WO2022023127A1 - Dispositif pour la séparation radiale en lit mobile simulé - Google Patents

Dispositif pour la séparation radiale en lit mobile simulé Download PDF

Info

Publication number
WO2022023127A1
WO2022023127A1 PCT/EP2021/070297 EP2021070297W WO2022023127A1 WO 2022023127 A1 WO2022023127 A1 WO 2022023127A1 EP 2021070297 W EP2021070297 W EP 2021070297W WO 2022023127 A1 WO2022023127 A1 WO 2022023127A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
channel
adsorption chamber
collection
distribution channel
Prior art date
Application number
PCT/EP2021/070297
Other languages
English (en)
Inventor
Alexandre VONNER
Damien Leinekugel-Le-Cocq
Guillaume BLANCKE
Frédéric AUGIER
Aude ROYON-LEBEAUD
Manel Fourati
Amir Hossein Ahmadi-Motlagh
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to EP21746734.9A priority Critical patent/EP4188586A1/fr
Priority to US18/018,068 priority patent/US20230278001A1/en
Priority to JP2023505739A priority patent/JP2023535788A/ja
Priority to KR1020237005009A priority patent/KR20230042302A/ko
Priority to CN202180059834.8A priority patent/CN116209515A/zh
Publication of WO2022023127A1 publication Critical patent/WO2022023127A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/004Sparger-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/1842Simulated moving beds characterized by apparatus features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0407Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2204/00Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
    • B01J2204/002Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/0061Controlling the level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/0092Perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/0002Plants assembled from modules joined together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical

Definitions

  • the present invention relates to a radial device for separating or reacting fluids, for example in a separation process, such as a simulated moving bed separation process, in particular xylenes, or in a reaction process, such as a catalytic reforming process.
  • a separation process such as a simulated moving bed separation process, in particular xylenes
  • a reaction process such as a catalytic reforming process.
  • a succession of separation devices each comprising an adsorption chamber arranged between a distribution channel and a collection channel, said adsorption chamber comprising an adsorbent bed within which a fluid flows ,
  • inter-bed zones to move from one bed to the next.
  • radial reaction devices such as radial catalytic reforming reactors
  • an overpressure to follow the surface of the solid.
  • the use of an impervious textile is difficult to apply to the radial implementation of LMS separation devices because the plugging with the impervious textile of part of the adsorption chamber, between the distribution channel and the collection channel, can generate a stagnant fluid chamber (known as the "dead" volume) which affects the performance of the separation process, as well as a disturbance of the fluid distribution and collection system, this hydrodynamic disturbance unbalancing the flows and also affecting the performance of the process.
  • the present invention relates to a device for radial separation (e.g. in simulated moving bed) or reaction (e.g. catalytic reforming) provided with a cylindrical enclosure comprising:
  • an adsorption chamber adapted to contain a bed of adsorbents (solids), the adsorption chamber being placed between the distribution channel and the collection channel and extending from the upper wall to the lower wall,
  • the adsorption chamber has a loading height greater than the height of the distribution channel and the height of the collection channel
  • the device according to the present invention makes it possible to keep the distribution and collection surfaces, in particular at the level of the upper end of the adsorption chamber, constant over time despite the phenomena of compaction of the adsorbent beds during time.
  • the device according to the present invention also makes it possible to maintain a high level of separation performance of the system.
  • the loading height is at least 1% greater than the height of the distribution channel and the height of the collection channel.
  • the loading height is between 1 and 10% greater than the height of the distribution channel and the height of the collection channel.
  • the loading height is between 1.5 and 7% greater than the height of the distribution channel and the height of the collection channel.
  • said at least one washing solvent inlet is adapted to supply a flow rate of washing solvent such that the ratio of the flow rate of the washing solvent relative to the flow rate of the fluid is between 0.001 and 0 ,15.
  • said at least one washing solvent inlet comprises a plurality of washing solvent orifices distributed over the section of the complementary adsorbent solid, and/or a perforated plate, and/or a distributor plate.
  • the device further comprises a central wall parallel to the side wall.
  • the distribution channel and the collection channel are adapted for downward or upward fluid flow.
  • the distribution channel is central and the collection channel is peripheral, or the distribution channel is peripheral and the collection channel is central.
  • the lower limit of the adsorption chamber corresponds to the lower limits of the distribution channel and of the collection channel.
  • the present invention relates to a column comprising at least 1 device according to the first aspect.
  • the present invention relates to a separation or reaction process using a plurality of devices according to the first aspect or several columns according to the second aspect, process in which:
  • a fluid is introduced into the distribution channel, the fluid is distributed in the adsorption chamber, and it is collected in the collection channel, and
  • washing solvent is introduced into the adsorption chamber and the washing solvent is collected in the collection channel with the fluid.
  • Figure 1 shows an axisymmetric sectional view along the vertical axis Z of a device for radial separation in reference LMS.
  • Figure 2 shows an axisymmetric sectional view along the vertical axis Z of the device according to Figure 1, in which a waterproof textile is added to block the upper part of the adsorption chamber after settling of the solid adsorbents forming the bed of adsorbent.
  • FIG. 3 shows an axisymmetric sectional view along the vertical axis Z of a device for radial separation in LMS according to one embodiment of the invention, in which an additional height of adsorbent solid is added in the upper part of the adsorption chamber.
  • Figure 4 shows an axisymmetric sectional view along the vertical axis Z of the device according to Figure 3, in which the additional height of adsorbent solid has filled the compaction of the solid adsorbents by flowing by gravity.
  • the present invention can be defined as a radial device (eg reactor) for the separation (eg in LMS) of compounds (eg xylenes) or the reaction (eg catalytic reforming) of compounds (eg naphtha).
  • Said radial device can in particular be arranged (eg in series) within one or more columns, in particular for the LMS separation of xylenes (eg paraxylene), the column or columns being divided into N radial devices and comprising N adsorbent beds, the N adsorbent beds being separated by 2N inter-bed zones (ie N distribution zones and N collection zones).
  • the number N is between 4 and 24, and preferably between 8 and 15; very preferably between 8 and 12.
  • a device for radial separation in reference LMS comprises a cylindrical enclosure provided with a cylindrical side wall 1, an upper wall 2, a lower wall 3 and optionally a central wall 4 parallel to the side wall 2, ie, arranged vertically to reinforce the solidity of the enclosure.
  • the enclosure also includes:
  • At least one vertical collection channel 8 e.g. extending upwards from the lower outlet 7 over a height substantially ( ⁇ 10%, preferably ⁇ 5%) equal to the height of the distribution channel 6.
  • the enclosure further comprises an adsorption chamber 9 (eg of cylindrical tubular shape) arranged between the distribution channel 6 and the collection channel 8, extending from the upper wall 2 to the lower wall 3, and adapted to contain a bed of adsorbent 10 over a channel height H1 corresponding to the height of the distribution channel 6 and the collection channel 8.
