WO2022024318A1 - Waveguide coupler - Google Patents

Waveguide coupler Download PDF

Info

Publication number
WO2022024318A1
WO2022024318A1 PCT/JP2020/029314 JP2020029314W WO2022024318A1 WO 2022024318 A1 WO2022024318 A1 WO 2022024318A1 JP 2020029314 W JP2020029314 W JP 2020029314W WO 2022024318 A1 WO2022024318 A1 WO 2022024318A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
main
waveguides
degrees
coupler according
Prior art date
Application number
PCT/JP2020/029314
Other languages
French (fr)
Japanese (ja)
Inventor
秀憲 湯川
毅 大島
裕之 青山
徹 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/029314 priority Critical patent/WO2022024318A1/en
Priority to JP2022533343A priority patent/JP7128570B2/en
Publication of WO2022024318A1 publication Critical patent/WO2022024318A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/22Hybrid ring junctions

Definitions

  • This disclosure relates to a waveguide coupler.
  • rat race coupler a rat race ring type waveguide coupler (hereinafter referred to as "rat race coupler”) is known as a waveguide coupler capable of distributing a 180-degree phase difference.
  • the rat race coupler is composed of an annular main line portion and four input / output lines.
  • the annular main line portion is configured by connecting three ⁇ n ⁇ / 4 ⁇ length main lines and one ⁇ n ⁇ / 4 + ⁇ / 2 ⁇ length main line in an annular shape. (Here, ⁇ is the wavelength of the center frequency f0 used, and n is an odd number).
  • the four input / output lines are connected to each of the four connection portions of the main line.
  • the four input / output lines are provided with four ports (P1, P2, P3, and P4) at the ends opposite to the side connected to the main line side (for example, non-patented). 12 and 15 of Document 1.
  • the high frequency When a high frequency with a wavelength of ⁇ is input to one of the ports of the rat race coupler, the high frequency is equally distributed and output from two of the remaining three ports. Depending on how the input port is selected, the distributed high frequencies may be in-phase or 180-degree phase difference.
  • the length of the three main lines is an odd multiple of ⁇ / 4, and the length of one main line is exactly ⁇ / 2 (the length of the three main lines). It is longer by half the wavelength of the center frequency f0 used). Since the length of the main line is determined based on the wavelength ⁇ of the used center frequency f0 in this way, when the input high frequency is the used center frequency f0, the high frequency reverses the circular main line portion clockwise. It is transmitted in a clockwise direction, and cancels or overlaps well at the output port. As a result, the high frequency of the used center frequency f0 can be distributed in phase or 180 degree phase difference.
  • the conventional rat race coupler has a problem that the distribution amplitude and the distribution phase are determined depending on the relationship between the length of the main line and the wavelength of the input high frequency.
  • An object of the present disclosure is to provide a waveguide coupler having a phase correction mechanism that does not depend on an input high frequency wavelength in order to solve this problem.
  • the waveguide coupler of the present disclosure has a twist angle of 0 degrees as a whole, and the passing phase at the center frequency used is an odd multiple of 90 degrees.
  • the fourth main waveguide section whose overall twist angle is plus or minus 180 degrees and whose passing phase is 180 degrees inverted from the passing phase of the first to third main waveguide sections, is annular.
  • the first to fourth input / output waveguides connected to the respective connection portions of the first to fourth main waveguides connected to the above are provided.
  • the fourth main waveguide section has a passing phase difference of 180 degrees from the first to third main waveguide sections.
  • the same effect as increasing the length of one line by ⁇ / 2 over the other main lines can be obtained.
  • a perspective view for explaining the configuration of the waveguide coupler according to the first embodiment A plan view for explaining the configuration of the waveguide coupler according to the first embodiment.
  • Perspective view of the twisted waveguide according to the first embodiment Sectional drawing of the part indicated by arrow AA of FIG.
  • Perspective view of the fourth phase correction unit 20 Perspective view of the calculation model of the conventional rat race coupler Top view of the computational model of a conventional rat race coupler Computational model for verifying the pass phase difference between the two main waveguides that form a conventional rat race coupler Simulation results of the pass phase difference between two types of main waveguides in a conventional rat race coupler Simulation results of pass and bond amplitude characteristics of conventional rat race couplers Simulation result of distribution amplitude difference of conventional rat race coupler Simulation result of distribution phase difference of conventional rat race coupler Part 1 Simulation result of distribution phase difference of conventional rat race coupler Part 2 Calculation model of waveguide coupler according to the first embodiment A computational model for verifying the pass phase difference between the two types of main waveguides that form the waveguide coupler according to the first embodiment.
  • Simulation result of passing phase difference between two types of main waveguides of the waveguide coupler according to the first embodiment Simulation result of amplitude characteristics of passing and coupling of the waveguide coupler according to the first embodiment
  • Simulation result of distribution amplitude difference of waveguide coupler according to the first embodiment Simulation result 1 of the distribution phase difference of the waveguide coupler according to the first embodiment
  • Simulation result 2 of the distribution phase difference of the waveguide coupler according to the first embodiment An example in which the phase correction portions of the waveguide coupler according to the first embodiment are arranged in a nested manner.
  • a perspective view for explaining the configuration of the waveguide coupler according to the second embodiment A plan view for explaining the configuration of the waveguide coupler according to the second embodiment.
  • FIG. 24 Perspective view of the twisted waveguide constituting the waveguide coupler according to the second embodiment.
  • Perspective view of the twisted waveguide according to the third embodiment Cross-sectional view of the portion indicated by the arrow BB in FIG. 24.
  • FIG. 1 is a perspective view for explaining a configuration of a waveguide coupler according to the first embodiment of the present disclosure.
  • the waveguide shown in the figure represents the shape of the hollow portion of the waveguide.
  • the waveguide coupler according to the first embodiment is composed of an annular main waveguide portion and four input / output waveguides.
  • the first main waveguide section 9, the second main waveguide section 10, the third main waveguide section 11, and the fourth main waveguide section 12 are connected in a ring shape. It is configured.
  • the connection points of the main waveguide are the first connection 13, the second connection 14, the third connection 15, and the fourth connection 16, each of which is the first input / output waveguide. 1.
  • the second input / output waveguide 2, the third input / output waveguide 3, and the fourth input / output waveguide 4 are radially connected.
  • the four input / output waveguides have a first input / output terminal 5, a second input / output terminal 6, and a third input / output terminal at the ends opposite to the side connected to the main waveguide side, respectively.
  • a terminal 7 and a fourth input / output terminal 8 are provided.
  • FIG. 2 is a plan view for explaining the configuration of the waveguide coupler according to the first embodiment of the present disclosure.
  • the first to fourth main waveguide sections 9, 10, 11, and 12 have a first phase correction section 17, a second phase correction section 18, a third phase correction section 19, and a fourth phase correction, respectively. It has a unit 20.
  • the first phase correction unit 17 is configured by connecting twisted waveguides 21 and 22 in series.
  • the second phase correction unit 18, the third phase correction unit 19, and the fourth phase correction unit 20 include twisted waveguides 23 and 24, twisted waveguides 25 and 26, and twisted waveguides. 27 and 28 are connected in series, respectively.
  • FIG. 3A is a perspective view of the appearance of the twisted waveguides 21 to 28 according to the first embodiment of the present disclosure.
  • FIG. 3B shows the hollow portion of the twisted waveguides 21 to 28 shown in FIG. 3A.
  • FIG. 4 is a cross-sectional view of a portion indicated by arrows AA in FIG.
  • the twisted waveguides 21 to 28 are configured by connecting two twisted input / output waveguides 29 and 30 via a waveguide conversion unit 31.
  • the waveguide conversion unit 31 is formed by cutting out two corners of a square waveguide.
  • the square waveguide having two corners cut out may have the cross-sectional shape shown in FIG. 4A or FIG. 4B.
  • FIG. 5 is a perspective view of the first to third phase correction units 17, 18, and 19.
  • the first phase correction unit 17 has two twisted waveguides 21 and 22 connected in series with a twist angle of plus or minus 90 degrees, and the total twist angle is 0 degrees.
  • the second phase correction unit 18 and the third phase correction unit 19 are also configured in the same manner as the first phase correction unit 17, and the overall twist angle is 0 degrees.
  • the first to third main waveguide sections 9, 10 and 11 have first to third phase correction sections 17, 18 and 19, respectively. Further, the first to third main waveguide portions 9, 10 and 11 all have a length having a passing phase of 90 degrees at the used center frequency f0.
  • FIG. 6 is a perspective view of the fourth phase correction unit 20.
  • the fourth phase correction unit 20 has two twisted waveguides 27, 28 connected in series with a twist angle of plus or minus 90 degrees, and the total twist angle is plus or minus 180 degrees. Further, the fourth main waveguide section 12 having the fourth phase correction section 20 has the same length as the first to third main waveguide sections 9, 10 and 11.
  • a twisted waveguide having a twist angle of plus or minus 90 degrees is configured by mechanically twisting the waveguide, or as shown in FIG. 3, the directions of the twisted input / output waveguides 29 and 30 are orthogonal to each other. It is conceivable to connect and configure in this way.
  • the length and notch size of the waveguide conversion unit 31 are design parameters that contribute to the reflection characteristics.
  • the arrows shown in FIGS. 5 and 6 indicate the direction of the electric field. In the first to third phase correction units 17, 18 and 19 shown in FIG. 5, the directions of the electric fields at both ends are the same. On the other hand, in the fourth phase correction unit 20 shown in FIG. 6, the directions of the electric fields at both ends are opposite.
