWP of 750 or less. When the GWP is 750 or less, the refrigerant has excellent environmental performance and is highly compliant with legal regulations. Further, the refrigerant having a GWP of 750 or less can be used as a refrigerating cycle device not only in a refrigerator but also in an air conditioner. As the GWP, the value (100-year value) of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) is used. Further, as the GWP of the refrigerant not described in AR5, the value described in other known documents may be used, or the value calculated or measured by using a known method may be used.
 さらに、冷媒は、ANSI/ASHRAE Standard 34―2019において燃焼性区分が不燃性(Class 1)に分類される冷媒であることが好ましい。不燃性に分類される冷媒を用いる場合は、冷凍サイクル装置に漏洩した冷媒を拡散させる手段、設備または構造と、冷媒漏洩を検知するセンサと、センサが冷媒漏洩を検知した時に発報する発報装置と、を設ける必要がなくなる。また、不燃性に分類される冷媒は法令上の規制で可燃性冷媒の使用が認められていない地域でも使用可能である。 Further, the refrigerant is preferably a refrigerant whose combustibility classification is classified as non-combustible (Class 1) in ANSI / ASHRAE Standard 34-2019. When using a refrigerant classified as nonflammable, the means, equipment or structure for diffusing the leaked refrigerant to the refrigeration cycle device, the sensor for detecting the refrigerant leak, and the alarm issued when the sensor detects the refrigerant leak. There is no need to provide a device. Refrigerants classified as nonflammable can also be used in areas where the use of flammable refrigerants is not permitted by legal regulations.
 また、冷媒は、R32を含んでいることが好ましい。R32を含むことによって、高い冷凍能力および高いエネルギー効率を確保することができる。また、冷媒は、R32に加えて、さらにR125を含んでいることがより好ましい。R125を含むことによって、冷媒の相変化の開始温度と終了温度の温度差である温度勾配を縮小することができる。したがって、トリフルオロヨードメタン、R32およびR125の混合冷媒はGWPと燃焼性が低い特性を得ることができる。また、混合冷媒を用いることで冷凍能力とエネルギー効率に優れた冷凍サイクル装置を得ることができる。 Further, it is preferable that the refrigerant contains R32. By including R32, high refrigerating capacity and high energy efficiency can be ensured. Further, it is more preferable that the refrigerant further contains R125 in addition to R32. By including R125, the temperature gradient, which is the temperature difference between the start temperature and the end temperature of the phase change of the refrigerant, can be reduced. Therefore, the mixed refrigerant of trifluoroiodomethane, R32 and R125 can obtain the characteristics of low flammability with GWP. Further, by using a mixed refrigerant, a refrigerating cycle device having excellent refrigerating capacity and energy efficiency can be obtained.
 さらに、冷媒は、トリフルオロヨードメタンが40質量%以下含まれた冷媒であることがより好ましい。冷媒をR410Aに近い動作圧力を有する混合冷媒とし、R410Aの代替冷媒として容易に使用できる冷媒とするためである。また、トリフルオロヨードメタンが40質量%以下含まれた冷媒の場合、トリフルオロヨードメタンの比率が低下するため、トリフルオロヨードメタンの分解により生じるラジカルの生成量が減少し、後述する絶縁フィルムの劣化反応が抑制される。一方、冷媒中のトリフルオロヨードメタン比率が40質量%以上の場合、トリフルオロヨードメタンの分解により生成するラジカルの生成量が増大し、絶縁フィルムの劣化反応が起こることで、絶縁フィルムの引張応力が著しく低下し、絶縁フィルムが脆化するおそれがある。 Further, the refrigerant is more preferably a refrigerant containing 40% by mass or less of trifluoroiodomethane. This is because the refrigerant is a mixed refrigerant having an operating pressure close to that of R410A, and is a refrigerant that can be easily used as a substitute refrigerant for R410A. Further, in the case of a refrigerant containing 40% by mass or less of trifluoroiodomethane, the ratio of trifluoroiodomethane decreases, so that the amount of radicals generated by the decomposition of trifluoroiodomethane decreases, and the insulating film described later Degradation reaction is suppressed. On the other hand, when the ratio of trifluoroiodomethane in the refrigerant is 40% by mass or more, the amount of radicals generated by the decomposition of trifluoroiodomethane increases and the deterioration reaction of the insulating film occurs, so that the tensile stress of the insulating film occurs. May be significantly reduced and the insulating film may become brittle.
 冷媒熱物性データベースソフトウェアであるREFPROP version 10.0(NIST製)によると、トリフルオロヨードメタンの飽和蒸気圧は25℃で0.49MPaである一方、R410Aの飽和蒸気圧は25℃で1.66MPaであり、トリフルオロヨードメタンは非常に低圧の冷媒である。そのため、冷媒中のトリフルオロヨードメタンの比率が高い場合、混合冷媒の動作圧力がR410Aよりも非常に低い値となるおそれがある。 According to REFPROP version 10.0 (manufactured by NIST), which is a refrigerant thermal property database software, the saturated vapor pressure of trifluoroiodomethane is 0.49 MPa at 25 ° C, while the saturated vapor pressure of R410A is 1.66 MPa at 25 ° C. And trifluoroiodomethane is a very low pressure refrigerant. Therefore, when the ratio of trifluoroiodomethane in the refrigerant is high, the operating pressure of the mixed refrigerant may be much lower than that of R410A.
 例えば、R410Aに対してトリフルオロヨードメタンを混合し、トリフルオロヨードメタンの比率を40質量%とした組成(R32、R125およびR13I1がそれぞれ30質量%、30質量%および40質量%混合)では、25℃での飽和蒸気圧は1.65MPaとR410Aと同等であるが、トリフルオロヨードメタンの比率を50質量%とした組成(R32、R125およびR13I1がそれぞれ25質量%、25質量%および50質量%混合)では、25℃での飽和蒸気圧は1.53MPaとなり、飽和蒸気圧がR410A比で7%低下する。 For example, in a composition in which trifluoroiodomethane is mixed with R410A and the ratio of trifluoroiodomethane is 40% by mass (R32, R125 and R13I1 are mixed at 30% by mass, 30% by mass and 40% by mass, respectively). The saturated vapor pressure at 25 ° C is 1.65 MPa, which is equivalent to R410A, but the composition is 50% by mass of trifluoroiodomethane (25% by mass, 25% by mass and 50% by mass of R32, R125 and R13I1 respectively). % Mixing), the saturated vapor pressure at 25 ° C. is 1.53 MPa, and the saturated vapor pressure is 7% lower than that of R410A.
