WO2022022276A1 - 预置路径信息获取方法、实体、业务控制单元及存储介质 - Google Patents
预置路径信息获取方法、实体、业务控制单元及存储介质 Download PDFInfo
- Publication number
- WO2022022276A1 WO2022022276A1 PCT/CN2021/106039 CN2021106039W WO2022022276A1 WO 2022022276 A1 WO2022022276 A1 WO 2022022276A1 CN 2021106039 W CN2021106039 W CN 2021106039W WO 2022022276 A1 WO2022022276 A1 WO 2022022276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- service
- preset path
- link
- path information
- scenario
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/22—Alternate routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/54—Organization of routing tables
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/62—Wavelength based
Definitions
- the embodiments of the present application relate to, but are not limited to, the field of transmission network communications, and in particular, relate to a method, an entity, a service control unit, and a storage medium for acquiring preset path information.
- ASON Automatically Switched Optical Network
- Embodiments of the present application provide a method, entity, service control unit, and storage medium for acquiring preset path information.
- an embodiment of the present application provides a method for obtaining preset path information, which is applied to an entity of an ASON, including: obtaining topology resource information in the ASON and service path information of each service in the ASON; information and the service path information of each service to generate a preset path list, and the preset path list includes preset path information corresponding to the service in different failure scenarios; determine the service control unit corresponding to the service, and set the The preset path list of the service is sent to the corresponding service control unit, so that the service control unit performs rerouting recovery according to the preset path information in the case of determining a failure scenario.
- an embodiment of the present application provides a method for acquiring preset path information, which is applied to a service control unit of an ASON, including: receiving a preset path list sent by an entity of the ASON, where the preset path list includes failure scenarios , Preset path information corresponding to the fault scenario; when it is determined that the current service path is faulty, determine the currently faulty link, determine the current fault scenario according to the currently faulty link, and obtain the current fault from the preset path list.
- the preset path information corresponding to the fault scenario rerouting recovery is performed according to the preset path information.
- an embodiment of the present application further provides an entity, including: a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the above when executing the computer program The method for obtaining the preset path information described above.
- an embodiment of the present application further provides a service control unit, including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the computer program when the processor executes the computer program.
- a service control unit including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the computer program when the processor executes the computer program.
- the embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the above-mentioned method for obtaining preset path information or the above-mentioned preset path information. Set the path information acquisition method.
- FIG. 1 is a schematic structural diagram of an ASON for executing a method for obtaining preset path information provided by an embodiment of the present application
- FIG. 2 is a flowchart of a method for acquiring preset path information applied to an ASON entity provided by another embodiment of the present application;
- FIG. 3 is a flowchart of obtaining a preset path in a method for obtaining preset path information provided by another embodiment of the present application;
- FIG. 4 is a flowchart of obtaining a preset path in a method for obtaining preset path information provided by another embodiment of the present application;
- FIG. 5 is a flowchart of obtaining a preset wavelength in a method for obtaining preset path information provided by another embodiment of the present application;
- FIG. 6 is a flowchart of obtaining a preset path list after rerouting is restored in a method for obtaining preset path information provided by another embodiment of the present application;
- FIG. 7 is a flowchart of a method for acquiring preset path information applied to an ASON service control unit provided by another embodiment of the present application.
- FIG. 8 is a flowchart of obtaining preset path information in a single-link failure scenario provided by another embodiment of the present application.
- FIG. 9 is a flowchart of obtaining preset path information in a multi-link failure scenario provided by another embodiment of the present application.
- FIG. 10 is a flowchart of obtaining preset path information in an SRLG fault scenario provided by another embodiment of the present application.
- FIG. 11 is an ASON network topology diagram of an example scenario 1 provided by another embodiment of the present application.
- FIG. 12 is an ASON network topology diagram of an example scenario 2 provided by another embodiment of the present application.
- the present application provides a method, entity, service control unit and storage medium for obtaining preset path information.
- the method for obtaining preset path information includes: obtaining topology resource information in ASON and service path information of each service in ASON; The topology resource information and the service path information of each service generate a preset path list, and the preset path list includes preset path information corresponding to the service in different failure scenarios; determine the service control unit corresponding to the service, and set the preset path list of the service. It is sent to the corresponding service control unit, so that the service control unit performs rerouting recovery according to the preset path information in the case of determining the failure scenario.
- resource conflict will not occur for each service during rerouting recovery, which effectively improves the efficiency of rerouting recovery.
- FIG. 1 is a schematic diagram of an ASON for executing a method for acquiring preset path information provided by an embodiment of the present application.
- the network of ASON 100 includes an entity 110 and several nodes, each node includes a service control unit 120 , and the entity 110 is connected in communication with the service control unit 120 .
- the existing ASON usually includes a control plane, a management plane, and a transmission plane.
- the entity 110 can be any communication entity in the control plane, and can be set to obtain the topology resource information of the entire network of ASON 100 and each service of the entire network. It is enough to calculate the preset path and generate the preset path list.
- the entity 110 and all the service control units 120 in the ASON may be communicated and connected in any manner in some situations in the art, and the preset path list can be delivered, which is not limited in this embodiment.
- the service control unit 120 of each node is configured to perform routing control on the service with the node as the head node, and the service with the node as the head node may be one or more, which is not limited in this embodiment.
- entity 110 and the service control unit 120 shown in FIG. 1 do not constitute a limitation to the embodiments of the present application, and may include more or less components than those shown in the figure, or combine some components , or a different component arrangement.
- FIG. 2 is a flowchart of a method for obtaining preset path information performed by an entity of ASON provided by an embodiment of the present application.
- the method for obtaining preset path information includes but is not limited to step S100 , step S200 and step S300 .
- Step S100 acquiring topology resource information in the ASON and service path information of each service in the ASON.
- the entity of the ASON can obtain the topology resource information and service path information of the entire network, so that the topology resources can be allocated uniformly when the preset path is determined according to the fault scenario. If there are several links in the ASON For an independent service group, the entity may also generate preset path information for the corresponding service group, which will not be repeated here.
- the topology resource information may be any topology resource related to the service path.
- a specific topology resource type with conflict risk such as a link set, may be selected.
- the service path information may include the nodes in the service path of each service and the routes between the nodes, such as the order of the nodes that each service passes through, and the links selected between the two nodes, etc. It is not repeated here.
- Step S200 Generate a preset path list according to the topology resource information and the service path information of each service, where the preset path list includes preset path information corresponding to the services in different failure scenarios.
- each link failure can be exhaustively permuted and combined to determine the failure scenario, or the failure scenario can be determined according to the probability of fiber failure in the network, or the failure scenario can be manually specified according to special requirements, according to the
- the actual ASON business needs can choose a specific method. It should be noted that there are multiple optical fibers in ASON. In actual use, one optical fiber may fail, and another optical fiber with a high correlation degree may fail. Therefore, the fault scenario can be determined according to the optical fiber correlation degree and failure probability. For optical fibers with a small failure probability, pre-calculation is not required to save computing resources, and the specific optical fiber correlation and failure probability can be adjusted according to the actual optical fiber conditions in the network.
- the original service path may be retained in the preset path list.
- the preset path of a service The path information is left blank, and there is no need to perform rerouting recovery through the service control unit.