  • phase correction units shown in FIGS. 5 and 6 have the same physical length for propagating high frequencies. Since the propagation distances are the same in this way, the passing phases produced by this distance are the same. That is, a phase difference of 180 degrees (minus 180 degrees) occurs between the phase correction unit shown in FIG. 5 and the phase correction unit shown in FIG. 6 regardless of the frequency f. Therefore, when the passing phase of the main waveguide section provided with the phase correction section shown in FIG. 5 is 90 degrees at a certain frequency f0, the passing phase of the main waveguide section provided with the phase correction section shown in FIG. 6 has the same frequency. At f0, it becomes 270 degrees (minus 90 degrees).
  • the waveguide coupler according to the first embodiment of the present disclosure functions as a rat race coupler. Further, since the phase difference of 180 degrees between the three main waveguides and one main waveguide for functioning as a rat race coupler can be obtained regardless of the frequency f, the induction according to the first embodiment of the present disclosure.
  • the waveguide coupler has a wider frequency band than the conventional rat race coupler.
  • FIG. 7 is a perspective view of a calculation model of a conventional rat race coupler
  • FIG. 8 is a plan view thereof
  • FIG. 9 is a calculation model for verifying the passing phase difference between two types of main waveguides forming the conventional rat race coupler.
  • FIG. 10 shows the simulation results of the passing phase difference between the two types of main waveguides in the conventional rat race coupler. Although a passing phase difference of 180 degrees is obtained at the used center frequency f0, the difference deviates from 180 degrees as the frequency f moves away from the used center frequency f0.
  • FIGS. 11-1 to 11-4 show the simulation results of the frequency characteristics of the conventional rat race coupler.
  • the horizontal axis represents the frequency ⁇ f / f0 ⁇ , and is normalized by dividing the input high frequency frequency f by the used center frequency f0.
  • FIG. 11-1 shows plots S14, S32, S12 and S34.
  • Plot S14 is the amplitude characteristic of the frequency transfer function from port4 to port1.
  • Plot S32 is the amplitude characteristic of the frequency transfer function from port2 to port3.
  • plot S12 is the amplitude characteristic of each frequency transfer function from port 2 to port 1
  • plot S34 is the amplitude characteristic of each frequency transfer function from port 4 to port 3.
  • These plots will be referred to as "passing, coupling amplitude characteristics”.
  • the amplitude characteristics of passing and coupling the amplitudes match only at the used center frequency f0, and the difference increases as the distance from the used center frequency f0 increases.
  • the phase characteristics of passing and coupling are 180 degrees or 0 degrees only at the used center frequency f0, and the difference increases as the distance from the used center frequency f0 increases.
  • FIG. 11-2 shows plots S12-S32 and S14-S34.
  • the plots S12-S32 are amplitude characteristics of a function obtained by subtracting the frequency transfer function represented by the plot S32 from the frequency transfer function represented by the plot S12. That is, the plots S12-S32 are amplitude characteristics of a signal obtained by subtracting the signal of port3 from the signal of port1 with respect to the signal distributed to port1 and port3 when a high frequency is input to port2.
  • plots S14 to S34 are amplitude characteristics of a signal obtained by subtracting the signal of port3 from the signal of port1 with respect to the signal distributed to port1 and port3 when a high frequency is input to port4. These plots will be referred to as the "distribution amplitude difference".
  • FIGS. 11-3 and 11-4 show plots S12-S32 and plots S14-S34, respectively.
  • the plots S12-S32 in FIG. 11-3 represent the phase characteristics of the signal obtained by subtracting the signal of port3 from the signal of port1 with respect to the signal distributed to port1 and port3 when a high frequency is input to port2. ..
  • plots S14-S34 in FIG. 11-4 show the phase of the signal obtained by subtracting the signal of port3 from the signal of port1 with respect to the signal distributed between port1 and port3 when a high frequency is input to port4. Represents a characteristic.
  • These plots will be referred to as "distributed phase differences".
  • the distribution amplitude difference and the distribution phase difference of the conventional rat race coupler are as designed at the center frequency of use f0, but deviate from the design values as the distance from the center frequency of use f0 increases. ..
  • the frequency band suitable for use is ⁇ f / f0 ⁇ of about 0.99 to 1.01.
  • FIGS. 12 to 15-1 to 15-4 show a simulation of the frequency characteristics of the waveguide coupler according to the first embodiment of the present disclosure.
  • FIG. 12 is a calculation model of the waveguide coupler according to the first embodiment
  • FIG. 13 is a calculation model for verifying the passing phase difference between the two types of main waveguide portions forming the waveguide coupler according to the first embodiment. be.
  • FIG. 14 is a simulation result of the passing phase difference between the two types of main waveguides of the waveguide coupler according to the first embodiment of the present disclosure. It can be seen that a passing phase difference of 180 degrees is obtained regardless of the frequency f.
  • FIG. 15 is a simulation result of the frequency characteristics of the waveguide coupler according to the first embodiment of the present disclosure.
  • FIG. 15 is a simulation result of the frequency characteristics of the waveguide coupler according to the first embodiment of the present disclosure.
  • FIG. 15-1 is a diagram showing the passage and coupling amplitude characteristics.
  • FIG. 15-2 is a diagram showing the distribution amplitude difference.
  • 15-3 and 15-4 show plots S12-S32 and plots S14-S34, respectively, and are diagrams of distribution phase differences. It can be seen that the frequency dependence of the distribution amplitude difference in FIG. 15-2 and the distribution phase difference in FIGS. 15-3 and 15-4 is small.
  • the frequency band suitable for using the waveguide coupler according to the first embodiment of the present disclosure is ⁇ f /. f0 ⁇ is wider than 0.90 to 1.03.
  • the waveguide coupler according to the first embodiment has the configuration of the present disclosure, so that even at a frequency f different from the center frequency f0 used, only one main line length is used for another main line. The same effect as making it longer by ⁇ / 2 can be obtained.
  • this phase correction mechanism that does not depend on the input high frequency wavelength, it is possible to obtain a waveguide coupler having a wider frequency band than the conventional rat race coupler.
  • the physical lengths of the first, second, third, and fourth main waveguide sections 9, 10, 11, and 12 are exactly the same, and a square-shaped arrangement is possible. Therefore, there is also an effect that the size is smaller than that of the conventional rat race ring having a different physical length of the main line.
  • the position of the phase correction unit does not have to be in the center of the main waveguide, and may be nested. In this case as well, the relationship between the passing phases of each main waveguide does not change, so that the same effect can be obtained. Further, since the positions of the phase correction units are separated from each other, the wall of the waveguide can be made thicker, which has the effect of improving manufacturability and strength.
  • the passing phase of the first, second, and third main waveguide portions 9, 10 and 11 is 90 degrees is shown here, it may be an odd multiple of 90 degrees.
  • Embodiment 2. 17 is a perspective view for explaining the configuration of the waveguide coupler according to the second embodiment of the present disclosure
  • FIG. 18 is a plan view thereof
  • FIG. 19 is a twist constituting the waveguide coupler according to the second embodiment.
  • It is a perspective view of the waveguides 121 to 128 (representatively 121).
  • the twisted waveguides 121 to 128 according to the second embodiment are provided with R (roundness) along the edge portion of the wide wall surface dimension (so-called A dimension). There is.
  • the twisted waveguides 121 to 128 according to the second embodiment are provided with an R at the edge portion, the space between the twisted waveguide 126 and the twisted waveguide 127 is widened.
  • the wall of the waveguide can be made thicker (the part circled by the dotted line in FIG. 18). This also has the effect of improving ease of manufacture and strength.
  • the input / output waveguides 101B to 104B shown in FIGS. 20 and 21 are not standard but half-height (B dimension is half of the standard). Since the B dimension of the main waveguides 109B to 112B is also reduced, the twisted waveguides 121B and the twisted waveguides 122B are closer to each other than when the input / output waveguides 101B to 104B are formed of standard waveguides. It will be. Therefore, the effect of providing R at the edge of the waveguide constituting the waveguide coupler is further enhanced.
  • the waveguide may be provided with C (cut) at the edge.
  • FIG. 22 is a perspective view for explaining the configuration of the waveguide coupler according to the third embodiment of the present disclosure
  • FIG. 23 is a plan view thereof.
  • the twisted waveguides 221 to 228 according to the third embodiment have an arc-shaped waveguide conversion unit 231.
  • FIG. 24 is a perspective view of the twisted waveguides 221 to 228 (representatively 221) according to the third embodiment
  • FIG. 25 is a cross-sectional view of a portion indicated by an arrow BB in FIG. 24.
  • the square waveguide according to the third embodiment may have the cross-sectional shape of FIG. 25A or FIG. 25B.
  • the waveguide coupler according to the third embodiment has the same effect as the waveguide coupler according to the first embodiment.
  • the wall of the waveguide should be thickened by widening the space between the locations where the twisted waveguides 221 to 228 are close to each other. It also has the effect of improving ease of manufacture and strength.
  • waveguide twists 221 to 228 according to the third embodiment may be provided with R or C (cut) along the edge portion.
  • FIG. 26 is a perspective view for explaining the configuration of the waveguide coupler according to the fourth embodiment of the present disclosure
  • FIG. 27 is a plan view thereof.
  • the main waveguide section is smoothly connected instead of an acute angle at the connection sections 313 to 316 between the main waveguide sections 309 to 312 and the input / output waveguide sections 301 to 304. There is.
  • the waveguide coupler according to the fourth embodiment has the same effect as the waveguide coupler according to the first embodiment.
  • the waveguide coupler according to the fourth embodiment has an effect that good reflection characteristics can be easily obtained because the main waveguide portion is smoothly connected at the connection portions 313 to 316 instead of having an acute angle.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

