WO2022022523A1 - 光电探测阵列的控制方法及装置、光电电源开关电路、光电探测阵列 - Google Patents

光电探测阵列的控制方法及装置、光电电源开关电路、光电探测阵列 Download PDF

Info

Publication number
WO2022022523A1
WO2022022523A1 PCT/CN2021/108717 CN2021108717W WO2022022523A1 WO 2022022523 A1 WO2022022523 A1 WO 2022022523A1 CN 2021108717 W CN2021108717 W CN 2021108717W WO 2022022523 A1 WO2022022523 A1 WO 2022022523A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric
channel unit
unit group
photoelectric channel
units
Prior art date
Application number
PCT/CN2021/108717
Other languages
English (en)
French (fr)
Inventor
夏冰冰
张瑜
石拓
Original Assignee
北京一径科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京一径科技有限公司 filed Critical 北京一径科技有限公司
Publication of WO2022022523A1 publication Critical patent/WO2022022523A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the embodiments of the present application relate to a switching control technology of a photoelectric detection array in a lidar, and in particular, to a control method and device for a photoelectric detection array, a power switch circuit of a photoelectric channel unit, and a photoelectric detection array.
  • Avalanche PhotoDiode (APD, Avalanche PhotoDiode) array scanning lidar mainly through the collimation of the laser beam emitted by the laser emission system, irradiates the target detection area, and changes the angle of the outgoing laser through scanning equipment such as galvanometers to complete the coverage of the field of view .
  • Each pixel in the APD array receiving system array is an independent and complete receiving and processing channel. By measuring the time interval between the pulses in the pixel channel going back and forth between the target and the imaging system, the target distance corresponding to each pixel is obtained.
  • the system visualization algorithm processes the output results of all pixels of the array to obtain a 3D range image of the target.
  • embodiments of the present application provide a control method and device for a photoelectric detection array, a power switch circuit for a photoelectric channel unit, and a photoelectric detection array.
  • a method for controlling a photodetector array including:
  • the photoelectric channel unit group corresponding to the working area of the photoelectric detection array is turned on, and the photoelectric channel unit group corresponding to the non-working area of the photoelectric detection array is turned off.
  • turning on the photoelectric channel unit group corresponding to the working area of the photodetection array includes:
  • the scanning angle when the scanning unit of the photodetection array is working determine the first detection area where the reflected laser beam is incident on the photodetection array
  • TIA Trans-Impedance Amplifier
  • turning on the photoelectric channel unit group corresponding to the working area of the photodetection array includes:
  • the bias working power supply of the photoelectric channel unit in the second photoelectric channel unit group may turn on the path between the photoelectric channel unit in the second photoelectric channel unit group and the TIA.
  • the opening of the photoelectric channel unit group corresponding to the working area of the photoelectric detection array includes:
  • turning on the photoelectric channel unit group corresponding to the working area of the photodetection array includes:
  • the first photoelectric channel unit group corresponding to the working scanning angle is determined
  • the opening of the photoelectric channel unit group corresponding to the working area of the photoelectric detection array includes:
  • the bias working power supply of the photoelectric channel unit in the second photoelectric channel unit group may turn on the path between the photoelectric channel unit in the second photoelectric channel unit group and the TIA.
  • turning on the photoelectric channel unit group corresponding to the working area of the photodetection array includes:
  • a control device for a photodetection array including:
  • an opening unit configured to open a photoelectric channel unit group corresponding to the working area of the photoelectric detection array
  • the closing unit is configured to close the photoelectric channel unit group corresponding to the non-working area of the photoelectric detection array.
  • control device further includes:
  • a first determining unit configured to determine the first detection area where the reflected laser beam is incident on the photoelectric detection array according to the scanning angle when the scanning unit of the lidar is working;
  • a second determining unit configured to determine the first photoelectric channel unit group covered by the first detection area
  • the turn-on unit is further configured to turn on the bias operating power supply of the photoelectric channel units in the first photoelectric channel unit group or to conduct the passage between the photoelectric channel units in the first photoelectric channel unit group and the TIA, to sense the reflected laser beam.
  • the first determining unit is further configured to re-determine the second detection area where the reflected laser beam is incident on the photodetection array when the scanning angle of the scanning unit is changed;
  • the second determining unit is further configured to determine a second photoelectric channel unit group covered by the second detection area
  • the shut-off unit is further configured to turn off the bias operating power supply of the photoelectric channel units in the first photoelectric channel unit group or to close the passage between the photoelectric channel units in the first photoelectric channel unit group and the TIA, so
  • the turn-on unit is further configured to turn on the bias operating power supply of the photoelectric channel units in the second photoelectric channel unit group or turn on the path between the photoelectric channel units in the second photoelectric channel unit group and the TIA.
  • the first determining unit is further configured to re-determine the second detection area where the reflected laser beam is incident on the photodetection array when the scanning angle of the scanning unit is changed;
  • the second determining unit is further configured to determine a second photoelectric channel unit group covered by the second detection area; and determine a third photoelectric channel unit group that overlaps the second photoelectric channel unit group and the first photoelectric channel unit group Photoelectric channel unit group;
  • the turn-on unit is further configured to turn on the bias working power supply of the photoelectric channel units in the second photoelectric channel unit group except the third photoelectric channel unit group or turn on the power supply of the photoelectric channel unit in the second photoelectric channel unit group
  • the passage between the photoelectric channel units other than the third photoelectric channel unit group and the TIA, and the closing unit is further configured to close the first photoelectric channel unit group except the third photoelectric channel unit group.
  • the bias operating power supply of the other photoelectric channel units or the channels between the photoelectric channel units in the first photoelectric channel unit group except the third photoelectric channel unit group and the TIA are closed.
  • control device includes:
  • a third determining unit configured to determine a first correspondence between each scanning angle of the scanning unit of the lidar and each detection area where the reflected laser beam is incident on the photodetector array;
  • a fourth determination unit configured to determine a photoelectric channel unit group corresponding to each detection area
  • a recording unit configured to record the second correspondence between each scanning angle of the scanning unit and each photoelectric channel unit group;
  • a fifth determining unit configured to determine a first photoelectric channel unit group corresponding to the working scanning angle according to the working scanning angle of the scanning unit and the second corresponding relationship when the scanning unit is working;
  • the turn-on unit is further configured to turn on the bias operating power supply of the photoelectric channel units in the first photoelectric channel unit group or to conduct the passage between the photoelectric channel units in the first photoelectric channel unit group and the TIA, to sense the reflected laser beam.
  • the fifth determining unit is further configured to, when the scanning angle when the scanning unit works changes, determine the corresponding scanning angle according to the changed scanning angle and the second corresponding relationship The second photoelectric channel unit group;
  • the shut-off unit is further configured to turn off the bias operating power supply of the photoelectric channel units in the first photoelectric channel unit group or to close the passage between the photoelectric channel units in the first photoelectric channel unit group and the TIA, so
  • the turn-on unit is further configured to turn on the bias operating power supply of the photoelectric channel units in the second photoelectric channel unit group or turn on the path between the photoelectric channel units in the second photoelectric channel unit group and the TIA.
  • the fifth determining unit is further configured to, when the scanning angle when the scanning unit works changes, determine the corresponding scanning angle according to the changed scanning angle and the second corresponding relationship The second photoelectric channel unit group; and, determining the second photoelectric channel unit group and the first photoelectric channel unit group coincident in the third photoelectric channel unit group;
  • the turn-on unit is further configured to turn on the bias working power supply of the photoelectric channel units in the second photoelectric channel unit group except the third photoelectric channel unit group or turn on the power supply of the photoelectric channel unit in the second photoelectric channel unit group
  • the passage between the photoelectric channel units other than the third photoelectric channel unit group and the TIA, and the closing unit is further configured to close the first photoelectric channel unit group except the third photoelectric channel unit group.
  • the bias operating power supply of the other photoelectric channel units or the channels between the photoelectric channel units in the first photoelectric channel unit group except the third photoelectric channel unit group and the TIA are closed.
  • a power switch circuit of a photoelectric channel unit including: a first field effect transistor, a second field effect transistor and a Zener diode, wherein:
  • the source of the first field effect transistor is grounded, the drain of the first field effect transistor is connected to the gate of the second field effect transistor through a first resistor, and the drain of the second field effect transistor is connected to the gate of the second field effect transistor.
