WO2022023400A1 - Milieu cristallin liquide, dispositif d'affichage à cristaux liquides comprenant celui-ci et composés - Google Patents

Milieu cristallin liquide, dispositif d'affichage à cristaux liquides comprenant celui-ci et composés Download PDF

Info

Publication number
WO2022023400A1
WO2022023400A1 PCT/EP2021/071106 EP2021071106W WO2022023400A1 WO 2022023400 A1 WO2022023400 A1 WO 2022023400A1 EP 2021071106 W EP2021071106 W EP 2021071106W WO 2022023400 A1 WO2022023400 A1 WO 2022023400A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
atoms
denotes
alkyl
group
Prior art date
Application number
PCT/EP2021/071106
Other languages
English (en)
Inventor
Sven Christian Laut
Martina Windhorst
Constanze Brocke
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to CN202180058661.8A priority Critical patent/CN116057152A/zh
Priority to EP21754761.1A priority patent/EP4189035A1/fr
Publication of WO2022023400A1 publication Critical patent/WO2022023400A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/062Non-steroidal liquid crystal compounds containing one non-condensed benzene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/124Ph-Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Definitions

  • Liquid-crystalline medium and liquid-crystal display comprising the same and compounds
  • the present invention relates to novel liquid-crystalline media, in particular for use in liquid-crystal displays, and to these liquid-crystal displays, particularly to liquid-crystal displays which use the IPS (in-jglane switching) or, preferably, the FFS (fringe field switching) effect using dielectrically positive liquid crystals.
  • IPS in-jglane switching
  • FFS far field switching
  • the last one is also called XB-FFS (extra brightness FFS) effect occasionally.
  • dielectrically positive liquid crystals which comprise one or more compounds having at the same time a high dielectric constant parallel to the molecular director and perpendicular to the molecular director, leading to a large average dielectric constant and a high dielectric ratio and, preferably, to a relatively small dielectric anisotropy at the same time.
  • the liquid-crystalline media optionally additionally comprise dielectrically negative, dielectrically neutral compounds or both.
  • the liquid-crystalline media are used in a homogeneous (i.e. planar) initial alignment.
  • the liquid- crystal media according to the invention have a positive dielectric anisotropy and comprise compounds having at the same time large dielectric constants parallel and perpendicular to the molecular director.
  • the media are distinguished by a particularly good representation of the black state, primarily attributable to their very low scattering. This in turn is brought about especially by their high elastic constants.
  • High elastic constants may also lead to higher values of the rotational viscosity (gi), and consequently to higher values of the ratio gi IW22 of the rotational viscosity (gi) to the elastic constant for the twist deformation ⁇ W22), which then leads to higher response times.
  • W22 is approximately proportional to the elastic constant kn for splay deformation (the value of W22 is typically about half the value of kn), this can easily and conveniently be approximated determining gi and kn.
  • the contrast of an LC Display can be improved, on the one hand by a higher transmittance, which can be achieved by a higher e ⁇ in an FFS cell layout. And, on the other hand, it can be improved by a better dark state.
  • the latter i.e. the dark state, is strongly influenced, amongst others, by the scattering parameter.
  • liquid-crystalline media having high elastic constants lower the scattering and therefore improve the contrast of an LCD. This also leads to their excellent performance in the displays according to the invention.
  • IPS and FFS displays using dielectrically positive liquid crystals are well known in the field and have been widely adopted for various types of displays like e.g. desk top monitors and TV sets, but also for mobile applications.
  • IPS and in particular FFS displays using dielectrically negative liquid crystals are widely adopted.
  • the latter ones are sometimes also called or UB-FFS (ultra bright FFS).
  • UB-FFS ultra bright FFS
  • Such displays are described e.g. in US 2013/0207038 A1. These displays are characterized by a markedly increased transmission compared to the previously used IPS- and FFS displays, which have used dielectrically positive liquid crystals.
  • These displays using conventional, dielectrically negative liquid crystals however, have the severe disadvantage of requiring a higher operation voltage than the respective displays using dielectrically positive liquid crystals.
  • Liquid crystalline media used for UB-FFS have a dielectric anisotropy of -0.5 or less and preferably of -1.5 or less.
  • Liquid crystalline media used for HB-FFS have a dielectric anisotropy of 0.5 or more and preferably of 1.5 or more.
  • Liquid crystalline media used for HB-FFS comprising both dielectrically negative and dielectrically positive liquid crystalline compounds, respectively mesogenic compounds are described e.g. in US 2013/0207038 A1. These media feature rather large values of e ⁇ and of s av. already, however, their ratio of (e ⁇ / De) is relatively small.
  • the IPS or the FFS effect with dielectrically positive liquid crystalline media in a homogeneous alignment are preferred.
  • LC phases which can be used industrially are required to have a liquid-crystalline mesophase in a suitable temperature range and low viscosity.
  • None of the series of compounds having a liquid-crystalline mesophase that have been disclosed hitherto includes a single compound which meets all these requirements. Mixtures of two to 25, preferably three to 18, compounds are therefore generally prepared in order to obtain substances which can be used as LC phases.
  • Matrix liquid-crystal displays are known.
  • Non-linear elements which can be used for individual switching of the individual pixels are, for example, active elements (i.e. transistors).
  • active matrix is then used, where in general use is made of thin-film transistors (TFTs), which are generally arranged on a glass plate as substrate.
  • TFTs comprising compound semiconductors, such as, for example, CdSe, or metal oxides like ZnO or TFTs based on polycrystalline and, inter alia, amorphous silicon.
  • CdSe compound semiconductors
  • metal oxides like ZnO metal oxides like ZnO
  • TFTs based on polycrystalline and, inter alia, amorphous silicon The latter technology currently has the greatest commercial importance worldwide.
  • the TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counter electrode on its inside. Compared with the size of the pixel electrode, the TFT is very small and has virtually no adverse effect on the image.
  • This technology can also be extended to fully colour-capable displays, in which a mosaic of red, green and blue filters is arranged in such a way that a filter element is located opposite each switchable pixel.
  • the TFT displays mostly used so far usually operate with crossed polarisers in transmission and are backlit.
  • ECB (or VAN) cells or FFS cells are used, whereas monitors usually use IPS cells orTN (twisted nematic) cells, and notebooks, laptops and mobile applications usually use TN, VA or FFS cells.
  • MLC displays of this type are particularly suitable for TV applications, moni tors and notebooks or for displays with a high information density, for example in automobile manufacture or aircraft construction.
  • difficulties also arise in MLC displays due to insufficiently high specific resistance of the liquid-crystal mixtures [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, pp. 141 ff.
  • VAN vertical aligned nematic
  • MVA multi-domain vertical alignment, for example: Yoshide, H. et al. , Paper 3.1: “MVA LCD for Notebook or Mobile PCs ...”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book I, pp. 6 to 9, and Liu, C.T. et al. , Paper 15.1: “A 46-inch TFT-LCD HDTV Technology SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 750 to 753),
  • PVA patterned vertical alignment, for example: Kim, Sang Soo, Paper 15.4: “Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 760 to 763) and ASV (advanced super view, for example: Shigeta, Mitzuhiro and Fukuoka, Hirofumi, Paper 15.2: “Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp.
  • VA photo-alignment VA
  • PSVA polymer-stabilized VA
  • ECB displays like ASV displays, use liquid-crystalline media having negative dielectric anisotropy (De), whereas TN and to date all conventional IPS displays use liquid-crystalline media having positive dielectric anisotropy.
  • IPS and FFS displays utilizing dielectrically negative liquid crystalline media.
  • liquid crystals are used as dielec trics, whose optical properties change reversibly on application of an elec trical voltage.
  • liquid-crystal media which are generally predominantly composed of liquid-crystal compounds, all of which have the same sign of the dielectric anisotropy and have the highest possible value of the dielectric anisotropy.
  • at most relatively small proportions of neutral compounds and if possible no compounds having a sign of the dielectric anisotropy which is opposite to that of the medium are employed.
  • liquid-crystal media having negative dielectric anisotropy e.g. for ECB or UB-FFS displays
  • predominantly compounds having negative dielectric anisotropy are thus em ployed.
  • the respective liquid-crystalline media employed generally consist predominantly and usually even essentially of liquid-crystal compounds having negative dielectric anisotropy.
  • Liquid crystalline media having a positive dielectric anisotropy for IPS and FFS displays have already been disclosed. In the following some examples will be given.
  • CN 104232105 A, WO 2014/192390 and WO 2015/007131 describe liquid crystalline media with a positive dielectric anisotropy, some of which have a rather high dielectric constant perpendicular to the director.
  • the phase range of the liquid-crystal mixture should be sufficiently broad for the intended application of the display.
  • the response times of the liquid-crystal media in the displays also should be improved, i.e. reduced. This is particularly important for displays for television or multimedia applications.
  • optimise the rotational viscosity of the liquid-crystal media (gi) i.e. to achieve media having the lowest possible rotational viscosity.
  • the results achieved here are inadequate for many applications and therefore make it appear desirable to find further optimisation approaches.
  • Adequate stability of the media to extreme loads, in particular to UV exposure and heating, is very particularly important. In particular in the case of applications in displays in mobile equipment, such as, for example, mobile telephones, this may be crucial.
  • the MLC displays disclosed hitherto have further disadvantages. These are e.g. their comparatively low contrast, their relatively high viewing- angle dependence and the difficulty in the reproduction of grey scales in these displays, especially when observed from an oblique viewing angle, as well as their inadequate VHR and their inadequate lifetime.
  • the desired improvements of the transmission of the displays and of their response times are required in order to improve their energy efficiency, respectively their capacity to render rapidly moving pictures.
  • the invention has the object of providing MLC displays, not only for monitor and TV applications, but also for mobile applications such as e.g. telephones and navigation systems, which are based on the ECB, IPS or FFS effect, do not have the disadvantages indicated above, or only do so to a lesser extent, and at the same time have very high specific resistance values. In particular, it must be ensured for mobile telephones and navigation systems that they also work at extremely high and extremely low temperatures.
  • liquid-crystal displays which have, in particular in IPS and FFS displays, a low threshold voltage with short response times, a sufficiently broad nematic phase, favourable birefringence (Dh) and, at the same time, a high transmission, high contrast, good stability to decomposition by heating and by UV exposure, and a stable, high VHR if use is made in these display elements of nematic liquid-crystal media, which comprise at least one compound, preferably two or more compounds of formula L, preferably selected from the group of the compounds of the sub-formulae L-1 to L-4, particularly pref erably the sub-formula L-1 and/or L-2, more preferably of formula L-1, and preferably additionally one or more compounds, preferably two or more compounds, selected from the group of the compounds of the formulae II and III, the former preferably of formula 11-1 and/or II-2, and/or one or more compounds, preferably two or more compounds selected from the group of