A waveguide coupler according to the present disclosure comprises first to third main waveguides (9, 10, 11) in which an overall twist angle is 0 degrees and a passing phase at a center frequency used is an odd multiple of 90 degrees; a fourth main waveguide (12) in which an overall twist angle is plus or minus 180 degrees and the passing phase is 180 degrees inverted with respect to the passing phase of the first to third main waveguides (9, 10, 11); and first to fourth input/output waveguides (1, 2, 3, 4) respectively connected to connection sections (13, 14, 15, 16) of the first to fourth main waveguides (9, 10, 11, 12) that are connected in a ring shape.

Description

導波管カプラWaveguide coupler
 本開示は導波管カプラに関する。 This disclosure relates to a waveguide coupler.
 一般に、180度位相差の分配を可能とする導波管カプラとして、ラットレースリング型の導波管カプラ(以下「ラットレースカプラ」という)が知られている。ラットレースカプラは、環状の主線路部と、4つの入出力線路とから構成されている。環状の主線路部は、3本の{nλ/4}の長さの主線路と、1本の{nλ/4+λ/2}の長さの主線路とが環状に接続されて構成されている(ここでλは使用中心周波数f0の波長、nは奇数)。この主線路の接続部4か所には、前記4つの入出力線路がそれぞれ接続されている。この4つの入出力線路には、主線路側と接続されている側とは反対側の端に、4つのポート(P1、P2、P3、及びP4)がそれぞれ設けられている(例えば、非特許文献1の図12、図15)。 Generally, a rat race ring type waveguide coupler (hereinafter referred to as "rat race coupler") is known as a waveguide coupler capable of distributing a 180-degree phase difference. The rat race coupler is composed of an annular main line portion and four input / output lines. The annular main line portion is configured by connecting three {nλ / 4} length main lines and one {nλ / 4 + λ / 2} length main line in an annular shape. (Here, λ is the wavelength of the center frequency f0 used, and n is an odd number). The four input / output lines are connected to each of the four connection portions of the main line. The four input / output lines are provided with four ports (P1, P2, P3, and P4) at the ends opposite to the side connected to the main line side (for example, non-patented). 12 and 15 of Document 1.
 ラットレースカプラのポートの1つに波長λの高周波が入力されると、その高周波は、残りの3つのポートのうちの2つのポートから等分に分配されて出力される。入力ポートの選び方によって、分配される高周波が同相になる場合と180度位相差になる場合とがある。非特許文献1の図12で説明すると、ポートP1に入力した場合はポートP2、P4に同相で分配され、ポートP2に入力した場合はポートP1、P3に180度位相差で分配される。 When a high frequency with a wavelength of λ is input to one of the ports of the rat race coupler, the high frequency is equally distributed and output from two of the remaining three ports. Depending on how the input port is selected, the distributed high frequencies may be in-phase or 180-degree phase difference. Explaining with reference to FIG.
 従来のラットレースカプラにおいては、3本の主線路の長さがλ/4の奇数倍であり、1本の主線路の長さが当該3本の主線路の長さよりもちょうどλ/2(使用中心周波数f0の波長の半分)だけ長い。このように主線路の長さが使用中心周波数f0の波長λを基に決められているため、入力された高周波が使用中心周波数f0である場合、高周波は環状の主線路部を時計回りと反時計回りとに分かれて伝わり、出力ポートにおいてうまく打ち消し合ったり重なったりする。その結果、使用中心周波数f0の高周波は同相または180度位相差の分配が可能となる。 In the conventional rat race coupler, the length of the three main lines is an odd multiple of λ / 4, and the length of one main line is exactly λ / 2 (the length of the three main lines). It is longer by half the wavelength of the center frequency f0 used). Since the length of the main line is determined based on the wavelength λ of the used center frequency f0 in this way, when the input high frequency is the used center frequency f0, the high frequency reverses the circular main line portion clockwise. It is transmitted in a clockwise direction, and cancels or overlaps well at the output port. As a result, the high frequency of the used center frequency f0 can be distributed in phase or 180 degree phase difference.
 ところが、入力された高周波が使用中心周波数f0と異なる周波数fである場合、この高周波は出力ポートにおいてうまく打ち消し合ったり重なったりしない。その結果、使用中心周波数f0とは異なる周波数fにおいては設計どおりの分配振幅及び分配位相が得られない。従来のラットレースカプラは、主線路の長さと入力した高周波の波長との関係に依拠して分配振幅及び分配位相が決まってしまう、という課題があった。本開示は、この課題を解決するべく、入力した高周波の波長に依拠しない位相補正の仕組みを備えた導波管カプラを提供することを目的とする。 However, when the input high frequency has a frequency f different from the center frequency f0 used, this high frequency does not cancel or overlap well at the output port. As a result, the distribution amplitude and distribution phase as designed cannot be obtained at a frequency f different from the center frequency f0 used. The conventional rat race coupler has a problem that the distribution amplitude and the distribution phase are determined depending on the relationship between the length of the main line and the wavelength of the input high frequency. An object of the present disclosure is to provide a waveguide coupler having a phase correction mechanism that does not depend on an input high frequency wavelength in order to solve this problem.
 上記課題を解決するため、本開示の導波管カプラは、全体のツイスト角度が0度であり、使用中心周波数における通過位相が90度の奇数倍である第1から第3の主導波管部と、全体のツイスト角度がプラスまたはマイナス180度であり、その通過位相が前記第1から第3の主導波管部の通過位相と180度反転している第4の主導波管部と、環状に接続された前記第1から第4の主導波管部の各接続部に接続された第1から第4の入出力導波管と、を備えた。 In order to solve the above problems, the waveguide coupler of the present disclosure has a twist angle of 0 degrees as a whole, and the passing phase at the center frequency used is an odd multiple of 90 degrees. And the fourth main waveguide section, whose overall twist angle is plus or minus 180 degrees and whose passing phase is 180 degrees inverted from the passing phase of the first to third main waveguide sections, is annular. The first to fourth input / output waveguides connected to the respective connection portions of the first to fourth main waveguides connected to the above are provided.
 上記の構成とすることで、使用中心周波数f0とは異なる周波数fにおいても、第4の主導波管部は第1から第3の主導波管部と通過位相差が180度となるため、主線路の長さを1つだけ他の主線路よりλ/2だけ長くすることと同じ効果が得られる。この入力した高周波の波長に依拠しない位相補正の仕組みにより、従来のラットレースカプラよりも周波数帯域が広い導波管カプラを得ることができる。 With the above configuration, even at a frequency f different from the center frequency f0 used, the fourth main waveguide section has a passing phase difference of 180 degrees from the first to third main waveguide sections. The same effect as increasing the length of one line by λ / 2 over the other main lines can be obtained. By this phase correction mechanism that does not depend on the input high frequency wavelength, it is possible to obtain a waveguide coupler having a wider frequency band than the conventional rat race coupler.
実施の形態1に係る導波管カプラの構成を説明するための斜視図A perspective view for explaining the configuration of the waveguide coupler according to the first embodiment. 実施の形態1に係る導波管カプラの構成を説明するための平面図A plan view for explaining the configuration of the waveguide coupler according to the first embodiment. 実施の形態1に係るツイスト導波管の斜視図Perspective view of the twisted waveguide according to the first embodiment 図3の矢印A-Aで示した箇所の断面図Sectional drawing of the part indicated by arrow AA of FIG. 第1から第3の位相補正部17、18、19の斜視図Perspective view of the first to third phase correction units 17, 18 and 19. 第4の位相補正部20の斜視図Perspective view of the fourth phase correction unit 20 従来のラットレースカプラの計算モデルの斜視図Perspective view of the calculation model of the conventional rat race coupler 従来のラットレースカプラの計算モデルの平面図Top view of the computational model of a conventional rat race coupler 従来のラットレースカプラを形成する2種類の主導波管の通過位相差を検証するための計算モデルComputational model for verifying the pass phase difference between the two main waveguides that form a conventional rat race coupler 従来のラットレースカプラにおける2種類の主導波管の通過位相差のシミュレーション結果Simulation results of the pass phase difference between two types of main waveguides in a conventional rat race coupler 従来のラットレースカプラの通過、結合の振幅特性のシミュレーション結果Simulation results of pass and bond amplitude characteristics of conventional rat race couplers 従来のラットレースカプラの分配振幅差のシミュレーション結果Simulation result of distribution amplitude difference of conventional rat race coupler 従来のラットレースカプラの分配位相差のシミュレーション結果その1Simulation result of distribution phase difference of conventional rat race coupler Part 1 従来のラットレースカプラの分配位相差のシミュレーション結果その2Simulation result of distribution phase difference of conventional rat race coupler Part 2 実施の形態1による導波管カプラの計算モデルCalculation model of waveguide coupler according to the first embodiment 実施の形態1による導波管カプラを形成する2種類の主導波管部の通過位相差を検証するための計算モデルA computational model for verifying the pass phase difference between the two types of main waveguides that form the waveguide coupler according to the first embodiment. 実施の形態1に係る導波管カプラの2種類の主導波管部の通過位相差のシミュレーション結果Simulation result of passing phase difference between two types of main waveguides of the waveguide coupler according to the first embodiment 実施の形態1に係る導波管カプラの通過、結合の振幅特性のシミュレーション結果Simulation result of amplitude characteristics of passing and coupling of the waveguide coupler according to the first embodiment 実施の形態1に係る導波管カプラの分配振幅差のシミュレーション結果Simulation result of distribution amplitude difference of waveguide coupler according to the first embodiment 実施の形態1に係る導波管カプラの分配位相差のシミュレーション結果その1Simulation result 1 of the distribution phase difference of the waveguide coupler according to the first embodiment 実施の形態1に係る導波管カプラの分配位相差のシミュレーション結果その2Simulation result 2 of the distribution phase difference of the waveguide coupler according to the first embodiment 実施の形態1に係る導波管カプラの位相補正部を入れ子に配置した例An example in which the phase correction portions of the waveguide coupler according to the first embodiment are arranged in a nested manner. 