WO2022021874A1 - 一种led显示屏的校正方法及相关装置 - Google Patents

一种led显示屏的校正方法及相关装置 Download PDF

Info

Publication number
WO2022021874A1
WO2022021874A1 PCT/CN2021/078684 CN2021078684W WO2022021874A1 WO 2022021874 A1 WO2022021874 A1 WO 2022021874A1 CN 2021078684 W CN2021078684 W CN 2021078684W WO 2022021874 A1 WO2022021874 A1 WO 2022021874A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
led display
correction coefficient
thermal compensation
compensation correction
Prior art date
Application number
PCT/CN2021/078684
Other languages
English (en)
French (fr)
Inventor
冯双磊
吴涛
丁崇康
肖道粲
Original Assignee
深圳市艾比森光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市艾比森光电股份有限公司 filed Critical 深圳市艾比森光电股份有限公司
Priority to JP2021539394A priority Critical patent/JP2022545991A/ja
Priority to US17/365,375 priority patent/US11380251B2/en
Publication of WO2022021874A1 publication Critical patent/WO2022021874A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present application relates to the field of display technology, and in particular, to a method for calibrating a light emitting diode (LED) display screen and a related device.
  • LED light emitting diode
  • the LED display is a flat panel display composed of small LED module panels, used to display various information such as text, images, and videos. Since LED displays can be widely used in various scenarios such as traffic lights, theatrical performances, news releases, etc., people's demand for the display quality of LED displays is also getting higher and higher. Among them, the luminous brightness and chromaticity of the LED display are two important indicators of display quality. The luminous brightness of the LED display will decrease as the temperature increases, and LEDs with different luminous chromaticities are affected by temperature differently. Therefore, the poor consistency of display brightness and chromaticity caused by uneven thermal distribution of LED displays has become a major problem in the technical field.
  • the embodiment of the present application discloses a correction method and a related device for an LED display screen.
  • the thermal compensation correction coefficient and the point-by-point correction coefficient are separated and corrected separately, which solves the problem that the thermal compensation correction cannot meet expectations due to the change of the position of the LED display screen module.
  • the separated thermal compensation correction coefficient only needs to be collected once for the LED display cabinet with the same structure and printed circuit board (PCB) layout, which greatly improves the correction efficiency.
  • an embodiment of the present application discloses a method for calibrating an LED display screen, including:
  • the point-by-point thermal compensation correction coefficient is calculated; wherein, the thermal compensation correction coefficient is related to the mechanical structure of the LED display box and is related to the LED display box.
  • the position of the module has nothing to do with the LED display, the point-by-point correction coefficient is related to the module position of the LED display cabinet, and the point-by-point thermal compensation correction coefficient is related to the mechanical structure of the LED display cabinet and is related to the LED display cabinet.
  • the position of the module is irrelevant;
  • the thermal compensation correction coefficient used in the original correction method is included in the point-by-point correction coefficient, and the point-by-point correction coefficient is related to the module position of the LED display cabinet
  • the thermal compensation correction The coefficient is also related to the module position of the LED display box, that is, when the module position of the LED display box changes, the thermal compensation correction coefficient will be affected by the change of the module position, making the thermal compensation correction impossible.
  • the expected effect is achieved; in the embodiment of the present application, the original point-by-point correction after thermal balance is decomposed into two parts, point-by-point correction and thermal compensation correction.
  • the thermal compensation correction caused by the change of the module position of the LED display box cannot achieve the expected effect, and the separated thermal compensation correction coefficient only needs to be collected once for the LED display box with the same structure and PCB layout, which greatly improves the correction efficiency.
  • the point-by-point thermal compensation correction coefficient is calculated, including:
  • the thermal compensation correction and the point-by-point correction are divided into two different partial corrections, and the two corrections are separated by coefficients.
  • the thermal compensation correction coefficient and the point-by-point correction coefficient are only related to the mechanical structure of the LED display box, and has nothing to do with the module position of the LED display box, so it can achieve the effect of separate correction, so that even in the LED display box The thermal compensation correction is still valid when the module position is changed.
  • the LED display cabinet is calibrated according to the point-by-point thermal compensation correction coefficient, including:
  • the LED display box is corrected according to the point-by-point thermal compensation correction coefficient.
  • the calculated point-by-point thermal compensation correction coefficient is only related to the mechanical structure of the LED display cabinet, and has nothing to do with the module position of the LED display cabinet, even in the LED display
  • the thermal compensation correction is still valid when the module position of the cabinet is changed.
  • the LED display cabinet is calibrated according to the point-by-point thermal compensation correction coefficient, including:
  • the first point-by-point thermal compensation correction coefficient, the second point-by-point thermal compensation correction coefficient, and the third point-by-point thermal compensation correction coefficient are point-by-point thermal compensation correction coefficients with different values.
  • different point-by-point thermal compensation correction coefficients are used to calibrate the LED display screen cabinet according to the temperature of the LED display screen cabinet. Because the thermal compensation correction coefficients of the LED display cabinet at different temperatures are different, the product results of different thermal compensation correction coefficients and point-by-point correction coefficients also correspond to multiple different point-by-point thermal compensation correction coefficients. Correlate the temperature monitoring of the LED display cabinet with the point-by-point thermal compensation correction coefficient, that is, set several temperature thresholds, such as the first threshold, the second threshold, etc., when the monitored LED display cabinet temperature is less than the first threshold.
  • the method before calculating the point-by-point thermal compensation correction coefficient, the method further includes:
  • the sample box is subjected to white light aging treatment until the sample box reaches a state of thermal equilibrium, and the thermal equilibrium state is that the thermal distribution and maximum temperature of the sample box do not change;
  • the thermal compensation correction coefficient matrix of the LED display cabinet is calculated, and the thermal compensation correction coefficient matrix includes the thermal compensation correction coefficient.
  • a method for obtaining a thermal compensation correction coefficient is provided.
  • the cold screen correction is performed on the LED display box, and then white light aging treatment is performed until the thermal distribution and the maximum temperature of the LED display box no longer change. , and then collect the red brightness value matrix of the LED display box, and calculate the thermal compensation correction coefficient according to the collected red brightness value matrix.
  • the thermal compensation correction coefficient obtained by the method is related to the mechanical structure of the LED display screen box and has nothing to do with the module position of the LED display screen box.
  • the thermal compensation correction coefficient matrix of the LED display screen box is calculated and obtained, including:
  • a method for calculating a thermal compensation correction coefficient matrix is provided, and the maximum value in the red brightness value matrix of the collected sample box is divided by the red brightness value matrix to obtain a thermal compensation correction coefficient matrix.
  • the correction coefficient matrix includes the thermal compensation correction coefficients of the LED display cabinet at different temperatures.
  • the method before calculating the point-by-point thermal compensation correction coefficient, the method further includes:
  • the point-by-point correction coefficient matrix of the LED display cabinet is calculated, and the point-by-point correction coefficient matrix includes the point-by-point correction coefficient.
  • a method for obtaining a point-by-point correction coefficient which collects the brightness and chromaticity data of the LED display screen box, and calculates a point-by-point correction coefficient matrix according to the brightness and chromaticity data.
  • the point-by-point correction coefficient matrix includes a point-by-point correction coefficient matrix.
  • Point correction coefficient, the point-by-point correction coefficient is related to the module position of the LED display cabinet.
  • the location where the point-by-point correction coefficient and the thermal compensation correction coefficient are stored are different.
  • the thermal compensation correction and the point-by-point correction can be divided into two parts for correction, thus solving the problem of the LED display cabinet after thermal compensation correction.
  • the thermal compensation correction caused by the change of the position of the module cannot achieve the expected effect, and the thermal compensation correction coefficient after separation only needs to be collected once for the LED display cabinet with the same structure and PCB layout, which greatly improves the correction efficiency.
  • an embodiment of the present application discloses a correction device for an LED display screen, including:
  • the calculation unit is used to calculate and obtain the point-by-point thermal compensation correction coefficient according to the thermal compensation correction coefficient and point-by-point correction coefficient of the LED display cabinet; wherein, the thermal compensation correction coefficient is related to the mechanical structure of the LED display cabinet and It has nothing to do with the module position of the LED display box, the point-by-point correction coefficient is related to the module position of the LED display box, and the point-by-point thermal compensation correction coefficient is related to the mechanical structure of the LED display box and is in harmony with the LED display box.
  • the module position of the LED display box is irrelevant;
  • the correction unit is used to correct the LED display cabinet according to the point-by-point thermal compensation correction coefficient.
  • the thermal compensation correction coefficient used in the original correction method is included in the point-by-point correction coefficient, and the point-by-point correction coefficient is related to the module position of the LED display cabinet
  • the thermal compensation correction The coefficient is also related to the module position of the LED display box, that is, when the module position of the LED display box changes, the thermal compensation correction coefficient will be affected by the change of the module position, making the thermal compensation correction impossible.
  • the expected effect is achieved; in the embodiment of the present application, the original point-by-point correction after thermal balance is decomposed into two parts, point-by-point correction and thermal compensation correction.
  • the thermal compensation correction caused by the change of the module position of the LED display box cannot achieve the expected effect, and the separated thermal compensation correction coefficient only needs to be collected once for the LED display box with the same structure and PCB layout, which greatly improves the correction efficiency.
  • the calculation unit is specifically configured to multiply the thermal compensation correction coefficient and the point-by-point correction coefficient to obtain the point-by-point thermal compensation correction coefficient.
  • the thermal compensation correction and the point-by-point correction are divided into two different partial corrections, and the two corrections are separated by coefficients.
  • the thermal compensation correction coefficient and the point-by-point correction coefficient are only related to the mechanical structure of the LED display box, and has nothing to do with the module position of the LED display box, so it can achieve the effect of separate correction, so that even in the LED display box The thermal compensation correction is still valid when the module position is changed.
  • the calibration unit is specifically configured to calibrate the LED display cabinet according to a point-by-point thermal compensation correction coefficient when the module position of the LED display cabinet is changed.
  • the calculated point-by-point thermal compensation correction coefficient is only related to the mechanical structure of the LED display cabinet, and has nothing to do with the module position of the LED display cabinet, even in the LED display
  • the thermal compensation correction is still valid when the module position of the cabinet is changed.
  • the correction unit is further configured to correct the LED display box by using the first point-by-point thermal compensation correction coefficient if the temperature of the LED display box is lower than the first threshold; If the temperature of the LED display box is greater than the second threshold, use the second point-by-point thermal compensation correction coefficient to correct the LED display box; if the temperature of the LED display box is not less than the first threshold and not greater than the second threshold, use the first Three point-by-point thermal compensation correction coefficients correct the LED display cabinet; wherein, the first point-by-point thermal compensation correction coefficient, the second point-by-point thermal compensation correction coefficient and the third point-by-point thermal compensation correction coefficient are point-by-point thermal compensation with different values Correction coefficient.
