WO2022022027A1 - 光传输的方法、装置、计算设备和存储介质 - Google Patents

光传输的方法、装置、计算设备和存储介质 Download PDF

Info

Publication number
WO2022022027A1
WO2022022027A1 PCT/CN2021/095335 CN2021095335W WO2022022027A1 WO 2022022027 A1 WO2022022027 A1 WO 2022022027A1 CN 2021095335 W CN2021095335 W CN 2021095335W WO 2022022027 A1 WO2022022027 A1 WO 2022022027A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
idle
port
signal light
Prior art date
Application number
PCT/CN2021/095335
Other languages
English (en)
French (fr)
Inventor
贾伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022022027A1 publication Critical patent/WO2022022027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to a method, apparatus, computing device and storage medium for optical transmission.
  • the ROADM can perform compensation processing on the short-wavelength light, such as reducing the power of the long-wavelength light signal.
  • each idle channel in the optical fiber may be different each time (that is, the wavelength of the light transmitted each time is different), so the SRS effect will be unstable each time, which will lead to the compensation of short wavelength light.
  • the processing is relatively complicated, so it is necessary to provide a processing scheme in which the power of the short-wavelength light does not change with the change of the ROADM upper and lower waves, so that the SRS effect is stable.
  • the ROADM includes a one-dimensional deflection wavelength selective switch (Wavelength Selective Switch, WSS), the WSS includes a signal optical input port, an idle optical input port and an output port, and the signal optical input port, idle optical input port and output port are in The positions of the dispersion directions are the same, the signal light input port is used for inputting signal light, and the idle light input port is used for inputting idle light.
  • the light source of idle light includes idle light having the same wavelength as all signal light.
  • the ROADM determines that the idle light of the target wavelength needs to be transmitted.
  • the idle light in the light source of the idle light is input to the switching device of the WSS from the idle optical input port, and the switching device of the WSS diffracts the idle light of the target wavelength in the switching area of the idle light of the target wavelength, and converts the target-order sub-light (such as The target order light + 1 diffraction order light) is transmitted to the output port to realize the transmission of idle light of the target wavelength.
  • the exchange area refers to a position including the light beam of the target wavelength incident on the exchange device, and excluding the position of the light beam of other wavelengths incident on the exchange device.
  • the switching device is Liquid Crystal on Silicon (LCOS). Due to the fringing field effect of LCOS, LCOS cannot generate an ideal phase grating. Usually, the target-level secondary light of the idle light is transmitted to the output port, and the removal of the phase grating is eliminated. The secondary light other than the target secondary light is transmitted to the signal light input port, causing crosstalk to the signal light input port.
  • LCOS Liquid Crystal on Silicon
  • the present application provides an optical transmission method, apparatus, computing device and storage medium.
  • the present application provides a method of optical transmission, which is applied to a ROADM
  • the ROADM includes a first WSS of two-dimensional deflection
  • the two-dimensional deflection refers to the deflection in the port direction and the deflection in the dispersion direction
  • the dispersion direction and The direction of the ports is vertical, and both are perpendicular to the optical transmission direction in the first WSS.
  • the first WSS includes a signal optical input port, an idle optical input port, and an output port, and the signal optical input port and the idle optical input port are in different positions in the dispersion direction.
  • the positions of the signal light input port and the output port in the dispersion direction are the same, and the method includes: determining that the signal light input by the signal light input port does not include the signal light of the first wavelength; according to the position of the idle light input port in the port direction, controlling The first WSS loads the first phase grating corresponding to the idle light of the first wavelength in the first exchange area corresponding to the first wavelength; wherein the first phase grating is used to pass the first order light of the idle light of the first wavelength through the first phase grating.
  • the first switching area is transmitted to the output port, and the secondary light except the first-order light in the idle light of the first wavelength cannot be transmitted to the signal light input port through the first switching area, and the first switching area is located in the first switching area. WSS.
  • the method may be executed by a control device in the ROADM, and the control device may be a part of the ROADM, or may be independent of the ROADM.
  • the wavelength of the signal light input from the signal light input port is stored in the control device.
  • the control device may determine whether the signal light input at the signal light input port includes the signal light of the first wavelength according to the stored wavelength of the signal light input from the signal light input port. If the stored wavelength of the signal light input by the signal light input port does not include the first wavelength, the control device determines that the signal light input by the signal light input port does not include the signal light with the first wavelength.
  • the control device may acquire pre-stored position information of the idle optical input port in the port direction, use the position information to control the first WSS in the first switching area corresponding to the first wavelength, and load the first phase corresponding to the idle light of the first wavelength grating.
  • the first phase grating is used to transmit the first order light of the idle light of the first wavelength to the output port through the first exchange area, and the first phase grating can also be used to make the idle light of the first wavelength divide the first order
  • the secondary light other than the secondary light cannot be transmitted to the signal light input port through the first switching area.
  • the SRS effect can be stabilized by transmitting the first order light to the output port.
  • the secondary light except the first-order secondary light in the idle light will not be transmitted to the signal light input port, crosstalk between the secondary light except the first-order secondary light and the signal light input port can be avoided.
  • the first WSS is controlled in the first switching area corresponding to the first wavelength to load the first phase grating corresponding to the idle light of the first wavelength, including :
  • the first switching area is controlled and the first switching area is loaded.
  • the wavelength of idle light corresponds to the dispersion direction and the phase grating in the port direction.
  • the control device stores the position of the idle optical input port of the first WSS in the port direction, and whether the position can make the transmission direction of the idle light of each wavelength after reflection in the switching area deviate from the output port instruction information. If the control device determines, according to the position of the idle optical input port in the port direction, that the transmission direction of the idle light of the first wavelength after being reflected by the first switching area corresponding to the first wavelength deviates from the output port, it means that a phase grating needs to be added in the port direction. , so that the transmission direction of the idle light of the first wavelength after passing through the first switching area does not deviate from the output port in the port direction.
  • the control device can control the first switching area and load the phase grating in the dispersion direction and the port direction corresponding to the idle light of the first wavelength.
  • the deflection angles of the phase gratings in the dispersion direction for different orders of light are different, so the first order of the idle light of the first wavelength is made.
  • the light can be transmitted to the phase grating of the output port in the dispersion direction, so that the order light other than the first order light will not be transmitted to the signal light input port in the dispersion direction, and will not cause crosstalk to the signal light input port.
  • the first WSS is controlled in the first switching area corresponding to the first wavelength to load the first phase grating corresponding to the idle light of the first wavelength, including :
  • the first switching area corresponding to the first wavelength to load the first phase grating corresponding to the idle light of the first wavelength, including :
  • the first switching area if according to the position of the idle optical input port in the port direction, it is determined that the transmission direction of the idle light after the reflection of the first switching area corresponding to the first wavelength does not deviate from the output port, then control the first switching area and load the first switching area.
  • a phase grating in the dispersion direction corresponding to a wavelength of idle light.
  • the control device stores the position of the idle optical input port of the first WSS in the port direction, and whether the position can make the transmission direction of the idle light of each wavelength after reflection in the switching area deviate from the output port instruction information. If the control device determines, according to the position of the idle optical input port in the port direction, that the transmission direction of the idle light of the first wavelength after being reflected by the first switching area corresponding to the first wavelength does not deviate from the output port, it means that no phase is added in the port direction.
  • the grating can also make the transmission direction of the idle light of the first wavelength after passing through the first switching area not deviated from the output port in the port direction.
  • the control device can control the first exchange area and load the phase grating in the dispersion direction corresponding to the idle light of the first wavelength.
  • the deflection angles of the phase gratings in the dispersion direction for different orders of light are different, so the first order of the idle light of the first wavelength is made.
  • the light can be transmitted to the phase grating of the output port in the dispersion direction, so that the order light other than the first order light will not be transmitted to the signal light input port in the dispersion direction, and will not cause crosstalk to the signal light input port.
  • the signal light input from the signal light input port includes signal light of a first wavelength, and the signal light of the first wavelength and the idle light of the first wavelength enter the same position on the first switching area, and The incident angles of the dispersion directions are not the same; the method further includes: controlling the first WSS in the first exchange area to load a second phase grating corresponding to the signal light of the first wavelength; wherein the second phase grating is used to convert the signal light of the first wavelength The signal light is transmitted to the output port through the first switching area, and the idle light of the first wavelength cannot be transmitted to the signal light input port and the output port through the first switching area.
  • the control device determines that the signal light input by the signal light input port includes the signal light of the first wavelength, and the signal light of the first wavelength and the idle light of the first wavelength enter the same position of the first exchange area, and The angles of incidence in the dispersion direction are not the same. In this case, it is not necessary to transmit idle light to the output port through the first switching area.
  • the control device can control the first WSS to load the second phase grating corresponding to the signal light of the first wavelength in the first switching area, and the second phase grating can be used to transmit the signal light of the first wavelength to the output port through the first switching area, And it is used to prevent the idle light of the first wavelength from being transmitted to the signal light input port and the output port through the first switching area. In this way, in the case where the idle light of the first wavelength is not required, the idle light of the first wavelength will not cause crosstalk to the input port and the output port of the signal light.
  • controlling the first WSS to load the second phase grating corresponding to the signal light of the first wavelength in the first switching area includes: in the dispersion direction, if the signal light of the first wavelength is incident on the first switching area If the incident angle of the area is greater than or equal to the target angle, the first WSS is controlled to load the phase grating in the port direction and the dispersion direction corresponding to the signal light of the first wavelength in the first switching area.
  • the first WSS when the signal light of the first wavelength is input to the signal light input port, the first WSS only needs to transmit the signal light of the first wavelength to the output port, and does not need to idle the first wavelength. Any order of light is transmitted to the output port.
  • the idle light of the first wavelength and the signal light of the first wavelength in the dispersion direction enter the first exchange area at different angles of incidence, it means that the signal light of the first wavelength is transmitted to the output port, and the signal light of the first wavelength is transmitted to the output port when it exits the first exchange area.
  • the required deflection angle cannot transmit the idle light of the first wavelength to the output port, so in the dispersion direction, the signal light of the first wavelength can be transmitted to the phase grating of the output port, and the idle light of the first wavelength cannot be transmitted to the output port.
  • the idle light of the first wavelength cannot be transmitted to the dispersion direction where the signal light input port is located, the idle light of the first wavelength cannot be transmitted to the signal light input port, so the idle light of the first wavelength cannot be transmitted in the dispersion direction. To the signal light input port and output port, it will not cause crosstalk to the signal light input port and output port.
  • controlling the first WSS to load the second phase grating corresponding to the signal light of the first wavelength in the first switching area includes: in the dispersion direction, if the signal light of the first wavelength is incident on the first switching area If the incident angle of the area is smaller than the target angle, the first WSS is controlled to load the phase grating in the port direction corresponding to the signal light of the first wavelength in the first switching area.
  • the first WSS when the signal light of the first wavelength is input to the signal light input port, the first WSS only needs to transmit the signal light of the first wavelength to the output port, and does not need to idle the first wavelength. Any order of light is transmitted to the output port.
  • the incident angle of the signal light of the first wavelength entering the first exchange region of the first WSS is smaller than the target angle (the target angle is relatively small)
  • the target angle is relatively small
  • the positions are the same, so at least a part of the signal light of the first wavelength can be reflected by the first exchange area and transmitted to the output port, so there is no need to add a phase grating in the dispersion direction.
  • the first switching device cannot be made in the dispersion direction. Idle light of one wavelength is transmitted to the signal light input port and output port without causing crosstalk to the signal light input port and output port.
  • the signal light input ports and the idle light input ports are arranged in parallel or non-parallel. In this way, the structures of the signal optical input port and the idle optical input port of the first WSS are more flexible.
  • the ROADM further includes a two-dimensionally deflected second WSS
  • the second WSS includes an input port, a signal light output port, and an idle light output port of different wavelengths of idle light
  • the input port and the signal light output port are in The positions of the chromatic dispersion directions are the same, and the positions of the idle light output ports and the signal light output ports in the chromatic dispersion directions are different
  • the method further includes: determining the idle light of the second wavelength obtained from the second WSS; controlling the second WSS to correspond to the second wavelength
  • the second exchange area is loaded with a third phase grating corresponding to the idle light of the second wavelength, wherein the third phase grating is used to transmit the second order light of the idle light of the second wavelength to the second light through the second exchange area.
  • the idle light output port corresponding to the idle light of the wavelength, and the second-order light of the idle light of the second wavelength except the second-order light of the idle light of the second wavelength cannot be transmitted to the signal light through the second exchange area
  • the output port, the second switching area is located in the second WSS.
  • the ROADM may further include a two-dimensionally deflected second WSS, and the second WSS may include an input port, a signal optical output port, an idle optical output port for idle light of different wavelengths, an input port and a signal optical output port
  • the positions in the dispersion direction are the same, and the positions of the idle optical output port and the signal optical output port in the dispersion direction are different.
  • the control device may pre-configure the wavelength of the idle light to be downloaded as the second wavelength, or the control device may receive an instruction to download the idle light, where the instruction includes the second wavelength.
  • the control device may determine to obtain idle light of the second wavelength from the second WSS.
  • the control device can control the second WSS to load a third phase grating corresponding to the second wavelength in the second exchange region corresponding to the second wavelength, and the third phase grating can be used to convert the second order light of the idle light of the second wavelength
  • the idle light of the second wavelength is transmitted to the idle light output port corresponding to the idle light of the second wavelength through the second switching area, and the third phase grating can also be used to convert the idle light of the second wavelength except the second order light. It is transmitted to the signal light output port through the second switching area, so when the second WSS downloads idle light, it can also avoid causing crosstalk to the signal light output port.
  • the third phase grating is a phase grating in the dispersion direction and the port direction, or the third phase grating is a phase grating in the dispersion direction.
  • the transmission direction of the idle light of the second wavelength after being reflected by the second switching area corresponding to the second wavelength does not deviate from the transmission direction of the second wavelength.
  • the idle light output port controls the second switching area and loads the phase grating in the dispersion direction corresponding to the idle light of the second wavelength.
  • the transmission direction of the idle light of the second wavelength after being reflected by the second switching area corresponding to the second wavelength deviates from the idle light output port of the second wavelength, then control the second wavelength.
  • the second switching area is loaded with phase gratings in the dispersion direction and port direction corresponding to the idle light of the second wavelength.
  • the present application provides an apparatus for optical transmission, the apparatus including one or more modules for implementing the method provided by the first aspect or any possible implementation manner of the first aspect.
  • the present application further provides a computing device, the computing device includes a memory and a processor, the memory is used to store a set of computer instructions; the processor executes a set of computer instructions stored in the memory to The computing device is caused to execute the method provided by the first aspect or any possible implementation manner of the first aspect.
  • the present application provides a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the computer program code is executed by a computing device, the computing device executes the aforementioned first aspect or The method provided in any one possible implementation manner of the first aspect.
  • the present application provides a computer program product, the computer program product comprising computer program code, when the computer program code is executed by a computing device, the computing device executes the first aspect or any of the first aspects.
  • FIG. 1 is a schematic flowchart of a method for optical transmission provided by an exemplary embodiment of the present application
  • FIG. 2 is a schematic diagram of a first WSS in a dispersion direction provided by an exemplary embodiment of the present application
  • FIG. 3 is a schematic diagram of a first WSS in a port direction provided by an exemplary embodiment of the present application
  • FIG. 4 is a schematic diagram of port arrangement of a first WSS provided by an exemplary embodiment of the present application.
  • FIG. 5 is a schematic diagram of a first phase grating provided by an exemplary embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first WSS in a dispersion direction provided by an exemplary embodiment of the present application
  • FIG. 7 is a schematic flowchart of a method for optical transmission provided by an exemplary embodiment of the present application.
  • FIG. 8 is a schematic diagram of the first WSS in the port direction provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic diagram of port arrangement of the first WSS provided by an exemplary embodiment of the present application.
  • FIG. 10 is a schematic diagram of a first phase grating provided by an exemplary embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for optical transmission provided by an exemplary embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a second WSS provided by an exemplary embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a method for optical transmission provided by an exemplary embodiment of the present application.
  • FIG. 14 is a schematic diagram of the second WSS in the dispersion direction provided by an exemplary embodiment of the present application.
