WO2022023263A1 - Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking - Google Patents

Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking Download PDF

Info

Publication number
WO2022023263A1
WO2022023263A1 PCT/EP2021/070850 EP2021070850W WO2022023263A1 WO 2022023263 A1 WO2022023263 A1 WO 2022023263A1 EP 2021070850 W EP2021070850 W EP 2021070850W WO 2022023263 A1 WO2022023263 A1 WO 2022023263A1
Authority
WO
WIPO (PCT)
Prior art keywords
effluent
stage
hydrocracking
compounds
hydrogen
Prior art date
Application number
PCT/EP2021/070850
Other languages
French (fr)
Inventor
Wilfried Weiss
Jérôme Bonnardot
Iñigo RIBAS SANGÜESA
Original Assignee
IFP Energies Nouvelles
Repsol S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Repsol S.A. filed Critical IFP Energies Nouvelles
Priority to AU2021318798A priority Critical patent/AU2021318798A1/en
Priority to CN202180059087.8A priority patent/CN116194555A/en
Priority to CA3185358A priority patent/CA3185358A1/en
Priority to BR112023001482A priority patent/BR112023001482A2/en
Priority to JP2023506170A priority patent/JP2023535638A/en
Priority to EP21751787.9A priority patent/EP4189038A1/en
Priority to US18/018,494 priority patent/US20230287283A1/en
Priority to KR1020237005785A priority patent/KR20230044444A/en
Publication of WO2022023263A1 publication Critical patent/WO2022023263A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to a process for treating an oil from the pyrolysis of plastics in order to obtain a hydrocarbon effluent which can be recovered, for example by being at least partly directly integrated into a naphtha or diesel pool or as a feedstock for a unit of steam cracking. More particularly, the present invention relates to a process for treating a charge resulting from the pyrolysis of plastic waste, in order to eliminate at least in part impurities, in particular olefins (mono-, di-olefins), metals, in in particular silicon, and the halogens, in particular chlorine, that said filler may contain in relatively large quantities, and so as to hydrogenate the filler in order to be able to upgrade it.
  • impurities in particular olefins (mono-, di-olefins)
  • metals in in particular silicon
  • halogens in particular chlorine
  • the process according to the invention therefore makes it possible to treat the pyrolysis oils of plastics to obtain an effluent which can be injected, in whole or in part, into a steam cracking unit.
  • the process according to the invention thus makes it possible to recover the oils from the pyrolysis of plastics, while reducing the formation of coke and thus the risks of clogging and/or premature loss of activity of the catalyst(s) used in the unit of steam cracking, and reducing the risk of corrosion.
  • Plastics from the collection and sorting channels can undergo a pyrolysis step in order to obtain, among other things, pyrolysis oils. These plastic pyrolysis oils are usually burned to generate electricity and/or used as fuel in industrial or district heating boilers.
  • plastic waste is generally mixtures of several polymers, for example mixtures of polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polystyrene.
  • plastics may contain, in addition to polymers, other compounds, such as plasticizers, pigments, dyes or polymerization catalyst residues.
  • Plastic waste may also contain, in a minor way, biomass from household waste, for example.
  • the oils resulting from the pyrolysis of plastic waste contain many impurities, in particular diolefins, metals, in particular silicon, or even halogenated compounds, in particular chlorine-based compounds, heteroelements such as sulfur , oxygen and nitrogen, insolubles, at levels that are often high and incompatible with steam cracking units or units located downstream of steam cracking units, in particular polymerization processes and selective hydrogenation processes.
  • impurities can generate problems of operability and in particular problems of corrosion, coking or catalytic deactivation, or even problems of incompatibility in the uses of the target polymers.
  • the presence of diolefins can also lead to problems of instability of the pyrolysis oil, characterized by the formation of gums.
  • the gums and insolubles that may be present in the pyrolysis oil can cause clogging problems in the processes.
  • the yields of light olefins sought after for petrochemicals, in particular ethylene and propylene, are highly dependent on the quality of the feeds sent for steam cracking.
  • the BMCI Boau of Mines Correlation Index according to Anglo-Saxon terminology
  • the yields of light olefins increase when the paraffin content increases and/or when the BMCI decreases. Conversely, the yields of unwanted heavy compounds and/or coke increase when the BMCI increases.
  • Document WO 2018/055555 proposes an overall, very general and relatively complex plastic waste recycling process, ranging from the very stage of pyrolysis of plastic waste to the steam cracking stage.
  • the process of application WO 2018/055555 comprises, among other things, a step of hydrotreating the liquid phase resulting directly from pyrolysis, preferably under fairly stringent conditions, in particular in terms of temperature, for example at a temperature of between 260 and 300°C, a stage of separation of the hydrotreatment effluent then a stage of hydrodealkylation of the heavy effluent separated at a temperature which is preferably high, for example between 260 and 400°C.
  • Unpublished patent application FR20/01.758 describes a process for treating a plastic pyrolysis oil, comprising: a) the selective hydrogenation of said charge in the presence of hydrogen and a selective hydrogenation catalyst to obtain a hydrogenated effluent; b) hydrotreating said hydrogenated effluent in the presence of hydrogen and a hydrotreating catalyst, to obtain a hydrotreating effluent; c) separation of the hydrotreatment effluent in the presence of an aqueous stream, at a temperature between 50 and 370° C., to obtain a gaseous effluent, an aqueous liquid effluent and a liquid hydrocarbon effluent; d) optionally a step of fractionating all or part of the hydrocarbon effluent from step c), to obtain a gas stream and at least two hydrocarbon streams which may be a naphtha cut and a heavier cut; e) a recycling step comprising a recovery phase of a fraction of the hydrocarbon effluent from step c
  • the naphtha cut resulting from the fractionation stage can be sent, in whole or in part, either to a steam cracking unit, or to a naphtha pool resulting from conventional petroleum feedstocks, or be recycled according to the step e).
  • the heavier cut from the fractionation step can be sent, in whole or in part, either to a steam cracking unit, or to a diesel or kerosene pool from conventional petroleum feedstocks, or be recycled according to step e).
  • the heavier cut can be sent to a steam cracker, few refiners favor this option. Indeed, the heavier cut has a high BMCI and contains more naphthenic, naphtheno-aromatic and aromatic compounds compared to the naphtha cut, leading to a higher C/H ratio. This high ratio is a cause of coking in the steam cracker, thus requiring steam cracking furnaces dedicated to this cut.
  • the heavy cut which has not been transformed in the first hydrocracking stage is sent, after separation, to a second hydrocracking stage preferably operating at a moderate conversion in order to maximize the selectivity for compounds of the naphtha cut (having a boiling point less than or equal to 175°C, in particular between 80 and 175°C).
  • the C2 to C4 compounds produced during hydrocracking can also be sent to steam cracking, which makes it possible to improve the yields of light olefins (ethylene and propylene). Overall, the olefin yield is at least maintained, or even improved, while eliminating the need for a dedicated heavy-cut steam cracking furnace.
  • the invention relates to a process for treating a charge comprising an oil from the pyrolysis of plastics, comprising: a) a selective hydrogenation step implemented in a reaction section fed at least by said charge and a gas stream comprising hydrogen, in the presence of at least one selective hydrogenation catalyst, at a temperature between 100 and 280° C., a partial pressure of hydrogen between 1.0 and 10.0 MPa abs.
  • a hydrotreating step implemented in a hydrotreating reaction section, implementing at least one fixed bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one catalyst hydrotreatment, said hydrotreatment reaction section being fed at least with said hydrogenated effluent from step a) and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at a temperature between 250 and 430°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs.
  • a first hydrocracking stage implemented in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being fed at least with said hydrotreated effluent from step b) and a gas stream comprising hydrogen, said hydrocracking reaction section being implemented at a temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 25.0 MPa abs.
  • a separation stage supplied with the hydrocracked effluent from stage c) and an aqueous solution, said stage being carried out at a temperature between 50 and 370° C., to obtain at least one gaseous effluent, an aqueous effluent and a hydrocarbon effluent; e) a step of fractionating all or part of the hydrocarbon effluent from step d), to obtain at least one gas stream and at least two liquid hydrocarbon streams, said two liquid hydrocarbon streams being at least one naphtha cut comprising compounds having a boiling point less than or equal to 175°C and a hydrocarbon cut comprising compounds having a boiling point greater than 175°C; f) a second hydrocracking step implemented in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1,
  • An advantage of the process according to the invention is to purify an oil resulting from the pyrolysis of plastic waste of at least a part of its impurities which makes it possible to hydrogenate it and thus to be able to valorize it in particular by incorporating it directly into a fuel pool or by making it compatible with treatment in a steam cracking unit in order to to be able to obtain in particular light olefins with increased yields which can be used as monomers in the manufacture of polymers.
  • Another advantage of the invention is to prevent risks of clogging and/or corrosion of the processing unit in which the method of the invention is implemented, the risks being exacerbated by the presence, often in large quantities , diolefins, metals and halogenated compounds in plastics pyrolysis oil.
  • the process of the invention thus makes it possible to obtain a hydrocarbon effluent resulting from a plastic pyrolysis oil freed at least in part of the impurities of the starting plastic pyrolysis oil, thus limiting the problems of operability, such as the problems of corrosion, coking or catalytic deactivation, which these impurities can cause, in particular in the steam cracking units and/or in the units located downstream of the steam cracking units, in particular the polymerization and selective hydrogenation units.
  • the elimination of at least part of the impurities of the oils resulting from the pyrolysis of plastic waste will also make it possible to increase the range of applications of the target polymers, the incompatibilities of uses being reduced.
  • the present invention participates in the recycling of plastics, by proposing a process for treating an oil resulting from the pyrolysis of plastics in order to purify it, hydrotreat it and hydrocrack it in order to obtain a hydrocarbon effluent with a reduced content of impurities and therefore recoverable, either directly in the form of naphtha cut and/or diesel cut, or having a composition compatible with a load from a steam cracking unit.
  • hydrocracking makes it possible to transform at least part of the heavy cut (diesel) into compounds of the naphtha cut, which makes it possible to obtain improved yields in the naphtha cut and, when this cut is sent to steam cracking, in light olefins , while in particular reducing the risks of clogging during plastic pyrolysis oil treatment steps, such as those described in the prior art, and the formation of coke in large quantities and/or the risks of corrosion encountered during subsequent step(s), for example during the steam cracking step of the plastic pyrolysis oils.
  • the process further comprises a step h) of recycling in which a fraction of the hydrocarbon effluent from step d) of separation or a fraction of the naphtha cut having a boiling point less than or equal to 175°C from step e) of fractionation is sent to stage a) of selective hydrogenation and/or stage b) of hydrotreatment.
  • the quantity of the recycle stream of step h) is adjusted so that the weight ratio between the recycle stream and the charge comprising a plastics pyrolysis oil is less than or equal to 10.
  • the method comprises a step aO) of pretreatment of the feed comprising an oil from the pyrolysis of plastics, said pretreatment step being implemented upstream of step a) of selective hydrogenation and comprises a step of filtration and/or a step of washing with water and/or an adsorption step.
  • the reaction section of step a) or b) implements at least two reactors operating in switchable mode.
  • a stream containing an amine is injected upstream of step a).
  • said selective hydrogenation catalyst comprises a support chosen from alumina, silica, silica-aluminas, magnesia, clays and their mixtures and a hydro-dehydrogenating function comprising either at least one element from group VIII and at least one element from group VIB, or at least one element from group VIII.
  • said at least one hydrotreatment catalyst comprises a support chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof, and a hydro-dehydrogenating function comprising at at least one element from group VIII and/or at least one element from group VIB.
  • said hydrocracking catalyst comprises a support chosen from halogenated aluminas, combinations of boron and aluminum oxides, amorphous silica-aluminas and zeolites and a hydro-dehydrogenating function comprising at least one metal of group VIB chosen from chromium, molybdenum and tungsten, alone or as a mixture, and/or at least one group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum .
  • said zeolite is chosen from Y zeolites, alone or in combination, with other zeolites from beta zeolites, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-11, ZSM- 48, ZBM-30, singly or in combination.
  • the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e), all or in part, is sent to a stage i) of steam cracking carried out in at least one furnace pyrolysis at a temperature between 700 and 900° C. and at a pressure between 0.05 and 0.3 relative MPa.
  • Ja naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e) is fractionated into a heavy naphtha cut comprising compounds having a boiling point between 80 and 175 °C and a light naphtha cut comprising compounds having a boiling point below 80°C, at least part of said heavy cut being sent to an aromatic complex comprising at least one naphtha reforming step.
  • At least part of the light naphtha cut is sent to stage i) of steam cracking.
  • the invention also relates to the product capable of being obtained by the treatment process according to the invention.
  • the pressures are absolute pressures, also denoted abs., and are given in absolute MPa (or MPa abs.), unless otherwise indicated.
  • the expressions "between .... and " and “between .... and " are equivalent and mean that the limit values of the interval are included in the range of values described . If this was not the case and the limit values were not included in the range described, such precision will be provided by the present invention.
  • the various parameter ranges for a given step such as the pressure ranges and the temperature ranges can be used alone or in combination.
  • a range of preferred pressure values can be combined with a range of more preferred temperature values.
  • the metal content is measured by X-ray fluorescence.
  • a “plastic pyrolysis oil” is an oil, advantageously in liquid form at ambient temperature, resulting from the pyrolysis of plastics, preferably plastic waste originating in particular from collection and sorting channels. It comprises in particular a mixture of hydrocarbon compounds, in particular paraffins, mono- and/or di-olefins, naphthenes and aromatics, these hydrocarbon compounds preferably having a boiling point below 700° C. and preferably below 550°C. Plastics pyrolysis oil can and most often does include impurities such as metals, including silicon and iron, halogenated compounds, including chlorine compounds.
  • impurities may be present in the plastic pyrolysis oils at high levels, for example up to 350 ppm by weight or even 700 ppm by weight or even 1000 ppm by weight of halogen elements provided by halogenated compounds, up to 100 ppm weight, even 200 ppm weight of metallic or semi-metallic elements.
  • Alkali metals, alkaline earth metals, transition metals, poor metals and metalloids can be assimilated to contaminants of a metallic nature, called metals or metallic or semi-metallic elements.
  • the metals or metallic or semi-metallic elements possibly contained in the oils resulting from the pyrolysis of plastic waste, comprise silicon, iron or these two elements.
  • the plastic pyrolysis oil may also include other impurities such as heteroelements provided in particular by sulfur compounds, oxygenated compounds and/or nitrogen compounds, at levels generally below 10,000 ppm by weight of heteroelements and preferably below at 4000 ppm weight of heteroelements.
  • impurities such as heteroelements provided in particular by sulfur compounds, oxygenated compounds and/or nitrogen compounds, at levels generally below 10,000 ppm by weight of heteroelements and preferably below at 4000 ppm weight of heteroelements.
  • the charge of the process according to the invention comprises at least one plastic pyrolysis oil.
  • Said charge may consist solely of pyrolysis oil(s) of plastics.
  • said filler comprises at least 50% by weight, preferably between 75 and 100% by weight, of plastic pyrolysis oil, that is to say preferably between 50 and 100% by weight, preferably between 70% and 100% weight of plastic pyrolysis oil.
  • the feedstock of the process according to the invention may comprise, among other things, one or more plastic pyrolysis oil(s), a conventional petroleum feedstock or a feedstock resulting from the conversion of biomass which is then co-treated with the oil of pyrolysis of plastics from the charge.
  • Plastic pyrolysis oil can come from a thermal or catalytic pyrolysis treatment or even be prepared by hydropyrolysis (pyrolysis in the presence of a catalyst and hydrogen).
  • Said feedstock comprising a plastics pyrolysis oil can advantageously be pretreated in an optional pretreatment step aO), prior to step a) of selective hydrogenation, to obtain a pretreated feedstock which feeds step a).
  • This optional pretreatment step aO) makes it possible to reduce the quantity of contaminants, in particular the quantity of silicon, possibly present in the charge comprising a plastic pyrolysis oil.
  • an optional step aO) of pretreating the charge comprising a plastic pyrolysis oil is advantageously carried out in particular when said charge comprises more than 50 ppm by weight, in particular more than 20 ppm by weight, more particularly more than 10 ppm by weight, or even more than 5 ppm by weight of metallic elements, and in particular when said filler comprises more than 20 ppm by weight of silicon, more particularly more than 10 ppm by weight, even more than 5 ppm by weight and even more particularly more than 1.0 ppm by weight of silicon.
  • Said optional pretreatment step aO can be implemented by any method known to those skilled in the art which makes it possible to reduce the quantity of contaminants. It may in particular comprise a filtration step and/or a step of washing with water and/or an adsorption step.
  • said optional pretreatment step aO) is implemented in an adsorption section operated in the presence of at least one adsorbent.
  • Said optional pretreatment step aO) is implemented at a temperature between 0 and 150°C, preferably between 5 and 100°C, and at a pressure between 0.15 and 10.0 MPa abs, preferably between 0.2 and 1.0 MPa abs.
  • the adsorption section is advantageously carried out in the presence of at least one adsorbent, preferably of the alumina type, having a specific surface area greater than or equal to 100 m 2 /g, preferably greater than or equal to 200 m 2 /g.
  • the specific surface of said at least one adsorbent is advantageously less than or equal to 600 m 2 /g, in particular less than or equal to 400 m 2 /g.
  • the specific surface of the adsorbent is a surface measured by the BET method, i.e. the specific surface determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT method. -TELLER described in the periodical 'The Journal of the American Chemical Society', 6Q, 309 (1938).
  • said adsorbent comprises less than 1% by weight of metallic elements, preferably is free of metallic elements.
  • metallic elements of the adsorbent we mean the elements of groups 6 to 10 of the periodic table of elements (new IUPAC classification).
  • Said adsorption section of optional step aO) comprises at least one adsorption column, preferably comprises at least two adsorption columns, preferably between two and four adsorption columns, containing said adsorbent.
  • an operating mode can be a so-called "swing" operation, according to the accepted Anglo-Saxon term, in which one of the columns is in line, i.e. ie in operation, while the other column is in reserve.
  • the absorbent of the online column is used, this column is isolated while the column in reserve is put online, that is to say in operation.
  • the spent absorbent can then be regenerated in situ and/or replaced with fresh absorbent so that the column containing it can be brought back online once the other column has been isolated.
  • Another mode of operation is to have at least two columns operating in series. When the absorbent of the column placed at the head is used up, this first column is isolated and the used absorbent is either regenerated in situ or replaced by fresh absorbent. The column is then brought back in line in the last position and so on.
  • This operation is called permutable mode, or according to the English term "PRS" for Permutable Reactor System or even “lead and lag” according to the Anglo-Saxon term.
  • the association of at least two adsorption columns makes it possible to overcome poisoning and/or possible and possibly rapid clogging of the adsorbent under the joint action of metallic contaminants, diolefins, gums from diolefins and insoluble possibly present in the pyrolysis oil of plastics to be treated.
  • the presence of at least two adsorption columns in fact facilitates the replacement and/or regeneration of the adsorbent, advantageously without stopping the pretreatment unit, or even the process, thus making it possible to reduce the risks of clogging and therefore avoid unit shutdown due to clogging, control costs and limit adsorbent consumption.
  • Said optional pretreatment step aO) can also optionally be supplied with at least a fraction of a recycle stream, advantageously from step h) of the process, mixed or separately from the feed comprising a plastic pyrolysis oil.
  • Said optional pretreatment step aO) thus makes it possible to obtain a pretreated feed which then feeds step a) of selective hydrogenation.
  • the method comprises a step a) of selective hydrogenation of the charge comprising an oil from the pyrolysis of plastics carried out in the presence of hydrogen, under conditions of hydrogen pressure and temperature making it possible to maintain said charge in phase liquid and with a quantity of soluble hydrogen just necessary for selective hydrogenation of the diolefins present in the plastic pyrolysis oil.
  • the selective hydrogenation of diolefins in the liquid phase thus makes it possible to avoid or at least limit the formation of "gums", that is to say the polymerization of diolefins and therefore the formation of oligomers and polymers, which can clog the reaction section of step b) hydrotreatment.
  • Said stage a) of selective hydrogenation makes it possible to obtain a hydrogenated effluent, that is to say an effluent with a reduced content of olefins, in particular of diolefins, preferably free of diolefins.
  • said stage a) of selective hydrogenation is implemented in a reaction section fed at least by said charge comprising an oil from the pyrolysis of plastics, or by the pretreated charge resulting from the optional stage aO) of pretreatment , and a gas stream comprising hydrogen (H 2 ).
  • the reaction section of said step a) can also be additionally supplied with at least a fraction of a recycle stream, advantageously from step d) or from optional step h), either mixed with said charge, optionally pretreated, or separately from the charge, optionally pretreated, advantageously directly at the inlet of at least one of the reactors of the reaction section of step a).
  • the introduction of at least a fraction of said recycle stream into the reaction section of stage a) of selective hydrogenation advantageously makes it possible to dilute the impurities of the charge, optionally pretreated, and to control the temperature in particular in said reaction section .
  • Said reaction section implements selective hydrogenation, preferably in a fixed bed, in the presence of at least one selective hydrogenation catalyst, advantageously at a temperature between 100 and 280° C., preferably between 120 and 260° C., of preferably between 130 and 250°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs, preferably between 1.5 and 8.0 MPa abs and at an hourly volume rate (WH) between 0 .3 and 10.0 h 1 , preferably between 0.5 and 5.0 h 1 .
  • the hourly volumetric speed (WH) is defined here as the ratio between the hourly volumetric flow rate of the charge comprising the plastics pyrolysis oil, optionally pretreated, by the volume of catalyst(s).
  • the quantity of the gas stream comprising hydrogen (H2), supplying said reaction section of step a), is advantageously such that the hydrogen coverage is between 1 and 200 Nm 3 of hydrogen per m 3 of charge ( Nm 3 /m 3 ), preferably between 1 and 50 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ), preferably between 5 and 20 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ).
  • the hydrogen coverage is defined as the ratio of the volume flow rate of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of "fresh" load, that is to say the load to be treated, possibly pretreated , without taking into account any recycled fraction, at 15° C.
  • the gas stream comprising hydrogen, which feeds the reaction section of stage a), may consist of a make-up of hydrogen and/or recycled hydrogen originating in particular from stage d) of separation.
  • the reaction section of said step a) comprises between 1 and 5 reactors.
  • the reaction section comprises between 2 and 5 reactors, which operate in permutable mode, called according to the English term “PRS” for Permutable Reactor System or even “lead and lag”.
  • PRS Permutable Reactor System
  • the association of at least two reactors in PRS mode makes it possible to isolate a reactor, to unload the spent catalyst, to reload the reactor with fresh catalyst and to put said reactor back into service without stopping the process.
  • PRS technology is described, in particular, in patent FR2681871.
  • reactor internals for example of the filter plate type, can be used to prevent clogging of the reactor(s).
  • An example of a filter plate is described in patent FR3051375.
  • said at least selective hydrogenation catalyst comprises a support, preferably mineral, and a hydro-dehydrogenating function.
  • the hydro-dehydrogenating function comprises in particular at least one element from group VIII, preferably chosen from nickel and cobalt, and at least one element from group VI B, preferably chosen from molybdenum and tungsten.
  • the total content of oxides of the metal elements of groups VI B and VIII is preferably between 1% and 40% by weight, preferably from 5% to 30% by weight relative to the total weight of the catalyst.
  • the weight ratio expressed as metal oxide between the metal (or metals) of group VI B relative to the metal (or metals) of group VIII is preferably between 1 and 20, and preferably between 2 and 10.
  • the reaction section of said step a) comprises for example a selective hydrogenation catalyst comprising between 0.5% and 12% by weight of nickel, preferably between 1% and 10% by weight of nickel (expressed as nickel oxide NiO relative to the weight of said catalyst), and between 1% and 30% by weight of molybdenum, preferably between 3% and 20% by weight of molybdenum (expressed as molybdenum oxide MOO3 relative to the weight of said catalyst) on a preferably mineral support, preferably on an alumina support.
  • a selective hydrogenation catalyst comprising between 0.5% and 12% by weight of nickel, preferably between 1% and 10% by weight of nickel (expressed as nickel oxide NiO relative to the weight of said catalyst), and between 1% and 30% by weight of molybdenum, preferably between 3% and 20% by weight of molybdenum (expressed as molybdenum oxide MOO3 relative to the weight of said catalyst) on a preferably mineral support, preferably on an alumina support.
  • the hydro-dehydrogenating function comprises, and preferably consists of at least one element from group VIII, preferably nickel.
  • the nickel oxide content is preferably between 1 and 50% by weight, preferably between 10% and 30% by weight relative to the weight of said catalyst.
  • This type of catalyst is preferably used in its reduced form, preferably on a mineral support, preferably on an alumina support.
  • the support for said at least one selective hydrogenation catalyst is preferably chosen from alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof.
  • Said support may contain doping compounds, in particular oxides chosen from boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides.
  • said at least selective hydrogenation catalyst comprises an alumina support, optionally doped with phosphorus and optionally boron.
  • phosphoric anhydride P2O5 When phosphoric anhydride P2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% by weight relative to the total weight of the alumina.
  • boron trioxide B2O5 When boron trioxide B2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina.
  • the alumina used may for example be a y (gamma) or h (eta) alumina.
  • Said selective hydrogenation catalyst is for example in the form of extrudates.
  • step a) can implement, in addition to the selective hydrogenation catalysts described above, in addition at least one selective hydrogenation catalyst used in the process.
  • step a) comprising less than 1% by weight of nickel and at least 0.1% by weight of nickel, preferably 0.5% by weight of nickel, expressed as nickel oxide NiO relative to the weight of said catalyst, and less than 5% by weight of molybdenum and at least 0.1% by weight of molybdenum, preferably 0.5% by weight of molybdenum, expressed as molybdenum oxide MOO3 relative to the weight of said catalyst, on an alumina support.
  • This catalyst with a low metal content is preferably placed upstream of the selective hydrogenation catalysts described above.
  • the charge which comprises a plastics pyrolysis oil, optionally pretreated, and/or optionally mixed beforehand with at least a fraction of a recycle stream, advantageously from stage d) or from optional stage h) can be mixed with the gas stream comprising hydrogen prior to its introduction into the reaction section.
  • Said charge, optionally pretreated, and/or optionally mixed with at least a fraction of the recycle stream, advantageously from step d) or optional step h), and/or optionally mixed with the gas stream can also be heated before its introduction into the reaction section of step a), for example by heat exchange in particular with the hydrotreatment effluent from step b), to reach a temperature close to the temperature used in the reaction section which it feeds.
  • the content of impurities, in particular of diolefins, of the hydrogenated effluent obtained at the end of stage a) is reduced compared to that of the same impurities, in particular of diolefins, included in the charge of the process.
  • Stage a) of selective hydrogenation generally makes it possible to convert at least 90% and preferably at least 99% of the diolefins contained in the initial charge. Step a) also allows the elimination, at least in part, of other contaminants, such as for example silicon.
  • the hydrogenated effluent obtained at the end of stage a) of selective hydrogenation is sent, preferably directly, to stage b) of hydrotreatment.
  • the hydrogenated effluent obtained at the end of step a) of selective hydrogenation therefore comprises, in addition to the converted feed, said fraction(s) of the recycle stream.
  • the treatment process comprises a step b) of hydrotreatment, advantageously in a fixed bed, of said hydrogenated effluent from step a), optionally in a mixture with at least a fraction of a recycle stream, advantageously from stage d) or from optional stage h), in the presence of hydrogen and of at least one hydrotreatment catalyst, to obtain a hydrotreatment effluent.
  • step b) implements hydrotreatment reactions well known to those skilled in the art, and more particularly hydrogenation reactions of olefins, aromatics, hydrodemetallization, hydrodesulphurization, hydrodenitrogenation, etc
  • said step b) is implemented in a hydrotreating reaction section comprising at least one, preferably between one and five, fixed-bed reactor(s) having n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, preferably between two and five, said bed(s) each comprising at least one, and preferably not more than ten, catalyst(s) d hydrotreating.
  • a reactor comprises several catalytic beds, that is to say at least two, preferably between two and ten, preferably between two and five catalytic beds, said catalytic beds are arranged in series in said reactor.
  • Said hydrotreating reaction section is supplied at least with said hydrogenated effluent from step a) and a gas stream comprising hydrogen, advantageously at the level of the first catalytic bed of the first reactor in operation.
  • Said hydrotreating reaction section of stage b) can also be supplied with at least a fraction of the recycle stream, advantageously from stage d) or from optional stage h).
  • Said fraction(s) of said recycle stream or all of the recycle stream can be introduced into said hydrotreating reaction section mixed with the hydrogenated effluent from the step a) or separately.
  • Said fraction(s) of said recycle stream or all of the recycle stream can be introduced into said hydrotreating reaction section at the level of one or more catalytic beds of said hydrotreating reaction section of step b).
  • the introduction of at least a fraction of said recycle stream advantageously makes it possible to dilute the impurities still present in the hydrogenated effluent and to control the temperature, in particular to limit the temperature increase, in the bed(s) catalyst(s) of the hydrotreating reaction section which implements highly exothermic reactions.
  • said hydrotreating reaction section is implemented at a pressure equivalent to that used in the reaction section of stage a) of selective hydrogenation, but at a higher temperature than that of the reaction section of stage a) selective hydrogenation.
  • said hydrotreating reaction section is advantageously carried out at a hydrotreating temperature between 250 and 430°C, preferably between 280 and 380°C, at a hydrogen partial pressure between 1.0 and 10.0 MPa abs. and at an hourly volume rate (WH) between 0.1 and 10.0 h 1 , preferably between 0.1 and 5.0 h 1 , preferably between 0.2 and 2.0 h 1 , preferably between 0 .2 and 0.8 h 1 .
  • WH hourly volume rate
  • the “hydrotreatment temperature” corresponds to an average temperature in the hydrotreatment reaction section of step b).
  • it corresponds to the Weight Average Bed Temperature (WABT) according to the established Anglo-Saxon term, well known to those skilled in the art.
  • WABT Weight Average Bed Temperature
  • the hydrotreatment temperature is advantageously determined as a function of the catalytic systems, of the equipment, of the configuration thereof, used.
  • the hydrotreating temperature is calculated as follows:
  • T inlet the temperature of the hydrogenated effluent at the inlet of the hydrotreatment reaction section
  • T SO rtie the temperature of the effluent at the outlet of the hydrotreatment reaction section.
  • the hourly volumetric speed (WH) is defined here as the ratio between the hourly volumetric flow rate of the hydrogenated effluent from stage a) per volume of catalyst(s).
  • the hydrogen coverage in stage b) is advantageously between 50 and 1000 Nm 3 of hydrogen per m 3 of fresh charge which supplies stage a), and preferably between 50 and 500 Nm 3 of hydrogen per m 3 of fresh feed which feeds stage a), preferably between 100 and 300 Nm 3 of hydrogen per m 3 of fresh feed which feeds stage a).
  • the hydrogen coverage is defined here as the ratio of the volume flow rate of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of fresh charge which supplies stage a), that is to say of charge comprising a plastics pyrolysis oil, or by the optionally pretreated charge, which feeds stage a) (in normal m 3 , denoted Nm 3 , of H2 per m 3 of fresh charge).
  • the hydrogen can consist of a make-up and/or of recycled hydrogen resulting in particular from stage d) of separation.
  • an additional gas stream comprising hydrogen is advantageously introduced at the inlet of each reactor, in particular operating in series, and/or at the inlet of each catalytic bed from the second catalytic bed of the hydrotreating reaction section.
  • These additional gas streams are also called cooling streams. They make it possible to control the temperature in the hydrotreating reactor in which the reactions implemented are generally very exothermic.
  • said hydrotreating catalyst used in said step b) can be chosen from known catalysts for hydrodemetallization, hydrotreating, silicon capture, used in particular for the treatment of petroleum cuts, and combinations thereof.
  • Known hydrodemetallization catalysts are for example those described in patents EP 0113297, EP 0113284, US 5221656, US 5827421, US 7119045, US 5622616 and US 5089463.
  • Known hydrotreating catalysts are for example those described in patents EP 0113297, EP 0113284, US 6589908, US 4818743 or US 6332976.
  • Known silicon capture catalysts are for example those described in patent applications CN 102051202 and US 2007/080099.
  • said hydrotreating catalyst comprises a support, preferably mineral, and at least one metallic element having a hydro-dehydrogenating function.
  • Said metallic element having a hydro-dehydrogenating function advantageously comprises at least one element from group VIII, preferably chosen from the group consisting of nickel and cobalt, and/or at least one element from group VI B, preferably chosen from the group group consisting of molybdenum and tungsten.
  • the total content of oxides of the metal elements of groups VIB and VIII is preferably between 0.1% and 40% by weight, preferably from 5% to 35% by weight, relative to the total weight of the catalyst.
  • the weight ratio expressed as metal oxide between the metal (or metals) of group VIB relative to the metal (or metals) of group VIII is preferably between 1.0 and 20, preferably between 2.0 and 10
  • the hydrotreating reaction section of step b) of the process comprises a hydrotreating catalyst comprising between 0.5% and 10% by weight of nickel, preferably between 1% and 8% by weight of nickel. , expressed as nickel oxide NiO relative to the total weight of the hydrotreating catalyst, and between 1.0% and 30% by weight of molybdenum, preferably between 3.0% and 29% by weight of molybdenum, expressed as oxide of molybdenum MOO3 relative to the total weight of the hydrotreating catalyst, on a mineral support.
  • the support for said hydrotreating catalyst is advantageously chosen from alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof.
  • Said support may also contain doping compounds, in particular oxides chosen from boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides.
  • said hydrotreating catalyst comprises an alumina support, preferably an alumina support doped with phosphorus and optionally boron.
  • phosphoric anhydride P2O5 When phosphoric anhydride P2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% by weight relative to the total weight of the alumina.
  • boron trioxide B2O5 When boron trioxide B2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina.
  • the alumina used may for example be a y (gamma) or P (eta) alumina.
  • Said hydrotreating catalyst is for example in the form of extrudates.
  • said hydrotreating catalyst used in step b) of the process has a specific surface area greater than or equal to 250 m 2 /g, preferably greater than or equal to 300 m 2 /g.
  • the specific surface of said hydrotreating catalyst is advantageously less than or equal to 800 m 2 /g, preferably less than or equal to 600 m 2 /g, in particular less than or equal to 400 m 2 /g.
  • the specific surface of the hydrotreating catalyst is measured by the BET method, that is to say the specific surface determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 established from the BRUNAUER-EMMETT- TELLER described in the periodical 'The Journal of the American Chemical Society', 6Q, 309 (1938).
  • Such a specific surface makes it possible to further improve the removal of contaminants, in particular of metals such as silicon.
  • the hydrotreating catalyst as described above further comprises one or more organic compounds containing oxygen and/or nitrogen and/or sulfur.
  • a catalyst is often designated by the term "additive catalyst".
  • the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide or even compounds including a furan ring or even sugars.
  • Hydrotreatment step b) advantageously allows optimized treatment of the hydrogenated effluent from step a). It makes it possible, in particular, to maximize the hydrogenation of the unsaturated bonds of the olefinic compounds present in the hydrogenated effluent resulting from stage a), the hydrodemetallization of said hydrogenated effluent and the capture of metals, in particular silicon, still present in the hydrogenated effluent. Stage b) of hydrotreatment also allows the hydrodenitrogenation (HDN) of the hydrogenated effluent, i.e. the conversion of the nitrogenous species still present in the hydrogenated effluent. Preferably, the nitrogen content of the hydrotreatment effluent at the end of step b) is less than or equal to 10 ppm by weight.
  • HDN hydrodenitrogenation
  • said hydrotreating reaction section comprises several fixed bed reactors, preferably between two and five, very preferably between two and four, fixed bed reactors, each having n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, preferably between two and five, and advantageously operating in series and/or in parallel and/or in switchable mode (or PRS) and/or in swing mode.
  • PRS switchable mode
  • the different possible operating modes, PRS mode (or lead and lag) and swing mode and are well known to those skilled in the art and are advantageously defined above.
  • the advantage of a hydrotreatment reaction section comprising several reactors lies in an optimized treatment of the hydrogenated effluent, while making it possible to reduce the risks of clogging of the catalytic bed(s) and therefore to avoid stopping the unit due to clogging.
  • said hydrotreating reaction section comprises, preferably consists of:
  • At least one fixed-bed reactor preferably one reactor, located downstream of the two reactors (b1), and advantageously operating in series with the two reactors (b1), said fixed-bed reactor (b2) having between 1 and 5 catalytic beds arranged in series and each comprising between one and ten hydrotreating catalyst(s) of which at least one of said hydrotreating catalysts advantageously comprises a support and at least one metallic element preferably comprising at least one element from group VIII , preferably chosen from nickel and cobalt, and/or at least one element from group VI B, preferably chosen from molybdenum and tungsten.
  • step b) can implement a heating section located upstream of the hydrotreatment reaction section and in which the hydrogenated effluent from step a) is heated to reach a temperature suitable for the hydrotreatment , that is to say a temperature between 250 and 430°C.