  • different point-by-point thermal compensation correction coefficients are used to calibrate the LED display screen cabinet according to the temperature of the LED display screen cabinet. Because the thermal compensation correction coefficients of the LED display cabinet at different temperatures are different, the product results of different thermal compensation correction coefficients and point-by-point correction coefficients also correspond to multiple different point-by-point thermal compensation correction coefficients. Correlate the temperature monitoring of the LED display cabinet with the point-by-point thermal compensation correction coefficient, that is, set several temperature thresholds, such as the first threshold, the second threshold, etc., when the monitored LED display cabinet temperature is less than the first threshold.
  • the calibration unit is further configured to perform cold screen correction on the LED display screen box to obtain a sample box, and the sample box is the LED display screen box after the cold screen correction;
  • the device also include:
  • the aging unit is used to perform white light aging treatment on the sample box until the sample box reaches the thermal equilibrium state, and the thermal equilibrium state is that the thermal distribution and the maximum temperature of the sample box will not change;
  • the acquisition unit is used to acquire the red luminance value matrix of the sample box in the thermal equilibrium state
  • the calculation unit is further configured to calculate and obtain the thermal compensation correction coefficient matrix of the LED display screen box according to the red brightness value matrix, and the thermal compensation correction coefficient matrix includes the thermal compensation correction coefficient.
  • a method for obtaining a thermal compensation correction coefficient is provided.
  • the cold screen correction is performed on the LED display box, and then white light aging treatment is performed until the thermal distribution and the maximum temperature of the LED display box no longer change. , and then collect the red brightness value matrix of the LED display box, and calculate the thermal compensation correction coefficient according to the collected red brightness value matrix.
  • the thermal compensation correction coefficient obtained by the method is related to the mechanical structure of the LED display screen box and has nothing to do with the module position of the LED display screen box.
  • the calculation unit is further configured to divide the maximum value in the red brightness value matrix by the red brightness value matrix to obtain a thermal compensation correction coefficient matrix of the LED display screen cabinet.
  • a method for calculating a thermal compensation correction coefficient matrix is provided, and the maximum value in the red brightness value matrix of the collected sample box is divided by the red brightness value matrix to obtain a thermal compensation correction coefficient matrix.
  • the correction coefficient matrix includes the thermal compensation correction coefficients of the LED display cabinet at different temperatures.
  • the collection unit is further configured to collect luminance and chromaticity data of the LED display screen cabinet;
  • the calculation unit is further configured to calculate a point-by-point correction coefficient matrix of the LED display screen box according to the brightness and chromaticity data of the LED display screen box, and the point-by-point correction coefficient matrix includes the point-by-point correction coefficients.
  • a method for obtaining a point-by-point correction coefficient which collects the brightness and chromaticity data of the LED display screen box, and calculates a point-by-point correction coefficient matrix according to the brightness and chromaticity data.
  • the point-by-point correction coefficient matrix includes a point-by-point correction coefficient matrix.
  • Point correction coefficient, the point-by-point correction coefficient is related to the module position of the LED display cabinet.
  • the location where the point-by-point correction coefficient and the thermal compensation correction coefficient are stored are different.
  • the thermal compensation correction and the point-by-point correction can be divided into two parts for correction, thus solving the problem of the LED display cabinet after thermal compensation correction.
  • the thermal compensation correction caused by the change of the position of the module cannot achieve the expected effect, and the thermal compensation correction coefficient after separation only needs to be collected once for the LED display cabinet with the same structure and PCB layout, which greatly improves the correction efficiency.
  • an embodiment of the present application discloses an electronic device for calibrating an LED display screen.
  • the electronic device includes a memory and a processor, wherein the memory stores program instructions. When the program instructions are executed by the processor, the processing is executed.
  • the device executes the method as in the first aspect or in any possible implementation manner of the first aspect.
  • an embodiment of the present application discloses a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium.
  • the computer program is run on one or more processors, the first aspect or the first The method of any possible implementation of an aspect.
  • the thermal compensation correction coefficient required for thermal compensation correction is related to the mechanical structure of the LED display box and the position of the module
  • the point-by-point correction coefficient required for point-by-point correction and the LED display box are related.
  • the module position of the LED display cabinet is related, so when the module position of the LED display box is changed, the thermal compensation correction coefficient will be affected, so that the thermal compensation correction cannot achieve the expected effect;
  • the point-by-point correction is decomposed into point-by-point correction and thermal compensation correction, which are separately corrected and saved as two correction coefficients, which can solve the thermal compensation correction caused by the change of the module position of the LED display cabinet after thermal compensation correction.
  • the problem that the expected effect cannot be achieved, and the separated thermal compensation correction coefficient only needs to be collected once for the LED display cabinet with the same structure and PCB layout, which greatly improves the correction efficiency.
  • FIG. 1 is a schematic structural diagram of an LED display screen box calibration provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for calibrating an LED display screen provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another method for calibrating an LED display screen provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a device for calibrating an LED display screen provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a device for calibrating an LED display screen according to an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (item) means two or three and three
  • “and/or” is used to describe the relationship of related objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and both A and B exist three A case where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items. For example, at least one (a) of a, b or c, can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ".
  • the embodiments of the present application provide a method for calibrating an LED display screen.
  • the following first introduces some knowledge related to the calibration of the LED display screen.
  • the LED display box is simply a screen composed of several display units (unit display panels or unit display boxes) that can be combined and spliced. In order to meet different environments, plus a set of appropriate controllers (main control board or control system), various specifications of display boards (or unit boxes) can be combined with controllers of different control technologies to form many kinds of LED displays. screen to meet different display needs.
  • the area of the LED display box should not be too large, generally one box and one display; it is mainly installed by hoisting; the display on both sides can share one LED control card, and the control card adopts the partition control card, and the two sides are generally equal in area.
  • the display content is also the same, just divide the software content into the same two parts.
  • LED display cabinets are used in various fields such as stage, conference and outdoor. Because the template is heavy, it is inconvenient to use and the cost is high. With the improvement of technology, the LED display cabinet is transformed to make it more and more simplify.
  • the LED display box has fast heat dissipation and high heat dissipation performance, which can effectively protect the module circuit; anti-interference, unique anti-electromagnetic wave interference function; high strength, the box tensile test reaches 300Kg.
  • LED display module is one of the main components that make up the finished LED display. It is mainly composed of LED lights, PCB circuit boards, driver ICs, resistors, capacitors and plastic kits.
  • LED display modules can be divided into: single-color modules, such as single-red, single-green, single-blue, single-yellow, single-white modules; dual-color modules, such as red-green dual-color, red-blue dual-color; full-color modules Group, which mainly uses red, green and blue three primary colors on an LED module.
  • LED display modules can be divided into indoor, semi-outdoor and outdoor modules according to their different use spaces. According to the different LED packaging devices, LED display modules can also be divided into: in-line LED display modules, indoor dot matrix LED display modules, and surface mount LED display modules.
  • Point-by-point correction is a technology used to improve the brightness uniformity and color fidelity of the LED display, that is, by adjusting the brightness of each pixel (or each primary color sub-pixel) area on the LED display ( and chromaticity) data are collected, the correction coefficient of each primary color sub-pixel or the correction coefficient matrix of each pixel is given, and it is fed back to the control system of the display screen, and the control system applies the correction coefficient to realize the correction of each pixel ( Or the differential drive of each primary color sub-pixel), so that the picture of the LED display is pure and delicate, and the color is truly restored.
  • FIG. 1 is a schematic structural diagram of an LED display screen box calibration provided by an embodiment of the present application.
  • the architecture diagram includes an LED display box, an LED controller, a control computer and a camera.
  • the camera is used to collect the brightness and chromaticity data of the LED box, and transmit the collected brightness and chromaticity data to the control computer.
  • the control computer calculates and obtains the point-by-point correction coefficient.
  • the LED controller uses the calculated point-by-point correction coefficient to perform point-by-point chromaticity correction on the LED display cabinet.
  • the point-by-point chromaticity correction is based on the principle of RGB color matching, and solves the problem of chromaticity deviation by changing the color coordinates of the RGB three colors.
  • the color coordinates of the corrected RGB three colors should be reasonably selected to avoid color distortion.
  • Light-by-light chromaticity correction is to adjust the brightness and color uniformity of each LED light.
  • the above calibration structure diagram is suitable for the calibration of factory standardization and standardized management.
  • the cabinets can be freely spliced, the edges of the cabinets are automatically corrected, and the calibration angle is consistent and minimal, with high calibration efficiency and low calibration cost.
  • Judging the correction effect of the LED display cabinet can mainly be judged from the display quality of the LED display.
  • the luminous brightness and chromaticity of the LED display are two important indicators of the display quality, and the luminous brightness of the LED display will vary with temperature. It increases and decreases, and LEDs with different luminous chromaticities are affected differently by temperature. Therefore, it has become the main research direction in the technical field to solve the problem of poor consistency of display brightness and chromaticity caused by uneven thermal distribution of the LED display screen through the correction method of the LED display screen box.
  • people usually use the point-by-point thermal compensation correction method to solve the above-mentioned problem of poor consistency of display brightness and chromaticity. Then calibrate the LED display point by point.
  • the above point-by-point thermal compensation correction method takes too long, and the correction efficiency is low, and when the position of the LED display module changes, the thermal compensation correction coefficient will change with the change of the position of the LED display box module. , the thermal compensation correction cannot achieve the expected effect.
  • FIG. 2 is a schematic flowchart of a method for calibrating an LED display screen provided by an embodiment of the present application. The method includes but is not limited to the following steps:
  • Step 201 Calculate the point-by-point thermal compensation correction coefficient according to the thermal compensation correction coefficient and the point-by-point correction coefficient of the LED display cabinet.
  • the point-by-point thermal compensation correction coefficient is calculated; wherein, the thermal compensation correction coefficient is related to the mechanical structure of the LED display box and is related to the LED display box.
  • the module position of the LED display is irrelevant, that is, when the mechanical structure of the LED display cabinet changes, the thermal compensation correction coefficient of the LED display cabinet will also change, and the thermal compensation correction coefficient of the LED display cabinet will not change.
  • the point-by-point correction coefficient is related to the module position of the LED display cabinet, that is, when the module position of the LED display cabinet changes, the The point correction coefficient will also change accordingly;
  • the point-by-point thermal compensation correction coefficient is related to the mechanical structure of the LED display box and has nothing to do with the module position of the LED display box, that is, when the mechanical structure of the LED display box is When the change occurs, the point-by-point thermal compensation correction coefficient of the LED display cabinet will also change, but it will not change with the change of the module position of the LED display cabinet.
  • the point-by-point thermal compensation correction coefficient can still achieve the expected effect even when the module position of the LED display cabinet is changed. Because this embodiment decomposes the original point-by-point correction after thermal balance into two parts, point-by-point correction and thermal compensation correction, which are separately corrected and stored as two correction coefficients respectively, and the separated thermal compensation correction coefficients are for the same structure and PCB.
  • the layout of the LED display cabinet only needs to be collected once, which greatly improves the calibration efficiency.
  • the point-by-point correction coefficient can be obtained by collecting the brightness and chromaticity data of the LED display cabinet, and calculating the point-by-point correction coefficient matrix according to the collected brightness and chromaticity data.
  • the point-by-point correction coefficient matrix includes a plurality of different point-by-point correction coefficients. Correction coefficient, point-by-point correction coefficient is related to the module position of the LED display cabinet.
  • the thermal compensation correction coefficient can be obtained in the following ways: First, perform a light-by-light chromaticity cold screen correction on the LED display box. Specifically, the cold screen correction is one minute after the above-mentioned LED display box is lit at room temperature. The point-by-point chromaticity correction is completed in the interior, and the room temperature here refers to about 25 degrees Celsius; the LED display cabinet after the cold screen correction is used as a sample box. Optionally, the above point-by-point correction coefficients can also be collected at this time.
  • the brightness and chromaticity data of the sample box are calculated to obtain a point-by-point correction coefficient matrix; then the LED sample box is displayed at 100% brightness, and the LED sample box is aged for about 30 minutes to make the LED sample box reach a thermal equilibrium state.
  • the thermal equilibrium state refers to the LED sample box.
  • the thermal distribution does not change and the maximum temperature does not change, that is, the LED sample box is considered to be in thermal equilibrium; then the red brightness value matrix of the sample box after cold screen correction and reaching thermal equilibrium is collected.
  • the result obtained by dividing the maximum value in the matrix by the red brightness value matrix is used as the thermal compensation correction coefficient matrix.
  • the thermal compensation correction coefficient matrix includes multiple thermal compensation correction coefficients, and the thermal compensation correction coefficient is only related to the LED display cabinet.
  • the above-obtained point-by-point correction coefficients and thermal compensation correction coefficients are respectively stored in different locations to achieve the effect of coefficient separation.
  • the control computer connected to the LED controller network sends the thermal compensation correction coefficient matrix to the receiving card of the LED controller through the host computer software of the LED controller, so that the thermal compensation correction coefficient matrix and the point-to-point correction coefficient matrix are point-to-point.
  • the coefficients are multiplied to obtain multiple point-by-point thermal compensation correction coefficients, so that the point-by-point thermal compensation correction function can be realized through the point-by-point thermal compensation correction coefficients.
  • Step 202 Correct the LED display cabinet according to the point-by-point thermal compensation correction coefficient calculated above.
  • the calculated point-by-point thermal compensation correction coefficient has nothing to do with the module position of the LED display cabinet, that is, it does not change with the change of the module position.
  • the LED display cabinet can also be corrected according to the point-by-point thermal compensation correction coefficient calculated above, so as to realize the point-by-point thermal compensation correction function.
  • the original point-by-point correction after thermal balance is decomposed into two parts, point-by-point correction and thermal compensation correction, which are separately corrected and saved as two correction coefficients.
  • the separated thermal compensation correction coefficients are displayed for LEDs with the same structure and PCB layout. The screen box only needs to be collected once, which greatly improves the calibration efficiency.
  • the LED display box calibration device can use different point-by-point thermal compensation correction coefficients to calibrate the LED display box according to the temperature of the LED display box. Because the thermal compensation correction coefficients of the LED display cabinet at different temperatures are different, the product results of different thermal compensation correction coefficients and point-by-point correction coefficients also correspond to multiple different point-by-point thermal compensation correction coefficients. Correlate the temperature monitoring of the LED display cabinet with the point-by-point thermal compensation correction coefficient, that is, set several temperature thresholds, such as the first threshold, the second threshold, etc., when the monitored LED display cabinet temperature is less than the first threshold.
  • the first threshold and the second threshold are not fixed values, and can be set differently according to different application scenarios.
  • the first threshold can be set to 50°C
  • the second threshold can be set to 70°C . Therefore, the temperature monitoring of the LED display cabinet can be associated with the command under the point-by-point thermal compensation correction coefficient through the above correction method, so as to realize the automatic point-by-point thermal compensation correction function of the LED display cabinet.
  • FIG. 3 is a schematic flowchart of another method for calibrating an LED display screen provided by an embodiment of the present application.
  • the method includes but is not limited to the following steps:
  • Step 301 Calculate the point-by-point correction coefficient of the LED display screen cabinet according to the brightness and chromaticity data of the LED display screen cabinet.
  • the brightness and chromaticity data of the LED display cabinet can be collected through external devices such as cameras, and the point-by-point correction coefficient matrix can be calculated according to the brightness and chromaticity data.
  • the point-by-point correction coefficient matrix Including a point-by-point correction coefficient, the point-by-point correction coefficient has a correlation with the module position of the LED display cabinet.
  • the LED controller connected to the calibration equipment of the LED display box such as the LED control computer can perform point-by-point correction of the LED display box according to the calculated point-by-point correction coefficient of the LED display box.
  • Dot correction is a technology used to improve the brightness and color uniformity and color fidelity of LED display screens, that is, by comparing the brightness (and chromaticity) data of each pixel (or each primary color sub-pixel) area on the LED display screen. Carry out acquisition, give the correction coefficient of each primary color sub-pixel or the correction coefficient matrix of each pixel, and feed it back to the control system of the display screen, and the control system applies the correction coefficient to realize the correction of each pixel (or each primary color sub-pixel). Pixels) differential drive, so that the picture of the LED display is pure and delicate, and the color is truly restored.
  • Step 302 Collect the red brightness value matrix of the LED display cabinet after the cold screen correction and reaching a thermal equilibrium state.
  • the cold screen correction is performed on the LED display box.
  • the cold screen correction is to complete the chromaticity correction of the above LED display box within one minute after lighting at room temperature.
  • the room temperature here refers to It is about 25 degrees Celsius; the LED display box after the cold screen correction is used as the sample box.
  • the above point-by-point correction coefficient can also collect the brightness and chromaticity data of the sample box at this time, and calculate the point-by-point correction coefficient matrix. ; Then display the LED sample box at 100% brightness, and carry out the white light aging step for about 30 minutes, so that the LED sample box reaches a thermal equilibrium state, which means that the thermal distribution of the LED sample box does not change and the maximum temperature does not change.
  • the red brightness value matrix of the sample box after cold screen correction and reaching thermal equilibrium state is collected, and the collected red brightness and chromaticity value matrix can be used to calculate the thermal compensation correction of the LED sample box. coefficient.
  • Step 303 Calculate and obtain the thermal compensation correction coefficient of the LED display screen box according to the red luminance value matrix collected above.
  • the red brightness value matrix of the LED display box can be collected and obtained by the above step 302, and the red brightness and chromaticity value matrix can be used to calculate and obtain the thermal compensation correction coefficient of the LED sample box.
  • a result obtained by dividing the maximum value in the collected red luminance value matrix by the red luminance value matrix can be used as a thermal compensation correction coefficient matrix
  • the thermal compensation correction coefficient matrix includes a plurality of thermal compensation correction coefficients
  • the thermal compensation correction coefficient obtained by the method is related to the mechanical structure of the LED display screen box and has nothing to do with the module position of the LED display screen box. It should be noted that the above obtained point-by-point correction coefficients and thermal compensation correction coefficients are stored in different locations.
  • Step 304 According to the point-by-point correction coefficient and the thermal compensation correction coefficient obtained by the above calculation, calculate the point-by-point thermal compensation correction coefficient of the LED display screen cabinet.
  • the point-by-point correction coefficient and the thermal compensation correction coefficient of the LED display cabinet can be calculated and stored, and the two are stored in different positions to achieve the effect of coefficient separation.
  • the control computer connected to the LED controller network sends the thermal compensation correction coefficient matrix to the receiving card of the LED controller through the host computer software of the LED controller, so that the thermal compensation correction coefficient matrix and the point-to-point correction coefficient matrix are point-to-point.
  • the coefficients By multiplying the coefficients, multiple point-by-point thermal compensation correction coefficients can be obtained, so that the point-by-point thermal compensation correction function can be realized through the point-by-point thermal compensation correction coefficients.
  • the point-by-point thermal compensation correction coefficient calculated above has nothing to do with the module position of the LED display cabinet, that is, it does not change with the change of the module position. Therefore, when the module position of the LED display cabinet changes, you can also According to the point-by-point thermal compensation correction coefficient calculated above, the LED display cabinet is corrected to realize the point-by-point thermal compensation correction function. And the original point-by-point correction after thermal balance is decomposed into two parts, point-by-point correction and thermal compensation correction, which are separately corrected and saved as two correction coefficients. The separated thermal compensation correction coefficients are displayed for LEDs with the same structure and PCB layout. The screen box only needs to be collected once, which greatly improves the calibration efficiency.
  • Step 305 Correct the LED display cabinet according to the point-by-point thermal compensation correction coefficient calculated above.
  • FIG. 4 is a schematic structural diagram of an LED display screen calibration device 40 according to an embodiment of the present application.
  • the LED display screen correction device may include a calculation unit 401, a correction unit 402, an aging unit 403 and a collection unit 404, wherein the descriptions of each unit are as follows:
  • the calculation unit 401 is used to calculate and obtain the point-by-point thermal compensation correction coefficient according to the thermal compensation correction coefficient and the point-by-point correction coefficient of the LED display screen box; wherein, the thermal compensation correction coefficient is related to the mechanical structure of the LED display screen box And independent of the module position of the LED display box, the point-by-point correction coefficient is related to the module position of the LED display box, and the point-by-point thermal compensation correction coefficient is related to the mechanical structure of the LED display box. It has nothing to do with the module position of the LED display box;
  • the calibration unit 402 is used for calibrating the LED display cabinet according to the point-by-point thermal compensation correction coefficient.
  • the thermal compensation correction coefficient used in the original correction method is included in the point-by-point correction coefficient, and the point-by-point correction coefficient is related to the module position of the LED display cabinet
  • the thermal compensation correction The coefficient is also related to the module position of the LED display box, that is, when the module position of the LED display box changes, the thermal compensation correction coefficient will be affected by the change of the module position, making the thermal compensation correction impossible.
  • the expected effect is achieved; in the embodiment of the present application, the original point-by-point correction after thermal balance is decomposed into two parts, point-by-point correction and thermal compensation correction.