  • FIG. 15 is a schematic diagram of a second WSS in a port direction provided by an exemplary embodiment of the present application.
  • FIG. 16 is a schematic diagram of port arrangement of a second WSS provided by an exemplary embodiment of the present application.
  • FIG. 17 is a schematic diagram of a ROADM provided by an exemplary embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a method for optical transmission provided by an exemplary embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a computing device for optical transmission provided by an exemplary embodiment of the present application.
  • the SRS effect is a broadband effect related to the interaction between light and the vibrational modes of silicon atoms. Under normal circumstances, the SRS effect causes short wavelength signal energy to be attenuated and long wavelength signal energy to be enhanced.
  • ROADM is a kind of node in the optical network.
  • the service wavelength can be dynamically adjusted for adding/dropping or switching, and the power of the signal at the service wavelength can also be adjusted.
  • the dispersion direction, the light transmission direction and the port direction are first defined.
  • the dispersion direction also known as the wavelength direction, is defined as the Y direction, and the dispersion direction refers to the direction in which the dispersion component separates the light beam into sub-beams of different wavelengths in space. If the dispersive component is a grating, the dispersion direction is the direction perpendicular to the grating lines.
  • the light transmission direction defines the Z direction.
  • the port direction also known as the exchange direction, is defined as the X direction, which is the direction perpendicular to both the Y direction and the Z direction. When the dispersive component is a grating, the port direction is the direction parallel to the grating line.
  • the optical transmission method provided in this embodiment of the present application can be applied to a ROADM, where the ROADM includes a first WSS 100 with a two-dimensional deflection, where the two-dimensional deflection refers to the deflection in the port direction and the deflection in the dispersion direction.
  • the deflected WSS can deflect the beam in both the dispersion direction and the port direction.
  • the first WSS 100 includes a signal optical input port 101 , an idle optical input port 102 and an output port 103 .
  • the signal light input port 101 is used to input signal light to the first WSS 100.
  • the number of signal light input ports 101 is not limited, but the signal light input by different signal light input ports 101 cannot be signal light of the same wavelength, and one signal light input
  • the port 101 can input a plurality of signal lights of different wavelengths.
  • the output port 103 can be used to output idle light of the wavelength, and when the signal light input port 101 inputs signal light of a certain wavelength, the output port 103 Can be used to output signal light of this wavelength.
  • the positions of the signal light input port 101 and the idle light input port 102 in the dispersion direction are different, and the positions of the signal light input port 101 and the output port 103 are the same in the dispersion direction.
  • the signal light is light modulated with data
  • the idle light is light directly emitted by the light source without modulated data
  • the idle light may also be called false light, virtual light, or the like.
  • the idle light sources all emit idle light with multiple wavelengths, and the multiple wavelengths are the same as the wavelengths of the signal light that can be transmitted in the ROADM or the link. In this way, even if the signal light of the first wavelength is included in the signal light input from the signal light input port 101 , the idle light of the first wavelength is input from the idle light input port 102 .
  • the execution body of the optical transmission method may be a ROADM, specifically a control device in the ROADM.
  • the execution body of the optical transmission method may also be a control device connected to the ROADM.
  • the embodiment is not limited.
  • the flow of the optical transmission method may be as follows:
  • Step 101 the control device determines that the signal light input by the signal light input port 101 does not include the signal light of the first wavelength.
  • the first wavelength refers to the wavelength of any signal light in the signal light transmitted by the ROADM.
  • the wavelength of the signal light input from the signal light input port 101 is stored in the control device.
  • the control device may judge whether the signal light input from the signal light input port 101 includes the signal light of the first wavelength according to the stored wavelength of the signal light input from the signal light input port 101. If the stored wavelength of the signal light input by the signal light input port 101 includes the first wavelength, the control device determines that the signal light input by the signal light input port 101 includes the signal light with the first wavelength. If the stored wavelength of the signal light input by the signal light input port 101 does not include the first wavelength, the control device determines that the signal light input by the signal light input port 101 does not include the signal light with the first wavelength.
  • Step 102 the control device controls the first WSS 100 to load the first phase grating corresponding to the idle light of the first wavelength in the first switching area corresponding to the first wavelength according to the position of the idle optical input port 102 in the port direction;
  • the phase grating is used to transmit the first order light of the idle light of the first wavelength to the output port 103 through the first exchange area, and make the idle light of the first wavelength except the first order light of the first order light It cannot be transmitted to the signal light input port 101 through the first switching area.
  • the first-order secondary light of the idle light of the first wavelength is the light of the idle light of the first wavelength transmitted to the output port 103 .
  • the first order light is +1 diffraction order light or the like.
  • the first switching area belongs to the switching device of the first WSS 100 (ie, the first switching device 109 mentioned later), and the first switching area refers to the first switching device 109 including the idle light of the first wavelength incident on the first WSS 100 position, and does not include the position where light of other wavelengths is incident on the first exchange device 109 .
  • the control device may acquire the pre-stored position information of the idle optical input port 102 in the port direction, and use the position information to control the first WSS 100 in the first switching area corresponding to the first wavelength, and load the first wavelength corresponding to the idle light of the first wavelength.
  • phase grating is used to transmit the first-order light of the idle light of the first wavelength to the output port 103 through the first exchange area, and the first phase grating can also be used to make the idle light of the first wavelength divide the first order light from the idle light of the first wavelength.
  • the secondary light other than the primary light cannot be transmitted to the signal light input port 101 through the first switching area.
  • the SRS effect can be stabilized by transmitting the first order light to the output port 103 .
  • the secondary light except the first-order secondary light in the idle light will not be transmitted to the signal light input port 101, the secondary light other than the first-order secondary light can be prevented from being paired with the signal light input port 101 of crosstalk.
  • the first order light is +1 diffraction order light
  • the order light other than the first order light is 0 order reflected light, -1 diffraction order light, ⁇ 2 diffraction order light, ⁇ 3 order light Diffraction order light etc.
  • the control device stores the position of the idle optical input port 102 of the first WSS in the port direction, and whether the position enables the idle light of each wavelength to pass through the reflected transmission direction of the switching area Deviating from the indication information of the output port 103 and corresponding to the idle light of each wavelength, the information of the loaded phase grating is also stored, and the information may be the voltage required to realize the phase grating and the like.
  • the control device can determine that the transmission direction of the idle light of the first wavelength after being reflected by the first switching area deviates from the output port 103, that is, to determine that the position of the idle optical input port 102 in the port direction cannot make the first wavelength
  • the idle light of the first WSS 100 is reflected to the output port 103 by the first switching area of the first WSS 100, then the control device can control the first WSS 100 to load the phase grating in the direction of the port in the first switching area corresponding to the first wavelength, so that the first wavelength can be
  • the first-order secondary light of the idle light is transmitted to the output port 103 in the port direction.
  • the first phase grating is a phase grating in the dispersion direction and the port direction, and the control device can load the phase grating in the dispersion direction and the port direction corresponding to the first wavelength in the first switching region.
  • the control device stores the position of the idle optical input port 102 of the first WSS in the port direction, and whether the position enables the idle light of each wavelength to pass through the reflected transmission direction of the switching area Deviating from the indication information of the output port 103 and corresponding to the idle light of each wavelength, the information of the loaded phase grating is also stored, and the information may be the voltage required to realize the phase grating and the like.
  • the control device may, in the stored instruction information, determine that the transmission direction of the idle light of the first wavelength after being reflected by the first switching area does not deviate from the output port 103, that is, to determine the position of the idle optical input port 102 in the port direction to enable the first
  • the idle light of the wavelength is reflected to the output port 103 by the first switching area of the first WSS 100, indicating that in the port direction, the idle light of the first wavelength can be transmitted to the output port 103 without loading the phase grating.
  • the first phase grating is a phase grating in the dispersion direction, and the control device can load the phase grating in the dispersion direction corresponding to the first wavelength in the first exchange region.
  • the output port 103 and the signal light input port 101 are in the same position in the dispersion direction, and the idle light input port 102 and the output port 103 are in different positions in the dispersion direction.
  • the first-order light of the idle light of the first wavelength can be transmitted to the phase grating of the output port 103 in the dispersion direction, and the first-order light of the idle light of the first wavelength other than the first-order light cannot be made.
  • the service wavelength in the ROADM is dynamically adjusted, so it is possible that in some cases, the signal light input from the signal light input port 101 includes the signal light of the first wavelength.
  • the idle light of the first wavelength does not need to be transmitted to the output port 103, and in order to prevent the idle light of the first wavelength from causing crosstalk to the signal light input port 101, any order light of the idle light of the first wavelength cannot be transmitted to the output port 103.
  • Signal light input port 101 .
  • the signal light input by the signal light input port 101 includes the signal light of the first wavelength
  • the signal light of the first wavelength and the idle light of the first wavelength are incident on the same position of the first switching area of the first WSS 100 (description of the first switching area of the first WSS 100).
  • the control device controls the first WSS100 at the first wavelength to correspond to the first exchange area, and loads a second phase grating corresponding to the signal light of the first wavelength, wherein the second phase grating is used to pass the signal light of the first wavelength through the first exchange area It is transmitted to the output port 103, and the idle light of the first wavelength cannot be transmitted to the signal light input port 101 and the output port 103 through the first switching area.
  • the control device can control the first WSS 100 to load a second phase grating corresponding to the signal light of the first wavelength in the first switching region corresponding to the first wavelength, and the second phase grating can be used to convert the first
  • the signal light of the wavelength is transmitted to the output port 103 through the first switching area, and all orders of the idle light of the first wavelength can be prevented from passing through the first switching area and transmitted to the signal light input port 101 and the output port 103 . Therefore, in the case where the idle light of the first wavelength is not required, the idle light of the first wavelength will not cause crosstalk to the signal light input port 101 and the output port 103 .
  • the first WSS 100 when the signal light input port 101 inputs the signal light of the first wavelength, the first WSS 100 only needs to transmit the signal light of the first wavelength to the output port 103, and does not need to transmit the signal light of the first wavelength to the output port 103. Any order light of a wavelength of idle light is transmitted to the output port 103 .
  • the incident angle of the signal light of the first wavelength to the first switching device 109 of the first WSS is smaller than the target angle, and the target angle is relatively small, for example, the target angle is 1 degree, etc.
  • the signal light input port 101 and the output port 103 have the same position in the dispersion direction, so the signal light of the first wavelength is reflected by the first switching area, and at least part of the signal light of the first wavelength can be transmitted to the output port 103, Therefore, there is no need to add a phase grating in the dispersion direction.
  • a phase grating is required to transmit the signal light of the first wavelength to the output port 103 in the port direction.
  • the idle light of the first wavelength has no phase grating in the dispersion direction, and the idle light of the first wavelength in the dispersion direction and the signal light of the first wavelength have different incident angles to the first exchange area, the first exchange region cannot be made in the dispersion direction.
  • One wavelength of idle light is transmitted to the signal light input port 101 and the output port 103 .
  • the transmission loss is not considered, and the first Part of the signal light of one wavelength can be transmitted to the output port 103 .
  • the incident angle is 0 degrees, all the signal light of the first wavelength can be transmitted to the output port 103 regardless of transmission loss.
  • the first WSS 100 when the signal light input port 101 inputs the signal light of the first wavelength, the first WSS 100 only needs to transmit the signal light of the first wavelength to the output port 103, and does not need to transmit the signal light of the first wavelength to the output port 103.
  • One wavelength of idle light is transmitted to the output port 103 .
  • the incident angle of the signal light of the first wavelength to the first exchange region of the first WSS is greater than or equal to the target angle.
  • the idle light of the first wavelength in the dispersion direction and the signal light of the first wavelength have different incident angles into the first exchange area, it means that the signal light of the first wavelength is transmitted to the output port 103, and when the signal light of the first wavelength exits the first exchange area The required deflection angle cannot transmit the idle light of the first wavelength to the output port 103, so in the dispersion direction, the signal light of the first wavelength can be transmitted to the phase grating of the output port 103, and the idle light of the first wavelength cannot be transmitted. to output port 103.
  • the idle light of the first wavelength cannot be transmitted to the dispersion direction where the signal light input port 101 is located, so the idle light of the first wavelength cannot be transmitted to the signal light input port 101, so the idle light of the first wavelength cannot be transmitted in the dispersion direction.
  • Light is transmitted to signal light input port 101 and output port 103 .
  • the control device stores the voltage information required to load the phase grating corresponding to the idle light of each wavelength when the idle light is required, and the control device directly obtains the voltage information, and then stores the voltage information in the control device.
  • the phase grating required for outputting the idle light to the output port 103 can be realized by adding the voltage indicated by the voltage information to the exchange area corresponding to the idle light.
  • the control device stores the voltage information required by the phase grating corresponding to the signal light of each wavelength, and the control device directly obtains the voltage information, and adds the voltage indicated by the voltage information in the exchange area corresponding to the signal light, that is, The phase grating required for outputting the signal light to the output port 103 can be realized.
  • the first phase grating is a phase grating in the dispersion direction and the port direction:
  • the first WSS 100 includes a signal light input port 101 , an idle light input port 102 , an output port 103 , a first collimating lens 104 , a first lens 105 , a second lens 106 , a first A grating 107 , a third lens 108 and a first exchange device 109 .
  • the positions of the signal light input port 101 and the output port 103 in the dispersion direction are the same, and the positions of the signal light input port 101 and the idle light input port 102 in the dispersion direction are different.
  • the signal light When the signal light is transmitted in the first WSS 100, it sequentially passes through the signal light input port 101, the first collimating lens 104, the first lens 105, the second lens 106, the first grating 107, the third lens 108, the first switching device 109, The third lens 108 , the first grating 107 , the second lens 106 , the first lens 105 , the first collimating lens 104 , and the output port 103 .
  • the idle light When the idle light is transmitted in the first WSS 100, it sequentially passes through the idle light input port 102, the first collimating lens 104, the first lens 105, the second lens 106, the first grating 107, the third lens 108, the first switching device 109, The third lens 108 , the first grating 107 , the second lens 106 , the first lens 105 , the first collimating lens 104 , and the output port 103 .
  • the first collimating mirror 104 through which the signal light and the idle light pass may be the same collimating mirror, or may not be the same collimating mirror.
  • the first switching device 109 may be a liquid crystal on silicon (Liquid Crystal on Silicon, LCOS)-based switching engine, and of course other types of switching devices, which are not limited in the embodiment of the present application.
  • LCOS liquid crystal on silicon
  • the first lens 105 is used to convert the position difference between the signal light and the idle light in the dispersion direction into the angle difference in the dispersion direction.
  • the second lens 106 is used to convert the signal light and idle light after passing through the first lens 105 into a parallel transmission direction.
  • the third lens 108 is used to inject the signal light and idle light of the same wavelength after passing through the third lens 108 to the same position of the first switching device 109 .
  • the first grating 107 is used to disperse and separate the signal light of different wavelengths in the signal light into different transmission directions in the dispersion direction, and is also used to disperse and separate the idle light of different wavelengths in the idle light to different transmission directions.
  • the third lens 108 is used to input idle light of different wavelengths after passing through the third lens 108 to the first grating
  • the same position of the first grating 107 is also used to input the signal light of different wavelengths after passing through the third lens 108 to the same position of the first grating 107 .
  • the second lens 106 is used to convert the signal light and idle light after passing through the first grating 107 into a non-parallel transmission direction.
  • the first lens 105 is used to convert the angle difference between the signal light and the idle light in the dispersion direction into the position difference in the dispersion direction.
  • the first grating 107 is used to make the sub-beams of signal light of different wavelengths with different transmission directions in the signal light to synthesize a beam of signal light in the dispersion direction, and also used to make the idle light of different wavelengths with different transmission directions in the idle light.
  • the sub-beams are combined into a beam of idle light in the direction of dispersion.
  • FIG. 2 shows the architecture diagram of the first WSS 100 in the dispersion direction.
  • the solid line in FIG. 2 represents the optical path of the signal light transmitted from the signal light input port 101 to the first switching device 109
  • the dashed line represents the idle light from the idle optical input port 102 .
  • the wavelengths are ⁇ _1... ⁇ _N from top to bottom.
  • N represents the number of signal lights that can be transmitted in the ROADM.
  • the signal light and the idle light have the same wavelength, including ⁇ _1 . . . ⁇ _N, and the signal light is input from the signal light input port 101 to the first collimating mirror 104 on the optical path of the signal light input port 101 .
  • the idle light is input from the idle light input port 102 to the first collimating mirror 104 on the optical path of the idle light input port 102 .
  • the first lens 105 converts the positional difference between the signal light and the idle light in the dispersion direction into the angular difference in the dispersion direction, and transmits it to the second lens 106 .
  • the second lens 106 transmits the signal light and the idle light to the first grating 107, and the first grating 107 disperses the received signal light into sub-beams of multiple wavelengths, and disperses the idle light into sub-beams of multiple wavelengths, such as
  • the wavelengths are ⁇ 1 to ⁇ N, the dispersion angles of the sub-beams of different wavelengths of the signal light are different, and the dispersion angles of the sub-beams of different wavelengths of the idle light are different.