  • the device further comprises at least one distribution grid 11, or any other means known to the Skilled person for liquid distribution, such as a perforated plate, placed between the distribution channel 6 and the adsorption chamber 9 and at least one collection grid 12 placed between the collection channel 8 and the adsorption chamber 9, said distribution and collection grids 11 and 12 allowing the passage of fluid between the distribution and collection channels 6 and 8 and the adsorption chamber 9.
  • adsorption chamber 9 eg of cylindrical tubular shape
  • the fluid flow in the device is descending, i e, the fluid enters the device via the upper inlet 5 and leaves the device via the lower outlet 7.
  • the fluid flow can be upward from a lower inlet towards an upper outlet.
  • the radial fluid flow in the adsorption chamber 9 takes place outwards, ie, from the central upper inlet 5 towards the outlet. lower 7 side.
  • the radial device according to the present application can be rotated by 90°, that is to say comprising distribution and collection channels 7 and 8 that are horizontal.
  • the adsorbent bed 10 completely fills (eg at least 99%) the adsorption chamber 9.
  • a solution known to those skilled in the art is to add a waterproof textile 13 in the adsorption chamber 9 in order to block the upper part 14 of the adsorption chamber 9 and thus prevent a flow of fluid through a zone not provided with adsorbent.
  • the presence of the waterproof textile 13 on the upper part 14 of the adsorption chamber 9 causes the retention of fluids which affects the performance of the separation process.
  • a stagnant volume is observed in particular at the top of the collection channel 8, and a modification of the hydrodynamics in the distribution channel 6 with a reduction in the section open to the passage of the liquid towards the adsorbent bed 10, which affects performance.
  • the device for radial separation in LMS comprises the same elements referenced 1 to 12 of the reference device.
  • the adsorption chamber 9 has a loading height H3, from the upper wall 2 to the lower wall 3, greater than the height of the distribution channel 6 and the collection channel 8.
  • the upper part 14 of the adsorption chamber 9 is adapted to contain an additional height of adsorbent solid 15 so that the adsorbent bed 10 has a loading height H3 of at least 1%, preferably at least 3%, very preferably at least 5% greater than the height of the distribution channel 6 and of the collection channel 8.
  • the adsorbent bed has a loading height between 1 and 10%, preferably between 1, 5 and 7%, higher than the height of the distribution channel and the collection channel.
  • the head height H3 is adapted so that the settlement height H4 is at least 1.0 times, preferably 1.02 times, very preferably 1.04 times, greater than the channel height H1 .
  • the lower limit of the adsorption chamber 9 (eg corresponding to the position of the lower wall 3), also corresponds to the lower limits of the distribution channel 6 and of the collection channel 8.
  • the upper limit of the adsorption chamber 9 (eg corresponding to the position of the upper wall 2), is at least 1.01 times, preferably 1.05 times, very preferably 1.10 times more higher than the upper limit of distribution channel 6 and collection channel 8.
  • the device according to the present invention further comprises at least one washing solvent inlet 16 arranged on the upper wall 2 of the enclosure.
  • the washing solvent inlet 16 notably allows the introduction of a washing solvent into the adsorption chamber 9 in order to wash the additional height of adsorbent solid 15 and limit fluid flow in the additional height of adsorbent solid 15
  • the washing solvent is a compound used as a desorbent in the LMS separation process.
  • the washing solvent is chosen from toluene and 1,4-diethylbenzene.
  • the flow rate ratio of the washing solvent relative to the flow rate of the fluid is between 0.001 and 0.15, preferably between 0.005 and 0.10, very preferably between 0.01 and 0.08 .
  • the additional height of adsorbent solid 15 is swept by a descending flow of washing solvent making it possible to limit the hydrodynamic disturbances which could be generated by the circulation of the fluid in the volume (known as the delay zone) corresponding to the additional height of adsorbent solid 15 and which would generate hydrodynamic dispersion.
  • a reference column A for the LMS separation consists of 15 reference devices as shown in FIG. 1, comprising 15 adsorbent beds arranged in series, and being separated by 30 inter-bed zones. Each bed has a volume of 29.4 m 3 and a bed porosity of 32.8%.
  • the performances achieved by column A are a paraxylene (PX) purity of 99.7%, a paraxylene yield of 97.7%, and a productivity of 93.4 kg/h/m 3 .
  • a reference column B for the LMS separation consists of 15 reference devices as shown in FIG. 2, comprising 15 adsorbent beds arranged in series, and being separated by 30 inter-bed zones. Each bed has a volume of 29.4 m 3 and a bed porosity of 32.8%.
  • the solid adsorbent undergoes in the 15 beds a settling of 8% by volume in operation which is filled by means of a tight textile placed in the adsorption chamber and stuck to the surface of the bed by an overpressure.
  • the productivity of the system is lowered to 72.3 kg /h/m 3 , i.e. a loss of 22.5%.
  • a column C according to the invention for the LMS separation consists of 15 devices according to the invention as represented in FIG. 3, comprising 15 adsorbent beds arranged in series, and being separated by 30 inter-bed zones. Each bed has a volume of 29.4 m 3 and a bed porosity of 32.8%.
  • the solid adsorbent undergoes in the 15 beds a settling of 8% by volume in operation which is filled by means of an additional height of adsorbent solid 15 of 10.0% placed at the level of the upper part 14 of the adsorption chamber 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un dispositif, une colonne et un procédé pour la séparation ou la réaction radiale, dans lesquels la chambre d'adsorption (9) présente une hauteur de chargement (H3) supérieure à la hauteur du canal de distribution (6) et la hauteur du canal de collecte (8), et la paroi supérieure (2) de la chambre d'adsorption (9) comprend au moins une entrée de solvant de lavage (16).