  • the thermal compensation correction caused by the change of the module position of the LED display box cannot achieve the expected effect, and the separated thermal compensation correction coefficient only needs to be collected once for the LED display box with the same structure and PCB layout, which greatly improves the correction efficiency.
  • the calculation unit 401 is specifically configured to multiply the thermal compensation correction coefficient and the point-by-point correction coefficient to obtain the point-by-point thermal compensation correction coefficient.
  • the thermal compensation correction and the point-by-point correction are divided into two different partial corrections, and the two corrections are separated by coefficients.
  • the thermal compensation correction coefficient and the point-by-point correction coefficient are only related to the mechanical structure of the LED display box, and has nothing to do with the module position of the LED display box, so it can achieve the effect of separate correction, so that even in the LED display box The thermal compensation correction is still valid when the module position is changed.
  • the calibration unit 402 is specifically configured to calibrate the LED display cabinet according to the point-by-point thermal compensation correction coefficient when the module position of the LED display cabinet is changed.
  • the calculated point-by-point thermal compensation correction coefficient is only related to the mechanical structure of the LED display cabinet, and has nothing to do with the module position of the LED display cabinet, even in the LED display
  • the thermal compensation correction is still valid when the module position of the cabinet is changed.
  • the correction unit 402 is further configured to correct the LED display box by using the first point-by-point thermal compensation correction coefficient if the temperature of the LED display box is lower than the first threshold; If the temperature of the screen box is greater than the second threshold, use the second point-by-point thermal compensation correction coefficient to correct the LED display box; if the temperature of the LED display box is not less than the first threshold and not greater than the second threshold, use the third The point-by-point thermal compensation correction coefficient corrects the LED display cabinet; wherein, the first point-by-point thermal compensation correction coefficient, the second point-by-point thermal compensation correction coefficient and the third point-by-point thermal compensation correction coefficient are point-by-point thermal compensation correction coefficients with different values .
  • different point-by-point thermal compensation correction coefficients are used to calibrate the LED display screen cabinet according to the temperature of the LED display screen cabinet. Because the thermal compensation correction coefficients of the LED display cabinet at different temperatures are different, the product results of different thermal compensation correction coefficients and point-by-point correction coefficients also correspond to multiple different point-by-point thermal compensation correction coefficients. Correlate the temperature monitoring of the LED display cabinet with the point-by-point thermal compensation correction coefficient, that is, set several temperature thresholds, such as the first threshold, the second threshold, etc., when the monitored LED display cabinet temperature is less than the first threshold.
  • the calibration unit 402 is further configured to perform cold screen calibration on the LED display screen box to obtain a sample box, and the sample box is the LED display screen box after the cold screen correction;
  • the aging unit 403 is used to perform white light aging treatment on the sample box until the sample box reaches a thermal equilibrium state, and the thermal equilibrium state is that the thermal distribution and the maximum temperature of the sample box do not change;
  • a collection unit 404 configured to collect the red luminance value matrix of the sample box in a thermal equilibrium state
  • the calculation unit 401 is further configured to calculate and obtain a thermal compensation correction coefficient matrix of the LED display screen box according to the red brightness value matrix, where the thermal compensation correction coefficient matrix includes thermal compensation correction coefficients.
  • a method for obtaining a thermal compensation correction coefficient is provided.
  • the cold screen correction is performed on the LED display box, and then white light aging treatment is performed until the thermal distribution and the maximum temperature of the LED display box no longer change. , and then collect the red brightness value matrix of the LED display box, and calculate the thermal compensation correction coefficient according to the collected red brightness value matrix.
  • the thermal compensation correction coefficient obtained by the method is related to the mechanical structure of the LED display screen box and has nothing to do with the module position of the LED display screen box.
  • the calculation unit 401 is further configured to divide the maximum value in the red brightness value matrix by the red brightness value matrix to obtain the thermal compensation correction coefficient matrix of the LED display screen cabinet.
  • a method for calculating a thermal compensation correction coefficient matrix is provided, and the maximum value in the red brightness value matrix of the collected sample box is divided by the red brightness value matrix to obtain a thermal compensation correction coefficient matrix.
  • the correction coefficient matrix includes the thermal compensation correction coefficients of the LED display cabinet at different temperatures.
  • the collection unit 404 is further configured to collect brightness and chromaticity data of the LED display cabinet;
  • the calculation unit 401 is further configured to calculate and obtain a point-by-point correction coefficient matrix of the LED display screen box according to the brightness and chromaticity data of the LED display screen box, and the point-by-point correction coefficient matrix includes a point-by-point correction coefficient.
  • a method for obtaining a point-by-point correction coefficient which collects the brightness and chromaticity data of the LED display screen box, and calculates a point-by-point correction coefficient matrix according to the brightness and chromaticity data.
  • the point-by-point correction coefficient matrix includes a point-by-point correction coefficient matrix.
  • Point correction coefficient, the point-by-point correction coefficient is related to the module position of the LED display cabinet.
  • the location where the point-by-point correction coefficient and the thermal compensation correction coefficient are stored are different.
  • the thermal compensation correction and the point-by-point correction can be divided into two parts for correction, thus solving the problem of the LED display cabinet after thermal compensation correction.
  • the thermal compensation correction caused by the change of the position of the module cannot achieve the expected effect, and the thermal compensation correction coefficient after separation only needs to be collected once for the LED display cabinet with the same structure and PCB layout, which greatly improves the correction efficiency.
  • each unit in the apparatus shown in FIG. 4 may be combined into one or several other units, respectively or all, or some unit(s) may be further divided into smaller functional units. It is composed of multiple units, which can realize the same operation without affecting the realization of the technical effects of the embodiments of the present application.
  • the above-mentioned units are divided based on logical functions.
  • the function of one unit may also be implemented by multiple units, or the functions of multiple units may be implemented by one unit.
  • the terminal-based terminal may also include other units.
  • these functions may also be implemented with the assistance of other units, and may be implemented by cooperation of multiple units.
  • each unit may also correspond to the corresponding descriptions of the method embodiments shown in FIG. 2 and FIG. 3 .
  • the original point-by-point correction after thermal balance is decomposed into two parts, point-by-point correction and thermal compensation correction, which are separately corrected and stored as two correction coefficients.
  • the thermal compensation correction caused by the change of the module position of the LED display box cannot achieve the expected effect, and the separated thermal compensation correction coefficient only needs to be collected for the LED display box with the same structure and PCB layout. Once, the correction efficiency is greatly improved.
  • FIG. 5 is a schematic structural diagram of a device 50 for calibrating an LED display screen provided by an embodiment of the present application.
  • the device 50 for calibrating an LED display screen may include a memory 501 and a processor 502 .
  • a bus 503 may also be included, wherein the memory 501 and the processor 502 are connected through the bus 503 .
  • the memory 501 is used to provide a storage space, and data such as an operating system and computer programs can be stored in the storage space.
  • the memory 501 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM).
  • the processor 502 is a module that performs arithmetic operations and logical operations, and can be a processing module such as a central processing unit (CPU), a graphics processing unit (GPU), or a microprocessor (microprocessor unit, MPU). of one or more combinations.
  • a processing module such as a central processing unit (CPU), a graphics processing unit (GPU), or a microprocessor (microprocessor unit, MPU). of one or more combinations.
  • a computer program is stored in the memory 501, and the processor 502 calls the computer program stored in the memory 501 to perform the following operations:
  • the point-by-point thermal compensation correction coefficient is calculated; wherein, the thermal compensation correction coefficient is related to the mechanical structure of the LED display box and is related to the LED display box.
  • the position of the module has nothing to do with the LED display, the point-by-point correction coefficient is related to the module position of the LED display cabinet, and the point-by-point thermal compensation correction coefficient is related to the mechanical structure of the LED display cabinet and is related to the LED display cabinet.
  • the position of the module is irrelevant;
  • the thermal compensation correction coefficient used in the original correction method is included in the point-by-point correction coefficient, and the point-by-point correction coefficient is related to the module position of the LED display cabinet
  • the thermal compensation correction The coefficient is also related to the module position of the LED display box, that is, when the module position of the LED display box changes, the thermal compensation correction coefficient will be affected by the change of the module position, making the thermal compensation correction impossible.
  • the expected effect is achieved; in the embodiment of the present application, the original point-by-point correction after thermal balance is decomposed into two parts, point-by-point correction and thermal compensation correction.
  • the thermal compensation correction caused by the change of the module position of the LED display box cannot achieve the expected effect, and the separated thermal compensation correction coefficient only needs to be collected once for the LED display box with the same structure and PCB layout, which greatly improves the correction efficiency.
  • the processor 502 is specifically configured to: combine the thermal compensation correction coefficient and the point-by-point correction coefficient.
  • the point-by-point correction coefficients are multiplied to obtain point-by-point thermal compensation correction coefficients.
  • the processor 502 is specifically configured to: under the condition that the module position of the LED display screen box changes, according to the point-by-point thermal compensation correction coefficient
  • the spot heat compensation correction coefficient is used to correct the LED display cabinet.
  • the processor 502 is specifically configured to: if the temperature of the LED display cabinet is less than the first threshold, use the first The point-by-point thermal compensation correction coefficient corrects the LED display box; if the temperature of the LED display box is greater than the second threshold, use the second point-by-point thermal compensation correction coefficient to correct the LED display box; if the temperature of the LED display box is not Less than the first threshold and not greater than the second threshold, use the third point-by-point thermal compensation correction coefficient to correct the LED display cabinet; wherein, the first point-by-point thermal compensation correction coefficient, the second point-by-point thermal compensation correction coefficient and the third point-by-point thermal compensation correction coefficient
  • the point-by-point thermal compensation correction coefficient is a point-by-point thermal compensation correction coefficient with different values.
  • the processor 502 is further configured to: perform cold screen correction on the LED display screen box to obtain a sample box, the sample box is after the cold screen correction The LED display box of the LED display screen; the sample box is subjected to white light aging treatment until the sample box reaches the thermal equilibrium state, and the thermal equilibrium state is that the thermal distribution and the maximum temperature of the sample box do not change; the red brightness value matrix of the sample box in the thermal equilibrium state is collected. ; According to the red brightness value matrix, the thermal compensation correction coefficient matrix of the LED display cabinet is calculated, and the thermal compensation correction coefficient matrix includes the thermal compensation correction coefficient.
  • the processor 502 is specifically configured to: divide the maximum value in the red brightness value matrix by the red The brightness value matrix is obtained, and the thermal compensation correction coefficient matrix of the LED display cabinet is obtained.
  • the processor 502 before calculating the point-by-point thermal compensation correction coefficient, is specifically configured to: collect the brightness and chromaticity data of the LED display cabinet; The point-by-point correction coefficient matrix of the LED display cabinet is obtained, and the point-by-point correction coefficient matrix includes the point-by-point correction coefficient.
  • the locations where the point-by-point correction coefficients and the thermal compensation correction coefficients are stored are different. It should be noted that the specific implementation of the device for calibrating the LED display screen may also correspond to the corresponding descriptions of the method embodiments shown in FIG. 2 and FIG. 3 .
  • the LED display screen correction device 50 described in FIG. 5 by decomposing the original point-by-point correction after thermal balance into two parts, point-by-point correction and thermal compensation correction, and separately saving them as two correction coefficients, the problem can be solved.
  • the thermal compensation correction caused by the change of the module position of the LED display box cannot achieve the expected effect, and the separated thermal compensation correction coefficient only needs to be collected for the LED display box with the same structure and PCB layout. Once, the correction efficiency is greatly improved.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the LEDs shown in FIG. 2 and FIG. 3 can be implemented. Display calibration method.
  • the embodiment of the present application also provides a computer program product, when the computer program product runs on the processor, the LED display screen calibration method shown in FIG. 2 and FIG. 3 can be implemented.
  • the thermal compensation correction caused by the change of the module position of the LED display cabinet cannot achieve the expected effect, and the separated thermal compensation correction coefficient only needs to be collected once for the LED display cabinet with the same structure and PCB layout , greatly improving the calibration efficiency.
  • the aforementioned storage medium includes: read-only memory ROM or random-access storage memory RAM, magnetic disk or optical disk and other media that can store computer program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种LED显示屏的校正方法,包括:根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数(201);根据逐点热补偿校正系数对LED显示屏箱体校正(202)。通过将热补偿校正系数和逐点校正系数分离并分开校正,解决了LED显示屏模组位置改变而导致热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。

Description

一种LED显示屏的校正方法及相关装置 技术领域
本申请涉及显示技术领域,尤其涉及一种发光二极管(light emitting diode,LED)显示屏的校正方法及相关装置。
背景技术
LED显示屏是一种由一个个小的LED模块面板组成的平板显示器,用于显示文字、图像、视频等各种信息。由于LED显示屏可广泛应用于如交通讯号灯、文艺演出、新闻发布等多种场景,人们对LED显示屏的显示质量的需求也越来越高。其中,LED显示屏的发光亮度和色度是显示质量的两个重要指标。LED显示屏的发光亮度会随温度升高而降低,不同发光色度的LED受温度的影响不同。因此,LED显示屏热力分布不均引起的显示亮度和色度一致性变差成为了技术领域中的一大难题。
目前,人们通常采用逐点热补偿校正的方法解决上述显示亮度和色度一致性变差的问题,逐点热补偿校正是先对LED显示屏进行热补偿校正,等到LED显示屏达到热平衡状态后再对LED显示屏进行逐点校正。但是,上述逐点热补偿校正的方法耗时太长,校正效率低,且在LED显示屏模组位置改变的情况下热补偿校正无法达到预期的效果。
发明内容
本申请实施例公开了一种LED显示屏的校正方法及相关装置,将热补偿校正系数和逐点校正系数分离并分开校正,解决了LED显示屏模组位置改变而导致热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和印制电路板(printed circuit board,PCB)布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
第一方面,本申请实施例公开了一种LED显示屏的校正方法,包括:
根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数;其中,热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关,逐点校正系数与LED显示屏箱体的模组位置具有关联性,逐点热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关;
根据逐点热补偿校正系数对LED显示屏箱体校正。
在本申请实施例中,因为原来的校正方法所用到的热补偿校正系数包含在逐点校正系数中,且逐点校正系数与LED显示屏箱体的模组位置具有关联性,所以热补偿校正系数与LED显示屏箱体的模组位置也具有关联性,即在LED显示屏箱体的模组位置改变的情况下,热补偿校正系数会受到模组位置改变的影响从而使得热补偿校正无法达到预期的效果;本申请实施例把原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,从而解决了因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
在第一方面的一种可能的实施方式中,根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数,包括:
将热补偿校正系数和逐点校正系数相乘,得到逐点热补偿校正系数。
在本申请实施例中,将热补偿校正和逐点校正分为两个不同的部分校正,并且这两个校正是系数分离的,通过计算热补偿校正系数和逐点校正系数的乘积,得到的逐点热补偿校正系数只与LED显示屏箱体的机械结构具有关联性,而与LED显示屏箱体的模组位置无关,故能达到分开校正的效果,使得即使在LED显示屏箱体的模组位置改变的情况下热补偿校正依然有效。
在第一方面的一种可能的实施方式中,根据逐点热补偿校正系数对LED显示屏箱体校正,包括:
在LED显示屏箱体的模组位置改变的情况下,根据逐点热补偿校正系数对LED显示屏箱体校正。
在本申请实施例中,因为计算得到的逐点热补偿校正系数只与LED显示屏箱体的机械结构具有关联性,而与LED显示屏箱体的模组位置无关,故即使在LED显示屏箱体的模组位置改变的情况下热补偿校正依然有效。
在第一方面的一种可能的实施方式中,根据逐点热补偿校正系数对LED显示屏箱体校正,包括:
若LED显示屏箱体的温度小于第一阈值,利用第一逐点热补偿校正系数校正LED显示屏箱体;
若LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿校正系数校正LED显示屏箱体;
若LED显示屏箱体的温度不小于第一阈值且不大于第二阈值,利用第三逐点热补偿校正系数校正LED显示屏箱体;
其中,第一逐点热补偿校正系数、第二逐点热补偿校正系数以及第三逐点热补偿校正系数为不同数值的逐点热补偿校正系数。
在本申请实施例中,根据LED显示屏箱体的温度的不同而采用不同的逐点热补偿校正系数对LED显示屏箱体校正。因为LED显示屏箱体在不同温度下的热补偿校正系数是不同的,不同的热补偿校正系数与逐点校正系数的乘积结果也对应了多个不同的逐点热补偿校正系数,因此,可将LED显示屏箱体的温度监控和逐点热补偿校正系数关联起来,即设定几个温度阈值,比如第一阈值、第二阈值等,当监测到LED显示屏箱体温度小于第一阈值,利用第一逐点热补偿校正系数校正LED显示屏箱体;当监测到LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿校正系数校正LED显示屏箱体;当监测到LED显示屏箱体的温度不小于第一阈值且不大于第二阈值,利用第三逐点热补偿校正系数校正LED显示屏箱体。故可以通过上述校正方法实现LED显示屏箱体的自动逐点热补偿校正功能。
在第一方面的一种可能的实施方式中,计算得到逐点热补偿校正系数之前,方法还包括:
对LED显示屏箱体进行冷屏校正,得到样箱,样箱为冷屏校正后的LED显示屏箱体;
对样箱进行白光老化处理,直至样箱达到热平衡状态,热平衡状态为样箱的热力分布 和最高温度不再变化;
采集处于热平衡状态中的样箱的红色亮度值矩阵;
根据红色亮度值矩阵,计算得到LED显示屏箱体的热补偿校正系数矩阵,热补偿校正系数矩阵包括热补偿校正系数。
在本申请实施例中,提供了获得热补偿校正系数的方法,对LED显示屏箱体进行冷屏校正,然后再进行白光老化处理,直至LED显示屏箱体的热力分布和最高温度不再变化,然后采集LED显示屏箱体的红色亮度值矩阵,并根据采集到的红色亮度值矩阵计算得到热补偿校正系数。该方法得到的热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关。
在第一方面的一种可能的实施方式中,根据红色亮度值矩阵,计算得到LED显示屏箱体的热补偿校正系数矩阵,包括:
将红色亮度值矩阵中的最大值除以红色亮度值矩阵,得到LED显示屏箱体的热补偿校正系数矩阵。
在本申请实施例中,提供了计算热补偿校正系数矩阵的方法,将采集到的样箱的红色亮度值矩阵中的最大值除以红色亮度值矩阵,得到热补偿校正系数矩阵,该热补偿校正系数矩阵包括LED显示屏箱体在不同温度下的热补偿校正系数。
在第一方面的一种可能的实施方式中,计算得到逐点热补偿校正系数之前,方法还包括:
采集LED显示屏箱体的亮色度数据;
根据LED显示屏箱体的亮色度数据,计算得到LED显示屏箱体的逐点校正系数矩阵,逐点校正系数矩阵包括逐点校正系数。