- the specific setting method can be adjusted according to actual needs.
- Step S300 determine the service control unit corresponding to the service, and send the preset path list of the service to the corresponding service control unit, so that the service control unit performs rerouting recovery according to the preset path information under the situation of determining the failure scenario.
- the head node since the service in the ASON is usually controlled by the service control unit of the head node, it is determined that the head node that can obtain each service from the service path determines the corresponding service control unit.
- the preset path list since the preset path list is generated according to the topology resource information and the service path information of each service, the preset path list includes the preset path information of all services in the ASON, and the entire preset path can be
- the path list is sent to the service control unit to ensure that the preset path list in each service control unit is the same, so as to ensure that the matched fault scenarios are the same; it is also possible to obtain the information related to the specific service according to the specific service controlled by the service control unit.
- the corresponding preset path list is sent to the service control unit to ensure that the preset path list of each service control unit has the same fault scenario.
- the topology resource information includes a link set;
- the service path information includes a current service path;
- the preset path information includes a preset path;
- Step S210 listing failure scenarios according to the link set, each failure scenario corresponds to one or more links;
- Step S220 according to the link included in the current service path of each service, determine the affected service corresponding to each failure scenario
- Step S230 setting preset paths for the affected services corresponding to each failure scenario, obtaining preset paths corresponding to each service in different failure scenarios, and generating a preset path list.
- the link set in this embodiment is the set of all links in the ASON.
- listing the failure scenarios ensure that each service has at least one available preset path, and the service is unavailable due to link failure. It is not within the scope of discussion of this embodiment to perform rerouting recovery on a path, and details are not described herein again.
- the link in the fault scenario can be any one or more links in the topology of the ASON. This embodiment does not limit the positional relationship between multiple links. According to the requirements of the fault scenario Just select a specific link.
- the affected links in the service path of each service may be any number, which is not limited in this embodiment. It should be noted that the affected service can be determined by traversing the service path of each service. When the service path includes the link of the fault scenario, it can be identified as the affected service, or it can be matched and used according to the link of the fault scenario. The service of the link can be adjusted, and the specific method can be adjusted according to the actual needs.
- any number of preset paths can be set for the affected services, which is not limited in this embodiment, to ensure that the preset paths of each service use non-conflicting topology resources. That's it.
- the preset path list can be generated according to the corresponding relationship between preset paths and fault scenarios, and multiple fault scenarios in the preset path list are different. Reading non-conflicting preset paths for each service in the path list is beneficial to improving the efficiency of service rerouting recovery.
- step S230 includes but is not limited to the following steps:
- Step S231 determining an available link according to the link corresponding to the fault scenario
- Step S232 setting a preset path for the affected service according to the available link.
- the link corresponding to the failure scenario may be set as the failed link, and the link other than the failed link is obtained from the link set of the topology resource information as the available link. It should be noted that the situation in which the affected service cannot obtain an available link is not within the scope of discussion in this embodiment, and this embodiment only discusses the situation in which a preset path can be obtained, which will not be repeated here.
- policy constraints can be set according to actual requirements, and preset path information can be calculated according to available links.
- the specific path is determined based on the principle of least cost.
- the above calculation method can adopt methods in some situations in the field.
- the specific calculation method is not an improvement made by this embodiment, and a preset path can be set for the affected services, which will not be repeated here. .
- the service path information further includes the current wavelength;
- the preset path information also includes the preset wavelength; referring to FIG. 5 , step 200 includes but is not limited to the following steps:
- Step S241 when the current wavelength of the service is not occupied on the preset path of the service, the current wavelength is used as the preset wavelength;
- Step S242 when the current wavelength of the service is occupied on the preset path of the service, obtain the available wavelengths on the preset path, and select one of the available wavelengths as the preset wavelength.
- the service applied for first obtains the wavelength and performs subsequent rerouting recovery, and the service applied for later has the wavelength already used. If the preset path is occupied, the preset path needs to be acquired again, which affects the efficiency of rerouting. Based on this, when acquiring preset path information, each service can sequentially detect the wavelength occupancy in the new link. When the wavelength is not occupied, the original wavelength is retained, that is, the current wavelength is set as the preset wavelength. When the current wavelength of the service is occupied, one of the available wavelengths is selected as the preset wavelength.
- each wavelength in a link can only be used to carry one service, after the available wavelength is selected as the preset wavelength by a service, the wavelength is removed from the available wavelengths to avoid the next service. Pick the same wavelength.
- the preset wavelengths can be obtained sequentially for each service to ensure that the wavelengths do not conflict with each other, or other methods can be used to obtain the preset wavelengths. For example, a set of wavelengths that do not conflict with each other is set for each service.
- the setting path selects different wavelengths from the wavelength set, and the specific method can be selected according to actual needs.
- the failure scenario includes at least one of the following:
- a single link failure is a scenario in which one of the links in the ASON fails
- a multi-link failure is a scenario in which at least two links fail
- an SRLG is a shared risk link, that is, one link fails. In the case of failure, there is a high probability that other links will also fail.
- the SRLG can be set when the ASON is initialized for use, or it can be dynamically adjusted according to the failure probability of the fiber during actual use, which is not limited in this embodiment. , which can be used for the judgment of fault scenarios.
- step S300 is executed, the following steps are included but not limited to:
- Step S400 generate a new preset path list according to the ASON after rerouting recovery.
- a new preset path list can be regenerated according to the above steps S100 to S300 after the rerouting is restored, so as to avoid re-routing. A link failure has occurred.
- the preset path list can also be regenerated when the service path is changed, which can ensure that the preset path information in the preset path list corresponds to the current service path information.
- FIG. 7 is a flowchart of a method for obtaining preset path information performed by an ASON service control unit provided by an embodiment of the present application.
- the method for obtaining preset path information includes but is not limited to steps S1000, S2000, and S2000. Step S3000.
- Step S1000 Receive a preset path list sent by the entity of the ASON, where the preset path list includes a failure scenario and preset path information corresponding to the failure scenario.
- the entity of the ASON generates a preset path list and sends it to the service control unit in real time, so that rerouting recovery can be performed directly according to the preset path list when a fault occurs.
- the service control unit may send completion information to the entity after the rerouting restoration is completed, and the entity obtains the completion of all service control units. After the information is obtained, the preset path list is regenerated, and other methods may also be used to identify the completion of the rerouting recovery, which will not be repeated here.
- the corresponding manner of the fault scenario in the preset path list and the preset path information may refer to the manner of the embodiment shown in FIG. 2 , which will not be repeated here.
- Step S2000 when it is determined that the current service path is faulty, determine the currently faulty link, determine the current fault scenario according to the currently faulty link, and obtain preset path information corresponding to the current fault scenario from the preset path list.
- the service since the service cannot run normally after the link fails, the service can sense the failure to trigger the process of obtaining the preset path information.
- the current faulty link described in this embodiment may be the faulty link of the entire ASON network, so that each service control unit can match the same fault scenario and ensure that the preset paths adopted are mutually exclusive. Do not conflict.
- Step S3000 performing rerouting recovery according to preset path information.
- the adopted preset path may conflict with the service paths of other service control units.
- all service control units may obtain preset path information according to the same failure scenario, so as to ensure that the service paths of each service do not conflict.