 冷媒は、トリフルオロヨードメタン39質量%以上40質量%以下、R32 47質量%以上49.5質量%以下およびR125 11質量%以上13.5質量%以下を含み、トリフルオロヨードメタンの質量比、ジフルオロメタンの質量比およびペンタフルオロエタンの質量比の和が100質量%であることが好ましい。 The refrigerant contains 39% by mass or more and 40% by mass or less of trifluoroiodomethane, R32 47% by mass or more and 49.5% by mass or less, and R125 11% by mass or more and 13.5% by mass or less, and has a mass ratio of trifluoroiodomethane. The sum of the mass ratio of difluoromethane and the mass ratio of pentafluoroethane is preferably 100% by mass.
 その中でも、冷媒は、トリフルオロヨードメタン39.5質量%、R32 49質量%およびR125 11.5質量%を含んでいることがさらに好ましい。このような組成の冷媒はGWPが733であり、燃焼性区分が不燃性(Class 1)に分類される。 Among them, it is more preferable that the refrigerant contains 39.5% by mass of trifluoroiodomethane, 49% by mass of R32 and 11.5% by mass of R125. The refrigerant having such a composition has a GWP of 733 and is classified into a non-combustible category (Class 1).
 また、冷媒は不飽和結合を有するハロゲン化炭化水素とトリフルオロヨードメタンとの混合冷媒、またはそれらにR32、R125、R134a、R152a、R41等のハイドロフルオロカーボンを混合した冷媒でもよい。不飽和結合を有するハロゲン化炭化水素とは、少なくとも一つの炭素-炭素二重結合または炭素-炭素三重結合を有しており、さらに少なくとも一つのハロゲン元素(F、Cl、BrまたはI)を有する炭化水素である。不飽和結合を有するハロゲン化炭化水素は、R32やR125等のハイドロフルオロカーボンと比較してGWPが低く、混合することで冷媒のGWPを低下させることができる。 Further, the refrigerant may be a mixed refrigerant of a halogenated hydrocarbon having an unsaturated bond and trifluoroiodomethane, or a refrigerant obtained by mixing them with hydrofluorocarbons such as R32, R125, R134a, R152a and R41. A halogenated hydrocarbon having an unsaturated bond has at least one carbon-carbon double bond or carbon-carbon triple bond and further has at least one halogen element (F, Cl, Br or I). It is a hydrocarbon. Halogenated hydrocarbons having unsaturated bonds have a lower GWP than hydrofluorocarbons such as R32 and R125, and can be mixed to lower the GWP of the refrigerant.
 不飽和結合を有するハロゲン化炭化水素の具体例としては、HFO1141、R1132a、HFO1132(E)、HFO1132(Z)、HFO1123等のハイドロフルオロエチレンや、HFO1225ye(Z)、HFO1225ye(E)、HFO1225zc、R1234yf、R1234ze(E)、HFO1234ze(Z)、HFO1234ye(Z)、HFO1234ye(E)、HFO1243zf、HFO1252zf、HFO1261yf等のハイドロフルオロプロピレンや、R1336mzz(E)、R1336mzz(Z)、HFO1336ze(Z)、HFO1336ze(E)、HFO1336yf、HFO1336pyy、HFO1327cze、HFO1327et、HFO1327、HFO1345czf、HFO1345fyc、HFO1345cye、HFO1345cyf、HFO1345eye、HFO1345pyz、HFO1345pyy(E)、HFO1345pyy(Z)、HFO1345zy(E)、HFO1345zy(Z)等のハイドロフルオロブテンや、R1224yd(Z)、R1233zd(E)等のハイドロクロロフルオロプロピレンや、PFO1216等のパーフルオロオレフィン、等が挙げられる。特に、冷媒をR410Aに近い動作圧力を有する混合冷媒とするために、不飽和結合を有するハロゲン化炭化水素の中でもハイドロフルオロエチレンまたはハイドロフルオロプロピレンが好ましく、その中でもR1132a、HFO1132(E)、HFO1132(Z)、HFO1123、HFO1225ye(Z)、HFO1225ye(E)、HFO1225zc、R1234yf、R1234ze(E)、HFO1234ze(Z)、HFO1234ye(Z)、HFO1234ye(E)が好ましい。 Specific examples of the halogenated hydrocarbon having an unsaturated bond include hydrofluoroolefins such as HFO1141, R1132a, HFO1132 (E), HFO1132 (Z), and HFO1123, HFO1225ye (Z), HFO1225ye (E), HFO1225zc, and R1234yf. , R1234ze (E), HFO1234ze (Z), HFO1234ye (Z), HFO1234ye (E), HFO1243zf, HFO1252zf, HFO1261yf and other hydrofluoropropylenes, R1336mzz (E), R1336mzz (Z) E), HFO1336yf, HFO1336pyy, HFO1327cze, HFO1327et, HFO1327, HFO1345czf, HFO1345fyc, HFO1345cye, HFO1345cyf, HFO1345eye, HFO1345pyz, HFO1345pyy (E), HFO1345pyy (Z), HFO1345zy (E), Ya hydrofluoroether butene such HFO1345zy (Z) , R1224yd (Z), R1233zd (E) and the like hydrochlorofluoropropylene, PFO1216 and the like perfluoroolefin, and the like. In particular, in order to make the refrigerant a mixed refrigerant having an operating pressure close to that of R410A, hydrofluoroethylene or hydrofluoropropylene is preferable among the halogenated hydrocarbons having unsaturated bonds, and among them, R1132a, HFO1132 (E) and HFO1132 ( Z), HFO1123, HFO1225ye (Z), HFO1225ye (E), HFO1225zc, R1234yf, R1234ze (E), HFO1234ze (Z), HFO1234ye (Z), HFO1234ye (E) are preferable.
 また、後述するアルキルナフタレンによるラジカル捕捉効果による絶縁フィルムの劣化抑制効果は、上記不飽和結合を有するハロゲン化炭化水素に対しても有効である。さらに、上記不飽和結合を有するハロゲン化炭化水素は、後述するアルキルナフタレンとの相溶性も低い。 Further, the effect of suppressing deterioration of the insulating film due to the radical scavenging effect of alkylnaphthalene, which will be described later, is also effective for the above-mentioned halogenated hydrocarbon having an unsaturated bond. Further, the halogenated hydrocarbon having an unsaturated bond has low compatibility with alkylnaphthalene, which will be described later.