  • the liquid-crystalline media comprise one or more compounds selected from the group of the compounds of formulae I and B, preferably selected from the group of the compounds of the sub formulae 1-1 and I-2 and B-1 and B-2, respectively, particularly preferably from the sub-formula 1-1 and/or I-2 and B-1 and/or B-2, most preferably of formula I-2, B-1 and B-2 and most preferably both of formula 1-1 and of formula I-2 and of formula B-1 and/or of formula B-2.
  • Media of this type can be used, in particular, for electro-optical displays having active-matrix addressing for IPS - or FFS displays.
  • the media according to the present invention preferably additionally comprise a one or more compounds selected from the group of compounds of formulae II and III, preferably one or more compounds of formula II, more preferably in addition one or more compounds of formula III and, most preferably, additionally one or more compounds selected from the group of the compounds of formulae IV and V and, again preferably, one or more compounds selected from the group of compounds of formulae VI to IX, all formulae as defined below.
  • the mixtures according to the invention preferably exhibit very broad nematic phase ranges with clearing points > 70°C, very favourable values for the capacitive threshold, relatively high values for the holding ratio and at the same time good low-temperature stabilities at -20°C and -30°C, as well as very low rotational viscosities.
  • the mixtures according to the invention are furthermore distinguished by a good ratio of clearing point and rotational vis cosity and by a relatively high positive dielectric anisotropy.
  • LCDs of the FFS type using liquid crystals with positive dielectric anisotropy may be realised using specially selected liquid crystalline media.
  • These media are characterised by a particular combination of physical properties. Most decisive amongst these are their dielectric properties and here a high average dielectric constant (sav ), a high dielectric constant perpendicular to the director of the liquid crystal molecules (e ⁇ ) and, in particular, the relatively high ratio of these latter two values: (e ⁇ / De).
  • the liquid-crystalline media according to the present invention on the one hand, have a value of the dielectric anisotropy of 1.5 or more, preferably of 2.5 or more.
  • they preferably have a dielectric anisotropy of 26 or less, preferably of 15 or less and most preferably of 10 or less.
  • the liquid crystalline media according to the present invention in a preferred embodiment have a positive dielectric anisotropy, preferably in the range from 1.5 or more to 20.0 or less, more preferably in the range from 2.0 or more to 15.0 or less and, most preferably in the range from 2.0 or more to 12.0.
  • the liquid-crystalline medium of the present invention comprises a) one or more compounds of formula L, preferably in a concentration in the range from 1 % to 40 %, more preferably in the range from 2 % to 30 %, particularly preferably in the range from 3 % to 20 %, in which
  • Y L1 and Y L2 identically or differently, denote FI, F or Cl, preferably at least one of Y L1 and Y L2 is FI, preferably Y L2 is FI, and most preferably Y L1 and Y L2 are FI, wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group, and one or more additional compounds, preferably selected from the groups of compounds according to the following conditions b) to f) b) one or more, preferably dielectrically positive, compounds selected from the group of compounds of formulae II and III, preferably of compounds having a dielectric anisotropy of greater than 3 each, preferably one or more compounds of formula II: in which
  • R 2 denotes alkyl, alkoxy, fluorinated alkyl orfluorinated alkoxy having 1 to 7 C atoms, alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl having 2 to 7 C atoms and preferably alkyl or alkenyl, on each appearance, independently of one another, denote L 21 and L 22 denote H or F, preferably L 21 denotes F,
  • X 2 denotes halogen, halogenated alkyl or alkoxy having 1 to
  • R 3 denotes alkyl, alkoxy, fluorinated alkyl or fluorinated alkoxy having 1 to 7 C atoms, alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl having 2 to 7 C atoms and preferably n- alkyl, cyclopropyl, cyclopentyl or alkenyl, L 31 and L 32 , independently of one another, denote H or F, preferably L 31 denotes F,
  • X 3 denotes halogen, halogenated alkyl or alkoxy having 1 to 3 C atoms or halogenated alkenyl or alkenyloxy having 2 or 3 C atoms, F, Cl, -OCF3, -OCFIF2, -O-CH2CF , very preferably F3,
  • R 41 and R 42 independently of one another, have the meaning indicated above for R 2 under formula II, preferably R 41 denotes alkyl and R 42 denotes alkyl or alkoxy or R 41 denotes alkenyl and R 42 denotes alkyl, independently of one another and, if occurs twice, also these independently of one another, denote preferably one or more of
  • R 51 and R 52 independently of one another, have one of the meanings given for R 41 and R 42 and preferably denote alkyl having 1 to 7 C atoms, preferably n-alkyl, particularly preferably n-alkyl having 1 to 5 C atoms, alkoxy having 1 to 7 C atoms, preferably n-alkoxy, particularly preferably n-alkoxy having 2 to 5 C atoms, alkoxyalkyl, alkenyl or alkenyloxy having 2 to 7 C atoms, preferably having 2 to 4 C atoms, preferably alkenyloxy, preferably preferably denotes
  • Z 51 to Z 53 each, independently of one another, denote -CH2-CH2-
  • -CH2-O-, -CH CH-, -CoC-, -COO- or a single bond, pref erably -CH2-CH2-, -CH2-O- or a single bond and particularly preferably a single bond, i and j each, independently of one another, denote 0 or 1 ,
  • (i + j) preferably denotes 0, 1 or 2, more preferably 0 or 1 and, most preferably, 1 , wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group, and with the condition that the compounds of formula L are excluded from the compounds of formula III, and d) again optionally, preferably obligatory, either alternatively or additionally, one or more dielectrically negative compounds selected from the group of formulae VI to IX: wherein
  • R 61 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, preferably a straight-chain alkyl radical, more preferably an n-alkyl radical, most preferably propyl or pentyl, an unsubstituted alkenyl radical having 2 to 7 C atoms, preferably a straight-chain alkenyl radical, particularly preferably having 2 to 5 C atoms, an unsubstituted alkoxy radical having 1 to 6 C atoms or an unsubstituted alkenyloxy radical having 2 to 6 C atoms,
  • R 62 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, an unsubstituted alkoxy radical having 1 to 6 C atoms or an unsubstituted alkenyloxy radical having 2 to 6 C atoms, and
  • I denotes 0 or 1 ,
  • R 71 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, preferably a straight-chain alkyl radical, more preferably an n-alkyl radical, most preferably propyl or pentyl, or an unsubstituted alkenyl radical having 2 to 7 C atoms, preferably a straight-chain alkenyl radical, particularly preferably having 2 to 5 C atoms,
  • R 72 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, preferably having 2 to 5 C atoms, an unsubstituted alkoxy radical having 1 to 6 C atoms, preferably having 1, 2, 3 or 4 C atoms, or an unsubstituted alkenyloxy radical having 2 to 6 C atoms, preferably having 2, 3 or 4 C atoms, and
  • R 81 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, preferably a straight-chain alkyl radical, more preferably an n-alkyl radical, most preferably propyl or pentyl, or an unsubstituted alkenyl radical having 2 to 7 C atoms, preferably a straight-chain alkenyl radical, particularly preferably having 2 to 5 C atoms,
  • R 82 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, preferably having 2 to 5 C atoms, an unsubstituted alkoxy radical having 1 to 6 C atoms, preferably having 1, 2, 3 or 4 C atoms, or an unsubstituted alkenyloxy radical having 2 to 6 C atoms, preferably having 2, 3 or 4 C atoms, preferably
  • R 91 and R 92 independently of one another have the meaning given for R 72 above,
  • R 91 preferably denotes an alkyl radical having 2 to 5 C atoms, preferably having 3 to 5 C atoms,
  • R 92 preferably denotes an alkyl or alkoxy radical having 2 to 5 C atoms, more preferably an alkoxy radical having 2 to 4 C atoms, or an alkenyloxy radical having 2 to 4 C atoms.
  • p and q independently of each other denote 0 or 1
  • (p + q) preferably denotes 0 or 1
  • the respective rings, and preferably the phenylene rings optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group, e) optionally, preferably obligatory, one or more compounds of formula B, preferably selected from the group of compounds of formulae B-1 and B-2, preferably in a concentration in the range from 1 % to 60 %, more preferably in the range from 2 % to 40 %, particularly preferably in the range from 3 % to 35 %, in which denote
  • R 1 denotes alkyl, alkoxy, fluorinated alkyl or fluorinated alkoxy, preferably having 1 to 7 C atoms, alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl having 2 to 7 C atoms, preferably alkyl, alkoxy, alkenyl or alkenyloxy, more preferably alkyl, alkenyl, alkoxy or alkenyloxy, and, most preferably alkyl, and
  • X 1 denotes F, Cl, fluorinated alkyl, fluorinated alkenyl, fluorinated alkoxy or fluorinated alkenlyoxy, the latter four groups preferably having 1 to 4 C atoms, more preferably F, Cl, CFs or OCFs, wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group, and f) again optionally, preferably obligatory, either alternatively or additionally, one or more compounds of formula I: in which n denotes 0 or 1 ,
  • R 11 and R 12 independently of each other denote alkyl, alkoxy, fluorinated alkyl or fluorinated alkoxy, preferably having 1 to 7 C atoms, wherein one Chh group may be replaced by a 1 ,2-cyclopropyl group, by a 1 ,3-cyclopentyl group or by a 1 ,3-cyclopentenylene group, alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl having 2 to 7 C atoms and preferably alkyl, alkoxy, alkenyl or alkenyloxy, most preferably alkyl, alkoxy or alkenyloxy, and R 11 alternatively denotes R 1 and R 12 alternatively denotes X 1 , R 1 denotes alkyl, alkoxy, fluorinated alkyl orfluorinated alkoxy, preferably having 1 to 7 C atoms, wherein one CFh group may be replaced by a 1 ,2-cyclo
  • X 1 denotes F, Cl, fluorinated alkyl, fluorinated alkenyl, fluorinated alkoxy or fluorinated alkenyoxy, the latter four groups preferably having 1 to 4 C atoms, more preferably F, Cl, CFs or OCFs, wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group, from which the compounds of formula B are excluded.
  • 3-cyclopentenylene is a moiety selected from the group of the formulae and preferably most preferably or
  • the media according to the present invention comprise one or more compounds of more compounds of formula L selected from the group of compounds of formulae L-1 to L-4, preferably of formula L-1 and/or of formula L-2, and most preferably of formula L-1 , in which
  • R L1 and R L2 have the respective meanings given above, and preferably
  • R L1 denotes an alkyl radical, having 1 to 15, preferably 1 to 7, most preferably 1 to 5, C atoms, preferably, n-alkyl, wherein one or more Chh groups, preferably one Chh, group may be replaced by a 1 ,2- cyclopropyl group, by a 1 ,3-cyclopentyl group or by a 1 ,3- cyclopentenylene group, or an alkenyl, radical having 2 to 15, preferably 2 to 7, most preferably 2 to 5, C atoms, preferably vinyl or 1 -E-alkenyl, and R L2 denotes an alkyl radical, having 1 to 15, preferably 1 to 7, most preferably 1 to 5, C atoms, preferably, n-alkyl, wherein one or more Chh groups, preferably one Chh group, may be replaced by a 1 ,2- cyclopropyl group, by a 1 ,3-cyclopentyl group or by a 1 ,3- cyclopenteny
  • liquid-crystalline media in accordance with the present invention preferably have a nematic phase.
  • R L1 and R L2 alkyl means an alkyl group, which may be straight-chain or branched.
  • Each of these radicals is preferably straight-chain and preferably has 1, 2, 3, 4, 5, 6, 7 or 8 C atoms and is accordingly preferably methyl, ethyl, n-propyl, n-butyl, n- pentyl, n-hexyl or n-heptyl.