  • the sub-beams obtained through the first grating 107 are transmitted to the first switching device 109 of the first WSS through the third lens 108, and the third lens 108 converts the transmission directions of the sub-beams with different dispersion angles into parallel transmission directions in the dispersion direction.
  • the sub-beams of the signal light can be perpendicularly incident on the first switching device 109 in the dispersion direction, or non-perpendicularly incident on the first switching device 109 .
  • the sub-beam of the signal light with the same wavelength and the sub-beam of the idle light are transmitted to the same position of the first exchange device 109, and the incident angle of the sub-beam of the signal light of the same wavelength and the sub-beam of the idle light incident on the first exchange device 109 in the dispersion direction Not the same, the incident angle difference is ⁇ , and ⁇ is not zero.
  • FIG. 3 shows the architecture diagram of the first WSS 100 in FIG. 2 in the port direction.
  • the output port 103 and the signal light input port 101 are lined up in the port direction, that is, the output port 103 and the signal light input port 101 are in the port direction. on a straight line.
  • the position of the idle light input port 102 in the port direction makes the idle light deviate from the output port 103 through reflection by the first switching device 109 of the first WSS 100 .
  • the dotted line represents the optical path of idle light transmitted from the idle optical input port 102 to the first switching device 109
  • the 0-order reflected light refers to the transmission direction of the idle light of the first wavelength after being reflected by the first switching device 109 .
  • the solid line represents the optical path through which the signal light is transmitted from the signal light input port 101 to the first switching device 109 .
  • the idle light of the first wavelength needs to be uploaded at this time, that is, the first wavelength needs to be uploaded.
  • the idle light of the wavelength is transmitted from the first switching area to the output port 103 , and can also be regarded as being transmitted from the first switching device 109 to the output port 103 .
  • a phase grating in the dispersion direction is loaded corresponding to the first wavelength, so that the first order light of the idle light of the first wavelength exits the first exchange device
  • the angle of 109 is diffracted by ⁇ compared to the 0th-order reflected light in the dispersion direction, so that the first-order light is transmitted to the output port 103 in the dispersion direction.
  • the phase grating in the port direction is loaded corresponding to the first wavelength, so that the first-order light is transmitted from the first switching device 109 to the output port 103 In the transmission direction, and then output from the output port 103 .
  • the first wave field is ⁇ _N, which is the idle light of ⁇ _N plus a phase grating in the dispersion direction, so that the idle light of ⁇ _N exiting the first switching device 109 is deflected by + ⁇ in the dispersion direction, so that the exiting first switching device 109 is deflected by + ⁇ .
  • the exit direction of the device 109 is parallel to the normal to the dispersion direction.
  • the idle light of ⁇ _N is added with a phase grating in the port direction, so that the idle light of ⁇ _N exiting the first switching device 109 is diffracted by ⁇ compared to the 0th-order reflected light in the port direction, so that the +1st-order diffracted light is diffracted by ⁇ . transmitted to the output port 103 .
  • the signal light input by the signal light input port 101 includes the signal light of the first wavelength
  • the signal light may be transmitted from the signal light input port 101 to the output port 103 .
  • the second phase grating is the phase grating in the port direction corresponding to the first wavelength.
  • the first switching area corresponding to the first wavelength of the device 109 is loaded with a phase grating in the port direction, so that the signal light of the first wavelength is transmitted to the output port 103 in the port direction.
  • the reason why the phase grating in the dispersion direction is not used here is that the signal light of the first wavelength is reflected in the dispersion direction, and at least a part of the signal light of the first wavelength can be transmitted to the output port 103 in the dispersion direction.
  • the phase grating in the port direction is loaded, so that the signal of the first wavelength is The light is transmitted to the output port 103 in the port direction, and the phase grating in the dispersion direction is loaded, so that the signal light of the first wavelength is transmitted to the output port 103 in the dispersion direction. Therefore, the signal light of the first wavelength can be transmitted to the output port 103 .
  • the phase grating in the dispersion direction corresponding to the first wavelength is loaded, so that the signal light of the first wavelength is transmitted to the output port 103
  • any diffraction order light of the idle light of the first wavelength will not be transmitted to the signal light input port 101 and output port 103, so any diffraction order light of the idle light of the first wavelength will not be transmitted It will be transmitted to the signal light input port 101 and the output port 103 .
  • the idle light of the first wavelength is divided by the first-order and second-order light.
  • the reason why the extra-order light cannot be transmitted to the signal light input port 101 is that the output port 103 and the signal light input port 101 are in the same position in the dispersion direction, and the idle optical input port 102 and the output port 103 are not in the same position in the dispersion direction.
  • the first order light of the first wavelength can be transmitted to the phase grating of the output port 103 in the dispersion direction, and the idle light of the first wavelength cannot be transmitted to the phase grating of the output port 103.
  • the order light except the first order light is transmitted to the signal light input port 101 in the dispersion direction, so this order light cannot be transmitted to the signal light input port 101 in the dispersion direction, that is, the idle light of the first wavelength.
  • the position distribution of the order light except the first order light at the position of the signal light input port 101 is different from the position distribution of the signal light input port 101 , as shown in FIG. 4 , the first order light is +1 diffracted light. In Figure 4, all orders of the idle light of the first wavelength are in a straight line.
  • the first phase grating is the phase grating in the dispersion direction and the port direction, that is, the phase grating in the dispersion direction and the port direction
  • the direction of the superposition direction of the phase grating is shown in Figure 5.
  • the pixel position represents the pixel position in the first exchange region
  • the phase represents the phase of the phase grating applied by the light of the first wavelength.
  • the embodiment of the present application also provides another structure of the first WSS 100: the other first WSS is the same as the first WSS 100 shown in FIG. 2 .
  • the signal light input port 101 and the idle light input port 102 are arranged in parallel in FIG. Angle, as shown in FIG. 6 , a fourth lens 110 is further included on the optical path from the idle light input port 102 to the second lens 106 .
  • the structure of the other first WSS is different from the structure of the first WSS 100 , the principle of the optical transmission method is the same, and details are not repeated here.
  • Step 702 the control device determines whether the signal light input by the signal light input port 101 includes the signal light of the first wavelength
  • Step 703 when it is determined that the signal light input by the signal light input port 101 does not include the signal light of the first wavelength, the control device controls the first switching area corresponding to the first wavelength on the first switching device 109 of the first WSS, Load the phase grating in the dispersion direction and port direction required to deflect the idle light of the first wavelength;
  • Step 704 when it is determined that the signal light input by the signal light input port 101 includes the signal light of the first wavelength, the control device controls the first switching area corresponding to the first wavelength on the first switching device 109 of the first WSS, and loads the signal light of the first wavelength. a phase grating in the port direction required to deflect the signal light of the first wavelength;
  • phase grating is a phase grating in the dispersion direction
  • the difference between the first WSS 100 of the present application and the first WSS 100 shown in FIG. 2 is that the position of the idle optical input port 102 in the port direction makes the idle light of the first wavelength reflected by the first switching device 109 , and The port direction can be transmitted to the output port 103 without adding a phase grating to the port direction. Specifically, the position of the idle optical input port 102 in the port direction enables idle light of the first wavelength to be transmitted to the output port 103 after being reflected by the first switching device 109 .
  • the schematic diagram of the first WSS 100 in the dispersion direction is exactly the same as the schematic diagram of the first WSS 100 shown in FIG. 2 , and the schematic diagram in the port direction is shown in FIG. 8 , and the solid line in FIG. An optical path of a switching device 109 , the dotted line represents the optical path of idle light transmitted from the idle optical input port 102 to the first switching device 109 .
  • the idle light of the first wavelength needs to be uploaded at this time, that is, the first wavelength of the idle light of the first wavelength needs to be uploaded.
  • the primary and secondary light is transmitted from the idle optical input port 102 to the output port 103 .
  • a phase grating in the dispersion direction is loaded corresponding to the first wavelength, so that the first-order light of the first wavelength exits the first exchange device 109
  • the angle is diffracted and deflected by a certain angle in the dispersion direction (that is, the first-order light of the first wavelength is deflected by a certain angle in the 0-order reflection direction when it exits the first exchange device 109 ), and is deflected to the dispersion direction that can be transmitted to the output port 103 superior.
  • the reason for not adding the phase grating in the port direction is that the idle light of the first wavelength can be transmitted to the output port 103 in the port direction after being reflected in the port direction.
  • the signal light input by the signal light input port 101 includes the signal light of the first wavelength
  • the signal light of the first wavelength is input from the signal light input port. 101 can be transmitted to the output port 103.
  • the incident angle of the signal light of the first wavelength incident on the first switching device 109 in the dispersion direction is smaller than the target angle
  • the phase grating in the port direction is loaded in the first switching region corresponding to the first wavelength of the first switching device 109 , so that the signal light of the first wavelength is transmitted to the output port 103 in the port direction.
  • the reason for not adding the phase grating in the dispersion direction is that the sub-beam of the signal light of the first wavelength can be transmitted to the output port 103 in the dispersion direction after being reflected in the dispersion direction.
  • the phase grating in the dispersion direction is not added to the idle light of the first wavelength, and the positions of the signal light input port 101 and the idle light input port 102 are different in the dispersion direction, any idle light of the first wavelength in the dispersion direction is not in the same position. None of the diffracted order light is transmitted to the signal light input port 101 and the output port 103 , so the idle light of the first wavelength is not transmitted to the signal light input port 101 and the output port 103 .
  • the second phase grating is a phase grating in the port direction and the dispersion direction corresponding to the first wavelength.
  • the phase grating in the port direction is loaded, so that the signal light of the first wavelength is transmitted to the output port 103 in the port direction, and the phase grating in the dispersion direction is loaded,
  • the signal light of the first wavelength is transmitted to the output port 103 in the dispersion direction, so that the signal light of the first wavelength can be transmitted to the output port 103 .
  • the phase grating in the dispersion direction corresponding to the first wavelength is loaded, so that the signal light of the first wavelength is transmitted to the output port 103 , it is inevitable that the idle light of the first wavelength in the dispersion direction will not be transmitted to the signal light input port 101 and the output port 103, so any diffraction order light of the idle light of the first wavelength will not be transmitted to the signal light input port 101 and output port 103.
  • the reason why the second-order light except the first-order light among the idle light of the first wavelength cannot be transmitted to the signal light input port 101 is: the idle light of the first wavelength
  • the positional distribution of the light in the light except the first-order light at the position of the signal light input port 101 is different from that of the signal light input port 101.
  • the first-order light is +1 diffracted order light.
  • the first phase grating is a phase grating in the dispersion direction, as shown in FIG. 10 .
  • the flow of the optical transmission method is as follows:
  • Step 1102 the control device determines whether the signal light input by the signal light input port 101 includes the signal light of the first wavelength
  • Step 1103 when it is determined that the signal light input by the signal light input port 101 does not include the signal light of the first wavelength, the control device controls the first switching area corresponding to the first wavelength on the switching device of the first WSS, and loads and deflects the first switching area.
  • Step 1104 when it is determined that the signal light input by the signal light input port 101 includes the signal light of the first wavelength, the control device controls the first switching area corresponding to the first wavelength on the switching device of the first WSS, and loads and deflects the first switching area.
  • Step 1105 end.
  • the ROADM may further include a two-dimensional deflection second WSS 400, and the second WSS 400 can implement deflection in both the dispersion direction and the port direction.
  • the second WSS 400 includes an input port 401 , a signal light output port 402 and an idle light output port 403 .
  • FIG. 12 a schematic diagram of the ports of the second WSS 400 is provided. Both idle light and signal light are input through the input port 401 .
  • the signal light output port 402 is used for outputting signal light.
  • the idle light output port 403 is used to output idle light.
  • the input port 401 and the signal light output port 402 have the same position in the dispersion direction, and the signal light output port 402 and the idle light output port 403 have different positions in the dispersion direction.
  • the multiple signal light output ports 402 have the same position in the dispersion direction and different positions in the port direction, and the multiple idle optical output ports 403 have the same position in the dispersion direction and different positions in the port direction.
  • the flow of the optical transmission method for the second WSS400 is also provided:
  • Step 1301 the control device determines to acquire idle light of the second wavelength from the second WSS 400 .
  • the idle light of the second wavelength is any idle light among all idle lights.
  • the second wavelength may be the same as the first wavelength described above, or may be different from the first wavelength described above.
  • control apparatus may pre-configure the wavelength of the idle light to be downloaded as the second wavelength, or the control apparatus may receive an instruction to download the idle light, and the instruction includes the second wavelength.
  • the control device may determine to obtain idle light of the second wavelength from the second WSS 400 .
  • Step 1302 the control device controls the second WSS400 to load the third phase grating corresponding to the idle light of the second wavelength in the second exchange area corresponding to the second wavelength, wherein the third phase grating is used to transfer the idle light of the second wavelength.
  • the second-order secondary light is transmitted from the second switching area to the idle light output port corresponding to the idle light of the second wavelength, and makes the idle light of the second wavelength except the second-order secondary light of the idle light of the second wavelength. Secondary light cannot be transmitted to the signal light output port from the second switching area, which is located at the second WSS.
  • the second order light of the idle light of the second wavelength is the light transmitted to the idle light output port 403 corresponding to the idle light of the second wavelength.
  • the second order light is +1 diffraction order light.
  • the second switching area belongs to the switching device of the second WSS400 (that is, the second switching device 409 mentioned later), and the second switching area includes the position where the idle light of the second wavelength is incident on the second switching device 409 of the second WSS400, And does not include idle light of other wavelengths incident to the position of the second switching device 409 of the second WSS 400 .
  • control device can control the second WSS400 to load a third phase grating corresponding to the second wavelength in the second switching area corresponding to the second wavelength, and the third phase grating can be used to convert the idle light of the second wavelength
  • the second order light is transmitted from the second exchange area to the idle light output port 403 corresponding to the idle light of the second wavelength, and the third phase grating can also be used to divide the idle light of the second wavelength into the idle light of the second order.
  • the other orders of light cannot be transmitted from the second switching area to the signal light output port 402 , causing crosstalk to the signal light output port 402 . Therefore, when the second WSS 400 downloads idle light, crosstalk to the signal light output port 402 can also be avoided.
  • the second WSS400 device includes an input port 401, a signal light output port 402, an idle light output port 403, a second collimating mirror 404, a fourth lens 405, a fifth lens 406, a second grating 407, a first Six lenses 408 and a second exchange device 409.
  • the positions of the input port 401 and the signal light output port 402 in the dispersion direction are the same, and the positions of the input port 401 and the idle light output port 403 in the dispersion direction are different.
  • the signal light When the signal light is transmitted in the second WSS400, it sequentially passes through the input port 401, the second collimating lens 404, the fourth lens 405, the fifth lens 406, the second grating 407, the sixth lens 408, the second switching device 409, the sixth lens 408, the second Lens 408 , second grating 407 , fifth lens 406 , fourth lens 405 , second collimating mirror 404 , and signal light output port 402 .
  • the idle light When the idle light is transmitted in the second WSS400, it sequentially passes through the input port 401, the second collimating lens 404, the fourth lens 405, the fifth lens 406, the second grating 407, the sixth lens 408, the second exchange device 409, the sixth lens 408, the second Lens 408 , second grating 407 , fifth lens 406 , fourth lens 405 , second collimating mirror 404 , idle light output port 403 .
  • the second collimating mirror 404 through which the signal light and the idle light pass may be the same collimating mirror, or may not be the same collimating mirror.
  • the fourth lens 405 and the fifth lens 406 do not change the transmission direction of the light.
  • the second grating 407 is used to disperse the light input from the input port 401 into a plurality of sub-beams with different wavelengths, and each sub-beam has a different dispersion angle in the dispersion direction.
  • the light input from the input port 401 includes idle light and signal light , and the wavelengths of idle light and signal light are different.
  • the sixth lens 408 is used for converting multiple sub-beams with different dispersion angles into parallel transmission directions in the dispersion direction.
  • the sub-beams of the signal light and the idle light may be perpendicular to the second exchange device 409 in the dispersion direction, or the second exchange device 409 may be non-perpendicularly incident.
  • the sub-beams of the signal light and the idle light are perpendicularly incident on the second exchange device 409 in the dispersion direction, that is, the angle between the sub-beams of the signal light and the idle light and the normal to the dispersion direction of the second exchange device 409 is 0 degrees.
  • the sixth lens 408 is used to pass through the sixth lens 408 in the dispersion direction.
  • the beam is converted to a non-parallel transmission direction.
  • the second grating 407 is used to aggregate the sub-beams of different wavelengths in the idle light with different transmission directions in the dispersion direction into idle light, and is also used to make the sub-beams of different wavelengths in the signal light with different transmission directions in the dispersion direction. light beams, aggregated into signal light. It is transmitted to the idle light output port 403 through the fifth lens 406 , the fourth lens 405 and the second collimating mirror 404 .
  • the fourth lens 405 is used to convert the angle difference between the signal light and the idle light in the dispersion direction into the position difference in the dispersion direction.
  • the second switching device 409 may be an LCOS-based switching engine, and certainly may be other types of switching devices, which are not limited in this embodiment of the present application.
  • FIG. 14 shows the architecture diagram of the second WSS 400 in the dispersion direction, and the solid line in FIG. 12 represents the transmission of the input light (input light including signal light and idle light) from the input port 401 to the second switching device 409 of the second WSS 400
  • the optical path, the dashed line represents the optical path of the idle light transmitted from the second switching device 409 to the idle optical output port 403 .