Description

Dispositif pour la séparation radiale en lit mobile simulé Domaine technique
La présente invention concerne un dispositif radial pour la séparation ou la réaction de fluides, par exemple dans un procédé de séparation, tel qu’un procédé de séparation en lit mobile simulé, notamment des xylènes, ou dans un procédé réactionnel, tel qu’un procédé de reformage catalytique.
Technique antérieure
Les technologies actuelles de séparation en lit mobile simulé (parfois en abrégé dans la suite du texte LMS ou SMB pour « Simulated Moving Bed » selon la terminologie anglo-saxonne) utilisent des unités qui comportent un certain nombre de points communs :
- une succession de dispositifs de séparation (nommé également adsorbeurs) comprenant chacun une chambre d’adsorption disposée entre un canal de distribution et un canal de collecte, ladite chambre d’adsorption comprenant un lit d’adsorbant au sein duquel s’écoule un fluide,
- des systèmes d’injection, notamment de la charge et de désorbant, et de soutirage, notamment des effluents produits appelés extrait et raffinât,
- des systèmes de collecte et redistribution, dits zones inter-lits, pour passer d’un lit au lit suivant.
Toutefois, lorsque nous avons examiné la technologie de séparation en LMS dans des lits d’adsorbants radiaux, nous avons observé que l’adsorbant solide se tasse au cours du temps dans le lit d’adsorbant ce qui a pour effet de créer un espace d’écoulement démuni d’adsorbants solides et de diminuer ainsi les rendements et la pureté des produits séparés.
La technologie actuelle des dispositifs réactionnels radiaux, tels que les réacteurs radiaux de reformage catalytique, utilise un textile étanche disposé dans la chambre d’adsorption et collé à la surface du lit par une surpression, pour suivre la surface du solide. Ainsi, la création d’un espace d’écoulement démuni d’adsorbants solides dans la chambre d’adsorption est évitée lors du tassement du solide, qui se produit au cours du temps. En revanche, l’utilisation d’un textile étanche est difficile à appliquer à la mise en oeuvre radiale des dispositifs de séparation en LMS car le bouchage avec le textile étanche d’une partie de la chambre d’adsorption, entre le canal de distribution et le canal de collecte, peut générer une chambre stagnante des fluides (dite volume « mort ») qui nuit aux performances du procédé de séparation, ainsi qu’une perturbation du système de distribution et collecte des fluides, cette perturbation hydrodynamique déséquilibrant les flux et nuisant également aux performances du procédé.
Résumé de l’invention
Selon un premier aspect, la présente invention concerne un dispositif pour la séparation (e.g. en lit mobile simulé) ou la réaction (e.g. de reformage catalytique) radiale muni d’une enceinte cylindrique comprenant :
- une paroi latérale,
- une paroi supérieure,
- une paroi inférieure,
- au moins une entrée de fluide à séparer,
- au moins un canal de distribution vertical,
- au moins une sortie de fluide,
- au moins un canal de collecte vertical,
- une chambre d’adsorption adaptée pour contenir un lit d’adsorbants (solides), la chambre d’adsorption étant disposée entre le canal de distribution et le canal de collecte et s’étendant de la paroi supérieure à la paroi inférieure,
- au moins une grille de distribution disposée entre le canal de distribution et la chambre d’adsorption, et
- au moins une grille de collecte disposée entre le canal de collecte et la chambre d’adsorption, dans lequel
- la chambre d’adsorption présente une hauteur de chargement supérieure à la hauteur du canal de distribution et la hauteur du canal de collecte, et
- la paroi supérieure comprend au moins une entrée de solvant de lavage. Avantageusement, le dispositif selon la présente invention permet de conserver les surfaces de distribution et de collecte, notamment au niveau de l’extrémité supérieure la chambre d’adsorption, constantes au cours du temps malgré les phénomènes de tassement des lits d’adsorbant au cours du temps. Ainsi, le dispositif selon la présente invention permet également de conserver un haut niveau de performances de séparation du système.
Selon un ou plusieurs modes de réalisation, la hauteur de chargement est au moins 1 % supérieure à la hauteur du canal de distribution et la hauteur du canal de collecte.
Selon un ou plusieurs modes de réalisation, la hauteur de chargement est entre 1 et 10% supérieure à la hauteur du canal de distribution et la hauteur du canal de collecte.
Selon un ou plusieurs modes de réalisation, la hauteur de chargement est entre 1 ,5 et 7% supérieure à la hauteur du canal de distribution et la hauteur du canal de collecte.
Selon un ou plusieurs modes de réalisation, ladite au moins une entrée de solvant de lavage est adaptée pour fournir un débit de solvant de lavage de sorte que le ratio de débit du solvant de lavage par rapport au débit du fluide soit compris entre 0,001 et 0,15.
Selon un ou plusieurs modes de réalisation, ladite au moins une entrée de solvant de lavage comprend une pluralité d’orifices de solvant de lavage répartis sur la section du solide adsorbant complémentaire, et/ou une plaque perforée, et/ou un plateau distributeur.
Selon un ou plusieurs modes de réalisation, le dispositif comprend en outre une paroi centrale parallèle à la paroi latérale.
Selon un ou plusieurs modes de réalisation, le canal de distribution et le canal de collecte sont adaptés pour un écoulement fluidique descendant ou ascendant.
Selon un ou plusieurs modes de réalisation, le canal de distribution est central et le canal de collecte est périphérique, ou le canal de distribution est périphérique et le canal de collecte est central.
Selon un ou plusieurs modes de réalisation, la limite basse de la chambre d’adsorption correspond aux limites basses du canal de distribution et du canal de collecte.
Selon un deuxième aspect, la présente invention concerne une colonne comprenant au moins 1 dispositif selon le premier aspect. Selon un troisième aspect, la présente invention concerne un procédé de séparation ou de réaction utilisant une pluralité de dispositifs selon le premier aspect ou plusieurs colonnes selon le deuxième aspect, procédé dans lequel :