  • Respective branched groups, especially for R L1 and R L2 , which lead to chiral compounds are also called chiral groups in this invention.
  • Particularly preferred chiral groups are 2-alkyl, 2-alkoxy, 2-methylalkyl, 2-methylalkoxy, 2-fluoroalkyl, 2- fluoroalkoxy, 2-(2-ethin)-alkyl, 2-(2-ethin)-alkoxy, 1,1,1 -trifluoro-2-alkyl and 1,1,1- trifluoro-2-alkoxy.
  • alkenyl means an alkenyl group, which may be straight-chain or branched and preferably is straight chain and preferably has 2, 3, 4, 5, 6 or 7 or 8 C atoms.
  • it is vinyl, 1 -E-alkenyl or 3-E-alkenyl, most preferably it is vinyl, 1- E-propenyl, 1-E-butenyl, 1-E-pentenyl, 3-butenyl or 3-E-pentenyl.
  • the compounds of the general formula L are prepared by methods known per se, as described in the literature, for example in the standard works, such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart, to be precise under reaction conditions which are known and are suitable for the said reactions. Use can be made here of variants which are known per se, but are not mentioned here in greater detail.
  • the starting materials can also be formed in situ by not isolating them from the reaction mixture, but instead immediately converting them further into the compounds of the general formula L.
  • the compounds of formula L-1 may be synthesized as described in WO 2019/034588 A1.
  • the compounds of formula L-3 are preferably synthesized as shown in Scheme 2.
  • the invention furthermore relates to a liquid-crystal display containing a liquid-crystalline medium according to the invention, in particular an IPS or FFS display, particularly preferably a FFS or SG-FFS display.
  • the invention furthermore relates to a liquid-crystal display of the IPS or FFS type comprising a liquid-crystal cell consisting of two substrates, where at least one substrate is transparent to light and at least one substrate has an electrode layer, and a layer, located between the substrates, of a liquid- crystalline medium comprising a polymerised component and a low- molecular-weight component, where the polymerised component is obtainable by polymerisation of one or more polymerisable compounds in the liquid-crystalline medium between the substrates of the liquid-crystal cell, preferably with application of an electrical voltage and where the low- molecular-weight component is a liquid-crystal mixture according to the invention as described above and below.
  • the displays in accordance with the present invention are preferably addressed by an active matrix (active matrix LCDs, AMDs for short), pref erably by a matrix of thin-film transistors (TFTs).
  • active matrix LCDs active matrix LCDs, AMDs for short
  • TFTs thin-film transistors
  • the liquid crystals according to the invention can also be used in an advantageous manner in displays having other known addressing means.
  • the invention furthermore relates to a process for the preparation of a liquid- crystalline medium according to the invention by mixing one or more com pounds of formula L, preferably selected from the group of compounds of formulae L-1 to L-4, most preferably selected from the group of compounds of formulae L-1 to L-3, with one or more low-molecular-weight liquid- crystalline compounds, or a liquid-crystal mixture and optionally with further liquid-crystalline compounds and/or additives.
  • formula L preferably selected from the group of compounds of formulae L-1 to L-4, most preferably selected from the group of compounds of formulae L-1 to L-3
  • FFS FFFS
  • mesogenic group is known to the person skilled in the art and is described in the literature, and denotes a group which, due to the anisotropy of its attracting and repelling interactions, essentially contributes to causing a liquid-crystalline (LC) phase in low-molecular-weight or polymeric substances.
  • Compounds containing mesogenic groups do not necessarily have to have a liquid-crystalline phase themselves. It is also possible for mesogenic compounds to exhibit liquid- crystalline phase behaviour only after mixing with other compounds and/or after polymerisation. Typical mesogenic groups are, for example, rigid rod- or disc-shaped units.
  • spacer group or “spacer” for short, also referred to as “Sp” above and below, is known to the person skilled in the art and is described in the literature, see, for example, Pure Appl. Chem. 73(5), 888 (2001) and C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368. Unless indicated otherwise, the term “spacer group” or “spacer” above and below denotes a flexible group which connects the mesogenic group and the polymerisable group(s) to one another in a polymerisable mesogenic compound.
  • liquid-crystalline medium is intended to denote a medium which comprises a liquid-crystal mixture and one or more polymerisable compounds (such as, for example, reactive mesogens).
  • liquid-crystal mixture (or “host mixture”) is intended to denote a liquid-crystalline mixture which consists exclusively of unpoly- merisable, low-molecular-weight compounds, preferably of two or more liquid-crystalline compounds and optionally further additives, such as, for example, chiral dopants or stabilisers.
  • liquid-crystal mixtures and liquid-crystalline media which have a nematic phase, in particular at room temperature.
  • the liquid-crystal medium comprises one or more, preferably dielectrically positive, compounds, preferably having a dielectric anisotropy of greater than 3, selected from the group of the compounds of the formulae 11-1 and II-2: in which the parameters have the respective meanings indicated above under formula II, and L 23 and L 24 , independently of one another, denote FI or F, preferably L 23 denotes F, and has one of the meanings given for and, in the case of formulae 11-1 and II-2, X 2 preferably denotes F or OCF3, particularly preferably F, and, in the case of formula II-2, and and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group and/or selected from the group of the compounds of the formulae III-1 and III-2: in which the parameters have the meanings given under formula III, and wherein the respective rings,
  • the liquid-crystal medium preferably comprises compounds selected from the group of the compounds of the formulae 11-1 and II-2 in which L 21 and L 22 and/or L 23 and L 24 both denote F.
  • the liquid-crystal medium comprises compounds selected from the group of the compounds of the formulae 11-1 and II-2 in which L 21 , L 22 , L 23 and L 24 all denote F.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula 11-1.
  • the compounds of the formula 11-1 are preferably selected from the group of the compounds of the formulae 11-1 a to 11-1 e, preferably one or more compounds of formulaelM a and/or 11-1 b and/or 11-1 d, preferably of formula 11-1 a and/or 11-1 d or 11-1 b and/or 11-1 d, most preferably of formula 11-1 d: in which the parameters have the respective meanings indicated above, and L 25 and L 26 , independently of one another and of the other parameters, denote H or F, and preferably in the formulae 11-1 a and 11-1 b,
  • L 21 and L 22 both denote F, in the formulae 11-1 c and 11-1 d,
  • L 21 and L 22 both denote F and/or L 23 and L 24 both denote F, and in formula 11-1 e,
  • L 21 , L 22 and L 23 denote F, and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula 11-2, which are preferably selected from the group of the compounds of the formulae ll-2a to ll-2k, preferably one or more compounds each of formulae ll-2a and/or ll-2h and/or ll-2j:
  • L 25 to L 28 independently of one another, denote H or F, preferably L 27 and L 28 both denote H, particularly preferably L 26 denotes H, and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises compounds selected from the group of the compounds of the formulae ll-2a to ll-2k in which L 21 and L 22 both denote F and/or L 23 and L 24 both denote F.
  • the liquid-crystal medium comprises compounds selected from the group of the compounds of the formulae ll-2a to ll-2k in which L 21 , L 22 , L 23 and L 24 all denote F.
  • Especially preferred compounds of the formula II-2 are the compounds of the following formulae, particularly preferred of formulae ll-2a-1 and/or ll-2h-1 and/or ll-2k-2: in which R 2 and X 2 have the meanings indicated above, and X 2 preferably denotes F, and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula III-1.
  • the compounds of the formula III-1 are preferably selected from the group of the compounds of the formulae Ill-l a to II 1-1 j, preferably from formulae MI-1 c, MI-1 f, MI-1 g and MI-1 j: in which the parameters have the meanings given above and preferably in which the parameters have the respective meanings indicated above, the parameters L 33 and L 34 , independently of one another and of the other parameters, denote H or F and the parameters L 35 and L 36 , independently of one another and of the other parameters, denote H or F, and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula MI-1 c, which are preferably selected from the group of the compounds of the formulae MI-1 c-1 to MI-1 c-5, preferably of formulae MI-1 c-1 and/or MI-1 c-2, most preferably of formula III-1 c-1 : in which R 3 has the meaning indicated above and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula MI-1 f, which are preferably selected from the group of the compounds of the formulae MI-1 f-1 to MI-1 f-6, preferably of formulae MI-1 f-1 and/or 111-1 f-2 and/or MI-1 f-3 and /or 111-1 f-6, more preferably of formula MI-1 f-3 and/or MI-1 f-6, more preferably of formula MI-1 f-6: in which R 3 has the meaning indicated above and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula MI-1 g, which are preferably selected from the group of the compounds of the formulae MI-1 g-1 to MI-1 g-5, preferably of formula MI-1 g-3: in which R 3 has the meaning indicated above and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula MI-1 h, which are preferably selected from the group of the compounds of the formulae MI-1 h-1 to MI-1 h-3, preferably of the formula MI-1 h-3: in which the parameters have the meanings given above, and X 3 preferably denotes F and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula III-1 i, which are preferably selected from the group of the compounds of the formulae III-1 i-1 and MI-1 i-2, preferably of the formula MI-1 i- 2: in which the parameters have the meanings given above, and X 3 preferably denotes F and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula lll-lj, which are preferably selected from the group of the compounds of the formulae MI-1 j-1 and MI-1 j-2, preferably of the formula 111-1 j- 1 : in which the parameters have the meanings given above and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula III-2.
  • the compounds of the formula III-2 are preferably selected from the group of the compounds of the formulae Ml-2a and Ml-2b, preferably of formula Ml-2b: in which the parameters have the respective meanings indicated above, and the parameters L 33 and L 34 , independently of one another and of the other parameters, denote H or F, and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula lll-2a, which are preferably selected from the group of the compounds of the formulae lll-2a-1 to lll-2a-6: in which R 3 has the meaning indicated above, and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the liquid-crystal medium preferably comprises one or more compounds of the formula lll-2b, which are preferably selected from the group of the compounds of the formulae lll-2b-1 to lll-2b-4, preferably lll-2b-4: in which R 3 has the meaning indicated above and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the media in accordance with the present invention may comprise one or more compounds of the formula MI-3 in which the parameters have the respective meanings indicated above under formula II. I and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • liquid-crystalline media in accordance with the present invention pref erably comprise one or more dielectrically neutral compounds having a dielectric anisotropy in the range from -1.5 to 3, preferably selected from the group of the compounds of the formulae VI, VII, VIII and IX.
  • the elements all include their respective isotopes.
  • one or more H in the compounds may be replaced by D, and this is also particularly preferred in some embodiments.
  • a correspondingly high degree of deuteration of the corresponding compounds enables, for example, detection and recognition of the compounds. This is very helpful in some cases, in particular in the case of the compounds of formula I.