 なお、上記の不飽和結合を有するハロゲン化炭化水素の例示は、本開示に関わる不飽和結合を有するハロゲン化炭化水素の一例であり、本開示はこれらの例に限定されない。 The above-mentioned example of a halogenated hydrocarbon having an unsaturated bond is an example of a halogenated hydrocarbon having an unsaturated bond according to the present disclosure, and the present disclosure is not limited to these examples.
 (圧縮機)
 次に、実施の形態1に係る冷凍サイクル装置の圧縮機について説明する。図2は、実施の形態1に係る圧縮機のモータを示す断面図である。圧縮機1は、密閉容器8を備える。密閉容器8は、内部に圧縮機構部9を備え、冷媒を内部に流入させるための吸入管10と外部に流出させるための吐出管11が接続されている。圧縮機構部9は、吸入管10から密閉容器8に入った冷媒を圧縮して、吐出管11から吐出されるように構成されている。
(Compressor)
Next, the compressor of the refrigeration cycle apparatus according to the first embodiment will be described. FIG. 2 is a cross-sectional view showing a motor of the compressor according to the first embodiment. The compressor 1 includes a closed container 8. The closed container 8 is provided with a compression mechanism portion 9 inside, and a suction pipe 10 for inflowing the refrigerant into the inside and a discharge pipe 11 for flowing out the refrigerant to the outside are connected to each other. The compression mechanism unit 9 is configured to compress the refrigerant contained in the closed container 8 from the suction pipe 10 and discharge it from the discharge pipe 11.
 モータ16は、回転子17および固定子18を備える。回転子17は、磁石が設けられた円筒状の部品であり、リング状の固定子18の穴の中に配置されている。固定子18に電力が供給されることによって、回転子17はモータ16の中心軸を中心に回転する。回転子17は、圧縮機構部9にて圧縮された冷媒が通過するための穴を備えており、冷媒は穴を通過した後、吐出管11から冷媒配管5aへ吐出される。 The motor 16 includes a rotor 17 and a stator 18. The rotor 17 is a cylindrical component provided with a magnet, and is arranged in a hole of a ring-shaped stator 18. By supplying electric power to the stator 18, the rotor 17 rotates about the central axis of the motor 16. The rotor 17 is provided with a hole for the refrigerant compressed by the compression mechanism portion 9 to pass through, and the refrigerant is discharged from the discharge pipe 11 to the refrigerant pipe 5a after passing through the hole.
 トリフルオロヨードメタンは高温でC-I結合が開裂し、トリフルオロメチルラジカル(CF3・)およびヨウ素ラジカル(I・)を生成する。特にモータ16が発熱して高温になるため、トリフルオロヨードメタンを含む冷媒がモータ16周辺を通過する際の分解が問題となる。 Trifluoroiodomethane cleaves CI bonds at high temperatures to generate trifluoromethyl radicals (CF 3 ·) and iodine radicals (I ·). In particular, since the motor 16 generates heat and becomes high in temperature, decomposition when the refrigerant containing trifluoroiodomethane passes around the motor 16 becomes a problem.
 上記生成物は、冷凍回路内の有機化合物から水素原子を引き抜き、R23(CHF)やヨウ化水素(HI)を生成する。特に、エステル結合(-COO-)を有する化合物は、電気陰性度の大きい酸素原子により分子内で電荷の偏りが生じており、エステル結合の両隣の炭素原子に結合した水素原子をラジカルに供給し、分解するおそれがある。例として、トリフルオロメチルラジカルによるエステルからの水素原子の引き抜き反応を以下に示す(化学式中の波線は任意の置換基)。 The product extracts hydrogen atoms from the organic compound in the refrigeration circuit to produce R23 (CHF 3 ) and hydrogen iodide (HI). In particular, in the compound having an ester bond (-COO-), the charge is biased in the molecule due to the oxygen atom having a high electronegativity, and the hydrogen atom bonded to the carbon atom on both sides of the ester bond is supplied to the radical. , May be disassembled. As an example, the reaction of extracting a hydrogen atom from an ester by a trifluoromethyl radical is shown below (the wavy line in the chemical formula is an arbitrary substituent).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記反応によりラジカル化したエステル化合物は、冷凍サイクル装置100内の周囲の分子から水素原子を引き抜く、冷凍サイクル装置100内に混入した酸素分子との反応によりペルオキシラジカル(ROO・)化する、またはラジカル同士で再結合する等の連鎖的な反応により異なる化合物に変化し、特性が変化する。 The ester compound radicalized by the above reaction extracts hydrogen atoms from the surrounding molecules in the refrigeration cycle apparatus 100, and is converted into peroxy radicals (ROO ·) or radicals by the reaction with the oxygen molecules mixed in the refrigeration cycle apparatus 100. Due to a chain reaction such as recombination between each other, the compound changes to a different compound, and the characteristics change.
 冷凍サイクル装置100内のエステル化合物としては、モータ16の固定子18に絶縁フィルムとして使用されるポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等のポリエステルが挙げられる。 Examples of the ester compound in the refrigeration cycle apparatus 100 include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polybutylene naphthalate (PBN), which are used as insulating films in the stator 18 of the motor 16. ) And the like.
 絶縁フィルムにおいて上記の連鎖的な反応が起こった場合、絶縁フィルムの機械的強度が低下し、絶縁フィルムが破断し、圧縮機1の信頼性が損なわれるおそれがある。本開示では、絶縁フィルムの劣化反応を抑制するために、冷媒中のトリフルオロヨードメタン含有量を40質量%以下とすることで、トリフルオロヨードメタンの分解により生成するラジカル(CF3・およびI・)の生成量を抑制する。 When the above-mentioned chain reaction occurs in the insulating film, the mechanical strength of the insulating film may decrease, the insulating film may break, and the reliability of the compressor 1 may be impaired. In the present disclosure, radicals (CF 3 and I) generated by decomposition of trifluoroiodomethane are made by setting the trifluoroiodomethane content in the refrigerant to 40% by mass or less in order to suppress the deterioration reaction of the insulating film.・) Suppress the amount of production.