  • Said optional heating section can thus comprise one or more exchangers, preferably allowing heat exchange between the hydrogenated effluent and the hydrotreatment effluent, and/or a preheating furnace.
  • stage b) of hydrotreatment allows the total hydrogenation of the olefins present in the initial charge and those possibly obtained after stage a) of selective hydrogenation, but also the conversion at least in part of other impurities present in the load, such as aromatic compounds, metal compounds, sulfur compounds, nitrogen compounds, halogenated compounds (in particular chlorinated compounds), oxygenated compounds.
  • Step b) can also make it possible to further reduce the content of contaminants, such as that of metals, in particular the silicon content.
  • Hydrocracking step c) first hydrocracking step
  • the treatment process comprises a first stage c) of hydrocracking, advantageously in a fixed bed, of said hydrotreated effluent from stage b), in the presence of hydrogen and of at least one hydrocracking catalyst , to obtain a hydrocracked effluent.
  • step c) implements the hydrocracking reactions well known to those skilled in the art, and more particularly makes it possible to convert the heavy compounds, for example compounds having a boiling point above 175° C. into compounds having a boiling point less than or equal to 175° C. contained in the hydrotreated effluent from step b).
  • Other reactions such as hydrogenation of olefins, aromatics, hydrodemetallization, hydrodesulfurization, hydrodenitrogenation, etc. can continue.
  • said step c) is implemented in a hydrocracking reaction section comprising at least one, preferably between one and five, fixed-bed reactor(s) having n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, preferably between two and five, said bed(s) each comprising at least one, and preferably not more than ten, catalyst(s) d hydrocracking.
  • a reactor comprises several catalytic beds, that is to say at least two, preferably between two and ten, preferably between two and five catalytic beds, said catalytic beds are arranged in series in said reactor.
  • Stage b) of hydrotreatment and stage c) of hydrocracking can advantageously be carried out in the same reactor or in different reactors.
  • the reactor comprises several catalytic beds, the first catalytic beds comprising the hydrotreating catalyst(s) and the following catalytic beds comprising the hydrocracking catalyst(s).
  • Said hydrocracking reaction section is fed at least with said hydrotreated effluent from step b) and a gas stream comprising hydrogen, advantageously at the level of the first catalytic bed of the first reactor in operation.
  • said hydrocracking reaction section is implemented at a pressure equivalent to that used in the reaction section of stage a) of selective hydrogenation or stage b) of hydrotreatment.
  • said hydrocracking reaction section is advantageously carried out at a hydrotreating temperature between 250 and 480°C, preferably between 320 and 450°C, at a hydrogen partial pressure between 1.5 and 25.0 MPa abs., preferably between 2 and 20 MPa abs., and at an hourly volume rate (WH) between 0.1 and 10.0 h 1 , preferably between 0.1 and 5.0 h 1 , preferably between 0, 2 and 4: 1 a.m.
  • the “hydrocracking temperature” corresponds to an average temperature in the hydrocracking reaction section of step c) and of step f) respectively.
  • it corresponds to the Weight Average Bed Temperature (WABT) according to the established Anglo-Saxon term, well known to those skilled in the art.
  • WABT Weight Average Bed Temperature
  • the hydrocracking temperature is advantageously determined as a function of the catalytic systems, of the equipment, of the configuration thereof, used.
  • the hydrocracking temperature (or WABT) is calculated as follows:
  • the hourly volumetric speed (WH) is defined here as the ratio between the hourly volumetric flow rate of the hydrogenated effluent from stage a) per volume of catalyst(s).
  • the hydrogen coverage in stage c) is advantageously between 80 and 2000 Nm 3 of hydrogen per m 3 of fresh charge which supplies stage a), and preferably between 200 and 1800 Nm 3 of hydrogen per m 3 of fresh load which supplies step a).
  • the hydrogen coverage is defined here as the ratio of the volume flow rate of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of fresh charge which supplies stage a), that is to say of charge comprising a plastics pyrolysis oil, or by the optionally pretreated charge, which feeds stage a) (in normal m 3 , denoted Nm 3 , of H2 per m 3 of fresh charge).
  • the hydrogen can consist of a make-up and/or of recycled hydrogen resulting in particular from stage d) of separation.
  • an additional gas stream comprising hydrogen is advantageously introduced at the inlet of each reactor, in particular operating in series, and/or at the inlet of each catalytic bed from the second catalytic bed of the hydrocracking reaction section.
  • These additional gas streams are also called cooling streams. They make it possible to control the temperature in the hydrocracking reactor in which the reactions implemented are generally very exothermic.
  • the operating conditions used in stage c) of hydrocracking generally make it possible to achieve conversions per pass, into products having at least 80% by volume of products having boiling points below 175°C, preferably below 160°C and preferably below 150°C, above 15% by weight and even more preferably between 20 and 95% by weight.
  • Stage c) of hydrocracking thus does not make it possible to transform all the compounds having a boiling point greater than 175°C into compounds having a boiling point less than or equal to 175°C. After fractionation step e), there therefore remains a more or less significant proportion of compounds with a boiling point above 175°C which is sent to the second hydrocracking step f).
  • stage c) of hydrocracking operates in the presence of at least one hydrocracking catalyst.
  • the hydrocracking catalyst(s) used in step c) hydrocracking are conventional hydrocracking catalysts known to those skilled in the art, of the bifunctional type combining an acid function with a hydro- dehydrogenating agent and optionally at least one binder matrix.
  • the acid function is provided by supports with a large surface area (generally 150 to 800 m 2 /g) exhibiting surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron and aluminum oxides, amorphous silica-aluminas and zeolites.
  • the hydrodehydrogenating function is provided by at least one metal from group VI B of the periodic table and/or at least one metal from group VIII.
  • the hydrocracking catalyst(s) used in step c) comprise a hydro-dehydrogenating function comprising at least one group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum, and preferably from cobalt and nickel.
  • said catalyst(s) also comprise at least one metal from group VI B chosen from chromium, molybdenum and tungsten, alone or as a mixture, and preferably from molybdenum and tungsten.
  • Hydro-dehydrogenating functions of the NiMo, NiMoW, NiW type are preferred.
  • the group VIII metal content in the hydrocracking catalyst(s) is advantageously between 0.5 and 15% by weight and preferably between 1 and 10% by weight, the percentages being expressed as percentage by weight of oxides relative to the total weight of the catalyst.
  • the metal content of group VI B in the hydrocracking catalyst(s) is advantageously between 5 and 35% by weight, and preferably between 10 and 30% by weight, the percentages being expressed as percentage by weight of oxides relative to the total weight of the catalyst.
  • the hydrocracking catalyst(s) used in step c) may also optionally comprise at least one promoter element deposited on the catalyst and chosen from the group formed by phosphorus, boron and silicon, optionally at least one element from group VIIA (preferred chlorine, fluorine), optionally at least one element from group VII B (preferred manganese), and optionally at least one element from group VB (preferred niobium).
  • the hydrocracking catalyst(s) used in step c) comprise at least one amorphous or poorly crystallized porous mineral matrix of the oxide type chosen from aluminas, silicas, silica-aluminas, aluminates, alumina-boron oxide, magnesia, silica-magnesia, zirconia, titanium oxide, clay, alone or as a mixture, and preferably aluminas or silica-aluminas, alone or as a mixture.
  • the silica-alumina contains more than 50% weight of alumina, preferably more than 60% weight of alumina.
  • the hydrocracking catalyst(s) used in step c) also optionally comprise a zeolite chosen from Y zeolites, preferably from USY zeolites, alone or in combination, with other zeolites from beta zeolites, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-11, ZSM-48, ZBM-30, alone or as a mixture.
  • the zeolite is USY zeolite alone.
  • the zeolite content in the hydrocracking catalyst(s) is advantageously between 0.1 and 80% by weight, preferably between 3 and 70% by weight, the percentages being expressed as a percentage of zeolite relative to the total weight of the catalyst.
  • a preferred catalyst comprises, and preferably consists of, at least one Group VI B metal and optionally at least one non-noble Group VIII metal, at least one promoter element, and preferably phosphorus, at least one Y zeolite and at least one alumina binder.
  • An even more preferred catalyst comprises, and preferably consists of, nickel, molybdenum, phosphorus, a USY zeolite, and optionally also a beta zeolite, and alumina.
  • Another preferred catalyst includes, and preferably consists of, nickel, tungsten, alumina and silica-alumina.
  • Another preferred catalyst includes, and preferably consists of, nickel, tungsten, USY zeolite, alumina and silica-alumina.
  • Said hydrocracking catalyst is for example in the form of extrudates.
  • the hydrocracking catalyst as described above further comprises one or more organic compounds containing oxygen and/or nitrogen and/or sulfur.
  • a catalyst is often designated by the term "additive catalyst".
  • the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide or even compounds including a furan ring or even sugars.
  • the preparation of the catalysts of stages a), b) or c) is known and generally comprises a stage of impregnation of group VIII and group VIB metals when present, and optionally phosphorus and/or boron on the support, followed by drying, then optionally by calcination.
  • the preparation is generally carried out by simple drying without calcination after introduction of the organic compound.
  • calcination means a heat treatment under a gas containing air or oxygen at a temperature greater than or equal to 200°C.
  • the catalysts are generally subjected to sulfurization in order to form the active species.
  • step a) can also be a catalyst used in its reduced form, thus involving a reduction step in its preparation.
  • step c) can implement a heating section located upstream of the hydrocracking reaction section and in which the hydrotreated effluent from step b) is heated to reach a temperature suitable for hydrocracking. , that is to say a temperature between 250 and 480°C.
  • Said optional heating section may thus comprise one or more exchangers, preferably allowing heat exchange between the hydrotreated effluent and the hydrocracked effluent, and/or a preheating furnace.
  • the treatment process comprises a step d) of separation, advantageously implemented in at least one washing/separation section, supplied at least with the hydrocracked effluent from step c) and an aqueous solution , to obtain at least one gaseous effluent, one aqueous effluent and one hydrocarbon effluent.
  • the gaseous effluent obtained at the end of step d) advantageously comprises hydrogen, preferably comprises at least 90% volume, preferably at least 95% volume, of hydrogen.
  • said gaseous effluent can at least partly be recycled to stages a) of selective hydrogenation and/or b) of hydrotreating and/or c) and f) of hydrocracking, the recycling system possibly comprising a section of purification.
  • the aqueous effluent obtained at the end of step d) advantageously comprises ammonium salts and/or hydrochloric acid.
  • the hydrocarbon effluent from step d) comprises hydrocarbon compounds and advantageously corresponds to the plastics pyrolysis oil of the feed, or to the plastics pyrolysis oil and the conventional petroleum or biomass feed fraction. - treated with pyrolysis oil, in which at least some of the heavy compounds have been converted into lighter compounds in order to maximize the naphtha cut.
  • the hydrocarbon effluent is also freed at least in part of its impurities, in particular its olefinic (di- and mono-olefin), metallic and halogenated impurities.
  • This separation step d) makes it possible in particular to eliminate the ammonium chloride salts, which are formed by reaction between the chloride ions, released by the hydrogenation of the chlorinated compounds in the HCl form, in particular during step b) then dissolution in water, and the ammonium ions, generated by the hydrogenation of the nitrogenous compounds in the form of NH3 in particular during step b) and/or provided by injection of an amine then dissolution in water, and thus to limit the risks of clogging, in particular in the transfer lines and/or in the sections of the process of the invention and/or the transfer lines to the steam cracker, due to the precipitation of the ammonium chloride salts. It also eliminates the hydrochloric acid formed by the reaction of hydrogen ions and chloride ions.
  • a stream containing an amine such as, for example, monoethanolamine, diethanolamine and/or monodiethanolamine can be injected upstream of stage a) of selective hydrogenation, between stage a) of selective hydrogenation and stage b) of hydrotreatment and/or between stage c) of hydrocracking and stage d) of separation, preferably upstream of stage a) selective hydrogenation, in order to ensure a sufficient quantity of ammonium ions to combine the chloride ions formed during the hydrotreatment stage, thus making it possible to limit the formation of hydrochloric acid and thus to limit corrosion downstream of the separation section.
  • an amine such as, for example, monoethanolamine, diethanolamine and/or monodiethanolamine
  • step d) of separation comprises an injection of an aqueous solution, preferably an injection of water, into the hydrocracked effluent from step c), upstream of the washing/separation section, of so as to at least partially dissolve ammonium chloride salts and/or hydrochloric acid and thus improve the elimination of chlorinated impurities and reduce the risks of clogging due to an accumulation of ammonium chloride salts.
  • Separation step d) is advantageously carried out at a temperature of between 50 and 370°C, preferably between 100 and 340°C, more preferably between 200 and 300°C.
  • step d) of separation is carried out at a pressure close to that implemented in steps a) and/or b) and/or c), preferably between 1.0 and 10.0 MPa, so to facilitate the recycling of hydrogen.
  • the washing/separation section of step d) can at least partly be carried out in common or separate washing and separation equipment, this equipment being well known (separator drums which can operate at different pressures and temperatures, pumps, heat exchangers heat pumps, washing columns, etc.).
  • step d) of separation comprises the injection of an aqueous solution into the hydrocracked effluent from of step c), followed by washing/separation section advantageously comprising a separation phase making it possible to obtain at least one aqueous effluent loaded with ammonium salts, one washed liquid hydrocarbon effluent and one partially washed gaseous effluent.
  • the aqueous effluent charged with ammonium salts and the washed liquid hydrocarbon effluent can then be separated in a settling flask in order to obtain said hydrocarbon effluent and said aqueous effluent.
  • Said partially washed gaseous effluent can be introduced in parallel into a washing column where it circulates countercurrent to an aqueous flow, preferably of the same nature as the aqueous solution injected into the hydrocracked effluent, which makes it possible to eliminate at least part, preferably entirely, the hydrochloric acid contained in G partially washed gaseous effluent and thus obtaining said gaseous effluent, preferably comprising essentially hydrogen, and an acidic aqueous stream.
  • Said aqueous effluent from the settling flask can optionally be mixed with said acid aqueous stream, and be used, optionally mixed with said acid aqueous stream in a water recycling circuit to supply step d) of separation with said aqueous solution upstream of the washing/separation section and/or in said aqueous stream in the washing column.
  • Said water recycling circuit may comprise a make-up of water and/or of a basic solution and/or a purge making it possible to evacuate the dissolved salts.
  • step d) of separation can advantageously comprise a "high pressure" washing/separation section which operates at a pressure close to the pressure of step a) of selective hydrogenation and/or of step b) of hydrotreating and/or of step c) of hydrocracking, in order to facilitate the recycling of 'hydrogen.
  • This optional "high pressure” section of step d) can be supplemented by a "low pressure” section, in order to obtain a liquid hydrocarbon fraction devoid of part of the gases dissolved at high pressure and intended to be treated directly in a steam cracking process or optionally be sent to step e) fractionation.
  • the gas fraction(s) resulting from step d) of separation may (may) be subject to purification(s) and additional separation(s) with a view to recovering at least one gas rich in hydrogen which can be recycled upstream of stages a) and/or b) and/or c) and/or light hydrocarbons, in particular ethane, propane and butane, which can advantageously be sent separately or as a mixture in a or furnaces of stage h) of steam cracking so as to increase the overall yield of olefins.
  • the hydrocarbon effluent from step d) of separation is sent, in part or in whole, preferably in whole, to step e) of fractionation.
  • the process according to the invention comprises a step of fractionating all or part, preferably all, of the hydrocarbon effluent from step d), to obtain at least one gas stream and at least two liquid hydrocarbon streams , said two liquid hydrocarbon streams being at least one naphtha cut comprising compounds having a boiling point of less than or equal to 175°C, in particular between 80 and 175°C, and a hydrocarbon cut comprising compounds having a boiling above 175°C.
  • Stage e) makes it possible in particular to eliminate the gases dissolved in the liquid hydrocarbon effluent, such as for example ammonia, hydrogen sulphide and light hydrocarbons having 1 to 4 carbon atoms.
  • Fractionation step e) is advantageously carried out at a pressure of less than or equal to 1.0 MPa abs., preferably between 0.1 and 1.0 MPa abs.
  • step e) can be carried out in a section advantageously comprising at least one stripping column equipped with a reflux circuit comprising a reflux drum. Said stripping column is fed by the liquid hydrocarbon effluent from step d) and by a stream of steam. The liquid hydrocarbon effluent from stage d) can optionally be reheated before entering the stripping column.
  • the lightest compounds are entrained at the top of the column and in the reflux circuit comprising a reflux drum in which a gas/liquid separation takes place.
  • the gaseous phase which includes the light hydrocarbons, is withdrawn from the reflux drum, in a gas stream.
  • the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. is advantageously withdrawn from the reflux drum.
  • the hydrocarbon cut comprising compounds having a boiling point above 175°C is advantageously drawn off at the bottom of the stripping column.
  • step e) of fractionation can implement a stripping column followed by a distillation column or only a distillation column.
  • the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. can be sent, in whole or in part, to a steam cracking unit, at the end of which olefins can be (re)formed to participate to the formation of polymers. It can also be sent to a fuel pool, for example naphtha pool, or even be sent, in part, to stage h) of recycling.
  • the hydrocarbon cut comprising compounds having a boiling point above 175° C. is at least partly sent to the second stage f) of hydrocracking.
  • the naphtha cut comprising compounds having a boiling point less than or equal to 175° C., all or part is sent to a steam cracking unit, while the cut comprising compounds having a boiling point higher than 175° C. is sent to stage f) of hydrocracking.
  • step e) of fractionation can make it possible to obtain, in addition to a gas stream, a naphtha cut comprising compounds having a boiling point less than or equal to 175° C., preferably between 80 and 175°C, and a kerosene cut comprising compounds having a boiling point above 175°C and less than or equal to 280°C, optionally a diesel cut comprising compounds having a boiling point above 280°C and less than 385° C. and a hydrocarbon cut comprising compounds having a boiling point greater than or equal to 385° C., referred to as a heavy hydrocarbon cut.
  • the naphtha cut can be sent, in whole or in part, to a steam cracking unit and/or to the naphtha pool from conventional petroleum feedstocks, it can also be sent to stage h) recycling; the kerosene cut and/or the diesel cut can also be, in whole or in part, either sent to a steam cracking unit, or respectively to a kerosene or diesel pool from conventional petroleum feedstocks, or be recycled in the process in the same way than the naphtha cup; the heavy cut is sent, at least in part, to the second stage f) of hydrocracking.
  • the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e) is fractionated into a heavy naphtha cut comprising compounds before a boiling point between 80 and 175°C and a light naphtha cut comprising compounds having a boiling point below 80°C, at least part of said heavy cut being sent to a complex aromatic comprising at least one step of reforming naphtha in order to produce aromatic compounds.
  • at least part of the light naphtha cut is sent to stage i) of steam cracking described below.
  • the gas fraction(s) resulting from stage e) of fractionation may (may) be subject to purification(s) and additional separation(s) with a view to recovering at least light hydrocarbons, in particular ethane, propane and butane, which can advantageously be sent separately or as a mixture to one or more furnaces of stage i) of steam cracking so as to increase the overall yield of olefins.
  • Hydrocracking step f) (second hydrocracking step)
  • the treatment process comprises a second stage f) of hydrocracking, advantageously in a fixed bed, of at least part of said hydrocarbon cut comprising compounds having a boiling point above 175° C. resulting from step e), in the presence of hydrogen and at least one hydrocracking catalyst, to obtain a second hydrocracked effluent.
  • step f) implements the hydrocracking reactions well known to those skilled in the art, and more particularly makes it possible to convert at least part of the cut comprising compounds having a boiling point above 175° C to compounds with a boiling point less than or equal to 175°C.
  • Other reactions such as hydrogenation of olefins, aromatics, hydrodemetallization, hydrodesulfurization, hydrodenitrogenation, etc. can continue.
  • said step f) is implemented in a hydrocracking reaction section comprising at least one, preferably between one and five, fixed-bed reactor(s) having n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, preferably between two and five, said bed(s) each comprising at least one, and preferably not more than ten, catalyst(s) d hydrocracking.
  • a reactor comprises several catalytic beds, that is to say at least two, preferably between two and ten, preferably between two and five catalytic beds, said catalytic beds are arranged in series in said reactor.
  • Said hydrocracking reaction section is fed with at least a part of the cut comprising compounds having a boiling point above 175° C. and a stream gas comprising hydrogen, advantageously at the level of the first catalytic bed of the first reactor in operation.
  • said second hydrocracking reaction section is implemented at a pressure equivalent to that used in the reaction section of stage a) of selective hydrogenation or stage b) of hydrotreatment or stage c) of first hydrocracking.
  • said hydrocracking reaction section is advantageously carried out at a hydrotreating temperature between 250 and 480°C, preferably between 320 and 450°C, at a hydrogen partial pressure between 1.5 and 25.0 MPa abs., preferably between 3 and 20 MPa abs., and at an hourly volume rate (WH) between 0.1 and 10.0 h 1 , preferably between 0.1 and 5.0 h 1 , preferably between 0, 2 and 4: 1 a.m.
  • the hourly volumetric speed (WH) is defined here as the ratio between the hourly volumetric flow rate of the hydrogenated effluent from stage a) per volume of catalyst(s).
  • the hydrogen coverage in stage f) is advantageously between 80 and 2000 Nm 3 of hydrogen per m 3 of fresh charge which supplies stage a), and preferably between 200 and 1800 Nm 3 of hydrogen per m 3 of fresh load which supplies step a).
  • the hydrogen coverage is defined here as the ratio of the volume flow rate of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of fresh charge which supplies stage a), that is to say of charge comprising a plastics pyrolysis oil, or by the optionally pretreated charge, which feeds stage a) (in normal m 3 , denoted Nm 3 , of H2 per m 3 of fresh charge).
  • the hydrogen can consist of a make-up and/or of recycled hydrogen resulting in particular from stage d) of separation.
  • an additional gas stream comprising hydrogen is advantageously introduced at the inlet of each reactor, in particular operating in series, and/or at the inlet of each catalytic bed from the second catalytic bed of the hydrocracking reaction section.
  • These additional gas streams are also called cooling streams. They make it possible to control the temperature in the hydrocracking reactor in which the reactions implemented are generally very exothermic.
  • step f) of the process according to the invention generally make it possible to achieve conversions per pass, into products having at least 80% by volume of compounds having boiling points less than or equal to 175 ° C. , preferably below 160°C and preferably below 150°C, above 15% by weight and even more preferably between 20 and 80% by weight. Nevertheless, the conversion per pass in step f) is kept moderate in order to maximize the selectivity for compounds of the naphtha cut (having a boiling point less than or equal to 175° C., in particular between 80 and less than or equal to 175°C). Conversion per pass is limited by the use of a high recycle rate on the second stage hydrocracking loop. This rate is defined as the ratio between the feed rate of step f) and the feed rate of step a), preferably this ratio is between 0.2 and 4, preferably between 0, 5 and 2.5.
  • stage f) of hydrocracking operates in the presence of at least one hydrocracking catalyst.
  • the second stage hydrocracking catalyst is chosen from the conventional hydrocracking catalysts known to those skilled in the art, such as those described above in stage c) of hydrocracking.
  • the hydrocracking catalyst used in said step f) may be identical to or different from that used in step c), and preferably different.
  • the hydrocracking catalyst used in step f) comprises a hydro-dehydrogenating function comprising at least one noble metal from group VIII chosen from palladium and platinum, alone or as a mixture.
  • the noble metal content of group VIII is advantageously between 0.01 and 5% by weight and preferably between 0.05 and 3% by weight, the percentages being expressed as percentage by weight of oxides relative to the total weight of the catalyst.
  • step f) can implement a heating section located upstream of the hydrocracking reaction section and in which said hydrocarbon fraction comprising compounds having a boiling point above 175° C. resulting from step e) is heated to reach a temperature suitable for hydrocracking, that is to say a temperature between 250 and 480°C.
  • Said possible heating section can thus comprise one or more exchangers, and/or a preheating furnace.
  • the method comprises a step g) of recycling at least part and preferably all of said second hydrocracked effluent from step f) in step d) of separation.
  • a purge can be installed on the recycle of said second hydrocracked effluent from step f). Depending on the operating conditions of the process, said purge may be between 0 and 10% by weight of said hydrocracked effluent from stage f) relative to the incoming feed, and preferably between 0.5% and 5% by weight.
  • Step h) (optional) for recycling the hydrocarbon effluent from step d) and/or the naphtha cut having a boiling point less than or equal to 175°C from step e)
  • the process according to the invention may comprise stage h) of recycling, in which a fraction of the hydrocarbon effluent resulting from stage d) of separation or a fraction of the naphtha cut having a boiling point lower than or equal to at 175° C. from step e) of fractionation, is recovered to form a recycle stream which is sent upstream of or directly to at least one of the reaction steps of the process according to the invention, in particular to the stage a) of selective hydrogenation and/or stage b) of hydrotreatment.
  • a fraction of the recycle stream can be sent to the optional pretreatment step aO).
  • the method according to the invention comprises step h) of recycling.
  • step d) of separation or from the naphtha cut having a boiling point less than or equal to 175° C. from step e) of fractionation feeds the step b) hydrotreating.
  • the quantity of the recycle stream is adjusted so that the weight ratio between the recycle stream and the charge comprising a plastics pyrolysis oil, that is to say the charge to be treated supplying the overall process, is lower or equal to 10, preferably less than or equal to 5, and preferably greater than or equal to 0.001, preferably greater than or equal to 0.01, and more preferably greater than or equal to 0.1.
  • the quantity of the recycle stream is adjusted so that the weight ratio between the recycle stream and the charge comprising a plastics pyrolysis oil is between 0.2 and 5.
  • a hydrocarbon cut external to the process can be used as recycle stream.
  • a person skilled in the art will then know how to choose said hydrocarbon cut.
  • the recycling of part of the product obtained towards or upstream of at least one of the reaction stages of the process according to the invention advantageously makes it possible on the one hand to dilute the impurities and on the other hand to control the temperature in the stage or stages. (s) reaction (s), in which (the) which (s) of the reactions involved can be strongly exothermic.
  • the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of steps, and preferably in the order given, a) selective hydrogenation, b) hydrotreatment, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking and g) recycling of the hydrocracked effluent in stage d), for producing an effluent of which at least a part is compatible for treatment in a steam cracking unit.
  • the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of steps, and preferably in the order given, aO ) pretreatment, a) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking and g) recycling of the hydrocracked effluent to the step d), to produce an effluent of which at least a part is compatible for treatment in a steam cracking unit.
  • the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of steps, and preferably in the order given, a ) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking and g) recycling of the hydrocracked effluent in step d), h) recycling part of the cut comprising compounds having a boiling point less than or equal to 175° C. in stages a) and/or b), to produce an effluent of which at least a part is compatible for a treatment in a steam cracking unit.
  • the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of steps, and preferably in the order given, aO ) pretreatment, a) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking and g) recycling of the hydrocracked effluent to the step d), h) of recycling part of the cut comprising compounds having a boiling point less than or equal to 175° C. in stages a) and/or b), to produce an effluent of which at least a part is compatible for treatment in a steam cracking unit.
  • Said hydrocarbon effluent or said hydrocarbon stream(s) thus obtained by treatment according to the process of the invention of an oil for the pyrolysis of plastics exhibit(s) a composition compatible with the specifications of a charge at the inlet of a steam cracking unit.
  • the composition of the hydrocarbon effluent or of said hydrocarbon stream(s) is preferably such that:
  • the total content of metallic elements is less than or equal to 5.0 ppm by weight, preferably less than or equal to 2.0 ppm by weight, preferably less than or equal to
  • the nitrogen content is less than or equal to 100 ppm by weight, preferably less than or equal to 50 ppm by weight and preferably less than or equal to 5 ppm by weight
  • the asphaltene content is less than or equal to 5.0 ppm by weight
  • the total chlorine element content is less than or equal to 10 ppm by weight, preferably less than 1.0 ppm by weight
  • the content of olefinic compounds is less than or equal to 5.0% by weight, preferably less than or equal to 2.0% by weight, preferably less than or equal to 0.1% by weight.
  • the contents are given in relative weight concentrations, percentage (%) by weight, part(s) per million (ppm) weight or part(s) per billion (ppb) weight, relative to the total weight of the stream considered.
  • the method according to the invention therefore makes it possible to treat the plastic pyrolysis oils to obtain an effluent which can be injected, in whole or in part, into a steam cracking unit.
  • the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e), all or in part, can be sent to a stage i) of steam cracking.
  • the gas fraction(s) resulting from step d) of separation and/or e) of fractional and containing ethane, propane and butane may (may) be wholly or partially also sent to stage i) of steam cracking.
  • Said step i) of steam cracking is advantageously carried out in at least one pyrolysis furnace at a temperature of between 700 and 900° C., preferably between 750 and 850° C., and at a pressure of between 0.05 and 0.3 MPa relative.
  • the residence time of the hydrocarbon compounds is generally less than or equal to 1.0 second (denoted s), preferably between 0.1 and 0.5 s.
  • steam is introduced upstream of stage i) of optional steam cracking and after separation (or fractionation).
  • the quantity of water introduced, advantageously in the form of steam, is advantageously between 0.3 and 3.0 kg of water per kg of hydrocarbon compounds at the inlet of stage i).
  • optional step i) is carried out in several pyrolysis furnaces in parallel so as to adapt the operating conditions to the different flows supplying step i) in particular from step e), and also to manage the decoking of the tubes.
  • a furnace comprises one or more tubes arranged in parallel.
  • An oven can also refer to a group of ovens operating in parallel.
  • a furnace can be dedicated to cracking the naphtha cut comprising compounds with a boiling point less than or equal to 175°C.
  • step i) of steam cracking comprises steam cracking furnaces but also the sub-steps associated with steam cracking well known to those skilled in the art. These sub-stages may include in particular heat exchangers, columns and catalytic reactors and recycling to the furnaces.
  • a column generally makes it possible to fractionate the effluent with a view to recovering at least a light fraction comprising hydrogen and compounds having 2 to 5 carbon atoms, and a fraction comprising pyrolysis gasoline, and optionally a fraction comprising pyrolysis oil.
  • This stage of i) of steam cracking makes it possible to obtain at least one effluent containing olefins comprising 2, 3 and/or 4 carbon atoms (that is to say C2, C3 and/or C4 olefins), at satisfactory contents, in particular greater than or equal to 30% by weight, in particular greater than or equal to 40% by weight, or even greater than or equal to 50% by weight of total olefins comprising 2, 3 and 4 carbon atoms relative to the weight of the effluent of steam cracking considered.
  • Said C2, C3 and C4 olefins can then be advantageously used as polyolefin monomers.
  • the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, sequence of the steps described above, and preferably in the order given, that is to say: a) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e ) fractionation, f) hydrocracking, g) recycling of the second hydrocracked effluent in step d), and step i) steam cracking.
  • the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of the steps described above, and preferably in the order given, that is- i.e. aO) pretreatment, a) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking, g) recycling of the second effluent hydrocracked in step d), g) recycling at least part of the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. in steps a) and/or b), and step i) of steam cracking.
  • Figure 1 shows the diagram of a particular embodiment of the method of the present invention, comprising:
  • step e) of fractionation of the liquid hydrocarbon fraction 12 making it possible to obtain at least one gaseous fraction 13, a naphtha cut 14 comprising compounds having a boiling point less than or equal to 175° C. and a cut 15 comprising compounds with a boiling point above 175°C;
  • step d) a step of recycling the second hydrocracked effluent 17 in step d) of separation.
  • the amine stream 3 instead of injecting the amine stream 3 at the input of stage a) of selective hydrogenation, it is possible to inject it at the input of stage b) of hydrotreatment, at the input of stage c ) of hydrocracking, at the inlet of stage d) of separation or even of not injecting it, depending on the characteristics of the charge.
  • step e At the end of step e), at least part of the naphtha cut 14 comprising compounds having a boiling point less than or equal to 175° C. is sent to a steam cracking process (not shown) .
  • part of the naphtha cut 14 comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e) constitutes a recycle stream which feeds stage a) of selective hydrogenation (fraction 14a), and step b) of hydrotreating (fraction 14b).
  • Feedstock 1 treated in the process is a plastics pyrolysis oil (that is to say comprising 100% by weight of said plastics pyrolysis oil) having the characteristics indicated in Table 2.
  • Table 2 characteristics of the load
  • Charge 1 is subjected to a stage a) of selective hydrogenation carried out in a fixed-bed reactor and in the presence of hydrogen 2 and a selective hydrogenation catalyst of the NiMo on alumina type under the conditions indicated in table 3 .
  • Table 3 conditions of stage a) of selective hydrogenation
  • stage a) of selective hydrogenation all of the diolefins initially present in the feed have been converted.
  • stage a) of selective hydrogenation is subjected directly, without separation, to a stage b) of hydrotreatment carried out in a fixed bed and in the presence of hydrogen 5, and of a hydrotreatment catalyst of the NiMo type on alumina under the conditions presented in Table 4.
  • the effluent 6 from stage b) of hydrotreatment is subjected directly, without separation, to a first stage c) of hydrocracking carried out in a fixed bed and in the presence of hydrogen 7 and of a zeolite hydrocracking catalyst comprising NiMo under the conditions shown in Table 5.
  • Table 5 conditions of the first stage c) of hydrocracking
  • the effluent 8 from stage c) of hydrocracking is subjected to a stage d) of separation according to the invention in which a flow of water is injected into the effluent from stage c) of hydrocracking ; the mixture is then sent to stage d) of separation and is treated in an acid gas scrubbing column.
  • a gas fraction 10 is obtained at the top of the acid gas scrubbing column while at the bottom, a two-phase separator drum makes it possible to separate an aqueous phase and a liquid phase.
  • the gas scrubbing column and the two-phase separator are operated at high pressure.
  • the liquid phase is then sent to a low-pressure drum so as to recover a second gaseous fraction which is purged and a liquid effluent.
  • the liquid effluent 12 obtained at the end of step d) of separation is sent to a step e) of fractionation comprising a stripping column and a distillation column in order to obtain a fraction having a lower boiling point. or equal to 175°C (PI-175°C fraction) and a fraction having a boiling point greater than 175°C (175°C+ fraction).
  • the 175°C+ fraction from stage e) of fractionation is sent to the second stage f) of hydrocracking so as to increase the conversion of compounds having a boiling point above 175°C.
  • a small part of the 175° C.+ fraction is not sent to the second stage f) hydrocracking so as to avoid the accumulation of polyaromatic compounds which could be coke precursors (purge 15b).
  • the volume flow rate of the 175°C+ fraction from stage e) of fractionation and sent to the second stage f) hydrocracking is equal to 80% of the volume flow rate of the liquid effluent from stage b) of hydrotreatment and feeding the first stage c) of hydrocracking.
  • the second hydrocracking step f) is carried out in a fixed bed and in the presence of hydrogen 16 and a zeolitic hydrocracking catalyst comprising NiMo under the conditions presented in Table 6.
  • Table 6 conditions of the second stage f) of hydrocracking
  • the effluent 17 from the second hydrocracking step f) is mixed with the effluent 8 from the first hydrocracking step c).
  • the two effluents are subjected to a step d) of separation then a step e) of fractionation, these two steps being common to the two effluents and being carried out as described above.
  • Table 7 gives the overall yields of the various fractions obtained at the outlet of stages c) and f) of hydrocracking at the end of stages d) of separation and e) of fractionation (which comprises a stripping column and a distillation column ).
  • Table 7 yields of the various products and fractions obtained at the output of stages c) and f) of hydrocracking
  • the H 2 S and NH 3 compounds are mainly eliminated in the form of salts in the aqueous phase eliminated in stage d) of separation.
  • Table 8 characteristics of the PI-175°C, 175°C+ fractions
  • the PI-175°C and 175°C+ liquid fractions both have compositions compatible with a steam cracking unit since:
  • the metal contents in particular iron (Fe) are also very low (metal contents not detected for the PI-175°C fraction and ⁇ 1 ppm weight for the 175°C+ fraction; Fe contents not detected for the PI-175°C fraction and 50 ppb weight for the 175°C+ fraction) and below the limits required for a steam cracker feed (£ 5.0 ppm weight, very preferably £ 1 ppm weight for metals; £ 100 ppb weight for Fe);
  • Table 11 overall process yields of products from the steam cracking step of the PI-175°C fraction
  • the process according to the invention makes it possible to achieve overall mass yields of ethylene and propylene respectively of 31.9% and 17.4% compared to the mass quantity of initial plastics pyrolysis oil type filler.
  • the specific sequence of steps upstream of the steam cracking step makes it possible to limit the formation of coke and to avoid the corrosion problems which would have appeared if the chlorine had not been eliminated.
  • the load to be processed is identical to that described in Example 1 (see Table 2).
  • Table 12 Yields of the various products and fractions obtained at the output of stage b) of hydrotreatment
  • the characteristics of the PI+ fraction (which corresponds to the liquid effluent) obtained after stage d) of separation are presented in Table 13:
  • the PI+ fraction obtained via the sequence of steps a), b) and d) consists of approximately 35% of compounds of naphtha type having a boiling point less than or equal to 175°C. This low yield of naphtha-type compounds having a boiling point less than or equal to 175° C. is due to the absence of hydrocracking steps in this nonconforming example.
  • the PI+ fraction liquid effluent is sent directly to a steam cracking stage i) according to the conditions mentioned in table 14.
  • Table 16 overall process yields of products from the PI+ fraction steam cracking step
  • the process according to the invention makes it possible to achieve overall mass yields of ethylene and propylene respectively of 34.6% and 18.9% relative to the quantity by mass of initial plastics pyrolysis oil type charge.

Abstract

The present invention relates to a method for treating a plastic pyrolysis oil, comprising: (a) selectively hydrogenating said feedstock to obtain a hydrogenated effluent; (b) hydrotreating said hydrogenated effluent to obtain a hydrotreated effluent; (c) performing a first hydrocracking step on said hydrotreated effluent to obtain a first hydrocracked effluent; (d) separating the hydrocracked effluent in the presence of an aqueous stream, to obtain a gaseous effluent, a liquid aqueous effluent and a liquid hydrocarbon effluent; (e) fractionating the liquid hydrocarbon effluent to obtain at least one gas stream, at least one naphtha cut and a heavier cut; (f) performing a second hydrocracking step on the heavier cut to obtain a second hydrocracked effluent; (g) recycling at least a portion of said second hydrcracked effluent in said separation step (d).

Description

PROCEDE DE TRAITEMENT D’HUILES DE PYROLYSE DE PLASTIQUES INCLUANT UNMETHOD FOR TREATMENT OF PLASTICS PYROLYSIS OILS INCLUDING A
HYDROCRAQUAGE EN DEUX ETAPESTWO-STAGE HYDROCRACKING
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne un procédé de traitement d’une huile de pyrolyse de plastiques afin d’obtenir un effluent hydrocarboné qui peut être valorisé par exemple en étant au moins en partie directement intégré à un pool naphta ou diesel ou comme charge d’une unité de vapocraquage. Plus particulièrement, la présente invention concerne un procédé de traitement d’une charge issue de la pyrolyse des déchets plastiques, afin d’éliminer au moins en partie des impuretés, notamment les oléfines (mono-, di- oléfines), les métaux, en particulier le silicium, et les halogènes, en particulier le chlore, que ladite charge peut contenir en quantités relativement importantes, et de manière à hydrogéner la charge pour pouvoir la valoriser. The present invention relates to a process for treating an oil from the pyrolysis of plastics in order to obtain a hydrocarbon effluent which can be recovered, for example by being at least partly directly integrated into a naphtha or diesel pool or as a feedstock for a unit of steam cracking. More particularly, the present invention relates to a process for treating a charge resulting from the pyrolysis of plastic waste, in order to eliminate at least in part impurities, in particular olefins (mono-, di-olefins), metals, in in particular silicon, and the halogens, in particular chlorine, that said filler may contain in relatively large quantities, and so as to hydrogenate the filler in order to be able to upgrade it.
Le procédé selon l’invention permet donc de traiter les huiles de pyrolyse de plastiques pour obtenir un effluent qui peut être injecté, en tout ou partie, dans une unité de vapocraquage. Le procédé selon l’invention permet ainsi de valoriser les huiles de pyrolyse de plastiques, tout en en réduisant la formation de coke et ainsi les risques de bouchage et/ou de pertes prématurées d’activité du/des catalyseurs utilisés dans l’unité de vapocraquage, et en diminuant les risques de corrosion. The process according to the invention therefore makes it possible to treat the pyrolysis oils of plastics to obtain an effluent which can be injected, in whole or in part, into a steam cracking unit. The process according to the invention thus makes it possible to recover the oils from the pyrolysis of plastics, while reducing the formation of coke and thus the risks of clogging and/or premature loss of activity of the catalyst(s) used in the unit of steam cracking, and reducing the risk of corrosion.
TECHNIQUE ANTERIEURE PRIOR TECHNIQUE
Les plastiques issus des filières de collecte et de tri peuvent subir une étape de pyrolyse afin d’obtenir entre autres des huiles de pyrolyse. Ces huiles de pyrolyse de plastiques sont généralement brûlées pour générer de l’électricité et/ou utilisées en tant que combustible dans des chaudières industrielles ou de chauffage urbain. Plastics from the collection and sorting channels can undergo a pyrolysis step in order to obtain, among other things, pyrolysis oils. These plastic pyrolysis oils are usually burned to generate electricity and/or used as fuel in industrial or district heating boilers.
Une autre voie de valorisation des huiles de pyrolyse de plastiques est l’utilisation de ces huiles de pyrolyse de plastiques en tant que charge d’une unité de vapocraquage afin de (re)créer des oléfines, ces dernières étant des monomères constitutifs de certains polymères. Cependant, les déchets plastiques sont généralement des mélanges de plusieurs polymères, par exemple des mélanges de polyéthylène, de polypropylène, de polyéthylène téréphtalate, de polychlorure de vinyle, de polystyrène. De plus, en fonction des usages, les plastiques peuvent contenir, en plus des polymères, d’autres composés, comme des plastifiants, des pigments, des colorants ou encore des résidus de catalyseurs de polymérisation. Les déchets plastiques peuvent en outre contenir, de manière minoritaire, de la biomasse provenant par exemple des ordures ménagères. Il en résulte que les huiles issues de la pyrolyse des déchets plastiques comprennent beaucoup d’impuretés, en particulier des dioléfines, des métaux, notamment le silicium, ou encore des composés halogénés, notamment des composés à base de chlore, des hétéroéléments comme du soufre, de l’oxygène et de l’azote, des insolubles, à des teneurs souvent élevées et incompatibles avec les unités de vapocraquage ou les unités situées en aval des unités de vapocraquage, notamment les procédés de polymérisation et les procédés d’hydrogénation sélective. Ces impuretés peuvent générer des problèmes d’opérabilité et notamment des problèmes de corrosion, de cokage ou de désactivation catalytique, ou encore des problèmes d’incompatibilité dans les usages des polymères cibles. La présence de dioléfines peut également conduire à des problèmes d’instabilité de l’huile de pyrolyse se caractérisant par la formation de gommes. Les gommes et les insolubles éventuellement présents dans l’huile de pyrolyse peuvent générer des problèmes de colmatage dans les procédés. Another way of recovering plastic pyrolysis oils is the use of these plastic pyrolysis oils as feedstock for a steam cracking unit in order to (re)create olefins, the latter being constituent monomers of certain polymers . However, plastic waste is generally mixtures of several polymers, for example mixtures of polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polystyrene. In addition, depending on the uses, plastics may contain, in addition to polymers, other compounds, such as plasticizers, pigments, dyes or polymerization catalyst residues. Plastic waste may also contain, in a minor way, biomass from household waste, for example. As a result, the oils resulting from the pyrolysis of plastic waste contain many impurities, in particular diolefins, metals, in particular silicon, or even halogenated compounds, in particular chlorine-based compounds, heteroelements such as sulfur , oxygen and nitrogen, insolubles, at levels that are often high and incompatible with steam cracking units or units located downstream of steam cracking units, in particular polymerization processes and selective hydrogenation processes. These impurities can generate problems of operability and in particular problems of corrosion, coking or catalytic deactivation, or even problems of incompatibility in the uses of the target polymers. The presence of diolefins can also lead to problems of instability of the pyrolysis oil, characterized by the formation of gums. The gums and insolubles that may be present in the pyrolysis oil can cause clogging problems in the processes.
De plus, lors de l’étape de vapocraquage, les rendements en oléfines légères recherchées pour la pétrochimie, notamment l’éthylène et le propylène, dépendent fortement de la qualité des charges envoyées au vapocraquage. Le BMCI (Bureau of Mines Corrélation Index selon la terminologie anglo-saxonne) est souvent utilisé pour caractériser les coupes hydrocarbonées. Globalement, les rendements en oléfines légères augmentent quand la teneur en paraffines augmente et/ou quand le BMCI diminue. A l’inverse, les rendements en composés lourds non recherchés et/ou en coke augmentent quand le BMCI augmente. In addition, during the steam cracking step, the yields of light olefins sought after for petrochemicals, in particular ethylene and propylene, are highly dependent on the quality of the feeds sent for steam cracking. The BMCI (Bureau of Mines Correlation Index according to Anglo-Saxon terminology) is often used to characterize hydrocarbon cuts. Overall, the yields of light olefins increase when the paraffin content increases and/or when the BMCI decreases. Conversely, the yields of unwanted heavy compounds and/or coke increase when the BMCI increases.
Le document WO 2018/055555 propose un procédé de recyclage des déchets plastiques global, très général et relativement complexe, allant de l’étape même de pyrolyse des déchets plastiques jusqu’à l’étape de vapocraquage. Le procédé de la demande WO 2018/055555 comprend, entre autres, une étape d’hydrotraitement de la phase liquide issue directement de la pyrolyse, de préférence dans des conditions assez poussées notamment en termes de température, par exemple à une température comprise entre 260 et 300°C, une étape de séparation de l’effluent d’hydrotraitement puis une étape d’hydrodéalkylation de l’effluent lourd séparé à une température de préférence élevée, par exemple comprise entre 260 et 400°C. Document WO 2018/055555 proposes an overall, very general and relatively complex plastic waste recycling process, ranging from the very stage of pyrolysis of plastic waste to the steam cracking stage. The process of application WO 2018/055555 comprises, among other things, a step of hydrotreating the liquid phase resulting directly from pyrolysis, preferably under fairly stringent conditions, in particular in terms of temperature, for example at a temperature of between 260 and 300°C, a stage of separation of the hydrotreatment effluent then a stage of hydrodealkylation of the heavy effluent separated at a temperature which is preferably high, for example between 260 and 400°C.
La demande de brevet non publiée FR20/01.758 décrit un procédé de traitement d’une huile de pyrolyse de plastiques, comprenant : a) l’hydrogénation sélective de ladite charge en présence d’hydrogène et d’un catalyseur d’hydrogénation sélective pour obtenir un effluent hydrogéné ; b) l’hydrotraitement dudit effluent hydrogéné en présence d’hydrogène et d’un catalyseur d’hydrotraitement, pour obtenir un effluent d’hydrotraitement ; c) une séparation de l’effluent d’hydrotraitement en présence d’un flux aqueux, à une température entre 50 et 370°C, pour obtenir un effluent gazeux, un effluent liquide aqueux et un effluent liquide hydrocarboné ; d) optionnellement une étape de fractionnement de tout ou partie de l’effluent hydrocarboné issu de l’étape c), pour obtenir un flux gazeux et au moins deux flux hydrocarbonés qui peuvent être une coupe naphta et une coupe plus lourde ; e) une étape de recyclage comprenant une phase de récupération d’une fraction de l’effluent hydrocarboné issu de l’étape c) de séparation ou une fraction du et/ou d’au moins un des flux hydrocarboné(s) issu(s) de l’étape d) de fractionnement, vers l’étape a) d’hydrogénation sélective et/ou l’étape b) d’hydrotraitement. Unpublished patent application FR20/01.758 describes a process for treating a plastic pyrolysis oil, comprising: a) the selective hydrogenation of said charge in the presence of hydrogen and a selective hydrogenation catalyst to obtain a hydrogenated effluent; b) hydrotreating said hydrogenated effluent in the presence of hydrogen and a hydrotreating catalyst, to obtain a hydrotreating effluent; c) separation of the hydrotreatment effluent in the presence of an aqueous stream, at a temperature between 50 and 370° C., to obtain a gaseous effluent, an aqueous liquid effluent and a liquid hydrocarbon effluent; d) optionally a step of fractionating all or part of the hydrocarbon effluent from step c), to obtain a gas stream and at least two hydrocarbon streams which may be a naphtha cut and a heavier cut; e) a recycling step comprising a recovery phase of a fraction of the hydrocarbon effluent from step c) of separation or a fraction of and/or at least one of the hydrocarbon stream(s) from ) from step d) of fractionation, to step a) of selective hydrogenation and/or step b) of hydrotreatment.
Selon la demande FR20/01.758, la coupe naphta issue de l’étape de fractionnement peut être envoyée, en tout ou partie, soit vers une unité de vapocraquage, soit vers un pool naphta issu de charges pétrolières conventionnelles, soit être recyclée selon l’étape e). According to application FR20/01.758, the naphtha cut resulting from the fractionation stage can be sent, in whole or in part, either to a steam cracking unit, or to a naphtha pool resulting from conventional petroleum feedstocks, or be recycled according to the step e).
La coupe plus lourde issue de l’étape de fractionnement peut être envoyée, en tout ou partie, soit vers une unité de vapocraquage, soit vers un pool diesel ou kérosène issu de charges pétrolières conventionnelles, soit être recyclée selon l’étape e). The heavier cut from the fractionation step can be sent, in whole or in part, either to a steam cracking unit, or to a diesel or kerosene pool from conventional petroleum feedstocks, or be recycled according to step e).
Bien que la coupe plus lourde puisse être envoyée vers une unité de vapocraquage, peu de raffineurs favorisent cette option. En effet, la coupe plus lourde a un BMCI élevé et contient par rapport à la coupe naphta plus de composés naphténiques, naphténo-aromatiques et aromatiques menant ainsi à un ratio C/H plus élevé. Ce ratio élevé est une cause de cokage dans le vapocraqueur, nécessitant ainsi des fours de vapocraquage dédiés à cette coupe.Although the heavier cut can be sent to a steam cracker, few refiners favor this option. Indeed, the heavier cut has a high BMCI and contains more naphthenic, naphtheno-aromatic and aromatic compounds compared to the naphtha cut, leading to a higher C/H ratio. This high ratio is a cause of coking in the steam cracker, thus requiring steam cracking furnaces dedicated to this cut.
De plus, le vapocraquage d’une telle coupe lourde produit moins de produits d’intérêts qui sont notamment l’éthylène et le propylène mais davantage d’essence de pyrolyse. In addition, the steam cracking of such a heavy cut produces fewer products of interest, which are in particular ethylene and propylene, but more pyrolysis gasoline.
Il serait donc avantageux de minimiser le rendement de la coupe lourde et de maximiser le rendement de la coupe naphta en transformant la coupe lourde au moins en partie en coupe naphta par un hydrocraquage en deux étapes. Ceci permet d’obtenir plus de naphta qui est de préférence envoyée en vapocraquage pour produire plus d’oléfines tout en réduisant en particulier les risques de bouchage lors d’étapes de traitement d’huiles de pyrolyse des plastiques, comme celles décrites dans l’art antérieur, et la formation de coke en quantités importantes et/ou les risques de corrosion rencontrés lors d’étape(s) ultérieure(s), par exemple lors d’étape de vapocraquage des huiles de pyrolyse des plastiques. La coupe lourde qui n’a pas été transformée dans la première étape d’hydrocraquage est envoyée, après séparation, dans une deuxième étape d’hydrocraquage opérant de préférence à une conversion modérée afin de maximiser la sélectivité en composés de la coupe naphta (ayant un point d’ébullition inférieur ou égal à 175°C, en particulier entre 80 et 175°C). De plus, les composés C2 à C4 produits lors de l’hydrocraquage peuvent également être envoyés dans le vapocraquage ce qui permet d’améliorer les rendements en oléfines légères (éthylène et propylène). Au global, le rendement en oléfines est au moins maintenu, voire amélioré, tout en éliminant la nécessité d’un four de vapocraquage dédié à la coupe lourde. It would therefore be advantageous to minimize the yield of the heavy cut and to maximize the yield of the naphtha cut by transforming the heavy cut at least in part into a naphtha cut by hydrocracking in two stages. This makes it possible to obtain more naphtha which is preferably sent to steam cracking to produce more olefins while in particular reducing the risks of clogging during plastic pyrolysis oil processing steps, such as those described in the prior art, and the formation of coke in quantities important and/or the risks of corrosion encountered during subsequent step(s), for example during the steam cracking step of plastic pyrolysis oils. The heavy cut which has not been transformed in the first hydrocracking stage is sent, after separation, to a second hydrocracking stage preferably operating at a moderate conversion in order to maximize the selectivity for compounds of the naphtha cut (having a boiling point less than or equal to 175°C, in particular between 80 and 175°C). In addition, the C2 to C4 compounds produced during hydrocracking can also be sent to steam cracking, which makes it possible to improve the yields of light olefins (ethylene and propylene). Overall, the olefin yield is at least maintained, or even improved, while eliminating the need for a dedicated heavy-cut steam cracking furnace.
RESUME DE L’INVENTION SUMMARY OF THE INVENTION
L’invention concerne un procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques, comprenant : a) une étape d’hydrogénation sélective mise en œuvre dans une section réactionnelle alimentée au moins par ladite charge et un flux gazeux comprenant de l’hydrogène, en présence d’au moins un catalyseur d’hydrogénation sélective, à une température entre 100 et 280°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,3 et 10,0 h 1, pour obtenir un effluent hydrogéné ; b) une étape d’hydrotraitement mise en œuvre dans une section réactionnelle d’hydrotraitement, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d'hydrotraitement, ladite section réactionnelle d’hydrotraitement étant alimentée au moins par ledit effluent hydrogéné issu de l’étape a) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrotraitement étant mise en œuvre à une température entre 250 et 430°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h 1, pour obtenir un effluent d’hydrotraitement ; c) une première étape d’hydrocraquage mise en œuvre dans une section réactionnelle d’hydrocraquage, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d'hydrocraquage, ladite section réactionnelle d’hydrocraquage étant alimentée au moins par ledit effluent hydrotraité issu de l’étape b) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrocraquage étant mise en œuvre à une température entre 250 et 480°C, une pression partielle d’hydrogène entre 1,5 et 25,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h 1, pour obtenir un premier effluent hydrocraqué ; d) une étape de séparation, alimentée par l’effluent hydrocraqué issu de l’étape c) et une solution aqueuse, ladite étape étant opérée à une température entre 50 et 370°C, pour obtenir au moins un effluent gazeux, un effluent aqueux et un effluent hydrocarboné ; e) une étape de fractionnement de tout ou partie de l’effluent hydrocarboné issu de l’étape d), pour obtenir au moins un flux gazeux et au moins deux flux hydrocarbonés liquides, lesdits deux flux hydrocarbonés liquides étant au moins une coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C et une coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C ; f) une deuxième étape d’hydrocraquage mise en œuvre dans une section réactionnelle d’hydrocraquage, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d'hydrocraquage, ladite section réactionnelle d’hydrocraquage étant alimentée par au moins une partie de ladite coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C issue de l’étape e) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrocraquage étant mise en œuvre à une température entre 250 et 480°C, une pression partielle d’hydrogène entre 1,5 et 25,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h 1, pour obtenir un deuxième effluent hydrocraqué ; g) une étape de recyclage d’au moins une partie dudit deuxième effluent hydrocraqué issu de l’étape f) dans l’étape d) de séparation. The invention relates to a process for treating a charge comprising an oil from the pyrolysis of plastics, comprising: a) a selective hydrogenation step implemented in a reaction section fed at least by said charge and a gas stream comprising hydrogen, in the presence of at least one selective hydrogenation catalyst, at a temperature between 100 and 280° C., a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric speed between 0.3 and 10.0 h 1 , to obtain a hydrogenated effluent; b) a hydrotreating step implemented in a hydrotreating reaction section, implementing at least one fixed bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one catalyst hydrotreatment, said hydrotreatment reaction section being fed at least with said hydrogenated effluent from step a) and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at a temperature between 250 and 430°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric speed between 0.1 and 10.0 h 1 , to obtain a hydrotreatment effluent; c) a first hydrocracking stage implemented in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being fed at least with said hydrotreated effluent from step b) and a gas stream comprising hydrogen, said hydrocracking reaction section being implemented at a temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 25.0 MPa abs. and an hourly volume rate between 0.1 and 10.0 h 1 , to obtain a first hydrocracked effluent; d) a separation stage, supplied with the hydrocracked effluent from stage c) and an aqueous solution, said stage being carried out at a temperature between 50 and 370° C., to obtain at least one gaseous effluent, an aqueous effluent and a hydrocarbon effluent; e) a step of fractionating all or part of the hydrocarbon effluent from step d), to obtain at least one gas stream and at least two liquid hydrocarbon streams, said two liquid hydrocarbon streams being at least one naphtha cut comprising compounds having a boiling point less than or equal to 175°C and a hydrocarbon cut comprising compounds having a boiling point greater than 175°C; f) a second hydrocracking step implemented in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being supplied with at least a portion of said hydrocarbon cut comprising compounds having a boiling point above 175°C from step e) and a gas stream comprising hydrogen, said hydrocracking reaction section being carried out at a temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 25.0 MPa abs. and an hourly volumetric speed between 0.1 and 10.0 h 1 , to obtain a second hydrocracked effluent; g) a step of recycling at least part of said second hydrocracked effluent from step f) in step d) of separation.
Un avantage du procédé selon l’invention est de purifier une huile issue de la pyrolyse de déchets plastiques d’au moins une partie de ses impuretés ce qui permet de l’hydrogéner et ainsi de pouvoir la valoriser en particulier en l’incorporant directement à un pool carburant ou encore en la rendant compatible à un traitement dans une unité de vapocraquage afin de pouvoir obtenir en particulier des oléfines légères avec des rendements accrus qui pourront servir de monomères dans la fabrication de polymères. An advantage of the process according to the invention is to purify an oil resulting from the pyrolysis of plastic waste of at least a part of its impurities which makes it possible to hydrogenate it and thus to be able to valorize it in particular by incorporating it directly into a fuel pool or by making it compatible with treatment in a steam cracking unit in order to to be able to obtain in particular light olefins with increased yields which can be used as monomers in the manufacture of polymers.
Un autre avantage de l’invention est de prévenir des risques de bouchage et/ou de corrosion de l’unité de traitement dans laquelle le procédé de l’invention est mis en œuvre, les risques étant exacerbés par la présence, souvent en quantités importantes, de dioléfines, de métaux et de composés halogénés dans l’huile de pyrolyse de plastiques. Another advantage of the invention is to prevent risks of clogging and/or corrosion of the processing unit in which the method of the invention is implemented, the risks being exacerbated by the presence, often in large quantities , diolefins, metals and halogenated compounds in plastics pyrolysis oil.
Le procédé de l’invention permet ainsi d’obtenir un effluent hydrocarboné issu d’une huile de pyrolyse de plastiques débarrassé au moins en partie des impuretés de l’huile de pyrolyse de plastiques de départ, limitant ainsi les problèmes d’opérabilité, comme les problèmes de corrosion, de cokage ou de désactivation catalytique, que peuvent engendrer ces impuretés, en particulier dans les unités vapocraquage et/ou dans les unités situées en aval des unités de vapocraquage, notamment les unités de polymérisation et d’hydrogénation sélective. L’élimination d’au moins une partie des impuretés des huiles issues de la pyrolyse des déchets plastiques permettra aussi d’augmenter la gamme des applications des polymères cibles, les incompatibilités d’usages étant réduites. The process of the invention thus makes it possible to obtain a hydrocarbon effluent resulting from a plastic pyrolysis oil freed at least in part of the impurities of the starting plastic pyrolysis oil, thus limiting the problems of operability, such as the problems of corrosion, coking or catalytic deactivation, which these impurities can cause, in particular in the steam cracking units and/or in the units located downstream of the steam cracking units, in particular the polymerization and selective hydrogenation units. The elimination of at least part of the impurities of the oils resulting from the pyrolysis of plastic waste will also make it possible to increase the range of applications of the target polymers, the incompatibilities of uses being reduced.
La présente invention participe au recyclage des plastiques, en proposant un procédé de traitement d’une huile issue de la pyrolyse de plastiques pour la purifier, l’hydrotraiter et l’hydrocraquer afin d’obtenir un effluent hydrocarboné à teneur réduite en impuretés et donc valorisable, soit directement sous forme de coupe naphta et/ou de coupe diesel, soit présentant une composition compatible avec une charge d’une unité de vapocraquage. Le fait d’hydrocraquer permet de transformer au moins une partie de la coupe lourde (diesel) en composés de la coupe naphta ce qui permet d’obtenir des rendements améliorés en coupe naphta et, lorsque cette coupe est envoyée en vapocraquage, en oléfines légères, tout en réduisant en particulier les risques de bouchage lors d’étapes de traitement d’huiles de pyrolyse des plastiques, comme celles décrites dans l’art antérieur, et la formation de coke en quantités importantes et/ou les risques de corrosion rencontrés lors d’étape(s) ultérieure(s), par exemple lors d’étape de vapocraquage des huiles de pyrolyse des plastiques. The present invention participates in the recycling of plastics, by proposing a process for treating an oil resulting from the pyrolysis of plastics in order to purify it, hydrotreat it and hydrocrack it in order to obtain a hydrocarbon effluent with a reduced content of impurities and therefore recoverable, either directly in the form of naphtha cut and/or diesel cut, or having a composition compatible with a load from a steam cracking unit. The fact of hydrocracking makes it possible to transform at least part of the heavy cut (diesel) into compounds of the naphtha cut, which makes it possible to obtain improved yields in the naphtha cut and, when this cut is sent to steam cracking, in light olefins , while in particular reducing the risks of clogging during plastic pyrolysis oil treatment steps, such as those described in the prior art, and the formation of coke in large quantities and/or the risks of corrosion encountered during subsequent step(s), for example during the steam cracking step of the plastic pyrolysis oils.
Selon une variante, le procédé comprend en outre une étape h) de recyclage dans laquelle une fraction de l’effluent hydrocarboné issu de l’étape d) de séparation ou une fraction de la coupe naphta ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) de fractionnement est envoyée vers l’étape a) d’hydrogénation sélective et/ou l’étape b) d’hydrotraitement. According to one variant, the process further comprises a step h) of recycling in which a fraction of the hydrocarbon effluent from step d) of separation or a fraction of the naphtha cut having a boiling point less than or equal to 175°C from step e) of fractionation is sent to stage a) of selective hydrogenation and/or stage b) of hydrotreatment.
Selon une variante, la quantité du flux de recycle de l’étape h) est ajustée de sorte que le rapport pondéral entre le flux de recycle et la charge comprenant une huile de pyrolyse de plastiques est inférieur ou égal à 10. According to a variant, the quantity of the recycle stream of step h) is adjusted so that the weight ratio between the recycle stream and the charge comprising a plastics pyrolysis oil is less than or equal to 10.
Selon une variante, le procédé comprend une étape aO) de prétraitement de la charge comprenant une huile de pyrolyse de plastiques, ladite étape de prétraitement étant mise en œuvre en amont de l’étape a) d’hydrogénation sélective et comprend une étape de filtration et/ou une étape d’un lavage à l’eau et/ou une étape d’adsorption. Selon une variante, la section réactionnelle de l’étape a) ou b) met en œuvre aux moins deux réacteurs fonctionnant en mode permutable. According to a variant, the method comprises a step aO) of pretreatment of the feed comprising an oil from the pyrolysis of plastics, said pretreatment step being implemented upstream of step a) of selective hydrogenation and comprises a step of filtration and/or a step of washing with water and/or an adsorption step. According to a variant, the reaction section of step a) or b) implements at least two reactors operating in switchable mode.
Selon une variante, un flux contenant une amine est injecté en amont de l’étape a). Alternatively, a stream containing an amine is injected upstream of step a).
Selon une variante, ledit catalyseur d’hydrogénation sélective comprend un support choisi parmi l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges et une fonction hydro-déshydrogénante comprenant soit au moins un élément du groupe VIII et au moins un élément du groupe VIB, soit au moins un élément du groupe VIII. According to a variant, said selective hydrogenation catalyst comprises a support chosen from alumina, silica, silica-aluminas, magnesia, clays and their mixtures and a hydro-dehydrogenating function comprising either at least one element from group VIII and at least one element from group VIB, or at least one element from group VIII.
Selon une variante, ledit au moins un catalyseur d’hydrotraitement comprend un support choisi dans le groupe constitué par l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges, et une fonction hydro-déshydrogénante comprenant au moins un élément du groupe VIII et/ou au moins un élément du groupe VIB. According to a variant, said at least one hydrotreatment catalyst comprises a support chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof, and a hydro-dehydrogenating function comprising at at least one element from group VIII and/or at least one element from group VIB.
Selon une variante, ledit catalyseur d’hydrocraquage comprend un support choisi parmi les alumines halogénées, les combinaisons d’oxydes de bore et d’aluminium, les silice-alumines amorphes et les zéolithes et une fonction hydro-déshydrogénante comprenant au moins un métal du groupe VIB choisi parmi le chrome, le molybdène et le tungstène, seul ou en mélange, et/ou au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium et le platine. According to a variant, said hydrocracking catalyst comprises a support chosen from halogenated aluminas, combinations of boron and aluminum oxides, amorphous silica-aluminas and zeolites and a hydro-dehydrogenating function comprising at least one metal of group VIB chosen from chromium, molybdenum and tungsten, alone or as a mixture, and/or at least one group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum .
Selon cette variante, ladite zéolithe est choisie parmi les zéolithes Y, seules ou en combinaison, avec d’autres zéolithes parmi les zéolithes beta, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-11, ZSM-48, ZBM-30, seules ou en mélange. Selon une variante, la coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e), tout ou partie, est envoyée vers une étape i) de vapocraquage réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C et à une pression comprise entre 0,05 et 0,3 MPa relatif. Selon une variante, Ja coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) est fractionnée en une coupe naphta lourde comprenant des composés ayant un point d’ébullition entre 80 et 175°C et une coupe naphta légère comprenant des composés ayant un point d’ébullition inférieure à 80°C, au moins une partie de ladite coupe lourde étant envoyée vers un complexe aromatique comportant au moins une étape de reformage du naphta. According to this variant, said zeolite is chosen from Y zeolites, alone or in combination, with other zeolites from beta zeolites, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-11, ZSM- 48, ZBM-30, singly or in combination. According to a variant, the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e), all or in part, is sent to a stage i) of steam cracking carried out in at least one furnace pyrolysis at a temperature between 700 and 900° C. and at a pressure between 0.05 and 0.3 relative MPa. According to a variant, Ja naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e) is fractionated into a heavy naphtha cut comprising compounds having a boiling point between 80 and 175 °C and a light naphtha cut comprising compounds having a boiling point below 80°C, at least part of said heavy cut being sent to an aromatic complex comprising at least one naphtha reforming step.
Selon cette variante, au moins une partie de la coupe naphta légère est envoyée dans l’étape i) de vapocraquage. According to this variant, at least part of the light naphtha cut is sent to stage i) of steam cracking.
L’invention concerne également le produit susceptible d’être obtenu par le procédé de traitement selon l’invention. Selon la présente invention, les pressions sont des pressions absolues, encore notées abs., et sont données en MPa absolus (ou MPa abs.), sauf indication contraire. The invention also relates to the product capable of being obtained by the treatment process according to the invention. According to the present invention, the pressures are absolute pressures, also denoted abs., and are given in absolute MPa (or MPa abs.), unless otherwise indicated.
Selon la présente invention, les expressions « compris entre ... et ... » et « entre .... et ... » sont équivalentes et signifient que les valeurs limites de l’intervalle sont incluses dans la gamme de valeurs décrite. Si tel n’était pas le cas et que les valeurs limites n’étaient pas incluses dans la gamme décrite, une telle précision sera apportée par la présente invention.According to the present invention, the expressions "between .... and ..." and "between .... and ..." are equivalent and mean that the limit values of the interval are included in the range of values described . If this was not the case and the limit values were not included in the range described, such precision will be provided by the present invention.
Dans le sens de la présente invention, les différentes plages de paramètre pour une étape donnée tels que les plages de pression et les plages de température peuvent être utilisés seul ou en combinaison. Par exemple, dans le sens de la présente invention, une plage de valeurs préférées de pression peut être combinée avec une plage de valeurs de température plus préférées. Within the meaning of the present invention, the various parameter ranges for a given step such as the pressure ranges and the temperature ranges can be used alone or in combination. For example, within the meaning of the present invention, a range of preferred pressure values can be combined with a range of more preferred temperature values.
Dans la suite, des modes de réalisation particuliers et/ou préférés de l’invention peuvent être décrits. Ils pourront être mis en œuvre séparément ou combinés entre eux, sans limitation de combinaison lorsque c’est techniquement réalisable. Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. In the following, particular and/or preferred embodiments of the invention can be described. They may be implemented separately or combined with each other, without limitation of combination when technically feasible. In the following, the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief DR Lide, 81st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
La teneur en métaux est mesurée par fluorescence X. The metal content is measured by X-ray fluorescence.
DESCRIPTION DETAILLEE La charge DETAILED DESCRIPTION The load
Selon l’invention, une « huile de pyrolyse de plastiques » est une huile, avantageusement sous forme liquide à température ambiante, issue de la pyrolyse de plastiques, de préférence de déchets plastiques provenant notamment de filières de collecte et de tri. Elle comprend en particulier un mélange de composés hydrocarbonés, notamment des paraffines, des mono- et/ou di-oléfines, des naphtènes et des aromatiques, ces composés hydrocarbonés ayant de préférence un point d’ébullition inférieur à 700°C et de manière préférée inférieur à 550°C. L’huile de pyrolyse de plastiques peut comprendre, et le plus souvent comprend, en outre des impuretés comme des métaux, notamment du silicium et du fer, des composés halogénés, notamment des composés chlorés. Ces impuretés peuvent être présentes dans l’huiles de pyrolyse de plastiques à des teneurs élevées, par exemple jusqu’à 350 ppm poids ou encore 700 ppm poids voire 1000 ppm poids d’éléments halogène apportés par des composés halogénés, jusqu’à 100 ppm poids, voire 200 ppm poids d’éléments métalliques ou semi-métalliques. Les métaux alcalins, les alcalino terreux, les métaux de transition, les métaux pauvres et les métalloïdes peuvent être assimilés aux contaminants de nature métallique, appelés métaux ou éléments métalliques ou semi métalliques. De manière particulière, les métaux ou éléments métalliques ou semi métalliques, éventuellement contenus dans les huiles issues de la pyrolyse des déchets plastiques, comprennent du silicium, du fer ou ces deux éléments. L’huile de pyrolyse de plastiques peut également comprendre d’autres impuretés comme des hétéroéléments apportés notamment par des composés soufrés, des composés oxygénés et/ou des composés azotés, à des teneurs généralement inférieures à 10000 ppm poids d’hétéroéléments et de préférence inférieures à 4000 ppm poids d’hétéroéléments. According to the invention, a “plastic pyrolysis oil” is an oil, advantageously in liquid form at ambient temperature, resulting from the pyrolysis of plastics, preferably plastic waste originating in particular from collection and sorting channels. It comprises in particular a mixture of hydrocarbon compounds, in particular paraffins, mono- and/or di-olefins, naphthenes and aromatics, these hydrocarbon compounds preferably having a boiling point below 700° C. and preferably below 550°C. Plastics pyrolysis oil can and most often does include impurities such as metals, including silicon and iron, halogenated compounds, including chlorine compounds. These impurities may be present in the plastic pyrolysis oils at high levels, for example up to 350 ppm by weight or even 700 ppm by weight or even 1000 ppm by weight of halogen elements provided by halogenated compounds, up to 100 ppm weight, even 200 ppm weight of metallic or semi-metallic elements. Alkali metals, alkaline earth metals, transition metals, poor metals and metalloids can be assimilated to contaminants of a metallic nature, called metals or metallic or semi-metallic elements. In particular, the metals or metallic or semi-metallic elements, possibly contained in the oils resulting from the pyrolysis of plastic waste, comprise silicon, iron or these two elements. The plastic pyrolysis oil may also include other impurities such as heteroelements provided in particular by sulfur compounds, oxygenated compounds and/or nitrogen compounds, at levels generally below 10,000 ppm by weight of heteroelements and preferably below at 4000 ppm weight of heteroelements.
La charge du procédé selon l’invention comprend au moins une huile de pyrolyse de plastiques. Ladite charge peut être constituée uniquement d’huile(s) de pyrolyse de plastiques. De préférence, ladite charge comprend au moins 50% poids, de manière préférée entre 75 et 100% poids, d’huile de pyrolyse de plastiques, c’est-à-dire de préférence entre 50 et 100% poids, de manière préférée entre 70% et 100% poids de d’huile de pyrolyse de plastiques. La charge du procédé selon l’invention peut comprendre, entre autre une ou des huile(s) de pyrolyse de plastiques, une charge pétrolière conventionnelle ou une charge issue de la conversion de la biomasse qui est alors co-traitée avec l’huile de pyrolyse de plastiques de la charge. The charge of the process according to the invention comprises at least one plastic pyrolysis oil. Said charge may consist solely of pyrolysis oil(s) of plastics. Preferably, said filler comprises at least 50% by weight, preferably between 75 and 100% by weight, of plastic pyrolysis oil, that is to say preferably between 50 and 100% by weight, preferably between 70% and 100% weight of plastic pyrolysis oil. The feedstock of the process according to the invention may comprise, among other things, one or more plastic pyrolysis oil(s), a conventional petroleum feedstock or a feedstock resulting from the conversion of biomass which is then co-treated with the oil of pyrolysis of plastics from the charge.
L’huile de pyrolyse de plastiques peut être issue d’un traitement de pyrolyse thermique, catalytique ou encore être préparée par hydropyrolyse (pyrolyse en présence d’un catalyseur et d’hydrogène). Plastic pyrolysis oil can come from a thermal or catalytic pyrolysis treatment or even be prepared by hydropyrolysis (pyrolysis in the presence of a catalyst and hydrogen).