  • the power input end of the photoelectric channel unit is connected, and the source of the second field effect transistor is connected to the bias power supply; the zener diode and the second resistor are connected in parallel to form a parallel circuit, and the first end of the parallel circuit is connected is connected between the bias power supply and the source of the second field effect transistor, and the second end of the parallel circuit is connected between the gate of the second field effect transistor and the first resistor .
  • the bias power supply when the gate of the first field effect transistor is at a high level, the bias power supply generates a voltage difference across the second resistor in the parallel circuit, and the second field effect transistor has a voltage difference.
  • the drain electrode and the source electrode are turned on, and the bias power supply is turned on with the power input terminal of the photoelectric channel unit.
  • a photodetection array includes the power switch circuit of the aforementioned photoelectric channel unit and at least two photoelectric channel units; Each photoelectric channel unit is connected to the power switch circuit.
  • a switch circuit with a bias voltage is set for each photoelectric channel unit in the photodetection array.
  • the switch circuit for controlling its bias voltage or the photoelectric channel can be controlled.
  • the opening and closing of the channel between the unit and the TIA selects the closing or opening of each photoelectric channel unit in the photodetection array, and the photoelectric channel unit after being turned off cannot establish an electric field in the photoelectric barrier region, so that the avalanche multiplication effect cannot be formed and light is suppressed.
  • the photoelectric channel unit after closing can avoid ambient light and interfering laser incident on the photoelectric to form photocurrent, and will not affect the lidar system.
  • photoelectric power consumption and heat generation can be reduced.
  • FIG. 1 is a schematic flowchart of a control method for a photodetector array according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a control method for a photodetector array according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of the composition and structure of a control device for a photodetector array according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a power switch circuit of a photoelectric channel unit according to an embodiment of the present application.
  • APD and Trans-Impedance Amplifier are widely used in the receiving front-end of the scanning LIDAR laser system.
  • a large number of APD arrays and TIAs need to be used in lidar. Different from the area array lidar, the scanning lidar point cloud is obtained by point-by-point scanning, which means that in the APD array, only one APD and TIA work at a single point, and other APDs and TIAs are idle.
  • a circuit switch of a bias power supply is set for the photoelectric channel unit in the APD detector, or a quick-reading switch or relay is set between the photoelectric channel unit in the APD detector and the TIA.
  • a quick-reading switch or relay is set between the photoelectric channel unit in the APD detector and the TIA.
  • a method for controlling a photodetection array wherein the photoelectric channel unit group corresponding to the working area of the photodetection array is turned on, and the photoelectric channel unit group corresponding to the non-working area of the photodetection array is turned off. That is, only the photoelectric channel unit groups in the effective working area of the photodetection array are turned on, and the photoelectric channel unit groups outside the effective working area of the photoelectric detection array are turned off. On the one hand, these turned off photoelectric channel unit groups are not. The detection of the optical signal of the photodetection array will be affected due to the interference signal light received.
  • the photodetectors include APD detectors, Single Photon Avalanche Diode (SPAD, Single Photon Avalanche Diode) tube detectors, silicon photomultipliers (SIPM, Silicon photomultiplier), etc. Since their control principles are basically similar, In the embodiments of the present application, an APD detector is mainly used as an example for description. The following uses specific examples to further illustrate the implementation of the technical solutions in the embodiments of the present application.
  • FIG. 1 is a schematic flowchart of a control method for a photodetector array according to an embodiment of the present application. As shown in FIG. 1 , the control method for a photodetector array according to an embodiment of the present application includes the following steps:
  • Step 101 Determine the first detection area where the reflected laser beam is incident on the photoelectric detection array according to the scanning angle when the scanning unit of the lidar is working.
  • the photodetector array may include multiple photodetectors, and the multiple photodetectors may form a one-dimensional or two-dimensional array.
  • the scanning unit will shoot the incident laser beam to the target object, and the target object will reflect the light to the photoelectric detection array, while the photoelectric detection array Only the photoelectric channel unit in the laser beam reflection area senses the reflected laser beam.
  • the reflected laser beam is incident on the first detection area of the photoelectric detection array, that is, the reflected laser beam can be effectively sensed.
  • the area of the reflected laser beam is the effective working area of the aforementioned photodetection array, and the area other than the first detection area is the non-effective working area of the photodetection array.
  • Step 102 Determine a first photoelectric channel unit group covered by the first detection area.
  • the first photoelectric channel unit group corresponding to the first detection area is determined by the first detection area.
  • the first photoelectric channel unit group includes at least one photoelectric channel unit.
  • Each photochannel unit includes at least one photodetector.
  • Step 103 Turn on the bias power supply of the photoelectric channel units in the first photoelectric channel unit group or turn on the path between the photoelectric channel units in the first photoelectric channel unit group and the TIA to sense the reflected laser light beam.
  • each photoelectric channel unit in the photodetection array can be started or turned off by controlling the opening and closing of the bias voltage working power supply of the photoelectric channel unit. It is also possible to set a fast switch or relay between the photoelectric channel unit in the photodetection array and the TIA, and by controlling the fast switch or relay, the path between each photoelectric channel unit in the photodetection array and the TIA can be turned on or off. , to enable or disable each photoelectric channel unit in the photodetection array.
  • the bias operating power supply of the photoelectric channel units in the first photoelectric channel unit group is turned on or the first photoelectric channel unit group is turned on.
  • the second detection area where the reflected laser beam is incident to the photodetection array is re-determined; the second photoelectric channel unit group covered by the second detection area is determined; the first photoelectric channel is turned off
  • the bias working power supply of the photoelectric channel units in the channel unit group or the passage between the photoelectric channel units in the first photoelectric channel unit group and the TIA is closed, and the photoelectric channel units in the second photoelectric channel unit group are turned on.
  • the photoelectric channel units in the photodetection array in the effective area receiving the reflected laser beam are turned on, and the remaining photoelectric channel units in the photodetection array are turned off and no longer have photosensitive ability. In this way, the photoelectric channel unit that is turned off will not form interference photocurrent signals, and will not form crosstalk, and at the same time, the power consumption of the photodetection array can be reduced.
  • the second detection area where the reflected laser beam is incident on the photodetection array is re-determined; the second photoelectric channel unit covered by the second detection area is determined. group; determine the overlapping third photoelectric channel unit group in the second photoelectric channel unit group and the first photoelectric channel unit group; turn on the second photoelectric channel unit group except the third photoelectric channel unit group The bias working power supply of the photoelectric channel unit outside the unit or turn on the passage between the photoelectric channel unit and the TIA except the third photoelectric channel unit group in the second photoelectric channel unit group, and turn off the first photoelectric channel unit.
  • the second photoelectric channel unit group and the first photoelectric channel unit group have overlapping photoelectric channel unit groups
  • you can The overlapping photoelectric channel unit group is kept in a working state without being turned off, and only the second photoelectric channel unit group that does not overlap the second photoelectric channel unit group and the third photoelectric channel unit group can be turned on.
  • the second photoelectric channel unit group and the first photoelectric channel unit group include at least one identical photoelectric channel unit.
  • the second photoelectric channel unit group is different from the photoelectric channel units in the first photoelectric channel unit group.
  • the scanning angle changes, and the angle of the reflected light reflected to the photodetection array also changes.
  • the reflected laser beam is sensed by the photodetection array, based on the sensing signal Sensing pixel output, ranging and other applications.
  • the scanning unit changes the scanning angle, it is likely to cause the second photoelectric channel unit group and the photoelectric channel units in the first photoelectric channel unit group to partially or completely overlap.
  • the situation of all coincidence may be the situation when the scanning unit moves to the limit position and then retracts.
  • the scanning unit may include a MEMS mirror, a prism, a mechanical mirror, a polarization grating, an Optical Phased Array (OPA, Optical Phased Array), and the like.
  • MEMS mirrors the mirror surface is rotated or translated in one or two dimensions under electrostatic/piezo/electromagnetic actuation.
  • FIG. 2 is a schematic flowchart of a control method for a photodetector array according to an embodiment of the present application. As shown in FIG. 2 , the control method for a photodetector array according to an embodiment of the present application includes the following steps:
  • Step 201 Determine a first correspondence between each scanning angle of the scanning unit of the lidar and each detection area where the reflected laser beam is incident on the photodetector array.