- the failure scenario includes a single-link failure scenario; with reference to FIG. 8 , step S2000 further includes but is not limited to the following steps:
- Step S2100 when it is determined that there is only one currently faulty link, a single link fault scenario corresponding to the currently faulty link is used as the current fault scenario.
- a single link failure scenario only one link fails, and a corresponding failure scenario may be determined according to the link, so that the service control unit performs rerouting recovery. It should be noted that after detecting that only one link is faulty, it also includes judging whether the link belongs to an SRLG, and if it does not belong to any SRLG, determining the current fault scenario according to the faulty link.
- the failure scenario includes a multi-link failure scenario; with reference to FIG. 9 , step S2000 further includes but is not limited to the following steps:
- Step S2210 when it is determined that more than one link is currently faulty, at least one multi-link fault scenario is determined as a candidate scenario according to the currently faulty link;
- Step S2220 determines that one of the at least one candidate scenarios is the current failure scenario according to the proportion of the currently failed links in the number of links corresponding to the multi-link failure scenarios.
- the multi-link failure scenario includes at least two failed links, and all the links corresponding to the failure scenario may be listed in the multi-link failure scenario of the preset path list, and in the actual matching process For example, if link 1 and link 2 fail, the multi-link failure scenario corresponding to the simultaneous failure of link 1 and link 2 is obtained as the current failure scenario.
- the preset path list is only generated for some fault scenarios for the purpose of saving computing resources or actual operation and maintenance requirements, in this case, it is very likely that the faulty links cannot be 100% matched.
- a failure scenario for example, link 1 and link 2 fail, but there is no failure scenario in which link 1 and link 2 fail at the same time in the preset path list; based on this, at least one multi-link failure can be determined first.
- Scenarios are used as candidate scenarios. For example, failure scenario 1 is when link 1, link 2, link 3, and link 4 fail, and failure scenario 2 is when link 1, link 2, and link 3 fail.
- the first matching principle is used to determine the current fault scenario. For example, if fault scenario 1 is matched first, then take fault scenario 1 as the current fault scenario, and the specific method can be adjusted according to actual needs.
- the failure scenario includes an SRLG failure scenario; with reference to FIG. 10 , step S2000 further includes but is not limited to the following steps:
- Step S2310 when it is determined that the currently faulty link is a shared link, at least one SRLG fault scenario is determined as a candidate scenario according to the currently faulty link;
- Step S2320 Determine one of the at least one candidate scenario as the current fault scenario according to the ranking of the candidate scenarios in the preset path list.
- the method for determining the current failure scenario after determining the candidate scenario may be: The first matching principle or the maximum matching principle of multi-link matching described with reference to FIG. 9 will not be repeated here.
- FIG 11 is an ASON network topology diagram provided by an embodiment of the present application.
- the ASON entity obtains topology resource information and service path information, and obtains the following information:
- Nodes Node 1, Node 2, Node 3, Node 4, Node 5, Node 6;
- the current path of service 1 node 1, link 102, node 2, link 203, node 3, link 306, node 6, using wavelength ⁇ 1;
- the current path of service 2 node 4, link 405, node 5, link 506, node 6, link 306, node 3, using wavelength ⁇ 1;
- the current path of service 3 node 4, link 405, node 5, link 506, node 6, using wavelength ⁇ 2.
- wavelengths ⁇ 3 and ⁇ 4 are used respectively.
- the failure of other links in the topology does not affect services 1, 2, and 3, so there is no need to calculate the preset path.
- the delivery method can be configured through the network management or control the server and equipment In some cases in the art, such as the interactive message, the details are not repeated here.
- link 203 fault as an example, which affects both service 1 and service 2.
- Service 1 performs service rerouting on its head node 1
- service 2 performs service rerouting on its head node 4, respectively.
- the preset path found by service 1 is: 2 node 1, link 102, node 2, link 205, node 5, link 506, node 6, wavelength ⁇ 3; the preset path found by service 2
- the paths are: 1Node 4, Link 405, Node 5, Link 506, Node 6, Link 306, Node 3, wavelength ⁇ 4; after the fault occurs, the actual change of the network topology, for example, after the link 203 fails, the network In this case, the link is unavailable, and the paths of services 1 and 2 have also changed.
- the preceding steps can be used to regenerate and obtain the preset path list.
- Figure 12 is an ASON network topology diagram provided by an embodiment of the application, and the entity of ASON obtains topology resource information and service path information, and obtains the following information:
- Nodes Node 1, Node 2, Node 3, Node 4, Node 5, Node 6, Node 7, Node 8, Node 9;
- Links Link 102, Link 104, Link 203, Link 205, Link 306, Link 405, Link 407, Link 506, Link 508, Link 609, Link 708, Link 809 ;
- SRLG1 composed of link 104 and link 405;
- SRLG2 composed of link 405 and link 407;
- the current path of service 1 node 4, link 405, node 5, link 506, node 6, using wavelength ⁇ 1;
- the current path of service 2 node 2, link 205, node 5, link 405, node 4, using wavelength ⁇ 2.
- the SRLG1 can be selected according to the matching first principle, and the specific selection principle can be adjusted according to the actual needs.
- both service 1 and service 2 are affected. Therefore, the corresponding service control unit obtains the corresponding preset paths respectively for rerouting recovery.
- the rerouting recovery method and the recovery process can also refer to the method in scenario 1. Here No longer.
- an embodiment of the present application also provides an entity comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor.
- the processor and memory may be connected by a bus or otherwise.
- the non-transitory software programs and instructions required to implement the method for obtaining preset path information in the above embodiment are stored in the memory, and when executed by the processor, the method for obtaining preset path information applied to the entity in the above embodiment is executed, For example, the above-described method steps S100 to S300 in FIG. 2 , method steps S210 to S230 in FIG. 3 , method steps S231 to S232 in FIG. 4 , method steps S241 or S242 in FIG. Method step S400.
- an embodiment of the present application also provides a service control unit, where the service control unit includes: a memory, a processor, and a computer program stored in the memory and executable on the processor.
- the processor and memory may be connected by a bus or otherwise.
- the service control unit in this embodiment can constitute a part of the ASON in the embodiment shown in FIG. 1 , and these embodiments all belong to the same inventive concept, so these embodiments have the same realization principle and technical effect, It will not be described in detail here.
- the non-transitory software programs and instructions required to implement the method for obtaining preset path information in the above embodiment are stored in the memory, and when executed by the processor, the above embodiment is used to obtain the preset path information applied to the service control unit.
- the method for example, executes the above-described method steps S1000 to S3000 in FIG. 7 , method steps S2100 in FIG. 8 , method steps S2210 to S2220 in FIG. 9 , and method steps S2310 to S2320 in FIG. 10 .
- an embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned
- the execution of a processor in the embodiment of the control unit can cause the above-mentioned processor to execute the method for acquiring preset path information applied to the entity of the ASON in the above-mentioned embodiment, for example, to execute the above-described method steps S100 to S300 in FIG. 2 , the method steps S210 to S230 in FIG. 3 , the method steps S231 to S232 in FIG. 4 , the method steps S241 or S242 in FIG. 5 , and the method step S400 in FIG.