Prétraitement (optionnel) Pretreatment (optional)
Ladite charge comprenant une huile de pyrolyse de plastiques peut avantageusement être prétraitée dans une étape optionnelle de prétraitement aO), préalablement à l’étape a) d’hydrogénation sélective, pour obtenir une charge prétraitée qui alimente l’étape a). Said feedstock comprising a plastics pyrolysis oil can advantageously be pretreated in an optional pretreatment step aO), prior to step a) of selective hydrogenation, to obtain a pretreated feedstock which feeds step a).
Cette étape optionnelle de prétraitement aO) permet de diminuer la quantité de contaminants, en particulier la quantité de silicium, éventuellement présents dans la charge comprenant une huile de pyrolyse de plastiques. Ainsi, une étape optionnelle aO) de prétraitement de la charge comprenant une huile de pyrolyse de plastiques est avantageusement réalisée en particulier lorsque ladite charge comprend plus de 50 ppm poids, notamment plus de 20 ppm poids, plus particulièrement plus de 10 ppm poids, voire plus de 5 ppm poids d’éléments métalliques, et en particulier lorsque ladite charge comprend plus de 20 ppm poids de silicium, plus particulièrement plus de 10 ppm poids, voire plus de 5 ppm poids et encore plus particulièrement plus de 1,0 ppm poids de silicium. This optional pretreatment step aO) makes it possible to reduce the quantity of contaminants, in particular the quantity of silicon, possibly present in the charge comprising a plastic pyrolysis oil. Thus, an optional step aO) of pretreating the charge comprising a plastic pyrolysis oil is advantageously carried out in particular when said charge comprises more than 50 ppm by weight, in particular more than 20 ppm by weight, more particularly more than 10 ppm by weight, or even more than 5 ppm by weight of metallic elements, and in particular when said filler comprises more than 20 ppm by weight of silicon, more particularly more than 10 ppm by weight, even more than 5 ppm by weight and even more particularly more than 1.0 ppm by weight of silicon.
Ladite étape optionnelle de prétraitement aO) peut être mise en œuvre par n’importe quelle méthode connue par l’homme du métier permettant de diminuer la quantité de contaminants. Elle peut notamment comprendre une étape de filtration et/ou une étape d’un lavage à l’eau et/ou une étape d’adsorption. Said optional pretreatment step aO) can be implemented by any method known to those skilled in the art which makes it possible to reduce the quantity of contaminants. It may in particular comprise a filtration step and/or a step of washing with water and/or an adsorption step.
Selon une variante, ladite étape optionnelle de prétraitement aO) est mise en œuvre dans une section d’adsorption opérée en présence d’au moins un adsorbant. Ladite étape optionnelle de prétraitement aO) est mise en œuvre à une température entre 0 et 150°C, de préférence entre 5 et 100°C, et à une pression entre 0,15 et 10,0 MPa abs, de préférence entre 0,2 et 1,0 MPa abs. La section d’adsorption est opérée avantageusement en présence d’au moins un adsorbant, de préférence de type alumine, ayant une surface spécifique supérieure ou égale à 100 m2/g, de préférence supérieure ou égale à 200 m2/g. La surface spécifique dudit au moins adsorbant est avantageusement inférieure ou égale à 600 m2/g, en particulier inférieure ou égale à 400 m2/g. La surface spécifique de l’adsorbant est une surface mesurée par la méthode BET, c’est-à-dire la surface spécifique déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique 'The Journal of the American Chemical Society", 6Q, 309 (1938). According to a variant, said optional pretreatment step aO) is implemented in an adsorption section operated in the presence of at least one adsorbent. Said optional pretreatment step aO) is implemented at a temperature between 0 and 150°C, preferably between 5 and 100°C, and at a pressure between 0.15 and 10.0 MPa abs, preferably between 0.2 and 1.0 MPa abs. The adsorption section is advantageously carried out in the presence of at least one adsorbent, preferably of the alumina type, having a specific surface area greater than or equal to 100 m 2 /g, preferably greater than or equal to 200 m 2 /g. The specific surface of said at least one adsorbent is advantageously less than or equal to 600 m 2 /g, in particular less than or equal to 400 m 2 /g. The specific surface of the adsorbent is a surface measured by the BET method, i.e. the specific surface determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT method. -TELLER described in the periodical 'The Journal of the American Chemical Society', 6Q, 309 (1938).
Avantageusement, ledit adsorbant comprend moins de 1% poids d’éléments métalliques, de préférence est exempt d’éléments métalliques. Par éléments métalliques de l’adsorbant, il faut entendre les éléments des groupes 6 à 10 du tableau périodique des éléments (nouvelle classification IUPAC). Advantageously, said adsorbent comprises less than 1% by weight of metallic elements, preferably is free of metallic elements. By metallic elements of the adsorbent, we mean the elements of groups 6 to 10 of the periodic table of elements (new IUPAC classification).
Ladite section d’adsorption de l’étape optionnelle aO) comprend au moins une colonne d’adsorption, de préférence comprend au moins deux colonnes d’adsorption, préférentiellement entre deux et quatre colonnes d’adsorption, contenant ledit adsorbant. Lorsque la section d’adsorption comprend deux colonnes d’adsorption, un mode de fonctionnement peut être un fonctionnement appelé « en swing », selon le terme anglo- saxon consacré, dans lequel l’une des colonnes est en ligne, c’est-à-dire en fonctionnement, tandis que l’autre colonne est en réserve. Lorsque l’absorbant de la colonne en ligne est usé, cette colonne est isolée tandis que la colonne en réserve est mise en ligne, c’est-à-dire en fonctionnement. L’absorbant usé peut être ensuite régénéré in situ et/ou remplacé par de l’absorbant frais pour que la colonne le contenant puisse à nouveau être remise en ligne une fois que l’autre colonne aura été isolée. Said adsorption section of optional step aO) comprises at least one adsorption column, preferably comprises at least two adsorption columns, preferably between two and four adsorption columns, containing said adsorbent. When the adsorption section comprises two adsorption columns, an operating mode can be a so-called "swing" operation, according to the accepted Anglo-Saxon term, in which one of the columns is in line, i.e. ie in operation, while the other column is in reserve. When the absorbent of the online column is used, this column is isolated while the column in reserve is put online, that is to say in operation. The spent absorbent can then be regenerated in situ and/or replaced with fresh absorbent so that the column containing it can be brought back online once the other column has been isolated.
Un autre mode de fonctionnement est d’avoir au moins deux colonnes fonctionnant en série. Lorsque l’absorbant de la colonne placée en tête est usé, cette première colonne est isolée et l’absorbant usée est soit régénéré in situ ou remplacé par de l’absorbant frais. La colonne est ensuite remise en ligne en dernière position et ainsi de suite. Ce fonctionnement est appelé mode permutable, ou selon le terme anglais « PRS » pour Permutable Reactor System ou encore « lead and lag » selon le terme anglo-saxon consacré. L’association d’au moins deux colonnes d’adsorption permet de palier à l’empoisonnement et/ou au colmatage possible et éventuellement rapide de l’adsorbant sous l’action conjointe des contaminants métalliques, des dioléfines, des gommes issues des dioléfines et des insolubles éventuellement présents dans l’huile de pyrolyse de plastiques à traiter. La présence d’au moins deux colonnes d’adsorption facilite en effet le remplacement et/ou la régénération de l’adsorbant, avantageusement sans arrêt de l’unité de prétraitement, voire du procédé, permettant ainsi de diminuer les risques de colmatage et donc d’éviter l’arrêt de l’unité dû au colmatage, de maîtriser les coûts et de limiter la consommation d’adsorbant. Another mode of operation is to have at least two columns operating in series. When the absorbent of the column placed at the head is used up, this first column is isolated and the used absorbent is either regenerated in situ or replaced by fresh absorbent. The column is then brought back in line in the last position and so on. This operation is called permutable mode, or according to the English term "PRS" for Permutable Reactor System or even "lead and lag" according to the Anglo-Saxon term. The association of at least two adsorption columns makes it possible to overcome poisoning and/or possible and possibly rapid clogging of the adsorbent under the joint action of metallic contaminants, diolefins, gums from diolefins and insoluble possibly present in the pyrolysis oil of plastics to be treated. The presence of at least two adsorption columns in fact facilitates the replacement and/or regeneration of the adsorbent, advantageously without stopping the pretreatment unit, or even the process, thus making it possible to reduce the risks of clogging and therefore avoid unit shutdown due to clogging, control costs and limit adsorbent consumption.
Ladite étape optionnelle aO) de prétraitement peut également être éventuellement alimentée par au moins une fraction d’un flux de recycle, avantageusement issu de l’étape h) du procédé, en mélange ou séparément de la charge comprenant une huile de pyrolyse de plastiques. Said optional pretreatment step aO) can also optionally be supplied with at least a fraction of a recycle stream, advantageously from step h) of the process, mixed or separately from the feed comprising a plastic pyrolysis oil.
Ladite étape optionnelle aO) de prétraitement permet ainsi d’obtenir une charge prétraitée qui alimente ensuite l’étape a) d’hydrogénation sélective. Said optional pretreatment step aO) thus makes it possible to obtain a pretreated feed which then feeds step a) of selective hydrogenation.
Etape a) d’hydrogénation sélective Stage a) of selective hydrogenation
Selon l’invention, le procédé comprend une étape a) d’hydrogénation sélective de la charge comprenant une huile de pyrolyse de plastiques réalisée en présence d’hydrogène, dans des conditions de pression en hydrogène et de température permettant de maintenir ladite charge en phase liquide et avec une quantité d’hydrogène soluble juste nécessaire à une hydrogénation sélective des dioléfines présentes dans l’huile de pyrolyse de plastiques. L’hydrogénation sélective des dioléfines en phase liquide permet ainsi d’éviter ou au moins de limiter la formation de « gommes », c’est-à-dire la polymérisation des dioléfines et donc la formation d’oligomères et polymères, pouvant boucher la section réactionnelle de l’étape b) d’hydrotraitement. Ladite étape a) d’hydrogénation sélective permet d’obtenir un effluent hydrogéné, c’est-à-dire un effluent à teneur réduite en oléfines, en particulier en dioléfines, de préférence exempt de dioléfines. According to the invention, the method comprises a step a) of selective hydrogenation of the charge comprising an oil from the pyrolysis of plastics carried out in the presence of hydrogen, under conditions of hydrogen pressure and temperature making it possible to maintain said charge in phase liquid and with a quantity of soluble hydrogen just necessary for selective hydrogenation of the diolefins present in the plastic pyrolysis oil. The selective hydrogenation of diolefins in the liquid phase thus makes it possible to avoid or at least limit the formation of "gums", that is to say the polymerization of diolefins and therefore the formation of oligomers and polymers, which can clog the reaction section of step b) hydrotreatment. Said stage a) of selective hydrogenation makes it possible to obtain a hydrogenated effluent, that is to say an effluent with a reduced content of olefins, in particular of diolefins, preferably free of diolefins.
Selon l’invention, ladite étape a) d’hydrogénation sélective est mise en œuvre dans une section réactionnelle alimentée au moins par ladite charge comprenant une huile de pyrolyse de plastiques, ou par la charge prétraitée issue de l’éventuelle étape aO) de prétraitement, et un flux gazeux comprenant de l’hydrogène (H2). Eventuellement, la section réactionnelle de ladite étape a) peut également être alimentée en outre par au moins une fraction d’un flux de recycle, avantageusement issu de l’étape d) ou de l’étape h) optionnelle, soit en mélange avec ladite charge, éventuellement prétraitée, soit séparément de la charge, éventuellement prétraitée, avantageusement directement en entrée d’au moins un des réacteurs de la section réactionnelle de l’étape a). L’introduction d’au moins une fraction dudit flux de recycle dans la section réactionnelle de l’étape a) d’hydrogénation sélective permet avantageusement de diluer les impuretés de la charge, éventuellement prétraitée, et de contrôler la température notamment dans ladite section réactionnelle. According to the invention, said stage a) of selective hydrogenation is implemented in a reaction section fed at least by said charge comprising an oil from the pyrolysis of plastics, or by the pretreated charge resulting from the optional stage aO) of pretreatment , and a gas stream comprising hydrogen (H 2 ). Optionally, the reaction section of said step a) can also be additionally supplied with at least a fraction of a recycle stream, advantageously from step d) or from optional step h), either mixed with said charge, optionally pretreated, or separately from the charge, optionally pretreated, advantageously directly at the inlet of at least one of the reactors of the reaction section of step a). The introduction of at least a fraction of said recycle stream into the reaction section of stage a) of selective hydrogenation advantageously makes it possible to dilute the impurities of the charge, optionally pretreated, and to control the temperature in particular in said reaction section .
Ladite section réactionnelle met en œuvre une hydrogénation sélective, de préférence en lit fixe, en présence d’au moins un catalyseur d’hydrogénation sélective, avantageusement à une température entre 100 et 280°C, de préférence entre 120 et 260°C, de manière préférée entre 130 et 250°C, une pression partielle d’hydrogène entre 1 ,0 et 10,0 MPa abs, de manière préférée entre 1 ,5 et 8,0 MPa abs et à une vitesse volumique horaire (WH) entre 0,3 et 10,0 h 1, de manière préférée entre 0,5 et 5,0 h 1. La vitesse volumique horaire (WH) est définie ici comme le ratio entre le débit volumique horaire de la charge comprenant l’huile de pyrolyse de plastiques, éventuellement prétraitée, par le volume de catalyseur(s). La quantité du flux gazeux comprenant de l’hydrogène (H2), alimentant ladite section réactionnelle de l’étape a), est avantageusement telle que la couverture en hydrogène est comprise entre 1 et 200 Nm3 d’hydrogène par m3 de charge (Nm3/m3), de préférence entre 1 et 50 Nm3 d’hydrogène par m3 de charge (Nm3/m3), de manière préférée entre 5 et 20 Nm3 d’hydrogène par m3 de charge (Nm3/m3). La couverture en hydrogène est définie comme le rapport du débit volumique d’hydrogène pris dans les conditions normales de température et pression par rapport au débit volumique de charge « fraîche », c’est-à-dire de la charge à traiter, éventuellement prétraitée, sans tenir compte de l’éventuelle fraction recyclée, à 15°C (en normaux m3 , noté Nm3, de H2 par m3 de charge). Le flux gazeux comprenant de l’hydrogène, qui alimente la section réactionnelle de l’étape a), peut être constitué d’un appoint en hydrogène et/ou d’hydrogène recyclé issu en particulier de l’étape d) de séparation. Said reaction section implements selective hydrogenation, preferably in a fixed bed, in the presence of at least one selective hydrogenation catalyst, advantageously at a temperature between 100 and 280° C., preferably between 120 and 260° C., of preferably between 130 and 250°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs, preferably between 1.5 and 8.0 MPa abs and at an hourly volume rate (WH) between 0 .3 and 10.0 h 1 , preferably between 0.5 and 5.0 h 1 . The hourly volumetric speed (WH) is defined here as the ratio between the hourly volumetric flow rate of the charge comprising the plastics pyrolysis oil, optionally pretreated, by the volume of catalyst(s). The quantity of the gas stream comprising hydrogen (H2), supplying said reaction section of step a), is advantageously such that the hydrogen coverage is between 1 and 200 Nm 3 of hydrogen per m 3 of charge ( Nm 3 /m 3 ), preferably between 1 and 50 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ), preferably between 5 and 20 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ). The hydrogen coverage is defined as the ratio of the volume flow rate of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of "fresh" load, that is to say the load to be treated, possibly pretreated , without taking into account any recycled fraction, at 15° C. (in normal m 3 , denoted Nm 3 , of H2 per m 3 of charge). The gas stream comprising hydrogen, which feeds the reaction section of stage a), may consist of a make-up of hydrogen and/or recycled hydrogen originating in particular from stage d) of separation.
Avantageusement, la section réactionnelle de ladite étape a) comprend entre 1 et 5 réacteurs. Selon un mode de réalisation particulier de l’invention, la section réactionnelle comprend entre 2 et 5 réacteurs, qui fonctionnent en mode permutable, appelé selon le terme anglais « PRS » pour Permutable Reactor System ou encore « lead and lag ». L’association d’au moins deux réacteurs en mode PRS permet d’isoler un réacteur, de décharger le catalyseur usé, de recharger le réacteur en catalyseur frais et remettre en service ledit réacteur sans arrêt du procédé. La technologie PRS est décrite, en particulier, dans le brevet FR2681871. Avantageusement, des internes de réacteurs, par exemple de type plateaux filtrants, peuvent être utilisés pour prévenir le bouchage du(des) réacteur(s). Un exemple de plateau filtrant est décrit dans le brevet FR3051375. Advantageously, the reaction section of said step a) comprises between 1 and 5 reactors. According to a particular embodiment of the invention, the reaction section comprises between 2 and 5 reactors, which operate in permutable mode, called according to the English term “PRS” for Permutable Reactor System or even “lead and lag”. The association of at least two reactors in PRS mode makes it possible to isolate a reactor, to unload the spent catalyst, to reload the reactor with fresh catalyst and to put said reactor back into service without stopping the process. The PRS technology is described, in particular, in patent FR2681871. Advantageously, reactor internals, for example of the filter plate type, can be used to prevent clogging of the reactor(s). An example of a filter plate is described in patent FR3051375.
Avantageusement, ledit au moins catalyseur d’hydrogénation sélective comprend un support, de préférence minéral, et une fonction hydro-déshydrogénante. Advantageously, said at least selective hydrogenation catalyst comprises a support, preferably mineral, and a hydro-dehydrogenating function.
Selon une variante, la fonction hydro-déshydrogénante comprend en particulier au moins un élément du groupe VIII, de préférence choisi parmi le nickel et le cobalt, et au moins un élément du groupe VI B, de préférence choisi parmi le molybdène et le tungstène. Selon cette variante, la teneur totale en oxydes des éléments métalliques des groupes VI B et VIII est de préférence comprise entre 1% et 40% en poids, préférentiellement de 5% à 30% en poids par rapport au poids total du catalyseur. Le rapport pondéral exprimé en oxyde métallique entre le métal (ou les métaux) du groupe VI B par rapport au métal (ou aux métaux) du groupe VIII est de préférence compris entre 1 et 20, et de manière préférée entre 2 et 10.According to a variant, the hydro-dehydrogenating function comprises in particular at least one element from group VIII, preferably chosen from nickel and cobalt, and at least one element from group VI B, preferably chosen from molybdenum and tungsten. According to this variant, the total content of oxides of the metal elements of groups VI B and VIII is preferably between 1% and 40% by weight, preferably from 5% to 30% by weight relative to the total weight of the catalyst. The weight ratio expressed as metal oxide between the metal (or metals) of group VI B relative to the metal (or metals) of group VIII is preferably between 1 and 20, and preferably between 2 and 10.
Selon cette variante, la section réactionnelle de ladite étape a) comprend par exemple un catalyseur d’hydrogénation sélective comprenant entre 0,5% et 12% en poids de nickel, de préférence entre 1% et 10% en poids de nickel (exprimé en oxyde de nickel NiO par rapport au poids dudit catalyseur), et entre 1% et 30% en poids de molybdène, de préférence entre 3% et 20% en poids de molybdène (exprimé en oxyde de molybdène M0O3 par rapport au poids dudit catalyseur) sur un support de préférence minéral, de préférence sur un support d’alumine. According to this variant, the reaction section of said step a) comprises for example a selective hydrogenation catalyst comprising between 0.5% and 12% by weight of nickel, preferably between 1% and 10% by weight of nickel (expressed as nickel oxide NiO relative to the weight of said catalyst), and between 1% and 30% by weight of molybdenum, preferably between 3% and 20% by weight of molybdenum (expressed as molybdenum oxide MOO3 relative to the weight of said catalyst) on a preferably mineral support, preferably on an alumina support.
Selon une autre variante, la fonction hydro-déshydrogénante comprend, et est de préférence constituée d’au moins un élément du groupe VIII, de préférence du nickel. Selon cette variante, la teneur en oxydes de nickel est de préférence comprise entre 1 et 50 % en poids, de préférence entre 10% et 30% en poids par rapport au poids dudit catalyseur. Ce type de catalyseur est de préférence utilisé sous sa forme réduite, sur un support de préférence minéral, de préférence sur un support d’alumine. According to another variant, the hydro-dehydrogenating function comprises, and preferably consists of at least one element from group VIII, preferably nickel. According to this variant, the nickel oxide content is preferably between 1 and 50% by weight, preferably between 10% and 30% by weight relative to the weight of said catalyst. This type of catalyst is preferably used in its reduced form, preferably on a mineral support, preferably on an alumina support.
Le support dudit au moins catalyseur d’hydrogénation sélective est de préférence choisi parmi l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges. Ledit support peut renfermer des composés dopants, notamment des oxydes choisis parmi l’oxyde de bore, en particulier le trioxyde de bore, la zircone, la cérine, l’oxyde de titane, l’anhydride phosphorique et un mélange de ces oxydes. De préférence, ledit au moins catalyseur d’hydrogénation sélective comprend un support d’alumine, éventuellement dopé avec du phosphore et éventuellement du bore. Lorsque l’anhydride phosphorique P2O5 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % poids par rapport au poids total de l’alumine. Lorsque le trioxyde de bore B2O5 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % par rapport au poids total de l’alumine. L’alumine utilisée peut être par exemple une alumine y (gamma) ou h (êta). The support for said at least one selective hydrogenation catalyst is preferably chosen from alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof. Said support may contain doping compounds, in particular oxides chosen from boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides. Preferably, said at least selective hydrogenation catalyst comprises an alumina support, optionally doped with phosphorus and optionally boron. When phosphoric anhydride P2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% by weight relative to the total weight of the alumina. When boron trioxide B2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina. The alumina used may for example be a y (gamma) or h (eta) alumina.
Ledit catalyseur d’hydrogénation sélective est par exemple sous forme d’extrudés. Said selective hydrogenation catalyst is for example in the form of extrudates.
De manière très préférée, afin d’hydrogéner les dioléfines le plus sélectivement possible, l’étape a) peut mettre en œuvre en plus des catalyseurs d’hydrogénation sélective décrits ci- dessus en outre au moins un catalyseur d’hydrogénation sélective utilisé dans l’étape a) comprenant moins de 1% en poids de nickel et au moins 0,1 % poids de nickel, de préférence 0,5% poids de nickel, exprimé en oxyde de nickel NiO par rapport au poids dudit catalyseur, et moins de 5% en poids de molybdène et au moins 0,1 % poids de molybdène, de préférence 0,5% poids de molybdène, exprimé en oxyde de molybdène M0O3 par rapport au poids dudit catalyseur, sur un support d’alumine. Ce catalyseur peu chargé en métaux est de préférence mis en amont des catalyseurs d’hydrogénation sélective décrits ci-dessus.Very preferably, in order to hydrogenate the diolefins as selectively as possible, step a) can implement, in addition to the selective hydrogenation catalysts described above, in addition at least one selective hydrogenation catalyst used in the process. step a) comprising less than 1% by weight of nickel and at least 0.1% by weight of nickel, preferably 0.5% by weight of nickel, expressed as nickel oxide NiO relative to the weight of said catalyst, and less than 5% by weight of molybdenum and at least 0.1% by weight of molybdenum, preferably 0.5% by weight of molybdenum, expressed as molybdenum oxide MOO3 relative to the weight of said catalyst, on an alumina support. This catalyst with a low metal content is preferably placed upstream of the selective hydrogenation catalysts described above.
Eventuellement, la charge qui comprend une huile de pyrolyse de plastiques, éventuellement prétraitée, et/ou éventuellement mélangée préalablement avec au moins une fraction d’un flux de recycle, avantageusement issu de l’étape d) ou de l’étape h) optionnelle, peut être mélangée avec le flux gazeux comprenant de l’hydrogène préalablement à son introduction dans la section réactionnelle. Optionally, the charge which comprises a plastics pyrolysis oil, optionally pretreated, and/or optionally mixed beforehand with at least a fraction of a recycle stream, advantageously from stage d) or from optional stage h) , can be mixed with the gas stream comprising hydrogen prior to its introduction into the reaction section.
Ladite charge, éventuellement prétraitée, et/ou éventuellement mélangée avec au moins une fraction du flux de recycle, avantageusement issu de l’étape d) ou de l’étape h) optionnelle, et/ou éventuellement en mélange avec le flux gazeux, peut également être chauffée avant son introduction dans la section réactionnelle de l’étape a), par exemple par échange de chaleur notamment avec l’effluent d’hydrotraitement de l’étape b), pour atteindre une température proche de la température mise en œuvre dans la section réactionnelle qu’elle alimente. La teneur en impuretés, en particulier en dioléfines, de l’effluent hydrogéné obtenu à l’issue de l’étape a) est réduite par rapport à celle des mêmes impuretés, en particulier des dioléfines, comprises dans la charge du procédé. L’étape a) d’hydrogénation sélective permet généralement de convertir au moins 90% et de préférence au moins 99% des dioléfines contenues dans la charge initiale. L’étape a) permet également l’élimination, au moins en partie, d’autres contaminants, comme par exemple le silicium. L’effluent hydrogéné, obtenu à l’issue de l’étape a) d’hydrogénation sélective, est envoyé, de préférence directement, vers l’étape b) d’hydrotraitement. Lorsqu’au moins une fraction du flux de recycle issu de l’étape h) éventuelle est introduite, l’effluent hydrogéné obtenu à l’issue de l’étape a) d’hydrogénation sélective comprend donc, en plus de la charge convertie, ladite ou lesdites fraction(s) du flux de recycle. Said charge, optionally pretreated, and/or optionally mixed with at least a fraction of the recycle stream, advantageously from step d) or optional step h), and/or optionally mixed with the gas stream, can also be heated before its introduction into the reaction section of step a), for example by heat exchange in particular with the hydrotreatment effluent from step b), to reach a temperature close to the temperature used in the reaction section which it feeds. The content of impurities, in particular of diolefins, of the hydrogenated effluent obtained at the end of stage a) is reduced compared to that of the same impurities, in particular of diolefins, included in the charge of the process. Stage a) of selective hydrogenation generally makes it possible to convert at least 90% and preferably at least 99% of the diolefins contained in the initial charge. Step a) also allows the elimination, at least in part, of other contaminants, such as for example silicon. The hydrogenated effluent obtained at the end of stage a) of selective hydrogenation is sent, preferably directly, to stage b) of hydrotreatment. When at least a fraction of the recycle stream resulting from optional step h) is introduced, the hydrogenated effluent obtained at the end of step a) of selective hydrogenation therefore comprises, in addition to the converted feed, said fraction(s) of the recycle stream.
Etape b) d’hydrotraitement Stage b) of hydrotreatment
Selon l’invention, le procédé de traitement comprend une étape b) d’hydrotraitement, avantageusement en lit fixe, dudit effluent hydrogéné issu de l’étape a), éventuellement en mélange avec au moins une fraction d’un flux de recycle, avantageusement issu de l’étape d) ou de l’étape h) optionnelle, en présence d’hydrogène et d’au moins un catalyseur d’hydrotraitement, pour obtenir un effluent d’hydrotraitement. According to the invention, the treatment process comprises a step b) of hydrotreatment, advantageously in a fixed bed, of said hydrogenated effluent from step a), optionally in a mixture with at least a fraction of a recycle stream, advantageously from stage d) or from optional stage h), in the presence of hydrogen and of at least one hydrotreatment catalyst, to obtain a hydrotreatment effluent.
Avantageusement, l’étape b) met en œuvre les réactions d’hydrotraitement bien connues de l’homme du métier, et plus particulièrement des réactions d’hydrogénation des oléfines, des aromatiques, d’hydrodémétallation, d’hydrodésulfuration, d’hydrodéazotation, etc. Advantageously, step b) implements hydrotreatment reactions well known to those skilled in the art, and more particularly hydrogenation reactions of olefins, aromatics, hydrodemetallization, hydrodesulphurization, hydrodenitrogenation, etc
Avantageusement, ladite étape b) est mise en œuvre dans une section réactionnelle d’hydrotraitement comprenant au moins un, de préférence entre un et cinq, réacteur(s) à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à un, de préférence compris entre un et dix, de manière préférée compris entre deux et cinq, le(s)dit(s) lit(s) comprenant chacun au moins un, et de préférence pas plus de dix, catalyseur(s) d'hydrotraitement. Lorsqu’un réacteur comprend plusieurs lits catalytiques, c’est-à-dire au moins deux, de préférence entre deux et dix, de manière préférée entre deux et cinq lits catalytiques, lesdits lits catalytiques sont disposés en série dans ledit réacteur. Advantageously, said step b) is implemented in a hydrotreating reaction section comprising at least one, preferably between one and five, fixed-bed reactor(s) having n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, preferably between two and five, said bed(s) each comprising at least one, and preferably not more than ten, catalyst(s) d hydrotreating. When a reactor comprises several catalytic beds, that is to say at least two, preferably between two and ten, preferably between two and five catalytic beds, said catalytic beds are arranged in series in said reactor.
Ladite section réactionnelle d’hydrotraitement est alimentée au moins par ledit effluent hydrogéné issu de l’étape a) et un flux gazeux comprenant de l’hydrogène, avantageusement au niveau du premier lit catalytique du premier réacteur en fonctionnement. Said hydrotreating reaction section is supplied at least with said hydrogenated effluent from step a) and a gas stream comprising hydrogen, advantageously at the level of the first catalytic bed of the first reactor in operation.
Ladite section réactionnelle d’hydrotraitement de l’étape b) peut également être alimentée par au moins une fraction du flux de recycle, avantageusement issu de l’étape d) ou de l’étape h) optionnelle. La(les)dite(s) fraction(s) dudit flux de recycle ou la totalité du flux de recycle peu(ven)t être introduite(s) dans ladite section réactionnelle d’hydrotraitement en mélange avec l’effluent hydrogéné issu de l’étape a) ou séparément. La(les)dite(s) fraction(s) dudit flux de recycle ou la totalité du flux de recycle peu(ven)t être introduite(s) dans ladite section réactionnelle d’hydrotraitement au niveau d’un ou de plusieurs lits catalytiques de ladite section réactionnelle d’hydrotraitement de l’étape b). L’introduction d’au moins une fraction dudit flux de recycle permet avantageusement de diluer les impuretés encore présentes dans l’effluent hydrogéné et de contrôler la température, en particulier de limiter l’augmentation de température, dans le ou les lit(s) catalytique(s) de la section réactionnelle d’hydrotraitement qui met en œuvre des réactions fortement exothermiques. Said hydrotreating reaction section of stage b) can also be supplied with at least a fraction of the recycle stream, advantageously from stage d) or from optional stage h). Said fraction(s) of said recycle stream or all of the recycle stream can be introduced into said hydrotreating reaction section mixed with the hydrogenated effluent from the step a) or separately. Said fraction(s) of said recycle stream or all of the recycle stream can be introduced into said hydrotreating reaction section at the level of one or more catalytic beds of said hydrotreating reaction section of step b). The introduction of at least a fraction of said recycle stream advantageously makes it possible to dilute the impurities still present in the hydrogenated effluent and to control the temperature, in particular to limit the temperature increase, in the bed(s) catalyst(s) of the hydrotreating reaction section which implements highly exothermic reactions.
Avantageusement, ladite section réactionnelle d’hydrotraitement est mise en œuvre à une pression équivalente à celle utilisée dans la section réactionnelle de l’étape a) d’hydrogénation sélective, mais à une plus haute température que celle de la section réactionnelle de l’étape a) d’hydrogénation sélective. Ainsi, ladite section réactionnelle d’hydrotraitement est avantageusement mise en œuvre à une température d’hydrotraitement entre 250 et 430°C, de préférence entre 280 et 380°C, à une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et à une vitesse volumique horaire (WH) entre 0,1 et 10,0 h 1, de préférence entre 0,1 et 5,0 h 1, préférentiellement entre 0,2 et 2,0 h 1, de manière préférée entre 0,2 et 0,8 h 1. Selon l’invention, la « température d’hydrotraitement » correspond à une température moyenne dans la section réactionnelle d’hydrotraitement de l’étape b). En particulier, elle correspond à la Weight Average Bed Température (WABT) selon le terme anglo-saxon consacré, bien connue de l’Homme du métier. La température d’hydrotraitement est avantageusement déterminée en fonction des systèmes catalytiques, des équipements, de la configuration de ceux-ci, utilisés. Par exemple, la température d’hydrotraitement (ou WABT) est calculée de la manière suivante : Advantageously, said hydrotreating reaction section is implemented at a pressure equivalent to that used in the reaction section of stage a) of selective hydrogenation, but at a higher temperature than that of the reaction section of stage a) selective hydrogenation. Thus, said hydrotreating reaction section is advantageously carried out at a hydrotreating temperature between 250 and 430°C, preferably between 280 and 380°C, at a hydrogen partial pressure between 1.0 and 10.0 MPa abs. and at an hourly volume rate (WH) between 0.1 and 10.0 h 1 , preferably between 0.1 and 5.0 h 1 , preferably between 0.2 and 2.0 h 1 , preferably between 0 .2 and 0.8 h 1 . According to the invention, the “hydrotreatment temperature” corresponds to an average temperature in the hydrotreatment reaction section of step b). In particular, it corresponds to the Weight Average Bed Temperature (WABT) according to the established Anglo-Saxon term, well known to those skilled in the art. The hydrotreatment temperature is advantageously determined as a function of the catalytic systems, of the equipment, of the configuration thereof, used. For example, the hydrotreating temperature (or WABT) is calculated as follows:
WABT - (Xeo s + 2x Issdis)/3 avec Tentrée : la température de l’effluent hydrogéné en entrée de la section réactionnelle d’hydrotraitement, TSOrtie : la température de l’effluent en sortie de section réactionnelle d’hydrotraitement. WABT - (Xeos + 2x Issdis)/3 with T inlet : the temperature of the hydrogenated effluent at the inlet of the hydrotreatment reaction section, T SO rtie: the temperature of the effluent at the outlet of the hydrotreatment reaction section.
La vitesse volumique horaire (WH) est définie ici comme le ratio entre le débit volumique horaire de l’effluent hydrogéné issu de l’étape a) par volume de catalyseur(s). La couverture en hydrogène dans l’étape b) est avantageusement comprise entre 50 et 1000 Nm3 d’hydrogène par m3 de charge fraîche qui alimente l’étape a), et de préférence entre 50 et 500 Nm3 d’hydrogène par m3 de charge fraîche qui alimente l’étape a), de manière préférée entre 100 et 300 Nm3 d’hydrogène par m3 de charge fraîche qui alimente l’étape a). La couverture en hydrogène est définie ici comme le rapport du débit volumique d’hydrogène pris dans les conditions normales de température et pression par rapport au débit volumique de charge fraîche qui alimente l’étape a), c’est-à-dire de charge comprenant une huile de pyrolyse de plastiques, ou par la charge éventuellement prétraitée, qui alimente l’étape a) (en normaux m3 , noté Nm3, de H2 par m3 de charge fraîche). L’hydrogène peut être constitué d’un appoint et/ou d’hydrogène recyclé issu en particulier de l’étape d) de séparation. The hourly volumetric speed (WH) is defined here as the ratio between the hourly volumetric flow rate of the hydrogenated effluent from stage a) per volume of catalyst(s). The hydrogen coverage in stage b) is advantageously between 50 and 1000 Nm 3 of hydrogen per m 3 of fresh charge which supplies stage a), and preferably between 50 and 500 Nm 3 of hydrogen per m 3 of fresh feed which feeds stage a), preferably between 100 and 300 Nm 3 of hydrogen per m 3 of fresh feed which feeds stage a). The hydrogen coverage is defined here as the ratio of the volume flow rate of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of fresh charge which supplies stage a), that is to say of charge comprising a plastics pyrolysis oil, or by the optionally pretreated charge, which feeds stage a) (in normal m 3 , denoted Nm 3 , of H2 per m 3 of fresh charge). The hydrogen can consist of a make-up and/or of recycled hydrogen resulting in particular from stage d) of separation.
De préférence, un flux gazeux supplémentaire comprenant de l’hydrogène est avantageusement introduit en entrée de chaque réacteur, en particulier fonctionnant en série, et/ou en entrée de chaque lit catalytique à partir du second lit catalytique de la section réactionnelle d’hydrotraitement. Ces flux gazeux supplémentaires sont appelés encore flux de refroidissement. Ils permettent de contrôler la température dans le réacteur d’hydrotraitement dans lequel les réactions mises en œuvre sont généralement très exothermiques. Preferably, an additional gas stream comprising hydrogen is advantageously introduced at the inlet of each reactor, in particular operating in series, and/or at the inlet of each catalytic bed from the second catalytic bed of the hydrotreating reaction section. These additional gas streams are also called cooling streams. They make it possible to control the temperature in the hydrotreating reactor in which the reactions implemented are generally very exothermic.