- on introduit un fluide dans le canal de distribution, on distribue le fluide dans la chambre d’adsorption, et on collecte dans le canal de collecte, et
- on introduit un solvant de lavage dans la chambre d’adsorption et on collecte le solvant de lavage dans le canal de collecte avec le fluide.
D'autres caractéristiques et avantages de l'invention selon les aspects précités, apparaîtront à la lecture de la description ci-après et d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.
Liste des figures
La figure 1 montre une vue en coupe axisymétrique selon l’axe vertical Z d’un dispositif pour la séparation radiale en LMS de référence.
La figure 2 montre une vue en coupe axisymétrique selon l’axe vertical Z du dispositif selon la figure 1 , dans lequel un textile étanche est ajouté pour boucher la partie supérieure de la chambre d’adsorption après tassement des adsorbants solides formant le lit d’adsorbant.
La figure 3 montre une vue en coupe axisymétrique selon l’axe vertical Z d’un dispositif pour la séparation radiale en LMS selon un mode de réalisation de l’invention, dans lequel une hauteur complémentaire de solide adsorbant est ajoutée dans la partie supérieure de la chambre d’adsorption.
La figure 4 montre une vue en coupe axisymétrique selon l’axe vertical Z du dispositif selon la figure 3, dans lequel la hauteur complémentaire de solide adsorbant a comblé le tassement des adsorbants solides en s’écoulant par gravité.
Description des modes de réalisation
La présente invention peut se définir comme un dispositif (e.g. réacteur) radial pour la séparation (e.g. en LMS) de composés (e.g. xylènes) ou la réaction (e.g. reformage catalytique) de composés (e.g. naphta). Ledit dispositif radial peut notamment être disposé (e.g. en série) au sein d’une ou plusieurs colonnes, notamment pour la séparation en LMS des xylènes (e.g. paraxylène), la ou les colonnes étant divisée(s) en N dispositifs radiaux et comprenant N lits d’adsorbant, les N lits d’adsorbant étant séparés par 2N zones inter-lits ( i.e N zones de distributions et N zones de collecte). Préférablement, le nombre N est compris entre 4 et 24, et préférentiellement compris entre 8 et 15 ; très préférablement entre 8 et 12.
En référence à la figure 1 , un dispositif pour la séparation radiale en LMS de référence comprend une enceinte cylindrique munie d’une paroi latérale 1 cylindrique, une paroi supérieure 2, une paroi inférieure 3 et optionnellement une paroi centrale 4 parallèle à la paroi latérale 2, i.e., disposée verticalement pour renforcer la solidité de l’enceinte. L’enceinte comprend en outre :
- au moins une entrée de fluide à séparer 5, appelée ci-après entrée supérieure, adjacente à la paroi supérieure 2 ;
- au moins un canal de distribution 6 vertical, e.g. s’étendant de l’entrée supérieure 5 à la paroi inférieure 3 ;
- au moins une sortie de fluide 7, appelée ci-après sortie inférieure, adjacente à la paroi inférieure 3 ; et
- au moins un canal de collecte 8 vertical, e.g. s’étendant vers le haut depuis la sortie inférieure 7 sur une hauteur sensiblement (±10%, préférablement ±5%) égale à la hauteur du canal de distribution 6.
L’enceinte comprend en outre une chambre d’adsorption 9 (e.g. de forme tubulaire cylindrique) disposée entre le canal de distribution 6 et le canal de collecte 8, s’étendant de la paroi supérieure 2 à la paroi inférieure 3, et adaptée pour contenir un lit d’adsorbant 10 sur une hauteur de canal H1 correspondant à la hauteur du canal de distribution 6 et du canal de collecte 8. Le dispositif comprend en outre au moins une grille de distribution 11 , ou tout autre moyen connu de l’Homme de Métier pour la distribution liquide, tel qu’une plaque perforée, disposée entre le canal de distribution 6 et la chambre d’adsorption 9 et au moins une grille de collecte 12 disposée entre le canal de collecte 8 et la chambre d’adsorption 9, lesdites grilles de distribution et de collecte 11 et 12 permettant le passage de fluide entre les canaux de distribution et de collecte 6 et 8 et la chambre d’adsorption 9. Dans cet exemple de la figure 1 , l’écoulement fluidique dans le dispositif est descendant, i.e., le fluide arrive dans le dispositif par l’entrée supérieure 5 et sort du dispositif par la sortie inférieure 7. En revanche, l’écoulement fluidique peut être ascendant d’une entrée inférieure vers une sortie supérieure. De plus dans cet exemple de la figure 1 , l’écoulement fluidique radial dans la chambre d’adsorption 9 s’effectue vers l’extérieur, i.e., de l’entrée supérieure 5 centrale vers la sortie inférieure 7 latérale. En revanche, l’écoulement fluidique radial dans la chambre d’adsorption
9 peut s’effectuer vers l’intérieur, i.e., d’une entrée supérieure/inférieure périphérique vers une sortie inférieure/supérieure centrale. Il est également entendu que le dispositif radial selon la présente demande peut être tourné à 90°, c’est-à-dire comprenant des canaux de distribution et de collecte 7 et 8 horizontaux.
Comme montré dans la figure 1 , en fonctionnement normal, le lit d’adsorbant 10 remplit complètement (e.g. à au moins 99%) la chambre d’adsorption 9. En référence à la figure 2, lorsque les adsorbants solides (particules) formant le lit d’adsorbant 10 se tassent de la hauteur de canal H1 à une hauteur H2, inférieure à la hauteur de canal H1 , pendant le fonctionnement du dispositif, une solution connue de l’homme du métier est d’ajouter un textile étanche 13 dans la chambre d’adsorption 9 afin de boucher la partie supérieure 14 de la chambre d’adsorption 9 et ainsi empêcher un écoulement de fluide au travers d’une zone non- pourvue d’adsorbant. En revanche, la présence du textile étanche 13 sur la partie supérieure 14 de la chambre d’adsorption 9 provoque la rétention de fluides qui nuit aux performances du procédé de séparation. Dans cet exemple, on observe notamment un volume stagnant en haut du canal de collecte 8, et une modification de l’hydrodynamique dans le canal de distribution 6 avec une réduction de la section ouverte au passage du liquide vers le lit d’adsorbant 10, ce qui nuit aux performances.