 また、ラジカルが生成した場合にも、冷凍サイクル装置100内のポリエステルを劣化させないように、冷凍機油中に油中添加剤としてアルキルナフタレン(AN)を混合し、アルキルナフタレンが有するラジカル捕捉効果によりラジカル量を減少させる。アルキルナフタレンは下記化学式2で表される多環芳香族炭化水素化合物である。 Further, even when radicals are generated, alkylnaphthalene (AN) is mixed as an additive in oil in the refrigerating machine oil so as not to deteriorate the polyester in the refrigerating cycle apparatus 100, and radicals are generated by the radical scavenging effect of alkylnaphthalene. Reduce the amount. Alkylnaphthalene is a polycyclic aromatic hydrocarbon compound represented by the following chemical formula 2.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記化学式2中、RからRはアルキル基または水素原子である。RからRは同一でもよく、異なっていてもよい。 In the above chemical formula 2, R 1 to R 8 are an alkyl group or a hydrogen atom. R 1 to R 8 may be the same or different.
 また、RからRの構造によって、粘度および流動点等の物性が異なる。RからRの構造はいかなる構造であってもよいが、低温流動性に優れたものが好ましい。低温流動性の観点から、アルキルナフタレンの分子量は好ましくは268g/mol以上423g/mol以下であり、より好ましくは296g/mol以上353g/mol以下である。また、アルキル基で置換されたナフタレン炭素数は、好ましくは1~3個であり、より好ましくは2個である。 Further, the physical properties such as viscosity and pour point differ depending on the structure of R 1 to R 8 . The structures of R 1 to R 8 may be any structure, but those having excellent low temperature fluidity are preferable. From the viewpoint of low-temperature fluidity, the molecular weight of alkylnaphthalene is preferably 268 g / mol or more and 423 g / mol or less, and more preferably 296 g / mol or more and 353 g / mol or less. The number of naphthalene carbon atoms substituted with an alkyl group is preferably 1 to 3, and more preferably 2.
 アルキルナフタレンの分子構造の一例として、分子量296g/molであり、アルキル基で置換された炭素原子の数が2個のアルキルナフタレンを以下に示す。 As an example of the molecular structure of alkylnaphthalene, alkylnaphthalene having a molecular weight of 296 g / mol and having two carbon atoms substituted with an alkyl group is shown below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、冷凍機油中のアルキルナフタレンの含有量は、冷凍機油の質量に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは4質量%以上10質量%以下である。冷凍機油中のアルキルナフタレンの含有量が冷凍機油の質量に対して1質量%よりも少ない場合、トリフルオロヨードメタンの分解により生成するラジカルが十分に捕捉できず、ラジカルとの反応による絶縁フィルムの劣化反応が起こり、絶縁フィルムの引張応力が著しく低下し、絶縁フィルムが脆化するおそれがある。また、ラジカルによる絶縁フィルムからの水素原子の抜き取り反応が進行し、R23やヨウ化水素が生成し、冷媒のGWPの上昇および冷凍機油の全酸価の上昇が起こるおそれもある。一方、冷凍機油中のアルキルナフタレンの含有量が冷凍機油の質量に対して20質量%よりも多い場合、絶縁フィルムの劣化抑制に対しては効果が期待できるが、後述する冷媒と冷凍機油との相溶性が低下する問題がある。 The content of alkylnaphthalene in the refrigerating machine oil is preferably 1% by mass or more and 20% by mass or less, and more preferably 4% by mass or more and 10% by mass or less with respect to the mass of the refrigerating machine oil. When the content of alkylnaphthalene in the refrigerating machine oil is less than 1% by mass with respect to the mass of the refrigerating machine oil, the radicals generated by the decomposition of trifluoroiodomethane cannot be sufficiently captured, and the insulating film due to the reaction with the radicals cannot be sufficiently captured. A deterioration reaction may occur, the tensile stress of the insulating film may be significantly reduced, and the insulating film may become brittle. In addition, the reaction of extracting hydrogen atoms from the insulating film by radicals proceeds, R23 and hydrogen iodide are generated, and there is a possibility that the GWP of the refrigerant increases and the total acid value of the refrigerating machine oil increases. On the other hand, when the content of alkylnaphthalene in the refrigerating machine oil is more than 20% by mass with respect to the mass of the refrigerating machine oil, it can be expected to be effective in suppressing the deterioration of the insulating film. There is a problem that compatibility is reduced.
 (冷凍機油)
 次に、本実施の形態において、圧縮機1内の摺動部を潤滑するために充填される冷凍機油について説明する。冷凍機油は、密閉容器8の下部に貯留されており、当該部分を油貯留部13と称する。冷凍機油としては、例えば、一般に用いられる冷凍機油(エステル系潤滑油、エーテル系潤滑油、フッ素系潤滑油、鉱物系潤滑油、炭化水素系潤滑油等)が挙げられる。その場合、冷媒との相溶性および安定性等の面で優れている冷凍機油を選択することが好ましい。具体的な冷凍機油としては、例えば、ポリオールエステル油、ポリビニルエーテル油、ポリアルキレングリコール油、アルキルベンゼン油、鉱物油、ポリα―オレフィンまたはそれらの混合物等が利用できるが、これらに限定されない。
(Refrigerator oil)
Next, in the present embodiment, the refrigerating machine oil filled to lubricate the sliding portion in the compressor 1 will be described. The refrigerating machine oil is stored in the lower part of the closed container 8, and the portion is referred to as an oil storage unit 13. Examples of the refrigerating machine oil include commonly used refrigerating machine oils (ester-based lubricating oil, ether-based lubricating oil, fluorine-based lubricating oil, mineral-based lubricating oil, hydrocarbon-based lubricating oil, and the like). In that case, it is preferable to select a refrigerating machine oil which is excellent in terms of compatibility with the refrigerant and stability. Specific examples of the refrigerating machine oil include, but are not limited to, polyol ester oil, polyvinyl ether oil, polyalkylene glycol oil, alkylbenzene oil, mineral oil, poly α-olefin or a mixture thereof.
 冷凍機油には、油中添加剤として、酸化防止剤、酸捕捉剤または極圧剤(摩耗防止剤)が含まれていてもよい。酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等のフェノール系、フェニル-α-ナフチルアミン、N.N’-ジ-フェニル-p-フェニレンジアミン等のアミン系が挙げられる。酸捕捉剤としては、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油等のエポキシ化合物を挙げることができるが、好ましくはグリシジルエステル、グリシジルエーテルおよびα-オレフィンオキシドの少なくとも1種である。極圧剤(摩耗防止剤)としては、リン酸エステル、酸性リン酸エステル、亜リン酸エステル、酸性亜リン酸エステルおよびこれらのアミン塩等のリン系極圧剤を挙げることができるが、好ましくはトリクレジルホスフェート、トリチオフェニルホスフェート、トリ(ノニルフェニル)ホスファイト、ジオレイルハイドロゲンホスファイト、2-エチルヘキシルジフェニルホスファイトの少なくとも1種である。 Refrigerating machine oil may contain an antioxidant, an acid scavenger or an extreme pressure agent (anti-wear agent) as an additive in the oil. Antioxidants include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,2'-methylenebis (4-methyl-6-tert). -Phenols such as butylphenol), phenyl-α-naphthylamine, N. Examples thereof include amines such as N'-di-phenyl-p-phenylenediamine. Examples of the acid trapping agent include epoxy compounds such as phenylglycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, α-olefin oxide, and epoxidized soybean oil, but glycidyl ester, glycidyl ether, and epoxidized soybean oil are preferable. At least one of α-olefin oxides. Examples of the extreme pressure agent (wear inhibitor) include phosphorus-based extreme pressure agents such as phosphoric acid ester, acidic phosphoric acid ester, phosphite ester, acidic sulphate ester and amine salts thereof, but they are preferable. Is at least one of tricresyl phosphate, trithiophenyl phosphate, tri (nonylphenyl) phosphite, dioleyl hydrogen phosphite, and 2-ethylhexyl diphenyl phosphite.
 なお、冷凍機油に水分が含まれると、冷媒、冷凍機油および圧縮機内材料の劣化を促進させるため、充填される冷凍機油に含まれる水分は100質量ppm以下に制御されている。 If the refrigerating machine oil contains water, the water content in the refrigerating machine oil to be filled is controlled to 100 mass ppm or less in order to accelerate the deterioration of the refrigerant, the refrigerating machine oil and the material in the compressor.
 <評価試験1>
 本実施の形態1における絶縁フィルムについて、JIS K2211:2009(付属書C オートクレーブテスト)に準拠した実験方法で、劣化性(化学的安定性)を確認した。オートクレーブテストとは、冷媒との化学的安定性試験方法の一種であり、具体的には以降に記載するような手順で行われる試験である。試験容器に触媒として鉄、銅およびアルミニウムを入れ試料と冷媒を注入後密封する。次に、密封した試験容器を125~200℃で一定時間加熱後、試料の色などによって試料の化学的安定性を評価する。
<Evaluation test 1>
The deterioration (chemical stability) of the insulating film in the first embodiment was confirmed by an experimental method based on JIS K2211: 2009 (Appendix C autoclave test). The autoclave test is a kind of chemical stability test method with a refrigerant, and specifically, it is a test performed by the procedure described below. Put iron, copper and aluminum as catalysts in the test container, inject the sample and refrigerant, and seal. Next, the sealed test container is heated at 125 to 200 ° C. for a certain period of time, and then the chemical stability of the sample is evaluated by the color of the sample and the like.
 冷媒としては、トリフルオロヨードメタン(大陽日酸株式会社製)が40質量%、R32(ダイキン工業株式会社製)が49質量%およびR125(ダイキン工業株式会社製)が11質量%の比率で混合されたものを使用した。冷凍機油としては、市販のポリビニルエーテル油(PVE油)(出光興産株式会社製)を使用した。PVE油には、アルキルナフタレンをPVE油の質量に対して1質量%、4質量%、10質量%および20質量%の割合で混合した。アルキルナフタレンは市販のアルキルナフタレン系潤滑油(King Industries Inc.製 KR―007A)を使用した。冷凍機油は水分量が50ppm未満になるように、窒素バブリングにより水分を除去した。試料としては、PETフィルムを使用した。PETフィルムは保管中に内部に水分を含むおそれがあるため、試験容器に封入する前にオーブン(エスペック株式会社製 SPH―201S)で100℃に加熱しながら4時間乾燥させた。PETフィルムの形状はJIS K 7127:1999の試験片タイプ5に準拠した寸法である。触媒としては、鉄、銅およびアルミニウムを、それぞれJISに規定する材質で、直径1.6mm、長さ300mmのものを用いた。 As the refrigerant, trifluoroiodomethane (manufactured by Taiyo Nippon Sanso Co., Ltd.) is 40% by mass, R32 (manufactured by Daikin Industries, Ltd.) is 49% by mass, and R125 (manufactured by Daikin Industries, Ltd.) is 11% by mass. A mixture was used. As the refrigerating machine oil, commercially available polyvinyl ether oil (PVE oil) (manufactured by Idemitsu Kosan Co., Ltd.) was used. In PVE oil, alkylnaphthalene was mixed at a ratio of 1% by mass, 4% by mass, 10% by mass and 20% by mass with respect to the mass of PVE oil. As the alkylnaphthalene, a commercially available alkylnaphthalene-based lubricating oil (KR-007A manufactured by King Industries Inc.) was used. The water content of the refrigerating machine oil was removed by nitrogen bubbling so that the water content was less than 50 ppm. A PET film was used as a sample. Since the PET film may contain water during storage, it was dried for 4 hours while being heated to 100 ° C. in an oven (SPH-201S manufactured by ESPEC CORPORATION) before being sealed in a test container. The shape of the PET film is the size conforming to the test piece type 5 of JIS K 7127: 1999. As the catalyst, iron, copper and aluminum were used as materials specified in JIS, each having a diameter of 1.6 mm and a length of 300 mm.
 200cm3の試験容器(耐圧硝子工業株式会社製 ポータブルリアクター)に、上記冷媒を40g、上記各割合で混合したアルキルナフタレン含有PVE油を40g、PETフィルム3枚、上記触媒を充填し(試験例1~4)、オーブン(エスペック株式会社製 SPH―201S)を使用して、温度140℃で14日間に亘って加熱した。 A 200 cm 3 test container (portable reactor manufactured by Pressure Resistant Glass Industry Co., Ltd.) was filled with 40 g of the above-mentioned refrigerant, 40 g of alkylnaphthalene-containing PVE oil mixed at each ratio, three PET films, and the above-mentioned catalyst (Test Example 1). ~ 4), using an oven (SPH-201S manufactured by Espec Co., Ltd.), the mixture was heated at a temperature of 140 ° C. for 14 days.
 加熱後の試料について、JIS K 7127:1999に準拠した実験方法で、引張応力を測定した。測定には、オートグラフ(株式会社島津製作所製 AG-100kNI)を使用した。絶縁フィルムの引張応力の保持率は、試験前の状態のフィルムの引張応力の最大値(3枚の平均値で170MPa)を基準として、それに対する試験後の引張応力の最大値の比率(試験後のフィルム3枚の引張応力の最大点の平均値/170)を用いて判定した。下記表1に評価結果を示す。 The tensile stress of the heated sample was measured by an experimental method based on JIS K 7127: 1999. An autograph (AG-100kNI manufactured by Shimadzu Corporation) was used for the measurement. The retention rate of the tensile stress of the insulating film is based on the maximum value of the tensile stress of the film in the state before the test (170 MPa in the average value of three sheets), and the ratio of the maximum value of the tensile stress after the test (after the test). The average value of the maximum points of the tensile stress of the three films of No. 1/170) was used for the determination. The evaluation results are shown in Table 1 below.
 McMahonらの報告(J.Chem.Eng.Data,vol.4,No.1,P.57,1959)によると、PETフィルムは、劣化が進行して破壊強度が劣化前の2/3(67%)となった時点で脆化し、強度が急激に低下するとされている。そのため、引張応力の保持率は67%を問題なしと判断する閾値とした。 According to a report by McMahon et al. (J. Chem. Eng. Data, vol. 4, No. 1, P. 57, 1959), the PET film deteriorates and the fracture strength is 2/3 (67) before the deterioration. %), It is said that it becomes brittle and its strength drops sharply. Therefore, the retention rate of tensile stress was set to 67% as a threshold value for judging that there was no problem.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 上記表1に示されるように、引張応力の評価結果から、試験例1~4では、絶縁フィルムの引張応力の保持率を閾値(67%)以上に抑制することができた。この結果は、PETと同様にトリフルオロヨードメタンの分解により生成するラジカルとの反応で劣化するPBT、PENおよびPBNにおいても期待される。 As shown in Table 1 above, from the evaluation results of the tensile stress, in Test Examples 1 to 4, the retention rate of the tensile stress of the insulating film could be suppressed to the threshold value (67%) or more. This result is also expected for PBT, PEN and PBN, which deteriorate upon reaction with radicals generated by the decomposition of trifluoroiodomethane as well as PET.
 <評価試験2>
 アルキルナフタレンを添加した冷凍機油および冷媒について、JIS K2211:2009(付属書D 冷媒との相溶性試験方法)に準拠した実験方法で、相溶性を評価した。
<Evaluation test 2>
The compatibility of refrigerating machine oil and refrigerant to which alkylnaphthalene was added was evaluated by an experimental method based on JIS K2211: 2009 (Appendix D Refrigerant compatibility test method).
 冷媒、冷凍機油およびアルキルナフタレンは、評価試験1で説明したものをそれぞれ使用した。PVE油には、アルキルナフタレンを混合していないものと、アルキルナフタレンをPVE油の質量に対して1質量%、4質量%、10質量%、20質量%および25質量%の割合で混合したものを使用した。 The refrigerant, refrigerating machine oil, and alkylnaphthalene used were those described in Evaluation Test 1, respectively. PVE oil is not mixed with alkylnaphthalene and is mixed with alkylnaphthalene at a ratio of 1% by mass, 4% by mass, 10% by mass, 20% by mass and 25% by mass with respect to the mass of PVE oil. It was used.
 96cm3の耐圧ガラス製試験容器(耐圧硝子工業株式会社製 ハイパーグラスシリンダー)に、上記冷媒42.5g、PVE油(アルキルナフタレン非含有)を7.5gまたは上記各割合で混合したアルキルナフタレン含有PVE油を7.5g充填し(試験例5~10)、超低温サーキュレーター(JULABO GmbH製 FW95-SL)を使用して、冷却時の上記混合物の状態を目視で観察した。冷却時の温度は、冷凍サイクル装置100内で冷媒と冷凍機油との混合物が-50℃になるように設定した。下記表2に評価結果を示す。 Alkylnaphthalene-containing PVE in which 42.5 g of the above-mentioned refrigerant and 7.5 g of PVE oil (without alkylnaphthalene) are mixed in a 96 cm 3 pressure-resistant glass test container (hyper-glass cylinder manufactured by Pressure-resistant Glass Industry Co., Ltd.). 7.5 g of oil was filled (Test Examples 5 to 10), and the state of the above mixture during cooling was visually observed using an ultra-low temperature circulator (FW95-SL manufactured by JULABO GmbH). The cooling temperature was set so that the mixture of the refrigerant and the refrigerating machine oil would be −50 ° C. in the refrigerating cycle apparatus 100. The evaluation results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 上記表2に示されるように、相溶性の評価結果から、試験例5~9では、PVE油(アルキルナフタレン非含有)またはアルキルナフタレンをPVE油の質量に対して1質量%、4質量%、10質量%および20質量%の割合で混合することで、絶縁フィルムの引張応力の保持率を閾値(67%)以上に抑制しながらも、冷媒と冷凍機油との相溶性も確保できた。 As shown in Table 2 above, based on the compatibility evaluation results, in Test Examples 5 to 9, PVE oil (without alkylnaphthalene) or alkylnaphthalene was added in an amount of 1% by mass, 4% by mass, based on the mass of the PVE oil. By mixing at a ratio of 10% by mass and 20% by mass, compatibility between the refrigerant and the refrigerating machine oil could be ensured while suppressing the retention rate of the tensile stress of the insulating film to the threshold value (67%) or more.
 一方、試験例10では、アルキルナフタレンをPVE油の質量に対して25質量%の割合で混合することで、冷媒と冷凍機油との相溶性を確保できなかった。 On the other hand, in Test Example 10, the compatibility between the refrigerant and the refrigerating machine oil could not be ensured by mixing alkylnaphthalene at a ratio of 25% by mass with respect to the mass of PVE oil.
 上記試験結果から、冷凍機油中のアルキルナフタレンの含有量が冷凍機油の質量に対して20質量%を超える場合、冷媒と冷凍機油との相溶性が低下することが判明した。これは、アルキルナフタレンがPVE油等の極性を有する冷凍機油と比較して極性が低く、極性が高い冷媒組成物(トリフルオロヨードメタン、R32およびR125等)と相溶しにくいために起こるものと考えられ、冷媒中のトリフルオロヨードメタンの比率が40質量%未満の混合冷媒においても同様である。 From the above test results, it was found that when the content of alkylnaphthalene in the refrigerating machine oil exceeds 20% by mass with respect to the mass of the refrigerating machine oil, the compatibility between the refrigerant and the refrigerating machine oil decreases. This is because alkylnaphthalene has a lower polarity than a refrigerating machine oil having a polarity such as PVE oil and is difficult to be compatible with a highly polar refrigerant composition (trifluoroiodomethane, R32, R125, etc.). It is conceivable that the same applies to a mixed refrigerant in which the ratio of trifluoroiodomethane in the refrigerant is less than 40% by mass.