- the method for acquiring preset path information applied to the service control unit of ASON for example, execute the method steps S1000 to S3000 in FIG. 7 described above, the method steps S2100 in FIG. 8 , the method steps S2210 to S2220 in FIG. Method steps S2310 to S2320 in 10.
- the embodiment of the present application includes: acquiring topology resource information in the ASON and service path information of each service in the ASON; generating a preset path list according to the topology resource information and the service path information of each service, and the preset path list
- the path list includes preset path information corresponding to the service in different failure scenarios; determine the service control unit corresponding to the service, and send the preset path list of the service to the corresponding service control unit, so that all The service control unit performs rerouting recovery according to the preset path information in the case of determining the failure scenario.
- Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
- communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
一种预置路径信息获取方法、实体、业务控制单元及存储介质,该预置路径信息获取方法包括:获取ASON中的拓扑资源信息和ASON中每条业务的业务路径信息(S100);根据拓扑资源信息和每条业务的业务路径信息生成预置路径列表,预置路径列表包括业务在不同故障场景分别对应的预置路径信息(S200);确定业务对应的业务控制单元,将业务的预置路径列表发送至对应的业务控制单元,以使业务控制单元在确定故障场景的情况下根据预置路径信息进行重路由恢复(S300)。
Description
相关申请的交叉引用
本申请基于申请号为202010731847.2、申请日为2020年7月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请实施例涉及但不限于传输网络通信领域,尤其涉及一种预置路径信息获取方法、实体、业务控制单元及存储介质。
随着自动交换光网络(Automatically Switched Optical Network,ASON)技术的不断发展,网络拓扑和业务部署越来越复杂,在运行过程中,链路故障会导致业务中断,为了加快重路由恢复,通常预先计算出各业务的预置路径,发生链路故障时,业务选取对应的预置路径进行重路由恢复。但是ASON中通常承载着多条非同源的业务,很容易出现不同业务的预置路径使用同一拓扑资源信息的情况,导致部分业务的重路由恢复失败,再次获取路由会导致业务中断时间过长,影响ASON的正常运行。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种预置路径信息获取方法、实体、业务控制单元及存储介质。
第一方面,本申请实施例提供了一种预置路径信息获取方法,应用于ASON的实体,包括:获取ASON中的拓扑资源信息和ASON中每条业务的业务路径信息;根据所述拓扑资源信息和每条业务的所述业务路径信息生成预置路径列表,所述预置路径列表包括所述业务在不同故障场景分别对应的预置路径信息;确定所述业务对应的业务控制单元,将所述业务的所述预置路径列表发送至对应的业务控制单元,以使所述业务控制单元在确定故障场景的情况下根据所述预置路径信息进行重路由恢复。
第二方面,本申请实施例提供了一种预置路径信息获取方法,应用于ASON的业务控制单元,包括:接收ASON的实体发送的预置路径列表,所述预置路径列表中包括故障场景、与故障场景对应的预置路径信息;当确定当前业务路径发生故障,确定当前发生故障的链路,根据当前发生故障的链路确定当前故障场景,并从所述预置路径列表获取与当前故障场景对应的所述预置路径信息;根据所述预置路径信息进行重路由恢复。
第三方面,本申请实施例还提供了一种实体,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的预置路径信息获取方法。
第四方面,本申请实施例还提供了一种业务控制单元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机 程序时实现如上所述的预置路径信息获取方法。
第五方面,本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的预置路径信息获取方法或如上所述的预置路径信息获取方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的用于执行预置路径信息获取方法的ASON结构示意图;
图2是本申请另一个实施例提供的应用于ASON实体的预置路径信息获取方法的流程图;
图3是本申请另一个实施例提供的预置路径信息获取方法中获取预置路径的流程图;
图4是本申请另一个实施例提供的预置路径信息获取方法中获取预置路径的流程图;
图5是本申请另一个实施例提供的预置路径信息获取方法中获取预置波长的流程图;
图6是本申请另一个实施例提供的预置路径信息获取方法中重路由恢复后获取预置路径列表的流程图;
图7是本申请另一个实施例提供的应用于ASON业务控制单元的预置路径信息获取方法的流程图;
图8是本申请另一个实施例提供的单链路故障场景中获取预置路径信息的流程图;
图9是本申请另一个实施例提供的多链路故障场景中获取预置路径信息的流程图;
图10是本申请另一个实施例提供的SRLG故障场景中获取预置路径信息的流程图;
图11是本申请另一个实施例提供的示例场景一的ASON网络拓扑图;
图12是本申请另一个实施例提供的示例场景二的ASON网络拓扑图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种预置路径信息获取方法、实体、业务控制单元及存储介质,该预置路径信息获取方法包括:获取ASON中的拓扑资源信息和ASON中每条业务的业务路径信息;根据拓扑资源信息和每条业务的业务路径信息生成预置路径列表,预置路径列表包括业务在不同故障场景分别对应的预置路径信息;确定业务对应的业务控制单元,将业务的预置路径列表发送至对应的业务控制单元,以使业务控制单元在确定故障场景的情况下根据预置路径信息进行重路由恢复。根据本申请实施例提供的方案,使得在同一故障场景下,每条业务在重路由恢复时不会发生资源冲突,有效提高了重路由恢复的效率。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行预置路径信息获取方法的ASON的示意图。
在图1的示例中,ASON100的网络中包括实体110和若干个节点,每个节点包括业务控制单元120,实体110与业务控制单元120通信连接。需要说明的是,现有的ASON通常包括控制平面、管理平面和传送平面,实体110可以是控制平面中的任意通信实体,能够被设置为获取ASON100全网的拓扑资源信息和全网每条业务的业务路径信息,并进行预置路径的计算和预置路径列表的生成即可。需要说明的是,实体110与ASON中所有业务控制单元120可以通过本领域一些情形中任意方式通信连接,能够实现预置路径列表的下发即可,本实施例不多作限定。需要说明的是,每个节点的业务控制单元120被设置为对以该节点为首节点的业务进行路由控制,以该节点为首节点的业务可以是一条或多条,本实施例不多作限定。
本领域技术人员可以理解的是,图1中示出的实体110和业务控制单元120并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述ASON,下面提出本申请的预置路径信息获取方法的各个实施例。