実施の形態2に係る導波管カプラの構成を説明するための斜視図A perspective view for explaining the configuration of the waveguide coupler according to the second embodiment. 実施の形態2に係る導波管カプラの構成を説明するための平面図A plan view for explaining the configuration of the waveguide coupler according to the second embodiment. 実施の形態2に係る導波管カプラを構成するツイスト導波管の斜視図Perspective view of the twisted waveguide constituting the waveguide coupler according to the second embodiment. 実施の形態2に係るハーフハイトの導波管カプラの構成を説明するための斜視図A perspective view for explaining the configuration of the half-height waveguide coupler according to the second embodiment. 実施の形態2に係るハーフハイトの導波管カプラの構成を説明するための平面図A plan view for explaining the configuration of the half-height waveguide coupler according to the second embodiment. 実施の形態3に係る導波管カプラの構成を説明するための斜視図A perspective view for explaining the configuration of the waveguide coupler according to the third embodiment. 実施の形態3に係る導波管カプラの構成を説明するための平面図A plan view for explaining the configuration of the waveguide coupler according to the third embodiment. 実施の形態3に係るツイスト導波管の斜視図Perspective view of the twisted waveguide according to the third embodiment 図24の矢印B-Bで示した箇所の断面図Cross-sectional view of the portion indicated by the arrow BB in FIG. 24. 本開示の実施の形態4に係る導波管カプラの構成を説明するための斜視図A perspective view for explaining the configuration of the waveguide coupler according to the fourth embodiment of the present disclosure. 本開示の実施の形態4に係る導波管カプラの構成を説明するための平面図A plan view for explaining the configuration of the waveguide coupler according to the fourth embodiment of the present disclosure.
実施の形態1.
 図1は本開示の実施の形態1に係る導波管カプラの構成を説明するための斜視図である。以降特に指示がない場合、図に示した導波管は、導波管の中空部の形状を表している。実施の形態1に係る導波管カプラは、環状の主導波管部と、4つの入出力導波管とから構成されている。環状の主導波管部は、第1の主導波管部9、第2の主導波管部10、第3の主導波管部11、及び第4の主導波管部12が環状に接続されて構成されている。この主導波管部の接続箇所は、第1の接続部13、第2の接続部14、第3の接続部15、及び第4の接続部16であり、それぞれ第1の入出力導波管1、第2の入出力導波管2、第3の入出力導波管3、及び第4の入出力導波管4が放射状に接続されている。この4つの入出力導波管には、主導波管側と接続されている側とは反対側の端にそれぞれ第1の入出力端子5、第2の入出力端子6、第3の入出力端子7、及び第4の入出力端子8が設けられている。
Embodiment 1.
FIG. 1 is a perspective view for explaining a configuration of a waveguide coupler according to the first embodiment of the present disclosure. Unless otherwise specified thereafter, the waveguide shown in the figure represents the shape of the hollow portion of the waveguide. The waveguide coupler according to the first embodiment is composed of an annular main waveguide portion and four input / output waveguides. In the annular main waveguide section, the first main waveguide section 9, the second main waveguide section 10, the third main waveguide section 11, and the fourth main waveguide section 12 are connected in a ring shape. It is configured. The connection points of the main waveguide are the first connection 13, the second connection 14, the third connection 15, and the fourth connection 16, each of which is the first input / output waveguide. 1. The second input / output waveguide 2, the third input / output waveguide 3, and the fourth input / output waveguide 4 are radially connected. The four input / output waveguides have a first input / output terminal 5, a second input / output terminal 6, and a third input / output terminal at the ends opposite to the side connected to the main waveguide side, respectively. A terminal 7 and a fourth input / output terminal 8 are provided.
 また、図2は本開示の実施の形態1に係る導波管カプラの構成を説明するための平面図である。第1から第4の主導波管部9、10、11、12は、それぞれ第1の位相補正部17、第2の位相補正部18、第3の位相補正部19、及び第4の位相補正部20を有している。第1の位相補正部17は、ツイスト導波管21、22が直列に接続され構成される。同様に、第2の位相補正部18、第3の位相補正部19、及び第4の位相補正部20は、ツイスト導波管23、24、ツイスト導波管25、26、及びツイスト導波管27、28がそれぞれ直列に接続され構成される。 Further, FIG. 2 is a plan view for explaining the configuration of the waveguide coupler according to the first embodiment of the present disclosure. The first to fourth main waveguide sections 9, 10, 11, and 12 have a first phase correction section 17, a second phase correction section 18, a third phase correction section 19, and a fourth phase correction, respectively. It has a unit 20. The first phase correction unit 17 is configured by connecting twisted waveguides 21 and 22 in series. Similarly, the second phase correction unit 18, the third phase correction unit 19, and the fourth phase correction unit 20 include twisted waveguides 23 and 24, twisted waveguides 25 and 26, and twisted waveguides. 27 and 28 are connected in series, respectively.
 図3Aは本開示の実施の形態1に係るツイスト導波管21から28の外観の斜視図である。図3Bは、図3Aで示したツイスト導波管21から28の中空部を示したものである。図4は図3の矢印A-Aで示した箇所の断面図である。ツイスト導波管21から28は、2つのツイスト入出力導波管29、30が、導波管変換部31を介して接続され構成される。導波管変換部31は、正方形導波管の2隅を切り欠いて形成される。2隅を切り欠いた正方形導波管は、図4Aまたは図4Bで示した断面形状が考えられる。 FIG. 3A is a perspective view of the appearance of the twisted waveguides 21 to 28 according to the first embodiment of the present disclosure. FIG. 3B shows the hollow portion of the twisted waveguides 21 to 28 shown in FIG. 3A. FIG. 4 is a cross-sectional view of a portion indicated by arrows AA in FIG. The twisted waveguides 21 to 28 are configured by connecting two twisted input / output waveguides 29 and 30 via a waveguide conversion unit 31. The waveguide conversion unit 31 is formed by cutting out two corners of a square waveguide. The square waveguide having two corners cut out may have the cross-sectional shape shown in FIG. 4A or FIG. 4B.
 図5は第1から第3の位相補正部17、18、19の斜視図である。第1の位相補正部17は、2つの直列に接続されたツイスト角度がプラスまたはマイナス90度のツイスト導波管21、22を有し、全体のツイスト角度が0度である。第2の位相補正部18、第3の位相補正部19も、第1の位相補正部17と同じように構成され、同じく、全体のツイスト角度が0度である。第1から第3の主導波管部9、10、11は、それぞれ第1から第3の位相補正部17、18、19を有する。また、第1から第3の主導波管部9、10、11は、どれも使用中心周波数f0において90度の通過位相となる長さである。 FIG. 5 is a perspective view of the first to third phase correction units 17, 18, and 19. The first phase correction unit 17 has two twisted waveguides 21 and 22 connected in series with a twist angle of plus or minus 90 degrees, and the total twist angle is 0 degrees. The second phase correction unit 18 and the third phase correction unit 19 are also configured in the same manner as the first phase correction unit 17, and the overall twist angle is 0 degrees. The first to third main waveguide sections 9, 10 and 11 have first to third phase correction sections 17, 18 and 19, respectively. Further, the first to third main waveguide portions 9, 10 and 11 all have a length having a passing phase of 90 degrees at the used center frequency f0.
 図6は、第4の位相補正部20の斜視図である。第4の位相補正部20は、2つの直列に接続されたツイスト角度がプラスまたはマイナス90度のツイスト導波管27、28を有し、全体のツイスト角度がプラスまたはマイナス180度である。また、第4の位相補正部20を有する第4の主導波管部12は、第1から第3の主導波管部9、10、11と同じ長さである。 FIG. 6 is a perspective view of the fourth phase correction unit 20. The fourth phase correction unit 20 has two twisted waveguides 27, 28 connected in series with a twist angle of plus or minus 90 degrees, and the total twist angle is plus or minus 180 degrees. Further, the fourth main waveguide section 12 having the fourth phase correction section 20 has the same length as the first to third main waveguide sections 9, 10 and 11.
 本開示の導波管カプラの動作は、次のように説明できる。ツイスト角度がプラスまたはマイナス90度のツイスト導波管は、導波管を機械的にねじって構成する方法や、図3に示したようにツイスト入出力導波管29、30の向きが直交するように接続して構成する方法が考えられる。導波管変換部31の長さや切り欠く大きさは反射特性に寄与する設計パラメータである。図5及び図6で示した矢印は電界の向きを表している。図5で示した第1から第3の位相補正部17、18、19においては、両端での電界の向きは同じである。一方、図6に示した第4の位相補正部20においては、両端での電界の向きは逆である。ここで、図5と図6とで示した位相補正部は、高周波が伝搬する物理的な長さは同じである。このように伝搬距離が同じであるため、この距離により生じる通過位相は同じである。すなわち、図5に示す位相補正部と図6に示す位相補正部では周波数fによらず180度(マイナス180度)の位相差が生じることになる。このため、図5に示す位相補正部を備えた主導波管部の通過位相がある周波数f0で90度の場合、図6に示す位相補正部を備えた主導波管部の通過位相は同じ周波数f0で270度(マイナス90度)となる。 The operation of the waveguide coupler of the present disclosure can be explained as follows. A twisted waveguide having a twist angle of plus or minus 90 degrees is configured by mechanically twisting the waveguide, or as shown in FIG. 3, the directions of the twisted input / output waveguides 29 and 30 are orthogonal to each other. It is conceivable to connect and configure in this way. The length and notch size of the waveguide conversion unit 31 are design parameters that contribute to the reflection characteristics. The arrows shown in FIGS. 5 and 6 indicate the direction of the electric field. In the first to third phase correction units 17, 18 and 19 shown in FIG. 5, the directions of the electric fields at both ends are the same. On the other hand, in the fourth phase correction unit 20 shown in FIG. 6, the directions of the electric fields at both ends are opposite. Here, the phase correction units shown in FIGS. 5 and 6 have the same physical length for propagating high frequencies. Since the propagation distances are the same in this way, the passing phases produced by this distance are the same. That is, a phase difference of 180 degrees (minus 180 degrees) occurs between the phase correction unit shown in FIG. 5 and the phase correction unit shown in FIG. 6 regardless of the frequency f. Therefore, when the passing phase of the main waveguide section provided with the phase correction section shown in FIG. 5 is 90 degrees at a certain frequency f0, the passing phase of the main waveguide section provided with the phase correction section shown in FIG. 6 has the same frequency. At f0, it becomes 270 degrees (minus 90 degrees).