 <評価試験3>
 2台の冷凍サイクル装置100を使用し、圧縮機1の耐久試験を実施した。冷媒はR466A(R32、R125:ダイキン工業株式会社製、R13I1:大陽日酸株式会社製を混合)を使用した。冷凍機油は市販のポリオールエステル油(POE油)(JXTGエネルギー株式会社製)を使用した。POE油には、アルキルナフタレンをPOE油の質量に対して4質量%および10質量%の割合で混合した。アルキルナフタレンは評価試験1で説明したものを使用した。絶縁フィルムはPETを使用した。冷媒配管5a~5dの長さは2mとし、R466Aを13kg、アルキルナフタレン含有POE油を3000cm3使用した。冷凍サイクル装置100を500時間毎に冷房運転と暖房運転を切り替えながら計2000時間運転させた。
<Evaluation test 3>
The durability test of the compressor 1 was carried out using two refrigeration cycle devices 100. As the refrigerant, R466A (R32, R125: manufactured by Daikin Industries, Ltd., R13I1: manufactured by Taiyo Nippon Sanso Co., Ltd. was mixed) was used. As the refrigerating machine oil, a commercially available polyol ester oil (POE oil) (manufactured by JXTG Energy Co., Ltd.) was used. In the POE oil, alkylnaphthalene was mixed at a ratio of 4% by mass and 10% by mass with respect to the mass of the POE oil. As the alkylnaphthalene, the one described in the evaluation test 1 was used. PET was used as the insulating film. The length of the refrigerant pipes 5a to 5d was 2 m, 13 kg of R466A and 3000 cm 3 of alkylnaphthalene-containing POE oil were used. The refrigeration cycle device 100 was operated for a total of 2000 hours while switching between cooling operation and heating operation every 500 hours.
 その結果、2台の冷凍サイクル装置100および圧縮機1は2000時間の耐久試験の間、正常に動作し続けた。 As a result, the two refrigeration cycle devices 100 and the compressor 1 continued to operate normally during the endurance test of 2000 hours.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 圧縮機、2 凝縮器、3 膨張弁、4 蒸発器、5 冷媒配管、5a~5d 冷媒配管、6 凝縮器送風機、7 蒸発器送風機、8 密閉容器、9 圧縮機構部、10 吸入管、11 吐出管、12 主軸、13 油貯留部、14 短軸受、15 長軸受、16 モータ、17 回転子、18 固定子、100 冷凍サイクル装置。 1 Compressor, 2 Condenser, 3 Expansion valve, 4 Evaporator, 5 Refrigerant piping, 5a-5d Refrigerant piping, 6 Condenser blower, 7 Evaporator blower, 8 Sealed container, 9 Compression mechanism, 10 Suction pipe, 11 Discharge pipe, 12 spindle, 13 oil reservoir, 14 short bearing, 15 long bearing, 16 motor, 17 rotor, 18 stator, 100 refrigeration cycle device.

Claims (16)

  1.  圧縮機を含む冷凍回路を備え、
     前記冷凍回路内に冷媒が封入されており、
     前記冷媒は、トリフルオロヨードメタンを含み、かつ、地球温暖化係数が750以下であり、
     前記圧縮機は、冷媒を圧縮する圧縮機構部と、前記圧縮機構部を駆動させるモータを備え、
     前記モータは、回転子および固定子を備え、
     前記固定子は、ポリエステル製の絶縁フィルムを含み、
     前記圧縮機内に冷凍機油が充填されており、
     前記冷凍機油は、油中添加剤としてアルキルナフタレンを含有する、冷凍サイクル装置。
    Equipped with a refrigeration circuit including a compressor,
    Refrigerant is sealed in the refrigeration circuit,
    The refrigerant contains trifluoroiodomethane and has a global warming potential of 750 or less.
    The compressor includes a compression mechanism unit that compresses the refrigerant and a motor that drives the compression mechanism unit.
    The motor comprises a rotor and a stator.
    The stator comprises a polyester insulating film and
    The compressor is filled with refrigerating machine oil,
    The refrigerating machine oil is a refrigerating cycle apparatus containing alkylnaphthalene as an additive in the oil.
  2.  前記冷媒は、さらに、ジフルオロメタンを含む、請求項1に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to claim 1, wherein the refrigerant further contains difluoromethane.
  3.  前記冷媒は、さらに、ペンタフルオロエタンを含む、請求項2に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to claim 2, wherein the refrigerant further contains pentafluoroethane.
  4.  前記冷媒は、トリフルオロヨードメタンを40質量%以下含む、請求項1から3のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 3, wherein the refrigerant contains 40% by mass or less of trifluoroiodomethane.
  5.  前記冷凍機油は、アルキルナフタレンを1質量%以上20質量%以下含む、請求項1から4のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 4, wherein the refrigerating machine oil contains 1% by mass or more and 20% by mass or less of alkylnaphthalene.
  6.  前記ポリエステルは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートまたはポリブチレンナフタレートのいずれかである、請求項1から5のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 5, wherein the polyester is either polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate or polybutylene naphthalate.
  7.  前記ポリエステルは、ポリエチレンテレフタレートである、請求項1から5のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 5, wherein the polyester is polyethylene terephthalate.
  8.  前記冷媒は、トリフルオロヨードメタン39質量%以上40質量%以下、ジフルオロメタン47質量%以上49.5質量%以下およびペンタフルオロエタン11質量%以上13.5質量%以下を含み、トリフルオロヨードメタンの質量比、ジフルオロメタンの質量比およびペンタフルオロエタンの質量比の和が100質量%であり、
     前記ポリエステルは、ポリエチレンテレフタレートであり、
     前記冷凍機油は、アルキルナフタレンを4質量%以上10質量%以下含む、請求項1に記載の冷凍サイクル装置。
    The refrigerant contains 39% by mass or more and 40% by mass or less of trifluoroiodomethane, 47% by mass or more and 49.5% by mass or less of difluoromethane, and 11% by mass or more and 13.5% by mass or less of pentafluoroethane, and trifluoroiodomethane. The sum of the mass ratio of, the mass ratio of difluoromethane, and the mass ratio of pentafluoroethane is 100% by mass.