En référence à la figure 3, le dispositif pour la séparation radiale en LMS selon la présente invention comprend les mêmes éléments référencés de 1 à 12 du dispositif de référence. En outre dans le dispositif selon la présente invention, la chambre d’adsorption 9 présente une hauteur de chargement H3, de la paroi supérieure 2 à la paroi inférieure 3, supérieure à la hauteur du canal de distribution 6 et du canal de collecte 8. Ainsi, la partie supérieure 14 de la chambre d’adsorption 9 est adaptée pour contenir une hauteur complémentaire de solide adsorbant 15 de sorte que le lit d’adsorbant 10 présente une hauteur de chargement H3 au moins 1%, préférablement au moins 3%, très préférablement au moins 5 % supérieure à la hauteur du canal de distribution 6 et du canal de collecte 8. Selon un ou plusieurs modes de réalisation, le lit d’adsorbant présente une hauteur de chargement entre 1 et 10%, préférablement entre 1 ,5 et 7%, supérieure à la hauteur du canal de distribution et du canal de collecte.
En référence à la figure 4, lorsque la chambre d’adsorption 9 est chargée d’un lit d’adsorbant
10 avec une hauteur de charge H3 supérieure à la hauteur de canal H1 de celle du canal de distribution 6 et du canal de collecte 8, et s’il se produit un tassement du solide dans lit d’adsorbant 10 en fonctionnement, une partie de la hauteur complémentaire de solide adsorbant 15 suit avantageusement ledit tassement en s’écoulant par gravité, et permet ainsi de conserver une hauteur de tassement H4 au moins supérieure ou égale à la hauteur de canal H1. Selon un ou plusieurs modes de réalisation, la hauteur de charge H3 est adaptée pour que la hauteur de tassement H4 soit au moins 1 ,0 fois, préférablement 1 ,02 fois, très préférablement 1 ,04 fois, supérieure à la hauteur de canal H1 .
Selon un ou plusieurs modes de réalisation, la limite basse de la chambre d’adsorption 9 (e.g. correspondant à la position de la paroi inférieure 3), correspond également aux limites basses du canal de distribution 6 et du canal de collecte 8. Selon un ou plusieurs modes de réalisation, la limite haute de la chambre d’adsorption 9 (e.g. correspondant à la position de la paroi supérieure 2), est au moins 1 ,01 fois, préférablement 1 ,05 fois, très préférablement 1 ,10 fois plus haute que la limite haute du canal de distribution 6 et du canal de collecte 8.
En référence aux figures 3 et 4, le dispositif selon la présente invention comprend en outre au moins une entrée de solvant de lavage 16 disposée sur la paroi supérieure 2 de l’enceinte. L’entrée de solvant de lavage 16 permet notamment l’introduction d’un solvant de lavage dans la chambre d’adsorption 9 afin de laver la hauteur complémentaire de solide adsorbant 15 et limiter un écoulement du fluide dans la hauteur complémentaire de solide adsorbant 15. Selon un ou plusieurs modes de réalisation, le solvant de lavage est un composé utilisé comme désorbant dans le procédé de séparation en LMS. Selon un ou plusieurs modes de réalisation, le solvant de lavage est choisi parmi le toluène et le 1 ,4-diéthylbenzene. Selon un ou plusieurs modes de réalisation le ratio de débit du solvant de lavage par rapport au débit du fluide est compris entre 0,001 et 0,15, préférablement compris entre 0,005 et 0,10, très préférablement compris entre 0,01 et 0,08.
Avantageusement, la hauteur complémentaire de solide adsorbant 15 est balayée par un flux descendant de solvant de lavage permettant de limiter les perturbations hydrodynamiques qui pourraient être générées par la circulation du fluide dans le volume (dit zone retard) correspondant à la hauteur complémentaire de solide adsorbant 15 et qui générerait de la dispersion hydrodynamique.
Exemples
Une colonne A de référence pour la séparation en LMS est constituée de 15 dispositifs de référence tels que représentés sur la figure 1 , comprenant 15 lits d’adsorbant disposés en série, et étant séparés par 30 zones inter-lits. Chaque lit présente un volume de 29,4 m3 et une porosité de lit de 32,8 %. Les performances atteintes par la colonne A sont une pureté en paraxylène (PX) de 99,7 %, un rendement en paraxylène de 97,7 %, et une productivité de 93,4 kg/h/m3.
Une colonne B de référence pour la séparation en LMS est constituée de 15 dispositifs de référence tels que représentés sur la figure 2, comprenant 15 lits d’adsorbant disposés en série, et étant séparés par 30 zones inter-lits. Chaque lit présente un volume de 29,4 m3 et une porosité de lit de 32,8 %. Dans la colonne B, l’adsorbant solide subit dans les 15 lits un tassement de 8 % volumique en fonctionnement qui est comblé au moyen d’un textile étanche disposé dans la chambre d’adsorption et collé à la surface du lit par une surpression. En modifiant les réglages de l’unité pour atteindre les mêmes niveaux de pureté (99,7 %) et de rendement (97,7 %) en paraxylène que la colonne A de référence, la productivité du système est abaissée à 72,3 kg/h/m3, soit une perte de 22,5 %.
Une colonne C selon l’invention pour la séparation en LMS est constituée de 15 dispositifs selon l’invention tels que représentés sur la figure 3, comprenant 15 lits d’adsorbant disposés en série, et étant séparés par 30 zones inter-lits. Chaque lit présente un volume de 29,4 m3 et une porosité de lit de 32,8 %. Dans la colonne C, l’adsorbant solide subit dans les 15 lits un tassement de 8 % volumique en fonctionnement qui est comblé au moyen d’une hauteur complémentaire de solide adsorbant 15 de 10,0 % disposée au niveau de la partie supérieure 14 de la chambre d’adsorption 9. Un volume complémentaire de 2,9 m3 de solide adsorbant est ainsi obtenu dans chaque lit d’adsorbant, chacun de ces volumes complémentaires étant balayé par un flux descendant de solvant de lavage correspondant à 4 % de celui du débit de tourne-en-rond ( i.e débit global qui circule dans l’unité, ou « pump-around » selon la terminologie anglo-saxonne). En modifiant les réglages de l’unité pour atteindre les mêmes niveaux de pureté (99,7 %) et de rendement (97,7 %) en paraxylène que la colonne A de référence, la productivité du système est abaissée à 83,4 kg/h/m3, soit une perte de seulement