如图2所示,图2是本申请一个实施例提供的ASON的实体执行预置路径信息获取方法的流程图,该预置路径信息获取方法包括但不限于有步骤S100、步骤S200和步骤S300。
步骤S100,获取ASON中的拓扑资源信息和ASON中每条业务的业务路径信息。
在一实施例中,ASON的实体可以获取的整个网络的拓扑资源信息和业务路径信息,以使根据故障场景确定预置路径时能够进行拓扑资源的统一分配,若ASON中有若干个链路互相独立的业务组,也可以由实体分别对相对应的业务组进行预置路径信息的生成,在此不再赘述。
在一实施例中,拓扑资源信息可以是任意与业务路径相关的拓扑资源,为了避免重路由恢复时发生资源冲突,可以选取有冲突风险的具体拓扑资源类型,例如链路集合等。需要说明的是,业务路径信息可以包括每条业务的业务路径中的节点和节点之间的路由,例如每条业务所经过的节点的顺序,以及两个节点之间所选用的链路等,在此不再赘述。
步骤S200,根据拓扑资源信息和每条业务的业务路径信息生成预置路径列表,预置路径列表包括业务在不同故障场景分别对应的预置路径信息。
在一实施例中,可以对每个链路故障进行排列组合的穷举以确定故障场景,也可以根据网络中光纤故障的概率确定故障场景,也可以根据特殊的需求手动特定的故障场景,根据实际ASON的业务需求选取具体方式即可。需要说明的是,ASON中有多条光纤,在实际使用中可能出现一条光纤出现故障,另一条关联度较高的光纤大概率会出现故障,因此可以根据光纤关联度和故障概率确定故障场景,对于故障概率较小的光纤也可以不预计算,节约计算资源,具体光纤关联度和故障概率根据实际网络中的光纤情况调整即可。
在一实施例中,由于在故障场景中,并非所有业务都会受到影响,对于不受影响的业务,可以在预置路径列表中保留原业务路径,例如在一个故障场景下,一个业务的预置路径信息留空,无需通过业务控制单元进行重路由恢复,具体的设置方式根据实际需求调整即可。
步骤S300,确定业务对应的业务控制单元,将业务的预置路径列表发送至对应的业务 控制单元,以使业务控制单元在确定故障场景的情况下根据预置路径信息进行重路由恢复。
在一实施例中,由于ASON中的业务的通常由首节点的业务控制单元控制,因此确定可以从业务路径中获取每条业务的首节点确定对应的业务控制单元。
在一实施例中,由于预置路径列表根据拓扑资源信息和每条业务的业务路径信息生成,因此预置路径列表中包括了ASON中所有业务的预置路径信息,可以从是将整个预置路径列表发送至业务控制单元,以确保每个业务控制单元中的预置路径列表相同,从而确保匹配出的故障场景相同;也可以根据业务控制单元所控制的具体业务,获取与该具体业务所对应的预置路径列表发送至业务控制单元,确保每个业务控制单元的预置路径列表中具有相同的故障场景即可。
另外,在一实施例中,拓扑资源信息包括链路集合;业务路径信息包括当前业务路径;预置路径信息包括预置路径;参考图3,步骤S200包括但不限于有以下步骤:
步骤S210,根据链路集合列出故障场景,每个故障场景对应一个或多个链路;
步骤S220,根据每条业务的当前业务路径包含的链路,确定每个故障场景对应受影响的业务;
步骤S230,为每个故障场景对应受影响的业务设置预置路径,得到每条业务在不同故障场景分别对应的预置路径,并生成预置路径列表。
需要说明的是,本实施例中的链路集合为ASON中所有链路的集合,在列出故障场景时,确保每条业务至少有一条可用的预置路径,由于链路故障导致业务无可用路径进行重路由恢复的情况并不在本实施例讨论范围,在此不再赘述。
在一实施例中,故障场景中的链路可以ASON的拓扑中的任意的一个或多个链路,本实施例并不对多个链路之间的位置关系进行限定,根据对故障场景的需求选取具体链路即可。
在一实施例中,每条业务的业务路径中受影响的链路可以是任意条,本实施例不作过多的限定。需要说明的是,确定受影响的业务可以通过遍历每条业务的业务路径,当业务路径中包括故障场景的链路则可认定为受影响的业务,也可以根据故障场景的链路匹配出使用了该链路的业务,具体的方式根据实际需求调整即可。
在一实施例中,在每个故障场景中,可以为受影响的业务设置任意数量的预置路径,本实施例不多作限定,确保每条业务的预置路径使用互不冲突的拓扑资源即可。需要说明的是,预置路径列表可以是根据预置路径和故障场景的对应关系生成,预置路径列表中的多个故障场景各不相同,当网络发生故障时,可以根据故障场景从预置路径列表中读取每个业务互不冲突的预置路径,有利于提升业务重路由恢复的效率。
另外,参照图4,在一实施例中,步骤S230包括但不限于有以下步骤:
步骤S231,根据故障场景对应的链路确定可用链路;
步骤S232,根据可用链路,为受影响的业务设置预置路径。
在一实施例中,步骤S231中可以将故障场景对应的链路设置为故障链路,从拓扑资源信息的链路集合中获取故障链路以外的链路作为可用链路。需要说明的是,受影响的业务无法获取可用链路的情况不在本实施例的讨论范围内,本实施例仅对可获取预置路径的情况进行讨论,在此不再赘述。
在一实施例中,可以根据实际需求设定策略约束条件,根据可用链路计算出预置路径信息,例如在两个节点之间有多条可选链路的情况下,根据最小路径原则或者代价最小原 则确定具体的路径,上述计算方法可以采用本领域一些情形中的方法,具体计算方法并非本实施例作出的改进,能够为受影响的业务设置预设路径即可,在此不再赘述。
另外,在一实施例中,业务路径信息还包括当前波长;预置路径信息还包括预置波长;参照图5,步骤200包括但不限于有以下步骤:
步骤S241,当业务的当前波长在业务的预置路径上未被占用,将当前波长作为预置波长;
步骤S242,当业务的当前波长在业务的预置路径上被占用,获取预置路径上的可用波长,选择可用波长中的一个作为预置波长。
在一实施例中,在同ASON的链路中,若有至少两条业务申请使用相同的波长,通常先申请的业务获得该波长并进行后续的重路由恢复,后申请的业务由于波长已被占用,则需要重新获取预置路径,影响重路由的效率,基于此,可以在获取预置路径信息时,由每条业务依次对新的链路中的波长占用情况进行检测,当业务的当前波长未被占用时,保留原波长,即将当前波长设置为预置波长,当业务的当前波长被占用,从可用波长中选取一个作为预置波长。需要说明的是,由于一条链路中每个波长只能用于承载一条业务,因此在可用波长被一条业务选取为预置波长后,则将该波长从可用波长中移除,避免下一条业务选取同样的波长。可以理解的是,可以通过每条业务依次获取预置波长的方式确保波长互不冲突,也可以采用其他方式获取预置波长,例如为每条业务设置互不冲突的波长集合,针对不同的预置路径从波长集合中选取不同的波长,具体方式根据实际需求选取即可。
另外,在一实施例中,故障场景包括如下至少一种:
单链路故障;
多链路故障;
SRLG故障。
在一实施例中,单链路故障为ASON中其中一条链路发生故障的场景,多链路故障为至少有两条链路发生故障的场景,SRLG为共享风险链路,即一条链路发生故障的情况下,另外的若干条链路大概率也会发生故障,SRLG可以是在ASON初始化使用时设定,也可以根据实际使用过程中光纤的故障概率动态调整,本实施例不多作限定,能够用于故障场景的判定即可。
需要说明的是,若一条链路属于SRLG,则无需根据该链路设置单链路故障,避免资源的浪费。
另外,参照图6,在一实施例中,执行完步骤S300后,还包括但不限于有以下步骤:
步骤S400,根据重路由恢复后的ASON生成新的预置路径列表。
在一实施例中,由于重路由恢复后,ASON的业务路径信息和拓扑资源信息发生了改变,因此可以在重路由恢复后,根据上述步骤S100至S300重新生成新的预置路径列表,避免再次发生链路故障。本领域技术人员可以理解的是,还可以在业务的路径发生更改时重新生成预置路径列表,能够确保预置路径列表中的预置路径信息对应当前的业务路径信息即可。
如图7所示,图7是本申请一个实施例提供的ASON的业务控制单元执行预置路径信息获取方法的流程图,该预置路径信息获取方法包括但不限于有步骤S1000、步骤S2000和步骤S3000。
步骤S1000,接收ASON的实体发送的预置路径列表,预置路径列表中包括故障场景、 与故障场景对应的预置路径信息。
在一实施例中,ASON的实体生成预置路径列表后实时发送至业务控制单元,使得在故障发生时能够直接根据预置路径列表进行重路由恢复。可以理解的是,为了在重路由恢复后,由实体重新生成新的预置路径列表,可以是由业务控制单元在完成重路由恢复后向实体发送完成信息,实体获取到所有业务控制单元的完成信息后重新生成预置路径列表,也可以采用其他方式识别重路由恢复完成,在此不再赘述。
在一实施例中,预置路径列表中的故障场景和预置路径信息对应方式可以参考图2所示实施例的方式,在此不再赘述。
步骤S2000,当确定当前业务路径发生故障,确定当前发生故障的链路,根据当前发生故障的链路确定当前故障场景,并从预置路径列表获取与当前故障场景对应的预置路径信息。
在一实施例中,由于链路发生故障后,会导致业务无法正常运行,因此可以由业务对故障进行感知,以触发预置路径信息的获取流程。需要说明的是,本实施例所述的当前发生故障的链路,可以是ASON全网发生故障的链路,以便于各个业务控制单元能够匹配出相同的故障场景,确保采用的预置路径互不冲突。
在一实施例中,链路发生故障时,并非所有业务都需要进行重路由恢复,可以在预置路径列表保留业务的当前业务路径,具体的设置方式根据实际需求选取即可。
步骤S3000,根据预置路径信息进行重路由恢复。
在一实施例中,由于ASON中可以具有多个业务控制单元,一个业务控制单元的业务进行重路由恢复后,所采用的预置路径可能与其他业务控制单元的业务路径相冲突,因此在有业务发生故障后,可以是所有业务控制单元根据相同的故障场景获取预置路径信息,确保各业务的业务路径不会发生冲突。
另外,在一实施例中,故障场景包括单链路故障场景;参考图8,步骤S2000还包括但不限于有以下步骤:
步骤S2100,当确定当前发生故障的链路仅有一条,将与当前发生故障的链路对应的单链路故障场景作为当前故障场景。
在一实施例中,单链路故障场景中,仅有一条链路发生故障,可以根据该链路确定对应的故障场景,以使业务控制单元进行重路由恢复。需要说明的是,在检测到仅有一条链路发生故障后,还包括判断该链路是否属于SRLG,若不属于任意SRLG,则根据该发生故障的链路确定当前故障场景。
另外,在一实施例中,故障场景包括多链路故障场景;参考图9,步骤S2000还包括但不限于有以下步骤:
步骤S2210,当确定当前发生故障的链路多于一条,根据当前发生故障的链路确定至少一个多链路故障场景作为候选场景;
步骤S2220根据当前发生故障的链路在多链路故障场景所对应的链路中的数量占比,确定至少一个候选场景中的一个为当前故障场景。
在一实施例中,多链路故障场景至少包括两条发生故障的链路,可以在预置路径列表的多链路故障场景中列出该故障场景对应的所有链路,在实际匹配的过程中,可以采用完全匹配原则,例如链路1和链路2发生故障,获取链路1和链路2同时发生故障所对应的多链路故障场景作为当前故障场景。
在一实施例中,若出于节约计算资源或者实际运维需求,仅对部分故障场景进行了预置路径列表的生成,在这种情况下,很可能出现出现故障的链路无法100%匹配故障场景的情况,例如链路1和链路2发生故障,但是预置路径列表中并没有链路1和链路2同时发生故障的故障场景;基于此,可以先确定至少一个多链路故障场景作为候选场景,例如故障场景1为链路1、链路2、链路3和链路4发生故障,故障场景2为链路1、链路2和链路3发生故障,,将故障场景1和故障场景2确定为候选场景,再根据发生故障的链路在多链路故障场景所对应的链路中的数量占比确定当前故障场景,例如上述举例中,链路1和链路2在故障场景1中的数量占比为2/4,在故障场景2中的数量占比为2/3,则可以采用最大匹配的原则选取故障场景2为当前故障场景,当然也可以按照顺序选取最先匹配原则确定当前故障场景,例如最先匹配到的是故障场景1,则以故障场景1为当前故障场景,具体的方式根据实际需求调整即可。
另外,在一实施例中,故障场景包括SRLG故障场景;参考图10,步骤S2000还包括但不限于有以下步骤:
步骤S2310,当确定当前发生故障的链路为共享链路,根据当前发生故障的链路确定至少一个SRLG故障场景作为候选场景;
步骤S2320,根据候选场景在预置路径列表中的排序,确定至少一个候选场景中的一个为当前故障场景。
在一实施例中,检测到链路发生故障后,对该链路是否属于SRLG中的链路进行判断,若发生故障的链路属于多个SRLG,确定候选场景后确定当前故障场景的方法可以参考图9所述的多链路匹配的最先匹配原则或者最大匹配原则,在此不赘述。
以下以两个具体应用场景对本实施例的技术方案进行进一步的举例说明:
场景一,单链路故障场景:
如图11所示,图11是本申请一个实施例提供的ASON网络拓扑图,ASON的实体获取拓扑资源信息和业务路径信息,得出如下信息:
节点:节点1、节点2、节点3、节点4、节点5、节点6;
链路:链路102、链路104、链路203、链路205、链路306、链路405、链路506;
可用波长:λ1至λ5;
业务1的当前路径:节点1、链路102、节点2、链路203、节点3、链路306、节点6,使用波长λ1;
业务2的当前路径:节点4、链路405、节点5、链路506、节点6,链路306,节点3,使用波长λ1;
业务3的当前路径:节点4、链路405、节点5、链路506、节点6,使用波长λ2。
根据上述信息对链路故障进行列举,得出的预置路径列表如下表1所示:
表1单链路故障场景的预置路径列表
在表1中可以看出,链路102故障和链路306故障只会引起业务1发生重路由恢复,链路205故障只会引起业务2发生重路由恢复,链路506故障只会引起业务3发生重路由恢复,由于这些路径上链路λ1或λ2已被使用,则只能分配λ3来使用。而链路203故障会引起业务1和2都发生重路由恢复,由于计算出的路径都会使用链路506,为避免该链路上的波长资源冲突,则业务1对应的预置路径使用波长λ3,业务2对应的预置路径使用λ4。同理,链路405故障会引起业务2和3都发生重路由恢复,为避免冲突,分别使用波长λ3、λ4。拓扑中其它链路故障不影响业务1、2、3,则无需计算预置路径。获取到表1所示的预置路径列表后,分别将个业务的预置路径和故障场景对应关系进行编排,并下发至ASON业务首节点,下发方式可以通过网管配置或管控服务器与设备的交互消息等本领域一些情形中的方式,在此不再赘述。在故障产生时,以链路203故障为例,同时影响业务1和业务2,业务1在其首节点1上、业务2在其首节点4上分别进行业务重路由恢复,业务1和2分别获取预置路径,业务1查找到的预置路径为:②节点1、链路102、节点2、链路205、节点5、链路506、节点6,波长λ3;业务2查找到的预置路径为:①节点4、链路405、节点5、链路506、节点6、链路306、节点3,波长λ4;故障产生后,网络拓扑实际发生的变化,比如链路203故障后,网络中这条链路已不可用,业务1、2的路径也发生了变化,此时可再重新利用前述步骤重新生成获取预置路径列表。
场景二,SRLG故障场景:
如图12所示,图12是本申请一个实施例提供的ASON网络拓扑图,ASON的实体获 取拓扑资源信息和业务路径信息,得出如下信息:
节点:节点1、节点2、节点3、节点4、节点5、节点6、节点7、节点8、节点9;
链路:链路102、链路104、链路203、链路205、链路306、链路405、链路407、链路506、链路508、链路609、链路708、链路809;
可用波长:λ1至λ5;
SRLG1:链路104和链路405组成;
SRLG2:链路405和链路407组成;
业务1当前路径:节点4、链路405、节点5、链路506、节点6,使用波长λ1;
业务2当前路径:节点2、链路205、节点5、链路405、节点4,使用波长λ2。
根据上述信息对SRLG故障进行列举,得出的预置路径列表如下表2所示:
表2 SRLG故障场景的预置路径列表
业务控制单元获取预置路径列表的方法可以参考场景一,在此不再赘述。
在检测到链路405发生故障后,由于链路405同时属于SRLG1和SRLG2,可以根据先匹配原则选取SRLG1,具体的选取原则根据实际需求调整即可,本场景以SRLG1故障为例进行说明。SRLG1故障中,业务1和业务2均受到影响,因此对应的业务控制单元分别获取对应的预置路径进行重路由恢复,重路由恢复方法和恢复后的流程也可以参考场景一的方法,在此不再赘述。
另外,本申请的一个实施例还提供了一种实体,该实体包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
需要说明的是,本实施例中的实体能够构成图1所示实施例中的ASON的一部分,这些实施例均属于相同的发明构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的预置路径信息获取方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的应用于实体的预置路径信息获取方法,例如,执行以上描述的图2中的方法步骤S100至S300,图3中的方法步骤S210至S230,图4中的方法步骤S231至S232,图5中的方法步骤S241或S242,图6中的方法步骤S400。
另外,本申请的一个实施例还提供了一种业务控制单元,该业务控制单元包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
需要说明的是,本实施例中的业务控制单元能够构成图1所示实施例中的ASON的一部分,这些实施例均属于相同的发明构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的预置路径信息获取方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的应用于业务控制单元的预置路径信息获取方法,例如,执行以上描述的图7中的方法步骤S1000至S3000,图8中的方法步骤S2100,图9中的方法步骤S2210至S2220,图10中的方法步骤S2310至S2320。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述控制单元实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的应用于ASON的实体的预置路径信息获取方法,例如,执行以上描述的图2中的方法步骤S100至S300,图3中的方法步骤S210至S230,图4中的方法步骤S231至S232,图5中的方法步骤S241或S242,图6中的方法步骤S400;或使得上述处理器执行上述实施例中的应用于ASON的业务控制单元的预置路径信息获取方法,例如,执行以上描述的图7中的方法步骤S1000至S3000,图8中的方法步骤S2100,图9中的方法步骤S2210至S2220,图10中的方法步骤S2310至S2320。
本申请实施例包括:获取ASON中的拓扑资源信息和ASON中每条业务的业务路径信息;根据所述拓扑资源信息和每条业务的所述业务路径信息生成预置路径列表,所述预置路径列表包括所述业务在不同故障场景分别对应的预置路径信息;确定所述业务对应的业务控制单元,将所述业务的所述预置路径列表发送至对应的业务控制单元,以使所述业务控制单元在确定故障场景的情况下根据所述预置路径信息进行重路由恢复。根据本申请实施例提供的方案,在同一故障场景下,每条业务的重路由恢复不会发生资源冲突,有效提高了重路由恢复的效率。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟 悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。
Claims (13)
- 一种预置路径信息获取方法,应用于自动交换光网络ASON的实体,包括:获取ASON中的拓扑资源信息和ASON中每条业务的业务路径信息;根据所述拓扑资源信息和每条业务的所述业务路径信息生成预置路径列表,所述预置路径列表包括所述业务在不同故障场景分别对应的预置路径信息;确定所述业务对应的业务控制单元,将所述业务的所述预置路径列表发送至对应的业务控制单元,以使所述业务控制单元在确定故障场景的情况下根据所述预置路径信息进行重路由恢复。
- 根据权利要求1所述的一种预置路径信息获取方法,其中,所述拓扑资源信息包括链路集合;所述业务路径信息包括当前业务路径;所述预置路径信息包括预置路径;所述根据所述拓扑资源信息和每条业务的所述业务路径信息生成预置路径列表,具体包括:根据所述链路集合列出故障场景,每个故障场景对应一个或多个链路;根据每条业务的所述当前业务路径包含的所述链路,确定每个故障场景对应受影响的业务;为每个所述故障场景对应受影响的所述业务设置预置路径,得到每条所述业务在不同故障场景分别对应的预置路径,并生成预置路径列表。
- 根据权利要求2所述的一种预置路径信息获取方法,其中,所述为每个所述故障场景对应受影响的所述业务设置预置路径,具体包括;根据所述故障场景对应的链路确定可用链路;根据所述可用链路,为受影响的所述业务设置预置路径。
- 根据权利要求2所述的一种预置路径信息获取方法,其中,所述业务路径信息还包括当前波长;所述预置路径信息还包括预置波长;所述根据所述拓扑资源信息和每条业务的所述业务路径信息生成预置路径列表,还包括如下之一:当所述业务的当前波长在所述业务的预置路径上未被占用,将所述当前波长作为所述预置波长;当所述业务的当前波长在所述业务的预置路径上被占用,获取所述预置路径上的可用波长,选择所述可用波长中的一个作为所述预置波长。
- 根据权利要求2所述的一种预置路径信息获取方法,其中,所述故障场景包括如下至少一种:单链路故障;多链路故障;共享风险链路组SRLG故障。
- 根据权利要求1所述的一种预置路径信息获取方法,其中,所述业务控制单元在确定故障场景的情况下根据所述预置路径信息进行重路由恢复后,还包括:根据重路由恢复后的ASON生成新的预置路径列表。
- 一种预置路径信息获取方法,应用于ASON的业务控制单元,包括:接收ASON的实体发送的预置路径列表,所述预置路径列表中包括故障场景、 与故障场景对应的预置路径信息;当确定当前业务路径发生故障,确定当前发生故障的链路,根据当前发生故障的链路确定当前故障场景,并从所述预置路径列表获取与当前故障场景对应的所述预置路径信息;根据所述预置路径信息进行重路由恢复。
- 根据权利要求7所述的一种预置路径信息获取方法,其中,所述故障场景包括单链路故障场景;所述根据当前发生故障的链路确定当前故障场景,具体包括:当确定当前发生故障的链路仅有一条,将与当前发生故障的链路对应的单链路故障场景作为当前故障场景。
- 根据权利要求7所述的一种预置路径信息获取方法,其中,所述故障场景包括多链路故障场景;所述根据当前发生故障的链路确定当前故障场景,具体包括:当确定当前发生故障的链路多于一条,根据当前发生故障的链路确定至少一个多链路故障场景作为候选场景;根据当前发生故障的链路在所述多链路故障场景所对应的链路中的数量占比,确定至少一个候选场景中的一个为当前故障场景。
- 根据权利要求7所述的一种预置路径信息获取方法,其中,所述故障场景包括SRLG故障场景;所述根据当前发生故障的链路确定当前故障场景,具体包括:当确定当前发生故障的链路为共享链路,根据当前发生故障的链路确定至少一个SRLG故障场景作为候选场景;根据候选场景在所述预置路径列表中的排序,确定至少一个候选场景中的一个为当前故障场景。
- 一种实体,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至6中任意一项所述的预置路径信息获取方法。
- 一种业务控制单元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求7至10中任意一项所述的预置路径信息获取方法。
- 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行如权利要求1至6中任意一项所述的预置路径信息获取方法,或执行如权利要求7至10中任意一项所述的预置路径信息获取方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21851068.3A EP4109848A4 (en) | 2020-07-27 | 2021-07-13 | METHOD OF OBTAINING DEFAULT PATH INFORMATION, DEVICE, SERVICE CONTROL UNIT AND STORAGE MEDIA |
KR1020227032847A KR20220142525A (ko) | 2020-07-27 | 2021-07-13 | 프리셋 경로 정보 획득 방법, 엔티티, 서비스 제어 유닛 및 저장 매체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010731847.2A CN114070783A (zh) | 2020-07-27 | 2020-07-27 | 预置路径信息获取方法、实体、业务控制单元及存储介质 |
CN202010731847.2 | 2020-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022022276A1 true WO2022022276A1 (zh) | 2022-02-03 |
Family
ID=80037501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/106039 WO2022022276A1 (zh) | 2020-07-27 | 2021-07-13 | 预置路径信息获取方法、实体、业务控制单元及存储介质 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4109848A4 (zh) |
KR (1) | KR20220142525A (zh) |
CN (1) | CN114070783A (zh) |
WO (1) | WO2022022276A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101227313A (zh) * | 2007-01-19 | 2008-07-23 | 华为技术有限公司 | 一种业务路径调整方法及通讯系统及路由计算单元 |
US20140016924A1 (en) * | 2011-01-20 | 2014-01-16 | Telefonica S.A. | Procedure and system for optical network survival against multiple failures |
CN110912816A (zh) * | 2019-12-02 | 2020-03-24 | 北京邮电大学 | 链路重路由方法、装置和存储介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8619553B2 (en) * | 2009-01-08 | 2013-12-31 | Ciena Corporation | Methods and systems for mesh restoration based on associated hop designated transit lists |
CN101651625B (zh) * | 2009-09-03 | 2011-09-21 | 中兴通讯股份有限公司 | 多业务恢复的选路装置及选路方法 |
CN103782552B (zh) * | 2013-09-03 | 2016-10-12 | 华为技术有限公司 | 一种业务路径的保护方法、控制器、设备及系统 |
WO2015103729A1 (zh) * | 2014-01-07 | 2015-07-16 | 华为技术有限公司 | 一种重路由方法、系统以及网络设备 |
KR20180099292A (ko) * | 2017-02-28 | 2018-09-05 | 한국전자통신연구원 | 소프트웨어 정의 네트워킹 기반 라우팅 방법 및 장치 |
EP3841690A1 (en) * | 2018-09-07 | 2021-06-30 | Huawei Technologies Co., Ltd. | Device, method and network system for providing failure dependent protection and recovering the affected services |
-
2020
- 2020-07-27 CN CN202010731847.2A patent/CN114070783A/zh active Pending
-
2021
- 2021-07-13 EP EP21851068.3A patent/EP4109848A4/en active Pending
- 2021-07-13 KR KR1020227032847A patent/KR20220142525A/ko active Search and Examination
- 2021-07-13 WO PCT/CN2021/106039 patent/WO2022022276A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101227313A (zh) * | 2007-01-19 | 2008-07-23 | 华为技术有限公司 | 一种业务路径调整方法及通讯系统及路由计算单元 |
US20140016924A1 (en) * | 2011-01-20 | 2014-01-16 | Telefonica S.A. | Procedure and system for optical network survival against multiple failures |
CN110912816A (zh) * | 2019-12-02 | 2020-03-24 | 北京邮电大学 | 链路重路由方法、装置和存储介质 |
Non-Patent Citations (2)
Title |
---|
HU CHANGJUN, ZHANG HAIYI: "ASON's Protection Recovery Technology", CHINA NEW TELECOMMUNICATIONS (TECHNICAL VERSION), no. 13, 31 July 2007 (2007-07-31), pages 70 - 72, XP055892035 * |
See also references of EP4109848A4 * |
Also Published As
Publication number | Publication date |
---|---|
KR20220142525A (ko) | 2022-10-21 |
EP4109848A1 (en) | 2022-12-28 |
CN114070783A (zh) | 2022-02-18 |
EP4109848A4 (en) | 2023-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4547314B2 (ja) | 故障復旧方法および管理ノードならびに通信ノード | |
US20100232287A1 (en) | Method and network device for realizing shared mesh protection | |
US20170012860A1 (en) | System and methods for load placement in data centers | |
US9838245B2 (en) | Systems and methods for improved fault tolerance in solicited information handling systems | |
CN103795628A (zh) | 提供商链路状态桥接(plsb)计算方法 | |
US20110022881A1 (en) | Distributed resource managing system, distributed resource managing method, and distributed resource managing program | |
CN115152192B (zh) | Pce受控网络可靠性 | |
US10666562B2 (en) | Network path computation method, apparatus, and system | |
WO2017000096A1 (zh) | 一种链路恢复方法和网络设备 | |
WO2016165061A1 (zh) | 一种业务保护方法及装置 | |
US20150143184A1 (en) | Network management server and recovery method | |
US20210120097A1 (en) | Scheduling solution configuration method and apparatus, computer readable storage medium thereof, and computer device | |
WO2022022276A1 (zh) | 预置路径信息获取方法、实体、业务控制单元及存储介质 | |
CN106464524B (zh) | Ason的路由计算方法和装置 | |
CN112866833A (zh) | 一种业务恢复方法、装置、电子设备及存储介质 | |
CN110661599B (zh) | 一种主、备节点间的ha实现方法、装置及存储介质 | |
EP2693706A1 (en) | Method and device for implementing multi-protection overlapped protection groups | |
CN111901181A (zh) | 一种误码率检测的处理方法及相关设备 | |
US20220337504A1 (en) | Modified graceful restart | |
CN111224870A (zh) | 一种SR-MPLS Anycast场景下的故障修复方法、设备和存储介质 | |
CN117061419A (zh) | 一种重路由方法及相关设备 | |
EP3355530B1 (en) | Method and apparatus for processing service failure | |
EP3026850B1 (en) | Method for processing multi-zone path computation failure and path computation element (pce) | |
CN111130871B (zh) | 保护切换方法、装置和网络设备 | |
WO2017063166A1 (zh) | 一种过中断链路建立标签交换路径的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20227032847 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021851068 Country of ref document: EP Effective date: 20220922 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |