WO2022024230A1 - Relay system, relay control device, relay method, and relay control program - Google Patents

Relay system, relay control device, relay method, and relay control program Download PDF

Info

Publication number
WO2022024230A1
WO2022024230A1 PCT/JP2020/028936 JP2020028936W WO2022024230A1 WO 2022024230 A1 WO2022024230 A1 WO 2022024230A1 JP 2020028936 W JP2020028936 W JP 2020028936W WO 2022024230 A1 WO2022024230 A1 WO 2022024230A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
phase
relay
radio waves
elements
Prior art date
Application number
PCT/JP2020/028936
Other languages
French (fr)
Japanese (ja)
Inventor
匡史 岩渕
智明 小川
友規 村上
陸 大宮
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/028936 priority Critical patent/WO2022024230A1/en
Priority to JP2022539844A priority patent/JPWO2022024230A1/ja
Priority to US18/017,487 priority patent/US20230275622A1/en
Publication of WO2022024230A1 publication Critical patent/WO2022024230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to a relay system, a relay control device, a relay method, and a relay control program.
  • the 5th generation mobile communication system uses the 28 GHz band
  • the wireless LAN standard IEEE802.11ad millimeter wave wireless LAN system
  • Radio waves in the high frequency band are more easily attenuated than radio waves in the low frequency band, and have radio wave characteristics that are difficult to diffract. Therefore, when utilizing the high frequency band, there are problems that the transmission distance is short and the reception quality is greatly deteriorated due to shielding.
  • beamforming using a multi-element antenna is effective at the transmitting and receiving stations. That is, it is possible to compensate for the radio wave attenuation by the beamforming gain and extend the transmission distance.
  • both the transmitting and receiving stations strongly transmit and receive radio waves from a specific direction, so the receiving station mainly receives radio waves from one path with high power.
  • the spatial multiplex is limited to 1 (or 2 due to polarization multiplex), and it is difficult to obtain the spatial diversity effect by receiving the same signal.
  • CSI Channel State Information
  • the channel information for each array element through which the radio wave passes is required.
  • the dynamic reflector is composed of 100 array elements, it is necessary to calculate the amount of phase change based on 100 different channel information.
  • phase change amount is calculated on the base station side. In this case, quality improvement by the dynamic reflector cannot be realized unless the base station has a new function.
  • the base station and the dynamic reflector will be installed in separate locations. Therefore, in the conventional method, a communication means for reflecting the phase change amount calculated by the base station on the dynamic reflector is required, and the dynamic reflector also needs a function for cooperating with the base station. rice field.
  • the dynamic reflector when the dynamic reflector reflects radio waves, if cars or people who block the radio waves come and go on the radio wave propagation path, the dynamic reflector cannot efficiently relay the radio waves. was there.
  • the present invention has been made in view of the above-mentioned problems, and is a relay system, a relay control device, and a relay method capable of efficiently relaying radio waves even if the physical environment on the radio wave propagation path changes. , And a relay control program.
  • the relay system is a relay system that relays radio waves between one or more radio terminals and a base station, in which each of a plurality of elements radiates radio waves to form a beam in a predetermined direction.
  • One or more radiation units one or more detection units that detect the physical environment on the radio wave propagation path that affects the beam formed by the radiation unit, and the physical environment detected by the detection unit.
  • the radiating section determines the direction in which the beam should be formed, and the plurality of elements radiate so that the radiating section forms the beam in the direction determined by the directional determination section. It is characterized by having a phase calculation unit for calculating the phase of radio waves to be power, and a phase control unit for controlling the phase of radio waves radiated by each of the plurality of the elements based on the phase calculated by the phase calculation unit.
  • the relay control device includes one or more radiation units that form a beam in a predetermined direction by radiating radio waves according to a set phase of each of the plurality of elements.
  • a relay control device that controls one or more relay devices that relay radio waves between a radio terminal and a base station
  • the physical environment on the radio wave propagation path that affects the beam formed by the radiation unit is detected.
  • the radiating unit determines the direction in which the beam should be formed, and the radiating unit directs the beam in the direction determined by the radiating unit. It has a phase calculation unit that calculates the phase of radio waves to be radiated by each of the plurality of elements, and a transmission unit that transmits information indicating the phase calculated by the phase calculation unit to the relay device. It is a feature.
  • the relay method is a relay method for relaying radio waves between one or more radio terminals and a base station, in which each of a plurality of elements radiates radio waves to cause a beam in a predetermined direction.
  • the radiation unit forms a beam based on the detection step of detecting the physical environment on the radio wave propagation path that affects the beam formed by one or more radiation units forming the beam and the detected physical environment.
  • the phase calculation step of calculating the phase of the radio wave to be radiated by each of the plurality of elements so that the radiation unit forms a beam in the determined direction, and the calculated phase. Based on this, it is characterized by including a phase control step of controlling the phase of radio waves radiated by each of the plurality of elements.
  • radio waves can be efficiently relayed even if the physical environment on the radio wave propagation path changes.
  • FIG. 8 is a diagram showing a configuration example of the wireless communication system 10 of the comparative example provided with the dynamic reflector.
  • a dynamic reflecting plate 13 provided with a plurality of reflecting elements reflects radio waves and relays them.
  • the base station 11 acquires channel information (CSI: Channel State Information) for all of the plurality of reflecting elements included in the dynamic reflector 13 and adjusts the phase of the radio wave reflected by the dynamic reflector 13.
  • CSI Channel State Information
  • the base station 11 has an advanced signal processing function for acquiring and processing channel information for all of a plurality of reflecting elements, and reflects on the dynamic reflector 13. There is a need for a function to notify information about the phase for changing the characteristics.
  • the base station 11 has an increased overhead for acquiring channel information, and if the number of reflecting elements is large, the amount of calculation for dynamically controlling the phase of the radio wave reflected by the dynamic reflector 13 is enormous. turn into.
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system 1 including a relay system according to an embodiment.
  • the wireless communication system 1 is configured such that, for example, one or more base stations 2 and one or more wireless terminals 3 perform wireless communication via a relay system 4.
  • the relay system 4 relays the signal transmitted by the base station 2 to each of the wireless terminals 3 by controlling a radiation unit (dynamic reflector or the like) provided with a plurality of elements (reflection element or the like), for example.
  • the signal transmitted by each of the wireless terminals 3 is relayed to the base station 2.
  • the wireless terminal 3 has a function of measuring (positioning) the position of its own station, and may transmit the measured position information indicating the position of its own station to the relay system 4.
  • the relay system 4 detects and analyzes the physical environment (including the degree of congestion and environmental changes) that affects radio waves such as cars and people moving on the radio wave propagation path, and uses the analysis results to analyze the index described later. Is calculated, the direction in which the emitting unit should form the beam is determined, and the phase of the radio wave to be emitted by each of the plurality of elements is calculated and dynamically controlled.
  • the relay system 4 dynamically controls the radiation direction of radio waves without using channel information for all of a plurality of elements and without having an advanced signal processing function for processing channel information for all of the elements. can do.
  • the relay system 4 dynamically controls the phase of the reflected radio wave will be described as an example, but the relay system 4 is equipped with a power amplifier and relays the radio wave by a repeater that forms a beam when the received radio wave is re-radiated. It may be configured as a device. Further, the relay system 4 may dynamically control the radiation direction (reflection direction or re-radiation direction) of the radio wave at an arbitrarily set timing.
  • FIG. 2 is a functional block diagram illustrating the functions of the relay system 4.
  • the relay system 4 has, for example, a relay unit 5 and a detection unit 6.
  • the relay unit 5 is a relay device that includes a radiation unit 50 that forms a beam and a relay control unit 52 that controls the radiation unit 50, and relays radio waves.
  • the detection unit 6 detects the physical environment (vehicles, people, etc. that shield the radio waves) on the radio wave propagation path that affects the beam formed by the radiation unit 50 as environmental information, and the detection result is the relay control unit 52. It is a detection device that outputs to.
  • the detection unit 6 is a camera or the like that captures the surrounding environment, and detects image data as environment information.
  • the detection unit 6 may be a radio wave sensor that receives radio waves and uses them as environmental information indicating the surrounding environment. In this case, the detection unit 6 detects, for example, the received power, the arrival time, the channel information, and the like of the received radio wave.
  • the timing at which the detection unit 6 detects the environmental information and the timing at which the detection unit 6 outputs the environmental information to the relay control unit 52 may be arbitrarily set in advance.
  • the radiation unit 50 is a dynamic reflector having a plurality of elements 500, for example, a plurality of elements 500 arranged in an array.
  • the element 500 reflects the radio wave transmitted by the base station 2 and the radio wave transmitted by the wireless terminal 3 according to the control of the relay control unit 52.
  • the element 500 is a so-called metamaterial and has a property of shifting the phase when reflecting radio waves.
  • the element 500 may be a repeater provided with a power amplifier and re-radiating received radio waves to form a beam. That is, the radiation unit 50 forms a beam in a predetermined direction by radiating radio waves from each of the plurality of elements 500.
  • the relay control unit 52 includes an analysis unit 520, a detection position estimation unit 521, an index calculation unit 522, a relay position estimation unit 523, a direction determination unit 524, a phase calculation unit 525, a phase control unit 526, and a plurality of phase conversion units 527. Have.
  • the analysis unit 520 analyzes the influence of the physical environment detected by the detection unit 6 on the radio wave (for example, the beam formed by the radiation unit 50), and outputs the analysis result to the index calculation unit 522.
  • the analysis unit 520 analyzes the environmental information detected by the detection unit 6 and estimates the type, position, moving speed and direction of objects existing in the surroundings, and the frequency of appearance in the surroundings.
  • the analysis unit 520 analyzes the image and determines an object (person, vehicle, etc.) included in the image. The analysis unit 520 also estimates the distance and position to the discriminated object from the image. Further, the analysis unit 520 estimates the moving speed and the moving direction of the object using a plurality of continuous images.
  • the analysis unit 520 determines the type, position, moving speed, moving direction, and moving direction of the object, for example, based on the relationship between the behavior of the radio wave learned in advance and the environment. Estimate the frequency of appearance.
  • the detection position estimation unit 521 estimates the position where the detection unit 6 detects the physical environment, and outputs the detection position information indicating the position where the detection unit 6 performs the detection to the index calculation unit 522.
  • the detection position estimation unit 521 has a sensor device (GPS, acceleration sensor, gyro sensor, magnetic force sensor, pressure sensor, etc.) and estimates the detection position information using the sensor device. Further, the detection position estimation unit 521 may periodically estimate the position of the detection unit 6 and update the detection position information.
  • the detection position estimation unit 521 may estimate the position of the detection unit 6 when the detection unit 6 is installed, or information indicating the position of the detection unit 6 manually input by the operator (latitude, Longitude, height, and related information) may be used as detection position information.
  • the index calculation unit 522 calculates an index that can be used by the direction determination unit 524 to determine the direction by using the detection position information output by the detection position estimation unit 521 and the analysis result output by the analysis unit 520.
  • the calculated index is output to the direction determination unit 524.
  • the index calculation unit 522 uses the type, distance and position, movement speed, movement direction, and the like of surrounding objects estimated by the analysis unit 520 to determine the direction in which the radiation unit 50 reflects (or re-radiates) the beam. Calculate the indicators available for the directional determination unit 524 to determine.
  • the index calculated by the index calculation unit 522 is, for example, the density of the object estimated by the analysis unit 520.
  • the index calculation unit 522 may estimate the number of objects existing in a predetermined area and calculate the density based on the position of the object estimated by the analysis unit 520.
  • the index calculation unit 522 may use the time that the object stays in a predetermined area as an index, calculates the average stay time of the object for each area, and calculates the product of the appearance frequency of the object and the average stay time. It may be used as an index. Then, the index calculation unit 522 may calculate and list the index for each area, and output the result of listing by giving priority to the area having the highest index value to the direction determination unit 524.
  • the relay position estimation unit 523 estimates the position where the relay unit 5 relays the radio wave, and outputs the relay position information indicating the position where the relay unit 5 relays the radio wave to the direction determination unit 524.
  • the relay position estimation unit 523 has a sensor device (GPS, acceleration sensor, gyro sensor, magnetic force sensor, pressure sensor, etc.) and estimates relay position information using the sensor device. Further, the relay position estimation unit 523 may periodically estimate the position of the relay unit 5 and update the relay position information.
  • the relay position estimation unit 523 may estimate the position of the relay unit 5 when the relay unit 5 is installed, or information indicating the position of the relay unit 5 manually input by the operator (latitude, Longitude, height, and related information) may be used as relay position information.
  • the relay position estimation unit 523 or the detection position estimation unit 521 Either may not be provided.
  • the direction determination unit 524 determines the direction (reflection or re-radiation) in which the radiation unit 50 should form a beam based on the relay position information output by the relay position estimation unit 523 and the index (for example, a list) calculated by the index calculation unit 522. The direction to be used) is determined, and the direction information indicating the determined direction is output to the phase calculation unit 525.
  • the direction determination unit 524 determines the direction of the area with the high density as the direction of reflection or re-radiation. Further, the direction determination unit 524 may determine the direction toward the center of the area, or may determine the direction toward the center of gravity of the object position at a certain moment in the area.
  • the direction determination unit 524 sets, for example, the area having the maximum value as the area with the highest priority. Similarly, determine the direction toward the area.
  • the phase calculation unit 525 calculates the phase of the radio wave to be radiated by each of the plurality of elements 500 so that the radiation unit 50 forms a beam in the direction determined by the direction determination unit 524, and the phase information indicating the calculated phase is obtained. Output to the phase control unit 526.
  • the phase calculation unit 525 calculates the phase amount to be controlled by the phase control unit 526 using the direction determined by the direction determination unit 524 and the direction toward the base station 2. At this time, the phase calculation unit 525 uses the preset position information (latitude, longitude, height) of the base station 2 and the relay position information estimated by the relay position estimation unit 523 to the base station 2. You may estimate the direction.
  • preset position information latitude, longitude, height
  • the phase calculation unit 525 includes the position information of the base station 2 estimated by the analysis unit 520 using the image data as the environment information and the above-mentioned.
  • the direction from the relay unit 5 to the base station 2 may be estimated by using the detected detection position information and the relay position information.
  • the phase calculation unit 525 divides the plurality of elements 500 into a plurality of element groups, and different radio waves are provided for each element group.
  • the phase of the radio wave radiated by each of the elements 500 may be calculated so as to radiate the radio wave toward the terminal 3.
  • the relay unit 5 having N elements 500 when the relay unit 5 having N elements 500 simultaneously reflects (or re-radiates) radio waves toward four high-priority areas, the area using N / 4 elements 500 for each area.
  • the phase of the radio wave may be calculated so as to radiate the radio wave in each direction.
  • the relay unit 5 can improve the communication quality of the plurality of areas at the same time, although the gain after the radiation of the radio wave is reduced.
  • the phase control unit 526 controls the phase of the radio wave radiated by each of the plurality of elements 500 by controlling each of the plurality of phase conversion units 527 based on the phase information calculated by the phase calculation unit 525.
  • the phase conversion unit 527 is provided individually for each element 500, for example, and performs conversion that changes the phase of the radio wave radiated by the element 500 according to the control from the phase control unit 526.
  • the phase control unit 526 controls each of the plurality of phase conversion units 527 so that the phase of the radio wave reflected by each of the plurality of elements 500 is slightly shifted based on the phase calculated by the phase calculation unit 525.
  • the phase conversion unit 527 dynamically changes the phase shift amount by the element 500 by changing the characteristics of the element 500 according to the control of the phase control unit 526. ..
  • the phase control unit 526 controls the radiation unit 50 to perform beamforming in a predetermined direction by changing the characteristics of the metamaterial, multiplying the amount of the phase change, or imparting a predetermined delay.
  • phase control unit 526 selects the phase amount closest to the phase (phase change amount) calculated by the phase calculation unit 525 from the configurable phase amounts. Then, each of the plurality of phase conversion units 527 is controlled.
  • FIG. 3 is a flowchart showing an operation example of the relay system 4.
  • the detection unit 6 first detects the surrounding physical environment as environmental information (S100).
  • the analysis unit 520 analyzes the environmental information (S102), and the detection position estimation unit 521 estimates the detection position of the detection unit 6 (S104).
  • the index calculation unit 522 calculates an index that can be used by the direction determination unit 524 to determine the direction by using the result analyzed by the analysis unit 520 and the detection position estimated by the detection position estimation unit 521 (S106). ).
  • the direction determination unit 524 calculates the relay position information estimated by the relay position estimation unit 523 and the index calculation unit 522.
  • the radiation direction in which the radiation unit 50 emits the beam is determined based on the index (S110).
  • the phase calculation unit 525 calculates the phase of the radio wave to be radiated by each of the plurality of elements 500 so that the radiation unit 50 radiates the beam in the direction determined by the direction determination unit 524 (S112).
  • phase control unit 526 controls the phase of the radio wave radiated by each of the plurality of elements 500 by controlling the plurality of phase conversion units 527 based on the phase calculated by the phase calculation unit 525 (S114). ..
  • the phase calculation unit 525 calculates the phase of the radio wave to be radiated by each of the plurality of elements 500 based on the physical environment detected by the detection unit 6, and each of the plurality of elements 500 calculates the phase. Since the phase control unit 526 controls the phase of the radiated radio wave, the radio wave can be efficiently relayed even if the physical environment on the radio wave propagation path changes. Further, since the relay system 4 controls the phase of the radio wave radiated by each of the elements 500 when the radio wave arrives, it is possible to expand the coverage by the base station 2.
  • FIG. 4 is a diagram showing a configuration example of a wireless communication system 1a including a relay system according to another embodiment.
  • the wireless communication system 1a is configured such that, for example, a base station 2 and a wireless terminal 3 perform wireless communication via a relay system 4a.
  • the relay system 4a has, for example, two detection devices 7-1 and 7-2, two relay devices 8-1, 8-2, and a relay control device 9.
  • the detection device 7 and the like when any one of a plurality of configurations such as the detection devices 7-1 and 7-2 is not specified, it is simply abbreviated as the detection device 7 and the like.
  • the detection device 7 has a function of detecting a physical environment (such as a vehicle or a person who shields radio waves) on a radio wave propagation path that affects radio waves as environmental information, and a detected environment. It has a function of transmitting information to the relay control device 9.
  • the detection device 7 is a camera or the like that captures the surrounding environment, detects image data as environment information, and transmits the image data to the relay control device 9.
  • the detection device 7 may be a radio wave sensor that receives radio waves and uses them as environmental information indicating the surrounding environment.
  • FIG. 5 is a functional block diagram illustrating the functions of the relay device 8.
  • the relay device 8 includes a radiation unit 50 that forms a beam and a control unit 52a that controls the radiation unit 50, and relays radio waves.
  • the functional blocks substantially the same as the functional block of the relay unit 5 shown in FIG. 2 are designated by the same reference numerals.
  • the control unit 52a has a reception unit 528, a phase control unit 526, and a plurality of phase conversion units 527.
  • the receiving unit 528 receives the information transmitted by the relay control device 9 and outputs it to the phase control unit 526.
  • FIG. 6 is a functional block diagram illustrating the functions of the relay control device 9.
  • the relay control device 9 includes, for example, a reception unit 90, an analysis unit 520, a detection position estimation unit 521, an index calculation unit 522, a relay position estimation unit 523, a direction determination unit 524, a phase calculation unit 525, and a phase calculation unit 525. It has a transmitter 92.
  • the functional blocks substantially the same as the functional block of the relay unit 5 shown in FIG. 2 are designated by the same reference numerals.
  • the receiving unit 90 receives the environmental information transmitted by each detection device 7 and outputs it to the analysis unit 520.
  • the transmission unit 92 transmits the phase (phase amount) of the radio wave calculated by the phase calculation unit 525 to the relay device 8 corresponding to each of the detection devices 7.
  • the wireless communication system 1a can reflect or re-radiate radio waves in the same manner as the above-mentioned wireless communication system 1 to enable wireless communication between the base station 2 and the wireless terminal 3.
  • the relay device 8 may be arranged near the corresponding detection device 7, or may be associated with the detection device 7 arranged at a distant position.
  • the relay control device 9 can cover, for example, an area where the relay devices 8-1 and 8-2 are the same (or a part thereof is common), and there are a plurality of areas having relatively high index values, or relay.
  • the relay device 8 having the shortest distance to the areas may be controlled to relay the radio waves.
  • the relay control device 9 controls so that the reflection (re-radiation) direction of the relay device 8 having the shortest distance to the area is assigned to the area, and the other relay device 8 is assigned to the area having the next highest priority. You may. Further, the relay control device 9 may repeat the same process even when the areas having the next highest priority overlap. Further, the relay control device 9 may perform the above processing when the upper limit of the number of relay devices 8 that allow duplication is set in advance and the number of relay devices 8 exceeds the upper limit.
  • the function of the relay control device 9 is not limited to the example shown in FIG.
  • the relay control device 9 may not have all the functions of the analysis unit 520, the detection position estimation unit 521, the index calculation unit 522, the relay position estimation unit 523, the direction determination unit 524, and the phase calculation unit 525. ..
  • each function of the relay control device 9 may be divided into a plurality of devices.
  • the method in which the relay control device 9 communicates with the detection device 7 and the relay device 8 may be wired communication or wireless communication, respectively.
  • each function of the relay control device 9 may be partially or wholly configured by hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or may be executed by a processor such as a CPU. It may be configured as a program to be processed.
  • hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array)
  • PLD Processable Logic Device
  • FPGA Field Programmable Gate Array
  • the relay control device 9 can be realized by using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
  • FIG. 7 is a diagram showing a hardware configuration example of the relay control device 9 according to the embodiment.
  • the relay control device 9 has an input unit 900, an output unit 910, a communication unit 920, a CPU 930, a memory 940, and an HDD 950 connected via a bus 960, and has a function as a computer. Further, the relay control device 9 is configured to be able to input / output data to / from a computer-readable storage medium 970.
  • the input unit 900 is, for example, a keyboard, a mouse, or the like.
  • the output unit 910 is a display device such as a display.
  • the communication unit 920 is a wired or wireless network interface.
  • the CPU 930 controls each part constituting the relay control device 9 and performs predetermined processing and the like.
  • the memory 940 and the HDD 950 are storage units for storing data and the like.
  • the storage medium 970 is capable of storing a program or the like for executing the function of the relay control device 9.
  • the architecture constituting the relay control device 9 is not limited to the example shown in FIG. 7.
  • a "computer-readable storage medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may include a program or a program that holds a program for a certain period of time, such as a volatile memory inside a computer that is a server or a client in that case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This relay system has: at least one radiation unit that forms a beam in a predetermined direction by a plurality of elements radiating respective radio waves; a detection unit for detecting a physical environment that is on a radio wave propagation path and that influences the beam formed by the radiation unit; a direction determination unit that determines a direction in which the radiation unit is to form a beam on the basis of the physical environment detected by the detection unit; a phase calculation unit that calculates respective phases of radio waves to be radiated by the plurality of elements such that the radiation unit forms a beam in the direction determined by the direction determination unit; and a phase control unit that controls the respective phases of radio waves to be radiated by the plurality of elements, on the basis of the phases calculated by the phase calculation unit.

Description

中継システム、中継制御装置、中継方法、及び中継制御プログラムRelay system, relay control device, relay method, and relay control program
 本発明は、中継システム、中継制御装置、中継方法、及び中継制御プログラムに関する。 The present invention relates to a relay system, a relay control device, a relay method, and a relay control program.
 無線アクセスの高速大容量化を図るために、広帯域を確保可能な高周波数帯を活用することが注目されている。例えば、第5世代移動通信システムでは28GHz帯を、無線LAN規格であるIEEE802.11ad(ミリ波無線LANシステム)では60GHz帯を用いて高速大容量化を実現している。 Attention is being paid to utilizing high frequency bands that can secure a wide band in order to increase the speed and capacity of wireless access. For example, the 5th generation mobile communication system uses the 28 GHz band, and the wireless LAN standard IEEE802.11ad (millimeter wave wireless LAN system) uses the 60 GHz band to realize high-speed and large capacity.
 高周波数帯の電波は、低周波数帯の電波よりも減衰しやすく、回折しづらい電波特性を有している。そのため、高周波数帯を活用する場合、伝送距離が短いことや、遮蔽によって受信品質が大きく劣化することが課題となっている。 Radio waves in the high frequency band are more easily attenuated than radio waves in the low frequency band, and have radio wave characteristics that are difficult to diffract. Therefore, when utilizing the high frequency band, there are problems that the transmission distance is short and the reception quality is greatly deteriorated due to shielding.
 電波の減衰を補償するためには、送受信局において多素子アンテナを用いたビームフォーミングが有効である。すなわち、ビームフォーミング利得によって電波減衰を補償し、伝送距離を延ばすことが可能である。 In order to compensate for the attenuation of radio waves, beamforming using a multi-element antenna is effective at the transmitting and receiving stations. That is, it is possible to compensate for the radio wave attenuation by the beamforming gain and extend the transmission distance.
 ビームフォーミングでは、送受信局の双方で特定の方向からの電波を強く送受信するため、受信局では電力の高い1つのパスからの電波を主に受信することになる。その結果、ビームフォーミングでは空間多重数が1(又は、偏波多重により2)にとどまり、同一信号を受信することによる空間ダイバーシチ効果も得づらくなっている。 In beamforming, both the transmitting and receiving stations strongly transmit and receive radio waves from a specific direction, so the receiving station mainly receives radio waves from one path with high power. As a result, in beamforming, the spatial multiplex is limited to 1 (or 2 due to polarization multiplex), and it is difficult to obtain the spatial diversity effect by receiving the same signal.
 一方、遮蔽や見通し外における受信品質の劣化を改善するためには、多数のアンテナを設置する方法がある。例えば、多くの送信アンテナを設置することにより、遮蔽や見通し外となる範囲を少なくすることができる。また、多くの送信アンテナを設置することにより、上述したビームフォーミングにおける課題を解決することも可能である。 On the other hand, there is a method of installing a large number of antennas in order to improve the shielding and deterioration of reception quality outside the line of sight. For example, by installing a large number of transmitting antennas, it is possible to reduce the range of shielding and out-of-sight. Further, by installing many transmitting antennas, it is possible to solve the above-mentioned problems in beamforming.
 しかし、多数の送信アンテナを設置することは、ネットワークコストの増加や設置場所の不足を招いてしまうという問題がある。多数の送信点を設けるという観点では、より低コストであり、かつ、設置規模や制約が小さい反射板などを活用することも有効である。 However, installing a large number of transmitting antennas has the problem of increasing network costs and causing a shortage of installation locations. From the viewpoint of providing a large number of transmission points, it is also effective to utilize a reflector or the like, which is lower in cost and has a smaller installation scale and restrictions.
 従来は、反射特性を動的に制御することは困難であった。しかし、メタサーフェスやアレー素子構成を用いた反射特性の動的制御が可能な反射板(動的反射板)が開発可能となったことから、動的反射板を用いて遮蔽や見通し外の範囲を小さくしつつ、空間多重化や空間ダイバーシチ利得を得る方法が実現可能となっている(例えば、非特許文献1,2,3参照)。 Conventionally, it was difficult to dynamically control the reflection characteristics. However, since it has become possible to develop a reflector (dynamic reflector) that can dynamically control the reflection characteristics using a metasurface or array element configuration, it is possible to use a dynamic reflector for shielding or a range outside the line of sight. It is possible to realize a method of obtaining spatial multiplexing and spatial diversity gain while reducing the size (see, for example, Non-Patent Documents 1, 2, and 3).
 動的反射板を制御する方法には、動的反射板が電波を反射させるときに、電波の位相を制御することよって電波の特性を変化させる方法がある。例えば、送受信局間のチャネル情報(CSI:Channel State Information)に基づいて、アレー素子で構成された動的反射板が反射させる電波の位相を変化させる方法がある(例えば、非特許文献3参照)。 As a method of controlling the dynamic reflector, there is a method of changing the characteristics of the radio wave by controlling the phase of the radio wave when the dynamic reflector reflects the radio wave. For example, there is a method of changing the phase of radio waves reflected by a dynamic reflector composed of an array element based on channel information (CSI: Channel State Information) between transmitting and receiving stations (see, for example, Non-Patent Document 3). ..
 しかしながら、送受信局間のチャネル情報に基づく従来方式では、受信局における特性を最適な状態にすることが可能であるが、電波が経由するアレー素子ごとのチャネル情報が必要になってしまう。例えば、動的反射板が100個のアレー素子からなる場合、100通りのチャネル情報に基づいて位相の変化量を算出する必要がある。 However, in the conventional method based on the channel information between the transmitting and receiving stations, it is possible to optimize the characteristics of the receiving station, but the channel information for each array element through which the radio wave passes is required. For example, when the dynamic reflector is composed of 100 array elements, it is necessary to calculate the amount of phase change based on 100 different channel information.
 つまり、チャネル情報を取得するために、大きなオーバーヘッドが生じてしまう。また、アレー素子それぞれの位相の変化量を算出するためには、一定の計算リソースが必要であると考えられるため、位相の変化量を基地局側で算出することが想定される。この場合には、基地局に新たな機能を持たせなければ、動的反射板による品質改善を実現することができない。 In other words, a large overhead is incurred in order to acquire channel information. Further, since it is considered that a certain calculation resource is required to calculate the phase change amount of each array element, it is assumed that the phase change amount is calculated on the base station side. In this case, quality improvement by the dynamic reflector cannot be realized unless the base station has a new function.
 また、基地局と動的反射板とは、離れた場所に設置されることが想定される。そのため、従来方法では、基地局が算出した位相の変化量を動的反射板に反映させるための通信手段が必要になり、動的反射板も当該基地局と連携するための機能が必要であった。 Also, it is assumed that the base station and the dynamic reflector will be installed in separate locations. Therefore, in the conventional method, a communication means for reflecting the phase change amount calculated by the base station on the dynamic reflector is required, and the dynamic reflector also needs a function for cooperating with the base station. rice field.
 また、動的反射板が電波を反射させる場合に、電波伝搬経路上に電波を遮蔽する車や人などが行き来していると、動的反射板が効率的に電波を中継することができないことがあった。 In addition, when the dynamic reflector reflects radio waves, if cars or people who block the radio waves come and go on the radio wave propagation path, the dynamic reflector cannot efficiently relay the radio waves. was there.
 本発明は、上述した課題を鑑みてなされたものであり、電波伝搬経路上の物理的な環境が変化しても、効率的に電波を中継することができる中継システム、中継制御装置、中継方法、及び中継制御プログラムを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is a relay system, a relay control device, and a relay method capable of efficiently relaying radio waves even if the physical environment on the radio wave propagation path changes. , And a relay control program.
 本発明の一態様にかかる中継システムは、1つ以上の無線端末と基地局との間で電波を中継する中継システムにおいて、複数の素子それぞれが電波を放射することによって所定の方向にビームを形成する1つ以上の放射部と、前記放射部が形成するビームに影響を与える電波伝搬経路上の物理的な環境を検出する1つ以上の検出部と、前記検出部が検出した物理的な環境に基づいて、前記放射部がビームを形成すべき方向を決定する方向決定部と、前記方向決定部が決定した方向に前記放射部がビームを形成するように、複数の前記素子それぞれが放射すべき電波の位相を算出する位相算出部と、前記位相算出部が算出した位相に基づいて、複数の前記素子それぞれが放射する電波の位相を制御する位相制御部とを有することを特徴とする。 The relay system according to one aspect of the present invention is a relay system that relays radio waves between one or more radio terminals and a base station, in which each of a plurality of elements radiates radio waves to form a beam in a predetermined direction. One or more radiation units, one or more detection units that detect the physical environment on the radio wave propagation path that affects the beam formed by the radiation unit, and the physical environment detected by the detection unit. Based on the above, the radiating section determines the direction in which the beam should be formed, and the plurality of elements radiate so that the radiating section forms the beam in the direction determined by the directional determination section. It is characterized by having a phase calculation unit for calculating the phase of radio waves to be power, and a phase control unit for controlling the phase of radio waves radiated by each of the plurality of the elements based on the phase calculated by the phase calculation unit.
 また、本発明の一態様にかかる中継制御装置は、複数の素子それぞれが設定された位相に応じて電波を放射することによって所定の方向にビームを形成する放射部を備えて、1つ以上の無線端末と基地局との間で電波を中継する1つ以上の中継装置を制御する中継制御装置において、前記放射部が形成するビームに影響を与える電波伝搬経路上の物理的な環境を検出する1つ以上の検出装置が検出した物理的な環境に基づいて、前記放射部がビームを形成すべき方向を決定する方向決定部と、前記方向決定部が決定した方向に前記放射部がビームを形成するように、複数の前記素子それぞれが放射すべき電波の位相を算出する位相算出部と、前記位相算出部が算出した位相を示す情報を前記中継装置へ送信する送信部とを有することを特徴とする。 Further, the relay control device according to one aspect of the present invention includes one or more radiation units that form a beam in a predetermined direction by radiating radio waves according to a set phase of each of the plurality of elements. In a relay control device that controls one or more relay devices that relay radio waves between a radio terminal and a base station, the physical environment on the radio wave propagation path that affects the beam formed by the radiation unit is detected. Based on the physical environment detected by one or more detectors, the radiating unit determines the direction in which the beam should be formed, and the radiating unit directs the beam in the direction determined by the radiating unit. It has a phase calculation unit that calculates the phase of radio waves to be radiated by each of the plurality of elements, and a transmission unit that transmits information indicating the phase calculated by the phase calculation unit to the relay device. It is a feature.
 また、本発明の一態様にかかる中継方法は、1つ以上の無線端末と基地局との間で電波を中継する中継方法において、複数の素子それぞれが電波を放射することによって所定の方向にビームを形成する1つ以上の放射部が形成するビームに影響を与える電波伝搬経路上の物理的な環境を検出する検出工程と、検出した物理的な環境に基づいて、前記放射部がビームを形成すべき方向を決定する方向決定工程と、決定した方向に前記放射部がビームを形成するように、複数の前記素子それぞれが放射すべき電波の位相を算出する位相算出工程と、算出した位相に基づいて、複数の前記素子それぞれが放射する電波の位相を制御する位相制御工程とを含むことを特徴とする。 Further, the relay method according to one aspect of the present invention is a relay method for relaying radio waves between one or more radio terminals and a base station, in which each of a plurality of elements radiates radio waves to cause a beam in a predetermined direction. The radiation unit forms a beam based on the detection step of detecting the physical environment on the radio wave propagation path that affects the beam formed by one or more radiation units forming the beam and the detected physical environment. In the direction determination step of determining the direction to be radiated, the phase calculation step of calculating the phase of the radio wave to be radiated by each of the plurality of elements so that the radiation unit forms a beam in the determined direction, and the calculated phase. Based on this, it is characterized by including a phase control step of controlling the phase of radio waves radiated by each of the plurality of elements.
 本発明によれば、電波伝搬経路上の物理的な環境が変化しても、効率的に電波を中継することができる。 According to the present invention, radio waves can be efficiently relayed even if the physical environment on the radio wave propagation path changes.
一実施形態にかかる中継システムを備えた無線通信システムの構成例を示す図である。It is a figure which shows the configuration example of the wireless communication system which includes the relay system which concerns on one Embodiment. 中継システムが有する機能を例示する機能ブロック図である。It is a functional block diagram which illustrates the function which a relay system has. 中継システムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of a relay system. 他の実施形態にかかる中継システムを備えた無線通信システムの構成例を示す図である。It is a figure which shows the configuration example of the wireless communication system which includes the relay system which concerns on another embodiment. 中継装置が有する機能を例示する機能ブロック図である。It is a functional block diagram which illustrates the function which a relay device has. 中継制御装置が有する機能を例示する機能ブロック図である。It is a functional block diagram which illustrates the function which a relay control device has. 一実施形態にかかる中継制御装置のハードウェア構成例を示す図である。It is a figure which shows the hardware configuration example of the relay control device which concerns on one Embodiment. 動的反射板を備えた比較例の無線通信システムの構成例を示す図である。It is a figure which shows the configuration example of the wireless communication system of the comparative example provided with the dynamic reflector.
 一実施形態にかかる中継システムを説明するにあたって、まず、本発明がなされるに至った背景について説明する。図8は、動的反射板を備えた比較例の無線通信システム10の構成例を示す図である。 In explaining the relay system according to the embodiment, first, the background leading to the present invention will be described. FIG. 8 is a diagram showing a configuration example of the wireless communication system 10 of the comparative example provided with the dynamic reflector.
 無線通信システム10は、基地局11と無線端末12とが無線通信を行うために、複数の反射素子を備える動的反射板13が電波を反射させて中継する。このとき、基地局11は、動的反射板13が備える複数の反射素子の全てに対するチャネル情報(CSI:Channel State Information)を取得し、動的反射板13が反射させる電波の位相を調整する。 In the wireless communication system 10, in order for the base station 11 and the wireless terminal 12 to perform wireless communication, a dynamic reflecting plate 13 provided with a plurality of reflecting elements reflects radio waves and relays them. At this time, the base station 11 acquires channel information (CSI: Channel State Information) for all of the plurality of reflecting elements included in the dynamic reflector 13 and adjusts the phase of the radio wave reflected by the dynamic reflector 13.
 したがって、基地局11は、一般的な基地局としての機能に加えて、複数の反射素子の全てに対するチャネル情報を取得して処理する高度な信号処理機能と、動的反射板13に対して反射特性を変化させるための位相に関する情報を通知する機能が必要である。 Therefore, in addition to the function as a general base station, the base station 11 has an advanced signal processing function for acquiring and processing channel information for all of a plurality of reflecting elements, and reflects on the dynamic reflector 13. There is a need for a function to notify information about the phase for changing the characteristics.
 つまり、基地局11は、チャネル情報を取得するためのオーバーヘッドが増加し、反射素子の数が多ければ動的反射板13が反射させる電波の位相を動的に制御するための演算量が膨大になってしまう。 That is, the base station 11 has an increased overhead for acquiring channel information, and if the number of reflecting elements is large, the amount of calculation for dynamically controlling the phase of the radio wave reflected by the dynamic reflector 13 is enormous. turn into.
 次に、一実施形態にかかる中継システムを備えた無線通信システムについて説明する。図1は、一実施形態にかかる中継システムを備えた無線通信システム1の構成例を示す図である。図1に示すように、無線通信システム1は、例えば1台以上の基地局2と、1台以上の無線端末3とが中継システム4を介して無線通信を行うように構成されている。 Next, a wireless communication system including a relay system according to an embodiment will be described. FIG. 1 is a diagram showing a configuration example of a wireless communication system 1 including a relay system according to an embodiment. As shown in FIG. 1, the wireless communication system 1 is configured such that, for example, one or more base stations 2 and one or more wireless terminals 3 perform wireless communication via a relay system 4.
 中継システム4は、例えば複数の素子(反射素子など)を備えた放射部(動的反射板など)を制御することにより、基地局2が送信する信号を無線端末3それぞれに対して中継し、無線端末3それぞれが送信する信号を基地局2へ中継する。無線端末3は、自局の位置を測定(測位)する機能を備え、測定した自局の位置を示す位置情報を中継システム4へ送信してもよい。 The relay system 4 relays the signal transmitted by the base station 2 to each of the wireless terminals 3 by controlling a radiation unit (dynamic reflector or the like) provided with a plurality of elements (reflection element or the like), for example. The signal transmitted by each of the wireless terminals 3 is relayed to the base station 2. The wireless terminal 3 has a function of measuring (positioning) the position of its own station, and may transmit the measured position information indicating the position of its own station to the relay system 4.
 中継システム4は、電波伝搬経路上で移動する車や人などの電波に影響を与える物理的な環境(混雑度や環境変化を含む)を検出して解析し、解析結果を用いて後述する指標を算出して、放射部がビームを形成すべき方向を決定し、複数の素子それぞれが放射すべき電波の位相を算出して動的に制御する。 The relay system 4 detects and analyzes the physical environment (including the degree of congestion and environmental changes) that affects radio waves such as cars and people moving on the radio wave propagation path, and uses the analysis results to analyze the index described later. Is calculated, the direction in which the emitting unit should form the beam is determined, and the phase of the radio wave to be emitted by each of the plurality of elements is calculated and dynamically controlled.
 つまり、中継システム4は、複数の素子の全てに対するチャネル情報を用いることなく、素子の全てに対するチャネル情報を処理する高度な信号処理機能を備えていなくても、電波の放射方向を動的に制御することができる。ここでは、中継システム4は、反射する電波の位相を動的に制御する場合を例に説明するが、電力増幅器を備えて受信した電波の再放射時にビームを形成するリピータによって電波を中継する中継装置として構成されてもよい。また、中継システム4は、任意に設定されたタイミングで電波の放射方向(反射方向又は再放射方向)を動的に制御してもよい。 That is, the relay system 4 dynamically controls the radiation direction of radio waves without using channel information for all of a plurality of elements and without having an advanced signal processing function for processing channel information for all of the elements. can do. Here, the case where the relay system 4 dynamically controls the phase of the reflected radio wave will be described as an example, but the relay system 4 is equipped with a power amplifier and relays the radio wave by a repeater that forms a beam when the received radio wave is re-radiated. It may be configured as a device. Further, the relay system 4 may dynamically control the radiation direction (reflection direction or re-radiation direction) of the radio wave at an arbitrarily set timing.
 次に、中継システム4の具体例について説明する。図2は、中継システム4が有する機能を例示する機能ブロック図である。図2に示すように、中継システム4は、例えば中継部5及び検出部6を有する。 Next, a specific example of the relay system 4 will be described. FIG. 2 is a functional block diagram illustrating the functions of the relay system 4. As shown in FIG. 2, the relay system 4 has, for example, a relay unit 5 and a detection unit 6.
 中継部5は、ビームを形成する放射部50と、放射部50を制御する中継制御部52を備えて、電波を中継する中継装置である。 The relay unit 5 is a relay device that includes a radiation unit 50 that forms a beam and a relay control unit 52 that controls the radiation unit 50, and relays radio waves.
 検出部6は、例えば放射部50が形成するビームに影響を与える電波伝搬経路上の物理的な環境(電波を遮蔽する車両や人など)を環境情報として検出し、検出結果を中継制御部52に対して出力する検出装置である。例えば、検出部6は、周辺の環境を撮影するカメラなどであり、画像データを環境情報として検出する。 For example, the detection unit 6 detects the physical environment (vehicles, people, etc. that shield the radio waves) on the radio wave propagation path that affects the beam formed by the radiation unit 50 as environmental information, and the detection result is the relay control unit 52. It is a detection device that outputs to. For example, the detection unit 6 is a camera or the like that captures the surrounding environment, and detects image data as environment information.
 また、検出部6は、電波を受信して周辺の環境を示す環境情報とする電波センサであってもよい。この場合、検出部6は、例えば受信した電波の受信電力、到来時間、チャネル情報などを検出する。検出部6が環境情報を検出するタイミング、及び中継制御部52へ出力するタイミングは予め任意に設定されてもよい。 Further, the detection unit 6 may be a radio wave sensor that receives radio waves and uses them as environmental information indicating the surrounding environment. In this case, the detection unit 6 detects, for example, the received power, the arrival time, the channel information, and the like of the received radio wave. The timing at which the detection unit 6 detects the environmental information and the timing at which the detection unit 6 outputs the environmental information to the relay control unit 52 may be arbitrarily set in advance.
 より具体的には、放射部50は、複数の素子500を備え、例えば複数の素子500がアレー状に配置された動的反射板である。素子500は、基地局2が送信する電波、及び、無線端末3が送信する電波を中継制御部52の制御に応じて反射させる。例えば、素子500は、いわゆるメタマテリアルであり、電波を反射させるときに位相をシフトさせる特性を有する。 More specifically, the radiation unit 50 is a dynamic reflector having a plurality of elements 500, for example, a plurality of elements 500 arranged in an array. The element 500 reflects the radio wave transmitted by the base station 2 and the radio wave transmitted by the wireless terminal 3 according to the control of the relay control unit 52. For example, the element 500 is a so-called metamaterial and has a property of shifting the phase when reflecting radio waves.
 また、素子500は、電力増幅器を備え、受信した電波を再放射してビームを形成するリピータであってもよい。つまり、放射部50は、複数の素子500それぞれが電波を放射することによって所定の方向にビームを形成する。 Further, the element 500 may be a repeater provided with a power amplifier and re-radiating received radio waves to form a beam. That is, the radiation unit 50 forms a beam in a predetermined direction by radiating radio waves from each of the plurality of elements 500.
 中継制御部52は、解析部520、検出位置推定部521、指標算出部522、中継位置推定部523、方向決定部524、位相算出部525、位相制御部526、及び複数の位相変換部527を有する。 The relay control unit 52 includes an analysis unit 520, a detection position estimation unit 521, an index calculation unit 522, a relay position estimation unit 523, a direction determination unit 524, a phase calculation unit 525, a phase control unit 526, and a plurality of phase conversion units 527. Have.
 解析部520は、検出部6が検出した物理的な環境が電波(例えば放射部50が形成するビーム)に与える影響を解析し、解析結果を指標算出部522に対して出力する。 The analysis unit 520 analyzes the influence of the physical environment detected by the detection unit 6 on the radio wave (for example, the beam formed by the radiation unit 50), and outputs the analysis result to the index calculation unit 522.
 例えば、解析部520は、検出部6が検出した環境情報を解析し、周囲に存在する物体の種類、位置、移動速度や方向、及び周辺に出現する頻度などを推定する。 For example, the analysis unit 520 analyzes the environmental information detected by the detection unit 6 and estimates the type, position, moving speed and direction of objects existing in the surroundings, and the frequency of appearance in the surroundings.
 具体的には、解析部520は、環境情報がカメラで撮影した画像データである場合、画像を解析し、画像に含まれている物体(人、車両など)を判別する。また、解析部520は、判別した物体までの距離や位置についても画像から推定する。さらに、解析部520は、連続する複数の画像を用いて物体の移動速度や移動方向を推定する。 Specifically, when the environmental information is image data taken by a camera, the analysis unit 520 analyzes the image and determines an object (person, vehicle, etc.) included in the image. The analysis unit 520 also estimates the distance and position to the discriminated object from the image. Further, the analysis unit 520 estimates the moving speed and the moving direction of the object using a plurality of continuous images.
 また、解析部520は、環境情報が電波センサにより検出された情報である場合、例えば予め学習した電波の振る舞いと環境との関係に基づいて、物体の種類、位置、移動速度、移動方向、及び出現頻度などを推定する。 Further, when the environmental information is the information detected by the radio wave sensor, the analysis unit 520 determines the type, position, moving speed, moving direction, and moving direction of the object, for example, based on the relationship between the behavior of the radio wave learned in advance and the environment. Estimate the frequency of appearance.
 検出位置推定部521は、検出部6が物理的な環境を検出する位置を推定し、検出部6が検出を行う位置を示す検出位置情報を指標算出部522に対して出力する。例えば、検出位置推定部521は、センサ装置(GPS、加速度センサ、ジャイロセンサ、磁力センサ、気圧センサなど)を有し、当該センサ装置を用いて検出位置情報を推定する。さらに、検出位置推定部521は、定期的に検出部6の位置を推定し、検出位置情報を更新してもよい。 The detection position estimation unit 521 estimates the position where the detection unit 6 detects the physical environment, and outputs the detection position information indicating the position where the detection unit 6 performs the detection to the index calculation unit 522. For example, the detection position estimation unit 521 has a sensor device (GPS, acceleration sensor, gyro sensor, magnetic force sensor, pressure sensor, etc.) and estimates the detection position information using the sensor device. Further, the detection position estimation unit 521 may periodically estimate the position of the detection unit 6 and update the detection position information.
 また、検出位置推定部521は、検出部6が設置されたときに当該検出部6の位置を推定してもよいし、作業者が手動で入力した検出部6の位置を示す情報(緯度、経度、高さ、及びこれらに関連する情報)を検出位置情報として用いてもよい。 Further, the detection position estimation unit 521 may estimate the position of the detection unit 6 when the detection unit 6 is installed, or information indicating the position of the detection unit 6 manually input by the operator (latitude, Longitude, height, and related information) may be used as detection position information.
 指標算出部522は、検出位置推定部521が出力した検出位置情報と、解析部520が出力した解析結果を用いて、方向決定部524が方向を決定するために利用可能な指標を算出し、算出した指標を方向決定部524に対して出力する。 The index calculation unit 522 calculates an index that can be used by the direction determination unit 524 to determine the direction by using the detection position information output by the detection position estimation unit 521 and the analysis result output by the analysis unit 520. The calculated index is output to the direction determination unit 524.
 例えば、指標算出部522は、解析部520が推定した周囲の物体の種別、距離や位置、移動速度、及び移動方向などを用いて、放射部50がビームを反射(又は再放射)させる方向を方向決定部524が決定するために利用可能な指標を算出する。 For example, the index calculation unit 522 uses the type, distance and position, movement speed, movement direction, and the like of surrounding objects estimated by the analysis unit 520 to determine the direction in which the radiation unit 50 reflects (or re-radiates) the beam. Calculate the indicators available for the directional determination unit 524 to determine.
 指標算出部522が算出する指標は、例えば解析部520が推定した物体の密度などである。例えば、指標算出部522は、解析部520が推定した物体の位置に基づいて、所定のエリア内に存在する物体の数を推定して密度を算出してもよい。 The index calculated by the index calculation unit 522 is, for example, the density of the object estimated by the analysis unit 520. For example, the index calculation unit 522 may estimate the number of objects existing in a predetermined area and calculate the density based on the position of the object estimated by the analysis unit 520.
 さらに、指標算出部522は、物体が所定のエリア内に滞在する時間を指標として用いてもよいし、エリアごとに物体の平均滞在時間を算出し、物体の出現頻度と平均滞在時間の積を指標として用いてもよい。そして、指標算出部522は、エリアごとに指標を算出してリスト化し、指標値が高いエリアから順に優先度をつけてリスト化した結果を方向決定部524へ出力してもよい。 Further, the index calculation unit 522 may use the time that the object stays in a predetermined area as an index, calculates the average stay time of the object for each area, and calculates the product of the appearance frequency of the object and the average stay time. It may be used as an index. Then, the index calculation unit 522 may calculate and list the index for each area, and output the result of listing by giving priority to the area having the highest index value to the direction determination unit 524.
 中継位置推定部523は、中継部5が電波を中継する位置を推定し、中継部5が電波を中継する位置を示す中継位置情報を方向決定部524に対して出力する。例えば、中継位置推定部523は、センサ装置(GPS、加速度センサ、ジャイロセンサ、磁力センサ、気圧センサなど)を有し、当該センサ装置を用いて中継位置情報を推定する。さらに、中継位置推定部523は、定期的に中継部5の位置を推定し、中継位置情報を更新してもよい。 The relay position estimation unit 523 estimates the position where the relay unit 5 relays the radio wave, and outputs the relay position information indicating the position where the relay unit 5 relays the radio wave to the direction determination unit 524. For example, the relay position estimation unit 523 has a sensor device (GPS, acceleration sensor, gyro sensor, magnetic force sensor, pressure sensor, etc.) and estimates relay position information using the sensor device. Further, the relay position estimation unit 523 may periodically estimate the position of the relay unit 5 and update the relay position information.
 また、中継位置推定部523は、中継部5が設置されたときに当該中継部5の位置を推定してもよいし、作業者が手動で入力した中継部5の位置を示す情報(緯度、経度、高さ、及びこれらに関連する情報)を中継位置情報として用いてもよい。 Further, the relay position estimation unit 523 may estimate the position of the relay unit 5 when the relay unit 5 is installed, or information indicating the position of the relay unit 5 manually input by the operator (latitude, Longitude, height, and related information) may be used as relay position information.
 なお、中継部5と検出部6とが一体として構成されている場合には、中継位置情報と上述した検出位置情報とが同じ値であるとして、中継位置推定部523又は検出位置推定部521のいずれかが設けられなくてもよい。 When the relay unit 5 and the detection unit 6 are integrally configured, it is assumed that the relay position information and the above-mentioned detection position information have the same value, and the relay position estimation unit 523 or the detection position estimation unit 521 Either may not be provided.
 方向決定部524は、中継位置推定部523が出力した中継位置情報と、指標算出部522が算出した指標(例えばリスト)に基づいて、放射部50がビームを形成すべき方向(反射又は再放射する方向)を決定し、決定した方向を示す方向情報を位相算出部525に対して出力する。 The direction determination unit 524 determines the direction (reflection or re-radiation) in which the radiation unit 50 should form a beam based on the relay position information output by the relay position estimation unit 523 and the index (for example, a list) calculated by the index calculation unit 522. The direction to be used) is determined, and the direction information indicating the determined direction is output to the phase calculation unit 525.
 例えば、方向決定部524は、指標算出部522が算出した指標が密度である場合、当該密度が高いエリアの方向を反射又は再放射する方向として決定する。また、方向決定部524は、当該エリアの中心に向けて方向を決定してもよいし、当該エリアにおけるある瞬間の物体位置の重心に向けて方向を決定してもよい。 For example, when the index calculated by the index calculation unit 522 is the density, the direction determination unit 524 determines the direction of the area with the high density as the direction of reflection or re-radiation. Further, the direction determination unit 524 may determine the direction toward the center of the area, or may determine the direction toward the center of gravity of the object position at a certain moment in the area.
 また、方向決定部524は、指標算出部522が算出した指標が物体の滞在時間や出現頻度と平均滞在時間の積である場合、例えば値が最大であるエリアを最も優先度が高いエリアとし、当該エリアに向けて同様に方向を決定する。 Further, when the index calculated by the index calculation unit 522 is the product of the stay time or appearance frequency of the object and the average stay time, the direction determination unit 524 sets, for example, the area having the maximum value as the area with the highest priority. Similarly, determine the direction toward the area.
 位相算出部525は、方向決定部524が決定した方向に放射部50がビームを形成するように、複数の素子500それぞれが放射すべき電波の位相を算出し、算出した位相を示す位相情報を位相制御部526に対して出力する。 The phase calculation unit 525 calculates the phase of the radio wave to be radiated by each of the plurality of elements 500 so that the radiation unit 50 forms a beam in the direction determined by the direction determination unit 524, and the phase information indicating the calculated phase is obtained. Output to the phase control unit 526.
 例えば、位相算出部525は、方向決定部524が決定した方向、及び基地局2への方向を用いて、位相制御部526が制御すべき位相量を算出する。このとき、位相算出部525は、予め設定された基地局2の位置情報(緯度、経度、高さ)と、中継位置推定部523が推定した中継位置情報とを用いて、基地局2への方向を推定してもよい。 For example, the phase calculation unit 525 calculates the phase amount to be controlled by the phase control unit 526 using the direction determined by the direction determination unit 524 and the direction toward the base station 2. At this time, the phase calculation unit 525 uses the preset position information (latitude, longitude, height) of the base station 2 and the relay position information estimated by the relay position estimation unit 523 to the base station 2. You may estimate the direction.
 また、位相算出部525は、検出部6がカメラであって周辺の環境を撮影している場合、環境情報となる画像データを用いて解析部520が推定した基地局2の位置情報と、上述した検出位置情報及び中継位置情報を用いて、中継部5から基地局2への方向を推定してもよい。 Further, when the detection unit 6 is a camera and the surrounding environment is photographed, the phase calculation unit 525 includes the position information of the base station 2 estimated by the analysis unit 520 using the image data as the environment information and the above-mentioned. The direction from the relay unit 5 to the base station 2 may be estimated by using the detected detection position information and the relay position information.
 また、位相算出部525は、1つの放射部50が複数の無線端末3から送信された電波を用いて放射する場合、複数の素子500を複数の素子群に分割し、素子群ごとに異なる無線端末3に向けて電波を放射するように、素子500それぞれが放射する電波の位相を算出してもよい。 Further, when one radiation unit 50 radiates using radio waves transmitted from a plurality of radio terminals 3, the phase calculation unit 525 divides the plurality of elements 500 into a plurality of element groups, and different radio waves are provided for each element group. The phase of the radio wave radiated by each of the elements 500 may be calculated so as to radiate the radio wave toward the terminal 3.
 例えば、N個の素子500を有する中継部5は、優先度が高い4つのエリアに向けて同時に電波を反射(又は再放射)する場合、エリアごとにN/4個の素子500を用いてエリアそれぞれの方向へ電波を放射するように電波の位相を算出してもよい。この場合、中継部5は、電波の放射後の利得が減少するものの、複数のエリアの通信品質を同時に改善することができる。 For example, when the relay unit 5 having N elements 500 simultaneously reflects (or re-radiates) radio waves toward four high-priority areas, the area using N / 4 elements 500 for each area. The phase of the radio wave may be calculated so as to radiate the radio wave in each direction. In this case, the relay unit 5 can improve the communication quality of the plurality of areas at the same time, although the gain after the radiation of the radio wave is reduced.
 位相制御部526は、位相算出部525が算出した位相情報に基づいて、複数の位相変換部527をそれぞれ制御することにより、複数の素子500それぞれが放射する電波の位相を制御する。位相変換部527は、例えば素子500それぞれに対して個別に設けられ、素子500が放射する電波の位相を位相制御部526からの制御に応じて変化させる変換を行う。 The phase control unit 526 controls the phase of the radio wave radiated by each of the plurality of elements 500 by controlling each of the plurality of phase conversion units 527 based on the phase information calculated by the phase calculation unit 525. The phase conversion unit 527 is provided individually for each element 500, for example, and performs conversion that changes the phase of the radio wave radiated by the element 500 according to the control from the phase control unit 526.
 例えば、位相制御部526は、位相算出部525が算出した位相に基づいて、複数の素子500それぞれが反射させる電波の位相が少しずつずれるように、複数の位相変換部527それぞれを制御する。例えば、素子500が上述したメタマテリアルである場合、位相変換部527は、位相制御部526の制御に応じて素子500の特性を変化させることにより、素子500による位相シフト量を動的に変化させる。このように、位相制御部526は、メタマテリアルの特性変化、位相変化量の乗算、又は所定の遅延の付与などにより、放射部50が所定の方向にビームフォーミングを行うように制御を行う。 For example, the phase control unit 526 controls each of the plurality of phase conversion units 527 so that the phase of the radio wave reflected by each of the plurality of elements 500 is slightly shifted based on the phase calculated by the phase calculation unit 525. For example, when the element 500 is the above-mentioned metamaterial, the phase conversion unit 527 dynamically changes the phase shift amount by the element 500 by changing the characteristics of the element 500 according to the control of the phase control unit 526. .. In this way, the phase control unit 526 controls the radiation unit 50 to perform beamforming in a predetermined direction by changing the characteristics of the metamaterial, multiplying the amount of the phase change, or imparting a predetermined delay.
 素子500に対する制御可能な位相量が離散的である場合、位相制御部526は、位相算出部525が算出した位相(位相変化量)に最も近い位相量を、設定可能な位相量の中から選択して複数の位相変換部527それぞれを制御する。 When the controllable phase amount with respect to the element 500 is discrete, the phase control unit 526 selects the phase amount closest to the phase (phase change amount) calculated by the phase calculation unit 525 from the configurable phase amounts. Then, each of the plurality of phase conversion units 527 is controlled.
 次に、中継システム4の動作例について説明する。図3は、中継システム4の動作例を示すフローチャートである。図3に示すように、中継システム4は、まず検出部6が周辺の物理的な環境を環境情報として検出する(S100)。 Next, an operation example of the relay system 4 will be described. FIG. 3 is a flowchart showing an operation example of the relay system 4. As shown in FIG. 3, in the relay system 4, the detection unit 6 first detects the surrounding physical environment as environmental information (S100).
 そして、中継システム4は、解析部520が環境情報を解析し(S102)、検出位置推定部521が検出部6の検出位置を推定する(S104)。 Then, in the relay system 4, the analysis unit 520 analyzes the environmental information (S102), and the detection position estimation unit 521 estimates the detection position of the detection unit 6 (S104).
 指標算出部522は、解析部520が解析した結果と、検出位置推定部521が推定した検出位置とを用いて、方向決定部524が方向を決定するために利用可能な指標を算出する(S106)。 The index calculation unit 522 calculates an index that can be used by the direction determination unit 524 to determine the direction by using the result analyzed by the analysis unit 520 and the detection position estimated by the detection position estimation unit 521 (S106). ).
 また、中継部5が電波を中継する中継位置を中継位置推定部523が推定すると(S108)、方向決定部524は、中継位置推定部523が推定した中継位置情報と、指標算出部522が算出した指標とに基づいて、放射部50がビームを放射する放射方向を決定する(S110)。 Further, when the relay position estimation unit 523 estimates the relay position where the relay unit 5 relays the radio wave (S108), the direction determination unit 524 calculates the relay position information estimated by the relay position estimation unit 523 and the index calculation unit 522. The radiation direction in which the radiation unit 50 emits the beam is determined based on the index (S110).
 位相算出部525は、方向決定部524が決定した方向に放射部50がビームを放射するように、複数の素子500それぞれが放射すべき電波の位相を算出する(S112)。 The phase calculation unit 525 calculates the phase of the radio wave to be radiated by each of the plurality of elements 500 so that the radiation unit 50 radiates the beam in the direction determined by the direction determination unit 524 (S112).
 そして、位相制御部526は、位相算出部525が算出した位相に基づいて、複数の位相変換部527をそれぞれ制御することにより、複数の素子500それぞれが放射する電波の位相を制御する(S114)。 Then, the phase control unit 526 controls the phase of the radio wave radiated by each of the plurality of elements 500 by controlling the plurality of phase conversion units 527 based on the phase calculated by the phase calculation unit 525 (S114). ..
 このように、中継システム4は、検出部6が検出した物理的な環境に基づいて、複数の素子500それぞれが放射すべき電波の位相を位相算出部525が算出し、複数の素子500それぞれが放射する電波の位相を位相制御部526が制御するので、電波伝搬経路上の物理的な環境が変化しても、効率的に電波を中継することができる。また、中継システム4は、電波の到来時に素子500それぞれが放射する電波の位相を制御するので、基地局2によるカバレッジを拡大することも可能である。 In this way, in the relay system 4, the phase calculation unit 525 calculates the phase of the radio wave to be radiated by each of the plurality of elements 500 based on the physical environment detected by the detection unit 6, and each of the plurality of elements 500 calculates the phase. Since the phase control unit 526 controls the phase of the radiated radio wave, the radio wave can be efficiently relayed even if the physical environment on the radio wave propagation path changes. Further, since the relay system 4 controls the phase of the radio wave radiated by each of the elements 500 when the radio wave arrives, it is possible to expand the coverage by the base station 2.
 次に、他の実施形態にかかる中継システムを備えた無線通信システムについて説明する。図4は、他の実施形態にかかる中継システムを備えた無線通信システム1aの構成例を示す図である。図4に示すように、無線通信システム1aは、例えば基地局2と無線端末3とが中継システム4aを介して無線通信を行うように構成されている。 Next, a wireless communication system including a relay system according to another embodiment will be described. FIG. 4 is a diagram showing a configuration example of a wireless communication system 1a including a relay system according to another embodiment. As shown in FIG. 4, the wireless communication system 1a is configured such that, for example, a base station 2 and a wireless terminal 3 perform wireless communication via a relay system 4a.
 中継システム4aは、例えば2台の検出装置7-1,7-2、2台の中継装置8-1,8-2、及び中継制御装置9を有する。以下、検出装置7-1,7-2のように複数ある構成のいずれかを特定しない場合には、単に検出装置7などと略記する。 The relay system 4a has, for example, two detection devices 7-1 and 7-2, two relay devices 8-1, 8-2, and a relay control device 9. Hereinafter, when any one of a plurality of configurations such as the detection devices 7-1 and 7-2 is not specified, it is simply abbreviated as the detection device 7 and the like.
 検出装置7は、上述した検出部6と同様に、電波に影響を与える電波伝搬経路上の物理的な環境(電波を遮蔽する車両や人など)を環境情報として検出する機能と、検出した環境情報を中継制御装置9へ送信する機能とを有する。例えば、検出装置7は、周辺の環境を撮影するカメラなどであり、画像データを環境情報として検出し、中継制御装置9に対して送信する。また、検出装置7は、電波を受信して周辺の環境を示す環境情報とする電波センサであってもよい。 Similar to the detection unit 6 described above, the detection device 7 has a function of detecting a physical environment (such as a vehicle or a person who shields radio waves) on a radio wave propagation path that affects radio waves as environmental information, and a detected environment. It has a function of transmitting information to the relay control device 9. For example, the detection device 7 is a camera or the like that captures the surrounding environment, detects image data as environment information, and transmits the image data to the relay control device 9. Further, the detection device 7 may be a radio wave sensor that receives radio waves and uses them as environmental information indicating the surrounding environment.
 図5は、中継装置8が有する機能を例示する機能ブロック図である。図5に示すように、中継装置8は、ビームを形成する放射部50と、放射部50を制御する制御部52aを備えて、電波を中継する。なお、図5に示した中継装置8が有する機能ブロックにおいて、図2に示した中継部5が有する機能ブロックと実質的に同一の機能ブロックには同一の符号が付してある。 FIG. 5 is a functional block diagram illustrating the functions of the relay device 8. As shown in FIG. 5, the relay device 8 includes a radiation unit 50 that forms a beam and a control unit 52a that controls the radiation unit 50, and relays radio waves. In the functional block of the relay device 8 shown in FIG. 5, the functional blocks substantially the same as the functional block of the relay unit 5 shown in FIG. 2 are designated by the same reference numerals.
 制御部52aは、受信部528、位相制御部526、及び複数の位相変換部527を有する。受信部528は、中継制御装置9が送信する情報を受信し、位相制御部526に対して出力する。 The control unit 52a has a reception unit 528, a phase control unit 526, and a plurality of phase conversion units 527. The receiving unit 528 receives the information transmitted by the relay control device 9 and outputs it to the phase control unit 526.
 図6は、中継制御装置9が有する機能を例示する機能ブロック図である。図6に示すように、中継制御装置9は、例えば受信部90、解析部520、検出位置推定部521、指標算出部522、中継位置推定部523、方向決定部524、位相算出部525、及び送信部92を有する。なお、図6に示した中継制御装置9が有する機能ブロックにおいて、図2に示した中継部5が有する機能ブロックと実質的に同一の機能ブロックには同一の符号が付してある。 FIG. 6 is a functional block diagram illustrating the functions of the relay control device 9. As shown in FIG. 6, the relay control device 9 includes, for example, a reception unit 90, an analysis unit 520, a detection position estimation unit 521, an index calculation unit 522, a relay position estimation unit 523, a direction determination unit 524, a phase calculation unit 525, and a phase calculation unit 525. It has a transmitter 92. In the functional block of the relay control device 9 shown in FIG. 6, the functional blocks substantially the same as the functional block of the relay unit 5 shown in FIG. 2 are designated by the same reference numerals.
 受信部90は、各検出装置7が送信した環境情報を受信し、解析部520に対して出力する。送信部92は、位相算出部525が算出した電波の位相(位相量)を、検出装置7それぞれに対応する中継装置8に対してそれぞれ送信する。 The receiving unit 90 receives the environmental information transmitted by each detection device 7 and outputs it to the analysis unit 520. The transmission unit 92 transmits the phase (phase amount) of the radio wave calculated by the phase calculation unit 525 to the relay device 8 corresponding to each of the detection devices 7.
 つまり、無線通信システム1aは、上述した無線通信システム1と同様に電波を反射又は再放射させて、基地局2と無線端末3との間で無線通信を可能にすることができる。なお、中継装置8は、対応する検出装置7の近くに配置されてもよいし、離れた位置に配置された検出装置7に対応づけられてもよい。 That is, the wireless communication system 1a can reflect or re-radiate radio waves in the same manner as the above-mentioned wireless communication system 1 to enable wireless communication between the base station 2 and the wireless terminal 3. The relay device 8 may be arranged near the corresponding detection device 7, or may be associated with the detection device 7 arranged at a distant position.
 また、中継制御装置9は、例えば中継装置8-1,8-2が同一(又は一部が共通)のエリアをカバーでき、比較的指標の値が高いエリアが複数存在する場合、又は、中継装置8-1,8-2それぞれの最も優先度が高いエリアが重なった場合には、当該エリアまでの距離が最も短い中継装置8が電波を中継するように制御を行ってもよい。 Further, the relay control device 9 can cover, for example, an area where the relay devices 8-1 and 8-2 are the same (or a part thereof is common), and there are a plurality of areas having relatively high index values, or relay. When the areas having the highest priority of the devices 8-1 and 8-2 overlap each other, the relay device 8 having the shortest distance to the areas may be controlled to relay the radio waves.
 また、中継制御装置9は、当該エリアまでの距離が最も短い中継装置8の反射(再放射)方向を当該エリアに割当て、他の中継装置8を次に優先度の高いエリアに割当てるように制御してもよい。また、中継制御装置9は、次に優先度が高いエリアが重なった場合にも同様の処理を繰り返してもよい。さらに、中継制御装置9は、重複を許容する中継装置8の数の上限が予め設定され、中継装置8の数が上限を超えた場合に上述の処理を行ってもよい。 Further, the relay control device 9 controls so that the reflection (re-radiation) direction of the relay device 8 having the shortest distance to the area is assigned to the area, and the other relay device 8 is assigned to the area having the next highest priority. You may. Further, the relay control device 9 may repeat the same process even when the areas having the next highest priority overlap. Further, the relay control device 9 may perform the above processing when the upper limit of the number of relay devices 8 that allow duplication is set in advance and the number of relay devices 8 exceeds the upper limit.
 なお、中継制御装置9が有する機能は、図6に示した例に限定されない。例えば、中継制御装置9は、解析部520、検出位置推定部521、指標算出部522、中継位置推定部523、方向決定部524、及び位相算出部525の全ての機能を備えていなくてもよい。また、中継制御装置9が有する各機能は、複数の装置に分割して設けられてもよい。また、中継制御装置9が検出装置7及び中継装置8とそれぞれ通信を行う方式は、有線通信であってもよいし、無線通信であってもよい。 The function of the relay control device 9 is not limited to the example shown in FIG. For example, the relay control device 9 may not have all the functions of the analysis unit 520, the detection position estimation unit 521, the index calculation unit 522, the relay position estimation unit 523, the direction determination unit 524, and the phase calculation unit 525. .. Further, each function of the relay control device 9 may be divided into a plurality of devices. Further, the method in which the relay control device 9 communicates with the detection device 7 and the relay device 8 may be wired communication or wireless communication, respectively.
 また、中継制御装置9が有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。 Further, each function of the relay control device 9 may be partially or wholly configured by hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or may be executed by a processor such as a CPU. It may be configured as a program to be processed.
 例えば、本発明にかかる中継制御装置9は、コンピュータとプログラムを用いて実現することができ、プログラムを記憶媒体に記録することも、ネットワークを通して提供することも可能である。 For example, the relay control device 9 according to the present invention can be realized by using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
 図7は、一実施形態にかかる中継制御装置9のハードウェア構成例を示す図である。図7に示すように、例えば中継制御装置9は、入力部900、出力部910、通信部920、CPU930、メモリ940及びHDD950がバス960を介して接続され、コンピュータとしての機能を備える。また、中継制御装置9は、コンピュータ読み取り可能な記憶媒体970との間でデータを入出力することができるようにされている。 FIG. 7 is a diagram showing a hardware configuration example of the relay control device 9 according to the embodiment. As shown in FIG. 7, for example, the relay control device 9 has an input unit 900, an output unit 910, a communication unit 920, a CPU 930, a memory 940, and an HDD 950 connected via a bus 960, and has a function as a computer. Further, the relay control device 9 is configured to be able to input / output data to / from a computer-readable storage medium 970.
 入力部900は、例えばキーボード及びマウス等である。出力部910は、例えばディスプレイなどの表示装置である。通信部920は、有線又は無線のネットワークインターフェースである。 The input unit 900 is, for example, a keyboard, a mouse, or the like. The output unit 910 is a display device such as a display. The communication unit 920 is a wired or wireless network interface.
 CPU930は、上述したように中継制御装置9を構成する各部を制御し、所定の処理等を行う。メモリ940及びHDD950は、データ等を記憶する記憶部である。 As described above, the CPU 930 controls each part constituting the relay control device 9 and performs predetermined processing and the like. The memory 940 and the HDD 950 are storage units for storing data and the like.
 記憶媒体970は、中継制御装置9が有する機能を実行させるプログラム等を記憶可能にされている。なお、中継制御装置9を構成するアーキテクチャは図7に示した例に限定されない。 The storage medium 970 is capable of storing a program or the like for executing the function of the relay control device 9. The architecture constituting the relay control device 9 is not limited to the example shown in FIG. 7.
 ここでいう「コンピュータ」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記憶媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体等の記憶装置のことをいう。 The term "computer" here includes hardware such as an OS and peripheral devices. Further, the "computer-readable storage medium" refers to a storage device such as a flexible disk, a magneto-optical disk, a ROM, a portable medium such as a CD-ROM, or the like.
 さらに「コンピュータ読み取り可能な記憶媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するものや、その場合のサーバやクライアントとなるコンピュータ内部の揮発性メモリのように、一定時間プログラムを保持しているものを含んでもよい。 Further, a "computer-readable storage medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may include a program or a program that holds a program for a certain period of time, such as a volatile memory inside a computer that is a server or a client in that case.
 以上、図面を参照して本発明の実施形態を説明してきたが、上述の実施形態は、本発明の例示に過ぎず、本発明が上述の実施形態に限定されるものではないことは明らかである。したがって、本発明の技術思想及び範囲を逸脱しない範囲で、構成要素の追加、省略、置換、その他の変更が行われてもよい。 Although the embodiments of the present invention have been described above with reference to the drawings, it is clear that the above-described embodiments are merely examples of the present invention, and the present invention is not limited to the above-mentioned embodiments. be. Therefore, components may be added, omitted, replaced, or otherwise modified without departing from the technical idea and scope of the present invention.
 1,1a・・・無線通信システム、2・・・基地局、3・・・無線端末、4,4a・・・中継システム、5・・・中継部、6・・・検出部、7-1,7-2・・・検出装置、8-1,8-2・・・中継装置、9・・・中継制御装置、50・・・放射部、52・・・中継制御部、52a・・・制御部、90・・・受信部、92・・・送信部、500・・・素子、520・・・解析部、521・・・検出位置推定部、522・・・指標算出部、523・・・中継位置推定部、524・・・方向決定部、525・・・位相算出部、526・・・位相制御部、527・・・位相変換部、528・・・受信部、900・・・入力部、910・・・出力部、920・・・通信部、930・・・CPU、940・・・メモリ、950・・・HDD、960・・・バス、970・・・記憶媒体 1,1a ... wireless communication system, 2 ... base station, 3 ... wireless terminal, 4,4a ... relay system, 5 ... relay unit, 6 ... detection unit, 7-1 , 7-2 ... Detection device, 8-1, 8-2 ... Relay device, 9 ... Relay control device, 50 ... Radiation unit, 52 ... Relay control unit, 52a ... Control unit, 90 ... receiver unit, 92 ... transmission unit, 500 ... element, 520 ... analysis unit, 521 ... detection position estimation unit, 522 ... index calculation unit, 523 ... -Relay position estimation unit, 524 ... Direction determination unit, 525 ... Phase calculation unit, 526 ... Phase control unit, 527 ... Phase conversion unit, 528 ... Reception unit, 900 ... Input Unit, 910 ... Output unit, 920 ... Communication unit, 930 ... CPU, 940 ... Memory, 950 ... HDD, 960 ... Bus, 970 ... Storage medium

Claims (8)

  1.  1つ以上の無線端末と基地局との間で電波を中継する中継システムにおいて、
     複数の素子それぞれが電波を放射することによって所定の方向にビームを形成する1つ以上の放射部と、
     前記放射部が形成するビームに影響を与える電波伝搬経路上の物理的な環境を検出する1つ以上の検出部と、
     前記検出部が検出した物理的な環境に基づいて、前記放射部がビームを形成すべき方向を決定する方向決定部と、
     前記方向決定部が決定した方向に前記放射部がビームを形成するように、複数の前記素子それぞれが放射すべき電波の位相を算出する位相算出部と、
     前記位相算出部が算出した位相に基づいて、複数の前記素子それぞれが放射する電波の位相を制御する位相制御部と
     を有することを特徴とする中継システム。
    In a relay system that relays radio waves between one or more wireless terminals and a base station
    One or more radiating parts that form a beam in a predetermined direction by radiating radio waves from each of the plurality of elements.
    One or more detectors that detect the physical environment on the radio wave propagation path that affects the beam formed by the radiator.
    A directional determination unit that determines the direction in which the radiation unit should form a beam based on the physical environment detected by the detection unit.
    A phase calculation unit that calculates the phase of radio waves to be radiated by each of the plurality of elements so that the radiation unit forms a beam in the direction determined by the direction determination unit.
    A relay system characterized by having a phase control unit that controls the phase of radio waves radiated by each of the plurality of elements based on the phase calculated by the phase calculation unit.
  2.  前記検出部が検出した物理的な環境がビームに与える影響を解析する解析部と、
     前記解析部が解析した結果を用いて、前記方向決定部が方向を決定するために利用可能な指標を算出する指標算出部と
     をさらに有し、
     前記方向決定部は、
     前記指標算出部が算出した指標に基づいて、前記放射部がビームを形成すべき方向を決定すること
     を特徴とする請求項1に記載の中継システム。
    An analysis unit that analyzes the effect of the physical environment detected by the detection unit on the beam,
    It further has an index calculation unit that calculates an index that can be used by the direction determination unit to determine a direction by using the result analyzed by the analysis unit.
    The direction determination unit is
    The relay system according to claim 1, wherein the radiation unit determines a direction in which a beam should be formed based on an index calculated by the index calculation unit.
  3.  前記位相算出部は、
     1つの前記放射部が複数の無線端末から送信された電波を用いて放射する場合、複数の前記素子を複数の素子群に分割し、前記素子群ごとに異なる無線端末に向けて電波を放射するように、前記素子それぞれが放射する電波の位相を算出すること
     を特徴とする請求項1又は2に記載の中継システム。
    The phase calculation unit is
    When one radiation unit radiates using radio waves transmitted from a plurality of wireless terminals, the plurality of the elements are divided into a plurality of element groups, and the radio waves are radiated toward different radio terminals for each element group. The relay system according to claim 1 or 2, wherein the phase of the radio wave radiated by each of the elements is calculated.
  4.  複数の素子それぞれが設定された位相に応じて電波を放射することによって所定の方向にビームを形成する放射部を備えて、1つ以上の無線端末と基地局との間で電波を中継する1つ以上の中継装置を制御する中継制御装置において、
     前記放射部が形成するビームに影響を与える電波伝搬経路上の物理的な環境を検出する1つ以上の検出装置が検出した物理的な環境に基づいて、前記放射部がビームを形成すべき方向を決定する方向決定部と、
     前記方向決定部が決定した方向に前記放射部がビームを形成するように、複数の前記素子それぞれが放射すべき電波の位相を算出する位相算出部と、
     前記位相算出部が算出した位相を示す情報を前記中継装置へ送信する送信部と
     を有することを特徴とする中継制御装置。
    1 In a relay control device that controls one or more relay devices,
    The direction in which the radiation unit should form a beam based on the physical environment detected by one or more detectors that detect the physical environment on the radio wave propagation path that affects the beam formed by the radiation unit. The direction determination part that determines
    A phase calculation unit that calculates the phase of radio waves to be radiated by each of the plurality of elements so that the radiation unit forms a beam in the direction determined by the direction determination unit.
    A relay control device including a transmission unit that transmits information indicating a phase calculated by the phase calculation unit to the relay device.
  5.  前記検出装置が検出した物理的な環境がビームに与える影響を解析する解析部と、
     前記解析部が解析した結果を用いて、前記方向決定部が方向を決定するために利用可能な指標を算出する指標算出部と
     をさらに有し、
     前記方向決定部は、
     前記指標算出部が算出した指標に基づいて、前記放射部がビームを形成すべき方向を決定すること
     を特徴とする請求項4に記載の中継制御装置。
    An analysis unit that analyzes the effect of the physical environment detected by the detection device on the beam, and
    It further has an index calculation unit that calculates an index that can be used by the direction determination unit to determine a direction by using the result analyzed by the analysis unit.
    The direction determination unit is
    The relay control device according to claim 4, wherein the radiation unit determines a direction in which a beam should be formed based on an index calculated by the index calculation unit.
  6.  前記位相算出部は、
     1つの前記放射部が複数の無線端末から送信された電波を用いて放射する場合、複数の前記素子を複数の素子群に分割し、前記素子群ごとに異なる無線端末に向けて電波を放射するように、前記素子それぞれが放射する電波の位相を算出すること
     を特徴とする請求項4又は5に記載の中継制御装置。
    The phase calculation unit is
    When one radiation unit radiates using radio waves transmitted from a plurality of wireless terminals, the plurality of the elements are divided into a plurality of element groups, and the radio waves are radiated toward different radio terminals for each element group. The relay control device according to claim 4 or 5, wherein the phase of the radio wave radiated by each of the elements is calculated.
  7.  1つ以上の無線端末と基地局との間で電波を中継する中継方法において、
     複数の素子それぞれが電波を放射することによって所定の方向にビームを形成する1つ以上の放射部が形成するビームに影響を与える電波伝搬経路上の物理的な環境を検出する検出工程と、
     検出した物理的な環境に基づいて、前記放射部がビームを形成すべき方向を決定する方向決定工程と、
     決定した方向に前記放射部がビームを形成するように、複数の前記素子それぞれが放射すべき電波の位相を算出する位相算出工程と、
     算出した位相に基づいて、複数の前記素子それぞれが放射する電波の位相を制御する位相制御工程と
     を含むことを特徴とする中継方法。
    In a relay method for relaying radio waves between one or more wireless terminals and a base station,
    A detection step that detects the physical environment on the radio wave propagation path that affects the beam formed by one or more radiating parts that form a beam in a predetermined direction by radiating radio waves from each of the plurality of elements.
    A direction determination step of determining the direction in which the radiation unit should form a beam based on the detected physical environment, and
    A phase calculation step of calculating the phase of radio waves to be radiated by each of the plurality of elements so that the radiation unit forms a beam in a determined direction.
    A relay method comprising a phase control step of controlling the phase of radio waves radiated by each of the plurality of elements based on the calculated phase.
  8.  請求項4~6のいずれか1項に記載の中継制御装置の各部としてコンピュータを機能させるための中継制御プログラム。 A relay control program for operating a computer as each part of the relay control device according to any one of claims 4 to 6.
PCT/JP2020/028936 2020-07-28 2020-07-28 Relay system, relay control device, relay method, and relay control program WO2022024230A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/028936 WO2022024230A1 (en) 2020-07-28 2020-07-28 Relay system, relay control device, relay method, and relay control program
JP2022539844A JPWO2022024230A1 (en) 2020-07-28 2020-07-28
US18/017,487 US20230275622A1 (en) 2020-07-28 2020-07-28 Relay system, relay control device, relay method, and relay control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028936 WO2022024230A1 (en) 2020-07-28 2020-07-28 Relay system, relay control device, relay method, and relay control program

Publications (1)

Publication Number Publication Date
WO2022024230A1 true WO2022024230A1 (en) 2022-02-03

Family

ID=80037864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028936 WO2022024230A1 (en) 2020-07-28 2020-07-28 Relay system, relay control device, relay method, and relay control program

Country Status (3)

Country Link
US (1) US20230275622A1 (en)
JP (1) JPWO2022024230A1 (en)
WO (1) WO2022024230A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261193A1 (en) * 2017-11-22 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Radio Resource Management in Wireless Communication Systems
US20190331764A1 (en) * 2018-04-27 2019-10-31 Lyft, Inc. Switching Between Object Detection and Data Transfer with a Vehicle Radar
JP2020080066A (en) * 2018-11-13 2020-05-28 ソフトバンク株式会社 Communication device, communication method, vehicle, and program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3987672A1 (en) * 2019-06-19 2022-04-27 Sony Group Corporation System, panel device and method for passive reflection of rf signals
EP4085536A1 (en) * 2020-02-06 2022-11-09 Huawei Technologies Co., Ltd. Communication devices for shaping symbol constellations
CN113346917A (en) * 2020-02-18 2021-09-03 索尼公司 Electronic device, wireless communication method, and computer-readable storage medium
CN111355520B (en) * 2020-03-10 2022-03-08 电子科技大学 Design method of intelligent reflection surface assisted terahertz safety communication system
EP4143596A1 (en) * 2020-04-27 2023-03-08 Nokia Technologies Oy Ue positioning aided by reconfigurable reflecting surfaces such as intelligent reflecting surfaces (irs)
CN111866726A (en) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 Method, device and system for positioning receiving device, storage medium and electronic device
EP4176516A4 (en) * 2020-07-02 2023-08-02 ZTE Corporation Surface element segmentation and node grouping for intelligent reflecting devices
CN113949985B (en) * 2020-07-17 2023-03-24 维沃移动通信有限公司 Terminal information acquisition method, terminal and network side equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261193A1 (en) * 2017-11-22 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Radio Resource Management in Wireless Communication Systems
US20190331764A1 (en) * 2018-04-27 2019-10-31 Lyft, Inc. Switching Between Object Detection and Data Transfer with a Vehicle Radar
JP2020080066A (en) * 2018-11-13 2020-05-28 ソフトバンク株式会社 Communication device, communication method, vehicle, and program

Also Published As

Publication number Publication date
JPWO2022024230A1 (en) 2022-02-03
US20230275622A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
CN113287349B (en) Method and apparatus for using sensing system cooperating with wireless communication system
JP5106902B2 (en) Communication control method
JP4130923B2 (en) Method and system for performing position measurement of a mobile unit based on angle measurement
CN112956138B (en) Wireless relay device, wireless communication system, control circuit, and storage medium
WO2022018800A1 (en) Reflection direction control system, reflection direction control device, reflection direction control method, and reflection direction control program
WO2022018815A1 (en) Reflection direction control system, reflection direction control device, reflection direction control method, and reflection direction control program
EP3868034B1 (en) Position likelihood based beamformer optimization
US11838993B2 (en) Communication system and method for high-speed low-latency wireless connectivity in mobility application
RU2739588C2 (en) Terminal device, base station, method and data medium
EP3055707A1 (en) Determining information of objects
US10531465B2 (en) Communication device, access node and methods thereof
EP2887562A1 (en) Method to establish mm-wave links with adaptive antennas
WO2022024230A1 (en) Relay system, relay control device, relay method, and relay control program
Shahmansoori et al. Survey on 5G positioning
JP5923921B2 (en) Radio relay station antenna control method, radio relay station
CN113840224A (en) Communication method and device
JP6924206B2 (en) Base station equipment, communication systems, beam control methods and programs
WO2022024223A1 (en) Reflecting direction control method, reflecting direction control system, reflecting direction control device, and reflecting direction control program
US20230403049A1 (en) Estimating a link budget
CN115412991A (en) Information transmission method, reflection device, base station, system, electronic device, and medium
US11606701B2 (en) Enhanced establishment of communication between nodes in a communication system
JP6570469B2 (en) Communication apparatus, control method, and program
JP6888663B2 (en) Terminal equipment, base stations, methods and recording media
JP7448036B2 (en) Wireless communication method, wireless communication system, and relay device
WO2024147251A1 (en) Control device, relay device, wireless system, base station device, and antenna direction determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947612

Country of ref document: EP

Kind code of ref document: A1