  • the media according to the invention in each case comprise one or more compounds of formula VI selected from the group of the compounds of the formulae VI-1 and VI-2, preferably one or more compounds each of formulae VI-1 and one or more compounds of formula VI-2, in which the parameters have the respective meanings given above under formula VI, and preferably in formula VI-1
  • R 61 and R 62 independently of each other denote methoxy, ethoxy, propoxy, butoxy or pentoxy, preferably ethoxy, butoxy or pentoxy, more preferably ethoxy or butoxy, and most preferably butoxy. in formula VI-2
  • R 61 preferably denotes vinyl, 1-E-propenyl, but-4-en-1-yl, pent-1- en-1 -yl or pent-3-en-1 -yl and n-propyl or n-pentyl and R 62 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, preferably having 2 to 5 C atoms, or, preferably, an unsubstituted alkoxy radical having 1 to 6 C atoms, par ticularly preferably having 2 or 4 C atoms and, most preferably, ethoxy, and
  • the media according to the invention in each case comprise one or more compounds of formula VII selected from the group of the compounds of the formulae VII-1 to VII-3, preferably one or more compounds each of the formulae VII-1 and one or more compounds of formula VII-2, in which the parameters have the respective meanings given above under formula VII, and preferably
  • R 71 denotes vinyl, 1-E-propenyl, but-4-en-1-yl, pent-1-en-1-yl or pent-3-en-1-yl, n-propyl or n-pentyl and R 72 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, preferably having 2 to 5 C atoms, or, preferably, an unsubstituted alkoxy radical having 1 to 6 C atoms, par ticularly preferably having 2 or 4 C atoms and, most preferably, ethoxy, and wherein the respective rings, and preferably the phenylene rings, optionally may each be substituted by one or two alkyl groups, preferably by methyl and/or ethyl groups, preferably by one methyl group.
  • the media according to the invention in each case comprise one or more compounds of formula VI-1 selected from the group of the following compounds:
  • the media according to the invention in each case comprise one or more compounds of formula VI-2 selected from the group of the following compounds:
  • the media according to the invention in each case comprise one or more compounds of formula VII-1 selected from the group of the following compounds:
  • the media according to the invention in each case comprise one or more compounds of formula VII-2 selected from the group of the following compounds:
  • the media in accordance with the present invention preferably comprise one or more dielectrically negative compounds selected from the group of compounds of the formulae VI and VII preferably in a total concentration in the range from 5% or more to 90% or less, preferably from 10% or more to 80% or less, particularly preferably from 20% or more to 70% or less.
  • the media according to the invention in each case comprise one or more compounds of formula VIII selected from the group of the compounds of the formulae VIII-1 to VIII-3, preferably one or more compounds each of the formulae VIII-1 and/or one or more compounds of formula VIII-3, in which the parameters have the respective meanings given above under formula VIII, and preferably
  • R 81 denotes vinyl, 1-E-propenyl, but-4-en-1-yl, pent-1-en-1-yl or pent-3-en-1-yl, ethyl, n-propyl or n-pentyl, alkyl, preferably ethyl, n-propyl or n-pentyl and
  • R 82 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, preferably having 1 to 5 C atoms or an unsubstituted alkoxy radical having 1 to 6 C atoms.
  • R 82 denotes preferably alkoxy having 2 or 4 C atoms and, most preferably, ethoxy and in formula VIII-3 it denotes preferably alky, preferably methyl, ethyl or n-propyl, most preferably methyl.
  • the medium comprises one or more compounds of formula IV, preferably of formula IVa in which R 41 denotes an unsubstituted alkyl radical having 1 to 7 C atoms or an unsubstituted alkenyl radical having 2 to 7 C atoms, preferably an n-alkyl radical, particularly preferably having 2, 3, 4 or 5 C atoms, and R 42 denotes an unsubstituted alkyl radical having 1 to 7 C atoms, an unsubstituted alkenyl radical having 2 to 7 C atoms, or an unsubstituted alkoxy radical having 1 to 6 C atoms, both preferably having 2 to 5 C atoms, an unsubstituted alkenyl radical preferably having 2, 3 or 4 C atoms, more preferably a vinyl radical or 1-propenyl radical and in particular a vinyl radical.
  • R 41 denotes an unsubstituted alkyl radical having 1 to 7 C atoms or an unsubstituted alkenyl
  • the medium comprises one or more compounds of formula IV selected from the group of the compounds of the formulae IV-1 to IV-4, preferably of formula IV-1 , in which alkyl and alkyl’, independently of one another, denote alkyl having 1 to 7 C atoms, preferably having 2 to 5 C atoms, alkenyl and alkenyl’, independently of one another, denote alkenyl having 2 to 5 C atoms, preferably having 2 to 4 C atoms, particularly preferably 2 C atoms, alkenyl’ preferably denotes alkenyl having 2 to 5 C atoms, preferably having 2 to 4 C atoms, particularly preferably having 2 to 3 C atoms, and alkoxy denotes alkoxy having 1 to 5 C atoms, preferably having 2 to
  • the media according to the invention comprise one or more compounds of formula IV-1 and/or one or more compounds of formula IV-2.
  • the medium comprises one or more compounds of formula V.
  • the medium comprises one or more compounds of formula I are selected from the group of compounds of formulae 1-1 and I-2: in which
  • R 11 and R 12 independently of each other denote alkyl, alkoxy, fluorinated alkyl orfluorinated alkoxy, preferably having 1 to 7 C atoms wherein one CFh group may be replaced by a 1 ,2-cyclopropyl group, by a 1 ,3-cyclopentyl group or by a 1 ,3-cyclopentenylene group, alkenyl, alkenyloxy, alkoxyalkyl orfluorinated alkenyl having 2 to 7 C atoms and preferably alkyl, alkoxy, alkenyl or alkenyloxy, most preferably alkoxy or alkenyloxy,
  • R 1 denotes alkyl, alkoxy, fluorinated alkyl orfluorinated alkoxy, preferably having 1 to 7 C atoms, wherein one CFh group may be replaced by a 1 ,2-cyclopropyl group, by a 1 ,3-cyclopentyl group or by a 1 ,3-cyclopentenylene group, alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl having 2 to 7 C atoms and preferably alkyl or alkenyl, and
  • X 1 denotes F, Cl, CN, NCS, fluorinated alkyl, fluorinated alkenyl, fluorinated alkoxy orfluorinated alkenlyoxy, the latter four groups preferably having 1 to 4 C atoms, preferably F, Cl, CF3 or OCF3, more preferably F, CF3 or OCF3 and, most preferably, CF3 or OCF3.
  • the medium comprises one or more compounds of formula B, which preferably are selected from the group of compounds of formulae B-1 and B-2: in which
  • R 1 denotes alkyl, alkoxy, fluorinated alkyl orfluorinated alkoxy, preferably having 1 to 7 C atoms, alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl having 2 to 7 C atoms and preferably alkyl or alkenyl
  • X 1 denotes F, Cl, CN, NCS, fluorinated alkyl, fluorinated alkenyl, fluorinated alkoxy or fluorinated alkenlyoxy, the latter four groups preferably having 1 to 4 C atoms, preferably F, Cl, CF3 or OCF3, more preferably F, CF3, or OCF3 and, most preferably, OCF3 or CF3.
  • the media according to the invention preferably comprise the following compounds in the total concentrations indicated:
  • the media in accordance with the present invention in addition to the compounds of formula L or the preferred sub formulae thereof, and to the compounds of formulae II and/or III and/or VI and/or VII and/or VIII and/or IX and/or I and/or B, preferably comprise one or more dielectrically neutral compounds selected from the group of compounds of formulae IV and V preferably in a total concentration in the range from 5 % or more to 90 % or less, preferably from 10 % or more to 80 % or less, particularly preferably from 20 % or more to 70 % or less.
  • the medium according to the invention in a particularly preferred embodiment comprises one or more compounds of formula L in a total concentration in the range from 3 % or more to 50 % or less, preferably in the range from 5 % or more to 30 % or less, and one or more compounds of formula II in a total concentration in the range from 5 % or more to 50 % or less, preferably in the range from 10 % or more to 40 % or less, and/or one or more compounds of formula VII-1 in a total concentration in the range from 5 % or more to 30 % or less, and/or one or more compounds of formula VII-2 in a total concentration in the range from 3 % or more to 30 % or less and/or one or more compounds of formula I in a total concentration in the range from 3 % or more to 50 % or less, preferably in the range from 5 % or more to 30 % or less, and/or one or more compounds of formula B in a total concentration in the range from 3 % or more to 50 % or less, preferably in the range
  • the concentration of the compounds of formula L in the media according to the invention is in the range from 1 % or more to 20 % or less, more preferably from 1.5 % or more to 20 % or less, most preferably from 2 % or more to 10 % or less.
  • the concentration of the compounds of formula II in the media is in the range from 3 % or more to 60 % or less, more preferably from 5 % or more to 55 % or less, more preferably from 10 % or more to 50 % or less and, most preferably, from 15 % or more to 45 % or less.
  • the concentration of the compounds of formula VII in the media is in the range from 2 % or more to 50 % or less, more preferably from 5 % or more to 40 % or less, more preferably from 10 % or more to 35 % or less and, most preferably, from 15 % or more to 30 % or less.
  • the concentration of the compounds of formula VII-1 in the media is in the range from 1 % or more to 40 % or less, more preferably either from 2 % or more to 35 % or less, or, alternatively, from 15 % or more to 25 % or less.
  • the concentration of the compounds of formula VII-2 in the media is in the range from 1 % or more to 40 % or less, more preferably from 5 % or more to 35 % or less and, most preferably, from 10 % or more to 30 % or less.
  • concentration of the compounds of formula B in the media according to the invention is in the range from 1 % or more to 60 % or less, more preferably from 3 % or more to 40 % or less, most preferably from5 % or more to 35 % or less.
  • the concentration of the compounds of formula I in the media according to the invention is in the range from 1 % or more to 60 % or less, more preferably from 2 % or more to 40 % or less, most preferably from 3 % or more to 35 % or less
  • the present invention also relates to electro-optical displays or electro-optical components which contain liquid-crystalline media according to the invention. Preference is given to electro-optical displays which are based on the VA, ECB, IPS or FFS effect, preferably on the VA, IPS or FFS effect, and in particular those which are addressed by means of an active-matrix addressing device.
  • the present invention likewise relates to the use of a liquid- crystalline medium according to the invention in an electro-optical display or in an electro-optical component, and to a process for the preparation of the liquid-crystalline media according to the invention, characterised in that one or more compounds of formula B are mixed with one or more compounds of formula I, preferably with one or more compounds of the sub-formulae 1-1 and/or I-2, preferably of formula I-2 and/or one or more compounds of formula II, preferably with one or more compounds of the sub-formulae 11-1 and/or II-2 with one or more compounds of formula VII, preferably with one or more compounds of the sub-formulae VII-1 and/or VII-2, particularly preferably one or more compounds from two or more, preferably from three or more, different formulae thereof and very particularly preferably from all four of these formulae 11-1 , II-2, VII-1 and VII-2 and one or more further compounds, preferably selected from the group of the compounds of the formulae IV and V, more preferably with one or more compounds
  • alkoxy denotes alkoxy having 1 to 5 C atoms, preferably hav ing 2 to 4 C atoms.
  • the medium comprises one or more compounds of formula V selected from the group of the compounds of the formulae V-1 and V-2, preferably of formulae V-1 , in which the parameters have the meanings given above under formula V, and preferably
  • R 51 denotes alkyl having 1 to 7 C atoms or alkenyl having 2 to 7 C atoms
  • R 52 denotes alkyl having 1 to 7 C atoms, alkenyl having 2 to 7 C atoms or alkoxy having 1 to 6 C atoms, preferably alkyl or alkenyl, particularly preferably alkyl.
  • the medium comprises one or more compounds of formula V-1 selected from the group of the compounds of the formulae V-1 a and V-1 b, in which alkyl and alkyl’, independently of one another, denote alkyl having 1 to 7 C atoms, preferably having 2 to 5 C atoms, and alkenyl denotes alkenyl having 2 to 7 C atoms, preferably having 2 to
  • the present invention relates to a method for the reduction of the wavelength dispersion of the birefringence of a liquid-crystalline medium which comprises one or more compounds of formula II, optionally one or more compounds selected from the group of the compounds of the formulae VII-1 and VII-2 and/or one or more compounds of formula IV and/or one or more compounds of formula V, characterised in that one or more compounds of formula B are used in the medium.
  • the media according to the invention may optionally also comprise di electrically positive compounds, whose total concentration is preferably 20 % or less, more preferably 10 % or less, based on the entire medium.
  • liquid-crystal media according to the invention comprise in total, based on the mixture as a whole,
  • liquid-crystal media in accordance with the present invention may comprise one or more chiral compounds.
  • the media according to the present invention fulfil one or more of the following conditions.
  • the liquid-crystalline medium has a birefringence of 0.060 or more, par ticularly preferably 0.070 or more.
  • the liquid-crystalline medium has a birefringence of 0.200 or less, par ticularly preferably 0.180 or less.
  • the liquid-crystalline medium has a birefringence in the range from 0.090 or more to 0.160 or less.
  • the liquid-crystalline medium comprises one or more particularly pre ferred compounds of formula L, preferably selected from the (sub-) formulae L-1 to L-4, most preferably of (sub-)formula(e) L-1 to L-3. v.
  • the liquid-crystalline medium comprises one or more particularly pre ferred compounds of formula B, preferably selected from the (sub-) formulae B-1 and B-2, most preferably of (sub-)formula B-2.
  • the liquid-crystalline medium comprises one or more particularly pre ferred compounds of formula I, preferably selected from the (sub-) formulae 1-1 and I-2, most preferably of (sub-)formula I-2. vii.
  • the total concentration of the compounds of formula II in the mixture as a whole is 25 % or more, preferably 30 % or more, and is preferably in the range from 25 % or more to 49 % or less, particularly preferably in the range from 29 % or more to 47 % or less, and very particularly preferably in the range from 37 % or more to 44 % or less. viii.
  • the liquid-crystalline medium comprises one or more compounds of formula IV selected from the group of the compounds of the following formulae: CC-n-V and/or CC-n-Vm and/or CC-V-V and/or CC-V-Vn and/or CC-nV-Vn, particularly preferably CC-3-V, preferably in a concentration of up to 60 % or less, particularly preferably up to 50 % or less, and optionally additionally CC-3-V1, preferably in a concentration of up to 15 % or less, and/or CC-4-V, preferably in a concentration of up to 40 % or less, particularly preferably up to 30 % or less.
  • formula IV selected from the group of the compounds of the following formulae: CC-n-V and/or CC-n-Vm and/or CC-V-V and/or CC-V-Vn and/or CC-nV-Vn, particularly preferably CC-3-V, preferably in a concentration of up to 60 % or
  • the media comprise the compound of formula CC-n-V, preferably CC-3-V, preferably in a concentration of 1 % or more to 60 % or less, more preferably in a concentration of 3 % or more to 35 % or less.
  • the total concentration of the compounds of formula CC-3-V in the mixture as a whole preferably either is 15 % or less, preferably 10 % or less or 20 % or more, preferably 25 % or more.
  • xi The total concentration of the compounds of formula Y-nO-Om in the mixture as a whole is 2 % or more to 30 % or less, preferably 5 % or more to 15 % or less. xii.
  • the total concentration of the compounds of formula CY-n-Om in the mixture as a whole is 5 % or more to 60 % or less, preferably 15% or more to 45 % or less.
  • xiii The total concentration of the compounds of formula CCY-n-Om and/ or CCY-n-m, preferably of CCY-n-Om, in the mixture as a whole is 5 % or more to 40 % or less, preferably 1 % or more to 25 % or less.
  • the total concentration of the compounds of formula CLY-n-Om in the mixture as a whole is 5 % or more to 40 % or less, preferably 10 % or more to 30 % or less.
  • the liquid-crystalline medium comprises one or more compounds of formula IV, preferably of the formulae IV-1 and/or IV-2, preferably in a total concentration of 1 % or more, in particular 2 % or more, and very particularly preferably 3 % or more to 50 % or less, preferably 35 % or less.
  • the liquid-crystalline medium comprises one or more compounds of formula V, preferably of the formulae V-1 and/or V-2, preferably in a total concentration of 1 % or more, in particular 2 % or more, and very particularly preferably 15 % or more to 35 %or less, preferably to 30 % or less.
  • the total concentration of the compounds of formula CCP-V-n, preferably CCP-V-1 , in the mixture as a whole preferably is 5 % or more to 30 % or less, preferably 15 % or more to 25 % or less.
  • the total concentration of the compounds of formula CCP-V2-n, preferably CCP-V2-1 , in the mixture as a whole preferably is 1 % or more to 15 % or less, preferably 2 % or more to 10 % or less.
  • the invention furthermore relates to an electro-optical display having active- matrix addressing based on the VA, ECB, IPS, FFS or UB-FFS effect, characterised in that it contains, as dielectric, a liquid-crystalline medium in accordance with the present invention.
  • the liquid-crystal mixture preferably has a nematic phase range having a width of at least 70 degrees.
  • the rotational viscosity gi is preferably 350 mPa-s or less, preferably 250 mPa-s or less and, in particular, 150 mPa-s or less.
  • the mixtures according to the invention are suitable for all IPS and FFS-TFT applications using dielectrically positive liquid crystalline media, such as, e.g. XB-FFS.
  • the liquid-crystalline media according to the invention preferably virtually completely consist of 4 to 15, in particular 5 to 12, and particularly preferably 10 or less, compounds. These are preferably selected from the group of the compounds of the formulae L, B, I, II, III, IV, V, VI, VII, VIII and IX.
  • the liquid-crystalline media according to the invention may optionally also comprise more than 18 compounds. In this case, they preferably comprise 18 to 25 compounds.
  • the liquid-crystal media according to the invention predominantly comprise, preferably essentially consist of and, most preferably, virtually completely consist of compounds, which do not comprise a cyano group.
  • the liquid-crystal media according to the invention comprise compounds selected from the group of the compounds of the formulae L, B, I, II, and II, IV and V and VI to IX, preferably selected from the group of the compounds of the formulae L-1 to L-4, B-1 , B-2, 1-1 , I-2, 11-1 , II-2, III-1 , III-2, IV, V, VII-1 , VII-2, VIII and IX; they preferably consist predominantly, particularly preferably essentially and very particularly preferably virtually completely of the compounds of the said formulae.
  • the liquid-crystal media according to the invention preferably have a nematic phase from in each case at least -10°C or less to 70°C or more, particularly preferably from -20°C or less to 80°C or more, very particularly preferably from -30°C or less to 85°C or more and most preferably from -40°C or less to 90°C or more.
  • the expression "have a nematic phase” here means on the one hand that no smectic phase and no crystallisation are observed at low temperatures at the corresponding temperature and on the other hand that no clearing occurs on heating out of the nematic phase.
  • the investigation at low temperatures is carried out in a flow viscometer at the corresponding temperature and checked by storage in test cells having a cell thickness corresponding to the electro-optical application for at least 100 hours. If the storage stability at a temperature of -20°C in a corresponding test cell is 1 ,000 h or more, the medium is regarded as stable at this temperature. At temperatures of -30°C and -40°C, the corresponding times are 500 h and 250 h respectively. At high temperatures, the clearing point is measured in capillaries by conventional methods.
  • the liquid-crystal media according to the invention are characterised by optical anisotropy values in the moderate to low range.
  • the birefringence values are preferably in the range from 0.075 or more to 0.130 or less, particularly preferably in the range from 0.085 or more to 0.120 or less and very particularly preferably in the range from 0.090 or more to 0.115 or less.
  • the liquid-crystal media according to the invention have a positive dielectric anisotropy De, which preferably is in the range from 2.0 or more to 20 or less, more preferably to 15 or less, more preferably from 2.0 or more to 10 or less, particularly preferably from 2.0 or more to 9.0 or less and very particularly preferably from 2.5 or more to 8.0 or less.
  • a positive dielectric anisotropy De which preferably is in the range from 2.0 or more to 20 or less, more preferably to 15 or less, more preferably from 2.0 or more to 10 or less, particularly preferably from 2.0 or more to 9.0 or less and very particularly preferably from 2.5 or more to 8.0 or less.
  • the liquid-crystal media according to the invention preferably have relatively low values for the threshold voltage (Vo) in the range from 1.0 V or more to 5.0 V or less, preferably to 2.5 V or less, preferably from 1.2 V or more to 2.2 V or less, particularly preferably from 1.3 V or more to 2.0 V or less.
  • Vo threshold voltage
  • liquid-crystal media according to the invention have high values for the VHR in liquid-crystal cells.
  • liquid-crystal media having a low addressing voltage or threshold voltage here have a lower VHR than those having a higher addressing voltage or threshold voltage, and vice versa.
  • the liquid-crystalline media according to the invention comprise one or more compounds of formula L, and one or more compounds of formula B, preferably selected from the group of formulae CB-n-F, CB-n-OT, CB-n-T, LB-n-F, LB-n-OT and LB-n-T, more preferably selected from the group of formulae CB-n-OT, CB-n-T, LB-n-OT and LB-n-T, preferably selected from the group of formulae CB-n-OT, CB-n- T, and/or one or more compounds of formula II, preferably selected from the group of formulae PUQU-n-F, CDUQU-n-F, APUQU-n-F and PGUQU-n-F, and/or one or more compounds of formula III, preferably selected from the group of formulae CCP-n-OT, CGG-n-F, and CGG-n-OD, and/or one or more compounds of formulae IV and/or V,
  • the media according to the invention comprise one or more compounds of formula IX,
  • the media according to the invention comprise one or more compounds of formula IX selected from one or more formulae of the group of the compounds of the formulae IX-1 to IX-4, very particularly preferably of the formulae IX-1 to IX-3, in which the parameters have the meanings given under formula IX.
  • the medium comprises one or more compounds of formula IX-3, preferably of formula IX-3-a, in which alkyl and alkyl’, independently of one another, denote alkyl having 1 to 7 C atoms, preferably having 2 to 5 C atoms.
  • the compounds of formula IX are used in the liquid crystalline media according to the present invention, they are preferably present in a concentration of 20 % or less, more preferably of 10 % or less and, most preferably, of 5 % or less and for the individual i.e. (homologous) compounds preferably in a concentration of 10 % or less and, more preferably, of 5 % or less.
  • the following definitions apply in connection with the specification of the constituents of the compositions, unless indicated otherwise in individual cases:
  • the concentration of the constituents in question in the com position is preferably 5% or more, particularly preferably 10% or more, very particularly preferably 20% or more,
  • the concentration of the constituents in ques tion in the composition is preferably 50% or more, particularly preferably 55% or more and very particularly preferably 60% or more,
  • the concentration of the constituents in question in the composition is preferably 80% or more, particularly preferably 90% or more and very particularly preferably 95% or more, and
  • the concentration of the constituents in question in the composition is preferably 98% or more, particularly preferably 99% or more and very particularly preferably 100.0%.
  • the concentration of the compound or compounds in question is preferably 1% or more, particularly preferably 2% or more, very particularly preferably 4% or more.
  • means less than or equal to, preferably less than, and ">” means greater than or equal to, preferably greater than.
  • trans- 1 ,4-cyclohexylene denotes a mixture of both cis- and frans-1, 4-cyclohexylene and and denote 1 ,4-phenylene.
  • the expression “dielectrically positive compounds” means compounds having a De of > 1.5
  • the expression “dielectrically neutral compounds” means compounds having -1.5 ⁇ De ⁇ 1.5
  • the expression “dielectrically negative compounds” means compounds having De ⁇ -1.5.
  • the dielectric anisotropy of the compounds is determined here by dissolving 10% of the compounds in a liquid-crystalline host and determining the capacitance of the resultant mixture in each case in at least one test cell having a cell thickness of 20 pm with homeotropic and with homogeneous surface alignment at 1 kHz.
  • the measurement voltage is typically 0.5 V to 1.0 V, but is always lower than the capacitive threshold of the respective liquid-crystal mixture investigated.
  • the host mixture used for dielectrically positive and dielectrically neutral compounds is ZLI-4792 and that used for dielectrically negative compounds is ZLI-2857, both from Merck KGaA, Germany.
  • the values for the respective compounds to be investigated are obtained from the change in the dielectric constant of the host mixture after addition of the compound to be investigated and extrapolation to 100% of the compound employed.
  • the compound to be investigated is dissolved in the host mixture in an amount of 10%. If the solubility of the substance is too low for this purpose, the concentration is halved in steps until the investigation can be carried out at the desired temperature.
  • the liquid-crystal media according to the invention may, if necessary, also comprise further additives, such as, for example, stabilisers and/or pleo- chroitic, e.g. dichroitic, dyes and/or chiral dopants in the usual amounts.
  • the amount of these additives employed is preferably in total 0 % or more to 10 % or less, based on the amount of the entire mixture, particularly preferably 0.1 % or more to 6 % or less.
  • the concentration of the individual compounds employed is preferably 0.1 % or more to 3 % or less. The concentration of these and similar additives is generally not taken into account when specifying the concentrations and concentration ranges of the liquid-crystal compounds in the liquid-crystal media.
  • the liquid-crystal media according to the invention comprise a polymer precursor which comprises one or more reactive compounds, preferably reactive mesogens, and, if necessary, also further additives, such as, for example, polymerisation initiators and/or polymeri sation moderators, in the usual amounts.
  • the amount of these additives employed is in total 0 % or more to 10 % or less, based on the amount of the entire mixture, preferably 0.1 % or more to 2 % or less.
  • concentration of these and similar additives is not taken into account when specifying the concentrations and concentration ranges of the liquid-crystal compounds in the liquid-crystal media.
  • compositions consist of a plurality of compounds, preferably 3 or more to 30 or fewer, particularly preferably 6 or more to 20 or fewer and very particularly preferably 10 or more to 16 or fewer compounds, which are mixed in a conventional manner.
  • the desired amount of the compounds used in lesser amount is dissolved in the compounds making up the principal constituent of the mixture. This is advantageously carried out at elevated temperature. If the selected temperature is above the clearing point of the principal constituent, completion of the dissolution operation is particularly easy to observe.
  • the mixtures according to the invention exhibit very broad nematic phase ranges having clearing points of 65°C or more, very favourable values for the capacitive threshold, relatively high values for the holding ratio and at the same time very good low-temperature stabilities at -30°C and -40°C. Furthermore, the mixtures according to the invention are distinguished by low rotational viscosities y ⁇ .
  • the media according to the invention for use in VA, IPS, FFS or PALC displays may also comprise compounds in which, for example, H, N, 0, Cl, F have been replaced by the corresponding isotopes.
  • the structure of the liquid-crystal displays according to the invention corre sponds to the usual geometry, as described, for example, in EP-A 0240379.
  • liquid-crystal phases according to the invention can be modified by means of suitable additives in such a way that they can be employed in any type of, for example, IPS and FFS LCD display that has been disclosed to date.
  • Table E below indicates possible dopants which can be added to the mix tures according to the invention. If the mixtures comprise one or more dopants, it is (they are) employed in amounts of 0.01 % to 4 %, preferably 0.1 % to 1.0 %.
  • Stabilisers which can be added, for example, to the mixtures according to the invention, preferably in amounts of 0.01 % to 6 %, in particular 0.1 % to 3 %, are shown below in Table F.
  • All temperature values indicated in the present invention such as, for example, the melting point T(C,N), the smectic (S) to nematic (N) phase transition T(S,N) and the clearing point T(N,I), are indicated in degrees Celsius (°C) and all temperature differences are correspondingly indicated in differential degrees (° or degrees), unless explicitly indicated otherwise.
  • threshold voltage relates to the capaci tive threshold (Vo), also known as the Freedericksz threshold, unless explicitly indicated otherwise.
  • the electro-optical properties for example the threshold voltage (Vo) (capacitive measurement), are, as is the switching behaviour, determined in test cells produced at Merck Japan.
  • the measurement cells have soda-lime glass substrates and are constructed in an ECB or VA configuration with polyimide alignment layers (SE-1211 with diluent ** 26 (mixing ratio 1 :1 ), both from Nissan Chemicals, Japan), which have been rubbed perpendicularly to one another and effect homeotropic alignment of the liquid crystals.
  • the surface area of the transparent, virtually square ITO electrodes is 1 cm 2 .
  • a chiral dopant is not added to the liquid-crystal mixtures used, but the latter are also particularly suitable for applications in which doping of this type is necessary.
  • the rotational viscosity is determined using the rotating permanent magnet method and the flow viscosity in a modified Ubbelohde viscometer.
  • the rotational viscosity values determined at 20°C are 161 mPa-s, 133 mPa-s and 186 mPa-s respectively, and the flow viscosity values (v) are 21 mm 2 s 1 , 14 mm 2 s 1 and 27 mm 2 s 1 , respectively.
  • the dispersion of the materials may for practical purposes be conveniently characterized in the following way, which is used throughout this application unless explicitly stated otherwise.
  • the values of the birefringence are determined at a temperature of 20°C at several fixed wavelengths using a modified Abbe refractometer with homeotropically aligning surfaces on the sides of the prisms in contact with the material.
  • the birefringence values are determined at the specific wavelength values of 436 nm (respective selected spectral line of a low pressure mercury lamp), 589 nm (sodium “D” line) and 633 nm (wavelength of a HE-Ne laser (used in combination with an attenuator/diffusor in order to prevent damage to the eyes of the observers.
  • Table A shows the codes for the ring elements of the nuclei of the compound
  • Table B lists the bridging units
  • Table C lists the meanings of the symbols for the left- and right- hand end groups of the molecules.
  • the acronyms are composed of the codes for the ring elements with optional linking groups, followed by a first hyphen and the codes for the left-hand end group, and a second hyphen and the codes for the right-hand end group.
  • Table D shows illustrative structures of compounds together with their respective abbreviations.
  • the mixtures according to the invention preferably comprise one or more compounds of the compounds mentioned below.
  • n, m, k and I are, independently of one another, each an integer, preferably 1 to 9 preferably 1 to 7, k and I possibly may be also 0 and preferably are 0 to 4, more preferably 0 or 2 and most preferably 2, n preferably is 1 , 2, 3, 4 or 5, in the combination “-nO-” it preferably is 1 , 2, 3 or 4, preferably 2 or 4, m preferably is 1 , 2, 3, 4 or 5, in the combination “-Om” it preferably is 1 , 2, 3 or 4, more preferably 2 or 4.
  • the combination “-IVm” preferably is “2V1”.
  • the media according to the invention comprise one or more compounds selected from the group of the compounds from Table E.
  • Table F shows stabilisers which can preferably be employed in the mixtures according to the invention in addition to the compounds of formula L.
  • the parameter n here denotes an integer in the range from 1 to 12.
  • the phenol derivatives shown can be employed as additional stabilisers since they act as antioxidants.
  • the media according to the invention comprise one or more compounds selected from the group of the compounds from Table F, in particular one or more compounds selected from the group of the compounds of the following two formulae
  • aqueous sodium hydroxide 32 ml_ of a 2 M solution, 64 mmol
  • aqueous sodium hydroxide 32 ml_ of a 2 M solution, 64 mmol
  • the reaction mixture is stirred for 4 h at reflux temperature. It is cooled to room temperature and diluted with methyl-fef-butyl-ether and hydrochloric acid.
  • the phases are separated, and the aqueous phase is extracted with methyl-fe/f-butyl-ether twice.
  • the combined organic phases are dried (sodium sulfate) and concentrated in vacuo.
  • aqueous sodium hydroxide 23 ml_ of a 2 M solution, 45 mmol
  • aqueous sodium hydroxide 23 ml_ of a 2 M solution, 45 mmol
  • the reaction mixture is stirred for 3 h at reflux temperature. It is cooled to room temperature and diluted with toluene and hydrochloric acid.
  • the phases are separated, and the aqueous phase is extracted with toluene.
  • the combined organic phases are washed with brine, dried (sodium sulfate) and concentrated in vacuo.
  • the physical properties are given at a temperature of 20°C and gi is given in mPa-s.
  • k av. (kn + 1 ⁇ 2 kn + k 33 ) / 3
  • g-i/kn response time parameter
  • This mixture, mixture M-1 has a k av. of 13.8 pN and a response time parameter (g-i/kn) of 3.5 mPa-s / pN and is characterized by a very good contrast and fast switching in an FFS display. Examples 1.1 to 1.3
  • This mixture, mixture M-2 is characterized by a very good contrast and fast switching in an FFS display.
  • This mixture, mixture M-3, is characterized by a very good contrast and fast switching in an FFS display.
  • This mixture, mixture M-4, has a relatively low rotational and high elastic constants and thus is characterized by a very good contrast and fast switching in an FFS display.
  • This mixture, mixture M-7 has a low rotational viscosity and shows therefore a fast switching in an FFS cell.
  • This mixture, mixture M-8 has a low rotational viscosity and a high elastic constant k33.
  • This mixture, mixture M-9, has a relatively low rotational viscosity.
  • This mixture, mixture M-10, has high elastic constants.
  • This mixture, mixture M-11 has a low rotational viscosity and a high elastic constant k33.
  • This mixture, mixture M-12, has a relatively low rotational viscosity and high elastic constants.
  • This mixture, mixture M-13, has a low rotational viscosity and high elastic constants kn and k33.
  • This mixture, mixture M-14, has a low rotational viscosity and a high elastic constant k33.
  • This mixture, mixture M-15 has a low rotational viscosity and a high elastic constant k33.
  • This mixture, mixture M-16, has relatively high elastic constants.
  • This mixture, mixture M-17, has a very low rotational viscosity.
  • This mixture, mixture M-20, has a very low rotational viscosity.
  • This mixture, mixture M-29, has a relatively low rotational viscosity.
  • This mixture, mixture M-30, has a relatively low rotational viscosity.
  • This mixture, mixture M-31 has a relatively low rotational viscosity.
  • This mixture, mixture M-32, has a relatively low rotational viscosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

L'invention concerne un milieu cristallin liquide ayant une phase nématique comprenant un ou plusieurs composés de formule (L), formule (L), dans laquelle les paramètres ont la signification donnée dans la description, leur utilisation, dans un dispositif d'affichage électro-optique, en particulier dans un dispositif d'affichage à matrice active basé sur l'effet IPS ou FFS, des dispositifs d'affichage de ce type qui contiennent un milieu cristallin liquide de ce type et l'utilisation des composés de formule L pour améliorer les temps de transmission et/ou de réponse d'un milieu cristallin liquide qui comprend un ou plusieurs composés mésogènes supplémentaires, tel que décrit dans la description.
PCT/EP2021/071106 2020-07-31 2021-07-28 Milieu cristallin liquide, dispositif d'affichage à cristaux liquides comprenant celui-ci et composés WO2022023400A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180058661.8A CN116057152A (zh) 2020-07-31 2021-07-28 化合物、液晶介质和包含其的液晶显示器
EP21754761.1A EP4189035A1 (fr) 2020-07-31 2021-07-28 Milieu cristallin liquide, dispositif d'affichage à cristaux liquides comprenant celui-ci et composés

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20188978.9 2020-07-31
EP20188978 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022023400A1 true WO2022023400A1 (fr) 2022-02-03

Family

ID=71899630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/071106 WO2022023400A1 (fr) 2020-07-31 2021-07-28 Milieu cristallin liquide, dispositif d'affichage à cristaux liquides comprenant celui-ci et composés

Country Status (4)

Country Link
EP (1) EP4189035A1 (fr)
CN (1) CN116057152A (fr)
TW (1) TW202212544A (fr)
WO (1) WO2022023400A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083091A (zh) * 2022-12-26 2023-05-09 北京八亿时空液晶科技股份有限公司 一种高对比度负性液晶组合物及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240379A1 (fr) 1986-02-28 1987-10-07 Commissariat A L'energie Atomique Cellule à double couche de cristal liquide, utilisant l'effet de biréfringence controlée électriquement
US20130207038A1 (en) 2012-02-15 2013-08-15 Merck Patent Gmbh Liquid-crystalline medium
WO2014192390A1 (fr) 2013-05-28 2014-12-04 Jnc株式会社 Composition de cristaux liquides et élément d'écran à cristaux liquides
CN104232105A (zh) 2014-08-18 2014-12-24 京东方科技集团股份有限公司 一种液晶混合物、液晶显示面板、液晶显示装置
WO2015007131A1 (fr) 2013-07-16 2015-01-22 Hu Jinqing Transmission automatique pour automobile
WO2016152405A1 (fr) * 2015-03-26 2016-09-29 Dic株式会社 Composé à cristaux liquides, composition de cristaux liquides et élément d'affichage
CN107674687A (zh) * 2016-08-02 2018-02-09 石家庄诚志永华显示材料有限公司 液晶组合物及液晶显示元件或液晶显示器
DE102017007672A1 (de) * 2017-08-14 2019-02-14 Merck Patent Gmbh Flüssigkristalline Verbindungen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240379A1 (fr) 1986-02-28 1987-10-07 Commissariat A L'energie Atomique Cellule à double couche de cristal liquide, utilisant l'effet de biréfringence controlée électriquement
US20130207038A1 (en) 2012-02-15 2013-08-15 Merck Patent Gmbh Liquid-crystalline medium
WO2014192390A1 (fr) 2013-05-28 2014-12-04 Jnc株式会社 Composition de cristaux liquides et élément d'écran à cristaux liquides
WO2015007131A1 (fr) 2013-07-16 2015-01-22 Hu Jinqing Transmission automatique pour automobile
CN104232105A (zh) 2014-08-18 2014-12-24 京东方科技集团股份有限公司 一种液晶混合物、液晶显示面板、液晶显示装置
WO2016152405A1 (fr) * 2015-03-26 2016-09-29 Dic株式会社 Composé à cristaux liquides, composition de cristaux liquides et élément d'affichage
CN107674687A (zh) * 2016-08-02 2018-02-09 石家庄诚志永华显示材料有限公司 液晶组合物及液晶显示元件或液晶显示器
DE102017007672A1 (de) * 2017-08-14 2019-02-14 Merck Patent Gmbh Flüssigkristalline Verbindungen
WO2019034588A1 (fr) 2017-08-14 2019-02-21 Merck Patent Gmbh Composés cristallins liquides

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"status", November 1997, MERCK KGAA, article "Merck Liquid Crystals, Physical Properties of Liquid Crystals"
C. TSCHIERSKEG. PELZLS. DIELE, ANGEW. CHEM., vol. 116, 2004, pages 6340 - 6368
CAS, no. 1130350-67-2
MILLER, IAN: "Seminar M-7: ''LCD-Television", SID SEMINAR 2004, 2004, pages M-7,1 - M7,32
PURE APPL. CHEM., vol. 73, no. 5, 2001, pages 888
SHIGETA, MITZUHIROFUKUOKA, HIROFUMI: "SID 2004 International Symposium, Digest of Technical Papers", vol. XXXV, 2004, article "Paper 15.4: "Super PVA Sets New State-of-the-Art for LCD-TV" ", pages: 758,759 - 109
SOUK, JUN: "Seminar M-6: ''Recent Advances in LCD Technology", SID SEMINAR 2004, 2004, pages M-6,1 - M-6,26
STROMER, M.: "Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays", PROC. EURODISPLAY, vol. 84, September 1984 (1984-09-01), pages 145 ff
TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H.: "A 210-288 Matrix LCD Controlled by Double Stage Diode Rings", PROC. EURODISPLAY, vol. 84, September 1984 (1984-09-01), pages 141 ff

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083091A (zh) * 2022-12-26 2023-05-09 北京八亿时空液晶科技股份有限公司 一种高对比度负性液晶组合物及其应用

Also Published As

Publication number Publication date
CN116057152A (zh) 2023-05-02
EP4189035A1 (fr) 2023-06-07
TW202212544A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
KR102512438B1 (ko) 액정 매질 및 이를 포함하는 액정 디스플레이
EP3095834B9 (fr) Milieu à base de cristaux liquides et affichage à base de cristaux liquides comprenant celui-ci
EP3081620B1 (fr) Milieu à cristaux liquides et affichage à cristaux liquides comprenant celui-ci
EP3697868A1 (fr) Milieu cristallin liquide et écran à cristaux liquides comportant ledit milieu
US11447701B2 (en) Liquid-crystalline medium and liquid-crystal display comprising the same and compounds
CN113004908A (zh) 液晶介质和包含其的液晶显示器
EP3898891A1 (fr) Milieu cristallin liquide et afficheur à cristaux liquides comprenant celui-ci et composés
WO2018073151A1 (fr) Milieu cristallin liquide, composé à cristaux liquides et affichage à cristaux liquides les comprenant
EP3994234B1 (fr) Milieu cristallin liquide, affichage à cristaux liquides comprenant celui-ci et composés
WO2022023400A1 (fr) Milieu cristallin liquide, dispositif d'affichage à cristaux liquides comprenant celui-ci et composés
EP3877484A1 (fr) Milieu cristallin liquide et écran à cristaux liquides comprenant celui-ci
EP4015598B1 (fr) Milieu cristallin liquide et afficheur à cristaux liquides le comprenant et composés
WO2023180505A1 (fr) Milieu cristallin liquide
EP4074808A1 (fr) Support à cristaux liquides
WO2022136223A1 (fr) Milieu à cristaux liquides et dispositif d'affichage à cristaux liquides comprenant celui-ci et composés
WO2024017812A1 (fr) Milieu cristallin liquide
EP4261269A1 (fr) Milieu à base de cristaux liquides
WO2018153803A1 (fr) Milieu cristallin liquide et écran à cristaux liquides comportant ledit milieu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021754761

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021754761

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE