WO2022022592A1 - 确定目标时域位置的方法、装置及通信设备 - Google Patents

确定目标时域位置的方法、装置及通信设备 Download PDF

Info

Publication number
WO2022022592A1
WO2022022592A1 PCT/CN2021/109026 CN2021109026W WO2022022592A1 WO 2022022592 A1 WO2022022592 A1 WO 2022022592A1 CN 2021109026 W CN2021109026 W CN 2021109026W WO 2022022592 A1 WO2022022592 A1 WO 2022022592A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
ssb
time domain
scs
pdcch
Prior art date
Application number
PCT/CN2021/109026
Other languages
English (en)
French (fr)
Inventor
洪琪
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022022592A1 publication Critical patent/WO2022022592A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • multiplexing occurs between a plurality of different synchronization signal blocks (Synchronization Signal and PBCH Block, SSB) and a physical downlink control channel (Physical downlink control channel, PDCCH) of type 0 (Type 0), and all
  • SSB-control resource set Control resource set, Coreset
  • SCS Service Call Control Channel
  • the slot where the Type 0 PDCCH is located is the slot where the Type 0 PDCCH corresponding to the current SSB is located, or the slot- where the PDCCH corresponding to the current SSB is located. 1 and so on.
  • the above method cannot accurately locate the time domain location information where the Type 0 PDCCH corresponding to the SSB is located.
  • the purpose of the embodiments of the present application is to provide a method, apparatus and communication device for determining a target time domain position, which can accurately locate the time domain where the Type 0PDCCH corresponding to the SSB is located under the condition that the SCS of the SSB is not greater than the SCS of the Type 0PDCCH location information.
  • a first aspect provides a method for determining a target time domain location, applied to a communication device, the method comprising: multiplexing multiple different SSBs with Type 0 PDCCH, and the SCS of the SSB is not greater than the Type 0 PDCCH
  • the target time domain location information is determined according to the target frame structure; wherein, the target time domain location information is the time domain location information where the Type OPDCCH corresponding to the target SSB is located, and the target SSB is a plurality of different any of the SSBs.
  • an apparatus for determining a target time domain position comprising: a determining module for multiplexing with Type 0 PDCCH in multiple different SSBs, and the SCS of the SSB is not greater than the Type 0 PDCCH
  • the target time domain location information is determined according to the target frame structure; wherein, the target time domain location information is the time domain location information where the Type OPDCCH corresponding to the target SSB is located, and the target SSB is a plurality of different any of the SSBs.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect .
  • a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the method as described in the first aspect when executed.
  • the Type 0 PDCCH corresponding to the target SSB is determined based on the target frame structure
  • the time domain location information where the SSB is located can accurately locate the time domain location information where the Type 0PDCCH corresponding to the SSB is located when the SCS of the SSB is not greater than the SCS of the Type 0PDCCH.
  • FIG. 1 is a schematic structural diagram of a communication system provided according to an exemplary embodiment of the present application
  • Fig. 2 is a schematic flowchart of a method for determining a target time domain position provided according to an exemplary embodiment of the present application
  • Figure 3a, Figure 3b, Figure 3c are schematic diagrams of three relative relationships between the RMSI CORESET where the PDCCH is located and the SSB;
  • FIG. 4 is a schematic flowchart of a method for determining a target time-domain location provided according to another exemplary embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for determining a target time-domain location provided according to another exemplary embodiment of the present application.
  • 6a to 6i are respectively schematic diagrams of frame structures provided according to exemplary embodiments of the present application.
  • FIG. 7 is a schematic flowchart of a method for determining a target time-domain location provided according to another exemplary embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for determining a target time-domain location provided according to another exemplary embodiment of the present application.
  • FIG. 9 is a block diagram of an apparatus for determining a target time-domain position provided according to an exemplary embodiment of the present application.
  • FIG. 10 is a block diagram of a communication device provided according to an exemplary embodiment of the present application.
  • FIG. 11 is a block diagram of a terminal provided according to an exemplary embodiment of the present application.
  • FIG. 12 is a block diagram of a network side device provided according to an exemplary embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation (6 th Generation, 6G) communication system.
  • 6th generation 6 th Generation, 6G
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of this application, only 5G NR is used. The base station in the system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 it is a schematic flowchart of a method 200 for determining a target time domain position provided by an exemplary embodiment of the present application.
  • the method 200 can be applied to but not limited to a communication device, specifically, software installed in the communication device can be used. and/or hardware implementation.
  • the communication device may be a terminal, or may be a network side device, such as a base station.
  • the method 200 for determining a target temporal position may at least include the following steps.
  • S210 when multiple different SSBs are multiplexed with Type 0 PDCCH, and the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, determine the target time domain location information according to the target frame structure.
  • the multiplexing manner in which the aforementioned SSB and Type 0 PDCCH (that is, Coreset 0) are multiplexed may be Pattern2 and/or Pattern3.
  • each radio frame in a radio frame with a time domain length of 10ms, each radio frame is divided into 10 subframes of the same size with a length of 1ms. Due to different SCSs, each subframe can contain multiple Time slot, each time slot consists of a certain number of symbols (Symbol), and the number of symbols is determined by the type of cyclic prefix (Cyclic Prefix, CP).
  • Symbol a certain number of symbols
  • CP Cyclic Prefix
  • the NR system supports multi-beam synchronization signal, secondary synchronization signal and physical broadcast channel transmission, wherein, for a half frame (5ms) with SSB, the number of candidate SSBs and the first symbol index position can be determined according to the SCS of the SSB. For example, the following Case D and Case E are for the field.
  • the important information contained in the SSB is the master information block (Master Information Block, MIB), and the MIB carries the relevant configuration information of the PDCCH used for scheduling the remaining minimum information block (Remaining Minimum SI, RMSI) to help users Confirm the RMSI PDCCH resource configuration and monitor the timing of the PDCCH.
  • MIB Master Information Block
  • RMSI Remaining Minimum SI
  • Pattern1 SSB and its corresponding RMSI CORESET TDM (time division multiplexing).
  • Pattern2 SSB and its corresponding RMSI CORESET FDM (Frequency Division Multiplexing).
  • Pattern3 SSB and its corresponding RMSI CORESET FDM.
  • the multiplexing manner in which multiple different SSBs and Type OPDCCH are multiplexed may be Pattern2 and/or Pattern3.
  • the target time domain location information is the time domain location information (such as the index of the time slot, the index of the system frame, etc.) where the Type 0PDCCH corresponding to the target SSB is located, so as to be used for monitoring at the time domain location corresponding to the target time domain location information Type 0 PDCCH corresponding to the target SSB.
  • the target SSB may be any one of multiple SSBs sent by the network side device and received by the communication device.
  • the target frame structure may be a preset frame structure, or a frame structure determined based on the SCS of the Type 0 PDCCH, or a frame structure based on the SSB.
  • the frame structure and the like determined by the SCS are not limited in this embodiment.
  • the communication The device determines the time domain location information where the Type 0 PDCCH corresponding to the target SSB is located based on the target frame structure, thereby accurately locating the time domain location information where the Type 0 PDCCH corresponding to the target SSB is located to monitor the Type 0 PDCCH.
  • FIG. 4 it is a schematic flowchart of a method 400 for determining a target time-domain location provided by an exemplary embodiment of the present application.
  • the method 400 can be applied to but not limited to a communication device, specifically, software installed in the communication device. and/or hardware implementation.
  • the communication device may be a terminal or a network side device.
  • the method 400 for determining a target temporal position may at least include the following steps.
  • S410 in the case where multiple different SSBs are multiplexed with the Type 0 PDCCH, and the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, determine the target time domain location information according to the target frame structure.
  • the process of determining the target time domain location information according to the target frame structure described in S410 may include S420 and S430.
  • S420 Determine candidate time domain location information according to the target frame structure.
  • the preset offset value is determined according to at least one of the following (1)-(3).
  • the predetermined value may be 0, 1, 2, or the like.
  • different preset offset values may be pre-configured according to the index of the SSB, so as to determine the time domain position of the Type 0 PDCCH actually mapped by the SSB according to the preset offset value.
  • the communication device can monitor the Type 0 PDCCH corresponding to the target SSB at the time domain position corresponding to the candidate time domain position information and the offset time domain position at the same time, to further improve the accuracy of monitoring. sex.
  • the target frame structure determines the candidate time domain position information where the Type 0 PDCCH corresponding to the target SSB is located, and offsets a preset offset value on the basis of the time domain position corresponding to the candidate time domain position information, so that the shifted
  • the Type 0 PDCCH corresponding to the SSB is monitored at the time domain position, thereby further accurately locating the time domain position information where the Type 0 PDCCH corresponding to the SSB is located, and realizing the monitoring of the Type 0 PDCCH.
  • FIG. 5 it is a schematic flowchart of a method 500 for determining a target time domain position provided by an exemplary embodiment of the present application.
  • the method 500 can be applied to but not limited to a communication device, specifically, software installed in the communication device can be used. and/or hardware implementation.
  • the communication device may be a terminal or a network side device.
  • the method 500 for determining a target time domain position may at least include the following steps.
  • S510 when multiple different SSBs are multiplexed with Type 0 PDCCH, and the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, determine the target time domain location information according to the target frame structure.
  • S510 may refer to the foregoing S210.
  • the target frame structure is a frame structure determined based on the SCS of the Type 0 PDCCH, according to the target frame structure described in S510
  • the process of determining the target time domain location information can be implemented through S520 and S530 shown in FIG. 5 , and the details are as follows.
  • the target frame structure is a frame structure determined based on the SCS of the Type 0 PDCCH, determine at least one first system frame index and the target SSB overlapping in the time domain in the target frame structure /or first slot index.
  • the first system frame can be represented as SFN 1 SSB i , SFN 2 SSB i . . . and the first time slot index can be represented as n 1 SSB i , n 2 SSB i .
  • SFN is the system frame number.
  • S530 Determine the target time domain location information according to the at least one first system frame index and/or the first time slot index.
  • the target frame structure determined by the SCS of the Type 0 PDCCH is used as a benchmark to determine the target time domain location information, so that the communication device can monitor the Type 0 PDCCH based on the target time domain location corresponding to the target time domain location information.
  • the target frame structure determined by the communication device based on the SCS of Type 0 PDCCH may be PDCCH 1 as shown in Figure 6a, and then it is determined that the target frame structure is related to the target SSB.
  • the first time slot index (slotindex) overlapping in the time domain is slot1.
  • the target time domain location information determined according to the first time slot index may be the first slot of PDCCH 1 corresponding to SSB beam1.
  • the determining of the target time domain location information according to the at least one first system frame index and/or the first time slot index in S530 includes: in the at least one first system frame The index and/or the time domain position corresponding to the first time slot index is offset by a preset offset value to determine the target time domain position information.
  • the foregoing content may refer to the foregoing descriptions of S420 and S430, and the following describes the process of determining the target time domain location information under different multiplexing scenarios and different SCS scenarios with reference to different examples. It should be noted that the PDCCH mentioned later are all Type 0 PDCCHs.
  • Example 1 please refer to Figure 6b, for the scenario of pattern 2 case D, it is assumed that the SCS of Type 0 PDCCH is twice that of SSB, and the target frame structure determined by the communication device based on the SCS of Type 0 PDCCH is shown in Figure 6b
  • the frame structure of the PDCCH1 for example, the target SSB is SSB beam1, determine that the first time slot index overlapping with SSB beam1 in the time domain in the target frame structure is slot1, slot2, optionally, determine the target according to the target frame structure
  • the time-domain location information may include: determining slot1 as the target time-domain location information.
  • the target SSB can be SSB beam2, and it is determined that the first time slot index that overlaps with the SSB beam2 in the time domain in the target frame structure is slot2, optionally, the target time domain position information can also be determined according to the target frame structure. It includes: determining slot2 as candidate time domain position information; and offsetting a preset offset value (eg -1) on the basis of the slot2 to determine the target time domain position information as slot1.
  • a preset offset value eg -1
  • Example 2 please refer to Figure 6c in conjunction with the scenario of pattern 2 case D, assuming that the SCS of the PDCCH is four times the SCS of the SSB, the target frame structure determined by the communication device based on the SCS of the Type 0 PDCCH is PDCCH1 as shown in Figure 6c (PDCCH1 and PDCCH2 shown in Figure 6c respectively contain 8 slots, and each slot contains 0, 1, .
  • the first time slot indices that overlap with the SSB beam1 in the time domain are slot 2 and slot 3.
  • determining the target time domain position information according to the target frame structure may include: determining that slot 2 is the target time domain position information .
  • the target SSB can be the SSB beam2, and it is determined that the first time slot index overlapping with the SSB beam2 in the time domain in the target frame structure is slot3, slot4, optionally, the target time domain position information is determined according to the target frame structure. It may also include: determining slot2 as candidate time-domain location information; and offsetting a preset offset value (eg -1, -2) on the basis of slot2 to determine the target time-domain location information.
  • a preset offset value eg -1, -2
  • Example 3 please refer to Figure 6d in conjunction with the scenario of pattern 2 case D, it is assumed that the SCS of the PDCCH is eight times the SCS of the SSB (that is, the frame structure corresponding to the SSB includes the two time slots shown in Figure 6d, PDCCH 1 , the frame structure corresponding to PDCCH 2 respectively includes 16 time slots shown in Figure 6d, each time slot includes 0, 1, ..., 13, a total of 14 symbols), the communication device is based on the target frame determined by the SCS of Type 0 PDCCH
  • the structure is the frame structure of PDCCH1 as shown in Figure 6d, for example, the target SSB is SSB beam1, and it is determined that the first time slot index overlapping with SSB beam1 in the time domain in the target frame structure is slot 3, slot 4, slot 4 5.
  • determining the target time domain position information according to the target frame structure may include: determining slot 3 as the target time domain position information.
  • the target SSB can be SSB beam2, and it is determined that the first time slot index overlapping with the SSB beam2 in the time domain in the target frame structure is slot5, slot6, slot7, optionally, the target time domain is determined according to the target frame structure.
  • the location information may further include: determining slot5 as candidate time domain location information; offsetting a preset offset value (eg -1, -2, -3, -4) on the basis of the slot5 to determine the Target time domain location information.
  • Example 4 please refer to Figure 6e in conjunction with the scenario of pattern 2 case E, assuming that the SCS of the PDCCH is consistent with the SCS of the SSB, and the target frame structure determined by the communication device based on the SCS of the Type 0 PDCCH is the frame of the PDCCH1 shown in Figure 6e.
  • the target SSB is SSB beam1, determine that the first time slot index overlapping with SSB beam1 in the time domain in the target frame structure is slot 1, slot 2, optionally, determine the target time domain according to the target frame structure
  • the location information may include: determining that slot 1 is the target time domain location information, and for another example, the target SSB may be the SSB beam2, and determining that the first time slot index that overlaps with the SSB beam2 in the target frame structure in the time domain is slot 2,
  • determining the target time domain location information according to the target frame structure may further include: determining slot2 as candidate time domain location information; offsetting a preset offset value (for example -1) on the basis of the slot2 to Determine that the target time domain location information is slot1.
  • Example 5 please refer to Figure 6f in conjunction with the scenario of pattern 2 case E, assuming that the SCS of the PDCCH is twice the SCS of the SSB, the target frame structure determined by the communication device based on the SCS of the Type 0 PDCCH is PDCCH1 as shown in Figure 6f
  • the frame structure for example, the target SSB is SSB beam1, it is determined that the first time slot index that overlaps with SSB beam1 in the time domain in the target frame structure is slot 2, optionally, the target time domain position is determined according to the target frame structure
  • the information may include: determining slot 2 as target time domain location information.
  • the target SSB can be SSB beam2, and it is determined that the first time slot index overlapping with the SSB beam2 in the time domain in the target frame structure is slot 2, slot 3, optionally, the target time domain is determined according to the target frame structure.
  • the location information may further include: determining slot2 as candidate time-domain location information; and offsetting a preset offset value (eg -1, -2) based on the slot2 to determine the target time-domain location information.
  • Example 6 please refer to Figure 6g in conjunction with the scenario of pattern 2 case E, it is assumed that the SCS of the PDCCH is four times the SCS of the SSB (the PDCCH1 and PDCCH2 shown in Figure 6g respectively contain 8 slots, and each slot contains 0 , 1, .
  • the first time slot indices that overlap with the SSB beam1 in the time domain are slot 3 and slot 4.
  • determining the target time domain position information according to the target frame structure may include: determining that slot 3 is the target time domain position information .
  • the target SSB can be SSB beam2, and it is determined that the first time slot index overlapping with the SSB beam2 in the time domain in the target frame structure is slot 4, slot 5, optionally, the target time domain is determined according to the target frame structure.
  • the location information may further include: determining slot4 as candidate time-domain location information; offsetting a preset offset value (eg -2, -3, -4, -5) on the basis of the slot4 to determine the Target time domain location information.
  • the target frame structure determined by the communication device based on the SCS of the Type 0 PDCCH is the frame of the PDCCH1 as shown in Fig. 6g Structure, for example, the target SSB is SSB beam1, determine that the first time slot index overlapping with SSB beam1 in the time domain in the target frame structure is slot 3, slot 4, optionally, determine the target time domain according to the target frame structure
  • the location information may include: determining slot 3 as the target time domain location information.
  • the target SSB can be SSB beam2, and it is determined that the first time slot index overlapping with the SSB beam2 in the time domain in the target frame structure is slot 4, slot 5, optionally, the target time domain is determined according to the target frame structure.
  • the location information may also include: determining slot4 as candidate time-domain location information; offsetting a preset offset value (eg -1, -2, -3, -4) on the basis of the slot4 to determine the Target time domain location information.
  • Example 7 referring to Figure 6h again, for the scenario of pattern 3, it is assumed that the SCS of the PDCCH is twice the SCS of the SSB, and the target frame structure determined by the communication device based on the SCS of the Type 0 PDCCH is the frame structure of the PDCCH1 shown in Figure 6f.
  • the target SSB is SSB beam1
  • it is determined that the first time slot index overlapping with SSB beam1 in the time domain in the target frame structure is slot 1
  • slot 2 optionally, the target time domain position is determined according to the target frame structure
  • the information may include: determining slot 1 as target time domain location information.
  • the target SSB can be SSB beam2, and it is determined that the first time slot index that overlaps with the SSB beam2 in the time domain in the target frame structure is slot 2, optionally, determining the target time domain position information according to the target frame structure also It may include: determining slot2 as candidate time-domain location information; and offsetting a preset offset value (eg +1) on the basis of slot2 to determine the target time-domain location information.
  • a preset offset value eg +1
  • Example 8 for the scenario of pattern 3, assuming that the SCS of the PDCCH is four times the SCS of the SSB, the communication device determines the target frame structure based on the SCS of the Type 0 PDCCH, and then determines that the target frame structure overlaps with the target SSB in the time domain.
  • the first time slot index of at this time, the target time domain position information determined according to the first time slot index is the first slot and the first slot+1 of the PDCCH1 corresponding to the SSB beam1, wherein "+1" is the default offset value.
  • Example 9 for the scenario of pattern 3, it is assumed that the SCS of the PDCCH is eight times the SCS of the SSB (that is, the frame structure corresponding to the SSB includes the two time slots shown in Figure 6i, and the frame structures corresponding to PDCCH 1 and PDCCH 2 are respectively Including the 16 time slots shown in Figure 6i, each time slot includes 0, 1, .
  • the frame structure of PDCCH1 for example, the target SSB is SSB beam1, it is determined that the first time slot index overlapping with SSB beam1 in the time domain in the target frame structure is slot 3, slot 4, slot 5, optionally, according to the target
  • the frame structure determining the target time domain position information may include: determining slot 3 as the target time domain position information.
  • the target SSB can be SSB beam2, and it is determined that the first time slot index overlapping with the SSB beam2 in the time domain in the target frame structure is slot 5, slot 6, slot 7, optionally, determined according to the target frame structure.
  • the target time domain location information may further include: determining slot5 as candidate time domain location information; and offsetting a preset offset value (eg +1) on the basis of the slot5 to determine the target time domain location information.
  • the aforementioned method 500 for determining a target time domain position in the case where multiple different SSBs are multiplexed with Type 0 PDCCH, and the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, the The frame structure determined according to the SCS of the Type 0 PDCCH is used as the target frame structure, and the time domain position information of the Type 0 PDCCH corresponding to the target SSB is determined based on the target frame structure, so that the time domain position of the Type 0 PDCCH corresponding to the SSB can be accurately located. information.
  • FIG. 7 it is a schematic flowchart of a method 700 for determining a target time-domain location provided by an exemplary embodiment of the present application.
  • the method 700 can be applied to but not limited to a communication device, specifically, software installed in the communication device. and/or hardware implementation.
  • the communication device may be a terminal or a network side device.
  • the method 700 for determining a target time domain position may at least include the following steps.
  • S710 when multiple different SSBs are multiplexed with Type 0 PDCCH, and the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, determine the target time domain location information according to the target frame structure.
  • S570 may refer to the foregoing S210.
  • the target frame structure is a frame structure determined based on the SCS of the SSB
  • the description in S710 The process of determining the target time domain position information according to the target frame structure can be implemented through S720 and S730, and the details are as follows.
  • S720 Determine the second system frame index and/or the second time slot index corresponding to the target SSB on the target frame structure.
  • the second system frame index can be expressed as SFN 1 SSB i , SFN 2 SSB i , . . .
  • the second time slot index can be expressed as n 1 SSB i , n 2 SSB i , . positive integer.
  • S730 Determine the target time domain location information according to the SCS of the SSB, the SCS of the Type 0 PDCCH, and the second system frame index and/or the second time slot index.
  • the target frame structure determined by the SCS of the SSB is used as the benchmark to determine the target time domain location information, so that the communication device can monitor the Type 0 corresponding to the target SSB based on the target time domain location corresponding to the target time domain location information.
  • PDCCH Physical Downlink Control Channel
  • the implementation process of S730 includes: determining the target time domain location information according to the product of the first ratio and the second system frame index or the second time slot index; wherein the first ratio is The ratio of the SCS of the SSB to the SCS of the Type 0 PDCCH. That is, the target time domain location information is (the SCS of the SSB)/(the SCS of the Type 0 PDCCH)*(the second system frame index or the second slot index).
  • the target time domain location information is determined according to the SCS of the SSB, the SCS of the Type 0 PDCCH, and the second system frame index and/or the second time slot index described in S730 Including: shifting a preset offset on the basis of the time domain position corresponding to the index determined according to the SCS of the SSB, the SCS of the Type 0 PDCCH and the second system frame index and/or the second time slot index shift value to determine the target time domain location information.
  • the foregoing content may refer to the foregoing descriptions of S420 and S430, and the following describes the process of determining the target time domain location information under different multiplexing scenarios and different SCS scenarios with reference to different examples.
  • the second system frame index or the second time slot index), "-1" is a preset offset value.
  • the second system frame index or the second time slot index) -1, or -3, where "-1" and "-3" are preset offset values.
  • slot pdcch (SCS of SSB)/(SCS of PDCCH)*( The second system frame index or second time slot index) -2, or -6, where "-2" and "-6" are preset offset values.
  • the aforementioned method 700 for determining a target time domain position in the case where multiple different SSBs are multiplexed with Type 0 PDCCH, and the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, the The frame structure determined according to the SCS of the Type 0 PDCCH is used as the target frame structure, and the time domain position information of the Type 0 PDCCH corresponding to the target SSB is determined based on the target frame structure, so that the time domain position of the Type 0 PDCCH corresponding to the SSB can be accurately located. information.
  • FIG. 8 it is a schematic flowchart of a method 800 for determining a target time domain location provided by an exemplary embodiment of the present application.
  • the method 800 can be applied to but not limited to a communication device, specifically, software installed in the communication device can be used. and/or hardware implementation.
  • the method 800 for determining a target time domain location may include at least the following steps.
  • S810 when multiple different SSBs are multiplexed with the Type 0 PDCCH, and the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, determine the target time domain location information according to the target frame structure.
  • the symbol length may be 1, 2, or the like. It can be understood that the first symbol index in S820 refers to the first symbol index in the time domain position corresponding to the target time domain position information.
  • Example 1 referring to Figure 6a again, for the scenario of pattern 2 case D, assuming that the SCS of the PDCCH is consistent with (equal to) the SCS of the SSB, then the symbol position of the PDCCH is in the case where the symbol length occupied by it is 1, the first symbol
  • the index (first symbol index) can be 0, 1, 2, 3; when the symbol length it occupies is 2, for (4k, 4k+1), the first symbol index can be 0, 2, for (4k+3, 4k+3), the first symbol index can be 0, 1, wherein, 4k, 4k+1, 4k+2, 4k+3 respectively represent the four SSBs in Figure 6a, and k identifies the index of the first SSB to identify the SSB's index.
  • Example 2 refer to Figure 6b again, for the scenario of pattern 2 case D, assuming that the SCS of the PDCCH is twice the SCS of the SSB, then the symbol position where the PDCCH1 is located is in the case where the symbol length occupied by it is 1, the first symbol index can be 0, 1, 2...7; when the symbol length occupied by it is 2, for (4k, 4k+1, 4k+2, 4k+3), the first symbol index can be 0, 1, 2...7.
  • the first symbol index can also be 0, 1, 2, ..., 7.
  • 4k, 4k+1, 4k+2, and 4k+3 represent the four SSBs in FIG. 6a, respectively, and k indicates the index of the first SSB indicates the index of the SSB.
  • Example 3 referring to Figure 6c again, for the scenario of pattern 2 case D, assuming that the SCS of the PDCCH is four times the SCS of the SSB, then the symbol position of the PDCCH is in the case where the symbol length occupied by it is 1, the first symbol index can be is 0, 1, 2...13; when the symbol length it occupies is 2, the first symbol index can be 0, 1, 2...13. There may be a gap between two different PDCCHs.
  • Example 4 refer to Figure 6d again, for the scenario of pattern 2 case D, assuming that the SCS of the PDCCH is eight times the SCS of the SSB, then the symbol position of the PDCCH is in the case where the symbol length occupied by it is 1, the first symbol index can be is 0, 1, 2...13; when the symbol length it occupies is 2, the first symbol index can be 0, 1, 2...13. There may be a gap between two different PDCCHs.
  • Example 5 referring to Figure 6e again, for the scenario of pattern 2 case E, assuming that the SCS of the PDCCH is consistent with the SCS of the SSB, then the first symbol index can be 0 when the symbol position of the PDCCH is 1 when the symbol length occupied by it is 1 , 1, 2...7; when the length of the symbol it occupies is 2, the first symbol index can be 0, 2, 4, 6. There may be a gap between two different PDCCHs.
  • Example 6 referring to Figure 6f again, for the scenario of pattern 2 case E, assuming that the SCS of the PDCCH is twice the SCS of the SSB, then the symbol position of the PDCCH is in the case where the symbol length occupied by it is 1, the first symbol index can be is 0, 1, 2...13; when the symbol length it occupies is 2, the first symbol index can be 0, 1, 2...13. There may be a gap between two different PDCCHs.
  • Example 7 referring to Figure 6g again, for the scenario of pattern 2 case E, it is assumed that the SCS of the PDCCH is four times the SCS of the SSB, taking the PDCCH1 shown in Figure 6g as an example, then, the symbol position of the PDCCH is in the symbol length occupied by it. When it is 1, the first symbol index can be 0, 1, 2...13; when the length of the symbol it occupies is 2, the first symbol index can be 0, 1, 2...13. There may be a gap between two different PDCCHs.
  • Example 8 referring to Figure 6h again, for the scenario of pattern 3, assuming that the SCS of the PDCCH is twice the SCS of the SSB, then the first symbol index can be 0 when the symbol position of the PDCCH is 1 when the symbol length occupied by it is 1 , 1, 2...13; when the symbol length it occupies is 2, the first symbol index can be 0, 1, 2,..., 13. There may be a gap between two different PDCCHs.
  • Example 9 for the scenario of pattern 3, assuming that the SCS of the PDCCH is four times the SCS of the SSB, then the first symbol index can be 0, 1, 2... 13; when the symbol length occupied by it is 2, the first symbol index may be 0, 1, 2, ..., 13, and there may be an interval between two different PDCCHs.
  • Example 10 referring to Figure 6i again, for the scenario of pattern 3, assuming that the SCS of the PDCCH is eight times the SCS of the SSB, then the first symbol index can be 0 when the symbol position of the PDCCH is 1 when the symbol length occupied by it is 1 , 1, 2...13; when the symbol length occupied by it is 2, the first symbol index can be 0, 1, 2...13, and there can be an interval between two different PDCCH 1 and PDCCH 2.
  • the target frame structure determines the time domain location information of the Type 0 PDCCH corresponding to the target SSB, and determines the first symbol index according to the symbol length occupied by the symbol position of the Type 0 PDCCH, which can further accurately locate the Type 0 PDCCH corresponding to the SSB. Time domain location information to monitor Type 0 PDCCH.
  • the execution subject may be an apparatus for determining the target time domain position, or, in the apparatus for determining the target time domain position, the method for determining the target time domain position may be executed.
  • the control module of the method of time domain location In the following part, the apparatus for determining the target time domain position provided by the embodiment of the present application is described by taking the method for determining the target time domain position performed by the apparatus for determining the target time domain position in the embodiment of the present application as an example.
  • FIG. 9 is a schematic block diagram of a block structure of an apparatus 900 for determining a target time domain position provided by an exemplary embodiment of the present application
  • the apparatus 900 for determining a target time domain position includes a determining module 910 .
  • the determining module 910 is used for multiplexing multiple different synchronization signal blocks SSB and Type 0 physical downlink control channel PDCCH, and the subcarrier interval SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, according to the target
  • the frame structure determines the target time domain location information; wherein, the target time domain location information is the time domain location information where the Type OPDCCH corresponding to the target SSB is located, and the target SSB is any one of the multiple different SSBs.
  • the determining module 910 determines the target time domain location information according to the target frame structure, including: when the target frame structure is a frame structure determined based on the SCS of the Type OPDCCH, determining at least one first system frame index and/or first time slot index that overlaps with the target SSB in the time domain in the target frame structure; according to the at least one first system frame index and/or the first time slot index; Slot index, to determine the target time domain location information.
  • the determining module 910 determines the target time domain location information according to the target frame structure, including: when the target frame structure is a frame structure determined based on the SCS of the SSB, determining The second system frame index and/or the second time slot index corresponding to the target SSB on the target frame structure; according to the SCS of the SSB, the SCS of the Type 0 PDCCH, and the second system frame index and /or a second time slot index to determine the target time domain location information.
  • the determining module 910 is configured to determine the target time domain location information according to the product of the second system frame index or the second time slot index and the first ratio; Wherein, the first ratio is the ratio of the SCS of the SSB to the SCS of the Type 0 PDCCH.
  • the determining module is further configured to determine candidate time domain position information according to the target frame structure; offset a preset offset on the basis of the time domain position corresponding to the candidate time domain position information shift value to determine the target time domain location information.
  • the preset offset value is determined according to at least one of the following: a predetermined value; a network side device configuration; an index of a target SSB.
  • the determining module is further configured to determine the symbol index of the first symbol occupied by the Type 0 PDCCH according to the symbol length occupied by the symbol position where the Type 0 PDCCH is located.
  • the apparatus 900 for determining the temporal position of the target may further include a processor.
  • the apparatus 900 for determining the target time domain position in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a communication device.
  • the apparatus may be a mobile communication device or a non-mobile communication device.
  • the non-mobile communication device may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television (television, TV), a teller machine, or a self-service machine, etc.
  • Network Attached Storage Network Attached Storage
  • PC personal computer
  • TV television
  • teller machine a teller machine
  • self-service machine etc.
  • the apparatus 900 for determining the target time domain position in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the apparatus 900 for determining a target time-domain position provided by this embodiment of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 8 , and achieve the same technical effect, which is not repeated here to avoid repetition.
  • an embodiment of the present application further provides a communication device 1000, including a processor 1001, a memory 1002, a program or instruction stored in the memory 1002 and executable on the processor 1001,
  • a communication device 1000 including a processor 1001, a memory 1002, a program or instruction stored in the memory 1002 and executable on the processor 1001
  • the communication device 1000 is a terminal or a network-side device
  • the program or instruction is executed by the processor 1001
  • each process of the above-mentioned method embodiment for determining the target time domain position can be achieved, and the same technical effect can be achieved.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the above-mentioned communication device may be a terminal.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, a processor 1110 and other components .
  • the terminal 1100 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1104 may include a graphics processor (Graphics Processing Unit, GPU) 11041 and a microphone 11042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1106 may include a display panel 11061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072 .
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1101 receives the downlink data from the network side device, and then processes it to the processor 1110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1109 may be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1109 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), Erasable Programmable Read Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read Only Memory (Electrically EPROM, EEPROM), or flash memory.
  • ROM read-only memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable Programmable Read Only Memory
  • EPROM Erasable PROM
  • Electrically Erasable Programmable Read Only Memory Electrically Erasable Programmable Read Only Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1110.
  • the processor 1110 is configured to determine the target time domain location information according to the target frame structure when multiple different SSBs and Type 0 PDCCH are multiplexed, and the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH;
  • the target time domain location information is the time domain location information where the Type 0 PDCCH corresponding to the target SSB is located, and the target SSB is any one of a plurality of different SSBs.
  • the processor 1110 is further configured to, in the case that the target frame structure is a frame structure determined based on the SCS of the Type OPDCCH, determine the difference between the target frame structure and the target frame structure. At least one first system frame index and/or first time slot index where the SSB overlaps in the time domain; determining the target time domain position information according to the at least one first system frame index and/or the first time slot index .
  • the processor 1110 is configured to determine that the target SSB corresponds to the target frame structure when the target frame structure is a frame structure determined based on the SCS of the SSB The second system frame index and/or the second slot index; according to the SCS of the SSB, the SCS of the Type 0 PDCCH, and the second system frame index and/or the second slot index, determine the target Time domain location information.
  • the target time domain location information is determined according to the SCS of the SSB, the SCS of the Type 0 PDCCH, and the second system frame index and/or the second time slot index, including :
  • the target time domain location information is determined according to the product of the second system frame index or the second slot index and a first ratio; wherein the first ratio is the SCS of the SSB and the SCS of the Type 0 PDCCH ratio.
  • determining the target time domain position information according to the target frame structure includes: determining candidate time domain position information according to the target frame structure; A preset offset value is shifted to determine the target time domain location information.
  • the preset offset value is determined according to at least one of the following: a predetermined value; a network side device configuration; an index of the target SSB.
  • the method further includes: determining, according to the symbol length occupied by the symbol position where the Type 0 PDCCH is located, determining the occupied position of the Type 0 PDCCH The symbol index of the first symbol of .
  • the location of the Type 0 PDCCH corresponding to the target SSB is determined based on the target frame structure.
  • the time domain location information can accurately locate the time domain location information where the Type 0 PDCCH corresponding to the SSB is located when the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH.
  • FIG. 12 is a block diagram of a network-side device 1200 .
  • the network device 1200 includes an antenna 1201 , a radio frequency device 1202 , and a baseband device 1203 .
  • the antenna 1201 is connected to the radio frequency device 1202 .
  • the radio frequency device 1202 receives information through the antenna 1201, and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202
  • the radio frequency device 1202 processes the received information and sends it out through the antenna 1201 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1203 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1203 .
  • the baseband apparatus 1203 includes a processor 1204 and a memory 1205 .
  • the baseband device 1203 may include, for example, at least one baseband board on which a plurality of chips are disposed, as shown in FIG. 120 , one of the chips is, for example, the processor 1204 , which is connected to the memory 1205 to call a program in the memory 1205 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 1203 may further include a network interface 1206 for exchanging information with the radio frequency device 1202, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: instructions or programs that are stored in the memory 1205 and run on the processor 1204, and the processor 1204 calls the instructions or programs in the memory 1205 to execute in multiple different SSBs.
  • Multiplexing with Type 0 PDCCH and when the SCS of the SSB is not greater than the SCS of the Type 0 PDCCH, the target time domain location information is determined according to the target frame structure; wherein, the target time domain location information is corresponding to the target SSB The time domain location information where the Type OPDCCH is located, and the target SSB is any one of the multiple different SSBs.
  • the processor 1204 is further configured to, in the case that the target frame structure is a frame structure determined based on the SCS of the Type OPDCCH, determine whether the target frame structure is the same as the target frame structure. At least one first system frame index and/or first time slot index where the SSB overlaps in the time domain; determining the target time domain position information according to the at least one first system frame index and/or the first time slot index .
  • the processor 1204 is configured to determine that the target SSB corresponds to the target frame structure when the target frame structure is a frame structure determined based on the SCS of the SSB The second system frame index and/or the second slot index; according to the SCS of the SSB, the SCS of the Type 0 PDCCH, and the second system frame index and/or the second slot index, determine the target Time domain location information.
  • the target time domain location information is determined according to the SCS of the SSB, the SCS of the Type 0 PDCCH, and the second system frame index and/or the second time slot index, including : determine the target time domain location information according to the product of the second system frame index or the second slot index and the first ratio; wherein, the first ratio is the difference between the SCS of the SSB and the Type 0 PDCCH ratio of SCS.
  • determining the target time domain position information according to the target frame structure includes: determining candidate time domain position information according to the target frame structure; A preset offset value is shifted to determine the target time domain location information.
  • the preset offset value is determined according to at least one of the following: a predetermined value; a network side device configuration; an index of the target SSB.
  • the method further includes: determining, according to the symbol length occupied by the symbol position where the Type 0 PDCCH is located, determining the occupied position of the Type 0 PDCCH The symbol index of the first symbol of .
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing method embodiment for determining a target time domain position is implemented, And can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction on a communication device to achieve the above-mentioned determination target
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction on a communication device to achieve the above-mentioned determination target
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the embodiments of the present application also provide a computer program product, the computer program product includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being When the processor is executed, each process of the foregoing method embodiment for determining a target time domain position is implemented, and the same technical effect can be achieved. In order to avoid repetition, details are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定目标时域位置的方法、装置及通信设备,涉及无线通信技术领域。所述方法包括:在多个不同的SSB与Type 0PDCCH发生复用,且SSB的SCS不大于Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息;其中,目标时域位置信息是目标SSB对应的Type0PDCCH所在的时域位置信息,目标SSB为多个不同的所述SSB中的任意一个。

Description

确定目标时域位置的方法、装置及通信设备
交叉引用
本发明要求在2020年07月31日提交中国专利局、申请号为202010763225.8、发明名称为“确定目标时域位置的方法、装置及通信设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
背景技术
在某些情形中,在多个不同的同步信号块(Synchronization Signal and PBCH Block,SSB)与类型为0(Type 0)的物理下行控制信道(Physical downlink control channel,PDCCH)发生复用,且所述SSB的子载波间隔(Subcarrier Space,SCS)大于所述Type 0PDCCH的SCS的情况下,例如,当SSB-控制资源集(Control resource set,Coreset)0采用模式(pattern)2或3复用时,Type 0 PDCCH所在的帧与SSB所在帧一致,相应的,Type 0 PDCCH所在的时隙(slot)是当前SSB所对应的Type 0 PDCCH所在的slot,或者当前SSB所对应的PDCCH所在的slot-1等。
但是,如果出现SSB的SCS不大于PDCCH的SCS的情况,那么按上述方法无法准确的定位SSB对应的Type 0PDCCH所在的时域位置信息。
发明内容
本申请实施例的目的是提供一种确定目标时域位置的方法、装置及通信设备,能够在SSB的SCS不大于Type 0PDCCH的SCS的情况下,准确地定位SSB对应的Type 0PDCCH所在的时域位置信息。
第一方面,提供了一种确定目标时域位置的方法,应用于通信设备,所述方法包括:在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息;其中,所述目标时域位置信息是目标SSB对应的Type  0PDCCH所在的时域位置信息,所述目标SSB为多个不同的所述SSB中的任意一个。
第二方面,提供了一种确定目标时域位置的装置,所述装置包括:确定模块,用于在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息;其中,所述目标时域位置信息是目标SSB对应的Type 0PDCCH所在的时域位置信息,所述目标SSB为多个不同的所述SSB中的任意一个。
第三方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
在本申请实施例中,在多个不同的SSB与Type 0 PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,基于目标帧结构确定目标SSB对应的Type 0PDCCH所在的时域位置信息,能够在SSB的SCS不大于Type 0PDCCH的SCS的情况下,准确地定位SSB对应的Type 0PDCCH所在的时域位置信息。
附图说明
图1是根据本申请一示例性实施例提供的通信系统的结构示意图;
图2是根据本申请一示例性实施例提供的确定目标时域位置的方法的流 程示意图;
图3a、图3b、图3c分别是PDCCH所在的RMSI CORESET和SSB之间的三种相对关系示意图;
图4是根据本申请另一示例性实施例提供的确定目标时域位置的方法的流程示意图;
图5是根据本申请又一示例性实施例提供的确定目标时域位置的方法的流程示意图;
图6a至图6i分别是根据本申请示例性实施例提供的帧结构示意图;
图7是根据本申请又一示例性实施例提供的确定目标时域位置的方法的流程示意图;
图8是根据本申请又一示例性实施例提供的确定目标时域位置的方法的流程示意图;
图9是根据本申请一示例性实施例提供的确定目标时域位置的装置的框图;
图10是根据本申请一示例性实施例提供的通信设备的框图;
图11是根据本申请一示例性实施例提供的终端的框图;
图12是根据本申请一示例性实施例提供的网络侧设备的框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不 限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set, ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以5G NR系统中的基站为例,但是并不限定基站的具体类型。
如图2所示,为本申请一示例性实施例提供的确定目标时域位置的方法200的流程示意图,该方法200可应用但不限于通信设备,具体可由安装于所述通信设备中的软件和/或硬件实现。可选地,所述通信设备可以是终端,也可以是网络侧设备,例如基站。所述确定目标时域位置的方法200至少可以包括如下步骤。
S210,在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息。
其中,前述SSB与Type 0PDCCH(也即,Coreset 0)发生复用的复用方式可以是Pattern2和/或Pattern3。
具体来讲,在5G NR系统中,时域长度为10ms的无线帧内,每个无线帧被分为10个同样大小的长度为1ms的子帧,由于SCS不同,每个子帧可以包含多个时隙,每个时隙由一定数量的符号(Symbol)构成,且符号个数由循环前缀(Cyclic Prefix,CP)类型决定。另外,NR系统支持多波束的同步信号、辅同步信号和物理广播信道发送,其中,对于具有SSB的半帧(5ms),候选SSB的数目和第一个符号索引位置可根据SSB的SCS确定。例如,以下CaseD、Case E是针对半帧而言。
CaseD-120KHz SCS:候选SSB的第一个符号的索引为{4,8,16,20}+28*n,对于F>6GHz,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18(1ms内8个slot,1个slot内2个SSB,1ms占16个SSB,共4组,则4ms内Lmax=64),其中,Lmax表示SSB对应的波束(beam)总数。
CaseE-240KHz SCS:候选SSB的第一个符号的索引为{8,12,16,20, 32,36,40,44}+56*n,对于F>6GHz,n=0,1,2,3,5,6,7,8(1ms内16个slot,1个slot内2个SSB,1ms占32个SSB,共2组,则2ms内Lmax=64)其中,Lmax表示SSB对应的波束(beam)总数。
此外,因为SSB的内部结构是通信协议标准化的,因此,当通信设备在特定的同步频点搜到SSB后,可以尝试对SSB进行解码。其中,SSB里面包含的重要的信息是主信息块(Master Information Block,MIB),而MIB中携带了用于调度剩余最小信息块(Remaining Minimum SI,RMSI)的PDCCH的相关配置信息,以帮助用户确认RMSI PDCCH资源配置和监控PDCCH的时机,其中,如图3a、图3b、图3c所示,PDCCH所在的RMSI CORESET和SSB之间存在如下三种相对关系。
Pattern1:SSB和与其对应的RMSI CORESET TDM(时分复用)。
Pattern2:SSB和与其对应的RMSI CORESET FDM(频分复用)。
Pattern3:SSB和与其对应的RMSI CORESET FDM。
在本步骤中,多个不同的SSB与Type 0PDCCH发生复用的复用方式可以是Pattern2和/或Pattern3。
目标时域位置信息是目标SSB对应的Type 0PDCCH所在的时域位置信息(如时隙的索引、系统帧的索引等),以用于在所述目标时域位置信息对应的时域位置上监听目标SSB对应的Type 0 PDCCH。所述目标SSB可以是所述通信设备接收到的网络侧设备发送的多个SSB中的任意一个。
可选地,在进行目标时域位置信息确定时,所述目标帧结构可以是预先设定的帧结构,也可以是基于所述Type 0PDCCH的SCS确定的帧结构,或者是基于所述SSB的SCS确定的帧结构等,本实施例在此不做限制。
本实施例给出的前述确定目标时域位置的方法200中,在多个不同的SSB与Type 0 PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,通信设备基于目标帧结构确定目标SSB对应的Type 0PDCCH所在的时域位置信息,由此,能够准确地定位目标SSB对应的Type 0PDCCH所在的时域位置信息,以监听Type 0PDCCH。
如图4所示,为本申请一示例性实施例提供的确定目标时域位置的方法400的流程示意图,该方法400可应用但不限于通信设备,具体可由安装于所述通信设备中的软件和/或硬件实现。可选地,所述通信设备可以是终端,也可以是网络侧设备。所述确定目标时域位置的方法400至少可以包括如下步骤。
S410,在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息。
其中,S410除可参照前述S210的描述之外,作为一种实现方式,再次参阅图4,S410中所述的根据目标帧结构确定目标时域位置信息的过程可以包括S420和S430。
S420,根据目标帧结构确定候选时域位置信息。
S430,在所述候选时域位置信息对应的时域位置的基础上偏移一预设偏移值,以确定所述目标时域位置信息。
其中,所述预设偏移值根据以下(1)-(3)中的至少一项确定。
(1)预定值。在一种实现方式中,所述预定值可以为0、1、2等。
(2)通过网络侧设备配置得到。
(3)根据目标SSB的索引确定得到。一种实现方式中,可以根据SSB的索引预先配置不同的预设偏移值,以用于根据该预设偏移值确定SSB实际映射的Type 0 PDCCH的时域位置。
一种实现方式中,通信设备可同时在所述候选时域位置信息对应的时域位置、以及偏移后的时域位置上监听所述目标SSB对应的Type 0 PDCCH,以进一步提高监听的准确性。
本实施例给出的前述确定目标时域位置的方法400中,在多个不同的SSB与Type 0 PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,基于目标帧结构确定目标SSB对应的Type 0PDCCH所在的候选时域位置信息,并在所述候选时域位置信息对应的时域 位置的基础上偏移一预设偏移值,以在偏移后的时域位置上监听SSB对应的Type 0PDCCH,由此,能够进一步准确地定位SSB对应的Type 0PDCCH所在的时域位置信息,实现对Type 0PDCCH的监听。
如图5所示,为本申请一示例性实施例提供的确定目标时域位置的方法500的流程示意图,该方法500可应用但不限于通信设备,具体可由安装于所述通信设备中的软件和/或硬件实现。可选地,所述通信设备可以是终端,也可以是网络侧设备。再次参阅图5,所述确定目标时域位置的方法500至少可以包括如下步骤。
S510,在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息。
其中,S510的相关描述除可参照前述S210之外,本实施例中,在所述目标帧结构为基于所述Type 0PDCCH的SCS确定的帧结构的情况下,S510中所述的根据目标帧结构确定目标时域位置信息的过程,可通过图5所示的S520和S530实现,具体如下。
S520,在所述目标帧结构为基于所述Type 0PDCCH的SCS确定的帧结构的情况下,确定所述目标帧结构中与所述目标SSB在时域上重叠的至少一个第一系统帧索引和/或第一时隙索引。
其中,所述第一系统帧可以表示为SFN 1 SSB i、SFN 2 SSB i……,所述第一时隙索引可表示为n 1 SSB i、n 2 SSB i……,i、n为正整数,SFN为系统帧号(System frame number)。
S530,根据所述至少一个第一系统帧索引和/或第一时隙索引,确定所述目标时域位置信息。
其中,S520和S530中是以Type 0 PDCCH的SCS确定的目标帧结构为基准,确定目标时域位置信息,进而使得通信设备可基于目标时域位置信息对应的目标时域位置监听Type 0 PDCCH。
在一种实现方式中,如图6a所示,对于Pattern 2 case D的场景,假设 Type 0 PDCCH的SCS与SSB的SCS一致(相等),目标SSB为
Figure PCTCN2021109026-appb-000001
所表示的SSB为SSB波束(beam)1,那么,通信设备基于Type 0 PDCCH的SCS确定的目标帧结构可以如图6a中所示的PDCCH 1,进而确定出所述目标帧结构中与目标SSB在时域上重叠的第一时隙索引(slotindex)为slot1,此时,根据所述第一时隙索引确定的目标时域位置信息可以为SSB beam1对应的PDCCH 1的第一个slot。
此外,需要注意的是,图6a至图6i中,
Figure PCTCN2021109026-appb-000002
表示的对应部分为SSB beam 2,
Figure PCTCN2021109026-appb-000003
表示的对应部分为SSB beam 3,
Figure PCTCN2021109026-appb-000004
表示的对应部分为SSB beam 4。
在一种实现方式中,S530中所述的根据所述至少一个第一系统帧索引和/或第一时隙索引,确定所述目标时域位置信息包括:在所述至少一个第一系统帧索引和/或第一时隙索引对应的时域位置的基础上偏移一预设偏移值,以确定所述目标时域位置信息。
其中,前述内容除可参照前述S420和S430的描述之外,下面结合不同的示例对不同复用场景以及不同SCS情形下的目标时域位置信息确定过程进行说明。需要注意的是,后续提到的PDCCH均为Type 0 PDCCH。
示例1,请结合参阅图6b,对于pattern 2 case D的场景,假设Type 0 PDCCH的SCS是SSB的SCS的两倍,通信设备基于Type 0 PDCCH的SCS确定的目标帧结构如图6b中所示的PDCCH1的帧结构,例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot1、slot2,可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot1为目标时域位置信息。再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot2,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot2确定为候选时域位置信息;在所述slot2的基础上偏移一预设偏移值(例如-1),以确定所述目标时域位置信息为slot1。
示例2,请结合参阅图6c,对于pattern 2 case D的场景,假设PDCCH的SCS是SSB的SCS的四倍,通信设备基于Type 0 PDCCH的SCS确定的 目标帧结构如图6c中所示的PDCCH1的帧结构(图6c中所示PDCCH1、PDCCH2分别包含8个slot,且每个slot中包含0,1,……,13共14个符号),例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot 2、slot 3,可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot 2为目标时域位置信息。
再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot3、slot4,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot2确定为候选时域位置信息;在所述slot2的基础上偏移一预设偏移值(例如-1,-2),以确定所述目标时域位置信息。
示例3,请结合参阅图6d,对于pattern 2 case D的场景,假设PDCCH的SCS是SSB的SCS的八倍(也即,SSB对应的帧结构包含图6d所示的两个时隙,PDCCH 1、PDCCH 2对应的帧结构分别包含图6d所示的16个时隙,每个时隙包括0,1,……,13共14个符号),通信设备基于Type 0 PDCCH的SCS确定的目标帧结构如图6d中所示的PDCCH1的帧结构,例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot 3、slot 4、slot 5。可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot 3为目标时域位置信息。再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot5、slot6、slot7,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot5确定为候选时域位置信息;在所述slot5的基础上偏移一预设偏移值(例如-1、-2、-3、-4),以确定所述目标时域位置信息。
示例4,请结合参阅图6e,对于pattern 2 case E的场景,假设PDCCH的SCS与SSB的SCS一致,通信设备基于Type 0 PDCCH的SCS确定的目标帧结构如图6e中所示的PDCCH1的帧结构,例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot 1、slot 2,可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot 1 为目标时域位置信息,再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot 2,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot2确定为候选时域位置信息;在所述slot2的基础上偏移一预设偏移值(例如-1),以确定所述目标时域位置信息为slot1。
示例5,请结合参阅图6f,对于pattern 2 case E的场景,假设PDCCH的SCS是SSB的SCS的两倍,通信设备基于Type 0 PDCCH的SCS确定的目标帧结构如图6f中所示的PDCCH1的帧结构,例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot 2,可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot 2为目标时域位置信息。再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot 2、slot 3,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot2确定为候选时域位置信息;在所述slot2的基础上偏移一预设偏移值(例如-1、-2),以确定所述目标时域位置信息。
示例6,请结合参阅图6g,对于pattern 2 case E的场景,假设PDCCH的SCS是SSB的SCS的四倍(图6g中所示PDCCH1、PDCCH2分别包含8个slot,且每个slot中包含0,1,……,13共14个符号),通信设备基于Type 0 PDCCH的SCS确定的目标帧结构如图6g中所示的PDCCH1的帧结构,例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot 3、slot 4,可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot 3为目标时域位置信息。再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot 4、slot 5,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot4确定为候选时域位置信息;在所述slot4的基础上偏移一预设偏移值(例如-2、-3、-4、-5),以确定所述目标时域位置信息。
此外,再次参阅图6g,对于pattern 2 case E的场景,假设PDCCH的SCS 是SSB的SCS的四倍,通信设备基于Type 0 PDCCH的SCS确定的目标帧结构如图6g中所示的PDCCH1的帧结构,例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot 3、slot 4,可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot 3为目标时域位置信息。再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot 4、slot 5,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot4确定为候选时域位置信息;在所述slot4的基础上偏移一预设偏移值(例如-1、-2、-3、-4),以确定所述目标时域位置信息。
示例7,再次参阅图6h,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的二倍,通信设备基于Type 0 PDCCH的SCS确定的目标帧结构如图6f中所示的PDCCH1的帧结构,例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot 1、slot 2,可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot 1为目标时域位置信息。再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot 2,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot2确定为候选时域位置信息;在所述slot2的基础上偏移一预设偏移值(例如+1),以确定所述目标时域位置信息。
示例8,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的四倍,通信设备基于Type 0 PDCCH的SCS确定目标帧结构,进而确定所述目标帧结构中与目标SSB在时域上重叠的第一时隙索引,此时,根据所述第一时隙索引确定的目标时域位置信息为SSB beam1对应的PDCCH1的第一个slot以及第一个slot+1,其中,“+1”为预设偏移值。
示例9,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的八倍((也即,SSB对应的帧结构包含图6i所示的两个时隙,PDCCH 1、PDCCH2对应的帧结构分别包含图6i所示的16个时隙,每个时隙包括0,1,……, 13共14个符号),通信设备基于Type 0 PDCCH的SCS确定的目标帧结构如图6i中所示的PDCCH1的帧结构,例如,目标SSB为SSB beam1,确定所述目标帧结构中与SSB beam1在时域上重叠的第一时隙索引为slot 3、slot 4、slot 5,可选地,根据目标帧结构确定目标时域位置信息可以包括:确定slot 3为目标时域位置信息。
再例如,目标SSB可以为SSB beam2,确定所述目标帧结构中与SSB beam2在时域上重叠的第一时隙索引为slot 5、slot 6、slot 7,可选地,根据目标帧结构确定目标时域位置信息还可以包括:将slot5确定为候选时域位置信息;在所述slot5的基础上偏移一预设偏移值(例如+1),以确定所述目标时域位置信息。
本实施例给出的前述确定目标时域位置的方法500中,在多个不同的SSB与Type 0 PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,将根据所述Type 0 PDCCH的SCS确定的帧结构作为目标帧结构,并基于目标帧结构确定目标SSB对应的Type 0PDCCH所在的时域位置信息,能够准确地定位SSB对应的Type 0PDCCH所在的时域位置信息。
如图7所示,为本申请一示例性实施例提供的确定目标时域位置的方法700的流程示意图,该方法700可应用但不限于通信设备,具体可由安装于所述通信设备中的软件和/或硬件实现。可选地,所述通信设备可以是终端,也可以是网络侧设备。所述确定目标时域位置的方法700至少可以包括如下步骤。
S710,在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息。
其中,S570的相关描述除可参照前述S210之外,本实施例中,在所述目标帧结构为基于所述SSB的SCS确定的帧结构的情况下,再次参照图7,S710中所述的根据目标帧结构确定目标时域位置信息的过程可通过S720和 S730实现,具体如下。
S720,确定所述目标SSB在所述目标帧结构上对应的第二系统帧索引和/或第二时隙索引。
其中,所述第二系统帧索引可表示为SFN 1 SSB i,SFN 2 SSB i……,所述第二时隙索引可表示为n 1 SSB i、n 2 SSB i……,i、n为正整数。
S730,根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息。
其中,S720和S730中是以SSB的SCS确定的目标帧结构为基准,确定目标时域位置信息,进而使得通信设备可基于目标时域位置信息对应的目标时域位置监听目标SSB对应的Type 0 PDCCH。
作为一种实现方式,S730的实现过程包括:根据第一比值与所述第二系统帧索引或第二时隙索引的乘积,确定所述目标时域位置信息;其中,所述第一比值为所述SSB的SCS与所述Type 0 PDCCH的SCS的比值。即所述目标时域位置信息为(所述SSB的SCS)/(所述Type 0 PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)。
例如,请再次参阅图6a,对于pattern 2 case D的场景,假设PDCCH的SCS与SSB的SCS一致(相等),如,图6中所示的SSB的SCS=120K,Type 0 PDCCH的SCS=120K,考虑到SSB beam 2(也即目标SSB)所在的SSB slot为1,也即第二时隙索引为1,则其对应的Type 0 PDCCH所在目标时域位置信息slot pdcch=(120)/(120)*1=1;相应的,考虑到SSB beam 4(也即目标SSB)其所在的SSB slot为2,也即第二时隙索引为2,则其对应的PDCCH所在slot pdcch=(120)/(120)*2=2。
一种实现方式中,S730中所述的根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息包括:在根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引确定的索引对应的时域位置的基础上偏移一预设偏移值,以确定所述目标时域位置信息。
其中,前述内容除可参照前述S420和S430的描述之外,下面结合不同的示例对不同复用场景以及不同SCS情形下的目标时域位置信息确定过程进行说明。
示例1,请参阅图6b,对于pattern 2 case D的场景,假设PDCCH的SCS是SSB的SCS的两倍,那么,所述目标时域位置信息slot pdcch=(SSB的SCS)/(Type 0 PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-1,其中,候选时域位置信息为slot pdcch=(SSB的SCS)/(Type 0 PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引),“-1”为预设偏移值。
示例2,请参阅图6c,对于pattern 2 case D的场景,假设PDCCH的SCS是SSB的SCS的四倍,那么,所述目标时域位置信息slot pdcch=(SSB的SCS)/(Type 0 PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-3,其中,“-3”为预设偏移值。
示例3,请参阅图6d,对于pattern 2 case D的场景,假设PDCCH的SCS是SSB的SCS的八倍,那么,slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-5,-6,-7,-8,其中,“-5”、“-6”、“-7”、“-8”为预设偏移值。
示例4,请参阅图6e,对于pattern 2 case E的场景,假设PDCCH的SCS与SSB的SCS一致,那么,slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引),或者slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-1,其中,“-1”为预设偏移值。
示例5,请参阅图6f,对于pattern 2 case E的场景,假设PDCCH的SCS是SSB的SCS的两倍,那么,此时slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-1,或者-3,其中,“-1”、“-3”为预设偏移值。
示例6,请参阅图6g,对于pattern 2 case E的场景,假设PDCCH的SCS是SSB的SCS的四倍,那么,以图6g所示的PDCCH1为例,slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-3,或 者-7,其中,“-3”、“-7”为预设偏移值。
此外,对于pattern 2 case E的场景,假设PDCCH的SCS是SSB的SCS的四倍,那么,以图6g所示的PDCCH2为例,slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-2,或者-6,其中,“-2”、“-6”为预设偏移值。
示例7,请参阅图6h,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的二倍,那么,slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引),或者slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-1,其中,“-1”为预设偏移值。
示例8,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的四倍,那么,slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引),或者-1,-2,-3,其中,“-1”、“-2”、“-3”为预设偏移值。
示例9,请参阅图6i,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的八倍,那么,slot pdcch=(SSB的SCS)/(PDCCH的SCS)*(所述第二系统帧索引或第二时隙索引)-2,-3,-4,-5,-6,其中,“-2”、“-3”、“-4”、“-5”、“-6”为预设偏移值。
需要说明的是,前述示例1至示例9中所述第二系统帧索引或第二时隙索引可参照S730中的描述,本实施例在此不再赘述。
本实施例给出的前述确定目标时域位置的方法700中,在多个不同的SSB与Type 0 PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,将根据所述Type 0 PDCCH的SCS确定的帧结构作为目标帧结构,并基于目标帧结构确定目标SSB对应的Type 0PDCCH所在的时域位置信息,能够准确地定位SSB对应的Type 0PDCCH所在的时域位置信息。
如图8所示,为本申请一示例性实施例提供的确定目标时域位置的方法800的流程示意图,该方法800可应用但不限于通信设备,具体可由安装于所述通信设备中的软件和/或硬件实现。所述确定目标时域位置的方法800至 少可以包括如下步骤。
S810,在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息。
其中,关于所述S810的相关描述可参照对前述S210的描述,为避免重复,本实施例在此不再赘述。
S820,根据所述Type 0 PDCCH所在符号位置所占的符号长度,确定第一个符号索引。
其中,所述符号长度可以为1、2等。可以理解的是,S820中所述的第一符号索引是指所述目标时域位置信息对应的时域位置中的第一个符号索引。
下面结合不同示例对不同复用场景以及不同SCS情形下的第一个符号索引的确定过程进行说明。
示例1,再次参阅图6a,对于pattern 2 case D的场景,假设PDCCH的SCS与SSB的SCS一致(相等),那么,PDCCH所在符号位置在其所占符号长度为1的情况下,第一符号索引(first symbol index)可为0、1、2、3;在其所占符号长度为2时,对于(4k,4k+1),first symbol index可为0,2,对于(4k+3,4k+3),first symbol index可为0,1,其中,4k、4k+1、4k+2、4k+3分别表示图6a中的四个SSB,k标识第一个SSB的索引标识SSB的索引。
示例2,再次参阅图6b,对于pattern 2 case D的场景,假设PDCCH的SCS是SSB的SCS的两倍,那么PDCCH1所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…7;在其所占符号长度为2时,对于(4k,4k+1,4k+2,4k+3),first symbol index可为0,1,2…7。相应的,对于PDCCH2,first symbol index也可为0,1,2,……,7。两个不同PDCCH之间可以有间隔。其中,4k、4k+1、4k+2、4k+3分别表示图6a中的四个SSB,k标识第一个SSB的索引标识SSB的索引。
示例3,再次参阅图6c,对于pattern 2 case D的场景,假设PDCCH的 SCS是SSB的SCS的四倍,那么,PDCCH所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…13;在其所占符号长度为2时,first symbol index可为0,1,2…13。两个不同PDCCH之间可以有间隔。
示例4,再次参阅图6d,对于pattern 2 case D的场景,假设PDCCH的SCS是SSB的SCS的八倍,那么,PDCCH所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…13;在其所占符号长度为2时,first symbol index可为0,1,2…13。两个不同PDCCH之间可以有间隔。
示例5,再次参阅图6e,对于pattern 2 case E的场景,假设PDCCH的SCS与SSB的SCS一致,那么,PDCCH所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…7;在其所占符号长度为2时,first symbol index可为0,2,4,6。两个不同PDCCH之间可以有间隔。
示例6,再次参阅图6f,对于pattern 2 case E的场景,假设PDCCH的SCS是SSB的SCS的两倍,那么,PDCCH所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…13;在其所占符号长度为2时,first symbol index可为0,1,2…13。两个不同PDCCH之间可以有间隔。
示例7,再次参阅图6g,对于pattern 2 case E的场景,假设PDCCH的SCS是SSB的SCS的四倍,以图6g所示的PDCCH1为例,那么,PDCCH所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…13;在其所占符号长度为2时,first symbol index可为0,1,2…13。两个不同PDCCH之间可以有间隔。
示例8,再次参阅图6h,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的二倍,那么,PDCCH所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…13;在其所占符号长度为2时,first symbol index可为0,1,2,…,13。两个不同PDCCH之间可以有间隔。
示例9,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的四倍,那么,PDCCH所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…13;在其所占符号长度为2时,first symbol index可为0, 1,2,…,13,两个不同PDCCH之间可以有间隔。
示例10,再次参阅图6i,对于pattern 3的场景,假设PDCCH的SCS是SSB的SCS的八倍,那么,PDCCH所在符号位置在其所占符号长度为1的情况下,first symbol index可为0,1,2…13;在其所占符号长度为2时,first symbol index可为0,1,2…13,两个不同PDCCH 1和PDCCH 2之间可以有间隔。
本实施例给出的前述的确定目标时域位置的方法中,在多个不同的SSB与Type 0 PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,基于目标帧结构确定目标SSB对应的Type 0PDCCH所在的时域位置信息,并根据Type 0 PDCCH所在符号位置所占的符号长度,确定第一个符号索引,能够进一步准确地定位SSB对应的Type 0PDCCH所在的时域位置信息,实现对Type 0PDCCH的监控。
需要说明的是,本申请前述各实施例提供的确定目标时域位置的方法,执行主体可以为确定目标时域位置的装置,或者,该确定目标时域位置的装置中的用于执行确定目标时域位置的方法的控制模块。后续部分中,本申请实施例中以确定目标时域位置的装置执行确定目标时域位置的方法为例,说明本申请实施例提供的确定目标时域位置的装置。
如图9所示,为本申请一示例性实施例提供的确定目标时域位置的装置900的方框结构示意图,再次参阅图9,所述确定目标时域位置的装置900包括确定模块910。
确定模块910,用于在多个不同的同步信号块SSB与Type 0物理下行控制信道PDCCH发生复用,且所述SSB的子载波间隔SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息;其中,所述目标时域位置信息是目标SSB对应的Type 0PDCCH所在的时域位置信息,所述目标SSB为多个不同的所述SSB中的任意一个。
本申请一个或多个实施例中,所述确定模块910根据目标帧结构确定目标时域位置信息,包括:在所述目标帧结构为基于所述Type 0PDCCH的SCS 确定的帧结构的情况下,确定所述目标帧结构中与所述目标SSB在时域上重叠的至少一个第一系统帧索引和/或第一时隙索引;根据所述至少一个第一系统帧索引和/或第一时隙索引,确定所述目标时域位置信息。
本申请一个或多个实施例中,所述确定模块910根据目标帧结构确定目标时域位置信息,包括:在所述目标帧结构为基于所述SSB的SCS确定的帧结构的情况下,确定所述目标SSB在所述目标帧结构上对应的第二系统帧索引和/或第二时隙索引;根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息。
本申请一个或多个实施例中,所述确定模块910所述确定模块用于根据所述第二系统帧索引或第二时隙索引以及第一比值的乘积确定所述目标时域位置信息;其中,所述第一比值为所述SSB的SCS与所述Type 0 PDCCH的SCS的比值。
本申请一个或多个实施例中,所述确定模块还用于根据目标帧结构确定候选时域位置信息;在所述候选时域位置信息对应的时域位置的基础上偏移一预设偏移值,以确定所述目标时域位置信息。
本申请一个或多个实施例中,所述预设偏移值根据以下至少一项确定:预定值;网络侧设备配置;目标SSB的索引。
本申请一个或多个实施例中,所述确定模块还用于根据所述Type 0 PDCCH所在符号位置所占的符号长度,确定所述Type 0 PDCCH所占的第一个符号的符号索引。
可选地,确定目标时域位置的装置900还可以包括处理器。
本申请实施例中的确定目标时域位置的装置900可以是装置,也可以是通信设备中的部件、集成电路、或芯片。该装置可以是移动通信设备,也可以为非移动通信设备。示例性的,非移动通信设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的确定目标时域位置的装置900可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的确定目标时域位置的装置900能够实现图2至图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001,存储器1002,存储在存储器1002上并可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为终端或网络侧设备时,该程序或指令被处理器1001执行时实现上述确定目标时域位置的方法实施例的各个过程,且能达到相同的技术效果。
作为一种实现方式,图11为实现本申请实施例的一种终端的硬件结构示意图。上述通信设备可以为终端。该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、以及处理器1110等部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071, 也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101将来自网络侧设备的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1110可包括一个或多个处理单元;可选的,处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,处理器1110,用于在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息;其中,所述目标时域位置信息是目标SSB对应的Type 0PDCCH所在的时域位置信息,所述目标SSB为多个不同的所述SSB中的任意一个。
在一种可能的实现方式中,所述处理器1110还用于在所述目标帧结构为基于所述Type 0PDCCH的SCS确定的帧结构的情况下,确定所述目标帧结 构中与所述目标SSB在时域上重叠的至少一个第一系统帧索引和/或第一时隙索引;根据所述至少一个第一系统帧索引和/或第一时隙索引,确定所述目标时域位置信息。
在一种可能的实现方式中,所述处理器1110用于在所述目标帧结构为基于所述SSB的SCS确定的帧结构的情况下,确定所述目标SSB在所述目标帧结构上对应的第二系统帧索引和/或第二时隙索引;根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息。
在一种可能的实现方式中,根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息,包括:
根据所述第二系统帧索引或第二时隙索引以及第一比值的乘积确定所述目标时域位置信息;其中,所述第一比值为所述SSB的SCS与所述Type 0 PDCCH的SCS的比值。
在一种可能的实现方式中,根据目标帧结构确定目标时域位置信息,包括:根据目标帧结构确定候选时域位置信息;在所述候选时域位置信息对应的时域位置的基础上偏移一预设偏移值,以确定所述目标时域位置信息。
在一种可能的实现方式中,所述预设偏移值根据以下至少一项确定:预定值;网络侧设备配置;目标SSB的索引。
在一种可能的实现方式中,根据目标帧结构确定目标时域位置信息之后,所述方法还包括:根据所述Type 0 PDCCH所在符号位置所占的符号长度,确定所述Type 0 PDCCH所占的第一个符号的符号索引。
本实施例中,在多个不同的SSB与Type 0 PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,基于目标帧结构确定目标SSB对应的Type 0PDCCH所在的时域位置信息,能够在SSB的SCS不大于Type 0PDCCH的SCS的情况下,准确地定位SSB对应的Type 0PDCCH所在的时域位置信息。
在一种实现方式中,如图12所示,上述通信设备也可以为网络侧设备。图12为一种网络侧设备1200的框图,该网络设备1200包括:天线1201、射频装置1202、基带装置1203。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
上述频带处理装置可以位于基带装置1203中,以上实施例中网络侧设备执行的方法可以在基带装置1203中实现,该基带装置1203包括处理器1204和存储器1205。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图120所示,其中一个芯片例如为处理器1204,与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1203还可以包括网络接口1206,用于与射频装置1202交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行在多个不同的SSB与Type 0PDCCH发生复用,且所述SSB的SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息;其中,所述目标时域位置信息是目标SSB对应的Type 0PDCCH所在的时域位置信息,所述目标SSB为多个不同的所述SSB中的任意一个。
在一种可能的实现方式中,所述处理器1204还用于在所述目标帧结构为基于所述Type 0PDCCH的SCS确定的帧结构的情况下,确定所述目标帧结构中与所述目标SSB在时域上重叠的至少一个第一系统帧索引和/或第一时隙索引;根据所述至少一个第一系统帧索引和/或第一时隙索引,确定所述目 标时域位置信息。
在一种可能的实现方式中,所述处理器1204用于在所述目标帧结构为基于所述SSB的SCS确定的帧结构的情况下,确定所述目标SSB在所述目标帧结构上对应的第二系统帧索引和/或第二时隙索引;根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息。
在一种可能的实现方式中,根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息,包括:根据所述第二系统帧索引或第二时隙索引以及第一比值的乘积确定所述目标时域位置信息;其中,所述第一比值为所述SSB的SCS与所述Type 0 PDCCH的SCS的比值。
在一种可能的实现方式中,根据目标帧结构确定目标时域位置信息,包括:根据目标帧结构确定候选时域位置信息;在所述候选时域位置信息对应的时域位置的基础上偏移一预设偏移值,以确定所述目标时域位置信息。
在一种可能的实现方式中,所述预设偏移值根据以下至少一项确定:预定值;网络侧设备配置;目标SSB的索引。
在一种可能的实现方式中,根据目标帧结构确定目标时域位置信息之后,所述方法还包括:根据所述Type 0 PDCCH所在符号位置所占的符号长度,确定所述Type 0 PDCCH所占的第一个符号的符号索引。
处理器1204执行上述步骤时具体执行图2、4、5、7、8实施例所述的各个步骤,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述确定目标时域位置的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘 等。
本申请实施例还提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行通信设备上的程序或指令,实现上述确定目标时域位置的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现上述确定目标时域位置的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器, 空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (19)

  1. 一种确定目标时域位置的方法,应用于通信设备,所述方法包括:
    在多个不同的同步信号块SSB与类型0Type 0物理下行控制信道PDCCH发生复用,且所述SSB的子载波间隔SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息;
    其中,所述目标时域位置信息是目标SSB对应的Type 0PDCCH所在的时域位置信息,所述目标SSB为多个不同的所述SSB中的任意一个。
  2. 如权利要求1所述的方法,其中,根据目标帧结构确定目标时域位置信息,包括:
    在所述目标帧结构为基于所述Type 0PDCCH的SCS确定的帧结构的情况下,确定所述目标帧结构中与所述目标SSB在时域上重叠的至少一个第一系统帧索引和/或第一时隙索引;
    根据所述至少一个第一系统帧索引和/或第一时隙索引,确定所述目标时域位置信息。
  3. 如权利要求1所述的方法,其中,根据目标帧结构确定目标时域位置信息,包括:
    在所述目标帧结构为基于所述SSB的SCS确定的帧结构的情况下,确定所述目标SSB在所述目标帧结构上对应的第二系统帧索引和/或第二时隙索引;
    根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息。
  4. 如权利要求3所述的方法,其中,根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息,包括:
    根据第一比值与所述第二系统帧索引或第二时隙索引的乘积,确定所述目标时域位置信息;其中,所述第一比值为所述SSB的SCS与所述Type 0  PDCCH的SCS的比值。
  5. 如权利要求1-4任一项所述的方法,其中,根据目标帧结构确定目标时域位置信息,包括:
    根据目标帧结构确定候选时域位置信息;
    在所述候选时域位置信息对应的时域位置的基础上偏移一预设偏移值,以确定所述目标时域位置信息。
  6. 如权利要求5所述的方法,其中,所述预设偏移值根据以下至少一项确定:
    预定值;
    网络侧设备配置;
    目标SSB的索引。
  7. 如权利要求1-5任一项所述的方法,其中,根据目标帧结构确定目标时域位置信息之后,所述方法还包括:
    根据所述Type 0 PDCCH所在符号位置所占的符号长度,确定所述Type 0 PDCCH所占的第一个符号的符号索引。
  8. 一种确定目标时域位置的装置,所述装置包括:
    确定模块,用于在多个不同的同步信号块SSB与类型0Type 0物理下行控制信道PDCCH发生复用,且所述SSB的子载波间隔SCS不大于所述Type 0PDCCH的SCS的情况下,根据目标帧结构确定目标时域位置信息;
    其中,所述目标时域位置信息是目标SSB对应的Type 0PDCCH所在的时域位置信息,所述目标SSB为多个不同的所述SSB中的任意一个。
  9. 如权利要求8所述的装置,其中,所述确定模块具体用于在所述目标帧结构为基于所述Type 0PDCCH的SCS确定的帧结构的情况下,确定所述目标帧结构中与所述目标SSB在时域上重叠的至少一个第一系统帧索引和/或第一时隙索引;以及根据所述至少一个第一系统帧索引和/或第一时隙索引,确定所述目标时域位置信息。
  10. 如权利要求8所述的装置,其中,所述确定模块具体用于在所述目标 帧结构为基于所述SSB的SCS确定的帧结构的情况下,确定所述目标SSB在所述目标帧结构上对应的第二系统帧索引和/或第二时隙索引;以及根据所述SSB的SCS、所述Type 0 PDCCH的SCS以及所述第二系统帧索引和/或第二时隙索引,确定所述目标时域位置信息。
  11. 如权利要求10所述的装置,其中,所述确定模块具体用于根据第一比值与所述第二系统帧索引或第二时隙索引的乘积,确定所述目标时域位置信息;其中,所述第一比值为所述SSB的SCS与所述Type 0 PDCCH的SCS的比值。
  12. 如权利要求8-11任一项所述的装置,其中,所述确定模块还用于根据目标帧结构确定候选时域位置信息;在所述候选时域位置信息对应的时域位置的基础上偏移一预设偏移值,以确定所述目标时域位置信息。
  13. 如权利要求12所述的装置,其中,所述预设偏移值根据以下至少一项确定:
    预定值;
    网络侧设备配置;
    目标SSB的索引。
  14. 如权利要求8-13任一项所述的装置,其中,所述确定模块还用于根据所述Type 0 PDCCH所在符号位置所占的符号长度,确定所述Type 0 PDCCH所占的第一个符号的符号索引。
  15. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至7任一项所述的确定目标时域位置的方法的步骤。
  16. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-7任一项所述的确定目标时域位置的方法的步骤。
  17. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-7任一项所述的确定目标时域位置的方法的步骤。
  18. 一种通信设备,所述通信设备被配置为用于执行如权利要求1-7任一项所述的确定目标时域位置的方法的步骤。
  19. 一种计算机程序产品,所述计算机程序产品被至少一个处理器运行时实现如权利要求1-7任一项所述的确定目标时域位置的方法的步骤。
PCT/CN2021/109026 2020-07-31 2021-07-28 确定目标时域位置的方法、装置及通信设备 WO2022022592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010763225.8 2020-07-31
CN202010763225.8A CN114070507B (zh) 2020-07-31 2020-07-31 确定目标时域位置的方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2022022592A1 true WO2022022592A1 (zh) 2022-02-03

Family

ID=80037196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109026 WO2022022592A1 (zh) 2020-07-31 2021-07-28 确定目标时域位置的方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN114070507B (zh)
WO (1) WO2022022592A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787732A (zh) * 2017-11-14 2019-05-21 电信科学技术研究院 一种资源配置方法及装置、计算机存储介质
CN110034835A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 信号检测的方法和装置
WO2019158099A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 随机接入资源配置的方法和通信设备
CN110351835A (zh) * 2018-04-03 2019-10-18 维沃移动通信有限公司 一种频段确定方法和装置
CN110351852A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种通信方法及装置
CN111435904A (zh) * 2019-03-27 2020-07-21 维沃移动通信有限公司 搜索空间的配置方法及装置、通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451553B1 (en) * 2017-09-05 2021-03-03 Apple Inc. Mechanisms for monitoring physical downlink control channel with common search space and user equipment-specific search space in a beamformed system
WO2019157725A1 (zh) * 2018-02-14 2019-08-22 Oppo广东移动通信有限公司 一种控制信道的资源确定方法及装置、计算机存储介质
CN110536420B (zh) * 2018-05-23 2022-04-01 中国移动通信有限公司研究院 配置物理下行控制信道时域检测位置的方法及设备
CN110611948B (zh) * 2018-06-14 2021-01-08 维沃移动通信有限公司 同步信号块的传输方法、网络设备及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787732A (zh) * 2017-11-14 2019-05-21 电信科学技术研究院 一种资源配置方法及装置、计算机存储介质
CN110034835A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 信号检测的方法和装置
WO2019158099A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 随机接入资源配置的方法和通信设备
CN110351835A (zh) * 2018-04-03 2019-10-18 维沃移动通信有限公司 一种频段确定方法和装置
CN110351852A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种通信方法及装置
CN111435904A (zh) * 2019-03-27 2020-07-21 维沃移动通信有限公司 搜索空间的配置方法及装置、通信设备

Also Published As

Publication number Publication date
CN114070507A (zh) 2022-02-18
CN114070507B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US11588604B2 (en) Method and apparatus for transmitting information, base station, and user equipment
WO2022078273A1 (zh) 定位方法、终端及网络侧设备
WO2022171129A1 (zh) 信号参数上报方法、装置及设备
WO2022078445A1 (zh) 定位方法、终端及网络侧设备
WO2022135267A1 (zh) 定位测量方法、装置、设备及可读存储介质
WO2021249476A1 (zh) Srs资源指示方法、srs资源确定方法及相关设备
US20230421293A1 (en) Transmission processing method and apparatus and terminal
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2022206949A1 (zh) 保护间隔确定方法、装置、终端及存储介质
WO2022022592A1 (zh) 确定目标时域位置的方法、装置及通信设备
WO2022143808A1 (zh) 速率匹配方法和设备
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
WO2022028404A1 (zh) 信号传输的方法、终端设备和网络设备
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2022143659A1 (zh) 信号配置方法、装置、设备及存储介质
WO2023198183A1 (zh) 信息获取方法、信息发送方法、装置、终端及网络侧设备
WO2022152273A1 (zh) Srs传输方法、装置、设备及存储介质
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2023125824A1 (zh) 控制信道监测方法、终端及网络侧设备
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2022206909A1 (zh) 信息确定方法、装置及终端
WO2023036142A1 (zh) 时隙配置方法、终端及网络侧设备
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851271

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21851271

Country of ref document: EP

Kind code of ref document: A1