 したがって、本開示の実施の形態1に係る導波管カプラは、ラットレースカプラとして機能することになる。また、ラットレースカプラとして機能するための3つの主導波管部とひとつの主導波管部との位相差180度は周波数fによらずに得られるため、本開示の実施の形態1に係る導波管カプラは従来のラットレースカプラよりも周波数帯域が広い。 Therefore, the waveguide coupler according to the first embodiment of the present disclosure functions as a rat race coupler. Further, since the phase difference of 180 degrees between the three main waveguides and one main waveguide for functioning as a rat race coupler can be obtained regardless of the frequency f, the induction according to the first embodiment of the present disclosure. The waveguide coupler has a wider frequency band than the conventional rat race coupler.
 本開示の導波管カプラの効果は、電磁界シミュレーション結果を用いて次のように説明できる。図7は従来のラットレースカプラの計算モデルの斜視図、図8はその平面図、図9は従来のラットレースカプラを形成する2種類の主導波管の通過位相差を検証するための計算モデルである。図10は、従来のラットレースカプラにおける2種類の主導波管の通過位相差のシミュレーション結果を示したものである。周波数fが使用中心周波数f0において180度の通過位相差が得られているものの、周波数fが使用中心周波数f0から離れるにしたがってその差が180度からずれている。 The effect of the waveguide coupler of the present disclosure can be explained as follows using the electromagnetic field simulation result. FIG. 7 is a perspective view of a calculation model of a conventional rat race coupler, FIG. 8 is a plan view thereof, and FIG. 9 is a calculation model for verifying the passing phase difference between two types of main waveguides forming the conventional rat race coupler. Is. FIG. 10 shows the simulation results of the passing phase difference between the two types of main waveguides in the conventional rat race coupler. Although a passing phase difference of 180 degrees is obtained at the used center frequency f0, the difference deviates from 180 degrees as the frequency f moves away from the used center frequency f0.
 図11-1~4は、従来のラットレースカプラの周波数特性のシミュレーション結果を示したものである。横軸は周波数{f/f0}を表し、入力される高周波の周波数fを使用中心周波数f0で割ることによって正規化している。 FIGS. 11-1 to 11-4 show the simulation results of the frequency characteristics of the conventional rat race coupler. The horizontal axis represents the frequency {f / f0}, and is normalized by dividing the input high frequency frequency f by the used center frequency f0.
 図11-1は、プロットS14、S32、S12及びS34を示したものである。プロットS14は、port4からport1までの周波数伝達関数の振幅特性である。プロットS32は、port2からport3までの周波数伝達関数の振幅特性である。同様に、プロットS12はport2からport1までの、プロットS34はport4からport3までの、それぞれの周波数伝達関数の振幅特性である。これらのプロットは、「通過、結合の振幅特性」と呼ぶことにする。通過、結合の振幅特性は使用中心周波数f0のみにおいて振幅が一致し、使用中心周波数f0から離れるにしたがってその差が大きくなっている。また、図示しないが、通過、結合の位相特性も使用中心周波数f0のみにおいて180度あるいは0度となり、使用中心周波数f0から離れるにしたがってその差が大きくなっている。 FIG. 11-1 shows plots S14, S32, S12 and S34. Plot S14 is the amplitude characteristic of the frequency transfer function from port4 to port1. Plot S32 is the amplitude characteristic of the frequency transfer function from port2 to port3. Similarly, plot S12 is the amplitude characteristic of each frequency transfer function from port 2 to port 1, and plot S34 is the amplitude characteristic of each frequency transfer function from port 4 to port 3. These plots will be referred to as "passing, coupling amplitude characteristics". As for the amplitude characteristics of passing and coupling, the amplitudes match only at the used center frequency f0, and the difference increases as the distance from the used center frequency f0 increases. Further, although not shown, the phase characteristics of passing and coupling are 180 degrees or 0 degrees only at the used center frequency f0, and the difference increases as the distance from the used center frequency f0 increases.
 図11-2は、プロットS12-S32、S14-S34を示したものである。プロットS12-S32は、前述のプロットS12が表す周波数伝達関数から、前述のプロットS32が表す周波数伝達関数を引いた関数の振幅特性である。すなわち、プロットS12-S32は、port2に高周波を入力したときのport1とport3とに分配された信号について、port1の信号からport3の信号を引き算して得られる信号の振幅特性である。同様にプロットS14-S34は、port4に高周波を入力したときのport1とport3とに分配された信号について、port1の信号からport3の信号を引き算して得られる信号の振幅特性である。これらのプロットは、「分配振幅差」と呼ぶことにする。 FIG. 11-2 shows plots S12-S32 and S14-S34. The plots S12-S32 are amplitude characteristics of a function obtained by subtracting the frequency transfer function represented by the plot S32 from the frequency transfer function represented by the plot S12. That is, the plots S12-S32 are amplitude characteristics of a signal obtained by subtracting the signal of port3 from the signal of port1 with respect to the signal distributed to port1 and port3 when a high frequency is input to port2. Similarly, plots S14 to S34 are amplitude characteristics of a signal obtained by subtracting the signal of port3 from the signal of port1 with respect to the signal distributed to port1 and port3 when a high frequency is input to port4. These plots will be referred to as the "distribution amplitude difference".
 図11-3及び図11-4は、それぞれプロットS12-S32及びプロットS14-S34を示したものである。図11-3のプロットS12-S32は、port2に高周波を入力したときの、port1とport3とに分配された信号について、port1の信号からport3の信号を引き算して得られる信号の位相特性を表す。同様に、図11-4のプロットS14-S34は、port4に高周波を入力したときの、port1とport3とに分配された信号について、port1の信号からport3の信号を引き算して得られる信号の位相特性を表す。これらのプロットは、「分配位相差」と呼ぶことにする。 FIGS. 11-3 and 11-4 show plots S12-S32 and plots S14-S34, respectively. The plots S12-S32 in FIG. 11-3 represent the phase characteristics of the signal obtained by subtracting the signal of port3 from the signal of port1 with respect to the signal distributed to port1 and port3 when a high frequency is input to port2. .. Similarly, plots S14-S34 in FIG. 11-4 show the phase of the signal obtained by subtracting the signal of port3 from the signal of port1 with respect to the signal distributed between port1 and port3 when a high frequency is input to port4. Represents a characteristic. These plots will be referred to as "distributed phase differences".
 図11-2~4で示したように、従来のラットレースカプラの分配振幅差と分配位相差は使用中心周波数f0では設計値どおりだが、使用中心周波数f0から離れるにしたがって設計値から外れてくる。例えば、分配振幅差を0~0.2[dB]まで許容した場合、使用に適した周波数帯域は、{f/f0}がおおよそ0.99から1.01までである。 As shown in FIGS. 11-2 to 4, the distribution amplitude difference and the distribution phase difference of the conventional rat race coupler are as designed at the center frequency of use f0, but deviate from the design values as the distance from the center frequency of use f0 increases. .. For example, when the distribution amplitude difference is allowed from 0 to 0.2 [dB], the frequency band suitable for use is {f / f0} of about 0.99 to 1.01.
 一方、図12から図15-1~4は、本開示の実施の形態1に係る導波管カプラの周波数特性のシミュレーションについて示したものである。図12は実施の形態1による導波管カプラの計算モデル、図13は実施の形態1による導波管カプラを形成する2種類の主導波管部の通過位相差を検証するための計算モデルである。図14は、本開示の実施の形態1に係る導波管カプラの2種類の主導波管部の通過位相差のシミュレーション結果である。周波数fによらず180度の通過位相差が得られていることがわかる。また、図15は、本開示の実施の形態1に係る導波管カプラの周波数特性のシミュレーション結果である。図15-1は、通過、結合振幅特性を表した図である。図15-2は、分配振幅差を表した図である。図15-3及び図15-4は、それぞれプロットS12-S32及びプロットS14-S34を示しており、分配位相差の図である。図15-2の分配振幅差及び図15-3、図15-4の分配位相差は、周波数依存性は小さいことがわかる。従来のラットレースカプラと同様に分配振幅差を0~0.2[dB]まで許容した場合、本開示の実施の形態1に係る導波管カプラの使用に適した周波数帯域は、{f/f0}が0.90から1.03よりも広い。 On the other hand, FIGS. 12 to 15-1 to 15-4 show a simulation of the frequency characteristics of the waveguide coupler according to the first embodiment of the present disclosure. FIG. 12 is a calculation model of the waveguide coupler according to the first embodiment, and FIG. 13 is a calculation model for verifying the passing phase difference between the two types of main waveguide portions forming the waveguide coupler according to the first embodiment. be. FIG. 14 is a simulation result of the passing phase difference between the two types of main waveguides of the waveguide coupler according to the first embodiment of the present disclosure. It can be seen that a passing phase difference of 180 degrees is obtained regardless of the frequency f. Further, FIG. 15 is a simulation result of the frequency characteristics of the waveguide coupler according to the first embodiment of the present disclosure. FIG. 15-1 is a diagram showing the passage and coupling amplitude characteristics. FIG. 15-2 is a diagram showing the distribution amplitude difference. 15-3 and 15-4 show plots S12-S32 and plots S14-S34, respectively, and are diagrams of distribution phase differences. It can be seen that the frequency dependence of the distribution amplitude difference in FIG. 15-2 and the distribution phase difference in FIGS. 15-3 and 15-4 is small. When the distribution amplitude difference is allowed from 0 to 0.2 [dB] as in the conventional rat race coupler, the frequency band suitable for using the waveguide coupler according to the first embodiment of the present disclosure is {f /. f0} is wider than 0.90 to 1.03.