  • the light entering the input port 401 includes signal light and idle light of the same wavelength, that is, the wavelength of the signal light input by the input port 401 in FIG. 14 is the same as the wavelength of the idle light, and both are from ⁇ _1 to ⁇ _N.
  • the input light is input from the input port 401 to the second collimating mirror 404 on the optical path of the input port 401 .
  • the fourth lens 405 and the fifth lens 406 are only used to transmit the input light to the grating 407 .
  • the second grating 407 disperses the received input light into a plurality of sub-beams with different wavelengths, for example, the plurality of different wavelengths are ⁇ _1 to ⁇ _N.
  • the sub-beams are transmitted to the second switching device 409 of the second WSS 400 through the sixth lens 408, and the sixth lens 408 converts the transmission directions of the sub-beams with different dispersion angles into parallel transmission directions in the dispersion direction.
  • the sub-beams of the input light may be perpendicular to the exchange device 409 or non-normally incident to the exchange device 409 in the dispersion direction. Taking ⁇ _1 and ⁇ _N as examples, the sub-beams loaded with idle light are deflected to the phase gratings in the dispersion direction and port direction required by the corresponding idle light output port 403 .
  • the loaded phase grating in the dispersion direction makes the angles at which the idle photon wavelength beams ⁇ _1 and ⁇ _N exit the second exchange device 409 are diffracted and deflected by an angle ⁇ in the dispersion direction, that is, the angle at which the sub-beams of the idle light exit the second exchange device 409 in the dispersion direction is ⁇ degrees, ⁇ is not zero.
  • the sixth lens 408 transmits the sub-beam ⁇ _1 of the idle light to the second grating 407 .
  • the second grating 407 aggregates the sub-beams of the idle light into idle light, and the idle light is transmitted to the idle light output port 403 corresponding to ⁇ _1 through the fifth lens 406 , the fourth lens 405 and the second collimating mirror 404 .
  • the positions of the signal output port 402 and the idle light output port 403 in the dispersion direction are different, and the fourth lens 405 converts the angle difference between the output signal light and the output idle light in the dispersion direction into the position difference in the dispersion direction.
  • FIG. 15 shows a schematic structural diagram of the second WSS 400 in FIG. 14 in the port direction.
  • the input port 401 and the signal optical output port 402 are lined up in the port direction, and the position of the idle optical output port 403 in the port direction is not limited.
  • the positions of the input port 401 and the signal light output port 402 in the dispersion direction are the same, and the positions of the idle light output port 403 and the signal light output port 402 in the dispersion direction are different.
  • the dotted line represents the optical path of idle light transmitted from the second switching device 409 to the idle optical output port 403
  • the solid line connecting the input port 401 represents the optical path of the input light transmitted to the second switching device 409, and the signal optical output port is connected
  • the solid line at 402 represents the optical path through which the signal light is transmitted from the second switching device 409 to the signal light output port 402 .
  • idle light of ⁇ _N wavelength is input from the input port 401, and transmitted to the first Two switching devices 409 .
  • the phase grating in the port direction is not loaded in the second switching area corresponding to ⁇ _N wavelength, and the second switching device 409 reflects the idle light of ⁇ _N wavelength.
  • the idle light of ⁇ _N wavelength reflected by the second exchange device 409 is transmitted to the idle light corresponding to the idle light of ⁇ _N wavelength through the sixth lens 408 , the second grating 407 , the fifth lens 406 , the fourth lens 405 and the second collimating mirror 404 Optical output port 403 .
  • idle light with wavelength ⁇ 1 is input from the input port 401 , and transmitted to the second switching device 409 through the second collimating mirror 404 , the fourth lens 405 , the fifth lens 406 , the second grating 407 and the sixth lens 408 .
  • a phase grating in the port direction is loaded in the second switching area corresponding to ⁇ _1 wavelength.
  • the second order light (ie, the +1 diffraction order light) in the idle light of wavelength ⁇ _1 diffracted by the second exchange device 409 passes through the sixth lens 408 , the second grating 407 , the fifth lens 406 , the fourth lens 405 and the third lens 408 .
  • the two collimating mirrors 404 are transmitted to the idle light output port 403 corresponding to the idle light of ⁇ _1 wavelength.
  • the second order here is the +1 diffraction order light.
  • the second-order secondary light is the 0-order reflected light.
  • the second WSS 400 downloads idle light of ⁇ _1 wavelength
  • the idle light of ⁇ _1 wavelength is loaded and deflected to the second dispersion direction and port direction of the idle optical output port 403 in the corresponding switching area on the second switching device 409.
  • phase grating Corresponding to the idle light of ⁇ _1 wavelength, the phase grating in the dispersion direction and the port direction is simultaneously loaded in the second exchange area corresponding to the idle light of ⁇ _1 wavelength, which is equivalent to loading the phase grating in the direction inclined to these two directions, that is, the first The two-phase grating is a phase grating in the dispersion direction and the port direction.
  • the distribution direction of the order light except the second diffraction order light generated by the idle light of ⁇ _1 wavelength at the position of the signal light output port 402 is inconsistent with the distribution direction of the signal light output port 402 through the second switching device 403, so Various orders of idle light with wavelength of ⁇ _1 cannot enter the signal output port 402 .
  • the second WSS 400 downloads the idle light of ⁇ _N, corresponding to the idle light of ⁇ _N wavelength, a phase grating that is deflected to the second dispersion direction of the idle light output port 403 is loaded in the second switching area corresponding to the idle light of ⁇ _N wavelength.
  • the distribution direction of the secondary light except the secondary light generated by the idle light of ⁇ _N wavelength at the position of the signal light output port 402 by the second WSS400 is inconsistent with the distribution direction of the signal light output port 402, as shown by the dotted line in FIG. 16 . As shown, the order light except the second order light of the idle light of ⁇ _N wavelength cannot enter the signal light output port 402 .
  • the signal light output port 402 and the idle light output port 403 have different positions in the dispersion direction.
  • the 0-order reflected light can be output to the signal light output port 402 in the dispersion direction, but the idle light of the second wavelength in the dispersion direction is loaded with a phase grating, so that the second-order secondary light of the idle light of the second wavelength is reflected in the 0-order light.
  • the second-order light is deflected by a certain angle on the basis of the dispersion direction, so that the second-order light is output to the idle light output port 403 in the dispersion direction, and the second-order light except the second-order light is also deflected relative to the 0-order reflected light in the dispersion direction.
  • a certain angle so the order light except the second order light will not be transmitted to the signal light output port 402 in the dispersion direction, and similarly will not be transmitted to the input port 401 in the dispersion direction.
  • the positions where light of different wavelengths enter the second exchange device 409 are different, that is, the corresponding second exchange areas are different. Since it is impossible for the input port 401 of the second WSS 400 to transmit idle light and signal light of the same wavelength at the same time, the signal light and the idle light in the light input from the input port 401 are respectively incident on different positions of the second switching device 409, so they are respectively By controlling the second switching area corresponding to the signal light and the second switching area corresponding to the idle light, the idle light can be output from the idle light output port 403 and the signal light is output from the signal light output port 402 without interfering with each other.
  • the optical transmission method provided in the embodiment of the present application can be applied to the ROADM of the C+L optical transmission system, where C represents the C-band, the wavelength range of the C-band can be 1520 nm to 1570 nm, L represents the L-band, and the wavelength of the L-band The range can be from 1572nm to 1620nm. As shown in FIG.
  • the ROADM includes a first C/L filter, a first C-band optical amplifier, a first L-band optical amplifier, a C-band first WSS, a C-band second WSS, an L-band first WSS, and an L-band Second WSS, C-band Second Optical Amplifier, L-band Second Optical Amplifier, C-band First Add Drop WSS (ADWSS), C-band Second ADWSS, L-band First ADWSS, L-band Second ADWSS and second C/L filter.
  • ADWSS C-band First Add Drop WSS
  • ADWSS C-band Second ADWSS
  • L-band First ADWSS L-band First ADWSS
  • L-band Second ADWSS and second C/L filter.
  • the first WSS of the C-band is the first WSS described above
  • the second WSS of the C-band is the second WSS described above
  • the first WSS of the L-band is the first WSS described above
  • the second WSS of the L-band is The second WSS described above.
  • the C-band and L-band light transmitted by the optical fiber enters the ROADM, and is separated by the first C/L filter, and the C-band light and the L-band light are respectively transmitted to the C-band first optical amplifier and the L-band first optical amplifier.
  • a light amplifier The light of the C-band and the light of the L-band are amplified by the first optical amplifier of the C-band and the first optical amplifier of the L-band respectively, and enter the second WSS of the C-band and the second WSS of the L-band.
  • the second C-band WSS downloads idle light in the C-band, the first ADWSS in the C-band downloads part of the C-band signal light, and the undownloaded C-band signal light is transmitted to the C-band first WSS.
  • the second L-band WSS downloads the idle light of the L-band, the first ADWSS of the L-band downloads part of the signal light of the L-band, and the unloaded signal light of the L-band is transmitted to the first L-
  • the first WSS in the C-band adopts the method of uploading the idle light in the foregoing, and uploads the idle light in the C-band
  • the first WSS in the L-band adopts the method of uploading the idle light in the foregoing, and uploads the idle light in the L-band.
  • the C-band signal light and idle light entering the C-band first WSS are processed by the C-band first WSS, and output the C-band light to the C-band second optical amplifier.
  • the L-band signal light and idle light entering the L-band first WSS are processed by the L-band first WSS, and output the L-band light to the L-band second optical amplifier.
  • the C-band light is amplified by the C-band second optical amplifier and enters the second C/L filter.
  • the L-band light is amplified by the L-band second optical amplifier and enters the second C/L filter.
  • the second C/L filter The device performs band aggregation on the light in the C band and the light in the L band, and outputs the ROADM into the next fiber for transmission.
  • the first ADWSS in the C-band receives the signal light in the C-band, the downloaded idle light in the C-band and the wavelength of the signal light in the C-band received by the first ADWSS in the C-band Are not the same.
  • the first ADWSS in the L-band receives the signal light in the L-band, and the downloaded idle light in the L-band has a different wavelength from the signal light in the L-band received by the first ADWSS in the L-band.
  • the first switching device 109 and the second switching device 409 mentioned, adding a phase grating to the first switching device 109 and the second switching device 409 are the first switching device 109 It is realized by applying an electric field to the pixel position where the exchange area of the second exchange device 409 is located.
  • FIG. 18 is a structural diagram of an optical transmission device provided by an embodiment of the present application.
  • the apparatus can be implemented by software, hardware or a combination of the two to become a part or all of the apparatus.
  • the device is applied to a ROADM, the ROADM includes a first WSS with two-dimensional deflection, the two-dimensional deflection refers to the deflection of the port direction and the deflection of the dispersion direction, and the dispersion direction is perpendicular to the port direction, and both are perpendicular to the direction of the port.
  • the optical transmission direction in the first WSS, the first WSS includes a signal optical input port, an idle optical input port, and an output port, and the signal optical input port and the idle optical input port are not located in the dispersion direction. Similarly, the positions of the signal light input port and the output port in the dispersion direction are the same.
  • the apparatus provided by the embodiment of the present application can implement the processes of FIGS. 1 , 7 , and 11 in the embodiment of the present application, and the apparatus includes: a determining module 1810 and load module 1820, where:
  • a determination module 1810 configured to determine that the signal light input by the signal light input port does not include the signal light of the first wavelength, and specifically can be used to implement the determination function in step 101 and perform the implicit steps included in step 101;
  • a loading module 1820 configured to control the first WSS in the first switching area corresponding to the first wavelength according to the position of the idle optical input port in the port direction, and load the idle optical corresponding to the first wavelength the first phase grating; wherein, the first phase grating is used to transmit the first order light of the idle light of the first wavelength to the output port through the first exchange area, and make the first order light of the idle light of the first wavelength transmitted to the output port In the idle light of one wavelength, the order light except the first order light cannot be transmitted to the signal light input port through the first switching area, and the first switching area is located in the first WSS, Specifically, it can be used to implement the loading function in step 102 and execute the implicit steps included in step 102 .
  • the loading module 1820 is used to:
  • the first WSS is controlled to load the phase grating in the dispersion direction and the port direction corresponding to the idle light of the first wavelength in the first switching region corresponding to the first wavelength.
  • the loading module 1820 is used to:
  • the first WSS In the port direction, if according to the position of the idle optical input port in the port direction, it is determined that the transmission direction of the idle light after being reflected by the first switching area corresponding to the first wavelength does not deviate from the output port, then control the first WSS to load the phase grating in the dispersion direction corresponding to the idle light of the first wavelength in the first switching area corresponding to the first wavelength.
  • the signal light input by the signal light input port includes the signal light of the first wavelength, and the signal light of the first wavelength and the idle light of the first wavelength are incident on the The positions of the first exchange regions are the same, and the incident angles in the dispersion direction are different;
  • the loading module 1820 is also used for:
  • the second phase grating is used to transmit the signal light of the first wavelength to the output port through the first switching area, so that the idle light of the first wavelength cannot pass through the first switching area A zone is transmitted to the signal light input port and the output port.
  • the loading module 1820 is further used for:
  • the first WSS is controlled in the first exchange region to load the The phase grating in the port direction and the dispersion direction corresponding to the signal light of the first wavelength.
  • the loading module 1820 is further used for:
  • the first WSS is controlled in the first exchange region to load the first WSS in the first exchange region.
  • the phase grating in the port direction corresponding to the wavelength of the signal light.
  • the signal light input port and the idle light input port are arranged in parallel or non-parallel arrangement.
  • the ROADM further includes a two-dimensionally deflected second WSS, the second WSS includes an input port, a signal optical output port, and an idle optical output port for idle light of different wavelengths, and the input port
  • the position of the signal light output port in the dispersion direction is the same as that of the signal light output port, and the positions of the idle light output port and the signal light output port in the dispersion direction are different;
  • the determining module 1810 is further configured to determine to obtain idle light of the second wavelength from the second WSS;
  • the loading module 1820 is further configured to control the second WSS to load the third phase grating corresponding to the idle light of the second wavelength in the second switching region corresponding to the second wavelength, wherein the third phase grating is The phase grating is used to transmit the second order light of the idle light of the second wavelength to the idle light output port corresponding to the idle light of the second wavelength through the second switching area, and make the second wavelength of the idle light corresponding to the idle light output port.
  • the secondary light except the second secondary light in the idle light cannot be transmitted to the signal light output port through the second switching area, and the second switching area is located in the second WSS.
  • the third phase grating is a phase grating in the dispersion direction and the port direction, or the third phase grating is a phase grating in the dispersion direction.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may also be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one
  • the processor may also exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the first phase grating since the first phase grating can be loaded, the first-order light of the idle light of the first wavelength is transmitted to the output port, and the second-order light other than the first-order light will not be transmitted to the output port. It is transmitted to the signal light input port, so the crosstalk to the signal light input port can be reduced.
  • optical transmission device when the optical transmission device provided in the above embodiments performs optical transmission, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions can be allocated to different functional modules as required. , that is, dividing the internal structure of the device into different functional modules to complete all or part of the functions described above.
  • optical transmission apparatus and the optical transmission method embodiments provided in the above embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, which will not be repeated here.
  • the embodiment of the present application also provides a computing device for optical transmission.
  • the computing device may be the control device itself (the control device is a hardware device in this case), or it may be installed with a control device (the control device is a software module in this case) .
  • FIG. 19 exemplarily provides a possible architectural diagram of a computing device 1900 .
  • Computing device 1900 includes memory 1901 , processor 1902 , communication interface 1903 , and bus 1904 .
  • the memory 1901 , the processor 1902 , and the communication interface 1903 are connected to each other through the bus 1904 for communication.
  • the memory 1901 may be a read only memory (Read Only Memory, ROM), a static storage device, a dynamic storage device, or a random access memory (Random Access Memory, RAM).
  • the memory 1901 may store programs, and when the programs stored in the memory 1901 are executed by the processor 1902, the processor 1902 and the communication interface 1903 are used to perform the method of optical transmission.
  • the memory 1901 may also store data, for example, the memory 1901 stores the wavelength of the signal light transmitted by the first WSS 100 .
  • the processor 1902 may adopt a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the processor 1902 may also be an integrated circuit chip with signal processing capability. In the implementation process, part or all of the functions of the optical transmission method of the present application may be implemented by hardware integrated logic circuits in the processor 1902 or instructions in the form of software.
  • the above-mentioned processor 1902 can also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application-specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processing
  • ASIC application-specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 1901, and the processor 1902 reads the information in the memory 1901, and combines with its hardware to complete some functions of the optical transmission apparatus of the embodiment of the present application.
  • Communication interface 1903 enables communication between computing device 1900 and other devices or communication networks using a transceiver module such as, but not limited to, a transceiver.
  • a transceiver module such as, but not limited to, a transceiver.
  • the data set can be obtained through the communication interface 1903 .
  • Bus 1904 may include pathways for communicating information between various components of computing device 1900 (eg, memory 1901, processor 1902, communication interface 1903).
  • the computer program product includes one or more computer instructions, and when the computer program instructions are loaded and executed on a server or terminal, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a server or a terminal, or a data storage device such as a server, a data center, or the like that includes the integration of one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, and a magnetic tape, etc.), an optical medium (such as a digital video disk (Digital Video Disk, DVD), etc.), or a semiconductor medium (such as a solid-state disk, etc.).
  • a magnetic medium such as a floppy disk, a hard disk, and a magnetic tape, etc.
  • an optical medium such as a digital video disk (Digital Video Disk, DVD), etc.
  • a semiconductor medium such as a solid-state disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种光传输方法、装置、计算设备和存储介质,该方法应用于光通信技术领域。该方法应用于包括二维偏转的第一WSS的ROADM,在色散方向,第一WSS的信号光输入端口与空闲光输入端口位置不相同,第一WSS的信号光输入端口与输出端口位置相同。该方法包括:确定信号光输入端口未输入第一波长信号光,根据空闲光输入端口在端口方向的位置,控制在第一波长对应的第一交换区域,加载第一波长的空闲光对应的第一相位光栅。第一相位光栅用于将该空闲光的第一级次光经过第一交换区域传输至输出端口,并使该空闲光除第一级次光之外的级次光不能经过第一交换区域传输至信号光输入端口。采用本申请,可以减少对信号光输入端口的串扰。