Avantageusement, ledit catalyseur d'hydrotraitement utilisé dans ladite étape b) peut être choisi parmi des catalyseurs connus d’hydrodémétallation, d’hydrotraitement, de captation du silicium, utilisés notamment pour le traitement des coupes pétrolières, et leurs combinaisons. Des catalyseurs d’hydrodémétallation connus sont par exemple ceux décrits dans les brevets EP 0113297, EP 0113284, US 5221656, US 5827421, US 7119045, US 5622616 et US 5089463. Des catalyseurs d’hydrotraitement connus sont par exemple ceux décrits dans les brevets EP 0113297, EP 0113284, US 6589908, US 4818743 ou US 6332976. Des catalyseurs de captation du silicium connus sont par exemple ceux décrits dans les demandes de brevets CN 102051202 et US 2007/080099. En particulier, ledit catalyseur d’hydrotraitement comprend un support, de préférence minéral, et au moins un élément métallique ayant une fonction hydro-déshydrogénante. Ledit élément métallique ayant une fonction hydro-déshydrogénante comprend avantageusement au moins un élément du groupe VIII, de préférence choisi dans le groupe constitué par le nickel et le cobalt, et/ou au moins un élément du groupe VI B, de préférence choisi dans le groupe constitué par le molybdène et le tungstène. La teneur totale en oxydes des éléments métalliques des groupes VIB et VIII est de préférence entre 0,1% et 40% en poids, préférentiellement de 5% à 35% en poids, par rapport au poids total du catalyseur. Le rapport pondéral exprimé en oxyde métallique entre le métal (ou les métaux) du groupe VIB par rapport au métal (ou aux métaux) du groupe VIII est de préférence compris entre 1,0 et 20, de manière préférée entre 2,0 et 10. Par exemple, la section réactionnelle d’hydrotraitement de l’étape b) du procédé comprend un catalyseur d’hydrotraitement comprenant entre 0,5% et 10% en poids de nickel, de préférence entre 1% et 8% en poids de nickel, exprimé en oxyde de nickel NiO par rapport au poids total du catalyseur d’hydrotraitement, et entre 1,0% et 30% en poids de molybdène, de préférence entre 3,0% et 29% en poids de molybdène, exprimé en oxyde de molybdène M0O3 par rapport au poids total du catalyseur d’hydrotraitement, sur un support minéral. Advantageously, said hydrotreating catalyst used in said step b) can be chosen from known catalysts for hydrodemetallization, hydrotreating, silicon capture, used in particular for the treatment of petroleum cuts, and combinations thereof. Known hydrodemetallization catalysts are for example those described in patents EP 0113297, EP 0113284, US 5221656, US 5827421, US 7119045, US 5622616 and US 5089463. Known hydrotreating catalysts are for example those described in patents EP 0113297, EP 0113284, US 6589908, US 4818743 or US 6332976. Known silicon capture catalysts are for example those described in patent applications CN 102051202 and US 2007/080099. In particular, said hydrotreating catalyst comprises a support, preferably mineral, and at least one metallic element having a hydro-dehydrogenating function. Said metallic element having a hydro-dehydrogenating function advantageously comprises at least one element from group VIII, preferably chosen from the group consisting of nickel and cobalt, and/or at least one element from group VI B, preferably chosen from the group group consisting of molybdenum and tungsten. The total content of oxides of the metal elements of groups VIB and VIII is preferably between 0.1% and 40% by weight, preferably from 5% to 35% by weight, relative to the total weight of the catalyst. The weight ratio expressed as metal oxide between the metal (or metals) of group VIB relative to the metal (or metals) of group VIII is preferably between 1.0 and 20, preferably between 2.0 and 10 For example, the hydrotreating reaction section of step b) of the process comprises a hydrotreating catalyst comprising between 0.5% and 10% by weight of nickel, preferably between 1% and 8% by weight of nickel. , expressed as nickel oxide NiO relative to the total weight of the hydrotreating catalyst, and between 1.0% and 30% by weight of molybdenum, preferably between 3.0% and 29% by weight of molybdenum, expressed as oxide of molybdenum MOO3 relative to the total weight of the hydrotreating catalyst, on a mineral support.
Le support dudit catalyseur d’hydrotraitement est avantageusement choisi parmi l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges. Ledit support peut en outre renfermer des composés dopants, notamment des oxydes choisis parmi l’oxyde de bore, en particulier le trioxyde de bore, la zircone, la cérine, l’oxyde de titane, l’anhydride phosphorique et un mélange de ces oxydes. De préférence, ledit catalyseur d’hydrotraitement comprend un support d’alumine, de manière préférée un support d’alumine dopé avec du phosphore et éventuellement du bore. Lorsque l’anhydride phosphorique P2O5 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % poids par rapport au poids total de l’alumine. Lorsque le trioxyde de bore B2O5 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % par rapport au poids total de l’alumine. L’alumine utilisée peut être par exemple une alumine y (gamma) ou P (êta). The support for said hydrotreating catalyst is advantageously chosen from alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof. Said support may also contain doping compounds, in particular oxides chosen from boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides. . Preferably, said hydrotreating catalyst comprises an alumina support, preferably an alumina support doped with phosphorus and optionally boron. When phosphoric anhydride P2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% by weight relative to the total weight of the alumina. When boron trioxide B2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina. The alumina used may for example be a y (gamma) or P (eta) alumina.
Ledit catalyseur d’hydrotraitement est par exemple sous forme d’extrudés. Said hydrotreating catalyst is for example in the form of extrudates.
Avantageusement, ledit catalyseur d’hydrotraitement utilisé dans l’étape b) du procédé présente une surface spécifique supérieure ou égale à 250 m2/g, de préférence supérieure ou égale à 300 m2/g. La surface spécifique dudit catalyseur d’hydrotraitement est avantageusement inférieure ou égale à 800 m2/g, de préférence inférieure ou égale à 600 m2/g, en particulier inférieure ou égale à 400 m2/g. La surface spécifique du catalyseur d’hydrotraitement est mesurée par la méthode BET, c’est-à-dire la surface spécifique déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique 'The Journal of the American Chemical Society", 6Q, 309 (1938). Une telle surface spécifique permet d’améliorer encore l’élimination des contaminants, en particulier des métaux comme le silicium. Advantageously, said hydrotreating catalyst used in step b) of the process has a specific surface area greater than or equal to 250 m 2 /g, preferably greater than or equal to 300 m 2 /g. The specific surface of said hydrotreating catalyst is advantageously less than or equal to 800 m 2 /g, preferably less than or equal to 600 m 2 /g, in particular less than or equal to 400 m 2 /g. The specific surface of the hydrotreating catalyst is measured by the BET method, that is to say the specific surface determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 established from the BRUNAUER-EMMETT- TELLER described in the periodical 'The Journal of the American Chemical Society', 6Q, 309 (1938). Such a specific surface makes it possible to further improve the removal of contaminants, in particular of metals such as silicon.
Selon un autre aspect de l'invention, le catalyseur d'hydrotraitement tel que décrit plus haut comprend en outre un ou plusieurs composés organiques contenant de l'oxygène et/ou de l'azote et/ou du soufre. Un tel catalyseur est souvent désigné par le terme "catalyseur additivé". Généralement, le composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, oxime, urée et amide ou encore les composés incluant un cycle furanique ou encore les sucres. According to another aspect of the invention, the hydrotreating catalyst as described above further comprises one or more organic compounds containing oxygen and/or nitrogen and/or sulfur. Such a catalyst is often designated by the term "additive catalyst". Generally, the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide or even compounds including a furan ring or even sugars.
L’étape b) d’hydrotraitement permet avantageusement un traitement optimisé de l’effluent hydrogéné issu de l’étape a). Elle permet, en particulier, de maximiser l’hydrogénation des liaisons insaturées des composés oléfiniques présents dans l’effluent hydrogéné issu de l’étape a), l’hydrodémétallation dudit effluent hydrogéné et la captation des métaux, notamment le silicium, encore présents dans l’effluent hydrogéné. L’étape b) d’hydrotraitement permet également l’hydrodéazotation (HDN) de l’effluent hydrogéné, c’est- à-dire la conversion des espèces azotés encore présentes dans l’effluent hydrogéné. De préférence, la teneur en azote de l’effluent d’hydrotraitement à l’issue de l’étape b) est inférieure ou égale à 10 ppm en poids. Hydrotreatment step b) advantageously allows optimized treatment of the hydrogenated effluent from step a). It makes it possible, in particular, to maximize the hydrogenation of the unsaturated bonds of the olefinic compounds present in the hydrogenated effluent resulting from stage a), the hydrodemetallization of said hydrogenated effluent and the capture of metals, in particular silicon, still present in the hydrogenated effluent. Stage b) of hydrotreatment also allows the hydrodenitrogenation (HDN) of the hydrogenated effluent, i.e. the conversion of the nitrogenous species still present in the hydrogenated effluent. Preferably, the nitrogen content of the hydrotreatment effluent at the end of step b) is less than or equal to 10 ppm by weight.
Dans un mode de réalisation préféré de l’invention, ladite section réactionnelle d’hydrotraitement comprend plusieurs réacteurs à lit fixe, préférentiellement entre deux et cinq, très préférentiellement entre deux et quatre, réacteurs à lit fixe, ayant chacun n lits catalytiques, n étant un nombre entier supérieur ou égal à un, de préférence compris entre un et dix, de manière préférée compris entre deux et cinq, et fonctionnant avantageusement en série et/ou en parallèle et/ou en mode permutable (ou PRS) et/ou en mode « swing ». Les différents modes de fonctionnement éventuels, mode PRS (ou lead and lag) et mode swing, et sont bien connus de l’Homme du métier et sont avantageusement définis plus haut. L’avantage d’une section réactionnelle d’hydrotraitement comprenant plusieurs réacteurs réside dans un traitement optimisé de l’effluent hydrogéné, tout en permettant de diminuer les risques de colmatage du ou des lits catalytiques et donc d’éviter l’arrêt de l’unité dû au colmatage. In a preferred embodiment of the invention, said hydrotreating reaction section comprises several fixed bed reactors, preferably between two and five, very preferably between two and four, fixed bed reactors, each having n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, preferably between two and five, and advantageously operating in series and/or in parallel and/or in switchable mode (or PRS) and/or in swing mode. The different possible operating modes, PRS mode (or lead and lag) and swing mode, and are well known to those skilled in the art and are advantageously defined above. The advantage of a hydrotreatment reaction section comprising several reactors lies in an optimized treatment of the hydrogenated effluent, while making it possible to reduce the risks of clogging of the catalytic bed(s) and therefore to avoid stopping the unit due to clogging.
Selon un mode de réalisation très préféré de l’invention, ladite section réactionnelle d’hydrotraitement comprend, de préférence consiste en : According to a very preferred embodiment of the invention, said hydrotreating reaction section comprises, preferably consists of:
- (b1) deux réacteurs à lit fixe fonctionnant en mode swing ou permutable, de préférence en mode PRS, chacun des deux réacteurs ayant de préférence un lit catalytique comprenant avantageusement un catalyseur d’hydrotraitement de préférence choisi parmi des catalyseurs connus d’hydrodémétallation, de captation du silicium et leurs combinaisons, et- (b1) two fixed-bed reactors operating in swing or switchable mode, preferably in PRS mode, each of the two reactors preferably having a catalytic bed advantageously comprising a hydrotreating catalyst preferably chosen from known hydrodemetallization catalysts, silicon capture and combinations thereof, and
- (b2) au moins un réacteur à lit fixe, de préférence un réacteur, situé en aval des deux réacteurs (b1), et avantageusement fonctionnant en série des deux réacteurs (b1), ledit réacteur (b2) à lit fixe ayant entre 1 et 5 lits catalytiques disposés en série et comprenant chacun entre un et dix catalyseur(s) d'hydrotraitement dont au moins un desdits catalyseurs d’hydrotraitement comprend avantageusement un support et au moins un élément métallique comprenant de préférence au moins un élément du groupe VIII, de préférence choisi parmi le nickel et le cobalt, et/ou au moins un élément du groupe VI B, de préférence choisi parmi le molybdène et le tungstène. - (b2) at least one fixed-bed reactor, preferably one reactor, located downstream of the two reactors (b1), and advantageously operating in series with the two reactors (b1), said fixed-bed reactor (b2) having between 1 and 5 catalytic beds arranged in series and each comprising between one and ten hydrotreating catalyst(s) of which at least one of said hydrotreating catalysts advantageously comprises a support and at least one metallic element preferably comprising at least one element from group VIII , preferably chosen from nickel and cobalt, and/or at least one element from group VI B, preferably chosen from molybdenum and tungsten.
Eventuellement, l’étape b) peut mettre en œuvre une section de chauffe située en amont de la section réactionnelle d’hydrotraitement et dans laquelle l’effluent hydrogéné issu de l’étape a) est chauffé pour atteindre une température adaptée pour l’hydrotraitement, c’est-à-dire une température comprise entre 250 et 430°C. Ladite éventuelle section de chauffe peut ainsi comprendre un ou plusieurs échangeurs, permettant de préférence un échange de chaleur entre l’effluent hydrogéné et l’effluent d’hydrotraitement, et/ou un four de préchauffe.Optionally, step b) can implement a heating section located upstream of the hydrotreatment reaction section and in which the hydrogenated effluent from step a) is heated to reach a temperature suitable for the hydrotreatment , that is to say a temperature between 250 and 430°C. Said optional heating section can thus comprise one or more exchangers, preferably allowing heat exchange between the hydrogenated effluent and the hydrotreatment effluent, and/or a preheating furnace.
Avantageusement, l’étape b) d’hydrotraitement permet l’hydrogénation totale des oléfines présentes dans la charge initiale et celles éventuellement obtenues après l’étape a) d’hydrogénation sélective, mais aussi la conversion au moins en partie d’autres impuretés présentes dans la charge, comme les composés aromatiques, les composés métalliques, les composés soufrés, les composés azotés, les composés halogénés (notamment les composés chlorés), les composés oxygénés. L’étape b) peut également permettre de réduire encore la teneur en contaminants, comme celle des métaux, en particulier la teneur en silicium. Etape c) d’hydrocraquage (première étape d’hydrocraquage) Advantageously, stage b) of hydrotreatment allows the total hydrogenation of the olefins present in the initial charge and those possibly obtained after stage a) of selective hydrogenation, but also the conversion at least in part of other impurities present in the load, such as aromatic compounds, metal compounds, sulfur compounds, nitrogen compounds, halogenated compounds (in particular chlorinated compounds), oxygenated compounds. Step b) can also make it possible to further reduce the content of contaminants, such as that of metals, in particular the silicon content. Hydrocracking step c) (first hydrocracking step)
Selon l’invention, le procédé de traitement comprend une première étape c) d’hydrocraquage, avantageusement en lit fixe, dudit effluent hydrotraité issu de l’étape b), en présence d’hydrogène et d’au moins un catalyseur d’hydrocraquage, pour obtenir un effluent hydrocraqué. According to the invention, the treatment process comprises a first stage c) of hydrocracking, advantageously in a fixed bed, of said hydrotreated effluent from stage b), in the presence of hydrogen and of at least one hydrocracking catalyst , to obtain a hydrocracked effluent.
Avantageusement, l’étape c) met en œuvre les réactions d’hydrocraquage bien connues de l’homme du métier, et permet plus particulièrement de convertir les composés lourds, par exemple des composés ayant un point d’ébullition supérieur à 175°C en composés ayant un point d’ébullition inférieur ou égal à 175°C contenus dans l’effluent hydrotraité issu de l’étape b). D’autres réactions, comme l’hydrogénation des oléfines, des aromatiques, l’hydrodémétallation, l’hydrodésulfuration, l’hydrodéazotation, etc. peuvent se poursuivent.Advantageously, step c) implements the hydrocracking reactions well known to those skilled in the art, and more particularly makes it possible to convert the heavy compounds, for example compounds having a boiling point above 175° C. into compounds having a boiling point less than or equal to 175° C. contained in the hydrotreated effluent from step b). Other reactions, such as hydrogenation of olefins, aromatics, hydrodemetallization, hydrodesulfurization, hydrodenitrogenation, etc. can continue.
Avantageusement, ladite étape c) est mise en œuvre dans une section réactionnelle d’hydrocraquage comprenant au moins un, de préférence entre un et cinq, réacteur(s) à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à un, de préférence compris entre un et dix, de manière préférée compris entre deux et cinq, le(s)dit(s) lit(s) comprenant chacun au moins un, et de préférence pas plus de dix, catalyseur(s) d’hydrocraquage. Lorsqu’un réacteur comprend plusieurs lits catalytiques, c’est-à-dire au moins deux, de préférence entre deux et dix, de manière préférée entre deux et cinq lits catalytiques, lesdits lits catalytiques sont disposés en série dans ledit réacteur. Advantageously, said step c) is implemented in a hydrocracking reaction section comprising at least one, preferably between one and five, fixed-bed reactor(s) having n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, preferably between two and five, said bed(s) each comprising at least one, and preferably not more than ten, catalyst(s) d hydrocracking. When a reactor comprises several catalytic beds, that is to say at least two, preferably between two and ten, preferably between two and five catalytic beds, said catalytic beds are arranged in series in said reactor.
L’étape b) d’hydrotraitement et l’étape c) d’hydrocraquage peuvent avantageusement être réalisées dans un même réacteur ou dans des réacteurs différents. Dans le cas où elles sont réalisées dans un même réacteur, le réacteur comprend plusieurs lits catalytiques, les premiers lits catalytiques comprenant le ou les catalyseurs d’hydrotraitement et les lits catalytiques suivants comprenant le ou les catalyseurs d’hydrocraquage. Stage b) of hydrotreatment and stage c) of hydrocracking can advantageously be carried out in the same reactor or in different reactors. In the case where they are carried out in the same reactor, the reactor comprises several catalytic beds, the first catalytic beds comprising the hydrotreating catalyst(s) and the following catalytic beds comprising the hydrocracking catalyst(s).
Ladite section réactionnelle d’hydrocraquage est alimentée au moins par ledit effluent hydrotraité issu de l’étape b) et un flux gazeux comprenant de l’hydrogène, avantageusement au niveau du premier lit catalytique du premier réacteur en fonctionnement. Said hydrocracking reaction section is fed at least with said hydrotreated effluent from step b) and a gas stream comprising hydrogen, advantageously at the level of the first catalytic bed of the first reactor in operation.
Avantageusement ladite section réactionnelle d’hydrocraquage est mise en œuvre à une pression équivalente à celle utilisée dans la section réactionnelle de l’étape a) d’hydrogénation sélective ou l’étape b) d’hydrotraitement. Ainsi, ladite section réactionnelle d’hydrocraquage est avantageusement mise en œuvre à une température d’hydrotraitement entre 250 et 480°C, de préférence entre 320 et 450°C, à une pression partielle d’hydrogène entre 1,5 et 25,0 MPa abs., de préférence entre 2 et 20 MPa abs, et à une vitesse volumique horaire (WH) entre 0,1 et 10,0 h 1, de préférence entre 0,1 et 5,0 h 1, préférentiellement entre 0,2 et 4 h 1. Selon l’invention, la « température d’hydrocraquage » correspond à une température moyenne dans la section réactionnelle d’hydrocraquage de l’étape c) et de l’étape f) respectivement. En particulier, elle correspond à la Weight Average Bed Température (WABT) selon le terme anglo-saxon consacré, bien connue de l’Homme du métier. La température d’hydrocraquage est avantageusement déterminée en fonction des systèmes catalytiques, des équipements, de la configuration de ceux-ci, utilisés. Par exemple, la température d’hydrocraquage (ou WABT) est calculée de la manière suivante : Advantageously, said hydrocracking reaction section is implemented at a pressure equivalent to that used in the reaction section of stage a) of selective hydrogenation or stage b) of hydrotreatment. Thus, said hydrocracking reaction section is advantageously carried out at a hydrotreating temperature between 250 and 480°C, preferably between 320 and 450°C, at a hydrogen partial pressure between 1.5 and 25.0 MPa abs., preferably between 2 and 20 MPa abs., and at an hourly volume rate (WH) between 0.1 and 10.0 h 1 , preferably between 0.1 and 5.0 h 1 , preferably between 0, 2 and 4: 1 a.m. According to the invention, the “hydrocracking temperature” corresponds to an average temperature in the hydrocracking reaction section of step c) and of step f) respectively. In particular, it corresponds to the Weight Average Bed Temperature (WABT) according to the established Anglo-Saxon term, well known to those skilled in the art. The hydrocracking temperature is advantageously determined as a function of the catalytic systems, of the equipment, of the configuration thereof, used. For example, the hydrocracking temperature (or WABT) is calculated as follows:
WABT - (Xaojcâs + 2 x T¾jd }/3 avec Tentrée : la température de l’effluent hydrogéné en entrée de la section réactionnelle d’hydrocraquage, TSOrtie : la température de l’effluent en sortie de section réactionnelle d’hydrocraquage. WABT - (Xaojcâs + 2 x T ¾j d }/3 with T inlet : the temperature of the hydrogenated effluent at the inlet of the hydrocracking reaction section, T SO rtie: the temperature of the effluent at the outlet of the reaction section d hydrocracking.
La vitesse volumique horaire (WH) est définie ici comme le ratio entre le débit volumique horaire de l’effluent hydrogéné issu de l’étape a) par volume de catalyseur(s). La couverture en hydrogène dans l’étape c) est avantageusement comprise entre 80 et 2000 Nm3 d’hydrogène par m3 de charge fraîche qui alimente l’étape a), et de préférence entre 200 et 1800 Nm3 d’hydrogène par m3 de charge fraîche qui alimente l’étape a). La couverture en hydrogène est définie ici comme le rapport du débit volumique d’hydrogène pris dans les conditions normales de température et pression par rapport au débit volumique de charge fraîche qui alimente l’étape a), c’est-à-dire de charge comprenant une huile de pyrolyse de plastiques, ou par la charge éventuellement prétraitée, qui alimente l’étape a) (en normaux m3 , noté Nm3, de H2 par m3 de charge fraîche). L’hydrogène peut être constitué d’un appoint et/ou d’hydrogène recyclé issu en particulier de l’étape d) de séparation. The hourly volumetric speed (WH) is defined here as the ratio between the hourly volumetric flow rate of the hydrogenated effluent from stage a) per volume of catalyst(s). The hydrogen coverage in stage c) is advantageously between 80 and 2000 Nm 3 of hydrogen per m 3 of fresh charge which supplies stage a), and preferably between 200 and 1800 Nm 3 of hydrogen per m 3 of fresh load which supplies step a). The hydrogen coverage is defined here as the ratio of the volume flow rate of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of fresh charge which supplies stage a), that is to say of charge comprising a plastics pyrolysis oil, or by the optionally pretreated charge, which feeds stage a) (in normal m 3 , denoted Nm 3 , of H2 per m 3 of fresh charge). The hydrogen can consist of a make-up and/or of recycled hydrogen resulting in particular from stage d) of separation.
De préférence, un flux gazeux supplémentaire comprenant de l’hydrogène est avantageusement introduit en entrée de chaque réacteur, en particulier fonctionnant en série, et/ou en entrée de chaque lit catalytique à partir du second lit catalytique de la section réactionnelle d’hydrocraquage. Ces flux gazeux supplémentaires sont appelés encore flux de refroidissement. Ils permettent de contrôler la température dans le réacteur d’hydrocraquage dans lequel les réactions mises en œuvre sont généralement très exothermiques. Dans un mode de réalisation permettant de maximiser la production d’une coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C, les conditions opératoires utilisées dans l’étape c) d’hydrocraquage permettent généralement d’atteindre des conversions par passe, en produits ayant au moins 80% en volume de produits ayant des points d’ébullition inférieurs à 175°C, de préférence inférieurs à 160°C et de manière préférée inférieurs à 150°C, supérieures à 15% poids et de manière encore plus préférée comprises entre 20 et 95% poids. Preferably, an additional gas stream comprising hydrogen is advantageously introduced at the inlet of each reactor, in particular operating in series, and/or at the inlet of each catalytic bed from the second catalytic bed of the hydrocracking reaction section. These additional gas streams are also called cooling streams. They make it possible to control the temperature in the hydrocracking reactor in which the reactions implemented are generally very exothermic. In one embodiment making it possible to maximize the production of a naphtha cut comprising compounds having a boiling point less than or equal to 175° C., the operating conditions used in stage c) of hydrocracking generally make it possible to achieve conversions per pass, into products having at least 80% by volume of products having boiling points below 175°C, preferably below 160°C and preferably below 150°C, above 15% by weight and even more preferably between 20 and 95% by weight.
L’étape c) d’hydrocraquage_ne permet ainsi pas de transformer tous les composés ayant un point d’ébullition supérieur à 175°C en composés ayant un point d’ébullition inférieur ou égal à 175°C. Après l’étape de fractionnement e), il reste donc une proportion plus ou moins importante de composés ayant un point d’ébullition supérieur à 175°C qui est envoyée dans la deuxième étape f) d’hydrocraquage. Stage c) of hydrocracking thus does not make it possible to transform all the compounds having a boiling point greater than 175°C into compounds having a boiling point less than or equal to 175°C. After fractionation step e), there therefore remains a more or less significant proportion of compounds with a boiling point above 175°C which is sent to the second hydrocracking step f).
Conformément à l’invention, l’étape c) d’hydrocraquage opère en présence d’au moins un catalyseur d’hydrocraquage. In accordance with the invention, stage c) of hydrocracking operates in the presence of at least one hydrocracking catalyst.
Le ou les catalyseur(s) d’hydrocraquage utilisé(s) dans l’étape c) d’hydrocraquage sont des catalyseurs classiques d’hydrocraquage connus de l'Homme du métier, de type bifonctionnel associant une fonction acide à une fonction hydro-déshydrogénante et éventuellement au moins une matrice liante. La fonction acide est apportée par des supports de grande surface (150 à 800 m2/g généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d’oxydes de bore et d’aluminium, les silice-alumines amorphes et les zéolithes. La fonction hydro- déshydrogénante est apportée par au moins un métal du groupe VI B de la classification périodique et/ou au moins un métal du groupe VIII. The hydrocracking catalyst(s) used in step c) hydrocracking are conventional hydrocracking catalysts known to those skilled in the art, of the bifunctional type combining an acid function with a hydro- dehydrogenating agent and optionally at least one binder matrix. The acid function is provided by supports with a large surface area (generally 150 to 800 m 2 /g) exhibiting surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron and aluminum oxides, amorphous silica-aluminas and zeolites. The hydrodehydrogenating function is provided by at least one metal from group VI B of the periodic table and/or at least one metal from group VIII.
De préférence, le ou les catalyseurs d’hydrocraquage utilisés dans l’étape c) comprennent une fonction hydro-déshydrogénante comprenant au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium et le platine, et de préférence parmi le cobalt et le nickel. De préférence, le(s)dit(s) catalyseurs comprennent également au moins un métal du groupe VI B choisi parmi le chrome, le molybdène et le tungstène, seul ou en mélange, et de préférence parmi le molybdène et le tungstène. Des fonctions hydro-déshydrogénantes de type NiMo, NiMoW, NiWsont préférées. De préférence, la teneur en métal du groupe VIII dans le ou les catalyseur(s) d’hydrocraquage est avantageusement comprise entre 0,5 et 15% poids et de préférence entre 1 et 10% poids, les pourcentages étant exprimés en pourcentage poids d’oxydes par rapport au poids total du catalyseur. Preferably, the hydrocracking catalyst(s) used in step c) comprise a hydro-dehydrogenating function comprising at least one group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum, and preferably from cobalt and nickel. Preferably, said catalyst(s) also comprise at least one metal from group VI B chosen from chromium, molybdenum and tungsten, alone or as a mixture, and preferably from molybdenum and tungsten. Hydro-dehydrogenating functions of the NiMo, NiMoW, NiW type are preferred. Preferably, the group VIII metal content in the hydrocracking catalyst(s) is advantageously between 0.5 and 15% by weight and preferably between 1 and 10% by weight, the percentages being expressed as percentage by weight of oxides relative to the total weight of the catalyst.
De préférence, la teneur en métal du groupe VI B dans le ou les catalyseur(s) d’hydrocraquage est avantageusement comprise entre 5 et 35% poids, et de préférence entre 10 et 30% poids, les pourcentages étant exprimés en pourcentage poids d’oxydes par rapport au poids total du catalyseur. Preferably, the metal content of group VI B in the hydrocracking catalyst(s) is advantageously between 5 and 35% by weight, and preferably between 10 and 30% by weight, the percentages being expressed as percentage by weight of oxides relative to the total weight of the catalyst.
Le ou les catalyseur(s) d’hydrocraquage utilisés dans l’étape c) peuvent également comprendre éventuellement au moins un élément promoteur déposé sur le catalyseur et choisi dans le groupe formé par le phosphore, le bore et le silicium, éventuellement au moins un élément du groupe VIIA (chlore, fluor préférés), éventuellement au moins un élément du groupe VII B (manganèse préféré), et éventuellement au moins un élément du groupe VB (niobium préféré). The hydrocracking catalyst(s) used in step c) may also optionally comprise at least one promoter element deposited on the catalyst and chosen from the group formed by phosphorus, boron and silicon, optionally at least one element from group VIIA (preferred chlorine, fluorine), optionally at least one element from group VII B (preferred manganese), and optionally at least one element from group VB (preferred niobium).
De préférence, le ou les catalyseur(s) d’hydrocraquage utilisés dans l’étape c) comprennent au moins une matrice minérale poreuse amorphe ou mal cristallisée de type oxyde choisie parmi les alumines, les silices, les silice-alumines, les aluminates, l’alumine-oxyde de bore, la magnésie, la silice-magnésie, le zircone, l’oxyde de titane, l’argile, seuls ou en mélange, et de préférence les alumines ou les silice-alumines, seules ou en mélange. Preferably, the hydrocracking catalyst(s) used in step c) comprise at least one amorphous or poorly crystallized porous mineral matrix of the oxide type chosen from aluminas, silicas, silica-aluminas, aluminates, alumina-boron oxide, magnesia, silica-magnesia, zirconia, titanium oxide, clay, alone or as a mixture, and preferably aluminas or silica-aluminas, alone or as a mixture.
De préférence, la silice-alumine contient plus de 50% poids d’alumine, de préférence plus de 60% poids d’alumine. Preferably, the silica-alumina contains more than 50% weight of alumina, preferably more than 60% weight of alumina.
De préférence, le ou les catalyseur(s) d’hydrocraquage utilisés dans l’étape c) comprennent également éventuellement une zéolithe choisie parmi les zéolithes Y, de préférence parmi les zéolithes USY, seules ou en combinaison, avec d’autres zéolithes parmi les zéolithes beta, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-11, ZSM-48, ZBM-30, seules ou en mélange. De manière préférée la zéolithe est la zéolithe USY seule. Preferably, the hydrocracking catalyst(s) used in step c) also optionally comprise a zeolite chosen from Y zeolites, preferably from USY zeolites, alone or in combination, with other zeolites from beta zeolites, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-11, ZSM-48, ZBM-30, alone or as a mixture. Preferably, the zeolite is USY zeolite alone.
Dans le cas où ledit catalyseur comprend une zéolithe, la teneur en zéolithe dans le ou les catalyseur(s) d’hydrocraquage est avantageusement comprise entre 0,1 et 80% poids, de préférence comprise entre 3 et 70% poids, les pourcentages étant exprimés en pourcentage de zéolithe par rapport au poids total du catalyseur. Un catalyseur préféré comprend, et est de préférence constitué, d’au moins un métal du groupe VI B et éventuellement d’au moins un métal du groupe VIII non noble, d’au moins un élément promoteur, et de préférence le phosphore, d’au moins une zéolithe Y et d’au moins un liant alumine. In the case where said catalyst comprises a zeolite, the zeolite content in the hydrocracking catalyst(s) is advantageously between 0.1 and 80% by weight, preferably between 3 and 70% by weight, the percentages being expressed as a percentage of zeolite relative to the total weight of the catalyst. A preferred catalyst comprises, and preferably consists of, at least one Group VI B metal and optionally at least one non-noble Group VIII metal, at least one promoter element, and preferably phosphorus, at least one Y zeolite and at least one alumina binder.
Un catalyseur encore plus préféré comprend, et est de préférence constitué, du nickel, du molybdène, du phosphore, d’une zéolithe USY, et éventuellement aussi une zéolithe béta, et de l’alumine. An even more preferred catalyst comprises, and preferably consists of, nickel, molybdenum, phosphorus, a USY zeolite, and optionally also a beta zeolite, and alumina.
Un autre catalyseur préféré comprend, et est de préférence constitué, du nickel, du tungstène, de l’alumine et de la silice-alumine. Another preferred catalyst includes, and preferably consists of, nickel, tungsten, alumina and silica-alumina.
Un autre catalyseur préféré comprend, et est de préférence constitué, du nickel, du tungstène, d’une zéolithe USY, de l’alumine et de la silice-alumine. Another preferred catalyst includes, and preferably consists of, nickel, tungsten, USY zeolite, alumina and silica-alumina.
Ledit catalyseur d’hydrocraquage est par exemple sous forme d’extrudés. Said hydrocracking catalyst is for example in the form of extrudates.
Selon un autre aspect de l'invention, le catalyseur d'hydrocraquage tel que décrit plus haut comprend en outre un ou plusieurs composés organiques contenant de l'oxygène et/ou de l'azote et/ou du soufre. Un tel catalyseur est souvent désigné par le terme "catalyseur additivé". Généralement, le composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, oxime, urée et amide ou encore les composés incluant un cycle furanique ou encore les sucres. According to another aspect of the invention, the hydrocracking catalyst as described above further comprises one or more organic compounds containing oxygen and/or nitrogen and/or sulfur. Such a catalyst is often designated by the term "additive catalyst". Generally, the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide or even compounds including a furan ring or even sugars.
La préparation des catalyseurs des étapes a), b) ou c) est connue et comprend généralement une étape d’imprégnation des métaux du groupe VIII et du groupe VIB lorsqu’il est présent, et éventuellement du phosphore et/ou du bore sur le support, suivie d’un séchage, puis éventuellement d’une calcination. Dans le cas de catalyseur additivé, la préparation se fait généralement par simple séchage sans calcination après introduction du composé organique. On entend ici par calcination un traitement thermique sous un gaz contenant de l’air ou de l’oxygène à une température supérieure ou égale à 200°C. Avant leur utilisation dans une étape du procédé, les catalyseurs sont généralement soumis à une sulfuration afin de former l’espèce active. Le catalyseur de l’étape a) peut aussi être un catalyseur utilisé sous sa forme réduite, impliquant ainsi une étape de réduction dans sa préparation. Eventuellement, l’étape c) peut mettre en œuvre une section de chauffe située en amont de la section réactionnelle d’hydrocraquage et dans laquelle l’effluent hydrotraité issu de l’étape b) est chauffé pour atteindre une température adaptée pour d’hydrocraquage, c’est-à-dire une température comprise entre 250 et 480°C. Ladite éventuelle section de chauffe peut ainsi comprendre un ou plusieurs échangeurs, permettant de préférence un échange de chaleur entre l’effluent hydrotraité et l’effluent hydrocraqué, et/ou un four de préchauffe.The preparation of the catalysts of stages a), b) or c) is known and generally comprises a stage of impregnation of group VIII and group VIB metals when present, and optionally phosphorus and/or boron on the support, followed by drying, then optionally by calcination. In the case of an additive catalyst, the preparation is generally carried out by simple drying without calcination after introduction of the organic compound. Here, calcination means a heat treatment under a gas containing air or oxygen at a temperature greater than or equal to 200°C. Before their use in a stage of the process, the catalysts are generally subjected to sulfurization in order to form the active species. The catalyst of step a) can also be a catalyst used in its reduced form, thus involving a reduction step in its preparation. Optionally, step c) can implement a heating section located upstream of the hydrocracking reaction section and in which the hydrotreated effluent from step b) is heated to reach a temperature suitable for hydrocracking. , that is to say a temperature between 250 and 480°C. Said optional heating section may thus comprise one or more exchangers, preferably allowing heat exchange between the hydrotreated effluent and the hydrocracked effluent, and/or a preheating furnace.
Etape d) de séparation Separation step d)
Selon l’invention, le procédé de traitement comprend une étape d) de séparation, avantageusement mise en œuvre dans au moins une section de lavage/séparation, alimentée au moins par l’effluent hydrocraqué issu de l’étape c) et une solution aqueuse, pour obtenir au moins un effluent gazeux, un effluent aqueux et un effluent hydrocarboné.According to the invention, the treatment process comprises a step d) of separation, advantageously implemented in at least one washing/separation section, supplied at least with the hydrocracked effluent from step c) and an aqueous solution , to obtain at least one gaseous effluent, one aqueous effluent and one hydrocarbon effluent.
L’effluent gazeux obtenu à l’issu de l’étape d) comprend avantageusement de l’hydrogène, de préférence comprend au moins 90% volume, de préférence au moins 95% volume, d’hydrogène. Avantageusement, ledit effluent gazeux peut au moins en partie être recyclé vers les étapes a) d’hydrogénation sélective et/ou b) d’hydrotraitement et/ou c) et f) d’hydrocraquage, le système de recyclage pouvant comprendre une section de purification.The gaseous effluent obtained at the end of step d) advantageously comprises hydrogen, preferably comprises at least 90% volume, preferably at least 95% volume, of hydrogen. Advantageously, said gaseous effluent can at least partly be recycled to stages a) of selective hydrogenation and/or b) of hydrotreating and/or c) and f) of hydrocracking, the recycling system possibly comprising a section of purification.
L’effluent aqueux obtenu à l’issu de l’étape d) comprend avantageusement des sels d’ammonium et/ou de l’acide chlorhydrique. The aqueous effluent obtained at the end of step d) advantageously comprises ammonium salts and/or hydrochloric acid.
L’effluent hydrocarboné issu de l’étape d) comprend des composés hydrocarbonés et correspond avantageusement à l’huile de pyrolyse de plastiques de la charge, ou à l’huile de pyrolyse de plastiques et de la fraction de charge pétrolière conventionnelle ou biomasse co- traitée avec l’huile de pyrolyse, dans laquelle au moins une partie des composés lourds a été convertie en composés plus légers afin de maximiser la coupe naphta. L’effluent hydrocarboné est en plus débarrassé au moins en partie de ses impuretés, en particulier de ses impuretés oléfiniques (di- et mono-oléfines), métalliques, halogénées. The hydrocarbon effluent from step d) comprises hydrocarbon compounds and advantageously corresponds to the plastics pyrolysis oil of the feed, or to the plastics pyrolysis oil and the conventional petroleum or biomass feed fraction. - treated with pyrolysis oil, in which at least some of the heavy compounds have been converted into lighter compounds in order to maximize the naphtha cut. The hydrocarbon effluent is also freed at least in part of its impurities, in particular its olefinic (di- and mono-olefin), metallic and halogenated impurities.
Cette étape d) de séparation permet en particulier d’éliminer les sels de chlorure d’ammonium, qui se forment par réaction entre les ions chlorure, libérés par l’hydrogénation des composés chlorés sous forme HCl notamment lors de l’étape b) puis dissolution dans l’eau, et les ions ammonium, générés par l’hydrogénation des composés azotés sous forme de NH3 notamment lors de l’étape b) et/ou apportés par injection d’une amine puis dissolution dans l’eau, et ainsi de limiter les risques de bouchage, en particulier dans les lignes de transfert et/ou dans les sections du procédé de l’invention et/ou les lignes de transfert vers le vapocraqueur, dû à la précipitation des sels de chlorure d’ammonium. Il permet aussi d’éliminer l’acide chlorhydrique formé par la réaction des ions hydrogène et des ions chlorures. This separation step d) makes it possible in particular to eliminate the ammonium chloride salts, which are formed by reaction between the chloride ions, released by the hydrogenation of the chlorinated compounds in the HCl form, in particular during step b) then dissolution in water, and the ammonium ions, generated by the hydrogenation of the nitrogenous compounds in the form of NH3 in particular during step b) and/or provided by injection of an amine then dissolution in water, and thus to limit the risks of clogging, in particular in the transfer lines and/or in the sections of the process of the invention and/or the transfer lines to the steam cracker, due to the precipitation of the ammonium chloride salts. It also eliminates the hydrochloric acid formed by the reaction of hydrogen ions and chloride ions.
En fonction de la teneur en composés chlorés dans la charge initiale à traiter, un flux contenant une amine telle que par exemple la monoéthanolamine, la diéthanolamine et/ou la monodiéthanolamine peut être injecté en amont de l’étape a) d’hydrogénation sélective, entre l’étape a) d’hydrogénation sélective et l’étape b) d’hydrotraitement et/ou entre l’étape c) d’hydrocraquage et l’étape d) de séparation, de préférence en amont de l’étape a) d’hydrogénation sélective, afin d’assurer une quantité suffisante en ions ammonium pour combiner les ions chlorure formés lors de l’étape d’hydrotraitement, permettant ainsi de limiter la formation d’acide chlorhydrique et ainsi de limiter la corrosion en aval de la section de séparation. Depending on the content of chlorinated compounds in the initial charge to be treated, a stream containing an amine such as, for example, monoethanolamine, diethanolamine and/or monodiethanolamine can be injected upstream of stage a) of selective hydrogenation, between stage a) of selective hydrogenation and stage b) of hydrotreatment and/or between stage c) of hydrocracking and stage d) of separation, preferably upstream of stage a) selective hydrogenation, in order to ensure a sufficient quantity of ammonium ions to combine the chloride ions formed during the hydrotreatment stage, thus making it possible to limit the formation of hydrochloric acid and thus to limit corrosion downstream of the separation section.
Avantageusement, l’étape d) de séparation comprend une injection d’une solution aqueuse, de préférence une injection d’eau, dans l’effluent hydrocraqué issu de l’étape c), en amont de la section de lavage/séparation, de manière à dissoudre au moins en partie des sels de chlorure d’ammonium et/ou de l’acide chlorhydrique et améliorer ainsi l’élimination des impuretés chlorées et réduire les risques de bouchages dus à une accumulation des sels de chlorure d’ammonium. Advantageously, step d) of separation comprises an injection of an aqueous solution, preferably an injection of water, into the hydrocracked effluent from step c), upstream of the washing/separation section, of so as to at least partially dissolve ammonium chloride salts and/or hydrochloric acid and thus improve the elimination of chlorinated impurities and reduce the risks of clogging due to an accumulation of ammonium chloride salts.
L’étape d) de séparation est avantageusement opérée à une température comprise entre 50 et 370°C, préférentiellement entre 100 et 340°C, de manière préférée entre 200 et 300°C. Avantageusement, l’étape d) de séparation est opérée à une pression proche de celle mise en œuvre dans les étapes a) et/ou b) et/ou c), de préférence entre 1,0 et 10,0 MPa, de manière à faciliter le recyclage d’hydrogène. Separation step d) is advantageously carried out at a temperature of between 50 and 370°C, preferably between 100 and 340°C, more preferably between 200 and 300°C. Advantageously, step d) of separation is carried out at a pressure close to that implemented in steps a) and/or b) and/or c), preferably between 1.0 and 10.0 MPa, so to facilitate the recycling of hydrogen.
La section de lavage/séparation de l’étape d) peut au moins en partie être réalisée dans des équipements de lavage et de séparation communs ou distincts, ces équipements étant bien connus (ballons séparateurs pouvant opérés à différentes pressions et températures, pompes, échangeurs de chaleurs, colonnes de lavage, etc.). The washing/separation section of step d) can at least partly be carried out in common or separate washing and separation equipment, this equipment being well known (separator drums which can operate at different pressures and temperatures, pumps, heat exchangers heat pumps, washing columns, etc.).
Dans un mode de réalisation éventuel de l’invention, pris en complément ou isolément d’autres modes de réalisation de l’invention décrits, l’étape d) de séparation comprend l’injection d’une solution aqueuse dans l’effluent hydrocraqué issu de l’étape c), suivi de la section de lavage/séparation comprenant avantageusement une phase de séparation permettant d’obtenir au moins un effluent aqueux chargé en sels d’ammonium, un effluent hydrocarboné liquide lavé et un effluent gazeux partiellement lavé. L’effluent aqueux chargé en sels d’ammonium et l’effluent hydrocarboné liquide lavé peuvent ensuite être séparés dans un ballon décanteur afin d’obtenir ledit effluent hydrocarboné et ledit effluent aqueux. Ledit effluent gazeux partiellement lavé peut parallèlement être introduit dans une colonne de lavage où il circule à contrecourant d’un flux aqueux, de préférence de même nature que la solution aqueuse injectée dans l’effluent hydrocraqué, ce qui permet d’éliminer au moins en partie, de préférence en totalité, l’acide chlorhydrique contenu dans G effluent gazeux partiellement lavé et d’obtenir ainsi ledit effluent gazeux, comprenant de préférence essentiellement de l’hydrogène, et un flux aqueux acide. Ledit effluent aqueux issu du ballon décanteur peut éventuellement être mélangé avec ledit flux aqueux acide, et être utilisé, éventuellement en mélange avec ledit flux aqueux acide dans un circuit de recyclage d’eau pour alimenter l’étape d) de séparation en ladite solution aqueuse en amont de la section de lavage/séparation et/ou en ledit flux aqueux dans la colonne de lavage. Ledit circuit de recyclage d’eau peut comporter un appoint d’eau et/ou d’une solution basique et/ou une purge permettant d’évacuer les sels dissous. In a possible embodiment of the invention, taken in addition to or in isolation from other embodiments of the invention described, step d) of separation comprises the injection of an aqueous solution into the hydrocracked effluent from of step c), followed by washing/separation section advantageously comprising a separation phase making it possible to obtain at least one aqueous effluent loaded with ammonium salts, one washed liquid hydrocarbon effluent and one partially washed gaseous effluent. The aqueous effluent charged with ammonium salts and the washed liquid hydrocarbon effluent can then be separated in a settling flask in order to obtain said hydrocarbon effluent and said aqueous effluent. Said partially washed gaseous effluent can be introduced in parallel into a washing column where it circulates countercurrent to an aqueous flow, preferably of the same nature as the aqueous solution injected into the hydrocracked effluent, which makes it possible to eliminate at least part, preferably entirely, the hydrochloric acid contained in G partially washed gaseous effluent and thus obtaining said gaseous effluent, preferably comprising essentially hydrogen, and an acidic aqueous stream. Said aqueous effluent from the settling flask can optionally be mixed with said acid aqueous stream, and be used, optionally mixed with said acid aqueous stream in a water recycling circuit to supply step d) of separation with said aqueous solution upstream of the washing/separation section and/or in said aqueous stream in the washing column. Said water recycling circuit may comprise a make-up of water and/or of a basic solution and/or a purge making it possible to evacuate the dissolved salts.
Dans un autre mode de réalisation éventuel de l’invention, pris séparément ou en combinaison d’autres modes de réalisation de l’invention décrits, l’étape d) de séparation peut comprendre avantageusement une section de lavage/séparation à « haute pression » qui opère à une pression proche de la pression de l’étape a) d’hydrogénation sélective et/ou de l’étape b) d’hydrotraitement et/ou de l’étape c) d’hydrocraquage, afin de faciliter le recyclage d’hydrogène. Cette éventuelle section « haute pression » de l’étape d) peut être complétée par une section « basse pression », afin d’obtenir une fraction liquide hydrocarbonée dépourvue d’une partie des gaz dissous à haute pression et destinée à être traitée directement dans un procédé de vapocraquage ou optionnellement être envoyée dans l’étape e) de fractionnement. In another possible embodiment of the invention, taken separately or in combination with other embodiments of the invention described, step d) of separation can advantageously comprise a "high pressure" washing/separation section which operates at a pressure close to the pressure of step a) of selective hydrogenation and/or of step b) of hydrotreating and/or of step c) of hydrocracking, in order to facilitate the recycling of 'hydrogen. This optional "high pressure" section of step d) can be supplemented by a "low pressure" section, in order to obtain a liquid hydrocarbon fraction devoid of part of the gases dissolved at high pressure and intended to be treated directly in a steam cracking process or optionally be sent to step e) fractionation.
La ou les fractions gaz issue(s) de l’étape d) de séparation peut (peuvent) faire l’objet de purification(s) et de séparation(s) complémentaire(s) en vue de récupérer au moins un gaz riche en hydrogène pouvant être recyclé en amont des étapes a) et/ou b) et/ou c) et/ou des hydrocarbures légers, notamment de l’éthane, du propane et du butane, qui peuvent avantageusement être envoyés séparément ou en mélange dans un ou des fours de l’étape h) de vapocraquage de manière à accroître le rendement global en oléfines. L’effluent hydrocarboné issu de l’étape d) de séparation est envoyé, en partie ou en totalité, de manière préférée en totalité, vers l’étape e) de fractionnement. The gas fraction(s) resulting from step d) of separation may (may) be subject to purification(s) and additional separation(s) with a view to recovering at least one gas rich in hydrogen which can be recycled upstream of stages a) and/or b) and/or c) and/or light hydrocarbons, in particular ethane, propane and butane, which can advantageously be sent separately or as a mixture in a or furnaces of stage h) of steam cracking so as to increase the overall yield of olefins. The hydrocarbon effluent from step d) of separation is sent, in part or in whole, preferably in whole, to step e) of fractionation.
Etape e) de fractionnement Step e) of fractionation
Le procédé selon l’invention comprend une étape de fractionnement de tout ou partie, de manière préférée de la totalité, de l’effluent hydrocarboné issu de l’étape d), pour obtenir au moins un flux gazeux et au moins deux flux hydrocarbonés liquides, lesdits deux flux hydrocarbonés liquides étant au moins une coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C, en particulier entre 80 et 175°C, et une coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C. L’étape e) permet en particulier d’éliminer les gaz dissous dans l’effluent liquide hydrocarboné, comme par exemple de l’ammoniac, de l’hydrogène sulfuré et des hydrocarbures légers ayant 1 à 4 atomes de carbone. The process according to the invention comprises a step of fractionating all or part, preferably all, of the hydrocarbon effluent from step d), to obtain at least one gas stream and at least two liquid hydrocarbon streams , said two liquid hydrocarbon streams being at least one naphtha cut comprising compounds having a boiling point of less than or equal to 175°C, in particular between 80 and 175°C, and a hydrocarbon cut comprising compounds having a boiling above 175°C. Stage e) makes it possible in particular to eliminate the gases dissolved in the liquid hydrocarbon effluent, such as for example ammonia, hydrogen sulphide and light hydrocarbons having 1 to 4 carbon atoms.
L’étape e) de fractionnement est avantageusement opérée à une pression inférieure ou égale à 1,0 MPa abs., de préférence entre 0,1 et 1,0 MPa abs. Selon un mode de réalisation, l’étape e) peut être opérée dans une section comprenant avantageusement au moins une colonne de stripage équipée d’un circuit de reflux comprenant un ballon de reflux. Ladite colonne de stripage est alimentée par l’effluent liquide hydrocarboné issu de l’étape d) et par un flux de vapeur d’eau. L’effluent liquide hydrocarboné issu de l’étape d) peut être éventuellement réchauffé avant l’entrée dans la colonne de stripage. Ainsi, les composés les plus légers sont entraînés en tête de colonne et dans le circuit de reflux comprenant un ballon de reflux dans lequel s’opère une séparation gaz/liquide. La phase gazeuse qui comprend les hydrocarbures légers, est soutirée du ballon de reflux, en un flux gazeux. La coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C est avantageusement soutirée du ballon de reflux. La coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C est avantageusement soutirée en fond de colonne de stripage. Fractionation step e) is advantageously carried out at a pressure of less than or equal to 1.0 MPa abs., preferably between 0.1 and 1.0 MPa abs. According to one embodiment, step e) can be carried out in a section advantageously comprising at least one stripping column equipped with a reflux circuit comprising a reflux drum. Said stripping column is fed by the liquid hydrocarbon effluent from step d) and by a stream of steam. The liquid hydrocarbon effluent from stage d) can optionally be reheated before entering the stripping column. Thus, the lightest compounds are entrained at the top of the column and in the reflux circuit comprising a reflux drum in which a gas/liquid separation takes place. The gaseous phase, which includes the light hydrocarbons, is withdrawn from the reflux drum, in a gas stream. The naphtha cut comprising compounds having a boiling point less than or equal to 175° C. is advantageously withdrawn from the reflux drum. The hydrocarbon cut comprising compounds having a boiling point above 175°C is advantageously drawn off at the bottom of the stripping column.
Selon d’autres modes de réalisation, l’étape e) de fractionnement peut mettre en œuvre une colonne de stripage suivie d’une colonne de distillation ou uniquement une colonne de distillation. La coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C peut être envoyée, en tout ou partie, vers une unité de vapocraquage, à l’issue de laquelle des oléfines pourront être (re)formées pour participer à la formation de polymères. Elle peut aussi être envoyée vers un pool carburant, par exemple pool naphta, ou encore être envoyée, en partie, vers l’étape h) de recyclage. According to other embodiments, step e) of fractionation can implement a stripping column followed by a distillation column or only a distillation column. The naphtha cut comprising compounds having a boiling point less than or equal to 175° C. can be sent, in whole or in part, to a steam cracking unit, at the end of which olefins can be (re)formed to participate to the formation of polymers. It can also be sent to a fuel pool, for example naphtha pool, or even be sent, in part, to stage h) of recycling.
La coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C quant à elle, est au moins en partie envoyée dans la deuxième étape f) d’hydrocraquage. The hydrocarbon cut comprising compounds having a boiling point above 175° C. is at least partly sent to the second stage f) of hydrocracking.
Selon un mode préféré, la coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C, tout ou partie, est envoyée vers une unité de vapocraquage, tandis que la coupe comprenant des composés ayant un point d’ébullition supérieur à 175°C est envoyée vers l’étape f) d’hydrocraquage. According to a preferred mode, the naphtha cut comprising compounds having a boiling point less than or equal to 175° C., all or part, is sent to a steam cracking unit, while the cut comprising compounds having a boiling point higher than 175° C. is sent to stage f) of hydrocracking.
Dans un autre mode de réalisation particulier, l’étape e) de fractionnement peut permettre d’obtenir, outre un flux gazeux, une coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C, de préférence entre 80 et 175°C, et une coupe kérosène comprenant des composés ayant un point d’ébullition supérieur à 175°C et inférieur ou égale à 280°C, éventuellement une coupe diesel comprenant des composés ayant un point d’ébullition supérieur à 280°C et inférieur à 385°C et une coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur ou égal à 385°C, dite coupe hydrocarbonée lourde. La coupe naphta peut être envoyée, en tout ou partie, vers une unité de vapocraquage et/ou vers le pool naphta issu de charges pétrolières conventionnelles, elle peut encore être envoyée vers l’étape h) de recyclage; la coupe kérosène et/ou la coupe diesel peuvent également être, en tout ou partie, soit envoyées vers une unité de vapocraquage, soit respectivement vers un pool kérosène ou diesel issu de charges pétrolières conventionnelles, soient être recyclées dans le procédé de la même manière que la coupe naphta ; la coupe lourde quant à elle est envoyée, au moins en partie, dans la deuxième étape f) d’hydrocraquage. In another particular embodiment, step e) of fractionation can make it possible to obtain, in addition to a gas stream, a naphtha cut comprising compounds having a boiling point less than or equal to 175° C., preferably between 80 and 175°C, and a kerosene cut comprising compounds having a boiling point above 175°C and less than or equal to 280°C, optionally a diesel cut comprising compounds having a boiling point above 280°C and less than 385° C. and a hydrocarbon cut comprising compounds having a boiling point greater than or equal to 385° C., referred to as a heavy hydrocarbon cut. The naphtha cut can be sent, in whole or in part, to a steam cracking unit and/or to the naphtha pool from conventional petroleum feedstocks, it can also be sent to stage h) recycling; the kerosene cut and/or the diesel cut can also be, in whole or in part, either sent to a steam cracking unit, or respectively to a kerosene or diesel pool from conventional petroleum feedstocks, or be recycled in the process in the same way than the naphtha cup; the heavy cut is sent, at least in part, to the second stage f) of hydrocracking.
Dans un autre mode de réalisation particulier la coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) est fractionnée en une coupe naphta lourde comprenant des composés avant un point d’ébullition entre 80 et 175°C et une coupe naphta légère comprenant des composés ayant un point d’ébullition inférieure à 80°C, au moins une partie de ladite coupe lourde étant envoyée vers un complexe aromatique comportant au moins une étape de reformaqe du naphta en vue de produire des composés aromatiques. Selon ce mode de réalisation, au moins une partie de la coupe naphta légère est envoyée dans l’étape i) de vapocraquage décrite ci-dessous. In another particular embodiment, the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e) is fractionated into a heavy naphtha cut comprising compounds before a boiling point between 80 and 175°C and a light naphtha cut comprising compounds having a boiling point below 80°C, at least part of said heavy cut being sent to a complex aromatic comprising at least one step of reforming naphtha in order to produce aromatic compounds. According to this embodiment, at least part of the light naphtha cut is sent to stage i) of steam cracking described below.
La ou les fractions gaz issue(s) de l’étape e) de fractionnement peut (peuvent) faire l’objet de purification(s) et de séparation(s) complémentaire(s) en vue de récupérer au moins des hydrocarbures légers, notamment de l’éthane, du propane et du butane, qui peuvent avantageusement être envoyés séparément ou en mélange dans un ou des fours de l’étape i) de vapocraquage de manière à accroître le rendement global en oléfines. The gas fraction(s) resulting from stage e) of fractionation may (may) be subject to purification(s) and additional separation(s) with a view to recovering at least light hydrocarbons, in particular ethane, propane and butane, which can advantageously be sent separately or as a mixture to one or more furnaces of stage i) of steam cracking so as to increase the overall yield of olefins.
Etape f) d’hydrocraquage (deuxième étape d’hydrocraquage) Hydrocracking step f) (second hydrocracking step)
Selon l’invention, le procédé de traitement comprend une deuxième étape f) d’hydrocraquage, avantageusement en lit fixe, d’au moins une partie de ladite coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C issue de l’étape e), en présence d’hydrogène et d’au moins un catalyseur d’hydrocraquage, pour obtenir un deuxième effluent hydrocraqué. According to the invention, the treatment process comprises a second stage f) of hydrocracking, advantageously in a fixed bed, of at least part of said hydrocarbon cut comprising compounds having a boiling point above 175° C. resulting from step e), in the presence of hydrogen and at least one hydrocracking catalyst, to obtain a second hydrocracked effluent.
Avantageusement, l’étape f) met en œuvre les réactions d’hydrocraquage bien connues de l’homme du métier, et permet plus particulièrement de convertir au moins une partie de la coupe comprenant des composés ayant un point d’ébullition supérieur à 175°C en composés ayant un point d’ébullition inférieur ou égal à 175°C. D’autres réactions, comme l’hydrogénation des oléfines, des aromatiques, l’hydrodémétallation, l’hydrodésulfuration, l’hydrodéazotation, etc. peuvent se poursuivent. Advantageously, step f) implements the hydrocracking reactions well known to those skilled in the art, and more particularly makes it possible to convert at least part of the cut comprising compounds having a boiling point above 175° C to compounds with a boiling point less than or equal to 175°C. Other reactions, such as hydrogenation of olefins, aromatics, hydrodemetallization, hydrodesulfurization, hydrodenitrogenation, etc. can continue.
Avantageusement, ladite étape f) est mise en œuvre dans une section réactionnelle d’hydrocraquage comprenant au moins un, de préférence entre un et cinq, réacteur(s) à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à un, de préférence compris entre un et dix, de manière préférée compris entre deux et cinq, le(s)dit(s) lit(s) comprenant chacun au moins un, et de préférence pas plus de dix, catalyseur(s) d’hydrocraquage. Lorsqu’un réacteur comprend plusieurs lits catalytiques, c’est-à-dire au moins deux, de préférence entre deux et dix, de manière préférée entre deux et cinq lits catalytiques, lesdits lits catalytiques sont disposés en série dans ledit réacteur. Advantageously, said step f) is implemented in a hydrocracking reaction section comprising at least one, preferably between one and five, fixed-bed reactor(s) having n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, preferably between two and five, said bed(s) each comprising at least one, and preferably not more than ten, catalyst(s) d hydrocracking. When a reactor comprises several catalytic beds, that is to say at least two, preferably between two and ten, preferably between two and five catalytic beds, said catalytic beds are arranged in series in said reactor.
Ladite section réactionnelle d’hydrocraquage est alimentée par au moins une partie de la coupe comprenant des composés ayant un point d’ébullition supérieur à 175°C et un flux gazeux comprenant de l’hydrogène, avantageusement au niveau du premier lit catalytique du premier réacteur en fonctionnement. Said hydrocracking reaction section is fed with at least a part of the cut comprising compounds having a boiling point above 175° C. and a stream gas comprising hydrogen, advantageously at the level of the first catalytic bed of the first reactor in operation.
Avantageusement, ladite deuxième section réactionnelle d’hydrocraquage est mise en œuvre à une pression équivalente à celle utilisée dans la section réactionnelle de l’étape a) d’hydrogénation sélective ou l’étape b) d’hydrotraitement ou l’étape c) de premier hydrocraquage. Advantageously, said second hydrocracking reaction section is implemented at a pressure equivalent to that used in the reaction section of stage a) of selective hydrogenation or stage b) of hydrotreatment or stage c) of first hydrocracking.
Ainsi, ladite section réactionnelle d’hydrocraquage est avantageusement mise en œuvre à une température d’hydrotraitement entre 250 et 480°C, de préférence entre 320 et 450°C, à une pression partielle d’hydrogène entre 1,5 et 25,0 MPa abs., de préférence entre 3 et 20 MPa abs, et à une vitesse volumique horaire (WH) entre 0,1 et 10,0 h 1, de préférence entre 0,1 et 5,0 h 1, préférentiellement entre 0,2 et 4 h 1. La vitesse volumique horaire (WH) est définie ici comme le ratio entre le débit volumique horaire de l’effluent hydrogéné issu de l’étape a) par volume de catalyseur(s). La couverture en hydrogène dans l’étape f) est avantageusement comprise entre 80 et 2000 Nm3 d’hydrogène par m3 de charge fraîche qui alimente l’étape a), et de préférence entre 200 et 1800 Nm3 d’hydrogène par m3 de charge fraîche qui alimente l’étape a). La couverture en hydrogène est définie ici comme le rapport du débit volumique d’hydrogène pris dans les conditions normales de température et pression par rapport au débit volumique de charge fraîche qui alimente l’étape a), c’est-à- dire de charge comprenant une huile de pyrolyse de plastiques, ou par la charge éventuellement prétraitée, qui alimente l’étape a) (en normaux m3 , noté Nm3, de H2 par m3 de charge fraîche). L’hydrogène peut être constitué d’un appoint et/ou d’hydrogène recyclé issu en particulier de l’étape d) de séparation. Thus, said hydrocracking reaction section is advantageously carried out at a hydrotreating temperature between 250 and 480°C, preferably between 320 and 450°C, at a hydrogen partial pressure between 1.5 and 25.0 MPa abs., preferably between 3 and 20 MPa abs., and at an hourly volume rate (WH) between 0.1 and 10.0 h 1 , preferably between 0.1 and 5.0 h 1 , preferably between 0, 2 and 4: 1 a.m. The hourly volumetric speed (WH) is defined here as the ratio between the hourly volumetric flow rate of the hydrogenated effluent from stage a) per volume of catalyst(s). The hydrogen coverage in stage f) is advantageously between 80 and 2000 Nm 3 of hydrogen per m 3 of fresh charge which supplies stage a), and preferably between 200 and 1800 Nm 3 of hydrogen per m 3 of fresh load which supplies step a). The hydrogen coverage is defined here as the ratio of the volume flow rate of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of fresh charge which supplies stage a), that is to say of charge comprising a plastics pyrolysis oil, or by the optionally pretreated charge, which feeds stage a) (in normal m 3 , denoted Nm 3 , of H2 per m 3 of fresh charge). The hydrogen can consist of a make-up and/or of recycled hydrogen resulting in particular from stage d) of separation.
De préférence, un flux gazeux supplémentaire comprenant de l’hydrogène est avantageusement introduit en entrée de chaque réacteur, en particulier fonctionnant en série, et/ou en entrée de chaque lit catalytique à partir du second lit catalytique de la section réactionnelle d’hydrocraquage. Ces flux gazeux supplémentaires sont appelés encore flux de refroidissement. Ils permettent de contrôler la température dans le réacteur d’hydrocraquage dans lequel les réactions mises en œuvre sont généralement très exothermiques. Preferably, an additional gas stream comprising hydrogen is advantageously introduced at the inlet of each reactor, in particular operating in series, and/or at the inlet of each catalytic bed from the second catalytic bed of the hydrocracking reaction section. These additional gas streams are also called cooling streams. They make it possible to control the temperature in the hydrocracking reactor in which the reactions implemented are generally very exothermic.
Ces conditions opératoires utilisées dans l’étape f) du procédé selon l’invention permettent généralement d’atteindre des conversions par passe, en produits ayant au moins 80% en volume de composés ayant des points d’ébullition inférieurs ou égale à 175°C, de préférence inférieurs à 160°C et de manière préférée inférieurs à 150°C, supérieures à 15% poids et de manière encore plus préférée comprises entre 20 et 80% poids. Néanmoins, la conversion par passe dans l’étape f) est maintenue modérée afin de maximiser la sélectivité en composés de la coupe naphta (ayant un point d’ébullition inférieur ou égal à 175°C, en particulier entre 80 et inférieur ou égal à 175°C). La conversion par passe est limitée par l’utilisation d’un taux de recycle élevé sur la boucle de deuxième étape d’hydrocraquage. Ce taux est défini comme le ratio entre le débit d’alimentation de l’étape f) et le débit de la charge de l’étape a), préférentiellement ce ratio est compris entre 0,2 et 4, de manière préférée entre 0,5 et 2,5. These operating conditions used in step f) of the process according to the invention generally make it possible to achieve conversions per pass, into products having at least 80% by volume of compounds having boiling points less than or equal to 175 ° C. , preferably below 160°C and preferably below 150°C, above 15% by weight and even more preferably between 20 and 80% by weight. Nevertheless, the conversion per pass in step f) is kept moderate in order to maximize the selectivity for compounds of the naphtha cut (having a boiling point less than or equal to 175° C., in particular between 80 and less than or equal to 175°C). Conversion per pass is limited by the use of a high recycle rate on the second stage hydrocracking loop. This rate is defined as the ratio between the feed rate of step f) and the feed rate of step a), preferably this ratio is between 0.2 and 4, preferably between 0, 5 and 2.5.
Conformément à l’invention, l’étape f) d’hydrocraquage opère en présence d’au moins un catalyseur d’hydrocraquage. De préférence, le catalyseur d’hydrocraquage de deuxième étape est choisi parmi les catalyseurs classiques d’hydrocraquage connus de l'Homme du métier, tels que ceux décrits ci-dessus dans l’étape c) d’hydrocraquage. Le catalyseur d’hydrocraquage utilisé dans ladite étape f) peut être identique ou différent de celui utilisé dans l’étape c), et de préférence différent. In accordance with the invention, stage f) of hydrocracking operates in the presence of at least one hydrocracking catalyst. Preferably, the second stage hydrocracking catalyst is chosen from the conventional hydrocracking catalysts known to those skilled in the art, such as those described above in stage c) of hydrocracking. The hydrocracking catalyst used in said step f) may be identical to or different from that used in step c), and preferably different.
Dans une variante, le catalyseur d’hydrocraquage mis en œuvre dans l’étape f) comprend une fonction hydro-déshydrogénante comprenant au moins un métal noble du groupe VIII choisi parmi le palladium et le platine, seul ou en mélange. La teneur en métal noble du groupe VIII est avantageusement comprise entre 0,01 et 5% poids et de préférence entre 0,05 et 3% poids, les pourcentages étant exprimés en pourcentage poids d’oxydes par rapport au poids total du de catalyseur. In one variant, the hydrocracking catalyst used in step f) comprises a hydro-dehydrogenating function comprising at least one noble metal from group VIII chosen from palladium and platinum, alone or as a mixture. The noble metal content of group VIII is advantageously between 0.01 and 5% by weight and preferably between 0.05 and 3% by weight, the percentages being expressed as percentage by weight of oxides relative to the total weight of the catalyst.
Eventuellement, l’étape f) peut mettre en œuvre une section de chauffe située en amont de la section réactionnelle d’hydrocraquage et dans laquelle ladite coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C issue de l’étape e) est chauffée pour atteindre une température adaptée pour d’hydrocraquage, c’est-à-dire une température comprise entre 250 et 480°C. Ladite éventuelle section de chauffe peut ainsi comprendre un ou plusieurs échangeurs, et/ou un four de préchauffe. Optionally, step f) can implement a heating section located upstream of the hydrocracking reaction section and in which said hydrocarbon fraction comprising compounds having a boiling point above 175° C. resulting from step e) is heated to reach a temperature suitable for hydrocracking, that is to say a temperature between 250 and 480°C. Said possible heating section can thus comprise one or more exchangers, and/or a preheating furnace.
Etape g) de recyclage du deuxième effluent hydrocraqué Stage g) of recycling the second hydrocracked effluent
Conformément à l’invention, le procédé comprend une étape g) de recyclage d’au moins une partie et de préférence la totalité dudit deuxième effluent hydrocraqué issu de l’étape f) dans l’étape d) de séparation. Une purge peut être installée sur le recycle dudit deuxième effluent hydrocraqué issu de l’étape f). En fonction des conditions opératoires du procédé, ladite purge peut être comprise entre 0 et 10% poids dudit effluent hydrocraqué issu de l’étape f) par rapport à la charge entrante, et de préférence entre 0,5% et 5%poids. In accordance with the invention, the method comprises a step g) of recycling at least part and preferably all of said second hydrocracked effluent from step f) in step d) of separation. A purge can be installed on the recycle of said second hydrocracked effluent from step f). Depending on the operating conditions of the process, said purge may be between 0 and 10% by weight of said hydrocracked effluent from stage f) relative to the incoming feed, and preferably between 0.5% and 5% by weight.
Etape h) (éventuelle) de recyclage de l’effluent hydrocarboné issu de l’étape d) et/ou de la coupe naphta ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) Step h) (optional) for recycling the hydrocarbon effluent from step d) and/or the naphtha cut having a boiling point less than or equal to 175°C from step e)
Le procédé selon l’invention peut comprendre l’étape h) de recyclage, dans laquelle une fraction de l’effluent hydrocarboné issu de l’étape d) de séparation ou une fraction de la coupe naphta ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) de fractionnement, est récupérée pour constituer un flux de recycle qui est envoyé en amont de ou directement vers au moins l’une des étapes réactionnelles du procédé selon l’invention, en particulier vers l’étape a) d’hydrogénation sélective et/ou l’étape b) d’hydrotraitement. Eventuellement, une fraction du flux de recycle peut être envoyée vers l’étape aO) optionnelle de prétraitement. De préférence, le procédé selon l’invention comprend l’étape h) de recyclage. The process according to the invention may comprise stage h) of recycling, in which a fraction of the hydrocarbon effluent resulting from stage d) of separation or a fraction of the naphtha cut having a boiling point lower than or equal to at 175° C. from step e) of fractionation, is recovered to form a recycle stream which is sent upstream of or directly to at least one of the reaction steps of the process according to the invention, in particular to the stage a) of selective hydrogenation and/or stage b) of hydrotreatment. Optionally, a fraction of the recycle stream can be sent to the optional pretreatment step aO). Preferably, the method according to the invention comprises step h) of recycling.
De préférence, au moins une fraction de l’effluent hydrocarboné issu de l’étape d) de séparation ou de la coupe naphta ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) de fractionnement alimente l’étape b) d’hydrotraitement. Preferably, at least a fraction of the hydrocarbon effluent from step d) of separation or from the naphtha cut having a boiling point less than or equal to 175° C. from step e) of fractionation feeds the step b) hydrotreating.
Avantageusement, la quantité du flux de recycle est ajustée de sorte que le rapport pondéral entre le flux de recycle et la charge comprenant une huile de pyrolyse de plastiques, c’est-à- dire la charge à traiter alimentant le procédé global, est inférieur ou égal à 10, de préférence inférieur ou égal à 5, et préférentiellement supérieur ou égal à 0,001, de préférence supérieur ou égal à 0,01, et de manière préférée supérieur ou égal à 0,1. De manière très préférée, la quantité du flux de recycle est ajustée de sorte que le rapport pondéral entre le flux de recycle et la charge comprenant une huile de pyrolyse de plastiques est compris entre 0,2 et 5. Advantageously, the quantity of the recycle stream is adjusted so that the weight ratio between the recycle stream and the charge comprising a plastics pyrolysis oil, that is to say the charge to be treated supplying the overall process, is lower or equal to 10, preferably less than or equal to 5, and preferably greater than or equal to 0.001, preferably greater than or equal to 0.01, and more preferably greater than or equal to 0.1. Very preferably, the quantity of the recycle stream is adjusted so that the weight ratio between the recycle stream and the charge comprising a plastics pyrolysis oil is between 0.2 and 5.
Avantageusement, pour les phases de démarrage du procédé, une coupe hydrocarbonée externe au procédé peut être utilisée comme flux de recycle. L’Homme du métier saura alors choisir ladite coupe hydrocarbonée. Le recyclage d’une partie du produit obtenu vers ou en amont de au moins une des étapes réactionnelles du procédé selon l’invention permet avantageusement d’une part de diluer les impuretés et d’autre part de contrôler la température dans la ou les étape(s) réactionnelle(s), dans la(les)quelle(s) des réactions mises en jeu peuvent être fortement exothermiques. Advantageously, for the start-up phases of the process, a hydrocarbon cut external to the process can be used as recycle stream. A person skilled in the art will then know how to choose said hydrocarbon cut. The recycling of part of the product obtained towards or upstream of at least one of the reaction stages of the process according to the invention advantageously makes it possible on the one hand to dilute the impurities and on the other hand to control the temperature in the stage or stages. (s) reaction (s), in which (the) which (s) of the reactions involved can be strongly exothermic.
Selon un mode de réalisation préféré de l’invention, le procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques comprend, de préférence consiste en, l’enchaînement des étapes, et de préférence dans l’ordre donné, a) d’hydrogénation sélective, b) d’hydrotraitement, c) d’hydrocraquage, d) de séparation, e) de fractionnement, f) d’hydrocraquage et g) de recyclage de l’effluent hydrocraqué dans l’étape d), pour produire un effluent dont au moins une partie est compatible pour un traitement dans une unité de vapocraquage. According to a preferred embodiment of the invention, the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of steps, and preferably in the order given, a) selective hydrogenation, b) hydrotreatment, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking and g) recycling of the hydrocracked effluent in stage d), for producing an effluent of which at least a part is compatible for treatment in a steam cracking unit.
Selon un autre mode de réalisation préféré de l’invention, le procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques comprend, de préférence consiste en, l’enchaînement des étapes, et de préférence dans l’ordre donné, aO) de prétraitement, a) d’hydrogénation sélective, b) d’hydrotraitement, c) d’hydrocraquage, d) de séparation, e) de fractionnement, f) d’hydrocraquage et g) de recyclage de l’effluent hydrocraqué dans l’étape d), pour produire un effluent dont au moins une partie est compatible pour un traitement dans une unité de vapocraquage. According to another preferred embodiment of the invention, the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of steps, and preferably in the order given, aO ) pretreatment, a) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking and g) recycling of the hydrocracked effluent to the step d), to produce an effluent of which at least a part is compatible for treatment in a steam cracking unit.
Selon un troisième mode de réalisation préféré de l’invention, le procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques comprend, de préférence consiste en, l’enchaînement des étapes, et de préférence dans l’ordre donné, a) d’hydrogénation sélective, b) d’hydrotraitement, c) d’hydrocraquage, d) de séparation, e) de fractionnement, f) d’hydrocraquage et g) de recyclage de l’effluent hydrocraqué dans l’étape d), h) de recyclage d’une partie de la coupe comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C aux étapes a) et/ou b), pour produire un effluent dont au moins une partie est compatible pour un traitement dans une unité de vapocraquage. According to a third preferred embodiment of the invention, the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of steps, and preferably in the order given, a ) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking and g) recycling of the hydrocracked effluent in step d), h) recycling part of the cut comprising compounds having a boiling point less than or equal to 175° C. in stages a) and/or b), to produce an effluent of which at least a part is compatible for a treatment in a steam cracking unit.
Selon un quatrième mode de réalisation préféré de l’invention, le procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques comprend, de préférence consiste en, l’enchaînement des étapes, et de préférence dans l’ordre donné, aO) de prétraitement, a) d’hydrogénation sélective, b) d’hydrotraitement, c) d’hydrocraquage, d) de séparation, e) de fractionnement, f) d’hydrocraquage et g) de recyclage de l’effluent hydrocraqué dans l’étape d), h) de recyclage d’une partie de la coupe comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C aux étapes a) et/ou b), pour produire un effluent dont au moins une partie est compatible pour un traitement dans une unité de vapocraquage. According to a fourth preferred embodiment of the invention, the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of steps, and preferably in the order given, aO ) pretreatment, a) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking and g) recycling of the hydrocracked effluent to the step d), h) of recycling part of the cut comprising compounds having a boiling point less than or equal to 175° C. in stages a) and/or b), to produce an effluent of which at least a part is compatible for treatment in a steam cracking unit.
Ledit effluent hydrocarboné ou le(s)dit(s) flux hydrocarboné(s) ainsi obtenu(s) par traitement selon le procédé de l’invention d’une huile de pyrolyse de plastiques, présente(nt) une composition compatible avec les spécifications d’une charge en entrée d’une unité de vapocraquage. En particulier, la composition de l’effluent hydrocarboné ou du(des)dit(s) flux hydrocarboné(s) est de préférence telle que : Said hydrocarbon effluent or said hydrocarbon stream(s) thus obtained by treatment according to the process of the invention of an oil for the pyrolysis of plastics, exhibit(s) a composition compatible with the specifications of a charge at the inlet of a steam cracking unit. In particular, the composition of the hydrocarbon effluent or of said hydrocarbon stream(s) is preferably such that:
- la teneur totale en éléments métalliques est inférieure ou égale à 5,0 ppm poids, de préférence inférieure ou égale à 2,0 ppm poids, préférentiellement inférieure ou égale à- the total content of metallic elements is less than or equal to 5.0 ppm by weight, preferably less than or equal to 2.0 ppm by weight, preferably less than or equal to
1,0 ppm poids et de manière préférée inférieure ou égale à 0,5 ppm poids, avec : une teneur en élément silicium (Si) inférieure ou égale à 1,0 ppm poids, de préférence inférieure ou égale à 0,6 ppm poids, et une teneur en élément fer (Fe) inférieure ou égale à 100 ppb poids, - la teneur en soufre est inférieure ou égale à 500 ppm poids, de préférence inférieure ou égale à 200 ppm poids, 1.0 ppm by weight and preferably less than or equal to 0.5 ppm by weight, with: a silicon (Si) element content less than or equal to 1.0 ppm by weight, preferably less than or equal to 0.6 ppm by weight , and a content of the element iron (Fe) less than or equal to 100 ppb weight, - the sulfur content is less than or equal to 500 ppm weight, preferably less than or equal to 200 ppm weight,
- la teneur en azote est inférieure ou égale à 100 ppm poids, de préférence inférieure ou égale à 50 ppm poids et de manière préférée inférieure ou égale à 5 ppm poids - the nitrogen content is less than or equal to 100 ppm by weight, preferably less than or equal to 50 ppm by weight and preferably less than or equal to 5 ppm by weight
- la teneur en asphaltènes est inférieure ou égale à 5,0 ppm poids, - la teneur totale en élément chlore est inférieure ou égale à 10 ppm poids, de manière préférée inférieure à 1 ,0 ppm poids, - the asphaltene content is less than or equal to 5.0 ppm by weight, - the total chlorine element content is less than or equal to 10 ppm by weight, preferably less than 1.0 ppm by weight,
- la teneur en composés oléfiniques (mono- et di-oléfines) est inférieure ou égale à 5,0% poids, de préférence inférieure ou égale à 2,0% poids, de manière préférée inférieure ou égale à 0,1% poids. Les teneurs sont données en concentrations pondérales relatives, pourcentage (%) poids, partie(s) par million (ppm) poids ou partie(s) par milliard (ppb) poids, par rapport au poids total du flux considéré. - the content of olefinic compounds (mono- and di-olefins) is less than or equal to 5.0% by weight, preferably less than or equal to 2.0% by weight, preferably less than or equal to 0.1% by weight. The contents are given in relative weight concentrations, percentage (%) by weight, part(s) per million (ppm) weight or part(s) per billion (ppb) weight, relative to the total weight of the stream considered.
Le procédé selon l’invention permet donc de traiter les huiles de pyrolyse de plastiques pour obtenir un effluent qui peut être injecté, en tout ou partie, dans une unité de vapocraquage. Etape i) de vapocraquage (optionnelle) The method according to the invention therefore makes it possible to treat the plastic pyrolysis oils to obtain an effluent which can be injected, in whole or in part, into a steam cracking unit. Step i) steam cracking (optional)
La coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e), tout ou partie, peut être envoyée vers une étape i) de vapocraquage. The naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e), all or in part, can be sent to a stage i) of steam cracking.
De manière avantageuse, la ou les fractions gaz issue(s) de l’étape d) de séparation et/ou e) de fractionnelle et contenant de l’éthane, du propane et du butane, peut (peuvent) en tout ou partie être également envoyé vers l’étape i) de vapocraquage. Advantageously, the gas fraction(s) resulting from step d) of separation and/or e) of fractional and containing ethane, propane and butane, may (may) be wholly or partially also sent to stage i) of steam cracking.
Ladite étape i) de vapocraquage est avantageusement réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C, de préférence entre 750 et 850°C, et à une pression comprise entre 0,05 et 0,3 MPa relatif. Le temps de séjour des composés hydrocarbonés est généralement inférieur ou égale à 1,0 seconde (noté s), de préférence compris entre 0,1 et 0,5 s. Avantageusement, de la vapeur d’eau est introduite en amont de l’étape i) de vapocraquage optionnelle et après la séparation (ou le fractionnement). La quantité d’eau introduite, avantageusement sous forme de vapeur d’eau, est avantageusement comprise entre 0,3 et 3,0 kg d’eau par kg de composés hydrocarbonés en entrée de l’étape i). De préférence, l’étape i) optionnelle est réalisée dans plusieurs fours de pyrolyse en parallèle de manière à adapter les conditions opératoires aux différents flux alimentant l’étape i) notamment issus de l’étape e), et aussi à gérer les temps de décokage des tubes. Un four comprend un ou plusieurs tubes disposés en parallèle. Un four peut également désigner un groupe de fours opérant en parallèle. Par exemple, un four peut être dédié au craquage de la coupe naphta comprenant des composés ayant une température d’ébullition inférieure ou égal à 175°C. Said step i) of steam cracking is advantageously carried out in at least one pyrolysis furnace at a temperature of between 700 and 900° C., preferably between 750 and 850° C., and at a pressure of between 0.05 and 0.3 MPa relative. The residence time of the hydrocarbon compounds is generally less than or equal to 1.0 second (denoted s), preferably between 0.1 and 0.5 s. Advantageously, steam is introduced upstream of stage i) of optional steam cracking and after separation (or fractionation). The quantity of water introduced, advantageously in the form of steam, is advantageously between 0.3 and 3.0 kg of water per kg of hydrocarbon compounds at the inlet of stage i). Preferably, optional step i) is carried out in several pyrolysis furnaces in parallel so as to adapt the operating conditions to the different flows supplying step i) in particular from step e), and also to manage the decoking of the tubes. A furnace comprises one or more tubes arranged in parallel. An oven can also refer to a group of ovens operating in parallel. For example, a furnace can be dedicated to cracking the naphtha cut comprising compounds with a boiling point less than or equal to 175°C.
Les effluents des différents fours de vapocraquage sont généralement recombinés avant séparation en vue de constituer un effluent. Il est entendu que l’étape i) de vapocraquage comporte les fours de vapocraquage mais aussi les sous étapes associées au vapocraquage bien connues de l’Homme du métier. Ces sous étapes peuvent comporter notamment des échangeurs de chaleur, des colonnes et des réacteurs catalytiques et des recyclages vers les fours. Une colonne permet généralement de fractionner l’effluent en vue de récupérer au moins une fraction légère comprenant de l’hydrogène et des composés ayant 2 à 5 atomes de carbone, et une fraction comprenant de l’essence de pyrolyse, et éventuellement une fraction comprenant de l’huile de pyrolyse. Des colonnes permettent de séparer les différents constituants de la fraction légère de fractionnement afin de récupérer au moins une coupe riche en éthylène (coupe C2) et une coupe riche en propylène (coupe C3) et éventuellement une coupe riche en butènes (coupe C4). Les réacteurs catalytiques permettent notamment de réaliser des hydrogénations sélectives des coupes C2, C3 voire C4 et de l’essence de pyrolyse. Les composés saturés, notamment les composés saturés ayant 2 à 4 atomes de carbone sont avantageusement recyclés vers les fours de vapocraquage de manière à accroître les rendements globaux en oléfines. The effluents from the various steam cracking furnaces are generally recombined before separation in order to constitute an effluent. It is understood that step i) of steam cracking comprises steam cracking furnaces but also the sub-steps associated with steam cracking well known to those skilled in the art. These sub-stages may include in particular heat exchangers, columns and catalytic reactors and recycling to the furnaces. A column generally makes it possible to fractionate the effluent with a view to recovering at least a light fraction comprising hydrogen and compounds having 2 to 5 carbon atoms, and a fraction comprising pyrolysis gasoline, and optionally a fraction comprising pyrolysis oil. Columns make it possible to separate the various constituents of the light fraction from fractionation in order to recover at least one cut rich in ethylene (C2 cut) and a cut rich in propylene (C3 cut) and optionally a cut rich in butenes (C4 cut). Catalytic reactors make it possible in particular to carry out selective hydrogenations of C2, C3 or even C4 cuts and of pyrolysis gasoline. The saturated compounds, in particular the saturated compounds having 2 to 4 carbon atoms, are advantageously recycled to the steam cracking furnaces so as to increase the overall yields of olefins.
Cette étape de i) de vapocraquage permet d’obtenir au moins un effluent contenant des oléfines comprenant 2, 3 et/ou 4 atomes de carbone (c’est-à-dire des oléfines en C2, C3 et/ou C4), à des teneurs satisfaisantes, en particulier supérieures ou égales à 30% poids, notamment supérieures ou égales 40% poids, voire supérieures ou égales 50% poids d’oléfines totales comprenant 2, 3 et 4 atomes de carbone par rapport au poids de l’effluent de vapocraquage considéré. Lesdites oléfines en C2, C3 et C4 peuvent ensuite être avantageusement utilisées comme monomères de polyoléfines. This stage of i) of steam cracking makes it possible to obtain at least one effluent containing olefins comprising 2, 3 and/or 4 carbon atoms (that is to say C2, C3 and/or C4 olefins), at satisfactory contents, in particular greater than or equal to 30% by weight, in particular greater than or equal to 40% by weight, or even greater than or equal to 50% by weight of total olefins comprising 2, 3 and 4 carbon atoms relative to the weight of the effluent of steam cracking considered. Said C2, C3 and C4 olefins can then be advantageously used as polyolefin monomers.
Selon un ou plusieurs mode(s) de réalisation préféré(s) de l’invention, pris séparément ou combinés entre eux, le procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques comprend, de préférence consiste en, l’enchaînement des étapes décrites ci-dessus, et de préférence dans l’ordre donné, c’est-à-dire : a) d’hydrogénation sélective, b) d’hydrotraitement, c) d’hydrocraquage, d) de séparation, e) de fractionnement, f) d’hydrocraquage, g) de recyclage du deuxième effluent hydrocraqué à l’étape d), et l’étape i) de vapocraquage. According to one or more preferred embodiment(s) of the invention, taken separately or combined together, the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, sequence of the steps described above, and preferably in the order given, that is to say: a) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e ) fractionation, f) hydrocracking, g) recycling of the second hydrocracked effluent in step d), and step i) steam cracking.
Selon un mode préférée, le procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques comprend, de préférence consiste en, l’enchaînement des étapes décrites ci-dessus, et de préférence dans l’ordre donné, c’est-à-dire aO) de prétraitement, a) d’hydrogénation sélective, b) d’hydrotraitement, c) d’hydrocraquage, d) de séparation, e) de fractionnement, f) d’hydrocraquage, g) de recyclage du deuxième effluent hydrocraqué à l’étape d), g) de recyclage d’au moins une partie de la coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C aux étapes a) et/ou b), et l’étape i) de vapocraquage. According to a preferred mode, the process for treating a charge comprising a plastics pyrolysis oil comprises, preferably consists of, the sequence of the steps described above, and preferably in the order given, that is- i.e. aO) pretreatment, a) selective hydrogenation, b) hydrotreating, c) hydrocracking, d) separation, e) fractionation, f) hydrocracking, g) recycling of the second effluent hydrocracked in step d), g) recycling at least part of the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. in steps a) and/or b), and step i) of steam cracking.
Le procédé selon l’invention, lorsqu’il comprend cette étape i) de vapocraquage, permet ainsi d’obtenir à partir d’huiles de pyrolyse de plastiques, par exemple de déchets plastiques, des oléfines pouvant servir de monomères à la synthèse de nouveaux polymères contenus dans les plastiques, à des rendements relativement satisfaisants, sans bouchage ni corrosion des unités. Méthodes d’analyse utilisées The process according to the invention, when it comprises this step i) of steam cracking, thus makes it possible to obtain, from plastic pyrolysis oils, for example plastic waste, olefins which can be used as monomers for the synthesis of new polymers contained in plastics, with relatively satisfactory yields, without clogging or corrosion of the units. Analytical methods used
Les méthodes d’analyses et/ou normes utilisées pour déterminer les caractéristiques des différents flux en particuliers de la charge à traiter et des effluents, sont connues de l’Homme du métier. Elles sont en particulier listées ci-dessous : Tableau 1
Figure imgf000042_0001
The analysis methods and/or standards used to determine the characteristics of the various streams, in particular of the feed to be treated and of the effluents, are known to those skilled in the art. They are specifically listed below: Table 1
Figure imgf000042_0001
LISTE DES FIGURES LIST OF FIGURES
La mention des éléments référencés dans la Figure 1 permet une meilleure compréhension de l’invention, sans que celle-ci ne se limite aux modes de réalisation particuliers illustrés dans la Figure 1. Les différents modes de réalisation présentés peuvent être utilisés seul ou en combinaison les uns avec les autres, sans limitation de combinaison. The mention of the elements referenced in Figure 1 allows a better understanding of the invention, without it being limited to the particular embodiments illustrated in Figure 1. The different embodiments presented can be used alone or in combination. with each other, without limitation of combination.
La Figure 1 représente le schéma d’un mode de réalisation particulier du procédé de la présente invention, comprenant : Figure 1 shows the diagram of a particular embodiment of the method of the present invention, comprising:
- une étape a) d’hydrogénation sélective d’une charge hydrocarbonée issue de la pyrolyse de plastiques 1, en présence d’un gaz riche en hydrogène 2 et éventuellement d’une amine apportée par le flux 3, réalisée dans au moins un réacteur en lit fixe comportant au moins un catalyseur d’hydrogénation sélective, pour obtenir un effluent 4 ; - a stage a) of selective hydrogenation of a hydrocarbon feed resulting from the pyrolysis of plastics 1, in the presence of a hydrogen-rich gas 2 and optionally of an amine supplied by the stream 3, carried out in at least one reactor in a fixed bed comprising at least one selective hydrogenation catalyst, to obtain an effluent 4;
- une étape b) d’hydrotraitement de l’effluent 4 issu de l’étape a), en présence d’hydrogène 5 réalisée dans au moins un réacteur en lit fixe comportant au moins un catalyseur d’hydrotraitement, pour obtenir un effluent hydrotraité 6 ; - a step b) of hydrotreating the effluent 4 from step a), in the presence of hydrogen 5, carried out in at least one fixed-bed reactor comprising at least one hydrotreating catalyst, to obtain a hydrotreated effluent 6;
- une première étape c) d’hydrocraquage de l’effluent 6 issu de l’étape c), en présence d’hydrogène 7, réalisée dans au moins un réacteur en lit fixe comportant au moins un catalyseur d’hydrocraquage, pour obtenir un premier effluent hydrocraqué 8 ; - a first step c) of hydrocracking the effluent 6 from step c), in the presence of hydrogen 7, carried out in at least one fixed-bed reactor comprising at least one hydrocracking catalyst, to obtain a first hydrocracked effluent 8;
- une étape d) de séparation de l’effluent 8 réalisée en présence d’une solution aqueuse de lavage 9 et permettant d’obtenir au moins une fraction 10 comprenant de l’hydrogène, une fraction aqueuse 11 contenant des sels dissous, et une fraction liquide hydrocarbonée 12 ; - a step d) of separation of the effluent 8 carried out in the presence of an aqueous washing solution 9 and making it possible to obtain at least a fraction 10 comprising hydrogen, an aqueous fraction 11 containing dissolved salts, and a liquid hydrocarbon fraction 12;
- une étape e) de fractionnement de la fraction liquide hydrocarbonée 12 permettant d’obtenir au moins une fraction gazeuse 13, une coupe naphta 14 comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C et une coupe 15 comprenant des composés ayant un point d’ébullition supérieur à 175°C ; - a step e) of fractionation of the liquid hydrocarbon fraction 12 making it possible to obtain at least one gaseous fraction 13, a naphtha cut 14 comprising compounds having a boiling point less than or equal to 175° C. and a cut 15 comprising compounds with a boiling point above 175°C;
- une deuxième étape f) d’hydrocraquage d’au moins une partie de la coupe 15a comprenant des composés ayant un point d’ébullition supérieur à 175°C issu de l’étape e), en présence d’hydrogène 16, réalisée dans au moins un réacteur en lit fixe comportant au moins un catalyseur d’hydrocraquage, pour obtenir un deuxième effluent hydrocraqué 17 ; l’autre partie de la coupe 15 constitue la purge15b ; - a second step f) of hydrocracking at least part of the cut 15a comprising compounds having a boiling point above 175° C. resulting from step e), in the presence of hydrogen-16, carried out in at least one fixed-bed reactor comprising at least one hydrocracking catalyst, to obtain a second hydrocracked effluent 17; the other part of the cut 15 constitutes the purge 15b;
- une étape de recycle du deuxième effluent hydrocraqué 17 dans l’étape d) de séparation. Au lieu d’injecter le flux d’amine 3 en entrée de l’étape a) d’hydrogénation sélective, il est possible de l’injecter en entrée de l’étape b) d’hydrotraitement, en entrée de l’étape c) d’hydrocraquage, en entrée de l’étape d) de séparation ou encore de ne pas l’injecter, en fonction des caractéristiques de la charge. A l’issue de l’étape e), au moins une partie de la coupe naphta 14 comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C est envoyée(s) vers un procédé de vapocraquage (non représentée). - a step of recycling the second hydrocracked effluent 17 in step d) of separation. Instead of injecting the amine stream 3 at the input of stage a) of selective hydrogenation, it is possible to inject it at the input of stage b) of hydrotreatment, at the input of stage c ) of hydrocracking, at the inlet of stage d) of separation or even of not injecting it, depending on the characteristics of the charge. At the end of step e), at least part of the naphtha cut 14 comprising compounds having a boiling point less than or equal to 175° C. is sent to a steam cracking process (not shown) .
Optionnellement, une partie de la coupe naphta 14 comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) constitue un flux de recycle qui alimente l’étape a) d’hydrogénation sélective (fraction 14a), et l’étape b) d’hydrotraitement (fraction 14b). Optionally, part of the naphtha cut 14 comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e) constitutes a recycle stream which feeds stage a) of selective hydrogenation (fraction 14a), and step b) of hydrotreating (fraction 14b).
Seules les principales étapes, avec les flux principaux, sont représentées sur la Figure 1, afin de permettre une meilleure compréhension de l’invention. Il est bien entendu que tous les équipements nécessaires au fonctionnement sont présents (ballons, pompes, échangeurs, fours, colonnes, etc.), même si non représentés. Il est également entendu que des flux de gaz riche en hydrogène (appoint ou recycle), comme décrit ci-dessus, peuvent être injectés en entrée de chaque réacteur ou lit catalytique ou entre deux réacteurs ou deux lits catalytiques. Des moyens bien connus de l’homme du métier de purification et de recyclage d’hydrogène peuvent être également mis en œuvre. EXEMPLES Only the main steps, with the main flows, are represented in Figure 1, in order to allow a better understanding of the invention. It is understood that all the equipment necessary for operation is present (balloons, pumps, exchangers, ovens, columns, etc.), even if not shown. It is also understood that streams of hydrogen-rich gas (top-up or recycle), as described above, can be injected at the inlet of each reactor or catalytic bed or between two reactors or two catalytic beds. Means well known to those skilled in the art for purifying and recycling hydrogen can also be implemented. EXAMPLES
Exemple 1 (conforme à l’invention) Example 1 (in accordance with the invention)
La charge 1 traitée dans le procédé est une huile de pyrolyse de plastiques (c’est-à-dire comprenant 100% poids de ladite huile de pyrolyse de plastiques) présentant les caractéristiques indiquées dans le tableau 2. Tableau 2 : caractéristiques de la charge
Figure imgf000045_0001
Feedstock 1 treated in the process is a plastics pyrolysis oil (that is to say comprising 100% by weight of said plastics pyrolysis oil) having the characteristics indicated in Table 2. Table 2: characteristics of the load
Figure imgf000045_0001
(1) Méthode MAV décrite dans l’article : C. Lépez-Garcia et al., Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology - Rev. IFP, Vol. 62 (2007), No. 1, pp. 57-68 (1) MAV method described in the article: C. Lépez-Garcia et al., Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology - Rev. IFP, Vol. 62 (2007), No. 1, p. 57-68
La charge 1 est soumise à une étape a) d’hydrogénation sélective réalisée dans un réacteur en lit fixe et en présence d’hydrogène 2 et d’un catalyseur d’hydrogénation sélective de type NiMo sur alumine dans les conditions indiquées dans le tableau 3. Tableau 3 : conditions de l’étape a) d’hydrogénation sélective
Figure imgf000046_0001
Charge 1 is subjected to a stage a) of selective hydrogenation carried out in a fixed-bed reactor and in the presence of hydrogen 2 and a selective hydrogenation catalyst of the NiMo on alumina type under the conditions indicated in table 3 . Table 3: conditions of stage a) of selective hydrogenation
Figure imgf000046_0001
A l’issue de l’étape a) d’hydrogénation sélective, la totalité des dioléfines initialement présentes dans la charge ont été converties. At the end of stage a) of selective hydrogenation, all of the diolefins initially present in the feed have been converted.
L’effluent 4 issu de l’étape a) d’hydrogénation sélective est soumis directement, sans séparation, à une étape b) d’hydrotraitement réalisée en lit fixe et en présence d’hydrogène 5, et d’un catalyseur d’hydrotraitement de type NiMo sur alumine dans les conditions présentées dans le tableau 4. The effluent 4 from stage a) of selective hydrogenation is subjected directly, without separation, to a stage b) of hydrotreatment carried out in a fixed bed and in the presence of hydrogen 5, and of a hydrotreatment catalyst of the NiMo type on alumina under the conditions presented in Table 4.
Tableau 4 : conditions de l’étape b) d’hydrotraitement
Figure imgf000046_0002
Table 4: conditions of stage b) of hydrotreatment
Figure imgf000046_0002
L’effluent 6 issu de l’étape b) d’hydrotraitement est soumis directement, sans séparation, à une première étape c) d’hydrocraquage réalisée en lit fixe et en présence d’hydrogène 7 et d’un catalyseur d’hydrocraquage zéolitique comprenant du NiMo dans les conditions présentées dans le tableau 5. Tableau 5 : conditions de la première étape c) d’hydrocraquage
Figure imgf000047_0001
The effluent 6 from stage b) of hydrotreatment is subjected directly, without separation, to a first stage c) of hydrocracking carried out in a fixed bed and in the presence of hydrogen 7 and of a zeolite hydrocracking catalyst comprising NiMo under the conditions shown in Table 5. Table 5: conditions of the first stage c) of hydrocracking
Figure imgf000047_0001
L’effluent 8 issu de l’étape c) d’hydrocraquage est soumis à une étape d) de séparation selon l’invention dans laquelle un flux d’eau est injecté dans l’effluent issu de l’étape c) d’hydrocraquage; le mélange est ensuite envoyé dans l’étape d) de séparation et est traité dans une colonne de lavage des gaz acides. Une fraction gaz 10 est obtenue en tête de la colonne de lavage des gaz acides tandis qu’en fond, un ballon séparateur diphasique permet de séparer une phase aqueuse et une phase liquide. La colonne de lavage de gaz et le séparateur diphasique sont opérés à haute pression. La phase liquide est ensuite envoyée dans un ballon basse pression de manière à récupérer une seconde fraction gazeuse qui est purgée et un effluent liquide. L’effluent liquide 12 obtenu à l’issue de l’étape d) de séparation est envoyée vers une étape e) de fractionnement comprenant une colonne de stripage et une colonne de distillation en vue d’obtenir fraction ayant un point d’ébullition inférieure ou égal à 175°C (fraction PI-175°C) et une fraction ayant un point d’ébullition supérieure à 175°C (fraction 175°C+). La fraction 175°C+ issue de l’étape e) de fractionnement est envoyée vers la deuxième étape f) d’hydrocraquage de manière à accroître la conversion des composés ayant un point d’ébullition supérieur à 175°C. Une faible partie de la fraction 175°C+ n’est pas envoyée vers la deuxième étape f) hydrocraquage de manière à éviter l’accumulation de composés polyaromatiques qui pourraient être précurseur de coke (purge 15b). Le débit volumique de fraction 175°C+ issue de l’étape e) de fractionnement et envoyée vers la deuxième étape f) hydrocraquage est égal à 80% du débit volumique de l’effluent liquide issu de l’étape b) d’hydrotraitement et alimentant la première étape c) d’hydrocraquage. La deuxième étape f) d’hydrocraquage est réalisée en lit fixe et en présence d’hydrogène 16 et d’un catalyseur d’hydrocraquage zéolitique comprenant du NiMo dans les conditions présentées dans le tableau 6. The effluent 8 from stage c) of hydrocracking is subjected to a stage d) of separation according to the invention in which a flow of water is injected into the effluent from stage c) of hydrocracking ; the mixture is then sent to stage d) of separation and is treated in an acid gas scrubbing column. A gas fraction 10 is obtained at the top of the acid gas scrubbing column while at the bottom, a two-phase separator drum makes it possible to separate an aqueous phase and a liquid phase. The gas scrubbing column and the two-phase separator are operated at high pressure. The liquid phase is then sent to a low-pressure drum so as to recover a second gaseous fraction which is purged and a liquid effluent. The liquid effluent 12 obtained at the end of step d) of separation is sent to a step e) of fractionation comprising a stripping column and a distillation column in order to obtain a fraction having a lower boiling point. or equal to 175°C (PI-175°C fraction) and a fraction having a boiling point greater than 175°C (175°C+ fraction). The 175°C+ fraction from stage e) of fractionation is sent to the second stage f) of hydrocracking so as to increase the conversion of compounds having a boiling point above 175°C. A small part of the 175° C.+ fraction is not sent to the second stage f) hydrocracking so as to avoid the accumulation of polyaromatic compounds which could be coke precursors (purge 15b). The volume flow rate of the 175°C+ fraction from stage e) of fractionation and sent to the second stage f) hydrocracking is equal to 80% of the volume flow rate of the liquid effluent from stage b) of hydrotreatment and feeding the first stage c) of hydrocracking. The second hydrocracking step f) is carried out in a fixed bed and in the presence of hydrogen 16 and a zeolitic hydrocracking catalyst comprising NiMo under the conditions presented in Table 6.
Tableau 6 : conditions de la deuxième étape f) d’hydrocraquage
Figure imgf000048_0001
L’effluent 17 issu de la deuxième étape f) d’hydrocraquage est mélangé à l’effluent 8 de la première étape c) d’hydrocraquage. Les deux effluents sont soumis à une étape d) de séparation puis une étape e) de fractionnement, ces deux étapes étant communes aux deux effluents et étant réalisées tel que décrit plus haut.
Table 6: conditions of the second stage f) of hydrocracking
Figure imgf000048_0001
The effluent 17 from the second hydrocracking step f) is mixed with the effluent 8 from the first hydrocracking step c). The two effluents are subjected to a step d) of separation then a step e) of fractionation, these two steps being common to the two effluents and being carried out as described above.
Le tableau 7 donne les rendements globaux des différentes fractions obtenues en sortie des étape c) et f) d’hydrocraquage à l’issue des étapes d) de séparation et e) de fractionnement (qui comprend une colonne de stripage et une colonne de distillation). Table 7 gives the overall yields of the various fractions obtained at the outlet of stages c) and f) of hydrocracking at the end of stages d) of separation and e) of fractionation (which comprises a stripping column and a distillation column ).
Tableau 7 : rendements des différents produits et fractions obtenus en sortie des étapes c) et f) d’hydrocraquage
Figure imgf000048_0002
Les composés H2S et NH3 sont principalement éliminés sous forme de sels dans la phase aqueuse éliminée à l’étape d) de séparation.
Table 7: yields of the various products and fractions obtained at the output of stages c) and f) of hydrocracking
Figure imgf000048_0002
The H 2 S and NH 3 compounds are mainly eliminated in the form of salts in the aqueous phase eliminated in stage d) of separation.
Le traitement de la charge selon les étapes de l’invention, et notamment à travers les étapes c) et f) d’hydrocraquage, permet d’obtenir un rendement très élevé en fraction PI-175°C de type naphta. The treatment of the charge according to the steps of the invention, and in particular through steps c) and f) of hydrocracking, makes it possible to obtain a very high yield of naphtha-type PI-175°C fraction.
Les caractéristiques des fractions liquides PI-175°C et 175°C+ obtenues après l’étape d) de séparation et une étape e) de fractionnement sont présentés tableau 8 : The characteristics of the PI-175°C and 175°C+ liquid fractions obtained after step d) of separation and a step e) of fractionation are presented in Table 8:
Tableau 8 : caractéristiques des fraction PI-175°C, 175°C+
Figure imgf000049_0001
Les fractions liquides PI-175°C et 175°C+ présentent toutes les deux des compositions compatibles avec une unité de vapocraquage puisque :
Table 8: characteristics of the PI-175°C, 175°C+ fractions
Figure imgf000049_0001
The PI-175°C and 175°C+ liquid fractions both have compositions compatible with a steam cracking unit since:
- elles ne contiennent pas d’oléfines (mono- et di-oléfines) ; - they do not contain olefins (mono- and di-olefins);
- elles présentent des teneurs en élément chlore très faibles (respectivement une teneur non détectée et une teneur de 25 ppb poids) et inférieures à la limite requise pour une charge de vapocraqueur; - they have very low chlorine element contents (respectively an undetected content and a content of 25 ppb by weight) and below the limit required for a steam cracker charge;
- les teneurs en métaux, en particulier en fer (Fe), sont elles aussi très faibles (teneurs en métaux non détectée pour la fraction PI-175°C et < 1 ppm poids pour la fraction 175°C+ ; teneurs en Fe non détectée pour la fraction PI-175°C et 50 ppb poids pour la fraction 175°C+) et inférieures aux limites requises pour une charge de vapocraqueur (£ 5,0 ppm poids, de manière très préférée £ 1 ppm poids pour les métaux ; £ 100 ppb poids pour le Fe) ; - the metal contents, in particular iron (Fe), are also very low (metal contents not detected for the PI-175°C fraction and < 1 ppm weight for the 175°C+ fraction; Fe contents not detected for the PI-175°C fraction and 50 ppb weight for the 175°C+ fraction) and below the limits required for a steam cracker feed (£ 5.0 ppm weight, very preferably £ 1 ppm weight for metals; £ 100 ppb weight for Fe);
- enfin elles contiennent du soufre (< 2 ppm poids pour la fraction PI-175°C et < 2 ppm poids pour la fraction 175°C+) et de l’azote (< 0,5 ppm poids pour la fraction PI-175°C et < 3 ppm poids pour la fraction 175°C+) à des teneurs très inférieures aux limites requises pour une charge de vapocraqueur (£ 500 ppm poids, de préférence £ 200 ppm poids pour S et N). - finally they contain sulfur (< 2 ppm weight for the PI-175°C fraction and < 2 ppm weight for the 175°C+ fraction) and nitrogen (< 0.5 ppm weight for the PI-175° fraction C and <3 ppm by weight for the 175°C+ fraction) at contents well below the limits required for a steam cracker charge (£500 ppm by weight, preferably £200 ppm by weight for S and N).
La fraction liquide PI-175°C obtenue est donc ensuite envoyée vers une étape i) de vapocraquage (cf. tableau 9). Tableau 9 : conditions de l’étape de vapocraquage
Figure imgf000050_0001
The PI-175°C liquid fraction obtained is therefore then sent to a stage i) of steam cracking (cf. table 9). Table 9: conditions of the steam cracking step
Figure imgf000050_0001
Les effluents des différents fours de vapocraquage sont soumis à une étape de séparation permettant de recycler les composés saturés vers les fours de vapocraquage et d’obtenir les rendements présentés dans le tableau 10 (rendement = % de masse de produit par rapport à la masse de la fraction PI-175°C en amont de l’étape de vapocraquage, noté % m/m). Tableau 10 : rendements de l’étape de vapocraquage
Figure imgf000051_0001
The effluents from the various steam cracking furnaces are subjected to a separation stage making it possible to recycle the saturated compounds to the steam cracking furnaces and to obtain the yields presented in table 10 (yield = % of mass of product relative to the mass of the fraction PI-175°C upstream of the steam cracking step, denoted % m/m). Table 10: yields of the steam cracking step
Figure imgf000051_0001
En considérant le rendement de 93% obtenu pour la fraction liquide 175°C+ lors du procédé de traitement de l’huile de pyrolyse en sorti des étapes d’hydrocraquage (cf. tableau 7), il est possible de déterminer les rendements globaux des produits issus de l’étape i) de vapocraquage par rapport à la charge initiale de type huile de pyrolyse de plastiques introduite à l’étape a) : Considering the yield of 93% obtained for the liquid fraction at 175°C+ during the process for treating the pyrolysis oil coming out of the hydrocracking stages (see Table 7), it is possible to determine the overall yields of the products from stage i) of steam cracking with respect to the initial charge of plastic pyrolysis oil type introduced in stage a):
Tableau 11 : rendements globaux du procédé en produits issus de l’étape de vapocraquage de la fraction PI-175°C
Figure imgf000051_0002
Lorsque la fraction PI-175°C est envoyée à l’unité de vapocraquage, le procédé selon l’invention permet d’atteindre des rendements massiques globaux en éthylène et en propylène respectivement de 31,9 % et 17,4 % par rapport à la quantité massique de charge de type huile de pyrolyse de plastiques initiale. De plus, l’enchaînement spécifique d’étapes en amont de l’étape de vapocraquage permet de limiter la formation de coke et d’éviter les problèmes de corrosion qui seraient apparus si le chlore n’avait pas été éliminé.
Table 11: overall process yields of products from the steam cracking step of the PI-175°C fraction
Figure imgf000051_0002
When the PI-175°C fraction is sent to the steam cracking unit, the process according to the invention makes it possible to achieve overall mass yields of ethylene and propylene respectively of 31.9% and 17.4% compared to the mass quantity of initial plastics pyrolysis oil type filler. In addition, the specific sequence of steps upstream of the steam cracking step makes it possible to limit the formation of coke and to avoid the corrosion problems which would have appeared if the chlorine had not been eliminated.
Exemple 2 (non conforme à l’invention) Example 2 (not in accordance with the invention)
Dans cet exemple, la charge à traiter est identique à celle décrite dans l’Exemple 1 (cf. tableau 2). In this example, the load to be processed is identical to that described in Example 1 (see Table 2).
Elle subit les étapes a) d’hydrogénation sélective, b) d’hydrotraitement et d) de séparation, opérées dans les mêmes conditions que celles décrites dans l’Exemple 1. Dans cet exemple non conforme à l’invention, l’effluent issu de l’étape d’hydrotraitement n’est pas soumis aux étapes c) et f) d’hydrocraquage. L’effluent liquide obtenu à l’issue de l’étape d) de séparation constitue la fraction PI+. It undergoes stages a) of selective hydrogenation, b) of hydrotreatment and d) of separation, carried out under the same conditions as those described in Example 1. In this example not in accordance with the invention, the effluent from of the hydrotreating stage is not subjected to the hydrocracking stages c) and f). The liquid effluent obtained at the end of step d) of separation constitutes the PI+ fraction.
Les rendements des différents produits et des différentes fractions obtenues en sortie de l’étape b) d’hydrotraitement sont indiqués dans le tableau 12 (les rendements étant correspondant aux rapports des quantités massiques des différents produits obtenus par rapport à la masse de charge en amont de l’étape a), exprimés en pourcentage et notés % m/m). The yields of the various products and of the various fractions obtained at the outlet of stage b) of hydrotreatment are indicated in table 12 (the yields being corresponding to the ratios of the quantities by mass of the various products obtained with respect to the mass of feedstock upstream of step a), expressed as a percentage and noted as % m/m).
Tableau 12 : rendements des différents produits et fractions obtenus en sortie de l’étape b) d’hydrotraitement
Figure imgf000052_0001
Les caractéristiques de la fraction PI+ (qui correspond à l’effluent liquide) obtenue après l’étape d) de séparation sont présentés tableau 13 :
Table 12: Yields of the various products and fractions obtained at the output of stage b) of hydrotreatment
Figure imgf000052_0001
The characteristics of the PI+ fraction (which corresponds to the liquid effluent) obtained after stage d) of separation are presented in Table 13:
Tableau 13 : caractéristiques de la fraction PI+
Figure imgf000053_0001
Table 13: characteristics of the PI+ fraction
Figure imgf000053_0001
La fraction PI+ obtenue via l’enchaînement d’étapes a), b) et d) est constituée d’environ 35% de composés de type naphta ayant un point d’ébullition inférieure ou égal à 175°C. Ce rendement faible en composés de type naphta ayant un point d’ébullition inférieur ou égal à 175°C est dû à l’absence d’étapes d’hydrocraquage dans cet exemple non conforme. L’effluent liquide fraction PI+ est envoyé directement vers une étape i) de vapocraquage selon les conditions mentionnées dans le tableau 14. The PI+ fraction obtained via the sequence of steps a), b) and d) consists of approximately 35% of compounds of naphtha type having a boiling point less than or equal to 175°C. This low yield of naphtha-type compounds having a boiling point less than or equal to 175° C. is due to the absence of hydrocracking steps in this nonconforming example. The PI+ fraction liquid effluent is sent directly to a steam cracking stage i) according to the conditions mentioned in table 14.
Tableau 14 : conditions de l’étape de vapocraquage
Figure imgf000054_0001
Table 14: conditions of the steam cracking step
Figure imgf000054_0001
L’effluent du four de vapocraquage est soumis à une étape de séparation permettant de recycler les composés saturés vers le four de vapocraquage et d’obtenir les rendements présentés dans le tableau 15 (rendement = % de masse de produit par rapport à la masse de fraction PI+ en amont de l’étape de vapocraquage, noté % m/m). The effluent from the steam cracking furnace is subjected to a separation stage making it possible to recycle the saturated compounds to the steam cracking furnace and to obtain the yields presented in table 15 (yield = % of mass of product relative to the mass of PI+ fraction upstream of the steam cracking step, denoted % m/m).
Tableau 15 : rendements de l’étape de vapocraquage de la fraction PI+
Figure imgf000054_0002
Table 15: yields of the steam cracking stage of the PI+ fraction
Figure imgf000054_0002
En considérant le rendement obtenu de 99,5% pour la fraction PI+ lors du procédé de traitement de l’huile de pyrolyse en sortie de l’étape b) d’hydrotraitement (cf. tableau 12), il est possible de déterminer les rendements globaux des produits issus de l’étape i) de vapocraquage par rapport à la charge initiale de type huile de pyrolyse de plastiques introduite à l’étape a) : By considering the obtained yield of 99.5% for the PI+ fraction during the process for treating the pyrolysis oil at the outlet of step b) of hydrotreatment (see Table 12), it is possible to determine the yields total of the products resulting from stage i) of steam cracking with respect to the initial charge of plastic pyrolysis oil type introduced in step a):
Tableau 16 : rendements globaux du procédé en produits issus de l’étape de vapocraquage de la fraction PI+
Figure imgf000055_0001
Lorsque la fraction liquide PI+ est soumise à une étape de vapocraquage, le procédé selon l’invention permet d’atteindre des rendements massiques globaux en éthylène et en propylène respectivement de 34,6 % et 18,9 % par rapport à la quantité massique de charge de type huile de pyrolyse de plastiques initiale.
Table 16: overall process yields of products from the PI+ fraction steam cracking step
Figure imgf000055_0001
When the PI+ liquid fraction is subjected to a steam cracking step, the process according to the invention makes it possible to achieve overall mass yields of ethylene and propylene respectively of 34.6% and 18.9% relative to the quantity by mass of initial plastics pyrolysis oil type charge.

Claims

REVENDICATIONS
1. Procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques, comprenant : a) une étape d’hydrogénation sélective mise en œuvre dans une section réactionnelle alimentée au moins par ladite charge et un flux gazeux comprenant de l’hydrogène, en présence d’au moins un catalyseur d’hydrogénation sélective, à une température entre 100 et 280°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,3 et 10,0 h-1 , pour obtenir un effluent hydrogéné ; b) une étape d’hydrotraitement mise en œuvre dans une section réactionnelle d’hydrotraitement, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d'hydrotraitement, ladite section réactionnelle d’hydrotraitement étant alimentée au moins par ledit effluent hydrogéné issu de l’étape a) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrotraitement étant mise en œuvre à une température entre 250 et 430°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h 1, pour obtenir un effluent d’hydrotraitement ; c) une première étape d’hydrocraquage mise en œuvre dans une section réactionnelle d’hydrocraquage, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d'hydrocraquage, ladite section réactionnelle d’hydrocraquage étant alimentée au moins par ledit effluent hydrotraité issu de l’étape b) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrocraquage étant mise en œuvre à une température entre 250 et 480°C, une pression partielle d’hydrogène entre 1,5 et 25,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h 1, pour obtenir un premier effluent hydrocraqué ; d) une étape de séparation, alimentée par l’effluent hydrocraqué issu de l’étape c) et une solution aqueuse, ladite étape étant opérée à une température entre 50 et 370°C, pour obtenir au moins un effluent gazeux, un effluent aqueux et un effluent hydrocarboné ; e) une étape de fractionnement de tout ou partie de l’effluent hydrocarboné issu de l’étape d), pour obtenir au moins un flux gazeux et au moins deux flux hydrocarbonés liquides, lesdits deux flux hydrocarbonés liquides étant au moins une coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C et une coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C ; f) une deuxième étape d’hydrocraquage mise en œuvre dans une section réactionnelle d’hydrocraquage, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d'hydrocraquage, ladite section réactionnelle d’hydrocraquage étant alimentée par au moins une partie de ladite coupe hydrocarbonée comprenant des composés ayant un point d’ébullition supérieur à 175°C issue de l’étape e) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrocraquage étant mise en œuvre à une température entre 250 et 480°C, une pression partielle d’hydrogène entre 1,5 et 25,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h 1, pour obtenir un deuxième effluent hydrocraqué ; g) une étape de recyclage d’au moins une partie dudit deuxième effluent hydrocraqué issu de l’étape f) dans l’étape d) de séparation. 1. Process for treating a charge comprising a plastics pyrolysis oil, comprising: a) a selective hydrogenation step implemented in a reaction section fed at least by said charge and a gas stream comprising hydrogen, in the presence of at least one selective hydrogenation catalyst, at a temperature between 100 and 280° C., a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volume rate between 0.3 and 10.0 h -1 , to obtain a hydrogenated effluent; b) a hydrotreating step implemented in a hydrotreating reaction section, implementing at least one fixed bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one catalyst hydrotreatment, said hydrotreatment reaction section being fed at least with said hydrogenated effluent from step a) and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at a temperature between 250 and 430°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric speed between 0.1 and 10.0 h 1 , to obtain a hydrotreatment effluent; c) a first hydrocracking stage implemented in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being fed at least with said hydrotreated effluent from step b) and a gas stream comprising hydrogen, said hydrocracking reaction section being implemented at a temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 25.0 MPa abs. and an hourly volume rate between 0.1 and 10.0 h 1 , to obtain a first hydrocracked effluent; d) a separation stage, supplied with the hydrocracked effluent from stage c) and an aqueous solution, said stage being carried out at a temperature between 50 and 370° C., to obtain at least one gaseous effluent, an aqueous effluent and a hydrocarbon effluent; e) a step of fractionating all or part of the hydrocarbon effluent from step d), to obtain at least one gas stream and at least two liquid hydrocarbon streams, said two liquid hydrocarbon streams being at least one naphtha cut comprising compounds having a boiling point less than or equal to 175° C. and a hydrocarbon cut comprising compounds having a boiling point greater than 175° C.; f) a second hydrocracking stage implemented in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being supplied with at least a portion of said hydrocarbon cut comprising compounds having a boiling point above 175°C from step e) and a gas stream comprising hydrogen, said hydrocracking reaction section being carried out at a temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 25.0 MPa abs. and an hourly volumetric speed between 0.1 and 10.0 h 1 , to obtain a second hydrocracked effluent; g) a step of recycling at least part of said second hydrocracked effluent from step f) in step d) of separation.
2. Procédé selon la revendication précédente, lequel comprend en outre une étape h) de recyclage dans laquelle une fraction de l’effluent hydrocarboné issu de l’étape d) de séparation ou une fraction de la coupe naphta ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) de fractionnement est envoyée vers l’étape a) d’hydrogénation sélective et/ou l’étape b) d’hydrotraitement. 2. Method according to the preceding claim, which further comprises a step h) of recycling in which a fraction of the hydrocarbon effluent from step d) of separation or a fraction of the naphtha cut having a lower boiling point or equal to 175° C. from step e) of fractionation is sent to step a) of selective hydrogenation and/or step b) of hydrotreatment.
3. Procédé selon la revendication précédente, dans lequel la quantité du flux de recycle de l’étape h) est ajustée de sorte que le rapport pondéral entre le flux de recycle et la charge comprenant une huile de pyrolyse de plastiques est inférieur ou égal à 10. 3. Method according to the preceding claim, in which the quantity of the recycle stream of step h) is adjusted so that the weight ratio between the recycle stream and the charge comprising a plastics pyrolysis oil is less than or equal to 10.
4. Procédé selon l’une des revendications précédentes, comprenant une étape aO) de prétraitement de la charge comprenant une huile de pyrolyse de plastiques, ladite étape de prétraitement étant mise en œuvre en amont de l’étape a) d’hydrogénation sélective et comprenant une étape de filtration et/ou une étape d’un lavage à l’eau et/ou une étape d’adsorption. 4. Method according to one of the preceding claims, comprising a step aO) of pretreatment of the charge comprising a plastic pyrolysis oil, said pretreatment step being implemented upstream of step a) of selective hydrogenation and comprising a filtration step and/or a water washing step and/or an adsorption step.
5. Procédé selon l’une des revendications précédentes dans lequel la section réactionnelle de l’étape a) ou b) met en œuvre aux moins deux réacteurs fonctionnant en mode permutable. 5. Method according to one of the preceding claims, in which the reaction section of step a) or b) uses at least two reactors operating in switchable mode.
6. Procédé selon l’une des revendications précédentes dans lequel un flux contenant une amine est injecté en amont de l’étape a). 6. Method according to one of the preceding claims, in which a stream containing an amine is injected upstream of step a).
7. Procédé selon l’une des revendications précédentes dans lequel ledit catalyseur d’hydrogénation sélective comprend un support choisi parmi l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges et une fonction hydro- déshydrogénante comprenant soit au moins un élément du groupe VIII et au moins un élément du groupe VIB, soit au moins un élément du groupe VIII. 7. Process according to one of the preceding claims, in which the said selective hydrogenation catalyst comprises a support chosen from among alumina, silica, silica-aluminas, magnesia, clays and their mixtures and a hydro-dehydrogenating function comprising either at least one element from group VIII and at least one element from group VIB, or at least one element from group VIII.
8. Procédé selon l’une des revendications précédentes dans lequel ledit un catalyseur d’hydrotraitement comprend un support choisi dans le groupe constitué par l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges, et une fonction hydro-déshydrogénante comprenant au moins un élément du groupe VIII et/ou au moins un élément du groupe VIB. 8. Method according to one of the preceding claims, in which said hydrotreating catalyst comprises a support chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and their mixtures, and a hydro-dehydrogenating function comprising at least one element from group VIII and/or at least one element from group VIB.
9. Procédé selon l’une des revendications précédentes dans lequel ledit catalyseur d’hydrocraquage de l’étape c) ou de l’étape f) comprend un support choisi parmi les alumines halogénées, les combinaisons d’oxydes de bore et d’aluminium, les silice- alumines amorphes et les zéolithes et une fonction hydro-déshydrogénante comprenant au moins un métal du groupe VIB choisi parmi le chrome, le molybdène et le tungstène, seul ou en mélange, et/ou au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium et le platine. 9. Process according to one of the preceding claims, in which the said hydrocracking catalyst of step c) or of step f) comprises a support chosen from halogenated aluminas, combinations of boron and aluminum oxides , amorphous silica-aluminas and zeolites and a hydro-dehydrogenating function comprising at least one metal from group VIB chosen from chromium, molybdenum and tungsten, alone or as a mixture, and/or at least one metal from group VIII chosen among iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum.
10. Procédé selon la revendication précédente dans lequel ladite zéolithe est choisie parmi les zéolithes Y, seules ou en combinaison, avec d’autres zéolithes parmi les zéolithes beta, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-11, ZSM-48, ZBM-30, seules ou en mélange. 10. Process according to the preceding claim, in which the said zeolite is chosen from Y zeolites, alone or in combination, with other zeolites from beta zeolites, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO -11, ZSM-48, ZBM-30, singly or in combination.
11. Procédé selon l’une des revendications précédentes, dans lequel la coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e), tout ou partie, est envoyée vers une étape i) de vapocraquage réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C et à une pression comprise entre 0,05 et 0,3 MPa relatif. 11. Process according to one of the preceding claims, in which the naphtha cut comprising compounds having a boiling point less than or equal to 175° C. resulting from stage e), all or in part, is sent to stage i ) of steam cracking carried out in at least one pyrolysis furnace at a temperature between 700 and 900° C. and at a pressure between 0.05 and 0.3 relative MPa.
12. Procédé selon l’une des revendications précédentes, dans lequel Ja coupe naphta comprenant des composés ayant un point d’ébullition inférieur ou égal à 175°C issue de l’étape e) est fractionnée en une coupe naphta lourde comprenant des composés ayant un point d’ébullition entre 80 et 175°C et une coupe naphta légère comprenant des composés ayant un point d’ébullition inférieure à 80°C, au moins une partie de ladite coupe lourde étant envoyée vers un complexe aromatique comportant au moins une étape de reformage du naphta. 12. Process according to one of the preceding claims, in which the naphtha cut comprising compounds having a boiling point of less than or equal to 175° C. resulting from step e) is fractionated into a heavy naphtha cut comprising compounds having a boiling point between 80 and 175°C and a light naphtha cut comprising compounds having a boiling point below 80°C, at least part of said heavy cut being sent to an aromatic complex comprising at least one step naphtha reforming.
13. Procédé selon la revendication 12, dans lequel au moins une partie de la coupe naphta légère est envoyée dans l’étape i) de vapocraquage. 13. Process according to claim 12, in which at least part of the light naphtha cut is sent to stage i) of steam cracking.
14. Produit susceptible d’être obtenu par le procédé selon l’une des revendications 1 à 13. 14. Product obtainable by the process according to one of claims 1 to 13.
PCT/EP2021/070850 2020-07-30 2021-07-26 Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking WO2022023263A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2021318798A AU2021318798A1 (en) 2020-07-30 2021-07-26 Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking
CN202180059087.8A CN116194555A (en) 2020-07-30 2021-07-26 Method for treating plastic pyrolysis oil comprising two-step hydrocracking
CA3185358A CA3185358A1 (en) 2020-07-30 2021-07-26 Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking
BR112023001482A BR112023001482A2 (en) 2020-07-30 2021-07-26 PLASTICS PYROLYSIS OIL TREATMENT PROCESS INCLUDING A TWO-STEP HYDROCRACKING
JP2023506170A JP2023535638A (en) 2020-07-30 2021-07-26 Method for treating plastic pyrolysis oil involving two-step hydrocracking
EP21751787.9A EP4189038A1 (en) 2020-07-30 2021-07-26 Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking
US18/018,494 US20230287283A1 (en) 2020-07-30 2021-07-26 Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking
KR1020237005785A KR20230044444A (en) 2020-07-30 2021-07-26 Method for processing plastic pyrolysis oil involving two-stage hydrocracking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008108A FR3113060B1 (en) 2020-07-30 2020-07-30 PROCESS FOR TREATMENT OF PLASTICS PYROLYSIS OILS INCLUDING TWO-STAGE HYDROCRACKING
FRFR2008108 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022023263A1 true WO2022023263A1 (en) 2022-02-03

Family

ID=73038177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/070850 WO2022023263A1 (en) 2020-07-30 2021-07-26 Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking

Country Status (11)

Country Link
US (1) US20230287283A1 (en)
EP (1) EP4189038A1 (en)
JP (1) JP2023535638A (en)
KR (1) KR20230044444A (en)
CN (1) CN116194555A (en)
AU (1) AU2021318798A1 (en)
BR (1) BR112023001482A2 (en)
CA (1) CA3185358A1 (en)
FR (1) FR3113060B1 (en)
TW (1) TW202216968A (en)
WO (1) WO2022023263A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023237886A1 (en) * 2022-06-08 2023-12-14 Abundia Biomass-to-Liquids Limited Process for producing naphtha and diesel from pyrolysis of plastics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3133618A1 (en) 2022-03-17 2023-09-22 IFP Energies Nouvelles HYDROCONVERSION IN A BUBBLING BED OR BOILING-DRIVEN HYBRID WITH A FEED COMPRISING A FRACTION OF OIL FOR PYROLYSIS OF PLASTICS AND/OR RECOVERY SOLID FUELS
FR3135090A1 (en) * 2022-04-29 2023-11-03 IFP Energies Nouvelles METHOD FOR PROCESSING PLASTICS PYROLYSIS OIL INCLUDING AN H2S RECYCLING STEP

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2001758A1 (en) 1968-02-12 1969-10-03 Ullrich G Messwerkzeug Kg
US3492220A (en) * 1962-06-27 1970-01-27 Pullman Inc Hydrotreating pyrolysis gasoline
EP0113284A1 (en) 1982-12-30 1984-07-11 Institut Français du Pétrole Treatment of a heavy hydrocarbon oil or a heavy hydrocarbon oil fraction for their conversion into lighter fractions
EP0113297A1 (en) 1982-12-31 1984-07-11 Institut Français du Pétrole Hydrotreatment process for the conversion in at least two steps of a heavy hydrocarbon fraction containing sulfuric and metallic impurities
US4818743A (en) 1983-04-07 1989-04-04 Union Oil Company Of California Desulfurization catalyst and the catalyst prepared by a method
US5089463A (en) 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
FR2681871A1 (en) 1991-09-26 1993-04-02 Inst Francais Du Petrole PROCESS FOR HYDROTREATING A HEAVY FRACTION OF HYDROCARBONS WITH A VIEW TO REFINING IT AND CONVERTING IT TO LIGHT FRACTIONS.
US5221656A (en) 1992-03-25 1993-06-22 Amoco Corporation Hydroprocessing catalyst
US5622616A (en) 1991-05-02 1997-04-22 Texaco Development Corporation Hydroconversion process and catalyst
US5827421A (en) 1992-04-20 1998-10-27 Texaco Inc Hydroconversion process employing catalyst with specified pore size distribution and no added silica
US5969201A (en) * 1997-06-23 1999-10-19 Uop Llc Process for the conversion of plastic to produce a synthetic crude oil
US6332976B1 (en) 1996-11-13 2001-12-25 Institut Francais Du Petrole Catalyst containing phosphorous and a process hydrotreatment of petroleum feeds using the catalyst
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
US7119045B2 (en) 2002-05-24 2006-10-10 Institut Francais Du Petrole Catalyst for hydrorefining and/or hydroconversion and its use in hydrotreatment processes for batches containing hydrocarbons
US20070080099A1 (en) 2003-05-16 2007-04-12 Reid Terry A Process and catalyst for removal arsenic and one or more other metal compounds from a hydrocarbon feedstock
CN102051202A (en) 2009-10-27 2011-05-11 中国石油化工股份有限公司 Silicon trap for coker naphtha and application thereof
WO2014001632A1 (en) * 2012-06-25 2014-01-03 Upm-Kymmene Corporation Process for converting biomass to liquid fuels
FR3051375A1 (en) 2016-05-18 2017-11-24 Ifp Energies Now FILTRATION AND DISTRIBUTION DEVICE FOR CATALYTIC REACTOR.
WO2018055555A1 (en) 2016-09-22 2018-03-29 Sabic Global Technologies, B.V. An integrated process configuration involving the steps of pyrolysis, hydrocracking, hydrodealkylation and steam cracking

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492220A (en) * 1962-06-27 1970-01-27 Pullman Inc Hydrotreating pyrolysis gasoline
FR2001758A1 (en) 1968-02-12 1969-10-03 Ullrich G Messwerkzeug Kg
EP0113284A1 (en) 1982-12-30 1984-07-11 Institut Français du Pétrole Treatment of a heavy hydrocarbon oil or a heavy hydrocarbon oil fraction for their conversion into lighter fractions
EP0113297A1 (en) 1982-12-31 1984-07-11 Institut Français du Pétrole Hydrotreatment process for the conversion in at least two steps of a heavy hydrocarbon fraction containing sulfuric and metallic impurities
US4818743A (en) 1983-04-07 1989-04-04 Union Oil Company Of California Desulfurization catalyst and the catalyst prepared by a method
US5089463A (en) 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
US5622616A (en) 1991-05-02 1997-04-22 Texaco Development Corporation Hydroconversion process and catalyst
FR2681871A1 (en) 1991-09-26 1993-04-02 Inst Francais Du Petrole PROCESS FOR HYDROTREATING A HEAVY FRACTION OF HYDROCARBONS WITH A VIEW TO REFINING IT AND CONVERTING IT TO LIGHT FRACTIONS.
US5221656A (en) 1992-03-25 1993-06-22 Amoco Corporation Hydroprocessing catalyst
US5827421A (en) 1992-04-20 1998-10-27 Texaco Inc Hydroconversion process employing catalyst with specified pore size distribution and no added silica
US6332976B1 (en) 1996-11-13 2001-12-25 Institut Francais Du Petrole Catalyst containing phosphorous and a process hydrotreatment of petroleum feeds using the catalyst
US5969201A (en) * 1997-06-23 1999-10-19 Uop Llc Process for the conversion of plastic to produce a synthetic crude oil
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
US7119045B2 (en) 2002-05-24 2006-10-10 Institut Francais Du Petrole Catalyst for hydrorefining and/or hydroconversion and its use in hydrotreatment processes for batches containing hydrocarbons
US20070080099A1 (en) 2003-05-16 2007-04-12 Reid Terry A Process and catalyst for removal arsenic and one or more other metal compounds from a hydrocarbon feedstock
CN102051202A (en) 2009-10-27 2011-05-11 中国石油化工股份有限公司 Silicon trap for coker naphtha and application thereof
WO2014001632A1 (en) * 2012-06-25 2014-01-03 Upm-Kymmene Corporation Process for converting biomass to liquid fuels
FR3051375A1 (en) 2016-05-18 2017-11-24 Ifp Energies Now FILTRATION AND DISTRIBUTION DEVICE FOR CATALYTIC REACTOR.
WO2018055555A1 (en) 2016-09-22 2018-03-29 Sabic Global Technologies, B.V. An integrated process configuration involving the steps of pyrolysis, hydrocracking, hydrodealkylation and steam cracking

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRUNAUER-EMMETT-TELLER, THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 6Q, 1938, pages 309
C. LÔPEZ-GARCIA ET AL.: "Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams", OIL & GAS SCIENCE AND TECHNOLOGY - REV. IFP, vol. 62, no. 1, 2007, pages 57 - 68

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023237886A1 (en) * 2022-06-08 2023-12-14 Abundia Biomass-to-Liquids Limited Process for producing naphtha and diesel from pyrolysis of plastics

Also Published As

Publication number Publication date
JP2023535638A (en) 2023-08-18
FR3113060B1 (en) 2023-04-28
CA3185358A1 (en) 2022-02-03
US20230287283A1 (en) 2023-09-14
AU2021318798A1 (en) 2023-02-09
EP4189038A1 (en) 2023-06-07
KR20230044444A (en) 2023-04-04
TW202216968A (en) 2022-05-01
FR3113060A1 (en) 2022-02-04
BR112023001482A2 (en) 2023-04-11
CN116194555A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
EP4107233A1 (en) Optimized method for processing plastic pyrolysis oils for improving their use
WO2021110395A1 (en) Method for processing plastic pyrolysis oils with a view to their use in a steam-cracking unit
WO2022023263A1 (en) Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking
WO2022023262A1 (en) Method for the treatment of plastic pyrolysis oils including single-stage hydrocracking
EP3018188B1 (en) Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content
FR2964388A1 (en) METHOD FOR CONVERTING RESIDUE INTEGRATING A DISASPHALTAGE STEP AND A HYDROCONVERSION STEP WITH RECYCLING OF DESASPHALTEE OIL
CA2816666A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and hydrocracking
WO2022063597A1 (en) Method for processing pyrolysis oils from plastics and/or solid recovered fuels loaded with impurities
WO2019134811A1 (en) Two-step hydrocracking process comprising at least one high-pressure hot separation step
CA2607252C (en) Method and installation for fixed bed conversion of heavy petroleum fractions with integrated production of middle distillates with a very low sulphur content
EP4271784A1 (en) Method, including a hydrogenation step, for treating plastic pyrolysis oils
EP4334410A1 (en) Process for the simultaneous processing of plastics pyrolysis oils and of a feedstock originating from renewable resources
EP4334411A1 (en) Integrated method for processing pyrolysis oils of plastics and/or solid recovered fuels loaded with impurities
FR3084372A1 (en) PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, TWO DEASPHALTAGES AND A HYDROCRACKING IN A BOTTLE OF ASPHALT
WO2023099304A1 (en) Method for treating plastic pyrolysis oils including a hydrogenation step and a hot separation
FR2970478A1 (en) Pre-refining and hydroconversion in fixed-bed of a heavy crude oil of hydrocarbons, comprises removing metals in hydrodemetallation section, hydrocracking at least part of the effluent, and fractionating a portion of the effluent
WO2023066694A1 (en) Method for processing pyrolysis oils from plastics and/or solid recovered fuels, loaded with impurities
WO2023208636A1 (en) Method for treating plastic pyrolysis oil including an h2s recycling step

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3185358

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023506170

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023001482

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021318798

Country of ref document: AU

Date of ref document: 20210726

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005785

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021751787

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021751787

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023001482

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230126

WWE Wipo information: entry into national phase

Ref document number: 523442370

Country of ref document: SA