  • the corresponding relationship between each scanning angle of the scanning unit of the lidar and each detection area where the reflected laser beam is incident on the photoelectric detection array is determined in advance, that is, the scanning of the scanning unit is determined in advance.
  • Step 202 Determine the photoelectric channel unit group corresponding to each detection area.
  • the photoelectric channel unit group corresponding to the detection area is determined by the detection area, and the photoelectric channel unit group includes at least one photoelectric channel unit.
  • Step 203 Record the second correspondence between each scanning angle of the scanning unit and each photoelectric channel unit group.
  • the second correspondence between each scanning angle of the scanning unit and each photoelectric channel unit group is recorded, so that after the working angle of the scanning unit is determined, an effective photoelectric channel unit group can be determined according to the second correspondence .
  • Step 204 when the scanning unit is working, according to the working scanning angle of the scanning unit and the second corresponding relationship, determine the first photoelectric channel unit group corresponding to the working scanning angle.
  • the first photoelectric channel unit group corresponding to the working scanning angle is determined, and the bias working power supply of the photoelectric channel units in the first photoelectric channel unit group is turned on to sense the the laser beam reflected by the scanning unit.
  • Step 205 Turn on the bias power supply of the photoelectric channel units in the first photoelectric channel unit group or turn on the path between the photoelectric channel units in the first photoelectric channel unit group and the TIA to sense the reflected laser light beam.
  • the connection between each photoelectric channel unit in the photoelectric detection array and the TIA can be established.
  • the channel is turned on or off, so that each photoelectric channel unit in the photodetection array starts to work or closes.
  • the second detection area where the reflected laser beam is incident to the photoelectric detection array is re-determined; and the second photoelectric channel unit group covered by the second detection area is determined;
  • the bias working power supply of the photoelectric channel unit in the first photoelectric channel unit group or the passage between the photoelectric channel unit in the first photoelectric channel unit group and the TIA is closed, and the photoelectric channel unit in the second photoelectric channel unit group is turned on.
  • the bias working power supply of the photoelectric channel unit or the channel between the photoelectric channel unit in the first photoelectric channel unit group and the TIA is turned on.
  • the photoelectric channel units in the photodetection array in the effective area receiving the reflected laser beam are turned on, and the rest of the photoelectric channel units in the photodetection array are turned off and no longer have photosensitive ability. In this way, the photoelectric channel unit that is turned off will not form interference photocurrent signals, and will not form crosstalk, and at the same time, the power consumption of the photodetection array can be reduced.
  • the second photoelectric channel unit group corresponding to the changed scanning angle is determined;
  • the bias power supply of the photo channel units other than the third photo channel unit group in the second photo channel unit group or the TIA between the photo channel units other than the third photo channel unit group in the second photo channel unit group and the TIA is turned off.
  • the second photoelectric channel unit group and the first photoelectric channel unit group have overlapping photoelectric channel unit groups
  • you can The overlapping photoelectric channel unit group is kept in a working state without being turned off, and only the second photoelectric channel unit group that does not overlap the second photoelectric channel unit group and the third photoelectric channel unit group can be turned on.
  • the second photoelectric channel unit group and the first photoelectric channel unit group include at least one identical photoelectric channel unit.
  • the second photoelectric channel unit group is different from the photoelectric channel units in the first photoelectric channel unit group.
  • the scanning angle is generated, and the angle of the reflected light reflected to the photodetection array also changes accordingly, and the reflected laser beam is sensed by the photodetection array.
  • the signal is used to sense the output of the pixel and perform applications such as ranging.
  • the scanning unit changes the scanning angle, it is likely to cause the second photoelectric channel unit group and the photoelectric channel units in the first photoelectric channel unit group to partially or completely overlap.
  • the situation of all coincidence may be the situation when the scanning unit moves to the limit position and then retracts.
  • FIG. 3 is a schematic diagram of the composition and structure of a control device for a photodetection array according to an embodiment of the application.
  • the control device for a photodetection array according to an embodiment of the application includes:
  • the opening unit 30 is configured to open the photoelectric channel unit group corresponding to the working area of the photoelectric detection array
  • the closing unit 31 is configured to close the photoelectric channel unit group corresponding to the non-working area of the photoelectric detection array.
  • control device for the photodetection array shown in FIG. 3 On the basis of the control device for the photodetection array shown in FIG. 3 , the control device for the photodetection array in the embodiment of the present application further includes:
  • a first determining unit (not shown in FIG. 3 ), configured to determine the first detection area where the reflected laser beam is incident on the photoelectric detection array according to the scanning angle when the scanning unit of the lidar is working;
  • a second determining unit (not shown in FIG. 3 ), configured to determine the first photoelectric channel unit group covered by the first detection area
  • the turn-on unit 30 is further configured to turn on the bias operating power supply of the photoelectric channel units in the first photoelectric channel unit group or to conduct the passage between the photoelectric channel units in the first photoelectric channel unit group and the TIA , to sense the reflected laser beam.
  • the first determining unit is further configured to re-determine the second detection area where the reflected laser beam is incident on the photodetection array when the scanning angle of the scanning unit is changed;
  • the second determining unit is further configured to determine a second photoelectric channel unit group covered by the second detection area
  • the shut-off unit 31 is further configured to turn off the bias operating power supply of the photo-electric channel units in the first photo-electric channel unit group or close the passage between the photo-electric channel units in the first photo-electric channel unit group and the TIA
  • the turn-on unit 30 is further configured to turn on the bias operating power supply of the photoelectric channel units in the second photoelectric channel unit group or to conduct the passage between the photoelectric channel units in the second photoelectric channel unit group and the TIA .
  • the first determining unit is further configured to re-determine the second detection area where the reflected laser beam is incident on the photodetection array when the scanning angle of the scanning unit is changed;
  • the second determining unit is further configured to determine a second photoelectric channel unit group covered by the second detection area; and determine a third photoelectric channel unit group that overlaps the second photoelectric channel unit group and the first photoelectric channel unit group Photoelectric channel unit group;
  • the turn-on unit 30 is further configured to turn on the bias operating power supply of the photoelectric channel units in the second photoelectric channel unit group except the third photoelectric channel unit group or turn on the second photoelectric channel unit group
  • the passage between the photoelectric channel units and the TIA except the third photoelectric channel unit group, the closing unit 31 is also configured to close the first photoelectric channel unit group except the third photoelectric channel unit.
  • the bias working power supply of the photoelectric channel units outside the group or the channel between the photoelectric channel units in the first photoelectric channel unit group except the third photoelectric channel unit group and the TIA is closed.
  • control device for the photodetection array shown in FIG. 3 On the basis of the control device for the photodetection array shown in FIG. 3 , the control device for the photodetection array in the embodiment of the present application further includes:
  • the third determining unit (not shown in FIG. 3 ) is configured to determine the first correspondence between each scanning angle of the scanning unit of the lidar and each detection area where the reflected laser beam is incident on the photodetection array ;
  • a fourth determining unit (not shown in FIG. 3 ), configured to determine a photoelectric channel unit group corresponding to each detection area;
  • a recording unit (not shown in FIG. 3 ), configured to record the second correspondence between each scanning angle of the scanning unit and each photoelectric channel unit group;
  • a fifth determining unit (not shown in FIG. 3 ) is configured to, when the scanning unit works, according to the working scanning angle of the scanning unit and the second corresponding relationship, to determine the first corresponding to the working scanning angle Photoelectric channel unit group;
  • the turn-on unit is further configured to turn on the bias operating power supply of the photoelectric channel units in the first photoelectric channel unit group or to conduct the passage between the photoelectric channel units in the first photoelectric channel unit group and the TIA, to sense the reflected laser beam.
  • the fifth determining unit is further configured to determine a second photoelectric channel unit corresponding to the changed scanning angle according to the changed scanning angle and the second corresponding relationship when the scanning angle of the scanning unit is changed. Group;
  • the shut-off unit 31 is further configured to turn off the bias operating power supply of the photo-electric channel units in the first photo-electric channel unit group or close the passage between the photo-electric channel units in the first photo-electric channel unit group and the TIA
  • the turn-on unit 30 is further configured to turn on the bias operating power supply of the photoelectric channel units in the second photoelectric channel unit group or to conduct the passage between the photoelectric channel units in the first photoelectric channel unit group and the TIA .
  • the fifth determining unit is further configured to determine a second photoelectric channel unit corresponding to the changed scanning angle according to the changed scanning angle and the second corresponding relationship when the scanning angle of the scanning unit is changed. group; and, determining a third photoelectric channel unit group that overlaps in the second photoelectric channel unit group and the first photoelectric channel unit group;
  • the turn-on unit 30 is further configured to turn on the bias operating power supply of the photoelectric channel units in the second photoelectric channel unit group except the third photoelectric channel unit group or turn on the second photoelectric channel unit group
  • the passage between the photoelectric channel units and the TIA except the third photoelectric channel unit group, the closing unit 31 is also configured to close the first photoelectric channel unit group except the third photoelectric channel unit.
  • the bias working power supply of the photoelectric channel units outside the group or the channels between the photoelectric channel units in the second photoelectric channel unit group except the third photoelectric channel unit group and the TIA are closed.
  • the second photoelectric channel unit group and the first photoelectric channel unit group include at least one identical photoelectric channel unit;
  • the second photoelectric channel unit group is different from the photoelectric channel units in the first photoelectric channel unit group.
  • the opening unit 30, the closing unit 31, the first determination unit, the second determination unit, the third determination unit, the fourth determination unit, the fifth determination unit, the recording unit, etc. may be controlled by one or more central Processor (CPU, Central Processing Unit), Graphics Processing Unit (GPU, Graphics Processing Unit), Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), complex programmable Programming Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array), General Purpose Processor, Controller, Microcontroller (MCU, Micro Controller Unit), Microprocessor (Microprocessor) ), or other electronic components.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex programmable Programming Logic Device
  • FPGA Field Programmable Gate Array
  • General Purpose Processor Controller
  • FIG. 4 is a schematic diagram of the composition and structure of the power switch circuit of the photoelectric channel unit according to the embodiment of the present application.
  • the power switch circuit of the photoelectric channel unit according to the embodiment of the present application includes:
  • the source of the first field effect transistor Q1 is grounded, the drain of the first field effect transistor Q1 is connected to the gate of the second field effect transistor Q2 through the first resistor R1, and the second field effect transistor
  • the drain of Q2 is connected to the power input end of the photoelectric channel unit, and the source of the second field effect transistor Q2 is connected to the bias power supply;
  • the zener diode D1 and the second resistor R2 are connected in parallel to form a parallel circuit, so The first end of the parallel circuit is connected between the bias power supply and the source of the second field effect transistor Q2, and the second end of the parallel circuit is connected to the second field effect transistor Q2. between the gate and the first resistor R1.
  • the bias power supply when the gate of the first field effect transistor Q1 is turned on to a high level, the bias power supply generates a voltage difference across the second resistor R2 in the parallel circuit, and the second The drain and source of the field effect transistor Q2 are turned on, and the bias power supply is turned on with the power input terminal of the photoelectric channel unit.
  • the switch circuit by adding a first-level switch circuit (the dotted frame part in the figure) to the bias power supply of each photoelectric channel unit in the photodetection array, the switch circuit only needs two MOS transistors, a Zener diode and A little resistance and capacitance can be implemented; for example, the switch circuit can be implemented by an ASIC circuit, which facilitates the miniaturization of the photodetector, and in the embodiment of the present application, by setting a switch circuit for each photoelectric channel unit, the power consumption is basically not increased , and the cost is also low.
  • the source and drain of the first field effect transistor Q1 are turned on, so that the input voltage produces a voltage drop on both sides of the R2 resistor, so that the second field effect transistor can be turned on.
  • Q2 so that the bias voltage is output to the photoelectric channel unit, and the photoelectric channel unit is activated;
  • the gate of the first field effect transistor Q1 to be at a low level, the source and drain of the first field effect transistor Q1 are turned off, so that the R2 resistor The voltage difference between the two ends is 0, so that the path between the bias voltage and the photoelectric channel unit is disconnected, and the photoelectric channel unit is turned off.
  • the Zener diode D1 can clamp the maximum voltage drop across the gate and source of the second field effect transistor Q2 to prevent the voltage across the gate and the source of the second field effect transistor Q2 from being burnt due to excessive voltage.
  • the optoelectronics can maintain high-sensitivity photosensitive ability, and can receive echo lasers, interference lasers, and ambient light; when the optoelectronic bias voltage is controlled to 0, the optoelectronics has no photosensitive ability, and no light is formed. The current signal will not form crosstalk and will not consume power.
  • the embodiment of the present application is precisely by setting a switch circuit for each photoelectric channel unit in the photodetection array, and according to the angle and direction of the actual scanning unit scanning, the photoelectric channel unit in the photoelectric region corresponding to the scanning angle can be dynamically switched on or off. It is turned on to make the photoelectric channel units in the photodetection array perform time-sharing work. Switch different photoelectric channel units according to the actual scanning working angle to realize time-sharing work, which can realize anti-crosstalk processing on the one hand, prevent other lasers from being incident on the photoelectric channel that should not receive echoes, and on the other hand, reduce the The power consumption of the receiving module of the photodetector array.
  • the photoelectric bias power supply When the photoelectric bias power supply is turned on and input to the photoelectric channel unit, the photoelectric works in the vicinity of the avalanche region, and the electric field in the photoelectric barrier region is very strong. Multiplier effect, thus maintaining high sensitivity to light sensing.
  • the bias power supply When the bias power supply is turned off for the photoelectric channel unit, the electric field cannot be established in the photoelectric barrier region, so that the avalanche multiplication effect cannot be formed, and the light sensing capability is suppressed. Therefore, it can be avoided that the ambient light and the interfering laser form a photocurrent on the photoelectric and affect the system.
  • the connection between each photoelectric channel unit in the photoelectric detection array and the TIA can be achieved.
  • the channel of the photodetector is turned on or off, and each photoelectric channel unit in the photodetection array is controlled to start working or be turned off.
  • the embodiment of the present application further describes a photodetection array, the photodetection array includes the power switch circuit of the photoelectric channel unit of the previous embodiment and at least two photoelectric channel units; each photoelectric channel unit in the at least two photoelectric channel units The channel unit is connected to the power switch circuit of the previous embodiment.
  • the power switch circuit can be understood by referring to the description of the foregoing embodiments.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored, or not present.
  • the units described above as separate components may or may not be physically separated, and the components shown as units may or may not be physical units; some or all of the units may be selected according to actual needs to implement this implementation the purpose of the example program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请实施例公开了一种光电探测阵列的控制方法及装置,光电通道单元的电源开关电路、光电探测阵列。所述控制方法包括:开启所述光电探测阵列的工作区域对应的光电通道单元组,关闭所述光电探测阵列非工作区域对应的光电通道单元组。选择光电探测阵列中各光电通道单元的关闭或开启,而被关闭后的光电通道单元可避免环境光及干扰激光在该光电上形成光电流,不会对激光雷达系统造成影响。另外,关闭光电探测阵列中的部分光电通道单元后,能够降低光电功耗,减少发热。

Description

光电探测阵列的控制方法及装置、光电电源开关电路、光电探测阵列
相关申请的交叉引用
本申请基于申请号为202010753482.3、申请日为2020年7月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及激光雷达中的光电探测阵列的开关控制技术,尤其涉及一种光电探测阵列的控制方法及装置、光电通道单元的电源开关电路、光电探测阵列。
背景技术
雪崩式光电二极管(APD,Avalanche PhotoDiode)阵列扫描激光雷达,主要通过激光发射系统发射的激光光束准直后,照射到目标探测区域,通过振镜等扫描设备改变出射激光角度完成视场范围的覆盖。APD阵列接收系统阵列中的每个像素都是独立而完整的接收和处理通道,通过测量像素通道中脉冲往返于目标和成像系统之间的时间间隔,获得各自像素对应的目标距离,通过信号处理系统可视化算法对阵列所有像素的输出结果进行处理,可获得目标的3D距离图像。
相关技术中,为了在扫描式激光雷达中获得单个扫描点的数据,通常只是将对应光电通道单元组的数据读出,而不读出其他光电通道单元组的数据。
发明内容
有鉴于此,本申请实施例提供一种光电探测阵列的控制方法及装置、光电通道单元的电源开关电路、光电探测阵列。
根据本申请实施例的第一方面,提供一种光电探测阵列的控制方法,包括:
开启所述光电探测阵列的工作区域对应的光电通道单元组,关闭所述光电探测阵列非工作区域对应的光电通道单元组。
在一个实施例中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
根据所述光电探测阵列的扫描单元工作时的扫描角度,确定反射激光光束入射至所述光电探测阵列的第一探测区域;
确定所述第一探测区域覆盖的第一光电通道单元组;
开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与跨阻放大器(TIA,Trans-Impedance Amplifier)之间的通路,以感测反射激光光束。
在一个实施例中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
确定所述第二探测区域覆盖的第二光电通道单元组;
关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
在一个实施例中,所述开启所述光电探测阵列的工作区域对应的光电 通道单元组,包括:
当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
确定所述第二探测区域覆盖的第二光电通道单元组;
确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
在一个实施例中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
确定激光雷达的扫描单元的每一扫描角度与反射激光光束入射至所述光电探测阵列的每一探测区域之间的第一对应关系;
确定每一探测区域所对应的光电通道单元组;
记录所述扫描单元的每一扫描角度与每一光电通道单元组之间的第二对应关系;
所述扫描单元工作时,根据所述扫描单元的工作扫描角度及所述第二对应关系,确定所述工作扫描角度对应的第一光电通道单元组;
开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测
反射激光光束。
在一个实施例中,所述开启所述光电探测阵列的工作区域对应的光电 通道单元组,包括:
当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;
关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
在一个实施例中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;
确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
根据本申请实施例的第二方面,提供一种光电探测阵列的控制装置,包括:
开启单元,配置为开启所述光电探测阵列的工作区域对应的光电通道单元组;
关闭单元,配置为关闭所述光电探测阵列非工作区域对应的光电通道单元组。
在一个实施例中,所述控制装置还包括:
第一确定单元,配置为根据激光雷达的扫描单元工作时的扫描角度,确定反射激光光束入射至所述光电探测阵列的第一探测区域;
第二确定单元,配置为确定所述第一探测区域覆盖的第一光电通道单元组;
所述开启单元,还配置为开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
在一个实施例中,所述第一确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
所述第二确定单元,还配置为确定所述第二探测区域覆盖的第二光电通道单元组;
所述关闭单元,还配置为关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,所述开启单元,还配置为开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
在一个实施例中,所述第一确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
所述第二确定单元,还配置为确定所述第二探测区域覆盖的第二光电通道单元组;以及确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
所述开启单元,还配置为开启所述第二光电通道单元组中除所述第三 光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,所述关闭单元,还配置为关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
在一个实施例中,所述控制装置包括:
第三确定单元,配置为确定激光雷达的扫描单元的每一扫描角度与所反射激光光束入射至所述光电探测阵列的每一探测区域之间的第一对应关系;
第四确定单元,配置为确定每一探测区域所对应的光电通道单元组;
记录单元,配置为记录所述扫描单元的每一扫描角度与每一光电通道单元组之间的第二对应关系;
第五确定单元,配置为在所述扫描单元工作时,根据所述扫描单元的工作扫描角度及所述第二对应关系,确定所述工作扫描角度对应的第一光电通道单元组;
所述开启单元,还配置为开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
在一个实施例中,所述第五确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;
所述关闭单元,还配置为关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,所述开启单元,还配置为开启所述第二光电通道单元组 中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
在一个实施例中,所述第五确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;以及,确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
所述开启单元,还配置为开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,所述关闭单元,还配置为关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
根据本申请实施例的第三方面,提供一种光电通道单元的电源开关电路,包括:第一场效应管、第二场效应管和稳压二极管,其中:
所述第一场效应管的源极接地,所述第一场效应管的漏极通过第一电阻与所述第二场效应管的栅极连接,所述第二场效应管的漏极与光电通道单元的电源输入端连接,所述第二场效应管的源极与偏压电源连接;所述稳压二极管和第二电阻并接形成并接电路,所述并接电路的第一端连接于所述偏压电源与所述第二场效应管的源极之间,所述并接电路的第二端连接于所述第二场效应管的栅极与所述第一电阻之间。
在一个实施例中,所述第一场效应管的栅极为高电平时,所述偏压电源在所述并接电路中的第二电阻两端产生压差,所述第二场效应管的漏极和源极导通,所述偏压电源与所述光电通道单元的电源输入端导通。
根据本申请实施例的第四方面,提供一种光电探测阵列,所述光电探 测阵列包括前述的光电通道单元的电源开关电路和至少两个光电通道单元;所述至少两个光电通道单元中的各光电通道单元与所述电源开关电路连接。
本申请实施例中,为光电探测阵列中各光电通道单元设置偏置电压的开关电路,这样,针对光电探测阵列中各光电通道单元,均可通过控制其偏置电压的开关电路或控制光电通道单元与TIA之间通路的开合,选择光电探测阵列中各光电通道单元的关闭或开启,而被关闭后的光电通道单元,光电势垒区无法建立电场,进而无法形成雪崩倍增效应,抑制光线感应能力,关闭后的光电通道单元可以避免环境光及干扰激光入射至该光电上而形成光电流,不会对激光雷达系统造成影响。另外,关闭光电探测阵列中的部分光电通道单元后,能够降低光电功耗,减少发热。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍。显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的光电探测阵列的控制方法的流程示意图;
图2为本申请实施例的光电探测阵列的控制方法的流程示意图;
图3为本申请实施例的光电探测阵列的控制装置的组成结构示意图;
图4为本申请实施例的光电通道单元的电源开关电路的组成结构示意图。
具体实施方式
以下结合附图,详细阐明本申请实施例技术方案的实质。
本申请实施例中,APD、跨阻放大器(TIA,Trans-Impedance Amplifier) 广泛用于扫描式LIDAR激光系统的接收前端。激光雷达中需要使用大量的APD阵列和TIA。与面阵式激光雷达不同的是,扫描式激光雷达点云是通过逐点扫描获得,这意味着,在APD阵列中,单个点只有一个APD与TIA工作,其它的APD与TIA处于闲置状态。本申请实施例通过为APD探测器中的光电通道单元设置偏压电源的电路开关,或者在APD探测器中的光电通道单元与TIA之间设置快读开关或继电器,在激光雷达工作过程中,仅开启需要感光探测区域的光电通道单元,而关闭光电探测阵列中闲置光电通道单元。被关闭的闲置光电通道单元,可以防止干扰激光进入闲置光电通道单元,不会对正常的接收光电通道形成串扰,还可以防止环境光在闲置光电通道上产生较大光电流,产生热损耗,能够降低系统功耗。
本申请实施例中,提供一种光电探测阵列的控制方法,其通过开启所述光电探测阵列的工作区域对应的光电通道单元组,关闭所述光电探测阵列非工作区域对应的光电通道单元组。即仅对光电探测阵列的有效工作区域内的光电通道单元组进行开启,而光电探测阵列的有效工作区域之外的光电通道单元组则进行关闭,一方面,这些被关闭的光电通道单元组不会因为接收到干扰信号光而影响光电探测阵列的光信号的探测,另一方面,关闭掉光电探测阵列的有效工作区域之外的光电通道单元组也有利于光电探测阵列省电。本申请实施例中,光电探测器包括APD探测器、单光子雪崩二极(SPAD,Single Photon Avalanche Diode)管探测器、硅光电倍增管(SIPM,Silicon photomultiplier)等,由于其控制原理基本类似,本申请实施例中主要以APD探测器为例进行说明。以下通过具体示例,进一步阐明本申请实施例的技术方案的实现方式。
图1为本申请实施例的光电探测阵列的控制方法的流程示意图,如图1所示,本申请实施例的光电探测阵列的控制方法包括以下步骤:
步骤101,根据激光雷达的扫描单元工作时的扫描角度,确定反射激光 光束入射至所述光电探测阵列的第一探测区域。
本申请实施例中,光电探测阵列可以包括多个光电探测器,多个光电探测器可以组成一维或者二维阵列。首先需要确定光电探测阵列中有效使用区域,即激光雷达的扫描单元在工作时,扫描单元将入射到自身的激光光束射向目标物体,目标物体将光向光电探测阵列反射,而光电探测阵列中仅激光光束反射区域内的光电通道单元对反射的激光光束进行感测,本申请实施例需要确定出扫描单元工作时,反射激光光束入射至光电探测阵列的第一探测区域,即能够有效感测反射的激光光束的区域,也即前述光电探测阵列的有效工作区域,该第一探测区域之外的区域为光电探测阵列的非有效工作区域。
步骤102,确定所述第一探测区域覆盖的第一光电通道单元组。
通过第一探测区域确定该第一探测区域所对应的第一光电通道单元组。该第一光电通道单元组包括至少一个光电通道单元。每个光电通道单元包括至少一个光电探测器。
步骤103,开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
本申请实施例中,可以通过控制光电通道单元的偏压工作电源的开闭,使光电探测阵列中的各光电通道单元启动工作或关闭。也可以通过在光电探测阵列中的光电通道单元与TIA之间设置快速开关或继电器,通过控制快速开关或继电器,可以使光电探测阵列中的各光电通道单元与TIA之间的通路导通或关闭,使光电探测阵列中的各光电通道单元启动工作或关闭。
本申请实施例中,当确定出第一探测区域所对应的第一光电通道单元组后,开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与跨阻放大器TIA之间的 通路,以感测反射激光光束。
当扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至光电探测阵列的第二探测区域;并确定所述第二探测区域覆盖的第二光电通道单元组;关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
本申请实施例中,仅开启光电探测阵列中接收反射激光光束的有效区域内的光电通道单元,而光电探测阵列中其余的光电通道单元均关闭不再具有感光能力。这样,被关闭的光电通道单元也就不会形成干扰光电流信号,不会形成串扰,同时也能降低光电探测阵列的功率消耗。
作为另一种实现方式,当扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;确定所述第二探测区域覆盖的第二光电通道单元组;确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。本示例中,是当所述第二光电通道单元组和所述第一光电通道单元组具有重合光电通道单元组的情形,这种情况下,在关闭所述第一光电通道单元组时,可以保留重合光电通道单元组不关闭而处于工作状态,仅将所述第二光电通道单元组与所述第三光电通道单元组不重合的第二光电通道单元组开启即可。
在本申请实施例中,所述第二光电通道单元组与所述第一光电通道单元组包含至少一个相同的光电通道单元。或者,所述第二光电通道单元组与所述第一光电通道单元组中的光电通道单元均不同。
也就是说,本申请实施例中,当扫描单元工作时,扫描角度发生改变,反射向光电探测阵列的反射光角度也随之改变,由光电探测阵列感测反射的激光光束,基于感测信号进行感测像素的输出,进行测距等应用。扫描单元改变扫描角度时,很有可能导致所述第二光电通道单元组与所述第一光电通道单元组中的光电通道单元部分或全部重合。全部重合的情况可以为,扫描单元运动至极限位置而回调时的情形。
本申请实施例中,扫描单元可以包括MEMS反射镜、棱镜、机械镜、偏振光栅、光学相控阵(OPA,Optical Phased Array)等。对于MEMS反射镜,反射镜面在静电/压电/电磁驱动下在一维或二维方向上发生旋转或平移。
图2为本申请实施例的光电探测阵列的控制方法的流程示意图,如图2所示,本申请实施例的光电探测阵列的控制方法包括以下步骤:
步骤201,确定激光雷达的扫描单元的每一扫描角度与反射激光光束入射至所述光电探测阵列的每一探测区域之间的第一对应关系。
本申请实施例中,通过事先确定出激光雷达的扫描单元的每一扫描角度与反射激光光束入射至所述光电探测阵列的每一探测区域之间的对应关系,即事先确定出扫描单元的扫描角度与有效光电通道单元之间的对应关系,从而可以将能有效感测反射的激光光束的光电通道单元开启,而关闭光电探测阵列中其他的光电通道单元。
步骤202,确定每一探测区域所对应的光电通道单元组。
通过探测区域确定该探测区域所对应的光电通道单元组,光电通道单元组包括至少一个光电通道单元。
步骤203,记录所述扫描单元的每一扫描角度与每一光电通道单元组之间的第二对应关系。
记录扫描单元的每一扫描角度与每一光电通道单元组之间的第二对应关系,以便在确定出扫描单元的工作角度后,即可根据该第二对应关系确定出有效的光电通道单元组。
步骤204,所述扫描单元工作时,根据所述扫描单元的工作扫描角度及所述第二对应关系,确定所述工作扫描角度对应的第一光电通道单元组。
根据所述扫描单元的当前的工作扫描角度,确定该工作扫描角度对应的第一光电通道单元组,开启所述第一光电通道单元组中的光电通道单元的偏压工作电源,以感测所述扫描单元反射的激光光束。
步骤205,开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
本申请实施例中,通过在光电探测阵列中的光电通道单元与TIA之间设置快读开关或继电器,通过控制快读开关或继电器,可以使光电探测阵列中的各光电通道单元与TIA之间的通路导通或关闭,使光电探测阵列中的各光电通道单元启动工作或关闭。
当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;并确定所述第二探测区域覆盖的第二光电通道单元组;关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路。
本申请实施例中,仅开启光电探测阵列中接收反射激光光束的有效区域内的光电通道单元,而光电探测阵列中其余的光电通道单元均关闭不再 具有感光能力。这样,被关闭的光电通道单元也就不会形成干扰光电流信号,不会形成串扰,同时也能降低光电探测阵列的功率消耗。
作为另一种实现方式,当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。本示例中,是当所述第二光电通道单元组和所述第一光电通道单元组具有重合光电通道单元组的情形,这种情况下,在关闭所述第一光电通道单元组时,可以保留重合光电通道单元组不关闭而处于工作状态,仅将所述第二光电通道单元组与所述第三光电通道单元组不重合的第二光电通道单元组开启即可。
在本申请实施例中,所述第二光电通道单元组与所述第一光电通道单元组包含至少一个相同的光电通道单元。或者,所述第二光电通道单元组与所述第一光电通道单元组中的光电通道单元均不同。
也就是说,当本申请实施例中,扫描单元工作时,扫描角度发生该表,反射向光电探测阵列的反射光角度也随之改变,由光电探测阵列感测反射的激光光束,基于感测信号进行感测像素的输出,进行测距等应用。扫描单元改变扫描角度时,很有可能导致所述第二光电通道单元组与所述第一光电通道单元组中的光电通道单元部分或全部重合。全部重合的情况可以为,扫描单元运动至极限位置而回调时的情形。
图3为本申请实施例的光电探测阵列的控制装置的组成结构示意图,如图3所示,本申请实施例的光电探测阵列的控制装置包括:
开启单元30,配置为开启所述光电探测阵列的工作区域对应的光电通道单元组;
关闭单元31,配置为关闭所述光电探测阵列非工作区域对应的光电通道单元组。
在图3所示的光电探测阵列的控制装置的基础上,本申请实施例的光电探测阵列的控制装置还包括:
第一确定单元(图3中未示出),配置为根据激光雷达的扫描单元工作时的扫描角度,确定反射激光光束入射至所述光电探测阵列的第一探测区域;
第二确定单元(图3中未示出),配置为确定所述第一探测区域覆盖的第一光电通道单元组;
所述开启单元30,还配置为开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
所述第一确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
所述第二确定单元,还配置为确定所述第二探测区域覆盖的第二光电通道单元组;
所述关闭单元31,还配置为关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,所述开启单元30,还配置为开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
所述第一确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
所述第二确定单元,还配置为确定所述第二探测区域覆盖的第二光电通道单元组;以及确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
所述开启单元30,还配置为开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,所述关闭单元31,还配置为关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
在图3所示的光电探测阵列的控制装置的基础上,本申请实施例的光电探测阵列的控制装置还包括:
第三确定单元(图3中未示出),配置为确定激光雷达的扫描单元的每一扫描角度与所反射激光光束入射至所述光电探测阵列的每一探测区域之间的第一对应关系;
第四确定单元(图3中未示出),配置为确定每一探测区域所对应的光电通道单元组;
记录单元(图3中未示出),配置为记录所述扫描单元的每一扫描角度与每一光电通道单元组之间的第二对应关系;
第五确定单元(图3中未示出),配置为在所述扫描单元工作时,根据所述扫描单元的工作扫描角度及所述第二对应关系,确定所述工作扫描角度对应的第一光电通道单元组;
所述开启单元,还配置为开启所述第一光电通道单元组中的光电通道 单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
所述第五确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;
所述关闭单元31,还配置为关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,所述开启单元30,还配置为开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路。
所述第五确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;以及,确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
所述开启单元30,还配置为开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,所述关闭单元31,还配置为关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
在本申请实施例中,所述第二光电通道单元组与所述第一光电通道单元组包含至少一个相同的光电通道单元;或
所述第二光电通道单元组与所述第一光电通道单元组中的光电通道单元均不同。
在示例性实施例中,开启单元30、关闭单元31、第一确定单元、第二确定单元、第三确定单元、第四确定单元、第五确定单元、记录单元等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,。
在本公开实施例中,图3示出的光电探测阵列的控制装置中各个单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图4为本申请实施例的光电通道单元的电源开关电路的组成结构示意图,如图4所示,本申请实施例的光电通道单元的电源开关电路包括:
第一场效应管Q1、第二场效应管Q2和稳压二极管D1,其中:
所述第一场效应管Q1的源极接地,所述第一场效应管Q1的漏极通过第一电阻R1与所述第二场效应管Q2的栅极连接,所述第二场效应管Q2的漏极与光电通道单元的电源输入端连接,所述第二场效应管Q2的源极与偏压电源连接;所述稳压二极管D1和第二电阻R2并接形成并接电路,所述并接电路的第一端连接于所述偏压电源与所述第二场效应管Q2的源极之间,所述并接电路的第二端连接于所述第二场效应管Q2的栅极与所述第一电阻R1之间。
本申请实施例中,所述第一场效应管Q1的栅极接通高电平时,所述偏压电源在所述并接电路中的第二电阻R2两端产生压差,所述第二场效应管Q2的漏极和源极导通,所述偏压电源与所述光电通道单元的电源输入端导 通。
本申请实施例中,通过为光电探测阵列中的每个光电通道单元偏压电源增加一级开关电路(图中的虚线框部分),该开关电路只需要两个MOS管、一个稳压二极管和些许电阻电容即可实现;如开关电路可以通过ASIC电路实现,这样,方便光电探测器的小型化,并且,本申请实施例中通过为每个光电通道单元设置开关电路,基本不会增加功耗,且成本也很低。通过控制第一场效应管Q1的栅极为高电平,第一场效应管Q1的源极和漏极导通,使得输入电压在R2电阻两侧产生压降,这样可以打开第二场效应管Q2,从而实现偏压电压向光电通道单元输出,光电通道单元启动;通过控制第一场效应管Q1的栅极为低电平,第一场效应管Q1的源极和漏极关闭,使得R2电阻两端的电压压差为0,从而实现偏压电压与光电通道单元之间通路的断开,光电通道单元关闭。
本申请实施例中,稳压二极管D1可以钳位第二场效应管Q2的栅极、源极两端的最大压降,防止第二场效应管Q2栅极、源极两端电压过高烧毁。为光电提供额定偏置电压时,光电可以保持高灵敏度的感光能力,可以接收回波激光、干扰激光、环境光;光电偏置电压控制为0时,光电无感光能力,也就不会形成光电流信号,不会形成串扰,不会消耗功率。本申请实施例正是通过为光电探测阵列中的每个光电通道单元设置开关电路,根据实际扫描单元扫描的角度和方向,可以动态地切换对应扫描角度的光电区域中的光电通道单元的关闭或开启,使光电探测阵列中的光电通道单元进行分时工作。按照实际的扫描工作角度而开关不同的光电通道单元,实现分时工作,这样可以一方面实现抗串扰处理,避免其他激光入射到不应该接收到回波的光电通上,另外一方面实现降低了光电探测阵列的接收模组的功耗。
光电偏压电源导通输入至光电通道单元时,光电工作于临近雪崩区, 光电势垒区中的电场很强,通过电子和空穴在势垒区中作运动、加速、碰撞、电离形成雪崩倍增效应,从而保持高的灵敏度感应光线。而对光电通道单元关闭偏压电源时,光电势垒区无法建立电场,进而无法形成雪崩倍增效应,抑制光线感应能力。所以可以避免环境光及干扰激光在该光电上形成光电流而对系统造成影响。
或者,通过在光电探测阵列中的光电通道单元与TIA之间设置快读开关或继电器,通过控制快读开关或继电器的开启或闭合,可以使光电探测阵列中的各光电通道单元与TIA之间的通路导通或关闭,控制光电探测阵列中的各光电通道单元启动工作或关闭。
本申请实施例还记载了一种光电探测阵列,所述光电探测阵列包括前述实施例的光电通道单元的电源开关电路和至少两个光电通道单元;所述至少两个光电通道单元中的各光电通道单元与前述实施例的电源开关电路连接。电源开关电路可参见前述实施例的记载而理解。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制 的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不存在。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
以上所述,仅为本公开的实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种光电探测阵列的控制方法,其中,所述控制方法包括:
    开启所述光电探测阵列的工作区域对应的光电通道单元组,关闭所述光电探测阵列非工作区域对应的光电通道单元组。
  2. 根据权利要求1所述的控制方法,其中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
    根据激光雷达的扫描单元工作时的扫描角度,确定反射激光光束入射至所述光电探测阵列的第一探测区域;
    确定所述第一探测区域覆盖的第一光电通道单元组;
    开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与跨阻放大器TIA之间的通路,以感测反射激光光束。
  3. 根据权利要求2所述的控制方法,其中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
    当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
    确定所述第二探测区域覆盖的第二光电通道单元组;
    关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
  4. 根据权利要求2所述的控制方法,其中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
    当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
    确定所述第二探测区域覆盖的第二光电通道单元组;
    确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
    开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
  5. 根据权利要求1所述的控制方法,其中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
    确定激光雷达的扫描单元的每一扫描角度与反射激光光束入射至所述光电探测阵列的每一探测区域之间的第一对应关系;
    确定每一探测区域所对应的光电通道单元组;
    记录所述扫描单元的每一扫描角度与每一光电通道单元组之间的第二对应关系;
    所述扫描单元工作时,根据所述扫描单元的工作扫描角度及所述第二对应关系,确定所述工作扫描角度对应的第一光电通道单元组;
    开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
  6. 根据权利要求5所述的控制方法,其中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
    当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元 组;
    关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路。
  7. 根据权利要求5所述的控制方法,其中,所述开启所述光电探测阵列的工作区域对应的光电通道单元组,包括:
    当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;
    确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
    开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
  8. 一种光电探测阵列的控制装置,其中,所述控制装置包括:
    开启单元,配置为开启所述光电探测阵列的工作区域对应的光电通道单元组;
    关闭单元,配置为关闭所述光电探测阵列非工作区域对应的光电通道单元组。
  9. 根据权利要求8所述的控制装置,其中,所述控制装置还包括:
    第一确定单元,配置为根据激光雷达的扫描单元工作时的扫描角度, 确定反射激光光束入射至所述光电探测阵列的第一探测区域;
    第二确定单元,配置为确定所述第一探测区域覆盖的第一光电通道单元组;
    所述开启单元,还配置为开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
  10. 根据权利要求9所述的控制装置,其中,所述第一确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
    所述第二确定单元,还配置为确定所述第二探测区域覆盖的第二光电通道单元组;
    所述关闭单元,还配置为关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,所述开启单元,还配置为开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
  11. 根据权利要求9所述的控制装置,其中,所述第一确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,重新确定反射激光光束入射至所述光电探测阵列的第二探测区域;
    所述第二确定单元,还配置为确定所述第二探测区域覆盖的第二光电通道单元组;以及确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
    所述开启单元,还配置为开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间 的通路,所述关闭单元,还配置为关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
  12. 根据权利要求8所述的控制装置,其中,所述控制装置包括:
    第三确定单元,配置为确定激光雷达的扫描单元的每一扫描角度与所反射激光光束入射至所述光电探测阵列的每一探测区域之间的第一对应关系;
    第四确定单元,配置为确定每一探测区域所对应的光电通道单元组;
    记录单元,配置为记录所述扫描单元的每一扫描角度与每一光电通道单元组之间的第二对应关系;
    第五确定单元,配置为在所述扫描单元工作时,根据所述扫描单元的工作扫描角度及所述第二对应关系,确定所述工作扫描角度对应的第一光电通道单元组;
    所述开启单元,还配置为开启所述第一光电通道单元组中的光电通道单元的偏压工作电源或导通所述第一光电通道单元组中的光电通道单元与TIA之间的通路,以感测反射激光光束。
  13. 根据权利要求12所述的控制装置,其中,所述第五确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;
    所述关闭单元,还配置为关闭所述第一光电通道单元组中的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中的光电通道单元与TIA之间的通路,所述开启单元,还配置为开启所述第二光电通道单元组中的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中的光电通道单元与TIA之间的通路。
  14. 根据权利要求12所述的控制装置,其中,所述第五确定单元,还配置为当所述扫描单元工作时的扫描角度改变时,根据改变的扫描角度及所述第二对应关系,确定所述改变的扫描角度对应的第二光电通道单元组;以及,确定所述第二光电通道单元组和所述第一光电通道单元组中重合的第三光电通道单元组;
    所述开启单元,还配置为开启所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或导通所述第二光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路,所述关闭单元,还配置为关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元的偏压工作电源或关闭所述第一光电通道单元组中除所述第三光电通道单元组之外的光电通道单元与TIA之间的通路。
  15. 一种光电通道单元的电源开关电路,其中,所述开关电路包括:第一场效应管、第二场效应管和稳压二极管,其中:
    所述第一场效应管的源极接地,所述第一场效应管的漏极通过第一电阻与所述第二场效应管的栅极连接,所述第二场效应管的漏极与光电通道单元的电源输入端连接,所述第二场效应管的源极与偏压电源连接;所述稳压二极管和第二电阻并接形成并接电路,所述并接电路的第一端连接于所述偏压电源与所述第二场效应管的源极之间,所述并接电路的第二端连接于所述第二场效应管的栅极与所述第一电阻之间。
  16. 根据权利要求15所述的电源开关电路,其中,所述第一场效应管的栅极为高电平时,所述偏压电源在所述并接电路中的第二电阻两端产生压差,所述第二场效应管的漏极和源极导通,所述偏压电源与所述光电通道单元的电源输入端导通。
  17. 一种光电探测阵列,所述光电探测阵列包括权利要求15或16 所述的光电通道单元的电源开关电路和至少两个光电通道单元;其中,所述至少两个光电通道单元中的各光电通道单元与所述电源开关电路连接。
PCT/CN2021/108717 2020-07-30 2021-07-27 光电探测阵列的控制方法及装置、光电电源开关电路、光电探测阵列 WO2022022523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010753482.3A CN114063043A (zh) 2020-07-30 2020-07-30 光电探测阵列的控制方法及装置、光电电源开关电路、光电探测阵列
CN202010753482.3 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022022523A1 true WO2022022523A1 (zh) 2022-02-03

Family

ID=80037609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108717 WO2022022523A1 (zh) 2020-07-30 2021-07-27 光电探测阵列的控制方法及装置、光电电源开关电路、光电探测阵列

Country Status (2)

Country Link
CN (1) CN114063043A (zh)
WO (1) WO2022022523A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201691A (zh) * 2006-12-14 2008-06-18 鸿富锦精密工业(深圳)有限公司 任意键零电流按键装置
JP2014077658A (ja) * 2012-10-09 2014-05-01 Toyota Central R&D Labs Inc 光学的測距装置
CN106165399A (zh) * 2014-04-07 2016-11-23 三星电子株式会社 高分辨率、高帧率、低功率的图像传感器
CN108415001A (zh) * 2018-02-12 2018-08-17 深圳市镭神智能系统有限公司 接收激光雷达的反射光斑的感光阵列、接收系统及方法
CN109313256A (zh) * 2016-02-18 2019-02-05 艾耶股份有限公司 自适应激光雷达接收器
US20190079172A1 (en) * 2017-09-08 2019-03-14 Quanergy Systems, Inc. Apparatus and Method for Selective Disabling of LiDAR Detector Array Elements
CN110609293A (zh) * 2019-09-19 2019-12-24 深圳奥锐达科技有限公司 一种基于飞行时间的距离探测系统和方法
CN110940988A (zh) * 2019-11-01 2020-03-31 深圳市镭神智能系统有限公司 一种激光雷达接收系统及激光雷达
CN111239708A (zh) * 2015-12-20 2020-06-05 苹果公司 光检测和测距传感器
CN111352096A (zh) * 2020-04-26 2020-06-30 深圳市镭神智能系统有限公司 一种激光雷达接收系统及激光雷达
CN112540361A (zh) * 2019-09-05 2021-03-23 株式会社东芝 光检测装置以及电子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324171B2 (en) * 2015-12-20 2019-06-18 Apple Inc. Light detection and ranging sensor
CN207542991U (zh) * 2017-10-31 2018-06-26 无锡汉神电气股份有限公司 一种浪涌稳压电路
US11709231B2 (en) * 2018-12-21 2023-07-25 Infineon Technologies Ag Real time gating and signal routing in laser and detector arrays for LIDAR application
CN210780707U (zh) * 2019-11-18 2020-06-16 上海钧正网络科技有限公司 一种用于共享电单车的延时功能转接板
CN110780284B (zh) * 2019-11-22 2020-12-29 上海禾赛光电科技有限公司 接收系统、包括其的激光雷达、以及回波接收处理的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201691A (zh) * 2006-12-14 2008-06-18 鸿富锦精密工业(深圳)有限公司 任意键零电流按键装置
JP2014077658A (ja) * 2012-10-09 2014-05-01 Toyota Central R&D Labs Inc 光学的測距装置
CN106165399A (zh) * 2014-04-07 2016-11-23 三星电子株式会社 高分辨率、高帧率、低功率的图像传感器
CN111239708A (zh) * 2015-12-20 2020-06-05 苹果公司 光检测和测距传感器
CN109313256A (zh) * 2016-02-18 2019-02-05 艾耶股份有限公司 自适应激光雷达接收器
US20190079172A1 (en) * 2017-09-08 2019-03-14 Quanergy Systems, Inc. Apparatus and Method for Selective Disabling of LiDAR Detector Array Elements
CN108415001A (zh) * 2018-02-12 2018-08-17 深圳市镭神智能系统有限公司 接收激光雷达的反射光斑的感光阵列、接收系统及方法
CN112540361A (zh) * 2019-09-05 2021-03-23 株式会社东芝 光检测装置以及电子装置
CN110609293A (zh) * 2019-09-19 2019-12-24 深圳奥锐达科技有限公司 一种基于飞行时间的距离探测系统和方法
CN110940988A (zh) * 2019-11-01 2020-03-31 深圳市镭神智能系统有限公司 一种激光雷达接收系统及激光雷达
CN111352096A (zh) * 2020-04-26 2020-06-30 深圳市镭神智能系统有限公司 一种激光雷达接收系统及激光雷达

Also Published As

Publication number Publication date
CN114063043A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
US11675058B2 (en) Light detection and ranging system
US11860280B2 (en) Integrated illumination and detection for LIDAR based 3-D imaging
JP6821024B2 (ja) アパーチャを用いる光検出用の導波路拡散器のアレイ
US11906663B2 (en) Noise adaptive solid-state LIDAR system
RU2602734C2 (ru) Измерительное устройство для измерения расстояния между ним и целевым объектом с помощью измерительного оптического излучения
US20200191962A1 (en) Interference signal rejection in lidar systems
US11867808B2 (en) Waveguide diffusers for LIDARs
CN111164449A (zh) 使用波导和孔径的激光雷达接收器
CN209014727U (zh) 一种激光雷达系统
JPWO2018211831A1 (ja) 光検出器および携帯型電子機器
US20210103034A1 (en) Dynamic beam splitter for direct time of flight distance measurements
WO2022022523A1 (zh) 光电探测阵列的控制方法及装置、光电电源开关电路、光电探测阵列
WO2020107250A1 (zh) 一种激光接收电路及测距装置、移动平台
US20200300978A1 (en) Dynamic range improvements in lidar applications
WO2023201159A1 (en) Photosensor having range parallax compensation
WO2023201160A1 (en) Detector having parallax compensation
CN115015873A (zh) 回波信号检测方法、装置、介质以及激光雷达
US20230007979A1 (en) Lidar with photon-resolving detector
CN112558038A (zh) 一种激光雷达的扫描方法
JP7483548B2 (ja) 電磁波検出装置
US20220206355A1 (en) Lidar systems with improved tunable optical delay lines
US20230113450A1 (en) Solid state pulse steering in lidar systems
CN113625248B (zh) 光检测系统以及光检测和测距设备
Hergert et al. Novel Detectors: SPADs offer possible photodetection solution for ToF lidar applications
JPH06347270A (ja) 測量機の自動視準装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849324

Country of ref document: EP

Kind code of ref document: A1