Description

光传输的方法、装置、计算设备和存储介质
本申请要求于2020年7月30日提交中国国家知识产权局、申请号为202010754300.4、申请名称为“光传输的方法、装置、计算设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,特别涉及一种光传输的方法、装置、计算设备和存储介质。
背景技术
随着光网络业务的迅速发展和交换容量的增加,可重构的光分插复用设备(Reconfigurable Optical Add Drop Module,ROADM)作为光交换单元需要处理的信号波段范围也在增加。然而在光纤传输系统中,由于光纤非线性受激拉曼散射(Stimulated Raman Scattering,SRS)效应的影响,短波长光的能量会转移至长波长光,所以短波长光的光信噪比(Optical Signal Noise Ratio,OSDR)会恶化,即短波长光的功率会降低。在短波长光的功率降低后,ROADM可以对短波长光进行补偿处理,比如降低长波长光信号的功率。但是由于ROADM上下波的功能导致光纤中每次空闲信道有可能不相同(即每次传输的光的波长不相同),所以会导致每次SRS效应不稳定,进而导致对短波长光进行补偿的处理比较复杂,所以需要提供一种短波长光的功率不随ROADM上下波的变化而变化的处理方案,使得SRS效应稳定。
相关技术中,是在ROADM上使用与空闲信道的波长相同的空闲光,填充空闲信道,使传输链路时刻处于满波状态,使得SRS效应稳定。具体的,ROADM中包括一维偏转的波长选择开关(Wavelength Selective Switch,WSS),该WSS包括信号光输入端口、空闲光输入端口和输出端口,信号光输入端口、空闲光输入端口和输出端口在色散方向的位置相同,信号光输入端口用于输入信号光,空闲光输入端口用于输入空闲光。空闲光的光源包括与所有信号光波长相同的空闲光。ROADM在确定从信号光输入端口输入的信号光中未包括目标波长的信号光时,确定需要传输目标波长的空闲光。空闲光的光源中的空闲光从空闲光输入端口输入至WSS的交换器件,WSS的交换器件在目标波长的空闲光的交换区域,对目标波长的空闲光进行衍射,将目标级次光(如目标级次光+1衍射级次光)传输至输出端口,实现传输目标波长的空闲光。交换区域指的是包括目标波长的光束入射至交换器件的位置,且不包括其它波长的光入射至交换器件的位置。
交换器件为硅基液晶芯片(Liquid Crystal on Silicon,LCOS),由于LCOS的边缘场效应导致LCOS无法生成理想的相位光栅,通常会将空闲光的目标级次光传输至输出端口的同时,将除目标级次光之外的级次光传输至信号光输入端口,对信号光输入端口造成串扰。
发明内容
为了减少对信号光输入端口的串扰,本申请提供一种光传输的方法、装置、计算设备和存储介质。
第一方面,本申请提供了一种光传输的方法,该方法应用于ROADM中,该ROADM包括二维偏转的第一WSS,二维偏转指端口方向的偏转和色散方向的偏转,色散方向和端口方向垂直,且均垂直于第一WSS中的光传输方向,第一WSS包括信号光输入端口、空闲光输入端口和输出端口,信号光输入端口与空闲光输入端口在色散方向的位置不相同,信号光输入端口与输出端口在色散方向的位置相同,该方法包括:确定信号光输入端口输入的信号光中未包括第一波长的信号光;根据空闲光输入端口在端口方向的位置,控制第一WSS在第一波长对应的第一交换区域,加载第一波长的空闲光对应的第一相位光栅;其中,第一相位光栅用于将第一波长的空闲光的第一级次光经过第一交换区域传输至输出端口,并使第一波长的空闲光中除第一级次光之外的级次光不能经过第一交换区域传输至信号光输入端口,第一交换区域位于第一WSS。
本申请所示的方案,该方法可以由ROADM中的控制装置执行,控制装置可以是ROADM中的一部分,也可以独立于ROADM。控制装置中存储有信号光输入端口输入的信号光的波长。控制装置可以根据存储的信号光输入端口输入的信号光的波长,判断在信号光输入端口输入的信号光中是否包括第一波长的信号光。若存储的信号光输入端口输入的信号光的波长不包括第一波长,则控制装置确定信号光输入端口输入的信号光不包括第一波长的信号光。第一波长的空闲光从空闲光输入端口进入第一WSS后,传输至第一WSS的第一交换区域。控制装置可以获取预先存储的空闲光输入端口在端口方向的位置信息,使用该位置信息,控制第一WSS在第一波长对应的第一交换区域,加载第一波长的空闲光对应的第一相位光栅。该第一相位光栅用于将第一波长的空闲光的第一级次光经过第一交换区域传输至输出端口,并且第一相位光栅还可以用于使得第一波长的空闲光中除第一级次光之外的级次光不能经过第一交换区域传输至信号光输入端口。这样,由于空闲光的第一级次光是要求传输至输出端口的光,将第一级次光传输至输出端口,可以使SRS效应稳定。而且由于空闲光中除第一级次光之外的级次光不会被传输至信号光输入端口,所以可以避免除第一级次光之外的级次光对信号光输入端口的串扰。
在一种可能的实现方式中,根据空闲光输入端口在端口方向的位置,控制第一WSS在第一波长对应的第一交换区域,加载第一波长的空闲光对应的第一相位光栅,包括:在端口方向,若根据空闲光输入端口在端口方向的位置,确定空闲光经过第一波长对应的第一交换区域的反射后的传输方向偏离输出端口,则控制第一交换区域,加载第一波长的空闲光对应的色散方向和端口方向的相位光栅。
本申请所示的方案,控制装置中存储有第一WSS的空闲光输入端口在端口方向的位置,以及该位置能否使每个波长的空闲光经过交换区域的反射后的传输方向偏离输出端口的指示信息。若控制装置根据空闲光输入端口在端口方向的位置,确定第一波长的空闲光经过第一波长对应的第一交换区域的反射后的传输方向偏离输出端口,则说明需要在端口方向加相位光栅,才能使得第一波长的空闲光经过第一交换区域后的传输方向在端口方向不偏离输出端口。而且由于输出端口与空闲光输入端口在色散方向的位置不相同,所以需要在第一交换区域加载色散方向的相位光栅,使得第一波长的空闲光经过第一交换区域后的传输方向在色散方向不偏离输出端口。因此控制装置可以控制第一交换区域,加载第一波长的空闲光对应的色散方向和端口方向的相位光栅。这样,由于信号光输入端口与空闲光输入端口在色散方向的位置不相同,在色散方向的相位光栅对不同级次光的偏转角度不相同,所以使得第一波长的空闲光的第一级次光在色散方向能传输至输出端口的相位光栅,不会使得第一级次光之外的级次光在色散方向传输至信号光输入端口,不会对信号光输入端口造成串扰。
在一种可能的实现方式中,根据空闲光输入端口在端口方向的位置,控制第一WSS在第一波长对应的第一交换区域,加载第一波长的空闲光对应的第一相位光栅,包括:在端口方向,若根据空闲光输入端口在端口方向的位置,确定空闲光经过第一波长对应的第一交换区域的反射后的传输方向未偏离输出端口,则控制第一交换区域,加载第一波长的空闲光对应的色散方向的相位光栅。
本申请所示的方案,控制装置中存储有第一WSS的空闲光输入端口在端口方向的位置,以及该位置能否使每个波长的空闲光经过交换区域的反射后的传输方向偏离输出端口的指示信息。若控制装置根据空闲光输入端口在端口方向的位置,确定第一波长的空闲光经过第一波长对应的第一交换区域的反射后的传输方向未偏离输出端口,则说明在端口方向不加相位光栅,也能使得第一波长的空闲光经过第一交换区域后的传输方向在端口方向不偏离输出端口。而且由于输出端口与空闲光输入端口在色散方向的位置不相同,所以需要在第一交换区域加载色散方向的相位光栅,使得第一波长的空闲光经过第一交换区域后的传输方向在色散方向不偏离输出端口。因此控制装置可以控制第一交换区域,加载第一波长的空闲光对应的色散方向的相位光栅。这样,由于信号光输入端口与空闲光输入端口在色散方向的位置不相同,在色散方向的相位光栅对不同级次光的偏转角度不相同,所以使得第一波长的空闲光的第一级次光在色散方向能传输至输出端口的相位光栅,不会使得第一级次光之外的级次光在色散方向传输至信号光输入端口,不会对信号光输入端口造成串扰。
在一种可能的实现方式中,信号光输入端口输入的信号光包括第一波长的信号光,第一波长的信号光与第一波长的空闲光入射至第一交换区域的位置相同,且在色散方向的入射角度不相同;该方法还包括:控制第一WSS在第一交换区域,加载第一波长的信号光对应的第二相位光栅;其中,第二相位光栅用于将第一波长的信号光经过第一交换区域传输至输出端口,并使第一波长的空闲光不能经过第一交换区域传输至信号光输入端口和输出端口。
本申请所示的方案,控制装置确定信号光输入端口输入的信号光包括第一波长的信号光,第一波长的信号光与第一波长的空闲光入射至第一交换区域的位置相同,且在色散方向的入射角度不相同。此种情况下,不需要将空闲光经过第一交换区域传输至输出端口。控制装置可以控制第一WSS在第一交换区域加载第一波长的信号光对应的第二相位光栅,第二相位光栅可以用于将第一波长的信号光经过第一交换区域传输至输出端口,并用于使第一波长的空闲光不能经过第一交换区域传输至信号光输入端口和输出端口。这样,在不需要第一波长的空闲光的情况下,第一波长的空闲光不会对信号光输入端口和输出端口造成串扰。
在一种可能的实现方式中,控制第一WSS在第一交换区域加载第一波长的信号光对应的第二相位光栅,包括:在色散方向,若第一波长的信号光入射至第一交换区域的入射角度大于或等于目标角度,则控制第一WSS在第一交换区域,加载第一波长的信号光对应的端口方向和色散方向的相位光栅。
本申请所示的方案,在信号光输入端口输入第一波长的信号光时,此时第一WSS仅将第一波长的信号光传输至输出端口即可,而不需要将第一波长的空闲光的任何级次光传输至输出端口。在色散方向,第一波长的信号光入射至第一WSS的第一交换区域的入射角度大于或等于目标角度的情况下,此时由于信号光输入端口和输出端口在色散方向的位置相同,但是非垂直入射至第一交换区域,所以需要给第一波长的信号光加色散方向的相位光栅,才能传输至输出端口,即需要在色散方向加相位光栅。在端口方向,由于信号光输入端口与输出端口在端口方向位置不相同,所以需要加端口方向相位光栅,才能使第一波长的信号光在端口方向传输至输出端口。而且由于在色散方向第一波长的空闲光与第一波长的信号光入射第一 交换区域的入射角度不相同,说明将第一波长的信号光传输至输出端口,在出射第一交换区域时所需的偏转角度,不能使第一波长的空闲光传输至输出端口,所以在色散方向能使第一波长的信号光传输至输出端口的相位光栅,不能使第一波长的空闲光传输至输出端口。而且由于第一波长的空闲光不能传输至信号光输入端口所在的色散方向上,所以不能使得第一波长的空闲光传输至信号光输入端口,所以在色散方向不能使得第一波长的空闲光传输至信号光输入端口和输出端口,不会对信号光输入端口和输出端口造成串扰。
在一种可能的实现方式中,控制第一WSS在第一交换区域加载第一波长的信号光对应的第二相位光栅,包括:在色散方向,若第一波长的信号光入射至第一交换区域的入射角度小于目标角度,则控制第一WSS在第一交换区域,加载第一波长的信号光对应的端口方向的相位光栅。
本申请所示的方案,在信号光输入端口输入第一波长的信号光时,此时第一WSS仅将第一波长的信号光传输至输出端口即可,而不需要将第一波长的空闲光的任何级次光传输至输出端口。在色散方向,第一波长的信号光入射至第一WSS的第一交换区域的入射角度小于目标角度(目标角度比较小)的情况下,此时由于信号光输入端口和输出端口在色散方向的位置相同,所以第一波长的信号光中至少有一部分能经过第一交换区域的反射,传输至输出端口,所以不需要在色散方向加相位光栅。在端口方向,由于信号光输入端口与输出端口在端口方向位置不相同,所以需要加相位光栅,才能使第一波长的信号光在端口方向传输至输出端口。而且由于第一波长的空闲光在色散方向没有相位光栅,且在色散方向第一波长的空闲光与第一波长的信号光入射第一交换器件的入射角度不相同,所以在色散方向不能使得第一波长的空闲光传输至信号光输入端口和输出端口,不会对信号光输入端口和输出端口造成串扰。
在一种可能的实现方式中,在色散方向,信号光输入端口与空闲光输入端口平行排布或非平行排布。这样,第一WSS的信号光输入端口和空闲光输入端口的结构更灵活。
在一种可能的实现方式中,ROADM还包括二维偏转的第二WSS,第二WSS包括输入端口、信号光输出端口和不同波长空闲光的空闲光输出端口,输入端口和信号光输出端口在色散方向的位置相同,空闲光输出端口和信号光输出端口在色散方向的位置不相同;该方法还包括:确定从第二WSS获取第二波长的空闲光;控制第二WSS在第二波长对应的第二交换区域,加载第二波长的空闲光对应的第三相位光栅,其中,第三相位光栅用于将第二波长的空闲光的第二级次光经过第二交换区域传输至第二波长的空闲光对应的空闲光输出端口,并使第二波长的空闲光中除第二波长的空闲光的第二级次光之外的级次光,不能经过第二交换区域传输至信号光输出端口,第二交换区域位于第二WSS。
本申请所示的方案,ROADM中还可以包括二维偏转的第二WSS,第二WSS可以包括输入端口、信号光输出端口和不同波长空闲光的空闲光输出端口,输入端口和信号光输出端口在色散方向的位置相同,空闲光输出端口和信号光输出端口在色散方向的位置不相同。控制装置可以预先配置需要下载的空闲光的波长为第二波长,或者控制装置可以接收到下载空闲光的指令,该指令中包括第二波长。控制装置可以确定从第二WSS获取第二波长的空闲光。控制装置可以控制第二WSS在第二波长对应的第二交换区域,加载第二波长对应的第三相位光栅,该第三相位光栅可以用于将第二波长的空闲光的第二级次光经过第二交换区域传输至第二波长的空闲光对应的空闲光输出端口,并且第三相位光栅还可以用于将第二波长的空闲光中除第二级次光之外的级次光不能经过第二交换区域传输至信号光输出端口,所以在第二WSS下载空闲光时,还可以避免对信号光输出端口造成串扰。
在一种可能的实现方式中,第三相位光栅为色散方向和端口方向的相位光栅,或者第三相位光栅为色散方向的相位光栅。
本申请所示的方案,在端口方向,若根据输入端口在端口方向的位置,确定第二波长的空闲光经过第二波长对应的第二交换区域的反射后的传输方向未偏离第二波长的空闲光输出端口,则控制第二交换区域,加载第二波长的空闲光对应的色散方向的相位光栅。在端口方向,若根据输入端口在端口方向的位置,确定第二波长的空闲光经过第二波长对应的第二交换区域的反射后的传输方向偏离第二波长的空闲光输出端口,则控制第二交换区域,加载第二波长的空闲光对应的色散方向和端口方向的相位光栅。
第二方面,本申请提供了一种光传输的装置,该装置包括一个或多个模块,用于实现第一方面或第一方面的任意一种可能的实现方式提供的方法。
第三方面,本申请还提供一种计算设备,所述计算设备包括存储器和处理器,所述存储器用于存储一组计算机指令;所述处理器执行所述存储器存储的一组计算机指令,以使得所述计算设备执行第一方面或第一方面的任意一种可能的实现方式提供的方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序代码,当所述计算机程序代码被计算设备执行时,所述计算设备执行前述第一方面或第一方面的任意一种可能的实现方式中提供的方法。
第五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,在所述计算机程序代码被计算设备执行时,所述计算设备执行前述第一方面或第一方面的任意可能的实现方式中提供的方法。
附图说明
图1是本申请一个示例性实施例提供的光传输的方法的流程示意图;
图2是本申请一个示例性实施例提供的第一WSS在色散方向的示意图;
图3是本申请一个示例性实施例提供的第一WSS在端口方向的示意图;
图4是本申请一个示例性实施例提供的第一WSS的端口排布示意图;
图5是本申请一个示例性实施例提供的第一相位光栅的示意图;
图6是本申请一个示例性实施例提供的第一WSS在色散方向的示意图;
图7是本申请一个示例性实施例提供的光传输的方法的流程示意图;
图8是本申请一个示例性实施例提供的第一WSS在端口方向的示意图;
图9是本申请一个示例性实施例提供的第一WSS的端口排布示意图;
图10是本申请一个示例性实施例提供的第一相位光栅的示意图;
图11是本申请一个示例性实施例提供的光传输的方法的流程示意图;
图12是本申请一个示例性实施例提供的第二WSS的结构示意图;
图13是本申请一个示例性实施例提供的光传输的方法的流程示意图;
图14是本申请一个示例性实施例提供的第二WSS在色散方向的示意图;
图15是本申请一个示例性实施例提供的第二WSS在端口方向的示意图;
图16是本申请一个示例性实施例提供的第二WSS的端口排布示意图;
图17是本申请一个示例性实施例提供的ROADM的示意图;
图18是本申请一个示例性实施例提供的光传输的方法的结构示意图;
图19是本申请一个示例性实施例提供的光传输的计算设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
为了便于对本申请实施例的理解,下面首先介绍所涉及到的名词的概念:
1、SRS效应,是光与硅原子振动模式间相互作用有关的宽带效应。在通常情况下,SRS效应使得短波长的信号能量被衰减,长波长的信号能量被增强。
2、ROADM,是光网络中的一种节点,通过远程的配置,可以动态调整业务波长进行上下波或者交换,并且业务波长的信号的功率也是可以调整的。
在本实施例中,首先定义色散方向、光传输方向和端口方向。色散方向,也可以称为是波长方向,定义为Y方向,色散方向指色散组件将光束在空间分离成不同波长的子光束的方向。如果色散组件为光栅,色散方向为与光栅的刻线垂直的方向。光传输方向定义Z方向。端口方向,也可以称为是交换方向,定义为X方向,是与Y方向和Z方向均垂直的方向,在色散组件为光栅的情况下,端口方向为与光栅刻线平行的方向。
本申请实施例提供的光传输的方法,可以应用于ROADM中,该ROADM包括二维偏转的第一WSS100,此处二维偏转指的是端口方向的偏转和色散方向的偏转,对于一个二维偏转的WSS,该WSS在色散方向和端口方向均可以实现对光束的偏转。
第一WSS100包括信号光输入端口101、空闲光输入端口102和输出端口103。信号光输入端口101用于输入信号光至第一WSS100,信号光输入端口101的数目不做限制,但是不同的信号光输入端口101输入的信号光不能是相同波长的信号光,一个信号光输入端口101可以输入多个不同波长的信号光。空闲光输入端口102可以为1个,空闲光输入端口102用于将空闲光光源输出的空闲光输入至第一WSS100中;输出端口103用于输出信号光和空闲光。具体的,在信号光输入端口101未输入某个波长的信号光时,输出端口103可以用于输出该波长的空闲光,在信号光输入端口101输入某个波长的信号光时,输出端口103可以用于输出该波长的信号光。信号光输入端口101与空闲光输入端口102在色散方向的位置不相同,信号光输入端口101与输出端口103在所述色散方向的位置相同。
在本实施中,信号光为调制有数据的光,空闲光是光源直接发出的光,没有调制数据,空闲光也可以称为是假光、虚拟光等。另外,为了减少对空闲光光源的控制,在本实施例中,空闲光光源均是发出多个波长的空闲光,多个波长与ROADM或链路中可传输的信号光的波长相同。这样,即使在信号光输入端口101输入的信号光中包括第一波长的信号光,也会从空闲光输入端口102输入第一波长的空闲光。
在实现光传输的方法时,该光传输的方法的执行主体可以是ROADM,具体可以是ROADM中的控制装置,当然该光传输的方法的执行主体也可以是与ROADM连接的控制装置,本申请实施例不做限定。
如图1所示,在第一WSS100的信号光输入端口101未输入第一波长的信号光时,第一波长的空闲光会输出至输出端口103,光传输的方法的流程可以为:
步骤101,控制装置确定信号光输入端口101输入的信号光中未包括第一波长的信号光。
其中,第一波长指的是ROADM传输的信号光中的任一信号光的波长。
在本实施例中,控制装置中存储有信号光输入端口101输入的信号光的波长。控制装置 可以根据存储的信号光输入端口101输入的信号光的波长,判断在信号光输入端口101输入的信号光中是否包括第一波长的信号光。若存储的信号光输入端口101输入的信号光的波长包括第一波长,则控制装置确定信号光输入端口101输入的信号光包括第一波长的信号光。若存储的信号光输入端口101输入的信号光的波长不包括第一波长,则控制装置确定信号光输入端口101输入的信号光不包括第一波长的信号光。
步骤102,控制装置根据空闲光输入端口102在端口方向的位置,控制第一WSS100在第一波长对应的第一交换区域,加载第一波长的空闲光对应的第一相位光栅;其中,第一相位光栅用于将第一波长的空闲光的第一级次光经过第一交换区域传输至输出端口103,并使第一波长的空闲光中除该第一级次光之外的级次光不能经过第一交换区域传输至信号光输入端口101。
其中,第一波长的空闲光第一级次光为第一波长的空闲光中传输至输出端口103的光。例如,第一级次光为+1衍射级次光等。第一交换区域属于第一WSS100的交换器件(即后文中提到的第一交换器件109),第一交换区域指的是包括第一波长的空闲光入射至第一WSS100的第一交换器件109的位置,且不包括其它波长的光入射至该第一交换器件109的位置。
在本实施例中,第一波长的空闲光从空闲光输入端口102进入第一WSS100后,传输至第一WSS100的第一交换区域。控制装置可以获取预先存储的空闲光输入端口102在端口方向的位置信息,使用该位置信息,控制第一WSS100在第一波长对应的第一交换区域,加载第一波长的空闲光对应的第一相位光栅。该第一相位光栅用于将第一波长的空闲光的第一级次光经过第一交换区域传输至输出端口103,并且第一相位光栅还可以用于使得第一波长的空闲光中除第一级次光之外的级次光不能经过第一交换区域传输至信号光输入端口101。
这样,由于空闲光的第一级次光是要求传输至输出端口103的光,将第一级次光传输至输出端口103,可以使SRS效应稳定。而且,由于空闲光中除第一级次光之外的级次光不会被传输至信号光输入端口101,所以可以避免除第一级次光之外的级次光对信号光输入端口101的串扰。此处假设第一级次光为+1衍射级次光,除第一级次光之外的级次光为0级反射光、-1衍射级次光、±2衍射级次光、±3衍射级次光等
在一种可能的实现方式中,控制装置中存储有第一WSS的空闲光输入端口102在端口方向的位置,以及该位置能否使每个波长的空闲光经过交换区域的反射后的传输方向偏离输出端口103的指示信息,并且对应每个波长的空闲光,还存储有所加载的相位光栅的信息,该信息可以是实现相位光栅所需的电压等。控制装置可以在存储的指示信息中,确定第一波长的空闲光经过第一交换区域的反射后的传输方向偏离输出端口103,即确定空闲光输入端口102在端口方向的位置不能使第一波长的空闲光被第一WSS100的第一交换区域反射至输出端口103,则控制装置可以控制第一WSS100,在第一波长对应的第一交换区域,加载端口方向的相位光栅,才能使得第一波长的空闲光的第一级次光在端口方向传输至输出端口103。而且在色散方向,由于输出端口103与空闲光输入端口102在色散方向位置不相同,所以必须使得第一波长的空闲光的第一级次光在色散方向有一定的偏转,才能传输至输出端口103,所以也需要加载色散方向的相位光栅。综上可知,第一相位光栅为色散方向和端口方向的相位光栅,控制装置可以在第一交换区域加载第一波长对应的色散方向和端口方向的相位光栅。
在一种可能的实现方式中,控制装置中存储有第一WSS的空闲光输入端口102在端口方向的位置,以及该位置能否使每个波长的空闲光经过交换区域的反射后的传输方向偏离输出端口103的指示信息,并且对应每个波长的空闲光,还存储有所加载的相位光栅的信息,该 信息可以是实现相位光栅所需的电压等。控制装置可以在存储的指示信息中,确定第一波长的空闲光经过第一交换区域的反射后的传输方向未偏离输出端口103,即确定空闲光输入端口102在端口方向的位置能使第一波长的空闲光被第一WSS100的第一交换区域反射至输出端口103,说明在端口方向,不加载相位光栅,也能使第一波长的空闲光传输至输出端口103。而且在色散方向,由于信号光输入端口101与空闲光输入端口102在色散方向的位置不相同,信号光输入端口101与输出端口103在色散方向位置相同,必须使得第一波长的空闲光在色散方向有一定的偏转,才能传输至输出端口103,所以需要加载色散方向的相位光栅。综上可知,第一相位光栅为色散方向的相位光栅,控制装置可以在第一交换区域加载第一波长对应的色散方向的相位光栅。
这样,在需要第一波长的空闲光时,由于第一波长的空闲光的第一级次光是要求传输至输出端口103的光,将第一级次光传输至输出端口103,可以使SRS效应稳定。而且在色散方向,输出端口103和信号光输入端口101在色散方向的位置相同,空闲光输入端口102与输出端口103在色散方向的位置不相同,由于一个相位光栅对不同级次光的偏转角度不相同,所以使第一波长的空闲光第一级次光在色散方向能传输至输出端口103的相位光栅,不能使第一波长的空闲光中除第一级次光之外的级次光在色散方向传输至信号光输入端口101,所以除第一级次光之外的级次光在色散方向上不能传输至信号光输入端口101,即第一波长的空闲光中除该第一级次光之外的级次光在信号光输入端口101位置处的位置分布与信号光输入端口101的位置分布不相同,所以可以避免除第一级次光之外的级次光对信号光输入端口101的串扰。
在一种可能的实现方式中,ROADM中的业务波长是动态调整的,所以有可能某些情况下,从信号光输入端口101输入的信号光包括第一波长的信号光。这样,第一波长的空闲光就不需要传输至输出端口103,而且为了使第一波长的空闲光不对信号光输入端口101造成串扰,第一波长的空闲光的任何级次光也不能传输至信号光输入端口101。在信号光输入端口101输入的信号光包括第一波长的信号光的情况下,第一波长的信号光与第一波长的空闲光入射至第一WSS100的第一交换区域的位置相同(说明第一波长入射至第一交换器件109的位置相同),且在色散方向入射至第一交换区域的入射角度不相同,处理为:
控制装置控制第一WSS100在第一波长对应第一交换区域,加载第一波长的信号光对应的第二相位光栅,其中,第二相位光栅用于将第一波长的信号光经过第一交换区域传输至输出端口103,并且使得第一波长的空闲光不能经过第一交换区域传输至信号光输入端口101和输出端口103。
在本实施例中,控制装置可以控制第一WSS100,在第一波长对应的第一交换区域,加载第一波长的信号光对应的第二相位光栅,该第二相位光栅可以用于将第一波长的信号光经过第一交换区域传输至输出端口103,并且还可以使得第一波长的空闲光的所有级次光不能经过第一交换区域,传输至信号光输入端口101和输出端口103。所以在不需要第一波长的空闲光的情况下,第一波长的空闲光不会对信号光输入端口101和输出端口103造成串扰。
在一种可能的实现方式中,在信号光输入端口101输入第一波长的信号光时,此时第一WSS100仅将第一波长的信号光传输至输出端口103即可,而不需要将第一波长的空闲光的任何级次光传输至输出端口103。在这种情况下,在色散方向,第一波长的信号光入射至第一WSS的第一交换器件109的入射角度小于目标角度,目标角度比较小,如目标角度为1度等,此时由于信号光输入端口101和输出端口103在色散方向的位置相同,所以第一波长的信号光经过第一交换区域的反射,第一波长的信号光中至少有部分信号光可传输至输出端 口103,所以不需要在色散方向加相位光栅。在端口方向,由于信号光输入端口101与输出端口在端口方向位置不相同,所以需要加相位光栅,才能使第一波长的信号光在端口方向传输至输出端口103。而且由于第一波长的空闲光在色散方向没有相位光栅,且在色散方向第一波长的空闲光与第一波长的信号光入射第一交换区域的入射角度不相同,所以在色散方向不能使得第一波长的空闲光传输至信号光输入端口101和输出端口103。
此处需要说明的是,在在色散方向,第一波长的信号光入射至第一WSS的第一交换器件109的入射角度小于目标角度,且入射角度不是0度时,不考虑传输损耗,第一波长的信号光中有部分信号光可传输至输出端口103,在入射角度为0度时,不考虑传输损耗,第一波长的信号光全部可传输至输出端口103。
在一种可能的实现方式中,在信号光输入端口101输入第一波长的信号光时,此时第一WSS100仅将第一波长的信号光传输至输出端口103即可,而不需要将第一波长的空闲光传输至输出端口103。在这种情况下,在色散方向,第一波长的信号光入射至第一WSS的第一交换区域的入射角度大于或等于目标角度,此时由于信号光输入端口101和输出端口103在色散方向的位置相同,且入射至第一交换区域的入射角度比较大,所以需要给第一波长的信号光加色散方向的相位光栅,才能传输至输出端口103,所以需要在色散方向加相位光栅。在端口方向,由于信号光输入端口101与输出端口103在端口方向位置不相同,所以需要加端口方向相位光栅,才能使第一波长的信号光在端口方向传输至输出端口103。
而且由于在色散方向第一波长的空闲光与第一波长的信号光入射第一交换区域的入射角度不相同,说明将第一波长的信号光传输至输出端口103,在出射第一交换区域时所需的偏转角度,不能使第一波长的空闲光传输至输出端口103,所以在色散方向能使第一波长的信号光传输至输出端口103的相位光栅,不能使第一波长的空闲光传输至输出端口103。而且由于第一波长的空闲光不能传输至信号光输入端口101所在的色散方向上,所以不能使得第一波长的空闲光传输至信号光输入端口101,所以在色散方向不能使得第一波长的空闲光传输至信号光输入端口101和输出端口103。
需要说明的是,在制作完成第一WSS100的产品后,控制装置中存储需要空闲光时,加载每个波长的空闲光对应的相位光栅所需的电压信息,控制装置直接获取该电压信息,在空闲光对应的交换区域加该电压信息指示的电压,即可实现该空闲光输出至输出端口103所需的相位光栅。控制装置中存储需要信号光时,加载每个波长的信号光对应的相位光栅所需的电压信息,控制装置直接获取该电压信息,在信号光对应的交换区域加该电压信息指示的电压,即可实现该信号光输出至输出端口103所需的相位光栅。
为了更好的理解本申请实施例,还提供了多种第一WSS100的结构示意图:
1、在第一相位光栅为色散方向和端口方向的相位光栅的情况下:
第一WSS100的结构示意图如图2所示,第一WSS100包括信号光输入端口101、空闲光输入端口102、输出端口103、第一准直镜104、第一透镜105、第二透镜106、第一光栅107、第三透镜108和第一交换器件109。其中,信号光输入端口101与输出端口103在色散方向的位置相同,信号光输入端口101与空闲光输入端口102在色散方向的位置不相同。信号光在第一WSS100传输时,依次经过信号光输入端口101、第一准直镜104、第一透镜105、第二透镜106、第一光栅107、第三透镜108、第一交换器件109、第三透镜108、第一光栅107、第二透镜106、第一透镜105、第一准直镜104、输出端口103。空闲光在第一WSS100传输时,依次经过空闲光输入端口102、第一准直镜104、第一透镜105、第二透镜106、第一光栅107、第三透镜108、第一交换器件109、第三透镜108、第一光栅107、第二透镜106、 第一透镜105、第一准直镜104、输出端口103。信号光与空闲光经过的第一准直镜104可以是同一个准直镜,也可以不是同一个准直镜。在本申请实施例中,第一交换器件109可以是基于硅基液晶(Liquid Crystal on Silicon,LCOS)的交换引擎,当然也可以是其他类型的交换器件,本申请实施例不做限定。
在图2中,对于第一WSS100,光传输至第一交换器件109的传输过程中,第一透镜105用于将信号光与空闲光在色散方向的位置差异转换为色散方向的角度差异。在色散方向,第二透镜106用于将经过第一透镜105之后的信号光和空闲光转换为平行传输方向。在色散方向,第三透镜108用于将经过第三透镜108之后相同波长的信号光和空闲光入射至第一交换器件109的同一位置。第一光栅107用于在色散方向使信号光中不同波长的信号光色散分离到不同的传输方向,还用于使空闲光中不同波长的空闲光色散分离到不同的传输方向。
对于第一WSS100,光从第一交换器件109传输至的输出端口103的传输过程中,在色散方向,第三透镜108用于将经过第三透镜108之后不同波长的空闲光输入至第一光栅107的相同位置,还用于将经过第三透镜108之后不同波长的信号光输入至第一光栅107的相同位置。在色散方向,第二透镜106用于将经过第一光栅107之后的信号光和空闲光转为非平行传输方向。第一透镜105用于将信号光与空闲光在色散方向的角度差异转换为在色散方向的位置差异。第一光栅107用于使信号光中传输方向不相同的不同波长的信号光的子光束,在色散方向合成一束信号光,还用于使空闲光中传输方向不相同的不同波长的空闲光的子光束,在色散方向合成一束空闲光。
图2中示出了第一WSS100在色散方向的架构图,图2中实线代表信号光从信号光输入端口101传输至第一交换器件109的光路,虚线代表空闲光从空闲光输入端口102传输至第一交换器件109的光路。并且在图2中在色散方向,从上到下波长依次为λ_1…λ_N。N表示ROADM中所能传输的信号光的数目。
在图2中,假设信号光与空闲光的波长相同,均包括λ_1…λ_N,信号光从信号光输入端口101输入至信号光输入端口101的光路上的第一准直镜104。空闲光从空闲光输入端口102输入至空闲光输入端口102的光路上的第一准直镜104。第一透镜105将信号光与空闲光在色散方向的位置差异转换为色散方向的角度差异,并且传输至第二透镜106。第二透镜106将信号光与空闲光传输至第一光栅107,第一光栅107将接收到的信号光色散成多个波长的子光束,并将空闲光色散成多个波长的子光束,如多个波长为λ1至λN,信号光的不同波长的子光束的色散角度不相同,空闲光的不同波长的子光束的色散角度不相同。经过第一光栅107获得的子光束经过第三透镜108传输至第一WSS的第一交换器件109,同时第三透镜108在色散方向将不同色散角度的子光束的传输方向转换为平行传输方向。信号光的子光束在色散方向可以垂直入射第一交换器件109,或者非垂直入射第一第交换器件109,图2示出的是信号光的子光束在色散方向垂直入射第一交换器件109。相同波长的信号光的子光束与空闲光的子光束传输至第一交换器件109相同位置,相同波长的信号光的子光束与空闲光的子光束在色散方向入射第一交换器件109的入射角度不相同,入射角度差为θ,θ不为零。
图3示出了图2中的第一WSS100在端口方向的架构图,输出端口103和信号光输入端101口在端口方向一字排开,即输出端口103和信号光输入端口101在端口方向上位于一条直线上。空闲光输入端口102在端口方向的位置使得空闲光经过第一WSS100的第一交换器件109的反射,偏离输出端口103。图3中,虚线表示空闲光从空闲光输入端口102传输至第一交换器件109的光路,0级反射光指第一波长的空闲光被第一交换器件109反射后的传输方向。实线表示信号光从信号光输入端口101传输至第一交换器件109的光路。
针对图2和图3的第一WSS100的示意图,在信号光输入端口101输入的信号光中未包括第一波长的信号光时,此时需要上载第一波长的空闲光,即需要将第一波长的空闲光从第一交换区域传输至输出端口103,也可以认为是从第一交换器件109传输至输出端口103。在色散方向,在第一交换器件109的第一波长对应的第一交换区域,对应第一波长加载色散方向的相位光栅,使得第一波长的空闲光的第一级次光出射第一交换器件109的角度在色散方向上相比0级反射光衍射偏转θ,使该第一级次光在色散方向传输至输出端口103。在端口方向,在第一交换器件109的第一波长的第一交换区域,对应第一波长加载端口方向的相位光栅,使得该第一级次光从第一交换器件109传输至输出端口103的传输方向上,进而从输出端口103输出。例如,图2所示,第一波场为λ_N,为λ_N的空闲光加色散方向的相位光栅,使得出射第一交换器件109的λ_N的空闲光在色散方向偏转+θ,使得出射第一交换器件109的出射方向与色散方向的法线平行。图3所示,为λ_N的空闲光加端口方向的相位光栅,使得出射第一交换器件109的λ_N的空闲光在端口方向相比0级反射光衍射偏转φ,使得+1级衍射级次光传输至输出端口103。
针对图2和图3的第一WSS100的示意图,在信号光输入端口101输入的信号光中包括第一波长的信号光时,此时无需上载第一波长的空闲光,仅将第一波长的信号光从信号光输入端口101传输至输出端口103即可。此时若第一波长的信号光的子光束在色散方向入射至第一交换器件109的入射角度小于目标角度,则第二相位光栅为第一波长对应的端口方向的相位光栅,在第一交换器件109的第一波长对应的第一交换区域,加载端口方向的相位光栅,使得第一波长的信号光在端口方向传输至输出端口103。此处不用加色散方向的相位光栅的原因为:第一波长的信号光在色散方向上经过反射,至少有一部分第一波长的信号光可在色散方向上传输至输出端口103。这样,由于在第一波长对应的第一交换区域,未给第一波长的空闲光加色散方向的相位光栅,且信号光输入端口101与空闲光输入端口102在色散方向的位置不相同,所以在色散方向上第一波长的空闲光会偏离信号光输入端口101和输出端口103,因此第一波长的空闲光的任何衍射级次光不会传输至信号光输入端口101和输出端口103。若第一波长的信号光在色散方向入射至第一交换器件109的入射角度大于或等于目标角度,在第一波长的第一交换区域中,加载端口方向的相位光栅,使得第一波长的信号光在端口方向传输至输出端口103,并且加载色散方向的相位光栅,使得第一波长的信号光在色散方向传输至输出端口103,因此,第一波长的信号光能传输至输出端口103。而且由于第一波长的信号光和第一波长的空闲光在色散方向上入射角度不相同,所以在加载第一波长对应的色散方向的相位光栅,使得第一波长的信号光传输至输出端口103时,必然在色散方向上,会使得第一波长的空闲光的任何衍射级次光不会传输至信号光输入端口101和输出端口103,因此第一波长的空闲光的任何衍射级次光不会传输至信号光输入端口101和输出端口103。
在图2和图3所示的第一WSS100的结构示意图,在信号光输入端口101输入的信号光中未包括第一波长的信号光时,第一波长的空闲光除第一级次光之外的级次光不能传输至信号光输入端口101的原因为:输出端口103和信号光输入端口101在色散方向的位置相同,空闲光输入端口102与输出端口103在色散方向的位置不相同,而且由于一个相位光栅对不同级次光的偏转角度不相同,所以使第一波长的空闲光第一级次光在色散方向能传输至输出端口103的相位光栅,不能使第一波长的空闲光中除第一级次光之外的级次光在色散方向传输至信号光输入端口101,所以该级次光在色散方向上不能传输至信号光输入端口101,即第一波长的空闲光中除第一级次光之外的级次光的在信号光输入端口101位置处的位置分布与信号光输入端口101的位置分布不相同,如图4所示,第一级次光为+1衍射级次光。在图4 中,第一波长的空闲光的所有级次光在一条直线上。
另外,对应图2和图3所示的第一WSS100的结构示意图,在需要上载第一波长的空闲光时,第一相位光栅为色散方向和端口方向的相位光栅,即为在色散方向和端口方向的叠加方向的相位光栅,如图5所示。在图5中,像素位置表示第一交换区域中的像素位置,相位表示为第一波长的光所加的相位光栅的相位。
在第一相位光栅为色散方向和端口方向的相位光栅的情况下,本申请实施例还提供了另一种第一WSS100的结构:该另一种第一WSS与图2所示的第一WSS100的区别仅在于:在色散方向,图2中信号光输入端口101与空闲光输入端口102是平行排布,而此处信号光输入端口101与空闲光输入端口102非平行排布,存在一定的角度,如图6所示,在空闲光输入端口102至第二透镜106的光路上还包括第四透镜110。该另一种第一WSS的结构,虽然与第一WSS100的结构不相同,但是光传输的方法原理是相同的,此处不再赘述。
在上述两种第一WSS100的结构中,如图7所示,考虑第一波长的信号光入射第一交换器件109的入射角度小于目标角度,光传输方法的流程为:
步骤701,开始;
步骤702,控制装置判断信号光输入端口101输入的信号光中是否包括第一波长的信号光;
步骤703,在确定信号光输入端口101输入的信号光中不包括第一波长的信号光的情况下,控制装置控制第一WSS的第一交换器件109上第一波长对应的第一交换区域,加载偏转第一波长的空闲光所需的色散方向和端口方向的相位光栅;
步骤704,在确定信号光输入端口101输入的信号光中包括第一波长的信号光的情况下,控制装置控制第一WSS的第一交换器件109上第一波长对应的第一交换区域,加载偏转第一波长的信号光所需的端口方向的相位光栅;
步骤705,结束。
2、在第一相位光栅为色散方向的相位光栅的情况下:
本申请的另一种第一WSS100与图2所示的第一WSS100的区别在于:空闲光输入端口102在端口方向上的位置使得第一波长的空闲光经过第一交换器件109的反射,在端口方向可以传输至输出端口103,此时无需在端口方向上加相位光栅。具体的,空闲光输入端口102在端口方向的位置,能使得第一波长的空闲光经过第一交换器件109的反射,可以传输至输出端口103。
第一WSS100在色散方向的示意图与图2所示的第一WSS100的示意图完全相同,在端口方向的示意图如图8所示,图8中实线代表信号光从信号光输入端口101传输至第一交换器件109的光路,虚线代表空闲光从空闲光输入端口102传输至第一交换器件109的光路。
在图8的示意图中,在信号光输入端口101输入的信号光中未包括第一波长的信号光时,此时需要上载第一波长的空闲光,即需要将第一波长的空闲光的第一级次光从空闲光输入端口102传输至输出端口103。在色散方向,在第一交换器件109的第一波长对应的第一交换区域中,对应第一波长加载色散方向的相位光栅,使得第一波长的第一级次光出射第一交换器件109的角度在色散方向上衍射偏转一定角度(即使得第一波长的第一级次光出射第一交换器件109时在0级反射方向上偏转一定角度),偏转至能传输至输出端口103的色散方向上。不用加端口方向的相位光栅的原因为:第一波长的空闲光在端口方向上经过反射,即可在端口方向上传输至输出端口103。
在图8的示意图中,在信号光输入端口101输入的信号光中包括第一波长的信号光时, 此时无需上载第一波长的空闲光,将第一波长的信号光从信号光输入端口101传输至输出端口103即可。此时若第一波长的信号光在色散方向入射至第一交换器件109的入射角度小于目标角度,则在第一交换器件109的第一波长对应的第一交换区域,加载端口方向的相位光栅,使得第一波长的信号光在端口方向传输至输出端口103。不用加色散方向的相位光栅的原因为:第一波长的信号光的子光束在色散方向上经过反射,即可在色散方向上传输至输出端口103。这样,由于未给第一波长的空闲光加色散方向的相位光栅,且在色散方向信号光输入端口101与空闲光输入端口102位置不相同,所以在色散方向上第一波长的空闲光的任何衍射级次光均不会传输至信号光输入端口101和输出端口103,因此第一波长的空闲光不会传输至信号光输入端口101和输出端口103。
若第一波长的信号光在色散方向入射至第一交换器件109的入射角度大于或等于目标角度,说明使得第一波长的信号光在色散方向能传输至输出端口103时,需要在色散方向上进行偏转,所以第二相位光栅为第一波长对应的端口方向和色散方向的相位光栅。这样,在第一交换器件109的第一波长的第一交换区域中,加载端口方向的相位光栅,使得第一波长的信号光在端口方向传输至输出端口103,并且加载色散方向的相位光栅,使得第一波长的信号光在色散方向传输至输出端口103,因此,第一波长的信号光能传输至输出端口103。而且由于第一波长的信号光和第一波长的空闲光在色散方向上入射角度不相同,所以在加载第一波长对应的色散方向的相位光栅,使得第一波长的信号光传输至输出端口103时,必然使得在色散方向上第一波长的空闲光不会传输至信号光输入端口101和输出端口103,因此第一波长的空闲光的任何衍射级次光不会传输至信号光输入端口101和输出端口103。
在图8所示的第一WSS100的结构示意图中,第一波长的空闲光中除第一级次光之外的级次光不能传输至信号光输入端口101的原因为:第一波长的空闲光中除第一级次光之外的级次光在信号光输入端口101的位置处的位置分布与信号光输入端口101的位置分布不相同,如图9所示,第一级次光为+1衍射级次光。
另外,对应图8所示的第一WSS100的结构示意图,在需要上载第一波长的空闲光时,第一相位光栅为色散方向的相位光栅,如图10所示。
在上述图8所示的第一WSS100的结构中,如图11所示,考虑信号光在色散方向入射第一交换器件109的入射角度小于目标角度,光传输方法的流程为:
步骤1101,开始;
步骤1102,控制装置判断信号光输入端口101输入的信号光中是否包括第一波长的信号光;
步骤1103,在确定信号光输入端口101输入的信号光中不包括第一波长的信号光的情况下,控制装置控制第一WSS的交换器件上第一波长对应的第一交换区域,加载偏转第一波长的空闲光所需的色散方向的相位光栅;
步骤1104,在确定信号光输入端口101输入的信号光中包括第一波长的信号光的情况下,控制装置控制第一WSS的交换器件上第一波长对应的第一交换区域,加载偏转第一波长的信号光所需的端口方向的相位光栅;
步骤1105,结束。
另外,在本申请实施例中,ROADM还可以包括二维偏转的第二WSS400,第二WSS400既能在色散方向实现偏转,也在端口方向实现偏转。第二WSS400包括输入端口401,信号光输出端口402和空闲光输出端口403。如图12所示,提供了第二WSS400的端口示意图。空闲光和信号光均通过该输入端口401输入。信号光输出端口402用于输出信号光。空闲光 输出端口403用于输出空闲光。输入端口401与信号光输出端口402在色散方向位置相同,信号光输出端口402和空闲光输出端口403在色散方向位置不相同。空闲光输出端口403为多个,对应不同波长的空闲光,空闲光输出端口403不相同。信号光输出端口402为多个,对应不同波长的信号光,信号光输出端口402不相同。多个信号光输出端口402在色散方向的位置相同,且在端口方向的位置不相同,多个空闲光输出端口403在色散方向的位置相同,且在端口方向的位置不相同。
如图13所示,还提供了针对第二WSS400的光传输方法的流程:
步骤1301,控制装置确定从第二WSS400获取第二波长的空闲光。
其中,第二波长的空闲光为所有空闲光中的任一空闲光。第二波长可以与前文中描述的第一波长相同,也可以与前文中描述的第一波长不相同。
在本实施例中,控制装置可以预先配置需要下载的空闲光的波长为第二波长,或者控制装置可以接收到下载空闲光的指令,该指令中包括第二波长。控制装置可以确定从第二WSS400获取第二波长的空闲光。
步骤1302,控制装置控制第二WSS400在第二波长对应的第二交换区域,加载第二波长的空闲光对应的第三相位光栅,其中,第三相位光栅用于将第二波长的空闲光的第二级次光从第二交换区域传输至第二波长的空闲光对应的空闲光输出端口,并使第二波长的空闲光中除第二波长的空闲光的第二级次光之外的级次光不能从第二交换区域传输至信号光输出端口,第二交换区域位于第二WSS。
其中,第二波长的空闲光的第二级次光是传输至第二波长的空闲光对应的空闲光输出端口403的光。如该第二级次光为+1衍射级次光。第二交换区域属于第二WSS400的交换器件(即后文中提到的第二交换器件409),第二交换区域包括第二波长的空闲光入射至第二WSS400的第二交换器件409的位置,且不包括其它波长的空闲光入射至第二WSS400的第二交换器件409的位置。
在本实施例中,控制装置可以控制第二WSS400在第二波长对应的第二交换区域,加载第二波长对应的第三相位光栅,该第三相位光栅可以用于将第二波长的空闲光的第二级次光从第二交换区域传输至第二波长的空闲光对应的空闲光输出端口403,并且第三相位光栅还可以用于将第二波长的空闲光中除第二级次光之外的级次光不能从第二交换区域传输至信号光输出端口402,对信号光输出端口402造成串扰。所以在第二WSS400下载空闲光时,还可以避免对信号光输出端口402造成串扰。
如图14所示,第二WSS400装置包括输入端口401,信号光输出端口402和空闲光输出端口403、第二准直镜404、第四透镜405、第五透镜406、第二光栅407、第六透镜408和第二交换器件409。其中,输入端口401与信号光输出端口402在色散方向的位置相同,输入端口401与空闲光输出端口403在色散方向的位置不相同。信号光在第二WSS400传输时,依次经过输入端口401、第二准直镜404、第四透镜405、第五透镜406、第二光栅407、第六透镜408、第二交换器件409、第六透镜408、第二光栅407、第五透镜406、第四透镜405、第二准直镜404、信号光输出端口402。空闲光在第二WSS400传输时,依次经过输入端口401、第二准直镜404、第四透镜405、第五透镜406、第二光栅407、第六透镜408、第二交换器件409、第六透镜408、第二光栅407、第五透镜406、第四透镜405、第二准直镜404、空闲光输出端口403。信号光与空闲光经过的第二准直镜404可以是同一个准直镜,也可以不是同一个准直镜。
对于第二WSS400,光从输入端口401传输至第二交换器件409的传输过程中,第四透 镜405和第五透镜406不改变光的传输方向。第二光栅407用于将输入端口401输入的光色散为多个不同波长的子光束,且每个子光束在色散方向的色散角度不相同,此处输入端口401输入的光包括空闲光和信号光,且空闲光和信号光的波长不相同。第六透镜408用于在色散方向将多束不同色散角度的子光束转为平行传输方向。信号光与空闲光的子光束在色散方向可以垂直入射第二交换器件409,或者非垂直入射第二交换器件409。图14中是信号光与空闲光的子光束在色散方向垂直入射第二交换器件409,即信号光与空闲光的子光束与第二交换器件409的色散方向法线的夹角为0度。
对于第二WSS400,空闲光从第二交换器件409传输至的空闲光输出端口403的传输过程中,在色散方向,第六透镜408用于在色散方向将经过第六透镜408之后不同波长的子光束转换为非平行传输方向。第二光栅407用于使空闲光中在色散方向上传输方向不相同的不同波长的子光束,聚合为空闲光,还用于使信号光中在色散方向上传输方向不相同的不同波长的子光束,聚合为信号光。经过第五透镜406、第四透镜405和第二准直镜404传输至空闲光输出端口403。第四透镜405用于将信号光与空闲光在色散方向的角度差异转换为在色散方向的位置差异。
在本申请实施例中,第二交换器件409可以是基于LCOS的交换引擎,当然也可以是其他类型的交换器件,本申请实施例不做限定。
图14中示出了第二WSS400在色散方向的架构图,图12中实线代表输入光(输入光包括信号光和空闲光)从输入端口401传输至第二WSS400的第二交换器件409的光路,虚线代表空闲光从第二交换器件409传输至空闲光输出端口403的光路。
为了更好的理解本实施例,假设进入输入端口401的光包括相同波长的信号光和空闲光,即图14中输入端口401输入的信号光的波长与空闲光的波长相同,均为λ_1至λ_N。输入光从输入端口401输入至输入端口401的光路上的第二准直镜404。第四透镜405和第五透镜406仅是用于将输入光传输至光栅407。第二光栅407将接收到的输入光色散成多个不同波长的子光束,如多个不同波长为λ_1至λ_N。子光束经过第六透镜408传输至第二WSS400的第二交换器件409,同时第六透镜408在色散方向将不同色散角度的子光束的传输方向转换为平行传输方向。输入光的子光束在色散方向可以垂直入射交换器件409,或者非垂直入射交换器件409。以λ_1和λ_N为例,加载空闲光的子光束偏转至对应的空闲光输出端口403所需的色散方向和端口方向的相位光栅。加载的色散方向的相位光栅使得空闲光子波长光束λ_1和λ_N出射第二交换器件409的角度在色散方向衍射偏转θ角度,亦即该空闲光的子光束在色散方向出射第二交换器件409的角度为θ度,θ不为零。第六透镜408将空闲光的子光束λ_1传输至第二光栅407。在色散方向,第二光栅407将空闲光的子光束聚合为空闲光,空闲光经第五透镜406、第四透镜405和第二准直镜404传输至λ_1对应的空闲光输出端口403。信号输出端口402与空闲光输出端口403在色散方向的位置不同,第四透镜405将输出的信号光与输出的空闲光在色散方向的角度差异转换为色散方向的位置差异。
图15示出了图14中的第二WSS400在端口方向的结构示意图,输入端口401和信号光输出端口402在端口方向一字排开,空闲光输出端口403在端口方向的位置不做限定。输入端口401和信号光输出端口402在色散方向的位置相同,空闲光输出端口403和信号光输出端口402在色散方向的位置不相同。图15中,虚线表示空闲光从第二交换器件409传输至空闲光输出端口403的光路,连接输入端口401的实线表示,输入光传输至第二交换器件409的光路,连接信号光输出端口402的实线表示,信号光从第二交换器件409传输至信号光输出端口402的光路。在图15中,在端口方向,λ_N波长的空闲光从输入端口401输入,经第 二准直镜404、第四透镜405、第五透镜406、第二光栅407和第六透镜408传输至第二交换器件409。对应λ_N波长的空闲光,在λ_N波长对应的第二交换区域不加载端口方向的相位光栅,第二交换器件409反射λ_N波长的空闲光。第二交换器件409反射的λ_N波长的空闲光经第六透镜408、第二光栅407、第五透镜406、第四透镜405和第二准直镜404,传输至λ_N波长的空闲光对应的空闲光输出端口403。在端口方向,λ1波长的空闲光从输入端口401输入,经第二准直镜404、第四透镜405、第五透镜406、第二光栅407和第六透镜408传输至第二交换器件409。对应λ_1波长的空闲光,在λ_1波长对应的第二交换区域加载端口方向的相位光栅。经过第二交换器件409衍射的λ_1波长的空闲光中第二级次光(即+1衍射级次光)经第六透镜408、第二光栅407、第五透镜406、第四透镜405和第二准直镜404,传输至λ_1波长的空闲光对应的空闲光输出端口403。对于λ_1波长的空闲光,在此处第二级次为+1衍射级次光。对于λ_N波长的空闲光,第二级次光为0级反射光。
综合上述描述可知,当第二WSS400下载λ_1波长的空闲光时,λ_1波长的空闲光在第二交换器件409上对应的交换区域加载偏转至空闲光输出端口403第二的色散方向和端口方向的相位光栅。对应λ_1波长的空闲光,在λ_1波长的空闲光对应的第二交换区域同时加载色散方向和端口方向的相位光栅,等效于在与这两个方向相倾斜的方向上加载相位光栅,即第二相位光栅为色散方向和端口方向的相位光栅。λ_1波长的空闲光经过第二交换器件403产生的除第二衍射级次光之外的级次光在信号光输出端口402的位置处的分布方向与信号光输出端口402的分布方向不一致,所以λ_1波长的空闲光的各个级次光无法进入信号输出端口402。当第二WSS400下载λ_N的空闲光时,对应λ_N波长的空闲光,在λ_N波长的空闲光对应的第二交换区域加载偏转至空闲光输出端口403第二的色散方向的相位光栅。λ_N波长的空闲光经第二WSS400产生的除第二次光之外的级次光在信号光输出端口402的位置处的分布方向与信号光输出端口402的分布方向不一致,如图16中虚线所示,因此λ_N波长的空闲光的除第二级次光之外的级次光无法进入信号光输出端口402。
在上述第二波长的空闲光无法进入信号光输出端口402的原因为:在图14中,信号光输出端口402与空闲光输出端口403在色散方向的位置不相同,经过第二交换器件409的0级反射光能在色散方向输出至信号光输出端口402,但是在色散方向为第二波长的空闲光,加载相位光栅,使得第二波长的空闲光的第二级次光在0级反射光的基础上偏转一定角度,使得第二级次光在色散方向输出至空闲光输出端口403,并且对于除第二级次光之外的级次光在色散方向也会相对于0级反射光偏转一定角度,所以除第二级次光之外的级次光在色散方向不会传输至信号光输出端口402,同理在色散方向也不会传输至输入端口401。
而且对应图14和图15描述的第二WSS400,不同波长的光入射至第二交换器件409的位置不相同,即对应的第二交换区域不相同。由于第二WSS400的输入端口401不可能同时传输相同波长的空闲光和信号光,所以该输入端口401输入的光中的信号光和空闲光分别入射至第二交换器件409的不同位置,所以分别控制信号光对应的第二交换区域和空闲光对应的第二交换区域,即可实现空闲光从空闲光输出端口403输出,信号光从信号光输出端口402输出,互不干扰。
另外,本申请实施例提供的光传输的方法可以应用于C+L光传输系统的ROADM中,C表示C波段,C波段的波长范围可以为1520nm~1570nm,L表示L波段,L波段的波长范围可以为1572nm~1620nm。如图17所示,ROADM包括第一C/L滤波器、C波段第一光放大器、L波段第一光放大器、C波段第一WSS、C波段第二WSS、L波段第一WSS、L波段第二WSS、C波段第二光放大器、L波段第二光放大器、C波段第一上下波长选择开关(Add Drop  WSS,ADWSS)、C波段第二ADWSS、L波段第一ADWSS、L波段第二ADWSS和第二C/L滤波器。其中,C波段第一WSS为前文中描述的第一WSS,C波段第二WSS为前文中描述的第二WSS,L波段第一WSS为前文中描述的第一WSS,L波段第二WSS为前文中描述的第二WSS。
光纤传输后的C波段和L波段的光进入ROADM,经第一C/L滤波器进行波带分离,将C波段的光、L波段的光分别传输至C波段第一光放大器和L波段第一光放器。C波段的光、L波段的光分别经过C波段第一光放大器的放大和L波段第一光放器的放大,进入C波段第二WSS、L波段第二WSS。C波段第二WSS下载C波段的空闲光,C波段的第一ADWSS下载部分C波段的信号光,未下载的C波段的信号光传输至C波段第一WSS。L波段第二WSS下载L波段的空闲光,L波段的第一ADWSS下载部分L波段的信号光,未下载的L波段的信号光传输至L波段第一WSS。
C波段第一WSS采用前文中上载空闲光的方式,上载C波段的空闲光,L波段第一WSS采用前文中上载空闲光的方式,上载L波段的空闲光。进入C波段第一WSS的C波段信号光和空闲光,经过C波段第一WSS的处理,输出C波段的光至C波段第二光放大器。进入L波段第一WSS的L波段信号光和空闲光,经过L波段第一WSS的处理,输出L波段的光至L波段第二光放大器。C波段的光经过C波段第二光放大器的放大进入第二C/L滤波器,L波段的光经过L波段第二光放大器的放大进入第二C/L滤波器,第二C/L滤波器对C波段的光和L波段的光进行波带聚合,输出ROADM进入下一段光纤传输。
需要说明的是,在图17所示的ROADM中,C波段第一ADWSS接收的是C波段的信号光,下载的C波段的空闲光与C波段第一ADWSS接收的C波段的信号光的波长不相同。L波段第一ADWSS接收的是L波段的信号光,下载的L波段的空闲光与L波段第一ADWSS接收的L波段的信号光的波长不相同。
需要说明的是,在本申请实施例中,提到的第一交换器件109和第二交换器件409,为第一交换器件109和第二交换器件409加相位光栅,是为第一交换器件109和第二交换器件409的交换区域所在的像素位置,施加电场实现的。
图18是本申请实施例提供的光传输的装置的结构图。该装置可以通过软件、硬件或者两者的结合实现成为装置中的部分或者全部。该装置应用于ROADM,所述ROADM包括二维偏转的第一WSS,所述二维偏转指端口方向的偏转和色散方向的偏转,所述色散方向和所述端口方向垂直,且均垂直于所述第一WSS中的光传输方向,所述第一WSS包括信号光输入端口、空闲光输入端口和输出端口,所述信号光输入端口与所述空闲光输入端口在所述色散方向的位置不相同,所述信号光输入端口与所述输出端口在所述色散方向的位置相同,本申请实施例提供的装置可以实现本申请实施例图1、7、11的流程,该装置包括:确定模块1810和加载模块1820,其中:
确定模块1810,用于确定所述信号光输入端口输入的信号光中未包括第一波长的信号光,具体可以用于实现步骤101中的确定功能以及执行步骤101包含的隐含步骤;
加载模块1820,用于根据所述空闲光输入端口在所述端口方向的位置,控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的第一相位光栅;其中,所述第一相位光栅用于将所述第一波长的空闲光的第一级次光经过所述第一交换区域传输至所述输出端口,并使所述第一波长的空闲光中除所述第一级次光之外的级次光不能经过所述第一交换区域传输至所述信号光输入端口,所述第一交换区域位于所述第一 WSS,具体可以用于实现步骤102中的加载功能以及执行步骤102包含的隐含步骤。
在一种可能的实现方式中,所述加载模块1820,用于:
在所述端口方向,若根据所述空闲光输入端口在所述端口方向的位置,确定所述空闲光经过所述第一波长对应的第一交换区域的反射后的传输方向偏离所述输出端口,则控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的色散方向和端口方向的相位光栅。
在一种可能的实现方式中,所述加载模块1820,用于:
在所述端口方向,若根据所述空闲光输入端口在所述端口方向的位置,确定所述空闲光经过所述第一波长对应的第一交换区域的反射后的传输方向未偏离所述输出端口,则控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的色散方向的相位光栅。
在一种可能的实现方式中,所述信号光输入端口输入的信号光包括所述第一波长的信号光,所述第一波长的信号光与所述第一波长的空闲光入射至所述第一交换区域的位置相同,且在所述色散方向的入射角度不相同;
所述加载模块1820,还用于:
控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的第二相位光栅;
其中,所述第二相位光栅用于将所述第一波长的信号光经过所述第一交换区域传输至所述输出端口,并使所述第一波长的空闲光不能经过所述第一交换区域传输至所述信号光输入端口和所述输出端口。
在一种可能的实现方式中,所述加载模块1820,还用于:
在所述色散方向,若所述第一波长的信号光入射至所述第一交换区域的入射角度大于或等于目标角度,则控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的端口方向和色散方向的相位光栅。
在一种可能的实现方式中,所述加载模块1820,还用于:
在所述色散方向,若所述第一波长的信号光入射至所述第一交换区域的入射角度小于目标角度,则控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的端口方向的相位光栅。
在一种可能的实现方式中,在所述色散方向,所述信号光输入端口与所述空闲光输入端口平行排布或非平行排布。
在一种可能的实现方式中,所述ROADM还包括二维偏转的第二WSS,所述第二WSS包括输入端口、信号光输出端口和不同波长空闲光的空闲光输出端口,所述输入端口和所述信号光输出端口在色散方向的位置相同,所述空闲光输出端口和所述信号光输出端口在色散方向的位置不相同;
所述确定模块1810,还用于确定从所述第二WSS获取所述第二波长的空闲光;
所述加载模块1820,还用于控制所述第二WSS在所述第二波长对应的第二交换区域,加载所述第二波长的空闲光对应的第三相位光栅,其中,所述第三相位光栅用于将所述第二波长的空闲光的第二级次光经过所述第二交换区域传输至所述第二波长的空闲光对应的空闲光输出端口,并使所述第二波长的空闲光中除所述第二级次光之外的级次光,不能经过所述第二交换区域传输至所述信号光输出端口,所述第二交换区域位于所述第二WSS。
在一种可能的实现方式中,所述第三相位光栅为色散方向和端口方向的相位光栅,或者 所述第三相位光栅为色散方向的相位光栅。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时也可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成为一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
本申请实施例中,由于可以加载第一相位光栅,使得第一波长的空闲光的第一级次光传输至输出端口的同时,不会使得除该第一级次光之外的级次光传输至信号光输入端口,所以可以减少对信号光输入端口的串扰。
需要说明的是:上述实施例提供的光传输的装置在进行光传输时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的光传输的装置与光传输的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本申请实施例中还提供了一种光传输的计算设备,该计算设备可以是控制装置本身(此时控制装置为硬件设备),也可以是安装有控制装置(此时控制装置为软件模块)。图19示例性的提供了计算设备1900的一种可能的架构图。
计算设备1900包括存储器1901、处理器1902、通信接口1903以及总线1904。其中,存储器1901、处理器1902、通信接口1903通过总线1904实现彼此之间的通信连接。
存储器1901可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器1901可以存储程序,当存储器1901中存储的程序被处理器1902执行时,处理器1902和通信接口1903用于执行光传输的方法。存储器1901还可以存储数据,例如,存储器1901存储有第一WSS100传输的信号光的波长。
处理器1902可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC)或者一个或多个集成电路。
处理器1902还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的光传输的方法的部分或全部功能可以通过处理器1902中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1902还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1901,处理器1902读取存储器1901中的信息,结合其硬件完成本申请实施例的光传输的装置的部分功能。
通信接口1903使用例如但不限于收发器一类的收发模块,来实现计算设备1900与其他设备或通信网络之间的通信。例如,可以通过通信接口1903获取数据集。
总线1904可包括在计算设备1900各个部件(例如,存储器1901、处理器1902、通信接口1903)之间传送信息的通路。
上述各个附图对应的流程的描述各有侧重,某个流程中没有详述的部分,可以参见其他流程的相关描述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,在服务器或终端上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴光缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是服务器或终端能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(如软盘、硬盘和磁带等),也可以是光介质(如数字视盘(Digital Video Disk,DVD)等),或者半导体介质(如固态硬盘等)。

Claims (20)

  1. 一种光传输的方法,其特征在于,应用于可重构的光分插复用设备ROADM,所述ROADM包括二维偏转的第一波长选择开关WSS,所述二维偏转指端口方向的偏转和色散方向的偏转,所述色散方向和所述端口方向垂直,且均垂直于所述第一WSS中的光传输方向,所述第一WSS包括信号光输入端口、空闲光输入端口和输出端口,所述信号光输入端口与所述空闲光输入端口在所述色散方向的位置不相同,所述信号光输入端口与所述输出端口在所述色散方向的位置相同;所述方法包括:
    确定所述信号光输入端口输入的信号光中未包括第一波长的信号光;
    根据所述空闲光输入端口在所述端口方向的位置,控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的第一相位光栅;其中,所述第一相位光栅用于将所述第一波长的空闲光的第一级次光经过所述第一交换区域传输至所述输出端口,并使所述第一波长的空闲光中除所述第一级次光之外的级次光不能经过所述第一交换区域传输至所述信号光输入端口,所述第一交换区域位于所述第一WSS。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述空闲光输入端口在所述端口方向的位置,控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的第一相位光栅,包括:
    在所述端口方向,若根据所述空闲光输入端口在所述端口方向的位置,确定所述空闲光经过所述第一波长对应的第一交换区域的反射后的传输方向偏离所述输出端口,则控制所述第一交换区域,加载所述第一波长的空闲光对应的色散方向和端口方向的相位光栅。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述空闲光输入端口在所述端口方向的位置,控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的第一相位光栅,包括:
    在所述端口方向,若根据所述空闲光输入端口在所述端口方向的位置,确定所述空闲光经过所述第一波长对应的第一交换区域的反射后的传输方向未偏离所述输出端口,则控制所述第一交换区域,加载所述第一波长的空闲光对应的色散方向的相位光栅。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述信号光输入端口输入的信号光包括所述第一波长的信号光,所述第一波长的信号光与所述第一波长的空闲光入射至所述第一交换区域的位置相同,且在所述色散方向的入射角度不相同;
    所述方法还包括:
    控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的第二相位光栅;
    其中,所述第二相位光栅用于将所述第一波长的信号光经过所述第一交换区域传输至所述输出端口,并使所述第一波长的空闲光不能经过所述第一交换区域传输至所述信号光输入端口和所述输出端口。
  5. 根据权利要求4所述的方法,其特征在于,所述控制所述第一WSS在所述第一交换 区域加载所述第一波长的信号光对应的第二相位光栅,包括:
    在所述色散方向,若所述第一波长的信号光入射至所述第一交换区域的入射角度大于或等于目标角度,则控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的端口方向和色散方向的相位光栅。
  6. 根据权利要求4所述的方法,其特征在于,所述控制所述第一WSS在所述第一交换区域加载所述第一波长的信号光对应的第二相位光栅,包括:
    在所述色散方向,若所述第一波长的信号光入射至所述第一交换区域的入射角度小于目标角度,则控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的端口方向的相位光栅。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,在所述色散方向,所述信号光输入端口与所述空闲光输入端口平行排布或非平行排布。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述ROADM还包括二维偏转的第二WSS,所述第二WSS包括输入端口、信号光输出端口和不同波长空闲光的空闲光输出端口,所述输入端口和所述信号光输出端口在色散方向的位置相同,所述空闲光输出端口和所述信号光输出端口在色散方向的位置不相同;
    所述方法还包括:
    确定从所述第二WSS获取所述第二波长的空闲光;
    控制所述第二WSS在所述第二波长对应的第二交换区域,加载所述第二波长的空闲光对应的第三相位光栅,其中,所述第三相位光栅用于将所述第二波长的空闲光的第二级次光经过所述第二交换区域传输至所述第二波长的空闲光对应的空闲光输出端口,并使所述第二波长的空闲光中除所述第二波长的空闲光的第二级次光之外的级次光,不能经过所述第二交换区域传输至所述信号光输出端口,所述第二交换区域位于所述第二WSS。
  9. 根据权利要求8所述的方法,其特征在于,所述第三相位光栅为色散方向和端口方向的相位光栅,或者所述第三相位光栅为色散方向的相位光栅。
  10. 一种光传输的装置,其特征在于,应用于可重构的光分插复用设备ROADM,所述ROADM包括二维偏转的第一波长选择开关WSS,所述二维偏转指端口方向的偏转和色散方向的偏转,所述色散方向和所述端口方向垂直,且均垂直于所述第一WSS中的光传输方向,所述第一WSS包括信号光输入端口、空闲光输入端口和输出端口,所述信号光输入端口与所述空闲光输入端口在所述色散方向的位置不相同,所述信号光输入端口与所述输出端口在所述色散方向的位置相同;所述装置包括:
    确定模块,用于确定所述信号光输入端口输入的信号光中未包括第一波长的信号光;
    加载模块,用于根据所述空闲光输入端口在所述端口方向的位置,控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的第一相位光栅;其中,所述第一相位光栅用于将所述第一波长的空闲光的第一级次光经过所述第一交换区域传输至所述输出端口,并使所述第一波长的空闲光中除所述第一级次光之外的级次光不能经过所述第一交换区域传输至所述信号光输入端口,所述第一交换区域位于所述第一WSS。
  11. 根据权利要求10所述的装置,其特征在于,所述加载模块,用于:
    在所述端口方向,若根据所述空闲光输入端口在所述端口方向的位置,确定所述空闲光经过所述第一波长对应的第一交换区域的反射后的传输方向偏离所述输出端口,则控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的色散方向和端口方向的相位光栅。
  12. 根据权利要求10所述的装置,其特征在于,所述加载模块,用于:
    在所述端口方向,若根据所述空闲光输入端口在所述端口方向的位置,确定所述空闲光经过所述第一波长对应的第一交换区域的反射后的传输方向未偏离所述输出端口,则控制所述第一WSS在所述第一波长对应的第一交换区域,加载所述第一波长的空闲光对应的色散方向的相位光栅。
  13. 根据权利要求10至12任一项所述的装置,其特征在于,所述信号光输入端口输入的信号光包括所述第一波长的信号光,所述第一波长的信号光与所述第一波长的空闲光入射至所述第一交换区域的位置相同,且在所述色散方向的入射角度不相同;
    所述加载模块,还用于:
    控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的第二相位光栅;
    其中,所述第二相位光栅用于将所述第一波长的信号光经过所述第一交换区域传输至所述输出端口,并使所述第一波长的空闲光不能经过所述第一交换区域传输至所述信号光输入端口和所述输出端口。
  14. 根据权利要求13所述的装置,其特征在于,所述加载模块,还用于:
    在所述色散方向,若所述第一波长的信号光入射至所述第一交换区域的入射角度大于或等于目标角度,则控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的端口方向和色散方向的相位光栅。
  15. 根据权利要求13所述的装置,其特征在于,所述加载模块,还用于:
    在所述色散方向,若所述第一波长的信号光入射至所述第一交换区域的入射角度小于目标角度,则控制所述第一WSS在所述第一交换区域,加载所述第一波长的信号光对应的端口方向的相位光栅。
  16. 根据权利要求10至15任一项所述的装置,其特征在于,在所述色散方向,所述信号光输入端口与所述空闲光输入端口平行排布或非平行排布。
  17. 根据权利要求10至16任一项所述的装置,其特征在于,所述ROADM还包括二维偏转的第二WSS,所述第二WSS包括输入端口、信号光输出端口和不同波长空闲光的空闲光输出端口,所述输入端口和所述信号光输出端口在色散方向的位置相同,所述空闲光输出端口和所述信号光输出端口在色散方向的位置不相同;
    所述确定模块,还用于确定从所述第二WSS获取所述第二波长的空闲光;
    所述加载模块,还用于控制所述第二WSS在所述第二波长对应的第二交换区域,加载所述第二波长的空闲光对应的第三相位光栅,其中,所述第三相位光栅用于将所述第二波长的空闲光的第二级次光经过所述第二交换区域传输至所述第二波长的空闲光对应的空闲光输出端口,并使所述第二波长的空闲光中除所述第二级次光之外的级次光,不能经过所述第二交换区域传输至所述信号光输出端口,所述第二交换区域位于所述第二WSS。
  18. 根据权利要求17所述的装置,其特征在于,所述第三相位光栅为色散方向和端口方向的相位光栅,或者所述第三相位光栅为色散方向的相位光栅。
  19. 一种计算设备,其特征在于,所述计算设备包括存储器和处理器,所述存储器用于存储计算机指令;
    所述处理器执行所述存储器存储的计算机指令,以执行上述权利要求1至9中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序代码,当所述计算机程序代码被计算设备执行时,所述计算设备执行上述权利要求1至9中任一项所述的方法。
PCT/CN2021/095335 2020-07-30 2021-05-21 光传输的方法、装置、计算设备和存储介质 WO2022022027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010754300.4A CN114070450B (zh) 2020-07-30 2020-07-30 光传输的方法、装置、计算设备和存储介质
CN202010754300.4 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022022027A1 true WO2022022027A1 (zh) 2022-02-03

Family

ID=80036813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095335 WO2022022027A1 (zh) 2020-07-30 2021-05-21 光传输的方法、装置、计算设备和存储介质

Country Status (2)

Country Link
CN (1) CN114070450B (zh)
WO (1) WO2022022027A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117111218A (zh) * 2022-05-16 2023-11-24 华为技术有限公司 波长选择开关
CN117134827A (zh) * 2022-05-20 2023-11-28 华为技术有限公司 光通信设备
CN117826453A (zh) * 2022-09-27 2024-04-05 华为技术有限公司 光调制装置、波长选择开关和光通信设备
CN117879711A (zh) * 2024-03-11 2024-04-12 浪潮计算机科技有限公司 光互联链路的噪声处理方法、系统、设备、装置及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140493A1 (ja) * 2012-03-19 2013-09-26 富士通株式会社 波長選択スイッチ、可変分散補償器、監視装置、監視方法、光伝送装置及び光伝送システム
CN104603671A (zh) * 2012-08-30 2015-05-06 日本电信电话株式会社 光信号处理装置
WO2017008208A1 (zh) * 2015-07-10 2017-01-19 华为技术有限公司 一种波长选择开关、可重构光分插复用器和波长选择的方法
CN107003480A (zh) * 2016-03-01 2017-08-01 肖峰 波长选择开关装置、通信设备和波长切换方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170255078A1 (en) * 2016-03-03 2017-09-07 Huawei Technologies Co., Ltd. Wavelength selective switch with monitoring ports
CN109845150B (zh) * 2016-10-26 2020-12-15 华为技术有限公司 光信号的传输方法、装置和波长选择开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140493A1 (ja) * 2012-03-19 2013-09-26 富士通株式会社 波長選択スイッチ、可変分散補償器、監視装置、監視方法、光伝送装置及び光伝送システム
CN104603671A (zh) * 2012-08-30 2015-05-06 日本电信电话株式会社 光信号处理装置
WO2017008208A1 (zh) * 2015-07-10 2017-01-19 华为技术有限公司 一种波长选择开关、可重构光分插复用器和波长选择的方法
CN107003480A (zh) * 2016-03-01 2017-08-01 肖峰 波长选择开关装置、通信设备和波长切换方法

Also Published As

Publication number Publication date
CN114070450A (zh) 2022-02-18
CN114070450B (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2022022027A1 (zh) 光传输的方法、装置、计算设备和存储介质
Al-Qadasi et al. Scaling up silicon photonic-based accelerators: Challenges and opportunities
US5570226A (en) Optical link amplifier and a wavelength multiplex laser oscillator
US20190349112A1 (en) Optical Signal Processing Device
WO2015042875A1 (zh) 波长选择开关和控制波长选择开关中的空间相位调制器的方法
US11316591B2 (en) Frequency offset processing method, apparatus, and device and storage medium
US11372163B2 (en) Wavelength switching apparatus and system
WO2022160784A1 (zh) 一种光计算装置、系统及卷积计算方法
US8969788B2 (en) Self-registered comb laser source
WO2022009291A1 (ja) 波長クロスコネクト装置及び波長クロスコネクト方法
KR20130099695A (ko) 파장 다중화 및 역다중화 기능이 통합된 배열 도파로 격자 라우터 장치
US6757100B2 (en) Cascaded semiconductor optical amplifier
US20140169737A1 (en) Transceiver with self-registered wavelengths
Yuan et al. $8\times16 $ Wavelength Selective Switch With Full Contentionless Switching
WO2017024428A1 (zh) 光通信的装置和方法
CN113296191A (zh) 一种光交换装置、重定向方法以及可重构光分插复用器
JP2713324B2 (ja) 光波アドレスシステム
GR20180100487A (el) Οπτικο φιλτρο πεπερασμενης κρουστικης αποκρισης με ευελιξια ως προς τον ρυθμο λειτουργιας και δυνατοτητα πολυκυματικης λειτουργιας, βασιζομενο σε ολοκληρωμενες γραμμες καθυστερησης με μικροδακτυλιουσσυντονισμου
JP2009198593A (ja) 可変分散補償器
US6901178B2 (en) Fast tunable optical filter
JP2004159215A (ja) 双方向波長多重光アッド・ドロップ装置
US20060216030A1 (en) Optical add-drop multiplexer
JP7438472B2 (ja) 光モジュールおよび光通信システム
US20140029950A1 (en) Optical de-multiplexing device
US6947204B2 (en) Compact wavelength selective switching and/or routing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848599

Country of ref document: EP

Kind code of ref document: A1