 以上のように、実施の形態1に係る導波管カプラは本開示の構成とすることで、使用中心周波数f0とは異なる周波数fにおいても、主線路の長さを1つだけ他の主線路よりλ/2だけ長くすることと同じ効果が得られる。この入力した高周波の波長に依拠しない位相補正の仕組みにより、従来のラットレースカプラよりも周波数帯域が広い導波管カプラを得ることができる。 As described above, the waveguide coupler according to the first embodiment has the configuration of the present disclosure, so that even at a frequency f different from the center frequency f0 used, only one main line length is used for another main line. The same effect as making it longer by λ / 2 can be obtained. By this phase correction mechanism that does not depend on the input high frequency wavelength, it is possible to obtain a waveguide coupler having a wider frequency band than the conventional rat race coupler.
 また、第1、第2、第3、第4の主導波管部9、10、11、12の物理的な長さは全く同じとなり、正方形状の配置が可能となる。このため、主線路の物理的な長さが異なる従来のラットレースリングに比べて小形になるという効果もある。 Further, the physical lengths of the first, second, third, and fourth main waveguide sections 9, 10, 11, and 12 are exactly the same, and a square-shaped arrangement is possible. Therefore, there is also an effect that the size is smaller than that of the conventional rat race ring having a different physical length of the main line.
 また、図16に示すように、位相補正部の位置は主導波管の中央である必要はなく、入れ子になるようにしてもよい。この場合も各主導波管部の通過位相の関係は変わらないため、同様の効果が得られる。さらに、位相補正部どうしの位置が離れることになるため、導波管の壁を厚くすることができ、製造容易性や強度が向上するという効果も有する。 Further, as shown in FIG. 16, the position of the phase correction unit does not have to be in the center of the main waveguide, and may be nested. In this case as well, the relationship between the passing phases of each main waveguide does not change, so that the same effect can be obtained. Further, since the positions of the phase correction units are separated from each other, the wall of the waveguide can be made thicker, which has the effect of improving manufacturability and strength.
 なお、ここでは、第1、第2、第3の主導波管部9、10、11の通過位相が90度となる場合について示したが、90度の奇数倍となるようにしてもよい。 Although the case where the passing phase of the first, second, and third main waveguide portions 9, 10 and 11 is 90 degrees is shown here, it may be an odd multiple of 90 degrees.
実施の形態2.
 図17は本開示の実施の形態2に係る導波管カプラの構成を説明するための斜視図、図18はその平面図、図19は実施の形態2に係る導波管カプラを構成するツイスト導波管121~128(代表して121)の斜視図である。図17、18、19に示すように、実施の形態2に係るツイスト導波管121~128は、その広壁面寸法(いわゆるA寸法)の縁端部に沿ってR(まるみ)が設けられている。
Embodiment 2.
17 is a perspective view for explaining the configuration of the waveguide coupler according to the second embodiment of the present disclosure, FIG. 18 is a plan view thereof, and FIG. 19 is a twist constituting the waveguide coupler according to the second embodiment. It is a perspective view of the waveguides 121 to 128 (representatively 121). As shown in FIGS. 17, 18 and 19, the twisted waveguides 121 to 128 according to the second embodiment are provided with R (roundness) along the edge portion of the wide wall surface dimension (so-called A dimension). There is.
 本実施の形態2によっても、実施の形態1と同様の効果が得られる。 The same effect as that of the first embodiment can be obtained by the second embodiment.
 また、実施の形態2に係るツイスト導波管121~128は、縁端部にRが設けられているため、ツイスト導波管126とツイスト導波管127とが近接する箇所の間を広げて導波管の壁を厚くすることがきる(図18の点線の円で囲った部分)。これにより、製造容易性や強度が向上するという効果も有する。 Further, since the twisted waveguides 121 to 128 according to the second embodiment are provided with an R at the edge portion, the space between the twisted waveguide 126 and the twisted waveguide 127 is widened. The wall of the waveguide can be made thicker (the part circled by the dotted line in FIG. 18). This also has the effect of improving ease of manufacture and strength.
 また、図20、21で示す入出力導波管101B~104Bは、標準ではなくハーフハイト(B寸法が標準の半分)とした場合である。主導波管部109B~112BのB寸法も細くなるため、入出力導波管101B~104Bを標準導波管で形成した場合に比べツイスト導波管121Bとツイスト導波管122Bとがさらに近接することになる。このため、導波管カプラを構成する導波管の縁端部にRを設ける効果はさらに大きくなる。 Further, the input / output waveguides 101B to 104B shown in FIGS. 20 and 21 are not standard but half-height (B dimension is half of the standard). Since the B dimension of the main waveguides 109B to 112B is also reduced, the twisted waveguides 121B and the twisted waveguides 122B are closer to each other than when the input / output waveguides 101B to 104B are formed of standard waveguides. It will be. Therefore, the effect of providing R at the edge of the waveguide constituting the waveguide coupler is further enhanced.
 なお、ここで導波管の縁端部にRを設けた場合について示したが、導波管は縁端部にC(カット)を設けてもよい。 Although the case where R is provided at the edge of the waveguide is shown here, the waveguide may be provided with C (cut) at the edge.
実施の形態3.
 図22は本開示の実施の形態3に係る導波管カプラの構成を説明するための斜視図、図23はその平面図である。実施の形態3に係るツイスト導波管221~228は、円弧状の導波管変換部231を有する。図24は実施の形態3に係るツイスト導波管221~228(代表して221)の斜視図、図25は図24の矢印B-Bで示した箇所の断面図である。実施の形態3に係る正方形導波管は、図25Aまたは図25Bの断面形状が考えらえる。
Embodiment 3.
FIG. 22 is a perspective view for explaining the configuration of the waveguide coupler according to the third embodiment of the present disclosure, and FIG. 23 is a plan view thereof. The twisted waveguides 221 to 228 according to the third embodiment have an arc-shaped waveguide conversion unit 231. FIG. 24 is a perspective view of the twisted waveguides 221 to 228 (representatively 221) according to the third embodiment, and FIG. 25 is a cross-sectional view of a portion indicated by an arrow BB in FIG. 24. The square waveguide according to the third embodiment may have the cross-sectional shape of FIG. 25A or FIG. 25B.
 ツイスト導波管221~228の導波管変換部231は、その中央部に電界が集中するため、その形状が円弧状でも正方形状でも特性は変わらない。したがって、本実施の形態3に係る導波管カプラは、実施の形態1に係る導波管カプラと同様の効果が得られる。 Since the electric field is concentrated in the central part of the waveguide conversion unit 231 of the twisted waveguides 221 to 228, the characteristics do not change regardless of whether the shape is arcuate or square. Therefore, the waveguide coupler according to the third embodiment has the same effect as the waveguide coupler according to the first embodiment.
 さらに、ツイスト導波管221~228の導波管返還部231が円弧状となっているため、ツイスト導波管221~228が近接する箇所の間を広げて導波管の壁を厚くすることができ、製造容易性や強度が向上するという効果も有する。 Further, since the waveguide return portion 231 of the twisted waveguides 221 to 228 has an arc shape, the wall of the waveguide should be thickened by widening the space between the locations where the twisted waveguides 221 to 228 are close to each other. It also has the effect of improving ease of manufacture and strength.
 さらに、実施の形態3に係る導波管ツイスト221~228は、縁端部に沿ってRやC(カット)を設けてもよい。 Further, the waveguide twists 221 to 228 according to the third embodiment may be provided with R or C (cut) along the edge portion.
実施の形態4.
 図26は本開示の実施の形態4に係る導波管カプラの構成を説明するための斜視図、図27はその平面図である。実施の形態4に係る導波管カプラは、主導波管部309~312と入出力導波管301~304との接続部313~316において、主導波管部が鋭角ではなく滑らかに接続されている。
Embodiment 4.
FIG. 26 is a perspective view for explaining the configuration of the waveguide coupler according to the fourth embodiment of the present disclosure, and FIG. 27 is a plan view thereof. In the waveguide coupler according to the fourth embodiment, the main waveguide section is smoothly connected instead of an acute angle at the connection sections 313 to 316 between the main waveguide sections 309 to 312 and the input / output waveguide sections 301 to 304. There is.
 本実施の形態4に係る導波管カプラは、実施の形態1に係る導波管カプラと同様の効果が得られる。 The waveguide coupler according to the fourth embodiment has the same effect as the waveguide coupler according to the first embodiment.
 さらに、実施の形態4に係る導波管カプラは、接続部313~316において主導波管部が鋭角ではなく滑らかに接続されているため、良好な反射特性が得られやすいという効果も有する。 Further, the waveguide coupler according to the fourth embodiment has an effect that good reflection characteristics can be easily obtained because the main waveguide portion is smoothly connected at the connection portions 313 to 316 instead of having an acute angle.
 1、1B、101、101B、301 第1の入出力導波管、2、2B、102、102B、302 第2の入出力導波管、3、3B、103、103B、303 第3の入出力導波管、4、4B、104、104B、304 第4の入出力導波管、5、5B 第1の入出力端子、6、6B 第2の入出力端子、7、7B 第3の入出力端子、8、8B 第4の入出力端子、9、9B、109、109B、209、309 第1の主導波管部、10、10B、110、110B、210、310 第2の主導波管部、11、11B、111、111B、211、311 第3の主導波管部、12、12B、112、112B、212、312 第4の主導波管部、13、313 第1の接続部、14、314 第2の接続部、15、315 第3の接続部、16、316 第4の接続部、17 第1の位相補正部、18 第2の位相補正部、19 第3の位相補正部、20 第4の位相補正部、21~28、121~128、121B~128B、221~228 ツイスト導波管、29、30、129、130、229、230 ツイスト入出力導波管、31、131、231 導波管変換部、f 周波数、f0 使用中心周波数。 1, 1B, 101, 101B, 301 1st input / output waveguide 2, 2B, 102, 102B, 302 2nd input / output waveguide 3, 3B, 103, 103B, 303 3rd input / output Waveguides 4, 4B, 104, 104B, 304 4th input / output waveguides 5, 5B 1st input / output terminal, 6, 6B 2nd input / output terminal, 7, 7B 3rd input / output Terminals, 8, 8B, 4th input / output terminal, 9, 9B, 109, 109B, 209, 309, 1st main waveguide section, 10, 10B, 110, 110B, 210, 310, 2nd main waveguide section, 11, 11B, 111, 111B, 211, 311 Third main waveguide section, 12, 12B, 112, 112B, 212, 312 Fourth main waveguide section, 13, 313 First connection section, 14, 314 2nd connection, 15, 315, 3rd connection, 16, 316, 4th connection, 17 1st phase correction, 18 2nd phase correction, 19 3rd phase correction, 20th Phase correction unit of 4, 21 to 28, 121 to 128, 121B to 128B, 221 to 228 twisted waveguide, 29, 30, 129, 130, 229, 230 twisted input / output waveguide, 31, 131, 231 conduction Waveguide converter, f frequency, f0 center frequency used.

Claims (7)

  1.  全体のツイスト角度が0度であり、使用中心周波数における通過位相が90度の奇数倍である第1から第3の主導波管部と、
     全体のツイスト角度がプラスまたはマイナス180度であり、その通過位相が前記第1から第3の主導波管部の通過位相と180度反転している第4の主導波管部と、
     環状に接続された前記第1から第4の主導波管部の各接続部に接続された第1から第4の入出力導波管と、
    を備えたことを特徴とする導波管カプラ。
    The first to third main waveguides, whose overall twist angle is 0 degrees and whose passing phase at the center frequency used is an odd multiple of 90 degrees,
    A fourth main waveguide whose overall twist angle is plus or minus 180 degrees and whose passing phase is 180 degrees inverted from the passing phase of the first to third main waveguides.
    The first to fourth input / output waveguides connected to the respective connecting portions of the first to fourth main waveguides connected in a ring shape, and
    A waveguide coupler characterized by being equipped with.
  2.  前記主導波管部は、2つの直列に接続されたツイスト角度がプラスまたはマイナス90度のツイスト導波管を有することを特徴とする請求項1記載の導波管カプラ。 The waveguide coupler according to claim 1, wherein the main waveguide section has two twisted waveguides connected in series and having a twist angle of plus or minus 90 degrees.
  3.  前記ツイスト導波管は、導波管変換部の広壁面側の縁端部に沿ってまるみを有することを特徴とする請求項2記載の導波管カプラ。 The waveguide coupler according to claim 2, wherein the twisted waveguide has a roundness along the edge portion on the wide wall surface side of the waveguide conversion unit.
  4.  前記ツイスト導波管は、導波管変換部の広壁面側の縁端部に沿って面取りされていることを特徴とする請求項2記載の導波管カプラ。 The waveguide coupler according to claim 2, wherein the twisted waveguide is chamfered along an edge portion on the wide wall surface side of the waveguide conversion unit.
  5.  前記ツイスト導波管は、導波管変換部の狭壁面側の縁端部が円弧状であることを特徴とする請求項2から請求項4のうちいずれか1項記載の導波管カプラ。 The waveguide coupler according to any one of claims 2 to 4, wherein the twisted waveguide has an arcuate edge on the narrow wall surface side of the waveguide conversion unit.
  6.  前記第1から第4の主導波管部と前記第1から第4の入出力導波管とは、前記各接続部において鋭角に接続されたことを特徴とする請求項2から請求項4のうちいずれか1項記載の導波管カプラ。 Claims 2 to 4, wherein the first to fourth main waveguides and the first to fourth input / output waveguides are connected at an acute angle at each of the connecting portions. The waveguide coupler according to any one of the above.
  7.  前記第1から第4の主導波管部と前記第1から第4の入出力導波管とは、前記各接続部において滑らかに接続されたことを特徴とする請求項2から請求項4のうちいずれか1項記載の導波管カプラ。 Claims 2 to 4, wherein the first to fourth main waveguides and the first to fourth input / output waveguides are smoothly connected at each connection. The waveguide coupler according to any one of the above.
PCT/JP2020/029314 2020-07-30 2020-07-30 Waveguide coupler WO2022024318A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/029314 WO2022024318A1 (en) 2020-07-30 2020-07-30 Waveguide coupler
JP2022533343A JP7128570B2 (en) 2020-07-30 2020-07-30 waveguide coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029314 WO2022024318A1 (en) 2020-07-30 2020-07-30 Waveguide coupler

Publications (1)

Publication Number Publication Date
WO2022024318A1 true WO2022024318A1 (en) 2022-02-03

Family

ID=80037761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029314 WO2022024318A1 (en) 2020-07-30 2020-07-30 Waveguide coupler

Country Status (2)

Country Link
JP (1) JP7128570B2 (en)
WO (1) WO2022024318A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363764A (en) * 2003-06-03 2004-12-24 Mitsubishi Electric Corp Waveguide device
US20150028967A1 (en) * 2013-07-23 2015-01-29 Honeywell International Inc. Twist for connecting orthogonal waveguides in a single housing structure
WO2015093466A1 (en) * 2013-12-17 2015-06-25 三菱電機株式会社 Antenna power supply circuit
US20190198963A1 (en) * 2017-12-21 2019-06-27 Zte Corporation Rf waveguide twist

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363764A (en) * 2003-06-03 2004-12-24 Mitsubishi Electric Corp Waveguide device
US20150028967A1 (en) * 2013-07-23 2015-01-29 Honeywell International Inc. Twist for connecting orthogonal waveguides in a single housing structure
WO2015093466A1 (en) * 2013-12-17 2015-06-25 三菱電機株式会社 Antenna power supply circuit
US20190198963A1 (en) * 2017-12-21 2019-06-27 Zte Corporation Rf waveguide twist

Also Published As

Publication number Publication date
JP7128570B2 (en) 2022-08-31
JPWO2022024318A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2017203568A1 (en) Waveguide device
JPH01152825A (en) Star coupler
KR101214722B1 (en) Transformer and method for manufacturing thereof
JP3784782B2 (en) 3-line balun transformer
EP1291959A1 (en) Directional coupler
US4952894A (en) Waveguide feed network for antenna array
WO2022024318A1 (en) Waveguide coupler
JP3908071B2 (en) Rotary joint
US4792770A (en) Waveguide directional coupler with multiple coupled outputs
CA2015517C (en) Loudspeaker horn
JPH10126118A (en) Short slot type directional coupler
JP2016144113A (en) Bilayer short slot coupler, butler matrix feeder circuit and phased array antenna
JP4825250B2 (en) Waveguide bend
JP2020092458A (en) Isolation in multi-port amplifier
WO2022091283A1 (en) Branch line coupler
AU708582B2 (en) Coupling for two electromagnetic waveguides with varing cross-sectional forms
US6956447B2 (en) Directional coupler using non-radiative dielectric waveguide
EP3499636A1 (en) A rotator device for connecting non-aligned waveguides and a method of manufacture thereof
JP2546141B2 (en) Rectangular / circular conversion tapered waveguide
JPH088621A (en) Directional coupler for nrd guide
EP0666609B1 (en) Comparator
JP2009027372A (en) Tapered waveguide
JP2021124173A (en) bracket
JPH03247101A (en) Variable coupling type directional coupler
JPS63245102A (en) Directional coupler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947469

Country of ref document: EP

Kind code of ref document: A1