    The polyester is polyethylene terephthalate and is
    The refrigerating cycle apparatus according to claim 1, wherein the refrigerating machine oil contains 4% by mass or more and 10% by mass or less of alkylnaphthalene.
  9.  冷媒が循環する冷凍回路を備える冷凍サイクル装置に用いられる圧縮機であって、
     冷媒を圧縮する圧縮機構部と、前記圧縮機構部を駆動させるモータを備え、
     前記冷媒は、トリフルオロヨードメタンを含み、かつ、地球温暖化係数が750以下であり、
     前記モータは、回転子および固定子を備え、
     前記固定子は、ポリエステル製の絶縁フィルムを含み、
     前記圧縮機内に冷凍機油が充填されており、
     前記冷凍機油は、油中添加剤としてアルキルナフタレンを含有する、圧縮機。
    A compressor used in a refrigeration cycle device equipped with a refrigeration circuit in which a refrigerant circulates.
    It is equipped with a compression mechanism that compresses the refrigerant and a motor that drives the compression mechanism.
    The refrigerant contains trifluoroiodomethane and has a global warming potential of 750 or less.
    The motor comprises a rotor and a stator.
    The stator comprises a polyester insulating film and
    The compressor is filled with refrigerating machine oil,
    The refrigerating machine oil is a compressor containing alkylnaphthalene as an additive in the oil.
  10.  前記冷媒は、さらに、ジフルオロメタンを含む、請求項9に記載の圧縮機。 The compressor according to claim 9, wherein the refrigerant further contains difluoromethane.
  11.  前記冷媒は、さらに、ペンタフルオロエタンを含む、請求項10に記載の圧縮機。 The compressor according to claim 10, wherein the refrigerant further contains pentafluoroethane.
  12.  前記冷媒は、トリフルオロヨードメタンを40質量%以下含む、請求項9から11のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 9 to 11, wherein the refrigerant contains 40% by mass or less of trifluoroiodomethane.
  13.  前記冷凍機油は、アルキルナフタレンを1質量%以上20質量%以下含む、請求項9から12のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 9 to 12, wherein the refrigerating machine oil contains 1% by mass or more and 20% by mass or less of alkylnaphthalene.
  14.  前記ポリエステルは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートまたはポリブチレンナフタレートのいずれかである、請求項9から13のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 9 to 13, wherein the polyester is either polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate or polybutylene naphthalate.
  15.  前記ポリエステルは、ポリエチレンテレフタレートである、請求項9から13のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 9 to 13, wherein the polyester is polyethylene terephthalate.
  16.  前記冷媒は、トリフルオロヨードメタン39質量%以上40質量%以下、ジフルオロメタン47質量%以上49.5質量%以下およびペンタフルオロエタン11質量%以上13.5質量%以下を含み、トリフルオロヨードメタンの質量比、ジフルオロメタンの質量比およびペンタフルオロエタンの質量比の和が100質量%であり、
     前記ポリエステルは、ポリエチレンテレフタレートであり、
     前記冷凍機油は、アルキルナフタレンを4質量%以上10質量%以下含む、請求項9に記載の圧縮機。
    The refrigerant contains 39% by mass or more and 40% by mass or less of trifluoroiodomethane, 47% by mass or more and 49.5% by mass or less of difluoromethane, and 11% by mass or more and 13.5% by mass or less of pentafluoroethane, and trifluoroiodomethane. The sum of the mass ratio of, the mass ratio of difluoromethane, and the mass ratio of pentafluoroethane is 100% by mass.
    The polyester is polyethylene terephthalate and is
    The compressor according to claim 9, wherein the refrigerating machine oil contains 4% by mass or more and 10% by mass or less of alkylnaphthalene.
PCT/JP2020/029430 2020-07-31 2020-07-31 Refrigeration cycle apparatus and compressor WO2022024342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029430 WO2022024342A1 (en) 2020-07-31 2020-07-31 Refrigeration cycle apparatus and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029430 WO2022024342A1 (en) 2020-07-31 2020-07-31 Refrigeration cycle apparatus and compressor

Publications (1)

Publication Number Publication Date
WO2022024342A1 true WO2022024342A1 (en) 2022-02-03

Family

ID=80035301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029430 WO2022024342A1 (en) 2020-07-31 2020-07-31 Refrigeration cycle apparatus and compressor

Country Status (1)

Country Link
WO (1) WO2022024342A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266762A (en) * 2001-03-07 2002-09-18 Matsushita Electric Ind Co Ltd Refrigerating cycle device
WO2015125881A1 (en) * 2014-02-20 2015-08-27 旭硝子株式会社 Composition for heat cycle system, and heat cycle system
US20190177589A1 (en) * 2017-10-06 2019-06-13 Honeywell International Inc. Heat transfer compositions, methods and systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266762A (en) * 2001-03-07 2002-09-18 Matsushita Electric Ind Co Ltd Refrigerating cycle device
WO2015125881A1 (en) * 2014-02-20 2015-08-27 旭硝子株式会社 Composition for heat cycle system, and heat cycle system
US20190177589A1 (en) * 2017-10-06 2019-06-13 Honeywell International Inc. Heat transfer compositions, methods and systems

Similar Documents

Publication Publication Date Title
JP5466772B2 (en) Compressor for refrigeration and air-conditioning equipment
US10450488B2 (en) Heat transfer compositions having improved miscibility with lubricating oil
US11009269B2 (en) Heat cycle system
US20170138642A1 (en) Heat cycle system
JP6545337B1 (en) Refrigeration cycle device
US8691108B2 (en) Refrigeration apparatus
TR201816389T4 (en) Cooling apparatus.
KR101587205B1 (en) Compressor for refrigeration and air conditioning, and refrigeration and air conditioning device
JP2015200480A (en) Heat pump device
JP2011052032A (en) Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene
JP2012031239A (en) Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus
CN110832051B (en) Refrigerant composition and refrigeration cycle device using same
KR20120044965A (en) Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
KR20120075467A (en) Chiller apparatus containing trans-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
JP2009225636A (en) Refrigerating apparatus
JP2017133827A (en) Heat pump device
WO2015093183A1 (en) Air conditioner
WO2022024342A1 (en) Refrigeration cycle apparatus and compressor
CN111879022B (en) Refrigerating device
JP7453480B1 (en) Refrigeration cycle equipment and compressor
JP7057521B2 (en) Refrigeration equipment
JP2017142052A (en) Freezer
JP2008180426A (en) Refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP