WO2022024207A1 - Insulated wire, production method for same, and electrical equipment - Google Patents

Insulated wire, production method for same, and electrical equipment Download PDF

Info

Publication number
WO2022024207A1
WO2022024207A1 PCT/JP2020/028830 JP2020028830W WO2022024207A1 WO 2022024207 A1 WO2022024207 A1 WO 2022024207A1 JP 2020028830 W JP2020028830 W JP 2020028830W WO 2022024207 A1 WO2022024207 A1 WO 2022024207A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
insulated wire
layer
adhesive layer
outermost
Prior art date
Application number
PCT/JP2020/028830
Other languages
French (fr)
Japanese (ja)
Inventor
芳幸 加茂
護 寺井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/028830 priority Critical patent/WO2022024207A1/en
Priority to JP2022539824A priority patent/JP7420260B2/en
Publication of WO2022024207A1 publication Critical patent/WO2022024207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/40Insulated conductors or cables characterised by their form with arrangements for facilitating mounting or securing

Definitions

  • This disclosure relates to an insulated wire, a manufacturing method thereof, and an electric device using the insulated wire.
  • an insulating layer is laminated on the outer peripheral surface of a conducting wire, an expansion layer that expands by heating is laminated on the outer peripheral surface of the insulating layer, and a heat fusion layer is laminated on the outer peripheral surface of the expansion layer.
  • Insulated wires are listed. If a coil is manufactured using this insulated wire, it is possible to manufacture a coil in which the windings are fixed by heat fusion. Further, the expansion of the expansion layer during heating for the heat fusion can improve the reliability of fusion between adjacent windings.
  • misalignment of the winding and twisting of the winding after the coil is manufactured can be suppressed by fixing by heat fusion, but the insulated wire before heat fusion is wound. It is not possible to suppress the misalignment of the windings and the twisting of the windings during work.
  • the present disclosure has been made to solve such a problem, and suppresses the misalignment of the winding and the twisting of the winding at the time of winding when the insulated wire is wound to manufacture a coil. It is an object of the present invention to provide an insulated electric wire capable of being used, a method for manufacturing the same, and an electric device.
  • the insulated wire according to the present disclosure has a conducting wire and an outermost peripheral layer which is an outermost layer laminated on the outer peripheral side of the conducting wire, and the outermost peripheral layer is composed of an insulating semi-curing adhesive. At the same time, it has a step on the outer peripheral surface of which the semi-curable adhesive is formed.
  • the insulated wire when the insulated wire is wound in multiple layers to manufacture a coil, a step comes into contact with another part of the insulated wire, and the movement of the contacted portion is restricted. Therefore, when the coil is manufactured by winding this insulated wire, it is possible to suppress the positioning between adjacent windings and the twisting of the windings.
  • FIG. 1 It is sectional drawing of the insulated wire which concerns on Embodiment 1.
  • FIG. 1 is wound in a multi-layered structure. It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1.
  • FIG. 2 is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1.
  • FIG. 4 is wound in a multi-layered structure.
  • FIG. 6 It is sectional drawing when the insulated wire shown in FIG. 6 is wound in a multi-layered structure. It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1.
  • FIG. 6 is wound in a multi-layered structure. It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1.
  • FIG. 8 It is sectional drawing when the insulated wire shown in FIG. 8 is wound in a multi-layered structure. It is sectional drawing which shows the modification of the insulation wire of FIG. It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1.
  • FIG. 11 It is sectional drawing when the insulated wire shown in FIG. 11 is wound in a multi-layered structure. It is another cross-sectional view when the insulated wire shown in FIG. 4 is wound in multiple layers.
  • FIG. It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1.
  • FIG. It is sectional drawing when the insulated wire shown in FIG. 15 is wound in a multi-layered structure.
  • FIG. 1 It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1.
  • FIG. 2 is sectional drawing of the insulated wire which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 2.
  • FIG. It is a flow diagram which shows the outline of the manufacturing process of the insulated wire of Embodiment 1.
  • FIG. It is the schematic of the manufacturing apparatus used in the manufacturing process of FIG. It is the schematic which shows the structure of the extruder 105 of FIG. 22.
  • It is a schematic diagram which illustrates the coil formed by winding the insulated wire of FIG.
  • Embodiment 1 the structure of the insulated wire of the present disclosure and the manufacturing method thereof will be described.
  • the insulated wire of the present disclosure is used as a winding of a coil of a motor, a generator, a transformer, a solenoid, a reactor, etc. of various electric devices.
  • FIG. 1 is a cross-sectional view of the insulated wire 10 according to the first embodiment of the present disclosure.
  • FIG. 1 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10.
  • the insulated wire 10 has the same cross section throughout the extending direction, that is, the cross section shown in FIG. 1.
  • the insulated wire 10 has a conducting wire 1, an insulating layer 2 laminated on the outer peripheral surface of the conducting wire 1, and a semi-curing adhesive layer 3 laminated on the outer peripheral surface of the insulating layer 2.
  • the semi-cured adhesive layer 3 is the outermost layer (outermost peripheral layer) of the insulated wire 10.
  • the semi-cured adhesive layer 3 is a layer made of a semi-cured adhesive in a semi-cured state.
  • the semi-curing adhesive is an adhesive that can maintain a semi-curing state.
  • a B-stage adhesive that can be in a B-stage state is known.
  • the B stage is an intermediate state in which the thermosetting resin is cured, and the resin in this state softens when heated and swells when it comes into contact with a certain solvent, but it does not completely melt or dissolve.
  • Such a semi-curable adhesive can be brought into a completely cured main-cured state by subjecting it to a predetermined treatment such as heating from the semi-cured state for a certain period of time or longer.
  • the semi-curing adhesive used here is not limited to a thermosetting resin such as a B-stage type adhesive as long as it can maintain a semi-curing state at room temperature for a certain period of time, but is also a UV curable resin (ultraviolet curable resin). It may be a photocurable resin such as.
  • the semi-cured state here means an intermediate state of curing.
  • the semi-cured adhesive layer 3 which is the outermost layer has the following characteristics.
  • the semi-curing adhesive layer 3 has an insulating property and contributes to the insulation of the conducting wire 1. Further, the semi-cured adhesive layer 3 is in a semi-cured state, and a coil in which the windings are fixed can be manufactured by winding the insulating electric wire 10 in multiple layers and main curing.
  • a step 4 is formed on the outer peripheral surface of the semi-cured adhesive layer 3. Therefore, when the insulated wire 10 is wound in multiple layers, the step 4 comes into contact with another portion of the insulated wire 10 and restricts the movement of that portion. Therefore, if a coil is manufactured using the insulated wire 10, it is possible to suppress the misalignment of the winding and the twisting of the winding during winding.
  • the step 4 is formed as a part of the recess 5 by providing the recess 5 on the outer peripheral surface of the semi-cured adhesive layer 3.
  • the step 4 in FIG. 1 is each of the side surfaces 4a and 4b in the recess 5.
  • the step 4 is formed by molding a semi-curing adhesive that forms the semi-curing adhesive layer 3. Therefore, in the manufacturing process of the insulated wire 10, if extrusion molding or the like described later is used, the semi-cured adhesive layer 3 can be collectively molded including the step 4.
  • the conductor 1 is, for example, a copper wire, an aluminum wire, or an alloy wire thereof.
  • the material of the copper wire for example, tough pitch copper, oxygen-free copper and the like can be used.
  • the material of the aluminum wire for example, hard aluminum can be used.
  • Alloy wire materials include, for example, copper and tin alloys, copper and silver alloys, copper and zinc alloys, copper and chromium alloys, copper and zirconium alloys, aluminum and copper alloys, and aluminum and silver alloys. , Alloys of aluminum and zinc, alloys of aluminum and iron, etc. can be used.
  • the conductor 1 may be a single wire formed of one conductor or a stranded wire in which a plurality of conductors are twisted together.
  • FIG. 1 shows a case where the conducting wire 1 is a rectangular wire having a rectangular cross-sectional shape, it may be a circular wire having a circular cross-sectional shape or a conductor having another polygonal cross-sectional shape.
  • the material of the insulating layer 2 is, for example, polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyetherimide (PEI), polyamideimide (PAI), polyimide (PI), polybenzoimidazole (PBI), polyether. Sulfon (PES), polypropylene (PP) and the like.
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • PEI polyetherimide
  • PAI polyamideimide
  • PI polyimide
  • PBI polybenzoimidazole
  • PES polypropylene
  • PP polypropylene
  • the insulating layer 2 can be formed on the surface of the conductor 1 by, for example, an extrusion coating method.
  • the thickness of the insulating layer 2 is preferably 30 ⁇ m or more from the viewpoint of making the thickness of the insulating layer 2 coated uniform. Further, if the thickness of the insulating layer 2 is too thin, the insulating property of the insulating layer 2 is greatly deteriorated, and if it is too thick, it is not suitable for miniaturization and winding becomes difficult. From such a viewpoint, the thickness of the insulating layer 2 is preferably 30 ⁇ m or more and 150 ⁇ m or less, and more preferably 50 ⁇ m or more and 70 ⁇ m or less.
  • the above-mentioned material used for the insulating layer 2 has high volume and low efficiency, and has the property of being stable and resistant to deterioration, but the adhesiveness with the conducting wire 1 may be inferior.
  • the surface of the conducting wire 1 is physically or chemically treated to improve the adhesion and the adhesive strength between the conducting wire 1 and the insulating layer 2.
  • Can be improved As such physical treatment, atmospheric plasma treatment, deep ultraviolet light treatment, corona discharge treatment, sparsening treatment (laser sparsening, polishing, sandblasting treatment) and the like can be used.
  • a silane coupling agent may be applied on the surface of the conducting wire 1, and the insulating layer 2 may be applied on the silane coupling agent.
  • a silane coupling agent is applied as a primer on the surface of the lead wire 1, and an epoxy adhesive is applied on the primer.
  • the insulating layer 2 may be applied using an epoxy adhesive as the surface to be adhered.
  • primers include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethylditoxylsilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldi.
  • An epoxy-based adhesive containing a silane coupling agent may be applied onto the surface of the lead wire 1, and the insulating layer 2 may be applied using the epoxy-based adhesive as the surface to be adhered.
  • the surface of the conductor 1 may be subjected to both the above-mentioned physical treatment and chemical treatment.
  • the semi-cured adhesive layer 3 is a layer made of a semi-cured adhesive in a semi-cured state.
  • a B-stage type adhesive or a UV curable adhesive can be used.
  • a B-stage type adhesive suitable as the semi-curing adhesive layer 3 for example, a mixture of 60 to 75 wt% of bisphenol A type epoxy resin and 25 to 35 wt% of cresol novolac type epoxy resin is mixed with the amine-based curing agent 1. A mixture obtained by adding up to 5 wt% and kneading can be used.
  • Suitable UV-curable adhesives for the semi-curable adhesive layer 3 include, for example, a mixture of 30 to 40 wt% of bisphenol A type epoxy resin and 20 to 30 wt% of bisphenol F type epoxy resin, and antimonth sulfonium fluoride.
  • a photo-curing agent to which 1 to 5 wt% is added and kneaded can be used.
  • the semi-curing adhesive layer 3 is in a semi-curing state because such a semi-curing adhesive is not finally cured.
  • the B stage of the B stage type adhesive is in the semi-cured state referred to here.
  • the UV curable adhesive can be made into a semi-curable state by irradiating the adhesive with ultraviolet rays.
  • a B-stage adhesive is used as the semi-curing adhesive layer 3
  • a B-stage adhesive of a type that can be B-staged with ultraviolet rays may be used.
  • physical treatment or chemical treatment may be performed before applying the semi-cured adhesive layer 3 on the surface of the insulating layer 2. good.
  • physical treatment atmospheric plasma treatment, deep ultraviolet light treatment, corona discharge treatment, sparsening treatment (laser sparsening, polishing, sandblasting treatment) and the like can be used.
  • a silane coupling agent may be applied on the surface of the insulating layer 2 as a primer, and the semi-cured adhesive layer 3 may be applied using the primer as a surface to be adhered.
  • an epoxy-based adhesive is used as the semi-curable adhesive that forms the semi-curing adhesive layer 3
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and 3-glycidoxypropylmethyl are used as the primers.
  • the surface of the insulating layer 2 may be subjected to both the above-mentioned physical treatment and chemical treatment.
  • the expressions of up, down, left, and right will be used to correspond to the up, down, left, and right directions on the paper of each figure.
  • the case where the insulated wire 10 is wound in multiple layers to generate a coil the case where the coil is wound with the lower side of the insulated wire 10 inside is described, but this is merely an example, and the winding of the insulated wire 10 is described. The method is not limited to this.
  • a step 4 is formed by providing a recess 5 on the upper surface of the semi-cured adhesive layer 3, which is the outermost layer.
  • the step 4 is each of the side surfaces 4a and 4b of the recess 5.
  • 4a is the left side surface in the recess 5
  • 4b is the right side surface in the recess 5.
  • a recess 6 is formed on the lower surface of the semi-cured adhesive layer 3.
  • 7a is the left side surface in the recess 6, and 7b is the right side surface in the recess 6.
  • FIG. 8 in FIG. 1 is the upper left corner portion of the semi-cured adhesive layer 3, and more specifically, the portion from the left end portion 81 of the semi-cured adhesive layer 3 to the left side surface 4a of the recess 5.
  • Reference numeral 9 is a lower right corner portion of the semi-cured adhesive layer 3, specifically, a portion from the right end portion 91 of the semi-cured adhesive layer 3 to the right side surface 7b of the recess 6.
  • the recess 5 is formed in such a size that the lower right corner portion 9 can be fitted into the recess 5.
  • the recess 6 is formed in such a size that the upper left corner portion 8 can be fitted into the recess 6.
  • the thickness of the semi-cured adhesive layer 3 is the same for the portions located in any of the upper, lower, left, and right directions of the insulating layer 2, but as will be described later, any of the upper, lower, left, and right sides of the insulating layer 2.
  • the thickness of the portion located in the direction may be different.
  • the thickness of the insulating layer 2 may be the same over the entire outer circumference of the conducting wire 1, or there may be portions having different thicknesses.
  • the semi-curing adhesive layer 3 has reduced insulating properties due to the presence of the recesses 5 and the recesses 6 located in the vertical direction of the insulating layer 2, the insulating layer 2 has the thickness of the portion of the conducting wire 1 located in the vertical direction. May be thicker than the thickness of the portion of the conductor 1 located in the left-right direction.
  • FIG. 2 is a cross-sectional view of the insulated wire 10 shown in FIG. 1 when the insulated wire 10 is wound in multiple layers with the lower surface inside.
  • FIG. 2 shows a cross section in a direction perpendicular to the winding direction.
  • the lower right corner portion 9, which is a non-recessed portion of the semi-cured adhesive layer 3 can be fitted into the recess 5 of the semi-cured adhesive layer 3.
  • the upper left corner portion 8 of the semi-curable adhesive layer 3 can be fitted into the recess 6 of the semi-curable adhesive layer 3.
  • the insulated wire 10 is wound around the insulating wire 10 to be adjacent to the coil. It is possible to suppress the misalignment between the windings and the twisting of the windings. Further, by making it possible to fit the upper left corner portion 8 of the semi-curing adhesive layer 3 into the recess 6 of the semi-curing adhesive layer 3 in this way, the upper left corner portion 8 does not interfere between the adjacent windings. , It becomes easy to fit the lower right corner portion 9 into the recess 5.
  • a winding machine or the like may be used to sequentially and regularly wind the insulated wire 10 from the inner winding layer to the outer winding layer, but by manual work or the like. , May be wound in multiple layers irregularly.
  • the space between the side surface 4a and the side surface 4b is increased from the bottom surface of the recess 5 toward the opening of the recess 5, so that the lower right corner portion 9 can be easily fitted into the recess 5.
  • a taper is provided. Further, by increasing the distance between the side surface 7a and the side surface 7b from the bottom surface of the recess 6 toward the opening of the recess 6, a taper is provided so that the upper left corner portion 8 can be easily fitted into the recess 6. ..
  • FIG. 3 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG.
  • the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the tapers of the side surfaces 4a, 4b, 7a, and 7b are formed in a planar shape, but as shown in FIG. 3, the tapers of the side surfaces 4a, 4b, 7a, and 7b are formed in a curved surface shape. It may be formed.
  • FIG. 3 is the same as FIG. 1 except for the parts.
  • FIG. 4 is a cross-sectional view showing a modified example of the insulated wire 10 of the first embodiment.
  • the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • a step 4 is formed by forming a recess 5 having side surfaces 4a and 4b facing each other in the semi-cured adhesive layer 3.
  • the step 4 is formed by not providing the semi-curing adhesive layer 3 in the portion from the step 4 to the right end portion 91 above the insulating layer 2.
  • the step 7 is formed by not providing the semi-curing adhesive layer 3 in the portion from the step 7 to the left end portion 81.
  • the upper left corner portion 8 is a portion from the step 4 of the semi-cured adhesive layer 3 to the left end portion 81.
  • the lower right corner portion 9 is a portion from the step 7 of the semi-cured adhesive layer 3 to the right end portion 91.
  • FIG. 5 is a cross-sectional view of the insulated wire 10 shown in FIG. 4 when the insulated wire 10 is wound in multiple layers with the lower surface inside.
  • FIG. 5 shows a cross section in a direction perpendicular to the winding direction.
  • FIG. 6 is a cross-sectional view showing another modified example of the insulated wire 10 of the first embodiment.
  • the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the step 4 is formed by partially exposing the insulating layer 2 inside the semi-curable adhesive layer 3 without partially providing the semi-curable adhesive layer 3 of the outermost peripheral layer.
  • the step 4 is formed by partially reducing the thickness of the semi-cured adhesive layer 3 of the outermost peripheral layer.
  • the insulating layer 2 inside the semi-curable adhesive layer 3 is partially exposed without partially providing the semi-curable adhesive layer 3 of the outermost peripheral layer.
  • the recess 6 was formed by allowing the mixture to form a recess 6.
  • the recess 6 is formed by partially reducing the thickness of the semi-cured adhesive layer 3 of the outermost peripheral layer.
  • the step 4 is formed by partially reducing the thickness of the semi-cured adhesive layer 3 of the outermost peripheral layer, the insulating layer 2 is not exposed and is protected, and the semi-cured adhesive layer 3 is also formed. Since it has an insulating property, the effect of insulating the conductor 1 is increased. Further, it is possible to make the insulating layer 2 thinner by the amount that the semi-curing adhesive layer 3 increases the effect of insulating the conducting wire 1.
  • the thickness of the insulating layer 2 is 30 ⁇ m to 150 ⁇ m
  • the thickness of the portion of the semi-cured adhesive layer 3 that covers the entire outer peripheral surface of the insulating layer 2 is It is preferably 10 ⁇ m to 50 ⁇ m.
  • the total thickness of the insulating layer 2 and the semi-cured adhesive layer 3 is preferably 50 to 150 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the depth of the recess 5 provided in the semi-cured adhesive layer 3 and the height of the step 7 are preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • FIG. 7 is a cross-sectional view of the insulated wire 10 shown in FIG. 6 when the insulated wire 10 is wound in multiple layers with the lower surface inside.
  • FIG. 7 shows a cross section in a direction perpendicular to the winding direction.
  • the lower right corner portion 9, which is a non-recessed portion of the semi-cured adhesive layer 3 can be fitted into the recess 5 of the semi-cured adhesive layer 3.
  • the upper left corner portion 8 of the semi-curable adhesive layer 3 can be fitted into the recess 6 of the semi-curable adhesive layer 3.
  • the lower right corner portion 9 is fitted into the recess 5 with almost no gap, but as shown in FIG. 7, the lower right corner portion 9 is smaller than the recess 5, and is between the lower right corner portion 9 and the step 4. It may be fitted with a gap. Even in that case, when the insulated wire 10 is wound in multiple layers, the lower right corner portion 9 is moved so that the positions of the lower right corner portions 9 do not shift significantly in the left-right direction on the side surfaces 4a and 4b of the recess 5. To limit. Therefore, it is possible to suppress the misalignment of the winding and the twisting of the winding when the insulated wire 10 is wound.
  • the upper left corner portion 8 is fitted into the concave portion 6 with almost no gap, but as shown in FIG. 7, the upper left corner portion 8 is smaller than the concave portion 6, and is between the upper left corner portion 8 and the step 7. It may be fitted with a gap. Even in that case, when the insulated wire 10 is wound in multiple layers, the upper left corner portion 8 does not interfere with the adjacent windings, and the lower right corner portion 9 can be easily fitted into the recess 5.
  • the lower right corner portion 9 is formed to be larger than the concave portion 5, and the semi-cured adhesive layer 3 is in a state of normal temperature or at room temperature.
  • the semi-cured adhesive layer 3 heated and the semi-cured adhesive layer 3 having viscosity With the semi-cured adhesive layer 3 heated and the semi-cured adhesive layer 3 having viscosity, the lower right corner 9 is pressed into the recess 5 so that the recess 5 and the lower right corner 9 are in close contact with each other. The portion 9 or the recess 5 may be deformed.
  • FIG. 8 is a cross-sectional view showing another modified example of the insulated wire 10 of the first embodiment.
  • FIG. 8 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10.
  • the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • a step 4 is formed by providing a recess 5 in the semi-cured adhesive layer 3 of the outermost peripheral layer.
  • the step 12 is formed by providing the convex portion 11 on the semi-cured adhesive layer 3 of the outermost peripheral layer.
  • the step 12 is each of the side surfaces 12a and 12b of the convex portion 11.
  • 12a is the left side surface of the convex portion 11
  • 12b is the right side surface of the convex portion 11.
  • a recess 6 is formed on the lower surface of the semi-cured adhesive layer 3.
  • 7a is the left side surface in the recess 6, and 7b is the right side surface in the recess 6.
  • the convex portion 11 is formed in a size that can be fitted into the concave portion 6.
  • FIG. 9 is a cross-sectional view of the insulated wire 10 shown in FIG. 8 when the insulated wire 10 is wound in multiple layers with the lower surface inside.
  • FIG. 9 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10.
  • the distance between the side surface 12a and the side surface 12b is reduced toward the tip of the convex portion 11 so that the convex portion 11 can be easily fitted into the concave portion 6. .. Further, by increasing the distance between the side surface 7a and the side surface 7b from the bottom surface of the concave portion 6 toward the opening of the concave portion 6, a taper is provided so that the convex portion 11 can be easily fitted into the concave portion 6.
  • FIG. 10 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG.
  • the gap between the side surface 12a and the side surface 12b is tapered so as to decrease toward the tip of the convex portion 11, but in FIG. 10, the distance is increased toward the tip of the convex portion 11.
  • the taper is provided so as to be.
  • a taper is provided so that the distance between the side surface 7a and the side surface 7b is increased from the bottom surface of the recess 6 toward the opening of the recess 6, but in FIG. 10, the gap is set to the opening of the recess 6.
  • a taper is provided so as to make it smaller toward.
  • FIG. 11 is a cross-sectional view showing another modified example of the insulated wire 10 of the first embodiment.
  • the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the semi-curing adhesive layer 3 is not provided on the right side of the insulating layer 2, and the semi-curing adhesive layer 3 is provided only on the upper and lower sides and the left side of the insulating layer 2.
  • the thickness a of the semi-cured adhesive layer 3 above the insulating layer 2 the thickness c of the semi-cured adhesive layer 3 below the insulating layer 2, and the semi-cured adhesive layer 3 on the left side of the insulating layer 2.
  • the thickness b is the same or substantially the same.
  • the thickness of the insulating layer 2 is the same or substantially the same over the entire circumference of the conducting wire 1.
  • FIG. 12 is a cross-sectional view of the insulated wire 10 shown in FIG. 11 when the insulated wire 10 is wound in multiple layers with the lower surface inside.
  • FIG. 12 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10.
  • the spacing between the insulating layers 2 of the windings adjacent in the vertical direction is a and c
  • the spacing between the insulating layers 2 of the windings adjacent in the horizontal direction is b.
  • the thicknesses a and c of the semi-cured adhesive layer 3 that contribute to the insulation between the insulating layers 2 adjacent in the vertical direction and the thickness b of the semi-cured adhesive layer 3 that contributes to the insulation between the insulating layers 2 adjacent in the horizontal direction can be the same.
  • the thickness of the semi-curing adhesive layer 3 preferably provided between the insulating layers 2 adjacent in the left-right direction and the insulating layer 2 adjacent in the vertical direction are preferable.
  • the thickness of the semi-curing adhesive layer 3 preferably provided between them is usually the same, and the fact that one of them is large means that an excessive thickness is often provided.
  • the insulating layers adjacent to each other in the left-right direction are provided.
  • the thickness of the semi-cured adhesive layer 3 existing between the two can be made the same as or close to the thickness of the semi-cured adhesive layer 3 existing between the insulating layers 2 adjacent in the vertical direction, which is advantageous for the miniaturization of the coil. Is.
  • the cross-sectional view thereof is as shown in FIG.
  • the thickness e of the semi-curing adhesive layer 3 between the insulating layers 2 adjacent in the left-right direction is larger than the thickness d of the semi-curing adhesive layer 3 between the insulating layers 2 adjacent in the vertical direction, and the coil becomes larger. It increases in the left-right direction.
  • the semi-curing adhesive layer 3 is not provided on the right side of the insulating layer 2, but the semi-curing adhesive layer 3 is provided only on the left side. However, as shown in FIG. 14, the position is located in the left direction of the insulating layer 2.
  • the thickness of the semi-cured adhesive layer 3 is i
  • the thickness of the semi-cured adhesive layer 3 located to the right of the insulating layer 2 is h
  • the thickness of the semi-cured adhesive layer 3 located above the insulating layer 2 is h.
  • the thickness of the semi-cured adhesive layer 3 located in the downward direction of the insulating layer 2 may be g
  • FIG. 15 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG.
  • the same or corresponding parts as those in FIG. 8 are designated by the same reference numerals, and the description thereof will be omitted.
  • the step 12 is formed by providing the convex portion 11 on the semi-curing adhesive layer 3 above the insulating layer 2.
  • a step 12 is formed by providing a convex portion 11 on the semi-curing adhesive layer 3 on the left side of the insulating layer 2.
  • the side surfaces 7a and 7b are formed by providing the recess 6 in the semi-curing adhesive layer 3 below the insulating layer 2.
  • the side surfaces 7a and 7b are formed by forming the recess 6 in the semi-curing adhesive layer 3 on the right side of the insulating layer 2.
  • the convex portion 11 is formed in a size that can be fitted into the concave portion 6.
  • FIG. 16 is a cross-sectional view of the insulated wire 10 shown in FIG. 15 when the insulated wire 10 is wound in multiple layers with the lower surface inside.
  • the insulated wire 10 is wound, if the convex portion 11 of the semi-cured adhesive layer 3 is fitted into the concave portion 6 of the semi-cured adhesive layer 3, the insulated wire 10 is wound to manufacture a coil. Occasionally, it is possible to suppress misalignment between adjacent windings and twisting of windings.
  • a coil is manufactured by winding such a winding in multiple layers.
  • the semi-cured adhesive layer 3 above the insulating layer 2 is provided with the same convex portion 11 as in FIG. 8, and the semi-cured adhesive layer 3 below the insulating layer 2 is provided with the same concave portion 6 as in FIG.
  • the semi-cured adhesive layer 3 on the left side of the insulating layer 2 is provided with the same convex portion 11 as in FIG. 15, and the semi-cured adhesive layer 3 on the right side of the insulating layer 2 is provided with the same concave portion 6 as in FIG. You may do so.
  • the semi-cured adhesive layer 3 which is the outermost peripheral layer has steps 4 and 12
  • the steps 4 and 12 come into contact with other parts of the insulated wire 10 and limit the movement of the contacted parts. Therefore, when the coil is manufactured by winding the insulated wire 10, it is possible to suppress the positioning between adjacent windings and the twisting of the windings.
  • the semi-curing adhesive layer 3 of the outermost outermost layer is formed of the semi-curing adhesive, and the steps 4 and 12 are also formed of the semi-curing adhesive.
  • the semi-curable adhesive layer 3 can be collectively molded including the steps 4 and 12. Therefore, the insulated wire 10 can be manufactured in a smaller number of steps as compared with the case where the steps 4 and 12 of the semi-cured adhesive layer 3 must be formed in a separate process after being applied.
  • the steps 4 and 12 have a viscosity at room temperature or under heating. Then, when the steps 4 and 12 are pressed against the other part of the insulated wire 10 when the insulated wire 10 is wound, the steps 4 and 12 are deformed according to the shape of the portion and fitted with the portion. Easy to bond. Therefore, the insulated wire 10 of the first embodiment can suppress the misalignment of the winding and the twisting of the winding at the time of winding.
  • the steps 4 and 12 of the semi-cured adhesive layer 3 may have a hardness that does not deform according to the shape of the portion when the pressure welding is performed at room temperature.
  • the windings can be fixed by the main curing by heating or the like. ..
  • the insulated wire 10 of the first embodiment has the insulating layer 2 between the conducting wire 1 and the semi-cured adhesive layer 3 of the outermost peripheral layer, the volume of the insulating wire 10 is higher than that of the semi-cured adhesive layer 3 as the material of the insulating layer 2. If a low-efficiency one is used, the cross-sectional area of the insulated wire 10 can be reduced as compared with the case where the insulating property is ensured only by the semi-curing adhesive layer 3. Further, as the material of the insulating layer 2, a material having higher adhesion to the conducting wire 1 than the semi-curing adhesive of the semi-curing adhesive layer 3 may be used.
  • a step 4 is formed by providing a recess 5 in the semi-cured adhesive layer 3. Therefore, when the coil is manufactured by winding the insulated wire, the other portion of the insulated wire 10 is positioned in the recess 5 and its movement is restricted. Therefore, when the coil is manufactured by winding the insulated wire 10, it is possible to suppress the positioning between adjacent windings and the twisting of the windings.
  • the recess 5 forming the step 4 is formed by partially reducing the thickness of the semi-curing adhesive layer 3. Therefore, the insulating layer 2 inside the semi-cured adhesive layer 3 is not exposed, and the insulating layer 2 can be protected.
  • the recess 5 forming the step 4 is formed by exposing the insulating layer 2 without partially providing the semi-curing adhesive layer 3. Therefore, as compared with the case where the semi-cured adhesive layer 3 is thinned to form the recess 5, the recess 5 can be formed deeper without thickening the semi-cured adhesive layer 3.
  • the insulated wire 10 of the first embodiment since the recess 5 of the semi-curing adhesive layer 3 extends in the extending direction of the conducting wire 1, the insulated wire 10 is fitted with the non-recessed winding in the recess 5. Can be wound.
  • the insulated wire 10 of the first embodiment has the same cross-sectional shape perpendicular to the extending direction of the insulating electric wire 10 over the entire extending direction, a part thereof is cut out from the insulated electric wire 10.
  • the same insulated wire 10 can be cut out regardless of the cutting position.
  • the insulated wire 10 of the first embodiment has a rectangular cross-sectional shape on the outer peripheral surface of the semi-cured adhesive layer 3 of the outermost peripheral layer, and has recesses on each of the opposite outer peripheral surfaces of the semi-cured adhesive layer 3. Then, when the insulated wire 10 is wound, the corner portion on the outer peripheral surface side of one side can be fitted into the recess 5 on the other outer peripheral surface, so that the position of the winding and the twist of the winding during winding can be prevented. Can be suppressed.
  • the insulated wire 10 of the first embodiment is provided with a taper at the opening of the recess 5 forming the step 4 so that the opening of the recess 5 is larger than that of the bottom surface of the recess 5.
  • the insulated wire 10 of the first embodiment is provided with a taper at the opening of the recess 5 forming the step 4 so that the opening of the recess 5 is smaller than that of the bottom surface of the recess 5.
  • the insulated wire 10 of the first embodiment is provided with a concave portion 6 and a convex portion 11 on the outer peripheral surface of the semi-cured adhesive layer 3 which is the outermost peripheral layer, and when the insulated wire 10 is wound, the concave portion 6 is formed. Since the convex portion 11 can be fitted, when the insulated wire 10 is wound in multiple layers to manufacture a coil, it is possible to suppress the misalignment of the winding and the twisting of the winding at the time of winding.
  • the insulated wire 10 of the first embodiment is formed by forming a convex portion 11 having a step 12 on the outer peripheral surface of the semi-cured adhesive layer 3 which is the outermost layer by partially thickening the semi-cured adhesive layer 3. Therefore, the semi-curable adhesive layer 3 can be collectively formed including the convex portion 11 by extrusion-molding the semi-curable adhesive that forms the semi-curable adhesive layer 3. Therefore, the insulated wire 10 can be manufactured in a smaller number of steps than in the case where the convex portion 11 must be formed in a separate process after the semi-curing adhesive layer 3 is applied.
  • the insulating layer 2 of the insulated wire 10 of the first embodiment is shown as a single layer, but the insulating layer 2 may be formed by laminating a plurality of insulating layers made of different materials. good. Further, an expansion layer (not shown) that expands by heating may be provided between the semi-curing adhesive layer 3 and the insulating layer 2. Further, the insulated wire 10 of the first embodiment may be wound in multiple layers with the semi-cured adhesive layer 3 in a semi-cured state and then main-cured to manufacture a coil. However, the insulation of the first embodiment may be produced. After the electric wire 10 is finally cured, it may be wound in multiple layers to manufacture a coil.
  • FIG. 18 is a cross-sectional view of the insulated wire 10 according to the second embodiment of the present disclosure.
  • FIG. 18 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10.
  • the insulated wire 10 has the same cross section throughout the extending direction, that is, the cross section shown in FIG.
  • the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the insulated wire 10 has an insulating layer 2 between the conducting wire 1 and the semi-curing adhesive layer 3, but in the second embodiment, the insulating layer is formed between the conducting wire 1 and the semi-curing adhesive layer 13.
  • the semi-curing adhesive layer 13 is formed directly on the conductor 1 without providing 2.
  • the semi-cured adhesive layer 13 is formed to a thickness that satisfies the insulating performance with respect to the conductor 1 only by the semi-cured adhesive layer 13.
  • the semi-cured adhesive layer 13 is the outermost layer of the insulated wire 10.
  • the semi-curing adhesive layer 13 is a layer made of a semi-curing adhesive in a semi-curing state.
  • the semi-cured adhesive layer 13 which is the outermost layer has the following characteristics.
  • the semi-curing adhesive layer 13 has an insulating property and contributes to the insulation of the conducting wire 1. Further, the semi-cured adhesive layer 13 is in a semi-cured state, and a coil in which the windings are fixed can be manufactured by winding the insulating electric wire 10 in multiple layers and main curing.
  • a step 4 is formed on the outer peripheral surface of the semi-cured adhesive layer 13. Therefore, when the insulated wire 10 is wound in multiple layers, the step 4 comes into contact with another portion of the insulated wire 10 and restricts the movement of that portion. Therefore, if a coil is manufactured using the insulated wire 10, it is possible to suppress the misalignment of the winding and the twisting of the winding during winding.
  • the step 4 is formed by molding a semi-curing adhesive that forms the semi-curing adhesive layer 13. Therefore, in the manufacturing process of the insulated wire 10, if extrusion molding or the like described later is used, the semi-cured adhesive layer 13 can be collectively molded including the step 4.
  • the semi-cured adhesive layer 13 is formed to a thickness that satisfies the required insulating performance, but includes the thickness of the portion of the semi-cured adhesive layer 13 that covers the entire outer peripheral surface of the conductor 1 (that is, the thickness of the recess).
  • the thickness is preferably 10 ⁇ m to 500 ⁇ m.
  • the surface of the conductor 1 is physically or chemically treated before the semi-cured adhesive layer 13 is applied on the surface of the conductor 1. You may go.
  • physical treatment atmospheric plasma treatment, deep ultraviolet light treatment, corona discharge treatment, sparsening treatment (laser sparsening, polishing, sandblasting treatment) and the like can be used.
  • a silane coupling agent may be applied on the surface of the conductor 1 as a primer, and the semi-cured adhesive layer 13 may be applied using the primer as a surface to be adhered.
  • an epoxy-based adhesive is used as the semi-curable adhesive that forms the semi-curable adhesive layer 13
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and 3-glycidoxypropylmethyl are used as the primers.
  • the surface of the conductor 1 may be subjected to both the above-mentioned physical treatment and chemical treatment.
  • a step 4 is formed by providing a recess 5 on the upper surface of the semi-cured adhesive layer 13, which is the outermost layer.
  • the step 4 is each of the side surfaces 4a and 4b of the recess 5.
  • 4a is the left side surface in the recess 5
  • 4b is the right side surface in the recess 5.
  • a recess 6 is formed on the lower surface of the semi-cured adhesive layer 13.
  • 7a is the left side surface in the recess 6, and 7b is the right side surface in the recess 6.
  • the recess 5 is formed in such a size that the lower right corner portion 9 can be fitted into the recess 5.
  • the recess 6 is formed in such a size that the upper left corner portion 8 can be fitted into the recess 6. Similar to FIG. 2, the lower right corner portion 9 which is a non-recessed winding of the adjacent winding can be fitted in the recess 5.
  • FIG. 19 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG.
  • a step 12 is formed by providing a convex portion 11 on the semi-cured adhesive layer 13 of the outermost peripheral layer.
  • the step 12 is each of the side surfaces 12a and 12b of the convex portion 11.
  • 12a is the left side surface of the convex portion 11
  • 12b is the right side surface of the convex portion 11.
  • a recess 6 is formed on the lower surface of the semi-cured adhesive layer 13.
  • 12a is the left side surface in the recess 6, and 12b is the right side surface in the recess 6.
  • the convex portion 11 is formed in a size that can be fitted into the concave portion 6.
  • the convex portion 11 of the semi-cured adhesive layer 13 of the adjacent winding can be fitted into the concave portion 6 as in FIG. In this way, when the insulated wire 10 is wound, if the convex portion 11 of the semi-cured adhesive layer 13 is fitted into the concave portion 6 of the semi-cured adhesive layer 13, the insulated wire 10 is wound to manufacture a coil. Occasionally, it is possible to suppress misalignment between adjacent windings and twisting of windings.
  • FIG. 20 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG.
  • the same or corresponding parts as those in FIG. 19 are designated by the same reference numerals, and the description thereof will be omitted.
  • the step 12 is formed by providing the convex portion 11 on the semi-curing adhesive layer 13 on the left side of the conducting wire 1.
  • the side surfaces 7a and 7b are formed by forming the recess 6 in the semi-curing adhesive layer 13 on the right side of the conducting wire 1.
  • the convex portion 11 is formed in a size that can be fitted into the concave portion 6. Similar to FIG.
  • the semi-cured adhesive layer 13 which is the outermost layer is directly laminated on the outer peripheral surface of the conductor 1, it is between the conductor 1 and the semi-cured adhesive layer 13. It can be manufactured with a smaller number of steps as compared with the case where a separate insulating layer is provided.
  • FIG. 21 is a flow chart showing an outline of the manufacturing process of the insulated wire 10 according to the third embodiment.
  • FIG. 22 is a schematic view of a manufacturing apparatus used in the manufacturing process of FIG. 21.
  • the method for manufacturing the insulated wire 10 shown in FIG. 1 will be described, but the insulated wire 10 shown in FIGS. 2 to 17 can also be manufactured in the same manner.
  • the lead wire 1 is sent to the surface treatment machine 101 shown in FIG. 22, and the surface treatment SC1 shown in FIG. 21 is performed in this surface treatment machine 101.
  • the surface treatment machine 101 cleans the conductor 1 with a solvent such as acetone, or performs the above-mentioned physical treatment and / or chemical treatment on the outer peripheral surface of the conductor 1.
  • a physical treatment an atmospheric plasma treatment, a deep ultraviolet light treatment, a corona discharge treatment, or a sparsening treatment (laser sparsening, polishing, sandblasting treatment) is performed on the outer peripheral surface of the conducting wire 1.
  • a chemical treatment a silane coupling agent is applied on the outer peripheral surface of the conducting wire 1.
  • the conductor 1 is sent to the heating furnace 102 shown in FIG. 22, and the heating step HC shown in FIG. 21 is performed in this heating furnace 102.
  • the lead wire 1 sent from the surface treatment machine 101 is preheated for extrusion molding described later.
  • the heating furnace 102 preheats the lead wire 1 sent from the surface treatment machine 101 to about 300 ° C.
  • the lead wire 1 is sent to the extruder 103 shown in FIG. 22, and the first molding step P1 shown in FIG. 21 is performed in the extruder 103.
  • the insulating layer 2 is extruded on the outer peripheral surface of the lead wire 1 sent from the heating furnace 102.
  • the extruder 103 extrudes a thermoplastic insulating resin such as polyetheretherketone (PEEK) or polyphenylene sulfide (PPS) on the outer peripheral surface of the preheated lead wire 1 sent from the heating furnace 102.
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • These insulating resins such as PEEK and PPS are put into the extruder 103 in the form of pellets and extruded on the outer peripheral surface of the lead wire 1 at a temperature equal to or higher than the melting point of the insulating resin and lower than the decomposition temperature.
  • the conductor 1 on which the insulating layer 2 is formed by the extrusion molding machine 103 is sent to the surface treatment machine 104, and the surface treatment SC2 shown in FIG. 21 is performed in this surface treatment machine 104.
  • the surface treatment machine 104 performs the above-mentioned physical treatment and / or chemical treatment on the outer peripheral surface of the insulating layer 2.
  • a physical treatment an atmospheric plasma treatment, a deep ultraviolet light treatment, a corona discharge treatment, or a sparsening treatment (laser sparsening, polishing, sandblasting treatment) is performed on the outer peripheral surface of the insulating layer 2.
  • a chemical treatment a silane coupling agent is applied on the outer peripheral surface of the insulating layer 2.
  • the conductor 1 with the insulating layer 2 surface-treated by the surface treatment machine 104 is sent to the extrusion molding machine 105 shown in FIG. 22, and the second molding step P2 shown in FIG. 21 is performed in the extrusion molding machine 105. Will be.
  • the semi-curing adhesive layer 3 is extruded together with the step 4 and the step 7 on the outer peripheral surface of the insulating layer 2 of the conducting wire 1 sent from the surface treatment machine 104.
  • the B-stage adhesive when a solid and pellet-shaped B-stage adhesive is charged into the extruder 105 at room temperature, the B-stage adhesive is heated to a temperature above the melting point (for example, 60 ° C or higher and 140 ° C or lower), and the B stage is heated. It is applied and extruded on the insulating layer 2 in the above state. If the B-stage type adhesive used here is in the form of pellets at room temperature, it is easy to store and handle. The normal temperature is, for example, 5 ° C to 35 ° C.
  • the viscosity of the B-stage adhesive when the B-stage adhesive is applied onto the insulating layer 2 and extruded is preferably, for example, 3 Pa or more and 150 Pa or less.
  • FIG. 23 is a schematic view showing the configuration of the extruder 105.
  • 200 is a solid and pellet-shaped B-stage type adhesive
  • 201 is an input port for the B-stage type adhesive 200
  • 202 is a crushing portion for crushing the pellet-shaped B-stage type adhesive 200
  • 203 is a crushed B-stage type.
  • the coating portion where the adhesive 200 is melted and the melted B-stage type adhesive 200 is applied onto the insulating layer 2 of the lead wire 1 in the state of the B stage
  • 204 is the B-stage type adhesive which is melt-coated on the insulating layer 2.
  • Is a drawing jig that is extruded in the state of the B stage to form the semi-cured adhesive layer 3 together with the step 4 and the step 7.
  • a B-stage adhesive that is solid at room temperature is used, but a B-stage adhesive that is liquid at room temperature and can be B-staged by heating or UV irradiation may be used.
  • the photo-curing type adhesive which is liquid at room temperature is charged into the extrusion molding machine, and the extrusion molding machine is used.
  • a light source having a curing wavelength may be provided at the extrusion port of 105, and the photocurable adhesive may be irradiated with the light to be extruded in a semi-cured state.
  • an insulating material such as glass or molten silica may be mixed with the semi-curing adhesive as a thickness adjusting material and extruded.
  • the surface treatment SC1 by the surface treatment machine 101 was performed in the step before the first molding step P1 by the extrusion molding machine 103, but this surface treatment SC1 may be omitted.
  • the surface treatment SC2 by the surface treatment machine 104 was performed in the step before the second molding step P2 by the extrusion molding machine 105, this surface treatment SC2 may be omitted.
  • the insulated wire 10 of the second embodiment that is, the insulated wire in which the semi-cured adhesive layer 3 is directly formed on the outer peripheral surface of the conducting wire 1. 10 can also be manufactured in the same manner without the first molding step P1 and the surface treatment SC1.
  • the insulated wire 10 shown in each of the first embodiment and the second embodiment may be manufactured by a method other than the manufacturing method of the third embodiment.
  • FIG. 24 is a schematic view of a coil formed by winding the insulated wire 10 of FIG.
  • 30 is an insulator of a coil such as a tooth
  • 31 is an iron core of the coil.
  • the semi-cured adhesive layer 3 which is the outermost layer, has a step 4, so that when the insulated wire 10 is wound in multiple layers to manufacture a coil, the step 4 is the other than the insulated wire 10.
  • the coil is heated after winding the insulated wire 10 in multiple layers around the insulator 30 in this way. It is possible to fix the windings between the windings by the main curing. Therefore, the durability and reliability of the coil are further improved.
  • the surface around which the insulated wire 10 of the insulator 30 is wound may be a flat surface, but as shown in FIG. 24, it may have a groove portion 30a into which the lower right corner portion 9 of the insulated wire 10 is fitted. good.
  • FIG. 24 when a plurality of layers of the insulated wire 10 are wound around the coil, the number of windings of each layer is the same, but as shown in FIG. 25, the number of windings is smaller as the layer is wound outward. You may try to do it.
  • Such a winding method is effective for improving the winding density that can be wound around each tooth. Normally, in such a winding method, the winding is easy to unwind, but if the insulated wires of the first and second embodiments are wound to form a coil, the winding is difficult to unwind due to the step. can do.
  • the coil of FIG. 25 since the semi-curing adhesive layer 3 of the outermost peripheral layer of the insulated wire 10 is formed of the semi-curing adhesive, the coil is wound after winding the insulating wire 10 in multiple layers around the insulator 30.
  • the windings can be fixed between the windings by the main curing by heating or the like.
  • the circled numbers in FIGS. 24 and 25 exemplify the order in which the insulated wire 10 is wound.

Abstract

The present disclosure provides an insulated wire capable of inhibiting winding misalignments and winding kinks when a winding is wound. An insulated wire according to the present disclosure comprises a conducting wire (1), and an outermost peripheral layer (3) that is the most outer peripheral layer laminated on the outer periphery of the conducting wire (1). The outermost peripheral layer (3) is composed of a semi-cured adhesive having insulating properties, and also has a step (4) which is formed by the semi-cured adhesive on the outer peripheral surface thereof. Furthermore, electrical equipment according to the present disclosure has a coil formed by winding the insulated wire in a plurality of layers.

Description

絶縁電線及びその製造方法並びに電気機器Insulated wires, their manufacturing methods, and electrical equipment
 本開示は、絶縁電線、及びその製造方法、並びにその絶縁電線を用いた電気機器に関する。 This disclosure relates to an insulated wire, a manufacturing method thereof, and an electric device using the insulated wire.
 特許文献1には、導線の外周面上に絶縁層が積層され、この絶縁層の外周面上に加熱により膨張する膨張層が積層され、この膨張層の外周面上に熱融着層が積層された絶縁電線が記載されている。この絶縁電線を用いてコイルを製造すれば、巻線間が熱融着により固着したコイルを製造することができる。また、当該熱融着のための加熱時に膨張層が膨張することにより、隣接する巻線間の融着の信頼性を高めることができる。 In Patent Document 1, an insulating layer is laminated on the outer peripheral surface of a conducting wire, an expansion layer that expands by heating is laminated on the outer peripheral surface of the insulating layer, and a heat fusion layer is laminated on the outer peripheral surface of the expansion layer. Insulated wires are listed. If a coil is manufactured using this insulated wire, it is possible to manufacture a coil in which the windings are fixed by heat fusion. Further, the expansion of the expansion layer during heating for the heat fusion can improve the reliability of fusion between adjacent windings.
特開2016-35836号公報Japanese Unexamined Patent Publication No. 2016-35836
 しかしながら、このような従来の絶縁電線は、コイルの製造後における、巻線の位置ずれや巻線のよれは、熱融着による固着で抑制できるが、熱融着前の絶縁電線を巻回する作業中における巻線の位置ずれや、巻線のよれを抑制することはできない。 However, in such a conventional insulated wire, misalignment of the winding and twisting of the winding after the coil is manufactured can be suppressed by fixing by heat fusion, but the insulated wire before heat fusion is wound. It is not possible to suppress the misalignment of the windings and the twisting of the windings during work.
 本開示は、このような課題を解決するためになされたもので、絶縁電線を巻回してコイルを製造する際の、巻回時における巻線の位置ずれや、巻線のよれを抑制することができる絶縁電線、及びその製造方法、並びに電気機器を提供することを目的とする。 The present disclosure has been made to solve such a problem, and suppresses the misalignment of the winding and the twisting of the winding at the time of winding when the insulated wire is wound to manufacture a coil. It is an object of the present invention to provide an insulated electric wire capable of being used, a method for manufacturing the same, and an electric device.
 本開示に係る絶縁電線は、導線と、導線の外周側に積層される最も外側の層である最外周層とを有し、当該最外周層は絶縁性を有する半硬化型接着剤により構成されるとともに、その外周面に当該半硬化型接着剤を成形した段差を有する。 The insulated wire according to the present disclosure has a conducting wire and an outermost peripheral layer which is an outermost layer laminated on the outer peripheral side of the conducting wire, and the outermost peripheral layer is composed of an insulating semi-curing adhesive. At the same time, it has a step on the outer peripheral surface of which the semi-curable adhesive is formed.
 本開示に係る絶縁電線は、この絶縁電線を多層に巻回してコイルを製造するときに、段差が当該絶縁電線の他の部分と接触し、その接触した部分の移動を制限する。このため、この絶縁電線を巻回してコイルを製造したときに、隣接する巻線間の位置づれや、巻線のよれを抑制できる。 In the insulated wire according to the present disclosure, when the insulated wire is wound in multiple layers to manufacture a coil, a step comes into contact with another part of the insulated wire, and the movement of the contacted portion is restricted. Therefore, when the coil is manufactured by winding this insulated wire, it is possible to suppress the positioning between adjacent windings and the twisting of the windings.
実施の形態1にかかる絶縁電線の断面図である。It is sectional drawing of the insulated wire which concerns on Embodiment 1. FIG. 図1に示す絶縁電線を多層に巻回したときの断面図である。It is sectional drawing when the insulated wire shown in FIG. 1 is wound in a multi-layered structure. 実施の形態1にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1. FIG. 実施の形態1にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1. FIG. 図4に示す絶縁電線を多層に巻回したときの断面図である。It is sectional drawing when the insulated wire shown in FIG. 4 is wound in a multi-layered structure. 実施の形態1にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1. FIG. 図6に示す絶縁電線を多層に巻回したときの断面図である。It is sectional drawing when the insulated wire shown in FIG. 6 is wound in a multi-layered structure. 実施の形態1にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1. FIG. 図8に示す絶縁電線を多層に巻回したときの断面図である。It is sectional drawing when the insulated wire shown in FIG. 8 is wound in a multi-layered structure. 図8の絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation wire of FIG. 実施の形態1にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1. FIG. 図11に示す絶縁電線を多層に巻回したときの断面図である。It is sectional drawing when the insulated wire shown in FIG. 11 is wound in a multi-layered structure. 図4に示す絶縁電線を多層に巻回したときの別の断面図である。It is another cross-sectional view when the insulated wire shown in FIG. 4 is wound in multiple layers. 実施の形態1にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1. FIG. 実施の形態1にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1. FIG. 図15に示す絶縁電線を多層に巻回したときの断面図である。It is sectional drawing when the insulated wire shown in FIG. 15 is wound in a multi-layered structure. 実施の形態1にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 1. FIG. 実施の形態2にかかる絶縁電線の断面図である。It is sectional drawing of the insulated wire which concerns on Embodiment 2. FIG. 実施の形態2にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 2. FIG. 実施の形態2にかかる絶縁電線の変形例を示す断面図である。It is sectional drawing which shows the modification of the insulation electric wire which concerns on Embodiment 2. FIG. 実施の形態1の絶縁電線の製造工程の概略を示すフロー図である。It is a flow diagram which shows the outline of the manufacturing process of the insulated wire of Embodiment 1. FIG. 図21の製造工程で用いる製造装置の概略図である。It is the schematic of the manufacturing apparatus used in the manufacturing process of FIG. 図22の押出成形機105の構成を示す概略図である。It is the schematic which shows the structure of the extruder 105 of FIG. 22. 図5の絶縁電線を巻回してなるコイルを例示する概略図である。It is a schematic diagram which illustrates the coil formed by winding the insulated wire of FIG. 図5の絶縁電線を巻回してなるコイルの別の例を示す概略図である。It is a schematic diagram which shows another example of the coil formed by winding the insulated wire of FIG.
 実施の形態1.
 以下、本開示の絶縁電線の構造およびその製造方法について説明する。本開示の絶縁電線は、各種電気機器のモータ、発電機、変圧器、ソレノイド、リアクトル等のコイルの巻線として使用される。
Embodiment 1.
Hereinafter, the structure of the insulated wire of the present disclosure and the manufacturing method thereof will be described. The insulated wire of the present disclosure is used as a winding of a coil of a motor, a generator, a transformer, a solenoid, a reactor, etc. of various electric devices.
 図1は、本開示の実施の形態1にかかる絶縁電線10の断面図である。図1は、絶縁電線10の延伸方向に対し垂直な方向における断面を示している。絶縁電線10は、その延伸方向の全体にわたって同一の断面、即ち、図1に示す断面を有している。絶縁電線10は、導線1と、導線1の外周面上に積層される絶縁層2と、絶縁層2の外周面上に積層される半硬化接着層3とを有する。半硬化接着層3は、絶縁電線10の最も外側の層(最外周層)である。 FIG. 1 is a cross-sectional view of the insulated wire 10 according to the first embodiment of the present disclosure. FIG. 1 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10. The insulated wire 10 has the same cross section throughout the extending direction, that is, the cross section shown in FIG. 1. The insulated wire 10 has a conducting wire 1, an insulating layer 2 laminated on the outer peripheral surface of the conducting wire 1, and a semi-curing adhesive layer 3 laminated on the outer peripheral surface of the insulating layer 2. The semi-cured adhesive layer 3 is the outermost layer (outermost peripheral layer) of the insulated wire 10.
 半硬化接着層3は、半硬化状態の半硬化型接着剤からなる層である。半硬化型接着剤は、半硬化状態を保持できる接着剤である。たとえば、半硬化型接着剤として、Bステージの状態になり得うるBステージ型接着剤が知られている。Bステージは、熱硬化性樹脂の硬化中間状態であって、この状態での樹脂は加熱すると軟化し,ある種の溶剤に触れると膨潤するが,完全に溶融・溶解することはない。このような半硬化型接着剤は、半硬化状態から一定時間以上加熱するなどの所定の処理を施すことにより、完全に硬化した本硬化状態にすることができる。ここで用いる半硬化接着剤は、常温で半硬化状態を一定期間保持できるものであれば、Bステージ型接着剤のような熱硬化性樹脂に限らず、UV硬化性樹脂(紫外線硬化性樹脂)などの光硬化性樹脂であってもよい。ここでいう半硬化状態とは、硬化中間状態をいう。 The semi-cured adhesive layer 3 is a layer made of a semi-cured adhesive in a semi-cured state. The semi-curing adhesive is an adhesive that can maintain a semi-curing state. For example, as a semi-curing adhesive, a B-stage adhesive that can be in a B-stage state is known. The B stage is an intermediate state in which the thermosetting resin is cured, and the resin in this state softens when heated and swells when it comes into contact with a certain solvent, but it does not completely melt or dissolve. Such a semi-curable adhesive can be brought into a completely cured main-cured state by subjecting it to a predetermined treatment such as heating from the semi-cured state for a certain period of time or longer. The semi-curing adhesive used here is not limited to a thermosetting resin such as a B-stage type adhesive as long as it can maintain a semi-curing state at room temperature for a certain period of time, but is also a UV curable resin (ultraviolet curable resin). It may be a photocurable resin such as. The semi-cured state here means an intermediate state of curing.
 本実施の形態1において、最外周層である半硬化接着層3は以下の特徴を有する。半硬化接着層3は絶縁性を有し、導線1の絶縁に寄与する。また、半硬化接着層3は半硬化状態であり、絶縁電線10を多層に巻回して本硬化することにより、巻線間が固着されたコイルを製造できる。 In the first embodiment, the semi-cured adhesive layer 3 which is the outermost layer has the following characteristics. The semi-curing adhesive layer 3 has an insulating property and contributes to the insulation of the conducting wire 1. Further, the semi-cured adhesive layer 3 is in a semi-cured state, and a coil in which the windings are fixed can be manufactured by winding the insulating electric wire 10 in multiple layers and main curing.
 また、半硬化接着層3の外周面には、段差4が形成されている。このため、この絶縁電線10を多層に巻回するときに、段差4が絶縁電線10の他の部分と接触し、その部分の移動を制限する。よって、この絶縁電線10を用いてコイルを製造すれば、巻回時における巻線の位置ずれや、巻線のよれを抑制できる。図1では、段差4は、半硬化接着層3の外周面に凹部5を設けることにより、凹部5の一部として形成されている。図1での段差4は凹部5内の側面4a,4bのそれぞれである。この絶縁電線10を多層に巻回すると、たとえば図2に示すように、凹部5内に、隣接する巻線の非凹部である右下角部9を嵌入できる。 Further, a step 4 is formed on the outer peripheral surface of the semi-cured adhesive layer 3. Therefore, when the insulated wire 10 is wound in multiple layers, the step 4 comes into contact with another portion of the insulated wire 10 and restricts the movement of that portion. Therefore, if a coil is manufactured using the insulated wire 10, it is possible to suppress the misalignment of the winding and the twisting of the winding during winding. In FIG. 1, the step 4 is formed as a part of the recess 5 by providing the recess 5 on the outer peripheral surface of the semi-cured adhesive layer 3. The step 4 in FIG. 1 is each of the side surfaces 4a and 4b in the recess 5. When the insulated wire 10 is wound in multiple layers, for example, as shown in FIG. 2, the lower right corner portion 9 which is a non-recessed winding of the adjacent winding can be fitted into the recess 5.
 また、段差4は、半硬化接着層3を形成する半硬化型接着剤を成形することにより形成されている。このため、絶縁電線10の製造工程において、後述する押出成形等を用いれば、半硬化接着層3をその段差4も含めて一括して成形できる。 Further, the step 4 is formed by molding a semi-curing adhesive that forms the semi-curing adhesive layer 3. Therefore, in the manufacturing process of the insulated wire 10, if extrusion molding or the like described later is used, the semi-cured adhesive layer 3 can be collectively molded including the step 4.
 以下、図1の絶縁電線10の構造について、さらに詳しく説明する。導線1は、例えば、銅線、アルミニウム線、またはこれらの合金線である。銅線の材質としては、たとえばタフピッチ銅、無酸素銅などを用いることができる。アルミニウム線の材質としては、たとえば硬アルミニウムを用いることができる。合金線の材質としては、たとえば、銅と錫の合金、銅と銀の合金、銅と亜鉛の合金、銅とクロムの合金、銅とジルコニウムの合金、アルミニウムと銅の合金、アルミニウムと銀の合金、アルミニウムと亜鉛の合金、アルミニウムと鉄の合金などを用いることができる。導線1は、1本の導体で形成される単線でも、複数本の導体が撚り合わされた撚り線でもよい。図1では、導線1が、断面形状が矩形の平角線である場合を示したが、断面形状が円形の丸線や、断面形状がその他の多角形である導体であってもよい。 Hereinafter, the structure of the insulated wire 10 in FIG. 1 will be described in more detail. The conductor 1 is, for example, a copper wire, an aluminum wire, or an alloy wire thereof. As the material of the copper wire, for example, tough pitch copper, oxygen-free copper and the like can be used. As the material of the aluminum wire, for example, hard aluminum can be used. Alloy wire materials include, for example, copper and tin alloys, copper and silver alloys, copper and zinc alloys, copper and chromium alloys, copper and zirconium alloys, aluminum and copper alloys, and aluminum and silver alloys. , Alloys of aluminum and zinc, alloys of aluminum and iron, etc. can be used. The conductor 1 may be a single wire formed of one conductor or a stranded wire in which a plurality of conductors are twisted together. Although FIG. 1 shows a case where the conducting wire 1 is a rectangular wire having a rectangular cross-sectional shape, it may be a circular wire having a circular cross-sectional shape or a conductor having another polygonal cross-sectional shape.
 絶縁層2の材質は、たとえば、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリベンゾイミダゾール(PBI)、ポリエーテルサルフォン(PES)、ポリプロピレン(PP)などである。 The material of the insulating layer 2 is, for example, polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyetherimide (PEI), polyamideimide (PAI), polyimide (PI), polybenzoimidazole (PBI), polyether. Sulfon (PES), polypropylene (PP) and the like.
 絶縁層2は、導線1の表面上に、たとえば押出塗布法により形成することができる。絶縁層2を押出塗布法により形成する場合、塗布される絶縁層2の厚さを均一にする観点から、絶縁層2の厚みは30μm以上とすることが好ましい。また、絶縁層2の厚みが薄すぎると、絶縁層2の絶縁性が大きく低下し、厚すぎると小型化に不向きであり、巻回しも難しくなる。このような観点等から、絶縁層2の厚みは、30μm以上かつ150μm以下が好ましく、50μm以上かつ70μm以下が更に好ましい。 The insulating layer 2 can be formed on the surface of the conductor 1 by, for example, an extrusion coating method. When the insulating layer 2 is formed by the extrusion coating method, the thickness of the insulating layer 2 is preferably 30 μm or more from the viewpoint of making the thickness of the insulating layer 2 coated uniform. Further, if the thickness of the insulating layer 2 is too thin, the insulating property of the insulating layer 2 is greatly deteriorated, and if it is too thick, it is not suitable for miniaturization and winding becomes difficult. From such a viewpoint, the thickness of the insulating layer 2 is preferably 30 μm or more and 150 μm or less, and more preferably 50 μm or more and 70 μm or less.
 絶縁層2に用いる上述のような材質は、高い体積低効率を有するとともに、安定し劣化し難い性質があるが、導線1との接着性が劣る場合がある。その場合には、導線1の表面上に絶縁層2を塗布する前に、導線1の表面に物理的処理や化学的処理を行うことで、導線1と絶縁層2の密着性や接着強度を向上できる。このような物理的処理として、大気プラズマ処理、深紫外光処理、コロナ放電処理、疎化処理(レーザー疎化、研磨、サンドブラスト処理)などを用いることができる。 The above-mentioned material used for the insulating layer 2 has high volume and low efficiency, and has the property of being stable and resistant to deterioration, but the adhesiveness with the conducting wire 1 may be inferior. In that case, before the insulating layer 2 is applied on the surface of the conducting wire 1, the surface of the conducting wire 1 is physically or chemically treated to improve the adhesion and the adhesive strength between the conducting wire 1 and the insulating layer 2. Can be improved. As such physical treatment, atmospheric plasma treatment, deep ultraviolet light treatment, corona discharge treatment, sparsening treatment (laser sparsening, polishing, sandblasting treatment) and the like can be used.
 また、化学的処理として、導線1の表面上にシランカップリング剤を塗布し、そのシランカップリング剤の上に絶縁層2を塗布してもよい。導線1と絶縁層2の間に、エポキシ系接着剤を塗布する場合は、導線1の表面上にシランカップリング剤をプライマーとして塗布し、そのプライマーの上にエポキシ系接着剤を塗布し、そのエポキシ系接着剤を被接着面として絶縁層2を塗布してもよい。このようなプライマーとして、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ベニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩などを用いることができる。導線1の表面上にシランカップリング剤を含んだエポキシ系接着剤を塗布し、そのエポキシ系接着剤を被接着面として絶縁層2を塗布してもよい。導線1の表面に、上述の物理的処理と化学的処理の双方を施してもよい。 Further, as a chemical treatment, a silane coupling agent may be applied on the surface of the conducting wire 1, and the insulating layer 2 may be applied on the silane coupling agent. When applying an epoxy adhesive between the lead wire 1 and the insulating layer 2, a silane coupling agent is applied as a primer on the surface of the lead wire 1, and an epoxy adhesive is applied on the primer. The insulating layer 2 may be applied using an epoxy adhesive as the surface to be adhered. Such primers include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethylditoxylsilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldi. Ethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3aminopropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl -3-Aminopropyltrimethoxysilane, N- (benylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride and the like can be used. An epoxy-based adhesive containing a silane coupling agent may be applied onto the surface of the lead wire 1, and the insulating layer 2 may be applied using the epoxy-based adhesive as the surface to be adhered. The surface of the conductor 1 may be subjected to both the above-mentioned physical treatment and chemical treatment.
 半硬化接着層3は、半硬化状態の半硬化型接着剤からなる層である。この半硬化接着層3として、たとえば、Bステージ型接着剤や、UV硬化型接着剤を用いることができる。半硬化接着層3として好適なBステージ型接着剤として、たとえば、ビスフェノールA型エポキシ樹脂が60~75wt%、およびクレゾールノボラック型エポキシ樹脂が25~35wt%で混合したものに、アミン系硬化剤1~5wt%を加えて混錬したものを用いることができる。半硬化接着層3として好適なUV硬化型接着剤としては、たとえば、ビスフェノールA型エポキシ樹脂30~40wt%、およびビスフェノールF型エポキシ樹脂20~30wt%で混合したものに、フッ化アンチモンスルホニウムなどの光硬化剤1~5wt%を加えて混錬したものを用いることができる。 The semi-cured adhesive layer 3 is a layer made of a semi-cured adhesive in a semi-cured state. As the semi-curable adhesive layer 3, for example, a B-stage type adhesive or a UV curable adhesive can be used. As a B-stage type adhesive suitable as the semi-curing adhesive layer 3, for example, a mixture of 60 to 75 wt% of bisphenol A type epoxy resin and 25 to 35 wt% of cresol novolac type epoxy resin is mixed with the amine-based curing agent 1. A mixture obtained by adding up to 5 wt% and kneading can be used. Suitable UV-curable adhesives for the semi-curable adhesive layer 3 include, for example, a mixture of 30 to 40 wt% of bisphenol A type epoxy resin and 20 to 30 wt% of bisphenol F type epoxy resin, and antimonth sulfonium fluoride. A photo-curing agent to which 1 to 5 wt% is added and kneaded can be used.
 半硬化接着層3は、このような半硬化型接着剤が本硬化しておらず、半硬化状態になっている。Bステージ型接着剤のBステージは、ここでいう半硬化状態である。UV硬化型接着剤は、当該接着剤に対し紫外線を照射することで、半硬化状態にすることができる。半硬化接着層3としてBステージ型接着剤を用いる場合、Bステージ化が紫外線で行えるタイプのBステージ型接着剤を用いてもよい。 The semi-curing adhesive layer 3 is in a semi-curing state because such a semi-curing adhesive is not finally cured. The B stage of the B stage type adhesive is in the semi-cured state referred to here. The UV curable adhesive can be made into a semi-curable state by irradiating the adhesive with ultraviolet rays. When a B-stage adhesive is used as the semi-curing adhesive layer 3, a B-stage adhesive of a type that can be B-staged with ultraviolet rays may be used.
 絶縁層2と半硬化接着層3の密着性や接着強度を向上するために、絶縁層2の表面上に半硬化接着層3を塗布する前に、物理的処理や化学的処理を行ってもよい。このような物理的処理としては、大気プラズマ処理、深紫外光処理、コロナ放電処理、疎化処理(レーザー疎化、研磨、サンドブラスト処理)などを用いることができる。 In order to improve the adhesion and adhesive strength between the insulating layer 2 and the semi-cured adhesive layer 3, physical treatment or chemical treatment may be performed before applying the semi-cured adhesive layer 3 on the surface of the insulating layer 2. good. As such physical treatment, atmospheric plasma treatment, deep ultraviolet light treatment, corona discharge treatment, sparsening treatment (laser sparsening, polishing, sandblasting treatment) and the like can be used.
 また、化学的処理として、絶縁層2の表面上にシランカップリング剤をプライマーとして塗布し、そのプライマーを被接着面として半硬化接着層3を塗布してもよい。半硬化接着層3を形成する半硬化型接着剤として、エポキシ系接着剤を用いる場合は、当該プライマーとして、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ベニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩などを用いることができる。絶縁層2の表面に、上述の物理的処理と化学的処理の双方を施してもよい。 Further, as a chemical treatment, a silane coupling agent may be applied on the surface of the insulating layer 2 as a primer, and the semi-cured adhesive layer 3 may be applied using the primer as a surface to be adhered. When an epoxy-based adhesive is used as the semi-curable adhesive that forms the semi-curing adhesive layer 3, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and 3-glycidoxypropylmethyl are used as the primers. Ditoxylsilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3aminopropyltrimethoxysilane, 3 -Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (benylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride Salt or the like can be used. The surface of the insulating layer 2 may be subjected to both the above-mentioned physical treatment and chemical treatment.
 以下、説明の便宜上、各図の紙面上の上下左右の方向に対応して上、下、左、右との表現を用いて説明する。また、絶縁電線10を多層に巻回してコイルを生成する場合、絶縁電線10の下側を内側にして巻回する場合を説明するが、これは例示にすぎず、絶縁電線10の巻回の仕方をこれに限定するものではない。 Hereinafter, for convenience of explanation, the expressions of up, down, left, and right will be used to correspond to the up, down, left, and right directions on the paper of each figure. Further, in the case where the insulated wire 10 is wound in multiple layers to generate a coil, the case where the coil is wound with the lower side of the insulated wire 10 inside is described, but this is merely an example, and the winding of the insulated wire 10 is described. The method is not limited to this.
 図1では、最外周層である半硬化接着層3の上面に凹部5を設けることにより、段差4を形成している。図1において、段差4は凹部5の側面4a,4bのそれぞれである。4aは、凹部5内の左側の側面、4bは凹部5内の右側の側面である。また、半硬化接着層3の下面には凹部6が形成されている。7aは凹部6内の左側の側面、7bは凹部6内の右側の側面である。 In FIG. 1, a step 4 is formed by providing a recess 5 on the upper surface of the semi-cured adhesive layer 3, which is the outermost layer. In FIG. 1, the step 4 is each of the side surfaces 4a and 4b of the recess 5. 4a is the left side surface in the recess 5, and 4b is the right side surface in the recess 5. Further, a recess 6 is formed on the lower surface of the semi-cured adhesive layer 3. 7a is the left side surface in the recess 6, and 7b is the right side surface in the recess 6.
 図1の8は半硬化接着層3の左上角部であり、詳しくは、半硬化接着層3の左側端部81から凹部5の左側の側面4aまでの部分である。9は半硬化接着層3の右下角部であり、詳しくは、半硬化接着層3の右側端部91から凹部6の右側の側面7bまでの部分である。凹部5は、右下角部9をその凹部5内に嵌入可能な大きさに形成されている。凹部6は、左上角部8をその凹部6内に嵌入可能な大きさに形成されている。 8 in FIG. 1 is the upper left corner portion of the semi-cured adhesive layer 3, and more specifically, the portion from the left end portion 81 of the semi-cured adhesive layer 3 to the left side surface 4a of the recess 5. Reference numeral 9 is a lower right corner portion of the semi-cured adhesive layer 3, specifically, a portion from the right end portion 91 of the semi-cured adhesive layer 3 to the right side surface 7b of the recess 6. The recess 5 is formed in such a size that the lower right corner portion 9 can be fitted into the recess 5. The recess 6 is formed in such a size that the upper left corner portion 8 can be fitted into the recess 6.
 図1において、半硬化接着層3の厚さは、絶縁層2の上下左右のいずれの方向に位置する部分も同一にしているが、後述するように、絶縁層2の上下左右のいずれかの方向に位置する部分の厚さを異ならせてもよい。また、絶縁層2の厚みは、導線1の外周の全体に渡って同一であってもよいし、厚みが異なる部分があってもよい。たとえば、半硬化接着層3は、絶縁層2の上下方向に位置する凹部5および凹部6の存在により絶縁性が低下することから、絶縁層2は、導線1の上下方向に位置する部分の厚みを、導線1の左右方向に位置する部分の厚みよりも厚くしてもよい。 In FIG. 1, the thickness of the semi-cured adhesive layer 3 is the same for the portions located in any of the upper, lower, left, and right directions of the insulating layer 2, but as will be described later, any of the upper, lower, left, and right sides of the insulating layer 2. The thickness of the portion located in the direction may be different. Further, the thickness of the insulating layer 2 may be the same over the entire outer circumference of the conducting wire 1, or there may be portions having different thicknesses. For example, since the semi-curing adhesive layer 3 has reduced insulating properties due to the presence of the recesses 5 and the recesses 6 located in the vertical direction of the insulating layer 2, the insulating layer 2 has the thickness of the portion of the conducting wire 1 located in the vertical direction. May be thicker than the thickness of the portion of the conductor 1 located in the left-right direction.
 図2は、図1に示す絶縁電線10を、その下面を内側にして、多層に巻回したときの断面図である。図2はその巻回方向に垂直な方向における断面を示している。このように、半硬化接着層3の凹部5内に、半硬化接着層3の非凹部である右下角部9を嵌入できる。また、半硬化接着層3の凹部6内に、半硬化接着層3の左上角部8を嵌入できる。 FIG. 2 is a cross-sectional view of the insulated wire 10 shown in FIG. 1 when the insulated wire 10 is wound in multiple layers with the lower surface inside. FIG. 2 shows a cross section in a direction perpendicular to the winding direction. In this way, the lower right corner portion 9, which is a non-recessed portion of the semi-cured adhesive layer 3, can be fitted into the recess 5 of the semi-cured adhesive layer 3. Further, the upper left corner portion 8 of the semi-curable adhesive layer 3 can be fitted into the recess 6 of the semi-curable adhesive layer 3.
 このように、半硬化接着層3の凹部5内に、半硬化接着層3の非凹部である右下角部9を嵌入させれば、絶縁電線10を巻回してコイルを製造したときに、隣接する巻線間の位置づれや、巻線のよれを抑制できる。また、このように、半硬化接着層3の凹部6内に、半硬化接着層3の左上角部8を嵌入できるようにすることで、隣接する巻線間で左上角部8が干渉せず、凹部5内に右下角部9を嵌入しやすくなる。 In this way, if the lower right corner portion 9, which is a non-recessed portion of the semi-cured adhesive layer 3, is fitted into the recess 5 of the semi-cured adhesive layer 3, the insulated wire 10 is wound around the insulating wire 10 to be adjacent to the coil. It is possible to suppress the misalignment between the windings and the twisting of the windings. Further, by making it possible to fit the upper left corner portion 8 of the semi-curing adhesive layer 3 into the recess 6 of the semi-curing adhesive layer 3 in this way, the upper left corner portion 8 does not interfere between the adjacent windings. , It becomes easy to fit the lower right corner portion 9 into the recess 5.
 なお、このような凹部5内への非凹部の嵌入は、巻回する絶縁電線10の全体にわたって行う必要は必ずしもなく、絶縁電線10を多層に巻回するときに、絶縁電線10の少なくとも一部において、凹部の側面4aまたは側面4bに絶縁電線10の他の部分が接触すれば、巻線の位置づれや、巻線のよれを抑制できる。 It is not always necessary to fit the non-recessed portion into the recessed portion 5 over the entire wound insulating wire 10, and when the insulated wire 10 is wound in multiple layers, at least a part of the insulated wire 10 is wound. In the case where the other portion of the insulated wire 10 comes into contact with the side surface 4a or the side surface 4b of the recess, the positioning of the winding and the twisting of the winding can be suppressed.
 また、絶縁電線10の巻き方として、巻線機などを用いて、内側の巻線の層から外側の巻線の層へと、順次に規則的に巻回してもよいが、手作業などにより、不規則に多層に巻回してもよい。 Further, as a method of winding the insulated wire 10, a winding machine or the like may be used to sequentially and regularly wind the insulated wire 10 from the inner winding layer to the outer winding layer, but by manual work or the like. , May be wound in multiple layers irregularly.
 図1および図2では、側面4aと側面4bの間の間隔を、凹部5の底面から凹部5の開口に向かって大きくすることにより、凹部5内に右下角部9を嵌入しやすいように、テーパを設けている。また、側面7aと側面7bの間の間隔を、凹部6の底面から凹部6の開口に向かって大きくすることにより、凹部6内に左上角部8を嵌入しやすいように、テーパを設けている。 In FIGS. 1 and 2, the space between the side surface 4a and the side surface 4b is increased from the bottom surface of the recess 5 toward the opening of the recess 5, so that the lower right corner portion 9 can be easily fitted into the recess 5. A taper is provided. Further, by increasing the distance between the side surface 7a and the side surface 7b from the bottom surface of the recess 6 toward the opening of the recess 6, a taper is provided so that the upper left corner portion 8 can be easily fitted into the recess 6. ..
 図3は、図1の絶縁電線10の変形例を示す断面図である。図3において、図1と同一または相当する部分は同一符号を付して説明は省略する。図1および図2では、側面4a,4b,7a,7bのテーパを平面状に形成しているが、図3に示すように、それらの側面4a,4b,7a,7bのテーパを曲面状に形成してもよい。図3は、それ以外の部分は、図1と同様である。 FIG. 3 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG. In FIG. 3, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In FIGS. 1 and 2, the tapers of the side surfaces 4a, 4b, 7a, and 7b are formed in a planar shape, but as shown in FIG. 3, the tapers of the side surfaces 4a, 4b, 7a, and 7b are formed in a curved surface shape. It may be formed. FIG. 3 is the same as FIG. 1 except for the parts.
 図4は、実施の形態1の絶縁電線10の変形例を示す断面図である。図4において、図1と同一または相当する部分は同一符号を付して説明は省略する。図1~図3では、半硬化接着層3に、互いに対向する側面4a,4bを有する凹部5を形成することにより、段差4を形成した。図4では、絶縁層2より上方において、段差4から右側端部91までの部分において半硬化接着層3を設けないことにより、段差4を形成している。また、絶縁層2より下方において、段差7から左側端部81までの部分において半硬化接着層3を設けないことにより、段差7を形成している。図4において、左上角部8は、半硬化接着層3の段差4から左側端部81までの部分である。また、右下角部9は、半硬化接着層3の段差7から右側端部91までの部分である。 FIG. 4 is a cross-sectional view showing a modified example of the insulated wire 10 of the first embodiment. In FIG. 4, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In FIGS. 1 to 3, a step 4 is formed by forming a recess 5 having side surfaces 4a and 4b facing each other in the semi-cured adhesive layer 3. In FIG. 4, the step 4 is formed by not providing the semi-curing adhesive layer 3 in the portion from the step 4 to the right end portion 91 above the insulating layer 2. Further, below the insulating layer 2, the step 7 is formed by not providing the semi-curing adhesive layer 3 in the portion from the step 7 to the left end portion 81. In FIG. 4, the upper left corner portion 8 is a portion from the step 4 of the semi-cured adhesive layer 3 to the left end portion 81. Further, the lower right corner portion 9 is a portion from the step 7 of the semi-cured adhesive layer 3 to the right end portion 91.
 図5は、図4に示す絶縁電線10を、その下面を内側にして、多層に巻回したときの断面図である。図5はその巻回方向に垂直な方向における断面を示している。このように、半硬化接着層3が段差4を有するので、この絶縁電線10を多層に巻回してコイルを製造する場合に、絶縁電線10の右下角部9が段差4に接触し、右下角部9の移動を制限する。このため、絶縁電線10の巻回時における巻線の位置ずれや、巻線のよれが抑制される。 FIG. 5 is a cross-sectional view of the insulated wire 10 shown in FIG. 4 when the insulated wire 10 is wound in multiple layers with the lower surface inside. FIG. 5 shows a cross section in a direction perpendicular to the winding direction. As described above, since the semi-cured adhesive layer 3 has the step 4, when the insulated wire 10 is wound in multiple layers to manufacture a coil, the lower right corner portion 9 of the insulated wire 10 comes into contact with the step 4 and the lower right corner. Restrict the movement of part 9. Therefore, the misalignment of the winding and the twisting of the winding when the insulated wire 10 is wound are suppressed.
 図6は、実施の形態1の絶縁電線10の他の変形例を示す断面図である。図6において、図1と同一または相当する部分は同一符号を付して説明は省略する。図1~図5では、最外周層の半硬化接着層3を部分的に設けずに、半硬化接着層3の内側にある絶縁層2を部分的に露出させることで段差4を形成した。図6では、最外周層の半硬化接着層3の厚さを部分的に薄くすることにより、段差4を形成している。 FIG. 6 is a cross-sectional view showing another modified example of the insulated wire 10 of the first embodiment. In FIG. 6, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In FIGS. 1 to 5, the step 4 is formed by partially exposing the insulating layer 2 inside the semi-curable adhesive layer 3 without partially providing the semi-curable adhesive layer 3 of the outermost peripheral layer. In FIG. 6, the step 4 is formed by partially reducing the thickness of the semi-cured adhesive layer 3 of the outermost peripheral layer.
 また、凹部6についても同様に、図1~図5では、最外周層の半硬化接着層3を部分的に設けずに、半硬化接着層3の内側にある絶縁層2を部分的に露出させることで凹部6を形成した。図6では、最外周層の半硬化接着層3の厚さを部分的に薄くすることにより、凹部6を形成している。 Similarly, with respect to the recess 6, in FIGS. 1 to 5, the insulating layer 2 inside the semi-curable adhesive layer 3 is partially exposed without partially providing the semi-curable adhesive layer 3 of the outermost peripheral layer. The recess 6 was formed by allowing the mixture to form a recess 6. In FIG. 6, the recess 6 is formed by partially reducing the thickness of the semi-cured adhesive layer 3 of the outermost peripheral layer.
 図6では、最外周層の半硬化接着層3の厚さを部分的に薄くすることにより、段差4を形成するため、絶縁層2が露出せず保護されるとともに、半硬化接着層3も絶縁性を有することから、導線1を絶縁する効果が大きくなる。また、半硬化接着層3が導線1を絶縁する効果が増加する分、絶縁層2を薄くすることも可能である。 In FIG. 6, since the step 4 is formed by partially reducing the thickness of the semi-cured adhesive layer 3 of the outermost peripheral layer, the insulating layer 2 is not exposed and is protected, and the semi-cured adhesive layer 3 is also formed. Since it has an insulating property, the effect of insulating the conductor 1 is increased. Further, it is possible to make the insulating layer 2 thinner by the amount that the semi-curing adhesive layer 3 increases the effect of insulating the conducting wire 1.
 絶縁層2および半硬化接着層3を厚くするほど、導線1を絶縁する効果は大きくなるが、厚すぎるとコイルの小型化に不向きである。このことから、絶縁層2の厚さは30μm~150μm、半硬化接着層3の、絶縁層2の外周面全体を覆う部分の厚さ(即ち、凹部の厚さを含めない厚さ)は、10μm~50μmが好ましい。また、それら絶縁層2の厚さと半硬化接着層3の厚さの合計は50~150μmが好ましく、50~100μmがより好ましい。 The thicker the insulating layer 2 and the semi-cured adhesive layer 3, the greater the effect of insulating the conductor 1, but if it is too thick, it is not suitable for miniaturization of the coil. From this, the thickness of the insulating layer 2 is 30 μm to 150 μm, and the thickness of the portion of the semi-cured adhesive layer 3 that covers the entire outer peripheral surface of the insulating layer 2 (that is, the thickness excluding the thickness of the recess) is It is preferably 10 μm to 50 μm. The total thickness of the insulating layer 2 and the semi-cured adhesive layer 3 is preferably 50 to 150 μm, more preferably 50 to 100 μm.
 また、凹部5の段差4や、段差4と接触する非凹部の段差7の高さが低すぎると、段差4と段差7が接触したときの接触面積が小さく、隣接する巻線間の位置ずれ抑制の効果が小さくなる。このことから、半硬化接着層3に設ける凹部5の深さ、および段差7の高さは5μm以上が好ましく、10μm以上が更に好ましい。 Further, if the height of the step 4 of the recess 5 or the step 7 of the non-recess that contacts the step 4 is too low, the contact area when the step 4 and the step 7 come into contact is small, and the position shift between the adjacent windings. The effect of suppression is reduced. From this, the depth of the recess 5 provided in the semi-cured adhesive layer 3 and the height of the step 7 are preferably 5 μm or more, and more preferably 10 μm or more.
 図7は、図6に示す絶縁電線10を、その下面を内側にして、多層に巻回したときの断面図である。図7はその巻回方向に垂直な方向における断面を示している。このように、半硬化接着層3の凹部5内に、半硬化接着層3の非凹部である右下角部9を嵌入できる。また、半硬化接着層3の凹部6内に、半硬化接着層3の左上角部8を嵌入できる。 FIG. 7 is a cross-sectional view of the insulated wire 10 shown in FIG. 6 when the insulated wire 10 is wound in multiple layers with the lower surface inside. FIG. 7 shows a cross section in a direction perpendicular to the winding direction. In this way, the lower right corner portion 9, which is a non-recessed portion of the semi-cured adhesive layer 3, can be fitted into the recess 5 of the semi-cured adhesive layer 3. Further, the upper left corner portion 8 of the semi-curable adhesive layer 3 can be fitted into the recess 6 of the semi-curable adhesive layer 3.
 なお、図2では、凹部5内に右下角部9がほぼ隙間なく嵌入されたが、図7に示すように右下角部9が凹部5より小さく、右下角部9と段差4との間に隙間を有して嵌入されてもよい。その場合であっても、絶縁電線10を多層に巻回する際に、凹部5の側面4a,4bが、右下角部9の位置が左右方向に大きくずれないように、右下角部9の移動を制限する。このため、絶縁電線10の巻回時における巻線の位置ずれや、巻線のよれを抑制できる。 In FIG. 2, the lower right corner portion 9 is fitted into the recess 5 with almost no gap, but as shown in FIG. 7, the lower right corner portion 9 is smaller than the recess 5, and is between the lower right corner portion 9 and the step 4. It may be fitted with a gap. Even in that case, when the insulated wire 10 is wound in multiple layers, the lower right corner portion 9 is moved so that the positions of the lower right corner portions 9 do not shift significantly in the left-right direction on the side surfaces 4a and 4b of the recess 5. To limit. Therefore, it is possible to suppress the misalignment of the winding and the twisting of the winding when the insulated wire 10 is wound.
 また、図2では、凹部6内に左上角部8がほぼ隙間なく嵌入されたが、図7に示すように左上角部8が凹部6より小さく、左上角部8と段差7との間に隙間を有して嵌入されてもよい。その場合であっても、絶縁電線10を多層に巻回する際に、隣接する巻線間で左上角部8が干渉せず、凹部5内に右下角部9を嵌入しやすくなる。 Further, in FIG. 2, the upper left corner portion 8 is fitted into the concave portion 6 with almost no gap, but as shown in FIG. 7, the upper left corner portion 8 is smaller than the concave portion 6, and is between the upper left corner portion 8 and the step 7. It may be fitted with a gap. Even in that case, when the insulated wire 10 is wound in multiple layers, the upper left corner portion 8 does not interfere with the adjacent windings, and the lower right corner portion 9 can be easily fitted into the recess 5.
 なお、凹部5および右下角部9が形成される半硬化接着層3は半硬化状態であるので、右下角部9を凹部5より大きめに形成し、半硬化接着層3が常温の状態、または半硬化接着層3を加熱し、半硬化接着層3に粘度を持たせた状態で、右下角部9を凹部5内に押圧し、凹部5と右下角部9が密着するように、右下角部9または凹部5を変形させてもよい。 Since the semi-cured adhesive layer 3 in which the concave portion 5 and the lower right corner portion 9 are formed is in a semi-cured state, the lower right corner portion 9 is formed to be larger than the concave portion 5, and the semi-cured adhesive layer 3 is in a state of normal temperature or at room temperature. With the semi-cured adhesive layer 3 heated and the semi-cured adhesive layer 3 having viscosity, the lower right corner 9 is pressed into the recess 5 so that the recess 5 and the lower right corner 9 are in close contact with each other. The portion 9 or the recess 5 may be deformed.
 図8は、実施の形態1の絶縁電線10の他の変形例を示す断面図である。図8は、絶縁電線10の延伸方向に対し垂直な方向における断面を示している。図8において、図1と同一または相当する部分は同一符号を付して説明は省略する。図1~図7では、最外周層の半硬化接着層3に凹部5を設けることにより、段差4を形成した。図8では、最外周層の半硬化接着層3に凸部11を設けることにより、段差12を形成する。 FIG. 8 is a cross-sectional view showing another modified example of the insulated wire 10 of the first embodiment. FIG. 8 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10. In FIG. 8, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In FIGS. 1 to 7, a step 4 is formed by providing a recess 5 in the semi-cured adhesive layer 3 of the outermost peripheral layer. In FIG. 8, the step 12 is formed by providing the convex portion 11 on the semi-cured adhesive layer 3 of the outermost peripheral layer.
 図8において、段差12は凸部11の側面12a,12bのそれぞれである。12aは、凸部11の左側の側面、12bは凸部11の右側の側面である。また、半硬化接着層3の下面には凹部6が形成されている。7aは凹部6内の左側の側面、7bは凹部6内の右側の側面である。凸部11は、凹部6内に嵌入可能な大きさに形成されている。 In FIG. 8, the step 12 is each of the side surfaces 12a and 12b of the convex portion 11. 12a is the left side surface of the convex portion 11, and 12b is the right side surface of the convex portion 11. Further, a recess 6 is formed on the lower surface of the semi-cured adhesive layer 3. 7a is the left side surface in the recess 6, and 7b is the right side surface in the recess 6. The convex portion 11 is formed in a size that can be fitted into the concave portion 6.
 図9は、図8に示す絶縁電線10を、その下面を内側にして、多層に巻回したときの断面図である。図9は、絶縁電線10の延伸方向に対し垂直な方向における断面を示している。このように、絶縁電線10を巻回するとき、半硬化接着層3の凹部6内に、半硬化接着層3の凸部11を嵌入させれば、絶縁電線10を巻回してコイルを製造したときに、隣接する巻線間の位置づれや、巻線のよれを抑制できる。 FIG. 9 is a cross-sectional view of the insulated wire 10 shown in FIG. 8 when the insulated wire 10 is wound in multiple layers with the lower surface inside. FIG. 9 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10. In this way, when the insulated wire 10 is wound, if the convex portion 11 of the semi-cured adhesive layer 3 is fitted into the concave portion 6 of the semi-cured adhesive layer 3, the insulated wire 10 is wound to manufacture a coil. Occasionally, it is possible to suppress misalignment between adjacent windings and twisting of windings.
 図8および図9では、側面12aと側面12bの間の間隔を、凸部11の先端に向かって小さくすることにより、凸部11を凹部6内に嵌入しやすいように、テーパを設けている。また、側面7aと側面7bの間の間隔を、凹部6の底面から凹部6の開口に向かって大きくすることにより、凹部6内に凸部11を嵌入しやすいように、テーパを設けている。 In FIGS. 8 and 9, the distance between the side surface 12a and the side surface 12b is reduced toward the tip of the convex portion 11 so that the convex portion 11 can be easily fitted into the concave portion 6. .. Further, by increasing the distance between the side surface 7a and the side surface 7b from the bottom surface of the concave portion 6 toward the opening of the concave portion 6, a taper is provided so that the convex portion 11 can be easily fitted into the concave portion 6.
 図10は、図8の絶縁電線10の変形例を示す断面図である。図8では、側面12aと側面12bの間の間隔を、凸部11の先端に向かって小さくするようにテーパを設けたが、図10では、当該間隔を凸部11の先端に向かって大きくするようにテーパを設けている。また、図8では、側面7aと側面7bの間の間隔を、凹部6の底面から凹部6の開口に向かって大きくするようにテーパを設けたが、図10では、当該間隔を凹部6の開口に向かって小さくするようにテーパを設けている。これにより、絶縁電線10を巻回して、凹部6内に隣接する巻線の凸部11を嵌入させた際に、凹部6から凸部11が抜け難くなる。 FIG. 10 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG. In FIG. 8, the gap between the side surface 12a and the side surface 12b is tapered so as to decrease toward the tip of the convex portion 11, but in FIG. 10, the distance is increased toward the tip of the convex portion 11. The taper is provided so as to be. Further, in FIG. 8, a taper is provided so that the distance between the side surface 7a and the side surface 7b is increased from the bottom surface of the recess 6 toward the opening of the recess 6, but in FIG. 10, the gap is set to the opening of the recess 6. A taper is provided so as to make it smaller toward. As a result, when the insulated wire 10 is wound and the convex portion 11 of the adjacent winding is fitted in the concave portion 6, the convex portion 11 is less likely to come off from the concave portion 6.
 図11は、実施の形態1の絶縁電線10の他の変形例を示す断面図である。図11において、図1と同一または相当する部分は同一符号を付して説明は省略する。図11では、絶縁層2よりも右側に半硬化接着層3を設けず、絶縁層2の上下および左側にのみ半硬化接着層3を設けている。また、絶縁層2よりも上側の半硬化接着層3の厚みaと、絶縁層2よりも下側の半硬化接着層3の厚みcと、絶縁層2よりも左側の半硬化接着層3の厚みbとは、同一もしくは略同一である。また、絶縁層2の厚みは導線1の全周に渡って同一もしくは略同一とする。 FIG. 11 is a cross-sectional view showing another modified example of the insulated wire 10 of the first embodiment. In FIG. 11, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 11, the semi-curing adhesive layer 3 is not provided on the right side of the insulating layer 2, and the semi-curing adhesive layer 3 is provided only on the upper and lower sides and the left side of the insulating layer 2. Further, the thickness a of the semi-cured adhesive layer 3 above the insulating layer 2, the thickness c of the semi-cured adhesive layer 3 below the insulating layer 2, and the semi-cured adhesive layer 3 on the left side of the insulating layer 2. The thickness b is the same or substantially the same. Further, the thickness of the insulating layer 2 is the same or substantially the same over the entire circumference of the conducting wire 1.
 図12は、図11に示す絶縁電線10を、その下面を内側にして、多層に巻回したときの断面図である。図12は、絶縁電線10の延伸方向に対し垂直な方向における断面を示している。ここでは、絶縁電線10の上下方向に隣接する巻線だけでなく、同一層の左右方向に隣接する巻線も示している。このように、図12では上下方向に隣接する巻線の絶縁層2間の間隔はa,cとなり、左右方向に隣接する巻線の絶縁層2間の間隔はbとなる。ここで、a=b=cである(もしくはそれらが略同一)。したがって、上下方向に隣接する絶縁層2間の絶縁に寄与する半硬化接着層3の厚みa,cと、左右方向に隣接する絶縁層2間の絶縁に寄与する半硬化接着層3の厚みbを同一にすることができる。 FIG. 12 is a cross-sectional view of the insulated wire 10 shown in FIG. 11 when the insulated wire 10 is wound in multiple layers with the lower surface inside. FIG. 12 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10. Here, not only the windings adjacent to each other in the vertical direction of the insulated wire 10 but also the windings adjacent to each other in the horizontal direction of the same layer are shown. As described above, in FIG. 12, the spacing between the insulating layers 2 of the windings adjacent in the vertical direction is a and c, and the spacing between the insulating layers 2 of the windings adjacent in the horizontal direction is b. Here, a = b = c (or they are substantially the same). Therefore, the thicknesses a and c of the semi-cured adhesive layer 3 that contribute to the insulation between the insulating layers 2 adjacent in the vertical direction and the thickness b of the semi-cured adhesive layer 3 that contributes to the insulation between the insulating layers 2 adjacent in the horizontal direction. Can be the same.
 絶縁層2の厚みが導線1の全周に渡って同一である場合、左右方向に隣接する絶縁層2間に設けることが好ましい半硬化接着層3の厚みと、上下方向に隣接する絶縁層2間に設けることが好ましい半硬化接着層3の厚みは、通常同じであることが多く、どちらか一方の厚みが大きいということは、その分、過剰な厚みを設けていることが多い。これに対し、図11および図12に示すように、絶縁層2よりも右側に半硬化接着層3を設けず、左側にのみ半硬化接着層3を設ければ、左右方向に隣接する絶縁層2間に存在する半硬化接着層3の厚みと、上下方向に隣接する絶縁層2間に存在する半硬化接着層3の厚みを同一にする、または近づけることができ、コイルの小型化に有利である。 When the thickness of the insulating layer 2 is the same over the entire circumference of the conducting wire 1, the thickness of the semi-curing adhesive layer 3 preferably provided between the insulating layers 2 adjacent in the left-right direction and the insulating layer 2 adjacent in the vertical direction are preferable. The thickness of the semi-curing adhesive layer 3 preferably provided between them is usually the same, and the fact that one of them is large means that an excessive thickness is often provided. On the other hand, as shown in FIGS. 11 and 12, if the semi-curing adhesive layer 3 is not provided on the right side of the insulating layer 2 and the semi-curing adhesive layer 3 is provided only on the left side, the insulating layers adjacent to each other in the left-right direction are provided. The thickness of the semi-cured adhesive layer 3 existing between the two can be made the same as or close to the thickness of the semi-cured adhesive layer 3 existing between the insulating layers 2 adjacent in the vertical direction, which is advantageous for the miniaturization of the coil. Is.
 たとえば、図4に示す絶縁電線10を図12と同様に多層に巻回した場合、その断面図は図13に示すようになる。この場合、上下方向に隣接する絶縁層2間の半硬化接着層3の厚みdに比べ、左右方向に隣接する絶縁層2間の半硬化接着層3の厚みeの方が大きくなり、コイルが左右方向に大きくなる。 For example, when the insulated wire 10 shown in FIG. 4 is wound in multiple layers in the same manner as in FIG. 12, the cross-sectional view thereof is as shown in FIG. In this case, the thickness e of the semi-curing adhesive layer 3 between the insulating layers 2 adjacent in the left-right direction is larger than the thickness d of the semi-curing adhesive layer 3 between the insulating layers 2 adjacent in the vertical direction, and the coil becomes larger. It increases in the left-right direction.
 なお、図11では、絶縁層2よりも右側に半硬化接着層3を設けず、左側にのみ半硬化接着層3を設けたが、図14に示すように、絶縁層2の左方向に位置する半硬化接着層3の厚さをi、絶縁層2の右方向に位置する半硬化接着層3の厚さをh、絶縁層2の上方向に位置する半硬化接着層3の厚さをf、絶縁層2の下方向に位置する半硬化接着層3の厚さをgとして、f=g=h+iとなるようにhとiを互いに同一または異ならせてもよい。 In FIG. 11, the semi-curing adhesive layer 3 is not provided on the right side of the insulating layer 2, but the semi-curing adhesive layer 3 is provided only on the left side. However, as shown in FIG. 14, the position is located in the left direction of the insulating layer 2. The thickness of the semi-cured adhesive layer 3 is i, the thickness of the semi-cured adhesive layer 3 located to the right of the insulating layer 2 is h, and the thickness of the semi-cured adhesive layer 3 located above the insulating layer 2 is h. f, the thickness of the semi-cured adhesive layer 3 located in the downward direction of the insulating layer 2 may be g, and h and i may be the same or different from each other so that f = g = h + i.
 図15は、図8の絶縁電線10の変形例を示す断面図である。図15において、図8と同一または相当する部分は同一符号を付して説明は省略する。図8では、絶縁層2の上方の半硬化接着層3に凸部11を設けることにより、段差12を形成した。図15では、絶縁層2の左方の半硬化接着層3に凸部11を設けることにより、段差12を形成している。また、図8では、絶縁層2の下方の半硬化接着層3に凹部6を設けることにより、側面7a、7bを形成した。図15では、絶縁層2の右方の半硬化接着層3に凹部6を形成することにより、側面7a、7bを形成する。凸部11は、凹部6内に嵌入可能な大きさに形成されている。 FIG. 15 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG. In FIG. 15, the same or corresponding parts as those in FIG. 8 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 8, the step 12 is formed by providing the convex portion 11 on the semi-curing adhesive layer 3 above the insulating layer 2. In FIG. 15, a step 12 is formed by providing a convex portion 11 on the semi-curing adhesive layer 3 on the left side of the insulating layer 2. Further, in FIG. 8, the side surfaces 7a and 7b are formed by providing the recess 6 in the semi-curing adhesive layer 3 below the insulating layer 2. In FIG. 15, the side surfaces 7a and 7b are formed by forming the recess 6 in the semi-curing adhesive layer 3 on the right side of the insulating layer 2. The convex portion 11 is formed in a size that can be fitted into the concave portion 6.
 図16は、図15に示す絶縁電線10を、その下面を内側にして、多層に巻回するときの断面図である。このように、絶縁電線10を巻回するとき、半硬化接着層3の凹部6内に、半硬化接着層3の凸部11を嵌入させれば、絶縁電線10を巻回してコイルを製造したときに、隣接する巻線間の位置づれや、巻線のよれを抑制できる。このような巻線を多層に巻回してコイルを製造する。 FIG. 16 is a cross-sectional view of the insulated wire 10 shown in FIG. 15 when the insulated wire 10 is wound in multiple layers with the lower surface inside. In this way, when the insulated wire 10 is wound, if the convex portion 11 of the semi-cured adhesive layer 3 is fitted into the concave portion 6 of the semi-cured adhesive layer 3, the insulated wire 10 is wound to manufacture a coil. Occasionally, it is possible to suppress misalignment between adjacent windings and twisting of windings. A coil is manufactured by winding such a winding in multiple layers.
 なお、図17のように、絶縁層2の上方の半硬化接着層3に図8と同様の凸部11を設け、絶縁層2の下方の半硬化接着層3に図8と同様の凹部6を設けるとともに、絶縁層2の左方の半硬化接着層3に図15と同様の凸部11を設け、絶縁層2の右方の半硬化接着層3に図15と同様の凹部6を設けるようにしてもよい。 As shown in FIG. 17, the semi-cured adhesive layer 3 above the insulating layer 2 is provided with the same convex portion 11 as in FIG. 8, and the semi-cured adhesive layer 3 below the insulating layer 2 is provided with the same concave portion 6 as in FIG. The semi-cured adhesive layer 3 on the left side of the insulating layer 2 is provided with the same convex portion 11 as in FIG. 15, and the semi-cured adhesive layer 3 on the right side of the insulating layer 2 is provided with the same concave portion 6 as in FIG. You may do so.
 以上のように、本実施の形態1の絶縁電線10は、最外周層である半硬化接着層3が段差4,12を有するので、この絶縁電線10を多層に巻回してコイルを製造する場合に、段差4,12が絶縁電線10の他の部分と接触し、その接触した部分の移動を制限する。このため、この絶縁電線10を巻回してコイルを製造したときに、隣接する巻線間の位置づれや、巻線のよれを抑制できる。 As described above, in the insulated wire 10 of the first embodiment, since the semi-cured adhesive layer 3 which is the outermost peripheral layer has steps 4 and 12, the case where the insulated wire 10 is wound in multiple layers to manufacture a coil. In addition, the steps 4 and 12 come into contact with other parts of the insulated wire 10 and limit the movement of the contacted parts. Therefore, when the coil is manufactured by winding the insulated wire 10, it is possible to suppress the positioning between adjacent windings and the twisting of the windings.
 また、本実施の形態1の絶縁電線10は、最外周層の半硬化接着層3が半硬化型接着剤で形成され、段差4,12もこの半硬化型接着剤で形成されるので、半硬化型接着剤を押出成形等することにより、半硬化接着層3をその段差4,12も含めて一括して成形できる。このため、半硬化接着層3の塗布後にその段差4,12を別行程で成形しなければならない場合に比べて、この絶縁電線10は、少ない工程数で製造できる。 Further, in the insulated wire 10 of the first embodiment, the semi-curing adhesive layer 3 of the outermost outermost layer is formed of the semi-curing adhesive, and the steps 4 and 12 are also formed of the semi-curing adhesive. By extrusion-molding the curable adhesive, the semi-curable adhesive layer 3 can be collectively molded including the steps 4 and 12. Therefore, the insulated wire 10 can be manufactured in a smaller number of steps as compared with the case where the steps 4 and 12 of the semi-cured adhesive layer 3 must be formed in a separate process after being applied.
 また、本実施の形態1の絶縁電線10は、最外周層の半硬化接着層3が段差4,12も含めて半硬化状態であるので、段差4,12は常温または加熱下で粘度を有し、絶縁電線10の巻回時に段差4,12が絶縁電線10の他の部分に圧接された場合に、当該段差4,12がその部分の形状に合わせて変形し、その部分と嵌合/接着しやすい。このため、本実施の形態1の絶縁電線10は、巻回時における巻線の位置ずれや、巻線のよれを抑制できる。なお、半硬化接着層3の段差4,12は、常温下において当該圧接がされた場合に、その部分の形状に合わせて変形しない硬さであってもよい。 Further, in the insulated wire 10 of the first embodiment, since the semi-cured adhesive layer 3 of the outermost peripheral layer is in a semi-cured state including the steps 4 and 12, the steps 4 and 12 have a viscosity at room temperature or under heating. Then, when the steps 4 and 12 are pressed against the other part of the insulated wire 10 when the insulated wire 10 is wound, the steps 4 and 12 are deformed according to the shape of the portion and fitted with the portion. Easy to bond. Therefore, the insulated wire 10 of the first embodiment can suppress the misalignment of the winding and the twisting of the winding at the time of winding. The steps 4 and 12 of the semi-cured adhesive layer 3 may have a hardness that does not deform according to the shape of the portion when the pressure welding is performed at room temperature.
 また、本実施の形態1の絶縁電線10は、最外周層の半硬化接着層3が半硬化型接着剤で形成されているため、加熱等による本硬化で巻線間を固着することができる。 Further, in the insulated wire 10 of the first embodiment, since the semi-curing adhesive layer 3 of the outermost peripheral layer is formed of the semi-curing adhesive, the windings can be fixed by the main curing by heating or the like. ..
 また、本実施の形態1の絶縁電線10は、導線1と最外周層の半硬化接着層3の間に絶縁層2を有するので、絶縁層2の材料として半硬化接着層3よりも高い体積低効率のものを用いれば、半硬化接着層3だけで絶縁性を確保する場合に比べて、絶縁電線10の断面積を小さくできる。また、絶縁層2の材料は、半硬化接着層3の半硬化型接着剤よりも、導線1との密着性が高いものを用いてもよい。 Further, since the insulated wire 10 of the first embodiment has the insulating layer 2 between the conducting wire 1 and the semi-cured adhesive layer 3 of the outermost peripheral layer, the volume of the insulating wire 10 is higher than that of the semi-cured adhesive layer 3 as the material of the insulating layer 2. If a low-efficiency one is used, the cross-sectional area of the insulated wire 10 can be reduced as compared with the case where the insulating property is ensured only by the semi-curing adhesive layer 3. Further, as the material of the insulating layer 2, a material having higher adhesion to the conducting wire 1 than the semi-curing adhesive of the semi-curing adhesive layer 3 may be used.
 また、本実施の形態1の絶縁電線10は、半硬化接着層3に凹部5を設けることで段差4を形成している。このため、この絶縁電線を巻回してコイルを製造する場合に、絶縁電線10の他の部分が、この凹部5内に位置決めされ、その移動が制限される。このため、この絶縁電線10を巻回してコイルを製造したときに、隣接する巻線間の位置づれや、巻線のよれを抑制できる。 Further, in the insulated wire 10 of the first embodiment, a step 4 is formed by providing a recess 5 in the semi-cured adhesive layer 3. Therefore, when the coil is manufactured by winding the insulated wire, the other portion of the insulated wire 10 is positioned in the recess 5 and its movement is restricted. Therefore, when the coil is manufactured by winding the insulated wire 10, it is possible to suppress the positioning between adjacent windings and the twisting of the windings.
 また、本実施の形態1の絶縁電線10は、段差4を形成する凹部5が、半硬化接着層3の厚さを部分的に薄くすることにより形成されている。このため、半硬化接着層3の内側の絶縁層2が露出せず、絶縁層2を保護できる。 Further, in the insulated wire 10 of the first embodiment, the recess 5 forming the step 4 is formed by partially reducing the thickness of the semi-curing adhesive layer 3. Therefore, the insulating layer 2 inside the semi-cured adhesive layer 3 is not exposed, and the insulating layer 2 can be protected.
 また、本実施の形態1の絶縁電線10は、段差4を形成する凹部5が、半硬化接着層3を部分的に設けず、絶縁層2を露出させることにより形成されている。このため、半硬化接着層3を薄くして凹部5を形成する場合に比べて、半硬化接着層3を厚くすることなく、凹部5を深く形成できる。 Further, in the insulated wire 10 of the first embodiment, the recess 5 forming the step 4 is formed by exposing the insulating layer 2 without partially providing the semi-curing adhesive layer 3. Therefore, as compared with the case where the semi-cured adhesive layer 3 is thinned to form the recess 5, the recess 5 can be formed deeper without thickening the semi-cured adhesive layer 3.
 また、本実施の形態1の絶縁電線10は、半硬化接着層3の凹部5が、導線1の延伸方向に延伸するので、凹部5内に巻線の非凹部を嵌入させながら、絶縁電線10を巻回できる。 Further, in the insulated wire 10 of the first embodiment, since the recess 5 of the semi-curing adhesive layer 3 extends in the extending direction of the conducting wire 1, the insulated wire 10 is fitted with the non-recessed winding in the recess 5. Can be wound.
 また、本実施の形態1の絶縁電線10は、絶縁電線10の延伸方向に対して垂直な断面の形状が、当該延伸方向の全体にわたって同一であるので、絶縁電線10からその一部を切り出しながら、同一の複数のコイルを製造する場合に、その切り出し位置にかかわらず、同一の絶縁電線10を切り出すことができる。 Further, since the insulated wire 10 of the first embodiment has the same cross-sectional shape perpendicular to the extending direction of the insulating electric wire 10 over the entire extending direction, a part thereof is cut out from the insulated electric wire 10. When the same plurality of coils are manufactured, the same insulated wire 10 can be cut out regardless of the cutting position.
 また、本実施の形態1の絶縁電線10は、最外周層の半硬化接着層3の外周面の断面形状が矩形であるとともに、半硬化接着層3の対向する外周面のそれぞれに凹部を有し、この絶縁電線10を巻回すると、一方の外周面側の角部を、他方の外周面の凹部5内に嵌入できるので、巻回時における巻線の位置ずれや、巻線のよれを抑制できる。 Further, the insulated wire 10 of the first embodiment has a rectangular cross-sectional shape on the outer peripheral surface of the semi-cured adhesive layer 3 of the outermost peripheral layer, and has recesses on each of the opposite outer peripheral surfaces of the semi-cured adhesive layer 3. Then, when the insulated wire 10 is wound, the corner portion on the outer peripheral surface side of one side can be fitted into the recess 5 on the other outer peripheral surface, so that the position of the winding and the twist of the winding during winding can be prevented. Can be suppressed.
 また、本実施の形態1の絶縁電線10は、段差4を形成する凹部5の開口部に、凹部5の底面に比べて凹部5の開口を大きくするテーパを設けたので、この絶縁電線10を多層に巻回してコイルを製造する場合に、凹部5内に隣接する巻線の部分を嵌入しやすい。 Further, the insulated wire 10 of the first embodiment is provided with a taper at the opening of the recess 5 forming the step 4 so that the opening of the recess 5 is larger than that of the bottom surface of the recess 5. When the coil is manufactured by winding in multiple layers, it is easy to fit the portion of the winding adjacent to the recess 5.
 また、本実施の形態1の絶縁電線10は、段差4を形成する凹部5の開口部に、凹部5の底面に比べて凹部5の開口を小さくするテーパを設けたので、この絶縁電線10を多層に巻回してコイルを製造する場合に、凹部5内に嵌入された隣接する巻線部分が抜けにくい。 Further, the insulated wire 10 of the first embodiment is provided with a taper at the opening of the recess 5 forming the step 4 so that the opening of the recess 5 is smaller than that of the bottom surface of the recess 5. When the coil is manufactured by winding in multiple layers, it is difficult for the adjacent winding portion fitted in the recess 5 to come off.
 また、本実施の形態1の絶縁電線10は、最外周層である半硬化接着層3の外周面に凹部6と凸部11を備え、その絶縁電線10を巻回したときに、凹部6に凸部11を嵌入できるので、この絶縁電線10を多層に巻回してコイルを製造する場合に、巻回時における巻線の位置ずれや、巻線のよれを抑制できる。 Further, the insulated wire 10 of the first embodiment is provided with a concave portion 6 and a convex portion 11 on the outer peripheral surface of the semi-cured adhesive layer 3 which is the outermost peripheral layer, and when the insulated wire 10 is wound, the concave portion 6 is formed. Since the convex portion 11 can be fitted, when the insulated wire 10 is wound in multiple layers to manufacture a coil, it is possible to suppress the misalignment of the winding and the twisting of the winding at the time of winding.
 また、本実施の形態1の絶縁電線10は、最外周層である半硬化接着層3の外周面に段差12を有する凸部11を、半硬化接着層3を部分的に厚くすることにより形成しているので、半硬化接着層3を形成する半硬化型接着剤を押出成形などすることにより、半硬化接着層3を凸部11も含めて一括して形成できる。このため、半硬化接着層3の塗布後にその凸部11を別行程で成形しなければならない場合に比べて、この絶縁電線10は、少ない工程数で製造できる。 Further, the insulated wire 10 of the first embodiment is formed by forming a convex portion 11 having a step 12 on the outer peripheral surface of the semi-cured adhesive layer 3 which is the outermost layer by partially thickening the semi-cured adhesive layer 3. Therefore, the semi-curable adhesive layer 3 can be collectively formed including the convex portion 11 by extrusion-molding the semi-curable adhesive that forms the semi-curable adhesive layer 3. Therefore, the insulated wire 10 can be manufactured in a smaller number of steps than in the case where the convex portion 11 must be formed in a separate process after the semi-curing adhesive layer 3 is applied.
 なお、ここでは、本実施の形態1の絶縁電線10の絶縁層2として、単層のものを示したが、この絶縁層2として材質が異なる複数の絶縁層を積層したものを形成してもよい。また、半硬化接着層3と絶縁層2の間に加熱により膨張する不図示の膨張層を設けてもよい。また、本実施の形態1の絶縁電線10を、半硬化接着層3が半硬化状態で多層に巻回した後、本硬化してコイルを製造してもよいが、本実施の形態1の絶縁電線10を本硬化した後に、多層に巻回して、コイルを製造するようにしてもよい。 Here, the insulating layer 2 of the insulated wire 10 of the first embodiment is shown as a single layer, but the insulating layer 2 may be formed by laminating a plurality of insulating layers made of different materials. good. Further, an expansion layer (not shown) that expands by heating may be provided between the semi-curing adhesive layer 3 and the insulating layer 2. Further, the insulated wire 10 of the first embodiment may be wound in multiple layers with the semi-cured adhesive layer 3 in a semi-cured state and then main-cured to manufacture a coil. However, the insulation of the first embodiment may be produced. After the electric wire 10 is finally cured, it may be wound in multiple layers to manufacture a coil.
実施の形態2.
 図18は、本開示の実施の形態2にかかる絶縁電線10の断面図である。図18は、絶縁電線10の延伸方向に対し垂直な方向における断面を示している。絶縁電線10は、その延伸方向の全体にわたって同一の断面、即ち、図18に示す断面を有している。図18において、図1と同一または相当する部分は同一符号を付して説明は省略する。
Embodiment 2.
FIG. 18 is a cross-sectional view of the insulated wire 10 according to the second embodiment of the present disclosure. FIG. 18 shows a cross section in a direction perpendicular to the extending direction of the insulated wire 10. The insulated wire 10 has the same cross section throughout the extending direction, that is, the cross section shown in FIG. In FIG. 18, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 実施の形態1では、絶縁電線10は、導線1と半硬化接着層3の間に絶縁層2を有したが、本実施の形態2では、導線1と半硬化接着層13の間に絶縁層2を設けず、導線1上に直接、半硬化接着層13を形成する。この半硬化接着層13は、この半硬化接着層13のみで、導線1に対する絶縁性能を満たす厚さに形成される。半硬化接着層13は、絶縁電線10の最外周層である。 In the first embodiment, the insulated wire 10 has an insulating layer 2 between the conducting wire 1 and the semi-curing adhesive layer 3, but in the second embodiment, the insulating layer is formed between the conducting wire 1 and the semi-curing adhesive layer 13. The semi-curing adhesive layer 13 is formed directly on the conductor 1 without providing 2. The semi-cured adhesive layer 13 is formed to a thickness that satisfies the insulating performance with respect to the conductor 1 only by the semi-cured adhesive layer 13. The semi-cured adhesive layer 13 is the outermost layer of the insulated wire 10.
 図18の導線1、半硬化接着層13の材質は、実施の形態1の導線1、半硬化接着層3と同様であるので、説明を省略する。実施の形態1と同様に、半硬化接着層13は、半硬化状態の半硬化型接着剤からなる層である。 Since the material of the conductor 1 and the semi-cured adhesive layer 13 in FIG. 18 is the same as that of the conductor 1 and the semi-cured adhesive layer 3 of the first embodiment, the description thereof will be omitted. Similar to the first embodiment, the semi-curing adhesive layer 13 is a layer made of a semi-curing adhesive in a semi-curing state.
 本実施の形態2においても、最外周層である半硬化接着層13は以下の特徴を有する。半硬化接着層13は絶縁性を有し、導線1の絶縁に寄与する。また、半硬化接着層13は半硬化状態であり、絶縁電線10を多層に巻回して本硬化することにより、巻線間が固着されたコイルを製造できる。 Also in the second embodiment, the semi-cured adhesive layer 13 which is the outermost layer has the following characteristics. The semi-curing adhesive layer 13 has an insulating property and contributes to the insulation of the conducting wire 1. Further, the semi-cured adhesive layer 13 is in a semi-cured state, and a coil in which the windings are fixed can be manufactured by winding the insulating electric wire 10 in multiple layers and main curing.
 また、半硬化接着層13の外周面には、段差4が形成されている。このため、この絶縁電線10を多層に巻回するときに、段差4が絶縁電線10の他の部分と接触し、その部分の移動を制限する。よって、この絶縁電線10を用いてコイルを製造すれば、巻回時における巻線の位置ずれや、巻線のよれを抑制できる。 Further, a step 4 is formed on the outer peripheral surface of the semi-cured adhesive layer 13. Therefore, when the insulated wire 10 is wound in multiple layers, the step 4 comes into contact with another portion of the insulated wire 10 and restricts the movement of that portion. Therefore, if a coil is manufactured using the insulated wire 10, it is possible to suppress the misalignment of the winding and the twisting of the winding during winding.
 また、段差4は、半硬化接着層13を形成する半硬化型接着剤を成形することにより形成されている。このため、絶縁電線10の製造工程において、後述する押出成形等を用いれば、半硬化接着層13をその段差4も含めて一括して成形できる。 Further, the step 4 is formed by molding a semi-curing adhesive that forms the semi-curing adhesive layer 13. Therefore, in the manufacturing process of the insulated wire 10, if extrusion molding or the like described later is used, the semi-cured adhesive layer 13 can be collectively molded including the step 4.
 半硬化接着層13は、要求される絶縁性能を満たす厚さに形成されるが、半硬化接着層13の、導線1の外周面全体を覆う部分の厚さ(即ち、凹部の厚さを含めない厚さ)は、10μm~500μmが好ましい。 The semi-cured adhesive layer 13 is formed to a thickness that satisfies the required insulating performance, but includes the thickness of the portion of the semi-cured adhesive layer 13 that covers the entire outer peripheral surface of the conductor 1 (that is, the thickness of the recess). The thickness) is preferably 10 μm to 500 μm.
 導線1と半硬化接着層13の密着性や接着強度を向上するために、導線1の表面上に半硬化接着層13を塗布する前に、導線1の表面に物理的処理や化学的処理を行ってもよい。このような物理的処理としては、大気プラズマ処理、深紫外光処理、コロナ放電処理、疎化処理(レーザー疎化、研磨、サンドブラスト処理)などを用いることができる。 In order to improve the adhesion and adhesive strength between the conductor 1 and the semi-cured adhesive layer 13, the surface of the conductor 1 is physically or chemically treated before the semi-cured adhesive layer 13 is applied on the surface of the conductor 1. You may go. As such physical treatment, atmospheric plasma treatment, deep ultraviolet light treatment, corona discharge treatment, sparsening treatment (laser sparsening, polishing, sandblasting treatment) and the like can be used.
 また、化学的処理として、導線1の表面上にシランカップリング剤をプライマーとして塗布し、そのプライマーを被接着面として半硬化接着層13を塗布してもよい。半硬化接着層13を形成する半硬化型接着剤として、エポキシ系接着剤を用いる場合は、当該プライマーとして、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ベニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩などを用いることができる。導線1の表面に、上述の物理的処理と化学的処理の双方を施してもよい。 Further, as a chemical treatment, a silane coupling agent may be applied on the surface of the conductor 1 as a primer, and the semi-cured adhesive layer 13 may be applied using the primer as a surface to be adhered. When an epoxy-based adhesive is used as the semi-curable adhesive that forms the semi-curable adhesive layer 13, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and 3-glycidoxypropylmethyl are used as the primers. Ditoxylsilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3aminopropyltrimethoxysilane, 3 -Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (benylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride Salt or the like can be used. The surface of the conductor 1 may be subjected to both the above-mentioned physical treatment and chemical treatment.
 図18では、最外周層である半硬化接着層13の上面に凹部5を設けることにより、段差4を形成している。図18において、段差4は凹部5の側面4a,4bのそれぞれである。4aは、凹部5内の左側の側面、4bは凹部5内の右側の側面である。また、半硬化接着層13の下面には凹部6が形成されている。7aは凹部6内の左側の側面、7bは凹部6内の右側の側面である。 In FIG. 18, a step 4 is formed by providing a recess 5 on the upper surface of the semi-cured adhesive layer 13, which is the outermost layer. In FIG. 18, the step 4 is each of the side surfaces 4a and 4b of the recess 5. 4a is the left side surface in the recess 5, and 4b is the right side surface in the recess 5. Further, a recess 6 is formed on the lower surface of the semi-cured adhesive layer 13. 7a is the left side surface in the recess 6, and 7b is the right side surface in the recess 6.
 図18の8は半硬化接着層13の左上角部であり、9は半硬化接着層13の右下角部である。凹部5は、右下角部9をその凹部5内に嵌入可能な大きさに形成されている。凹部6は、左上角部8をその凹部6内に嵌入可能な大きさに形成されている。図2と同様に凹部5内に、隣接する巻線の非凹部である右下角部9を嵌入できる。 8 in FIG. 18 is the upper left corner portion of the semi-cured adhesive layer 13, and 9 is the lower right corner portion of the semi-cured adhesive layer 13. The recess 5 is formed in such a size that the lower right corner portion 9 can be fitted into the recess 5. The recess 6 is formed in such a size that the upper left corner portion 8 can be fitted into the recess 6. Similar to FIG. 2, the lower right corner portion 9 which is a non-recessed winding of the adjacent winding can be fitted in the recess 5.
 図18でも図1と同様に、側面4aと側面4bの間の間隔を、凹部5の底面から凹部5の開口に向かって大きくすることにより、凹部5内に右下角部9を嵌入しやすいように、テーパを設けている。また、側面7aと側面7bの間の間隔を、凹部6の底面から凹部6の開口に向かって大きくすることにより、凹部6内に左上角部8を嵌入しやすいように、テーパを設けている。 In FIG. 18, as in FIG. 1, the space between the side surface 4a and the side surface 4b is increased from the bottom surface of the recess 5 toward the opening of the recess 5, so that the lower right corner portion 9 can be easily fitted into the recess 5. Is provided with a taper. Further, by increasing the distance between the side surface 7a and the side surface 7b from the bottom surface of the recess 6 toward the opening of the recess 6, a taper is provided so that the upper left corner portion 8 can be easily fitted into the recess 6. ..
 図19は、図18の絶縁電線10の変形例を示す断面図である。図18では、最外周層の半硬化接着層13に凸部11を設けることにより、段差12を形成する。図18において、段差12は凸部11の側面12a,12bのそれぞれである。12aは、凸部11の左側の側面、12bは凸部11の右側の側面である。また、半硬化接着層13の下面には凹部6が形成されている。12aは凹部6内の左側の側面、12bは凹部6内の右側の側面である。凸部11は、凹部6内に嵌入可能な大きさに形成されている。 FIG. 19 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG. In FIG. 18, a step 12 is formed by providing a convex portion 11 on the semi-cured adhesive layer 13 of the outermost peripheral layer. In FIG. 18, the step 12 is each of the side surfaces 12a and 12b of the convex portion 11. 12a is the left side surface of the convex portion 11, and 12b is the right side surface of the convex portion 11. Further, a recess 6 is formed on the lower surface of the semi-cured adhesive layer 13. 12a is the left side surface in the recess 6, and 12b is the right side surface in the recess 6. The convex portion 11 is formed in a size that can be fitted into the concave portion 6.
 この図19の絶縁電線10を多層に巻回すると、図9と同様に凹部6内に、隣接する巻線の半硬化接着層13の凸部11を嵌入できる。このように、絶縁電線10を巻回するとき、半硬化接着層13の凹部6内に、半硬化接着層13の凸部11を嵌入させれば、絶縁電線10を巻回してコイルを製造するときに、隣接する巻線間の位置づれや、巻線のよれを抑制できる。 When the insulated wire 10 of FIG. 19 is wound in multiple layers, the convex portion 11 of the semi-cured adhesive layer 13 of the adjacent winding can be fitted into the concave portion 6 as in FIG. In this way, when the insulated wire 10 is wound, if the convex portion 11 of the semi-cured adhesive layer 13 is fitted into the concave portion 6 of the semi-cured adhesive layer 13, the insulated wire 10 is wound to manufacture a coil. Occasionally, it is possible to suppress misalignment between adjacent windings and twisting of windings.
 図20は、図19の絶縁電線10の変形例を示す断面図である。図20において、図19と同一または相当する部分は同一符号を付して説明は省略する。図20では、導線1の左方の半硬化接着層13に凸部11を設けることにより、段差12を形成している。また、導線1の右方の半硬化接着層13に凹部6を形成することにより、側面7a、7bを形成する。凸部11は、凹部6内に嵌入可能な大きさに形成されている。図16と同様に、絶縁電線10を巻回するとき、半硬化接着層13の凹部6内に、半硬化接着層13の凸部11を嵌入させれば、絶縁電線10を巻回してコイルを製造したときに、隣接する巻線間の位置づれや、巻線のよれを抑制できる。 FIG. 20 is a cross-sectional view showing a modified example of the insulated wire 10 of FIG. In FIG. 20, the same or corresponding parts as those in FIG. 19 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 20, the step 12 is formed by providing the convex portion 11 on the semi-curing adhesive layer 13 on the left side of the conducting wire 1. Further, the side surfaces 7a and 7b are formed by forming the recess 6 in the semi-curing adhesive layer 13 on the right side of the conducting wire 1. The convex portion 11 is formed in a size that can be fitted into the concave portion 6. Similar to FIG. 16, when winding the insulated wire 10, if the convex portion 11 of the semi-cured adhesive layer 13 is fitted into the concave portion 6 of the semi-cured adhesive layer 13, the insulated wire 10 is wound to wind the coil. When manufactured, it is possible to suppress misalignment between adjacent windings and twisting of windings.
 以上のように、本実施の形態2の絶縁電線10は、最外周層である半硬化接着層13が導線1の外周面上に直接積層されるので、導線1と半硬化接着層13の間に別途の絶縁層を設ける場合に比べて、少ない工程数で製造することができる。 As described above, in the insulated wire 10 of the second embodiment, since the semi-cured adhesive layer 13 which is the outermost layer is directly laminated on the outer peripheral surface of the conductor 1, it is between the conductor 1 and the semi-cured adhesive layer 13. It can be manufactured with a smaller number of steps as compared with the case where a separate insulating layer is provided.
実施の形態3.
 実施の形態3として、実施の形態1の絶縁電線10の製造方法について説明する。図21は、本実施の形態3にかかる絶縁電線10の製造工程の概略を示すフロー図である。図22は、図21の製造工程で用いる製造装置の概略図である。ここでは、たとえば、図1に示す絶縁電線10の製造方法を説明するが、図2~図17に示す絶縁電線10も同様に製造できる。
Embodiment 3.
As the third embodiment, the method of manufacturing the insulated wire 10 of the first embodiment will be described. FIG. 21 is a flow chart showing an outline of the manufacturing process of the insulated wire 10 according to the third embodiment. FIG. 22 is a schematic view of a manufacturing apparatus used in the manufacturing process of FIG. 21. Here, for example, the method for manufacturing the insulated wire 10 shown in FIG. 1 will be described, but the insulated wire 10 shown in FIGS. 2 to 17 can also be manufactured in the same manner.
 まず、導線1が図22に示す表面処理機101に送られ、この表面処理機101において、図21に示す表面処理SC1が行われる。具体的には、表面処理機101は、導線1をアセトンなどの溶剤で洗浄するか、導線1の外周面上に上述の物理的処理及び/又は化学的処理を行う。たとえば、物理的処理として、導線1の外周面上に、大気プラズマ処理、深紫外光処理、コロナ放電処理、または疎化処理(レーザー疎化、研磨、サンドブラスト処理)を行う。また、化学的処理として、導線1の外周面上にシランカップリング剤を塗布する。 First, the lead wire 1 is sent to the surface treatment machine 101 shown in FIG. 22, and the surface treatment SC1 shown in FIG. 21 is performed in this surface treatment machine 101. Specifically, the surface treatment machine 101 cleans the conductor 1 with a solvent such as acetone, or performs the above-mentioned physical treatment and / or chemical treatment on the outer peripheral surface of the conductor 1. For example, as a physical treatment, an atmospheric plasma treatment, a deep ultraviolet light treatment, a corona discharge treatment, or a sparsening treatment (laser sparsening, polishing, sandblasting treatment) is performed on the outer peripheral surface of the conducting wire 1. Further, as a chemical treatment, a silane coupling agent is applied on the outer peripheral surface of the conducting wire 1.
 次に、導線1は図22に示す加熱炉102に送られ、この加熱炉102において図21に示す加熱工程HCが行われる。この加熱工程HCでは、表面処理機101から送られてきた導線1を後述する押出成形のために予備加熱する。たとえば、加熱炉102は表面処理機101から送られてきた導線1を300℃程度に予備加熱する。 Next, the conductor 1 is sent to the heating furnace 102 shown in FIG. 22, and the heating step HC shown in FIG. 21 is performed in this heating furnace 102. In this heating step HC, the lead wire 1 sent from the surface treatment machine 101 is preheated for extrusion molding described later. For example, the heating furnace 102 preheats the lead wire 1 sent from the surface treatment machine 101 to about 300 ° C.
 次に、導線1は図22に示す押出成形機103に送られ、この押出成形機103において図21に示す第1成形工程P1が行われる。この第1成形工程P1では、加熱炉102から送られてきた導線1の外周面上に絶縁層2を押出成形する。たとえば、押出成形機103は、加熱炉102から送られてきた、予備加熱された導線1の外周面上に、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)といった熱可塑性絶縁樹脂を押出成形することによって、導線1の外周面上に絶縁層2を形成する。これらPEEKやPPSといった絶縁樹脂は、ペレット状の状態で、押出成形機103に投入され、その絶縁樹脂の融点以上かつ分解温度以下の温度で、導線1の外周面上に押出成形される。 Next, the lead wire 1 is sent to the extruder 103 shown in FIG. 22, and the first molding step P1 shown in FIG. 21 is performed in the extruder 103. In this first molding step P1, the insulating layer 2 is extruded on the outer peripheral surface of the lead wire 1 sent from the heating furnace 102. For example, the extruder 103 extrudes a thermoplastic insulating resin such as polyetheretherketone (PEEK) or polyphenylene sulfide (PPS) on the outer peripheral surface of the preheated lead wire 1 sent from the heating furnace 102. By doing so, the insulating layer 2 is formed on the outer peripheral surface of the lead wire 1. These insulating resins such as PEEK and PPS are put into the extruder 103 in the form of pellets and extruded on the outer peripheral surface of the lead wire 1 at a temperature equal to or higher than the melting point of the insulating resin and lower than the decomposition temperature.
 押出成形機103により絶縁層2が形成された導線1は、表面処理機104に送られ、この表面処理機104において、図21に示す表面処理SC2が行われる。具体的には、表面処理機104は、絶縁層2の外周面上に上述の物理的処理及び/又は化学的処理を行う。たとえば、物理的処理として、絶縁層2の外周面上に、大気プラズマ処理、深紫外光処理、コロナ放電処理、または疎化処理(レーザー疎化、研磨、サンドブラスト処理)を行う。また、化学的処理として、絶縁層2の外周面上にシランカップリング剤を塗布する。 The conductor 1 on which the insulating layer 2 is formed by the extrusion molding machine 103 is sent to the surface treatment machine 104, and the surface treatment SC2 shown in FIG. 21 is performed in this surface treatment machine 104. Specifically, the surface treatment machine 104 performs the above-mentioned physical treatment and / or chemical treatment on the outer peripheral surface of the insulating layer 2. For example, as a physical treatment, an atmospheric plasma treatment, a deep ultraviolet light treatment, a corona discharge treatment, or a sparsening treatment (laser sparsening, polishing, sandblasting treatment) is performed on the outer peripheral surface of the insulating layer 2. Further, as a chemical treatment, a silane coupling agent is applied on the outer peripheral surface of the insulating layer 2.
 表面処理機104により表面処理が行われた絶縁層2付きの導線1は、図22に示す押出成形機105に送られ、この押出成形機105において、図21に示す第2成形工程P2が行われる。この第2成形工程P2では、表面処理機104から送られてきた導線1の絶縁層2の外周面上に、半硬化接着層3をその段差4及び段差7とともに押出成形する。 The conductor 1 with the insulating layer 2 surface-treated by the surface treatment machine 104 is sent to the extrusion molding machine 105 shown in FIG. 22, and the second molding step P2 shown in FIG. 21 is performed in the extrusion molding machine 105. Will be. In this second molding step P2, the semi-curing adhesive layer 3 is extruded together with the step 4 and the step 7 on the outer peripheral surface of the insulating layer 2 of the conducting wire 1 sent from the surface treatment machine 104.
 たとえば、この押出成形機105に、常温で固体かつペレット状のBステージ型接着剤を投入すると、このBステージ型接着剤が融点以上(たとえば60℃以上かつ140℃以下)に加熱され、Bステージの状態で絶縁層2上に塗布かつ押出成形される。ここで用いるBステージ型接着剤は、常温においてペレット状であるものを用いると、保管、取り扱いが容易である。常温とはたとえば5℃~35℃である。Bステージ型接着剤を絶縁層2上に塗布および押出成形する際のBステージ型接着剤の粘度は、たとえば3Pa以上150Pa以下が好ましい。 For example, when a solid and pellet-shaped B-stage adhesive is charged into the extruder 105 at room temperature, the B-stage adhesive is heated to a temperature above the melting point (for example, 60 ° C or higher and 140 ° C or lower), and the B stage is heated. It is applied and extruded on the insulating layer 2 in the above state. If the B-stage type adhesive used here is in the form of pellets at room temperature, it is easy to store and handle. The normal temperature is, for example, 5 ° C to 35 ° C. The viscosity of the B-stage adhesive when the B-stage adhesive is applied onto the insulating layer 2 and extruded is preferably, for example, 3 Pa or more and 150 Pa or less.
 図23は、押出成形機105の構成を示す概略図である。200は固体でペレット状のBステージ型接着剤、201はBステージ型接着剤200の投入口、202はペレット状のBステージ型接着剤200を粉砕する粉砕部、203は粉砕されたBステージ型接着剤200を溶融し、溶融したBステージ型接着剤200をBステージの状態で導線1の絶縁層2上に塗布する塗布部、204は絶縁層2上に溶融塗布されたBステージ型接着剤をBステージの状態で押出成形し、半硬化接着層3をその段差4及び段差7とともに形成する絞り治具である。ここでは、常温で固体のBステージ型接着剤を用いたが、常温で液状であり、加熱やUV照射によりBステージ化できるBステージ型接着剤を用いてもよい。 FIG. 23 is a schematic view showing the configuration of the extruder 105. 200 is a solid and pellet-shaped B-stage type adhesive, 201 is an input port for the B-stage type adhesive 200, 202 is a crushing portion for crushing the pellet-shaped B-stage type adhesive 200, and 203 is a crushed B-stage type. The coating portion where the adhesive 200 is melted and the melted B-stage type adhesive 200 is applied onto the insulating layer 2 of the lead wire 1 in the state of the B stage, and 204 is the B-stage type adhesive which is melt-coated on the insulating layer 2. Is a drawing jig that is extruded in the state of the B stage to form the semi-cured adhesive layer 3 together with the step 4 and the step 7. Here, a B-stage adhesive that is solid at room temperature is used, but a B-stage adhesive that is liquid at room temperature and can be B-staged by heating or UV irradiation may be used.
 なお、半硬化接着層3をBステージ型接着剤で形成せず、光硬化型接着剤で形成する場合には、押出成形機に常温で液状の光硬化型接着剤を投入し、押出成形機105の押出口に硬化波長の光源を設け、その光を当該光硬化型接着剤に照射しながら半硬化状態で押出成形するようにすればよい。 When the semi-curing adhesive layer 3 is not formed by the B-stage type adhesive but is formed by the photo-curing type adhesive, the photo-curing type adhesive which is liquid at room temperature is charged into the extrusion molding machine, and the extrusion molding machine is used. A light source having a curing wavelength may be provided at the extrusion port of 105, and the photocurable adhesive may be irradiated with the light to be extruded in a semi-cured state.
 また、半硬化接着層3の厚みをコントロールしやすくするために、厚み調整材料として半硬化型接着剤にガラス、溶融シリカなどの絶縁材料を混合して押出成形してもよい。 Further, in order to make it easier to control the thickness of the semi-curing adhesive layer 3, an insulating material such as glass or molten silica may be mixed with the semi-curing adhesive as a thickness adjusting material and extruded.
 ここでは、押出成形機103による第1成形工程P1より前の工程で、表面処理機101による表面処理SC1を行ったが、この表面処理SC1は省略してもよい。また、押出成形機105による第2成形工程P2より前の工程で、表面処理機104による表面処理SC2を行ったが、この表面処理SC2は省略してもよい。 Here, the surface treatment SC1 by the surface treatment machine 101 was performed in the step before the first molding step P1 by the extrusion molding machine 103, but this surface treatment SC1 may be omitted. Further, although the surface treatment SC2 by the surface treatment machine 104 was performed in the step before the second molding step P2 by the extrusion molding machine 105, this surface treatment SC2 may be omitted.
 また、ここでは、実施の形態1の絶縁電線10の製造方法について説明したが、実施の形態2の絶縁電線10、すなわち、導線1の外周面上に半硬化接着層3を直接形成した絶縁電線10も、第1成形工程P1、および表面処理SC1をなくして、同様に製造することができる。 Further, although the method of manufacturing the insulated wire 10 of the first embodiment has been described here, the insulated wire 10 of the second embodiment, that is, the insulated wire in which the semi-cured adhesive layer 3 is directly formed on the outer peripheral surface of the conducting wire 1. 10 can also be manufactured in the same manner without the first molding step P1 and the surface treatment SC1.
 また、実施の形態1および実施の形態2のそれぞれに示した絶縁電線10は、本実施の形態3の製造方法以外で製造してもよい。 Further, the insulated wire 10 shown in each of the first embodiment and the second embodiment may be manufactured by a method other than the manufacturing method of the third embodiment.
 実施の形態4.
 実施の形態4として、実施の形態1や実施の形態2に例示した本開示の絶縁電線10を用いた電機機器について説明する。図24は、図5の絶縁電線10を巻回してなるコイルの概略図である。図24において、30はティースなどのコイルのインシュレータであり、31はコイルの鉄心である。このように絶縁電線10は、最外周層である半硬化接着層3が段差4を有するので、この絶縁電線10を多層に巻回してコイルを製造する場合に、段差4が絶縁電線10の他の部分と接触し、その接触した部分の移動を制限する。このため、この絶縁電線10を巻回してコイルを製造したときに、巻線の位置づれや、巻線のよれを抑制できる。このため、コイルの信頼性が向上するともに、コイルの巻回密度が向上し、コイルを小型化することができる。
Embodiment 4.
As the fourth embodiment, an electric device using the insulated wire 10 of the present disclosure exemplified in the first embodiment and the second embodiment will be described. FIG. 24 is a schematic view of a coil formed by winding the insulated wire 10 of FIG. In FIG. 24, 30 is an insulator of a coil such as a tooth, and 31 is an iron core of the coil. As described above, in the insulated wire 10, the semi-cured adhesive layer 3, which is the outermost layer, has a step 4, so that when the insulated wire 10 is wound in multiple layers to manufacture a coil, the step 4 is the other than the insulated wire 10. Contact with the part of, and restrict the movement of the contacted part. Therefore, when the coil is manufactured by winding the insulated wire 10, it is possible to suppress the position of the winding and the twist of the winding. Therefore, the reliability of the coil is improved, the winding density of the coil is improved, and the coil can be miniaturized.
 また、絶縁電線10は、最外周層の半硬化接着層3が半硬化型接着剤で形成されているため、このようにインシュレータ30に絶縁電線10を多層に巻回した後、コイルを加熱等で本硬化することで巻線間を固着することができる。このため、コイルの耐久性、信頼性がさらに向上する。 Further, in the insulated wire 10, since the semi-cured adhesive layer 3 of the outermost peripheral layer is formed of the semi-cured adhesive, the coil is heated after winding the insulated wire 10 in multiple layers around the insulator 30 in this way. It is possible to fix the windings between the windings by the main curing. Therefore, the durability and reliability of the coil are further improved.
 なお、インシュレータ30の絶縁電線10が巻回される面は、平面であってもよいが、図24に示すように、絶縁電線10の右下角部9が嵌入される溝部30aを有してもよい。 The surface around which the insulated wire 10 of the insulator 30 is wound may be a flat surface, but as shown in FIG. 24, it may have a groove portion 30a into which the lower right corner portion 9 of the insulated wire 10 is fitted. good.
 また、図24では、コイルに絶縁電線10を複数層巻回する際に、各層の巻回し数を同一としているが、図25に示すように、外側に巻回する層ほど巻線数を少なくするようにしてもよい。このような巻き方は、各ティースに巻回できる巻線密度を向上するために有効である。通常、このような巻き方では、巻線がほどけやすい場合が多いが、本実施の形態1、2の絶縁電線を巻回してコイルを形成するようにすれば、その段差により巻線がほどけにくくすることができる。 Further, in FIG. 24, when a plurality of layers of the insulated wire 10 are wound around the coil, the number of windings of each layer is the same, but as shown in FIG. 25, the number of windings is smaller as the layer is wound outward. You may try to do it. Such a winding method is effective for improving the winding density that can be wound around each tooth. Normally, in such a winding method, the winding is easy to unwind, but if the insulated wires of the first and second embodiments are wound to form a coil, the winding is difficult to unwind due to the step. can do.
 図25のコイルにおいても、絶縁電線10は、最外周層の半硬化接着層3が半硬化型接着剤で形成されているため、インシュレータ30に絶縁電線10を多層に巻回した後、コイルを加熱等で本硬化することで巻線間を固着することができる。図24及び図25における丸付き数字は、絶縁電線10を巻回する順番を例示するものである。 Also in the coil of FIG. 25, since the semi-curing adhesive layer 3 of the outermost peripheral layer of the insulated wire 10 is formed of the semi-curing adhesive, the coil is wound after winding the insulating wire 10 in multiple layers around the insulator 30. The windings can be fixed between the windings by the main curing by heating or the like. The circled numbers in FIGS. 24 and 25 exemplify the order in which the insulated wire 10 is wound.
 図24や図25のように製造されたコイルを組み込んで、モータ、発電機、変圧器、ソレノイド、リアクトルなどの電機機器を製造すれば、小型で信頼性の高い電気機器を得ることができる。 By incorporating the coils manufactured as shown in FIGS. 24 and 25 to manufacture electric devices such as motors, generators, transformers, solenoids, and reactors, small and highly reliable electric devices can be obtained.
 1 導線、2 絶縁層、3 半硬化接着層、4 段差、5 凹部、6 凹部、7 段差、8 左上角部、9 右下角部、81 左側端部、91 右側端部。 1 conductor, 2 insulating layer, 3 semi-curing adhesive layer, 4 step, 5 recess, 6 recess, 7 step, 8 upper left corner, 9 lower right corner, 81 left end, 91 right end.

Claims (20)

  1.  導線と、前記導線の外周側に積層される最も外側の層である最外周層とを有し、前記最外周層は絶縁性を有する半硬化型接着剤により構成されるとともに、その外周面に前記半硬化型接着剤を成形した段差を有する絶縁電線。 It has a lead wire and an outermost layer, which is the outermost layer laminated on the outer peripheral side of the lead wire, and the outermost layer is composed of an insulating semi-curable adhesive and is formed on the outer peripheral surface thereof. An insulated wire having a step obtained by molding the semi-curing adhesive.
  2.  前記最外周層は半硬化状態である請求項1に記載の絶縁電線。 The insulated wire according to claim 1, wherein the outermost peripheral layer is in a semi-cured state.
  3.  前記半硬化型接着剤は、Bステージ型接着剤である請求項1又2に記載の絶縁電線。 The insulated wire according to claim 1 or 2, wherein the semi-curing type adhesive is a B-stage type adhesive.
  4.  前記Bステージ型接着剤は、本硬化前に常温において固体であり、加熱により溶融する請求項3に記載の絶縁電線。 The insulated wire according to claim 3, wherein the B-stage type adhesive is a solid at room temperature before the main curing and melts by heating.
  5.  前記半硬化型接着剤は、光硬化性接着剤である請求項1又は2に記載の絶縁電線。 The insulated wire according to claim 1 or 2, wherein the semi-curable adhesive is a photocurable adhesive.
  6.  前記導線と前記最外周層の間に絶縁層を有する請求項1~5のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 5, which has an insulating layer between the conducting wire and the outermost peripheral layer.
  7.  前記最外周層は、前記導線の外周面上に直接積層される請求項1~5のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 5, wherein the outermost layer is directly laminated on the outer peripheral surface of the conducting wire.
  8.  前記段差は、前記最外周層の外周面に凹部を設けることで形成される請求項1~7のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 7, wherein the step is formed by providing a recess on the outer peripheral surface of the outermost peripheral layer.
  9.  前記最外周層は、前記絶縁電線を巻回したときに、前記最外周層の前記凹部以外の部分である非凹部を、前記凹部に嵌入可能である請求項8に記載の絶縁電線。 The insulated wire according to claim 8, wherein the outermost peripheral layer is a non-concave portion other than the concave portion of the outermost peripheral layer, which can be fitted into the concave portion when the insulated wire is wound.
  10.  前記非凹部は、前記最外周層の角部である請求項9に記載の絶縁電線。 The insulated wire according to claim 9, wherein the non-recessed portion is a corner portion of the outermost peripheral layer.
  11.  前記凹部に嵌入可能である前記角部は、その側面が前記凹部とは異なる凹部の側面により形成される請求項10に記載の絶縁電線。 The insulated wire according to claim 10, wherein the corner portion that can be fitted into the recess is formed by a side surface of a recess whose side surface is different from that of the recess.
  12.  前記段差は、前記最外周層の外周面に凸部を設けることで形成される請求項1~7のいずれかに記載の絶縁電線。 The insulated wire according to any one of claims 1 to 7, wherein the step is formed by providing a convex portion on the outer peripheral surface of the outermost peripheral layer.
  13.  前記段差は、前記最外周層の外周面に凸部および凹部を設けることで形成され、前記絶縁電線を巻回したときに、前記凸部を前記凹部に嵌入可能である請求項1~7のいずれか1項に記載の絶縁電線。 The step is formed by providing a convex portion and a concave portion on the outer peripheral surface of the outermost peripheral layer, and the convex portion can be fitted into the concave portion when the insulated wire is wound. The insulated wire according to any one of the items.
  14.  前記最外周層は、前記導線の延伸方向に対して垂直な断面の形状が、前記延伸方向の全体にわたって同一である請求項1~13のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 13, wherein the outermost peripheral layer has the same cross-sectional shape perpendicular to the extending direction of the conducting wire over the entire extending direction.
  15.  半硬化状態の前記半硬化型接着剤を加熱し本硬化した請求項1~14のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 14, wherein the semi-cured adhesive is heated and finally cured.
  16.  導線と、前記導線の外周面に積層される最も最外周である最外周層とを有し、前記最外周層は絶縁性を有する半硬化型接着剤により構成されるとともに、その外周面に前記半硬化型接着剤を成形した段差を有する絶縁電線の製造方法であって、
     前記最外周層は、前記半硬化型接着剤を押出成形することにより形成される絶縁電線の製造方法。
    It has a conducting wire and an outermost outermost layer which is the outermost layer laminated on the outer peripheral surface of the conducting wire, and the outermost peripheral layer is composed of an insulating semi-curable adhesive and has the outer peripheral surface thereof. It is a method of manufacturing an insulated wire having a step obtained by molding a semi-curing adhesive.
    The outermost layer is a method for manufacturing an insulated wire formed by extrusion-molding the semi-curable adhesive.
  17.  前記半硬化型接着剤の塗布時の粘度は3Pa以上150Pa以下であり、前記最外周層の前記押出成形により形成される厚みは10μm~500μmである請求項16に記載の絶縁電線の製造方法。 The method for manufacturing an insulated wire according to claim 16, wherein the viscosity of the semi-curable adhesive at the time of application is 3 Pa or more and 150 Pa or less, and the thickness of the outermost peripheral layer formed by the extrusion molding is 10 μm to 500 μm.
  18.  導線、および前記導線の外周側に積層される最も外側の層である最外周層を有し、前記最外周層は絶縁性を有する半硬化型接着剤により構成されるとともに、その外周面に前記半硬化型接着剤を成形した段差を有する絶縁電線を、複数層巻回して形成したコイルを有する電機機器。 It has a conductor and an outermost layer that is the outermost layer laminated on the outer peripheral side of the conductor, and the outermost layer is composed of an insulating semi-curable adhesive and has the outer peripheral surface thereof. An electric device having a coil formed by winding a plurality of layers of an insulated wire having a step formed by forming a semi-curing adhesive.
  19.  前記コイルは、前記複数層のうちの少なくとも1層の巻線数は、その内側に巻回される層の巻線数よりも少ない請求項18に記載の電機機器。 The electric device according to claim 18, wherein the coil has at least one winding number of the plurality of layers smaller than the number of windings of the layer wound inside the coil.
  20.  前記コイルは、前記複数層を巻回する面に、前記最外周層の角部が嵌入される溝部が形成される請求項18又は19に記載の電機機器。 The electric device according to claim 18 or 19, wherein the coil is formed with a groove in which a corner portion of the outermost peripheral layer is fitted on a surface around which the plurality of layers are wound.
PCT/JP2020/028830 2020-07-28 2020-07-28 Insulated wire, production method for same, and electrical equipment WO2022024207A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/028830 WO2022024207A1 (en) 2020-07-28 2020-07-28 Insulated wire, production method for same, and electrical equipment
JP2022539824A JP7420260B2 (en) 2020-07-28 2020-07-28 Insulated wires and electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028830 WO2022024207A1 (en) 2020-07-28 2020-07-28 Insulated wire, production method for same, and electrical equipment

Publications (1)

Publication Number Publication Date
WO2022024207A1 true WO2022024207A1 (en) 2022-02-03

Family

ID=80037780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028830 WO2022024207A1 (en) 2020-07-28 2020-07-28 Insulated wire, production method for same, and electrical equipment

Country Status (2)

Country Link
JP (1) JP7420260B2 (en)
WO (1) WO2022024207A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157539A (en) * 2005-12-06 2007-06-21 Chugoku Electric Power Co Inc:The Electric cord
JP2017098251A (en) * 2015-11-24 2017-06-01 文正 劉 Automatic winding linear unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022272A (en) * 1973-06-30 1975-03-10
JP3366047B2 (en) * 1993-04-23 2003-01-14 日立化成工業株式会社 Insulated wire for multi-wire wiring board and multi-wire wiring board using this insulated wire
JPH0726241A (en) * 1993-07-15 1995-01-27 Fujikura Ltd Adhesive resin composition and self-adhesive insulated wire
JPH08172013A (en) * 1994-10-04 1996-07-02 Toshiba Corp Superconducting coil, its manufacture, and superconducting wire
JP2006100039A (en) 2004-09-28 2006-04-13 Honda Motor Co Ltd Flat cable and manufacturing method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157539A (en) * 2005-12-06 2007-06-21 Chugoku Electric Power Co Inc:The Electric cord
JP2017098251A (en) * 2015-11-24 2017-06-01 文正 劉 Automatic winding linear unit

Also Published As

Publication number Publication date
JPWO2022024207A1 (en) 2022-02-03
JP7420260B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
EP3134906B1 (en) Continuously transposed conductor
JP6200480B2 (en) Assembly wire, method for manufacturing the same, and electrical equipment
US20200312535A1 (en) Magnet wire with thermoplastic insulation
JP7105777B2 (en) Insulated wire material, manufacturing method thereof, coil, and electrical/electronic equipment
US20180182507A1 (en) Continuously Transposed Conductors And Assemblies
JP2008288106A (en) Insulated electric wire
JP2013033607A (en) Electric insulated wire and manufacturing method thereof
JP6567451B2 (en) Superconducting coil and superconducting coil manufacturing method
US10510464B1 (en) Continuously transposed conductors and assemblies
WO2022024207A1 (en) Insulated wire, production method for same, and electrical equipment
US10340672B2 (en) Conducting wire end portion joining method, and conducting wire end portion joining structure
JP5621826B2 (en) Collective conducting wire and manufacturing method thereof
JP5041399B2 (en) Insulated wire, insulated wire composite wire and shielded wire
JP2017199566A (en) Insulated wire, method of manufacturing the same, and method of manufacturing electric apparatus
US20180048205A1 (en) Insulation wire, rotary electric machine, and manufacturing method of insulation wire
US20190287710A1 (en) Coil component and manufacturing method for same
JP7105778B2 (en) Insulated wire material, manufacturing method thereof, coil, and electrical/electronic equipment
WO2017085797A1 (en) Iron core joint structure of stationary induction electric device, and method of joining iron core
JP2017157491A (en) Insulation wire and manufacturing method therefor
CN110060814B (en) Cable for signal transmission
JP2008147345A (en) Method of manufacturing reactor
JP2016085846A (en) Assembled conductor
JP2012095484A (en) Rotary electric machine
JP2022047622A (en) Differential signal transmission cable
JP2019162002A (en) Insulating material, and coil for rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946593

Country of ref document: EP

Kind code of ref document: A1