Claims

Revendications
1. Dispositif pour la séparation ou la réaction radiale muni d’une enceinte cylindrique comprenant :
- une paroi latérale (1),
- une paroi supérieure (2),
- une paroi inférieure (3),
- au moins une entrée de fluide à séparer (5),
- au moins un canal de distribution vertical (6),
- au moins une sortie de fluide (7), - au moins un canal de collecte vertical (8),
- une chambre d’adsorption (9) adaptée pour contenir un lit d’adsorbants solides (10), la chambre d’adsorption (9) étant disposée entre le canal de distribution (6) et le canal de collecte (8) et s’étendant de la paroi supérieure (2) à la paroi inférieure (3), - au moins une grille de distribution (11) disposée entre le canal de distribution
(6) et la chambre d’adsorption (9), et
- au moins une grille de collecte (12) disposée entre le canal de collecte (8) et la chambre d’adsorption (9), dans lequel - la chambre d’adsorption (9) présente une hauteur de chargement (H3) supérieure à la hauteur du canal de distribution (6) et la hauteur du canal de collecte (8), et la paroi supérieure (2) comprend au moins une entrée de solvant de lavage (16).
2. Dispositif selon la revendication 1 , dans lequel la hauteur de chargement (H3) est au moins 1 % supérieure à la hauteur du canal de distribution (6) et la hauteur du canal de collecte (8).
3. Dispositif selon la revendication 2, dans lequel la hauteur de chargement (H3) est entre 1 et 10% supérieure à la hauteur du canal de distribution (6) et la hauteur du canal de collecte (8).
4. Dispositif selon la revendication 3, dans lequel la hauteur de chargement (H3) est entre 1 ,5 et 7% supérieure à la hauteur du canal de distribution (6) et la hauteur du canal de collecte (8).
5. Dispositif selon l’une quelconque des revendications précédentes, dans lequel ladite au moins une entrée de solvant de lavage (16) comprend une pluralité d’orifices de solvant de lavage (16) réparties sur les adsorbants solides, et/ou une plaque perforée, et/ou un plateau distributeur.
6. Dispositif selon l’une quelconque des revendications précédentes, comprenant en outre une paroi centrale (4) parallèle à la paroi latérale (1).
7. Dispositif selon l’une quelconque des revendications précédentes, dans lequel le canal de distribution (6) et le canal de collecte (8) sont adaptés pour un écoulement fluidique descendant ou ascendant.
8. Dispositif selon l’une quelconque des revendications précédentes, dans lequel le canal de distribution (6) est central et le canal de collecte (8) est périphérique, ou le canal de distribution (6) est périphérique et le canal de collecte (8) est central.
9. Dispositif selon l’une quelconque des revendications précédentes, dans lequel la limite basse de la chambre d’adsorption (9) correspond aux limites basses du canal de distribution (6) et du canal de collecte (8).
10. Colonne comprenant au moins 1 dispositif selon l’une quelconque des revendications 1 à 9.
11. Procédé de séparation ou de réaction utilisant une pluralité de dispositifs selon l’une quelconque des revendications 1 à 9 ou plusieurs colonnes selon la revendication 10, procédé dans lequel :
- on introduit un fluide dans le canal de distribution (6), on distribue le fluide dans la chambre d’adsorption (9), et on collecte le fluide dans le canal de collecte
(8), et
- on introduit un solvant de lavage dans la chambre d’adsorption (9) et on collecte le solvant de lavage dans le canal de collecte (8) avec le fluide.
12. Procédé selon la revendication 11 , dans lequel on fournit un débit de solvant de lavage à l’entrée de solvant de lavage (16) de sorte que le ratio de débit du solvant de lavage par rapport au débit du fluide soit compris entre 0,001 et 0,15.
PCT/EP2021/070297 2020-07-27 2021-07-20 Dispositif pour la séparation radiale en lit mobile simulé WO2022023127A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21746734.9A EP4188586A1 (fr) 2020-07-27 2021-07-20 Dispositif pour la séparation radiale en lit mobile simulé
US18/018,068 US20230278001A1 (en) 2020-07-27 2021-07-20 Device for radial separation in simulated moving bed
JP2023505739A JP2023535788A (ja) 2020-07-27 2021-07-20 擬似移動床におけるラジアル分離用デバイス
KR1020237005009A KR20230042302A (ko) 2020-07-27 2021-07-20 모사 이동층에서의 반경방향 분리를 위한 장치
CN202180059834.8A CN116209515A (zh) 2020-07-27 2021-07-20 用于在模拟移动床中进行径向分离的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2007909 2020-07-27
FR2007909A FR3112699B1 (fr) 2020-07-27 2020-07-27 Dispositif pour la séparation radiale en lit mobile simulé

Publications (1)

Publication Number Publication Date
WO2022023127A1 true WO2022023127A1 (fr) 2022-02-03

Family

ID=73013664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/070297 WO2022023127A1 (fr) 2020-07-27 2021-07-20 Dispositif pour la séparation radiale en lit mobile simulé

Country Status (8)

Country Link
US (1) US20230278001A1 (fr)
EP (1) EP4188586A1 (fr)
JP (1) JP2023535788A (fr)
KR (1) KR20230042302A (fr)
CN (1) CN116209515A (fr)
FR (1) FR3112699B1 (fr)
TW (1) TW202222419A (fr)
WO (1) WO2022023127A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722501A (en) * 1954-08-23 1955-11-01 Universal Oil Prod Co Hydrocarbon conversion process and apparatus
GB1261422A (en) * 1968-10-29 1972-01-26 Allied Chem Purification of carbonate process solutions
EP0778082A1 (fr) * 1995-12-05 1997-06-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation de traitement d'au moins un fluide et utilisation pour la séparation d'au moins un constituant d'un mélange gazeux
WO2003072238A2 (fr) * 2002-02-26 2003-09-04 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Precedes Georges Claude Installation de traitement d'au moins un fluide, et utilisation pour la séparation d'au moins un constituant d'un mélange gazeux
WO2017157717A1 (fr) * 2016-03-16 2017-09-21 Casale Sa Parois pour lits catalytiques de réacteurs à flux radial ou axial

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722501A (en) * 1954-08-23 1955-11-01 Universal Oil Prod Co Hydrocarbon conversion process and apparatus
GB1261422A (en) * 1968-10-29 1972-01-26 Allied Chem Purification of carbonate process solutions
EP0778082A1 (fr) * 1995-12-05 1997-06-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation de traitement d'au moins un fluide et utilisation pour la séparation d'au moins un constituant d'un mélange gazeux
WO2003072238A2 (fr) * 2002-02-26 2003-09-04 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Precedes Georges Claude Installation de traitement d'au moins un fluide, et utilisation pour la séparation d'au moins un constituant d'un mélange gazeux
WO2017157717A1 (fr) * 2016-03-16 2017-09-21 Casale Sa Parois pour lits catalytiques de réacteurs à flux radial ou axial

Also Published As

Publication number Publication date
FR3112699A1 (fr) 2022-01-28
JP2023535788A (ja) 2023-08-21
TW202222419A (zh) 2022-06-16
EP4188586A1 (fr) 2023-06-07
FR3112699B1 (fr) 2023-03-03
KR20230042302A (ko) 2023-03-28
CN116209515A (zh) 2023-06-02
US20230278001A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
EP1922391B1 (fr) Plateau filtrant pour reacteur a lit fixe a co-courant descendant de gaz et de liquide
EP3374073B1 (fr) Dispositif de filtration et de distribution pour reacteur catalytique
EP2225009B1 (fr) Dispositif de filtration et de predistribution pour reacteur a lit fixe a co-courant descendant de gaz et de liquide et utilisation dudit dispositif
FR3051375A1 (fr) Dispositif de filtration et de distribution pour reacteur catalytique.
US20090261046A1 (en) Filtration method and installation
US5133942A (en) Distillation column reactor with catalyst replacement apparatus
FR2883200A1 (fr) Dispositif pour le melange et la repartition d'un gaz et d' un liquide en amont d'un lit granulaire
EP0086684A1 (fr) Procédé et dispositif pour soutirer des particules solides et introduire une charge liquide à la partie inférieure d'une zone de contact
JPH0221858B2 (fr)
WO2003039733A1 (fr) Dispositif de distribution d'un melange polyphasique sur un lit de solide granulaire comportant un element brise jet poreux a rebords
WO2022023127A1 (fr) Dispositif pour la séparation radiale en lit mobile simulé
US6015491A (en) Apparatus for pressure equalization and flushing in a vessel
CA3020940A1 (fr) Panier amovible pour reacteur catalytique
EP0050505B1 (fr) Dispositif pour mettre en contact un gaz et un liquide
FR3043339A1 (fr) Dispositif de filtration et de distribution pour reacteur catalytique
JP3355201B2 (ja) ダウンフロー式触媒充填塔における触媒保持装置
FR2553300A1 (fr) Procede pour uniformiser un courant ascendant de gaz et de liquide dans un reacteur a lit fluidise et grille etagee de distribution d'ecoulement pour sa mise en oeuvre
FR2759302A1 (fr) Methode de chargement et de dechargement d'un catalyseur sans arreter le fonctionnement d'une operation
FR2980719A1 (fr) Plateau distributeur pour la distribution d'un melange polyphasique avec cheminees tronquees en peripherie.
EP1646444B1 (fr) Plateau de distribution d'une phase gazeuse et d'une phase liquide
US20230124860A1 (en) Gas phase settling (gps) tray
US10661242B2 (en) Low-capacity compartmentalized reactor
EP1374962B1 (fr) Perfectionnement à un dispositif pour séparer un mélange comprenant au moins une phase gazeuse et une phase liquide, ledit dispositif étant intégré dans une enceinte
EP0383648B1 (fr) Dispositif de distribution et de diffusion d'un gaz dans un milieu liquide garni ou non de matériau granulaire, et bioréacteur équipé d'un tel dispositif
EP4159294A1 (fr) Dispositif et procédé de séparation en lit mobile simulé à brise jet étendu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21746734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505739

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005009

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021746734

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021746734

Country of ref document: EP

Effective date: 20230227

WWE Wipo information: entry into national phase

Ref document number: 523442338

Country of ref document: SA