在本申请实施例中,提供了获得逐点校正系数的方法,采集LED显示屏箱体的亮色度数据,并根据该亮色度数据计算得到逐点校正系数矩阵,该逐点校正系数矩阵包括逐点校正系数,该逐点校正系数与LED显示屏箱体的模组位置具有关联性。
在第一方面的一种可能的实施方式中,逐点校正系数和热补偿校正系数存储的位置不同。
在本申请实施例中,通过将逐点校正系数和热补偿校正系数分开存储,可以使热补偿校正和逐点校正分为两个部分校正,从而解决了因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
第二方面,本申请实施例公开了一种LED显示屏的校正装置,包括:
计算单元,用于根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数;其中,热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关,逐点校正系数与LED显示屏箱体的模组位置具有关联性,逐点热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关;
校正单元,用于根据逐点热补偿校正系数对LED显示屏箱体校正。
在本申请实施例中,因为原来的校正方法所用到的热补偿校正系数包含在逐点校正系 数中,且逐点校正系数与LED显示屏箱体的模组位置具有关联性,所以热补偿校正系数与LED显示屏箱体的模组位置也具有关联性,即在LED显示屏箱体的模组位置改变的情况下,热补偿校正系数会受到模组位置改变的影响从而使得热补偿校正无法达到预期的效果;本申请实施例把原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,从而解决了因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
在第二方面的一种可能的实施方式中,计算单元,具体用于将热补偿校正系数和逐点校正系数相乘,得到逐点热补偿校正系数。
在本申请实施例中,将热补偿校正和逐点校正分为两个不同的部分校正,并且这两个校正是系数分离的,通过计算热补偿校正系数和逐点校正系数的乘积,得到的逐点热补偿校正系数只与LED显示屏箱体的机械结构具有关联性,而与LED显示屏箱体的模组位置无关,故能达到分开校正的效果,使得即使在LED显示屏箱体的模组位置改变的情况下热补偿校正依然有效。
在第二方面的一种可能的实施方式中,校正单元,具体用于在LED显示屏箱体的模组位置改变的情况下,根据逐点热补偿校正系数对LED显示屏箱体校正。
在本申请实施例中,因为计算得到的逐点热补偿校正系数只与LED显示屏箱体的机械结构具有关联性,而与LED显示屏箱体的模组位置无关,故即使在LED显示屏箱体的模组位置改变的情况下热补偿校正依然有效。
在第二方面的一种可能的实施方式中,校正单元,具体还用于若LED显示屏箱体的温度小于第一阈值,利用第一逐点热补偿校正系数校正LED显示屏箱体;若LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿校正系数校正LED显示屏箱体;若LED显示屏箱体的温度不小于第一阈值且不大于第二阈值,利用第三逐点热补偿校正系数校正LED显示屏箱体;其中,第一逐点热补偿校正系数、第二逐点热补偿校正系数以及第三逐点热补偿校正系数为不同数值的逐点热补偿校正系数。
在本申请实施例中,根据LED显示屏箱体的温度的不同而采用不同的逐点热补偿校正系数对LED显示屏箱体校正。因为LED显示屏箱体在不同温度下的热补偿校正系数是不同的,不同的热补偿校正系数与逐点校正系数的乘积结果也对应了多个不同的逐点热补偿校正系数,因此,可将LED显示屏箱体的温度监控和逐点热补偿校正系数关联起来,即设定几个温度阈值,比如第一阈值、第二阈值等,当监测到LED显示屏箱体温度小于第一阈值,利用第一逐点热补偿校正系数校正LED显示屏箱体;当监测到LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿校正系数校正LED显示屏箱体;当监测到LED显示屏箱体的温度不小于第一阈值且不大于第二阈值,利用第三逐点热补偿校正系数校正LED显示屏箱体。故可以通过上述校正方法实现LED显示屏箱体的自动逐点热补偿校正功能。
在第二方面的一种可能的实施方式中,校正单元,还用于对LED显示屏箱体进行冷屏校正,得到样箱,样箱为冷屏校正后的LED显示屏箱体;装置还包括:
老化单元,用于对样箱进行白光老化处理,直至样箱达到热平衡状态,热平衡状态为样箱的热力分布和最高温度不再变化;
采集单元,用于采集处于热平衡状态中的样箱的红色亮度值矩阵;
计算单元,还用于根据红色亮度值矩阵,计算得到LED显示屏箱体的热补偿校正系数矩阵,热补偿校正系数矩阵包括热补偿校正系数。
在本申请实施例中,提供了获得热补偿校正系数的方法,对LED显示屏箱体进行冷屏校正,然后再进行白光老化处理,直至LED显示屏箱体的热力分布和最高温度不再变化,然后采集LED显示屏箱体的红色亮度值矩阵,并根据采集到的红色亮度值矩阵计算得到热补偿校正系数。该方法得到的热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关。
在第二方面的一种可能的实施方式中,计算单元,还用于将红色亮度值矩阵中的最大值除以红色亮度值矩阵,得到LED显示屏箱体的热补偿校正系数矩阵。
在本申请实施例中,提供了计算热补偿校正系数矩阵的方法,将采集到的样箱的红色亮度值矩阵中的最大值除以红色亮度值矩阵,得到热补偿校正系数矩阵,该热补偿校正系数矩阵包括LED显示屏箱体在不同温度下的热补偿校正系数。
在第二方面的一种可能的实施方式中,采集单元,还用于采集LED显示屏箱体的亮色度数据;
计算单元,还用于根据LED显示屏箱体的亮色度数据,计算得到LED显示屏箱体的逐点校正系数矩阵,逐点校正系数矩阵包括逐点校正系数。
在本申请实施例中,提供了获得逐点校正系数的方法,采集LED显示屏箱体的亮色度数据,并根据该亮色度数据计算得到逐点校正系数矩阵,该逐点校正系数矩阵包括逐点校正系数,该逐点校正系数与LED显示屏箱体的模组位置具有关联性。
在第二方面的一种可能的实施方式中,逐点校正系数和热补偿校正系数存储的位置不同。
在本申请实施例中,通过将逐点校正系数和热补偿校正系数分开存储,可以使热补偿校正和逐点校正分为两个部分校正,从而解决了因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
第三方面,本申请实施例公开了一种LED显示屏校正的电子设备,该电子设备包括存储器和处理器,其中,存储器中存储有程序指令,当程序指令在被处理器执行时,使处理器执行如第一方面或者第一方面的任意一种可能的实施方式中的方法。
第四方面,本申请实施例公开了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当计算机程序在一个或多个处理器上运行时,执行如第一方面或者第一方面的任意一种可能的实施方式中的方法。
本申请实施例,因为热补偿校正需要用到的热补偿校正系数和LED显示屏箱体的机械结构和模组位置具有关联性,逐点校正需要用到的逐点校正系数和LED显示屏箱体的模组位置具有关联性,所以在LED显示屏箱体的模组位置改变的情况下,热补偿校正系数受到影响从而使得热补偿校正无法达到预期的效果;但是,将原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,可以解决因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题, 且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图作简单的介绍。
图1为本申请实施例提供的一种LED显示屏箱体校正的架构示意图;
图2为本申请实施例提供的一种LED显示屏校正方法的流程示意图;
图3为本申请实施例提供的另一种LED显示屏校正方法的流程示意图;
图4为本申请实施例提供的一种LED显示屏校正装置的结构示意图;
图5为本申请实施例提供的一种LED显示屏校正设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请实施例提供了一种LED显示屏的校正方法,为了更清楚地描述本申请的方案,下面先介绍一些与LED显示屏箱体校正相关的知识。
LED显示屏箱体:LED显示屏箱体简单地讲就是由若干个可组合拼接的显示单元(单元显示板或单元显示箱体)构成的屏体。为满足不同环境,再加上一套适当的控制器(主控板或控制系统),所以多种规格的显示板(或单元箱体)配合不同控制技术的控制器就可以组成许多种LED显示屏,满足不同显示需求。LED显示屏箱体面积不能太大,一般为一个箱体 一个显示屏;主要采用吊装方式进行安装;两面的显示屏可以共用一张LED控制卡,控制卡采用分区控制卡,一般两面面积相等,显示内容也相同,只需要将软件内容分成相同的两部分。LED显示屏箱体应用于舞台、会议、户外各个领域,因为模板重量很重,使用起来不方便,成本也高,随着技术的提升,将LED显示屏箱体进行改造,使其越来越简单化。LED显示屏箱体散热快,散热性能高,能有效保护模组电路;抗干扰、特有抗电磁波干扰功能;强度高、箱体拉力测试达到300Kg。
LED显示屏模组:LED显示屏模组是组成LED显示屏成品的主要部件之一,其主要由LED灯、PCB线路板、驱动IC、电阻、电容和塑料套件组成。
LED显示屏模组按颜色可分为:单色模组,如单红,单绿,单蓝,单黄,单白模组;双色模组,如红绿双色,红蓝双色;全彩模组,主要用红绿蓝三基色放在一个LED模组上的产品。LED显示屏模组依据其使用空间的不同,可分为室内,半户外和户外三种模组。根据使用LED封装器件的不同,LED显示屏模组还可分为:直插灯LED显示屏模组,室内点阵LED显示屏模组,表贴LED显示屏模组。
逐点校正:逐点校正是一项用于提升LED显示屏亮色均匀度和色彩保真度的技术,即通过对LED显示屏上的每个像素(或每一个基色子像素)区域的亮度(和色度)数据进行采集,给出每个基色子像素的校正系数或每个像素的校正系数矩阵,将其反馈给显示屏的控制系统,由控制系统应用校正系数,实现对每个像素(或每一个基色子像素)的差异性驱动,让LED显示屏的画面纯净细腻,色彩得到真实还原。
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1为本申请实施例提供的一种LED显示屏箱体校正的架构示意图。如图1所示,该架构图包括了LED显示屏箱体、LED控制器、控制计算机以及相机。其中,相机用于采集LED箱体的亮色度数据,并将采集到的亮色度数据传输给控制计算机,由控制计算机进行计算得到逐点校正系数,控制计算机与LED控制器网络连接,并指示该LED控制器以计算得到的逐点校正系数对LED显示屏箱体进行逐点亮色度校正。逐点亮色度校正是根据RGB颜色匹配原理,通过改变RGB三色的色坐标来解决色度偏差的问题。在进行逐点亮色度校正时,应该合理选择校正后RGB三色的色坐标,避免产生色彩失真。逐点亮色度校正是对每一颗LED灯进行亮度和颜色的均匀性调节。上述校正的架构图适用于工厂规范化、标准化管理的校正,箱体可以自由拼接,箱体边缘自动修正,且校正角度一致且最小,校正效率高且校正成本低。
判断LED显示屏箱体的校正效果主要可以从LED显示屏的显示质量来判断,其中,LED显示屏的发光亮度和色度是显示质量的两个重要指标,LED显示屏的发光亮度会随温度升高而降低,不同发光色度的LED受温度的影响不同。因此,通过LED显示屏箱体的校正方法来解决LED显示屏热力分布不均引起的显示亮度和色度一致性变差的问题成为了技术领域中主要的研究方向。目前,人们通常采用逐点热补偿校正的方法解决上述显示亮度和色度一致性变差的问题,逐点热补偿校正是先对LED显示屏进行热补偿校正,等到LED显示屏达到热平衡状态后再对LED显示屏进行逐点校正。但是,上述逐点热补偿校正的方法耗时太长,校正效率低,且在LED显示屏模组位置改变的情况下因为热补偿校正系数会随着LED显示屏箱体模组位置改变而改变,热补偿校正无法达到预期的效果。
请参阅图2,图2为本申请实施例提供的一种LED显示屏校正方法的流程示意图,该方法包括但不限于如下步骤:
步骤201:根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数。
根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数;其中,热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关,即当LED显示屏箱体的机械结构发生改变时,LED显示屏箱体的热补偿校正系数也会随之改变,且LED显示屏箱体的热补偿校正系数不会随着模组位置的改变而改变;逐点校正系数与LED显示屏箱体的模组位置具有关联性,即当LED显示屏箱体的模组位置发生改变时,LED显示屏箱体的逐点校正系数也会随之改变;逐点热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关,即当LED显示屏箱体的机械结构发生改变时,LED显示屏箱体的逐点热补偿校正系数也会随之改变,但不会随着LED显示屏箱体的模组位置的改变而改变。由此可知,本实施例通过用逐点热补偿校正系数来校正LED显示屏箱体可以在LED显示屏箱体的模组位置改变的情况下,依然使逐点热补偿校正达到预期的效果。因为本实施例把原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
具体的,对于得到逐点热补偿校正系数的计算方式有多种可能,本实施例提供一种可能的实施方式。将LED显示屏箱体的热补偿校正系数和逐点校正系数相乘,把二者乘积的结果作为逐点热补偿校正系数。其中,逐点校正系数可以通过采集LED显示屏箱体的亮色度数据,并根据采集到的该亮色度数据计算得到逐点校正系数矩阵,该逐点校正系数矩阵包括了多个不同的逐点校正系数,逐点校正系数与LED显示屏箱体的模组位置相关。热补偿校正系数可以通过以下方式获得:首先对LED显示屏箱体进行逐点亮色度冷屏校正,具体的,冷屏校正为对上述LED显示屏箱体在室温下点亮后的一分钟内完成逐点亮色度校正,这里的室温指的是25摄氏度左右;将冷屏校正后的LED显示屏箱体作为样箱,可选的,上述的逐点校正系数也可以在此时采集样箱的亮色度数据,计算得到逐点校正系数矩阵;接着将LED样箱以100%亮度显示,并白色老化30分钟左右,使LED样箱达到热平衡状态,热平衡状态指的是LED样箱的热力分布不再发生变化且最高温度不再改变,即视为LED样箱达到热平衡状态;然后采集冷屏校正后且达到热平衡状态的样箱的红色亮度值矩阵,通过将采集到的红色亮度值矩阵中的最大值除以该红色亮度值矩阵得到的结果作为热补偿校正系数矩阵,该热补偿校正系数矩阵包括了多个热补偿校正系数,且该热补偿校正系数只与LED显示屏箱体的机械结构相关,不随LED显示屏箱体的模组位置改变而改变。上述得到的逐点校正系数和热补偿校正系数是分别存储在不同的位置,达到系数分离的效果。进一步地,与LED控制器网络连接的控制计算机将热补偿校正系数矩阵通过LED控制器的上位机软件发送至LED控制器的接收卡中,使热补偿校正系数矩阵和逐点校正系数矩阵的点对点系数相乘,得到多个逐点热补偿校正系数,从而通过逐点热补偿校正系数实现逐点热补偿校正功能。
步骤202:根据上述计算得到的逐点热补偿校正系数对LED显示屏箱体校正。
由上述步骤201可知,计算得到的逐点热补偿校正系数和LED显示屏箱体的模组位置无关,即不随模组位置的改变而改变,故在LED显示屏箱体的模组位置改变的情况下,也可以根据上述计算得到的逐点热补偿校正系数对LED显示屏箱体进行校正,实现逐点热补偿校正功能。且把原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
具体的,LED显示屏箱体校正设备可根据LED显示屏箱体的温度的不同而采用不同的逐点热补偿校正系数对LED显示屏箱体校正。因为LED显示屏箱体在不同温度下的热补偿校正系数是不同的,不同的热补偿校正系数与逐点校正系数的乘积结果也对应了多个不同的逐点热补偿校正系数,因此,可将LED显示屏箱体的温度监控和逐点热补偿校正系数关联起来,即设定几个温度阈值,比如第一阈值、第二阈值等,当监测到LED显示屏箱体温度小于第一阈值,利用第一逐点热补偿校正系数校正LED显示屏箱体;当监测到LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿校正系数校正LED显示屏箱体;当监测到LED显示屏箱体的温度不小于第一阈值且不大于第二阈值,利用第三逐点热补偿校正系数校正LED显示屏箱体。其中,第一阈值和第二阈值并不是固定不变的值,可以根据应用场景的不同而做不同的设定,如可设定第一阈值为50℃,可设定第二阈值为70℃。故可以通过上述校正方法将LED显示屏箱体的温度监控和逐点热补偿校正系数下的命令关联起来,从而实现LED显示屏箱体的自动逐点热补偿校正功能。
请参阅图3,图3为本申请实施例提供的另一种LED显示屏校正方法的流程示意图,该方法包括但不限于如下步骤:
步骤301:根据LED显示屏箱体的亮色度数据,计算得到LED显示屏箱体的逐点校正系数。
如LED控制计算机等LED显示屏箱体的校正设备可以通过相机等外接设备采集LED显示屏箱体的亮色度数据,并根据该亮色度数据计算得到逐点校正系数矩阵,该逐点校正系数矩阵包括逐点校正系数,该逐点校正系数与LED显示屏箱体的模组位置具有关联性。可选的,与LED控制计算机等LED显示屏箱体的校正设备网络连接的LED控制器可根据计算得到的LED显示屏箱体的逐点校正系数对LED显示屏箱体进行逐点校正,逐点校正是一项用于提升LED显示屏亮色均匀度和色彩保真度的技术,即通过对LED显示屏上的每个像素(或每一个基色子像素)区域的亮度(和色度)数据进行采集,给出每个基色子像素的校正系数或每个像素的校正系数矩阵,将其反馈给显示屏的控制系统,由控制系统应用校正系数,实现对每个像素(或每一个基色子像素)的差异性驱动,让LED显示屏的画面纯净细腻,色彩得到真实还原。
步骤302:采集冷屏校正后且达到热平衡状态的LED显示屏箱体的红色亮度值矩阵。
本步骤对LED显示屏箱体进行冷屏校正,具体的,冷屏校正为对上述LED显示屏箱体在室温下点亮后的一分钟内完成逐点亮色度校正,这里的室温指的是25摄氏度左右;将冷屏校正后的LED显示屏箱体作为样箱,可选的,上述的逐点校正系数也可以在此时采集样箱的亮色度数据,计算得到逐点校正系数矩阵;接着将LED样箱以100%亮度显示,并进行 白光老化步骤30分钟左右,使LED样箱达到热平衡状态,热平衡状态指的是LED样箱的热力分布不再发生变化且最高温度不再改变,即视为LED样箱达到热平衡状态;然后采集冷屏校正后且达到热平衡状态的样箱的红色亮度值矩阵,采集到的该红色亮色度值矩阵可用于计算得到LED样箱的热补偿校正系数。
步骤303:根据上述采集到的红色亮度值矩阵计算得到LED显示屏箱体的热补偿校正系数。
由上述步骤302可采集得到LED显示屏箱体的红色亮度值矩阵,该红色亮色度值矩阵可用于计算得到LED样箱的热补偿校正系数。具体的,可通过将采集到的红色亮度值矩阵中的最大值除以该红色亮度值矩阵得到的结果作为热补偿校正系数矩阵,该热补偿校正系数矩阵包括了多个热补偿校正系数,且该方法得到的热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关。需要注意的是,上述得到的逐点校正系数和热补偿校正系数是分别存储在不同的位置,通过将逐点校正系数和热补偿校正系数分开存储,可以使热补偿校正和逐点校正分为两个部分校正,从而解决了因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
步骤304:根据上述计算得到的逐点校正系数和热补偿校正系数,计算得到LED显示屏箱体的逐点热补偿校正系数。
由上述步骤301至步骤303可计算得到LED显示屏箱体的逐点校正系数和热补偿校正系数,且二者分别存储在不同的位置,达到系数分离的效果。进一步地,与LED控制器网络连接的控制计算机将热补偿校正系数矩阵通过LED控制器的上位机软件发送至LED控制器的接收卡中,使热补偿校正系数矩阵和逐点校正系数矩阵的点对点系数相乘,可得到多个逐点热补偿校正系数,从而通过逐点热补偿校正系数实现逐点热补偿校正功能。上述计算得到的逐点热补偿校正系数和LED显示屏箱体的模组位置无关,即不随模组位置的改变而改变,故在LED显示屏箱体的模组位置改变的情况下,也可以根据上述计算得到的逐点热补偿校正系数对LED显示屏箱体进行校正,实现逐点热补偿校正功能。且把原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
步骤305:根据上述计算得到的逐点热补偿校正系数对LED显示屏箱体校正。
与上述步骤202一致。
上述详细阐述了本申请实施例的方法,下面提供本申请实施例的装置。
请参阅图4,图4为本申请实施例提供的一种LED显示屏校正装置40的结构示意图。该LED显示屏校正装置可以包括计算单元401、校正单元402、老化单元403以及采集单元404,其中,各个单元的描述如下:
计算单元401,用于根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数;其中,热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关,逐点校正系数与LED显示屏箱体的模组位置具有关 联性,逐点热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关;
校正单元402,用于根据逐点热补偿校正系数对LED显示屏箱体校正。
在本申请实施例中,因为原来的校正方法所用到的热补偿校正系数包含在逐点校正系数中,且逐点校正系数与LED显示屏箱体的模组位置具有关联性,所以热补偿校正系数与LED显示屏箱体的模组位置也具有关联性,即在LED显示屏箱体的模组位置改变的情况下,热补偿校正系数会受到模组位置改变的影响从而使得热补偿校正无法达到预期的效果;本申请实施例把原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,从而解决了因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
在一种可能的实施方式中,计算单元401,具体用于将热补偿校正系数和逐点校正系数相乘,得到逐点热补偿校正系数。
在本申请实施例中,将热补偿校正和逐点校正分为两个不同的部分校正,并且这两个校正是系数分离的,通过计算热补偿校正系数和逐点校正系数的乘积,得到的逐点热补偿校正系数只与LED显示屏箱体的机械结构具有关联性,而与LED显示屏箱体的模组位置无关,故能达到分开校正的效果,使得即使在LED显示屏箱体的模组位置改变的情况下热补偿校正依然有效。
在又一种可能的实施方式中,校正单元402,具体用于在LED显示屏箱体的模组位置改变的情况下,根据逐点热补偿校正系数对LED显示屏箱体校正。
在本申请实施例中,因为计算得到的逐点热补偿校正系数只与LED显示屏箱体的机械结构具有关联性,而与LED显示屏箱体的模组位置无关,故即使在LED显示屏箱体的模组位置改变的情况下热补偿校正依然有效。
在又一种可能的实施方式中,校正单元402,具体还用于若LED显示屏箱体的温度小于第一阈值,利用第一逐点热补偿校正系数校正LED显示屏箱体;若LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿校正系数校正LED显示屏箱体;若LED显示屏箱体的温度不小于第一阈值且不大于第二阈值,利用第三逐点热补偿校正系数校正LED显示屏箱体;其中,第一逐点热补偿校正系数、第二逐点热补偿校正系数以及第三逐点热补偿校正系数为不同数值的逐点热补偿校正系数。
在本申请实施例中,根据LED显示屏箱体的温度的不同而采用不同的逐点热补偿校正系数对LED显示屏箱体校正。因为LED显示屏箱体在不同温度下的热补偿校正系数是不同的,不同的热补偿校正系数与逐点校正系数的乘积结果也对应了多个不同的逐点热补偿校正系数,因此,可将LED显示屏箱体的温度监控和逐点热补偿校正系数关联起来,即设定几个温度阈值,比如第一阈值、第二阈值等,当监测到LED显示屏箱体温度小于第一阈值,利用第一逐点热补偿校正系数校正LED显示屏箱体;当监测到LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿校正系数校正LED显示屏箱体;当监测到LED显示屏箱体的温度不小于第一阈值且不大于第二阈值,利用第三逐点热补偿校正系数校正LED显示屏箱体。故可以通过上述校正方法实现LED显示屏箱体的自动逐点热补偿校正功能。
在又一种可能的实施方式中,校正单元402,还用于对LED显示屏箱体进行冷屏校正,得到样箱,样箱为冷屏校正后的LED显示屏箱体;
老化单元403,用于对样箱进行白光老化处理,直至样箱达到热平衡状态,热平衡状态为样箱的热力分布和最高温度不再变化;
采集单元404,用于采集处于热平衡状态中的样箱的红色亮度值矩阵;
计算单元401,还用于根据红色亮度值矩阵,计算得到LED显示屏箱体的热补偿校正系数矩阵,热补偿校正系数矩阵包括热补偿校正系数。
在本申请实施例中,提供了获得热补偿校正系数的方法,对LED显示屏箱体进行冷屏校正,然后再进行白光老化处理,直至LED显示屏箱体的热力分布和最高温度不再变化,然后采集LED显示屏箱体的红色亮度值矩阵,并根据采集到的红色亮度值矩阵计算得到热补偿校正系数。该方法得到的热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关。
在又一种可能的实施方式中,计算单元401,还用于将红色亮度值矩阵中的最大值除以红色亮度值矩阵,得到LED显示屏箱体的热补偿校正系数矩阵。
在本申请实施例中,提供了计算热补偿校正系数矩阵的方法,将采集到的样箱的红色亮度值矩阵中的最大值除以红色亮度值矩阵,得到热补偿校正系数矩阵,该热补偿校正系数矩阵包括LED显示屏箱体在不同温度下的热补偿校正系数。
在又一种可能的实施方式中,采集单元404,还用于采集LED显示屏箱体的亮色度数据;
计算单元401,还用于根据LED显示屏箱体的亮色度数据,计算得到LED显示屏箱体的逐点校正系数矩阵,逐点校正系数矩阵包括逐点校正系数。
在本申请实施例中,提供了获得逐点校正系数的方法,采集LED显示屏箱体的亮色度数据,并根据该亮色度数据计算得到逐点校正系数矩阵,该逐点校正系数矩阵包括逐点校正系数,该逐点校正系数与LED显示屏箱体的模组位置具有关联性。
在又一种可能的实施方式中,逐点校正系数和热补偿校正系数存储的位置不同。
在本申请实施例中,通过将逐点校正系数和热补偿校正系数分开存储,可以使热补偿校正和逐点校正分为两个部分校正,从而解决了因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
根据本申请实施例,图4所示的装置中的各个单元可以分别或全部合并为一个或若干个另外的单元,或者其中的某个(些)单元还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元是基于逻辑功能划分的,在实际应用中,一个单元的功能也可以由多个单元来实现,或者多个单元的功能由一个单元实现。在本申请的其它实施例中,基于终端也可以包括其它单元,在实际应用中,这些功能也可以由其它单元协助实现,并且可以由多个单元协作实现。
需要说明的是,各个单元的实现还可以对应参照图2以及图3所示的方法实施例的相应描述。
在图4所描述的LED显示屏校正装置中,通过将原来的热平衡后的逐点校正分解为逐 点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,可以解决因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
请参阅图5,图5是本申请实施例提供的一种LED显示屏校正设备50的结构示意图,该LED显示屏校正设备50可以包括存储器501、处理器502。进一步可选的,还可以包含总线503,其中,存储器501和处理器502通过总线503相连。
其中,存储器501用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器501包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。
处理器502是进行算术运算和逻辑运算的模块,可以是中央处理器(central processing unit,CPU)、显卡处理器(graphics processing unit,GPU)或微处理器(microprocessor unit,MPU)等处理模块中的一种或者多种的组合。
存储器501中存储有计算机程序,处理器502调用存储器501中存储的计算机程序,以执行以下操作:
根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数;其中,热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关,逐点校正系数与LED显示屏箱体的模组位置具有关联性,逐点热补偿校正系数与LED显示屏箱体的机械结构具有关联性且和LED显示屏箱体的模组位置无关;
根据逐点热补偿校正系数对LED显示屏箱体校正。
在本申请实施例中,因为原来的校正方法所用到的热补偿校正系数包含在逐点校正系数中,且逐点校正系数与LED显示屏箱体的模组位置具有关联性,所以热补偿校正系数与LED显示屏箱体的模组位置也具有关联性,即在LED显示屏箱体的模组位置改变的情况下,热补偿校正系数会受到模组位置改变的影响从而使得热补偿校正无法达到预期的效果;本申请实施例把原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,从而解决了因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
在一种可能的实施方式中,在根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数方面,处理器502具体用于:将热补偿校正系数和逐点校正系数相乘,得到逐点热补偿校正系数。
在一种可能的实施方式中,在根据逐点热补偿校正系数对LED显示屏箱体校正方面,处理器502具体用于:在LED显示屏箱体的模组位置改变的情况下,根据逐点热补偿校正系数对LED显示屏箱体校正。
在一种可能的实施方式中,在根据逐点热补偿校正系数对LED显示屏箱体校正方面,处理器502具体用于:若LED显示屏箱体的温度小于第一阈值,利用第一逐点热补偿校正系数校正LED显示屏箱体;若LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿 校正系数校正LED显示屏箱体;若LED显示屏箱体的温度不小于第一阈值且不大于第二阈值,利用第三逐点热补偿校正系数校正LED显示屏箱体;其中,第一逐点热补偿校正系数、第二逐点热补偿校正系数以及第三逐点热补偿校正系数为不同数值的逐点热补偿校正系数。
在一种可能的实施方式中,在计算得到逐点热补偿校正系数之前,处理器502具体还用于:对LED显示屏箱体进行冷屏校正,得到样箱,样箱为冷屏校正后的LED显示屏箱体;对样箱进行白光老化处理,直至样箱达到热平衡状态,热平衡状态为样箱的热力分布和最高温度不再变化;采集处于热平衡状态中的样箱的红色亮度值矩阵;根据红色亮度值矩阵,计算得到LED显示屏箱体的热补偿校正系数矩阵,热补偿校正系数矩阵包括热补偿校正系数。
在一种可能的实施方式中,在根据红色亮度值矩阵,计算得到LED显示屏箱体的热补偿校正系数矩阵方面,处理器502具体用于:将红色亮度值矩阵中的最大值除以红色亮度值矩阵,得到LED显示屏箱体的热补偿校正系数矩阵。
在一种可能的实施方式中,在计算得到逐点热补偿校正系数之前,处理器502具体用于:采集LED显示屏箱体的亮色度数据;根据LED显示屏箱体的亮色度数据,计算得到LED显示屏箱体的逐点校正系数矩阵,逐点校正系数矩阵包括逐点校正系数。
在一种可能的实施方式中,逐点校正系数和热补偿校正系数存储的位置不同。需要说明的是,LED显示屏校正设备的具体实现还可以对应参照图2以及图3所示的方法实施例的相应描述。
在图5所描述的LED显示屏校正设备50,通过将原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,可以解决因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当计算机程序在一个或多个处理器上运行时,可以实现图2以及图3所示的LED显示屏校正方法。
本申请实施例还提供一种计算机程序产品,当计算机程序产品在处理器上运行时,可以实现图2以及图3所示的LED显示屏校正方法。
综上所述,通过实施本申请实施例,通过将原来的热平衡后的逐点校正分解为逐点校正和热补偿校正两个部分分开校正,并分别保存为两个校正系数,可以解决因热补偿校正后LED显示屏箱体的模组位置改变而引起的热补偿校正无法达到预期效果的问题,且分离后的热补偿校正系数对于同一结构和PCB布局的LED显示屏箱体只需采集一次,大大提高了校正效率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序相关的硬件完成,该计算机程序可存储于计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:只读存储器ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储计算机程序代码的介质。

Claims (11)

  1. 一种LED显示屏的校正方法,其特征在于,包括:
    根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数;其中,所述热补偿校正系数与所述LED显示屏箱体的机械结构具有关联性且和所述LED显示屏箱体的模组位置无关,所述逐点校正系数与所述LED显示屏箱体的模组位置具有关联性,所述逐点热补偿校正系数与所述LED显示屏箱体的机械结构具有关联性且和所述LED显示屏箱体的模组位置无关;
    根据所述逐点热补偿校正系数对所述LED显示屏箱体校正。
  2. 根据权利要求1所述的方法,其特征在于,所述根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数,包括:
    将所述热补偿校正系数和所述逐点校正系数相乘,得到所述逐点热补偿校正系数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述逐点热补偿校正系数对所述LED显示屏箱体校正,包括:
    在所述LED显示屏箱体的模组位置改变的情况下,根据所述逐点热补偿校正系数对所述LED显示屏箱体校正。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述逐点热补偿校正系数对所述LED显示屏箱体校正,包括:
    若所述LED显示屏箱体的温度小于第一阈值,利用第一逐点热补偿校正系数校正所述LED显示屏箱体;
    若所述LED显示屏箱体的温度大于第二阈值,利用第二逐点热补偿校正系数校正所述LED显示屏箱体;
    若所述LED显示屏箱体的温度不小于所述第一阈值且不大于所述第二阈值,利用第三逐点热补偿校正系数校正所述LED显示屏箱体;
    其中,所述第一逐点热补偿校正系数、所述第二逐点热补偿校正系数以及所述第三逐点热补偿校正系数为不同数值的所述逐点热补偿校正系数。
  5. 根据权利要求4所述的方法,其特征在于,所述计算得到逐点热补偿校正系数之前,所述方法还包括:
    对所述LED显示屏箱体进行冷屏校正,得到样箱,所述样箱为冷屏校正后的所述LED显示屏箱体;
    对所述样箱进行白光老化处理,直至所述样箱达到热平衡状态,所述热平衡状态为所述样箱的热力分布和最高温度不再变化;
    采集处于所述热平衡状态中的所述样箱的红色亮度值矩阵;
    根据所述红色亮度值矩阵,计算得到所述LED显示屏箱体的热补偿校正系数矩阵,所述热补偿校正系数矩阵包括所述热补偿校正系数。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述红色亮度值矩阵,计算得到所述LED显示屏箱体的热补偿校正系数矩阵,包括:
    将所述红色亮度值矩阵中的最大值除以所述红色亮度值矩阵,得到所述LED显示屏箱体的所述热补偿校正系数矩阵。
  7. 根据权利要求6所述的方法,其特征在于,所述计算得到逐点热补偿校正系数之前,所述方法还包括:
    采集所述LED显示屏箱体的亮色度数据;
    根据所述LED显示屏箱体的亮色度数据,计算得到所述LED显示屏箱体的逐点校正系数矩阵,所述逐点校正系数矩阵包括所述逐点校正系数。
  8. 根据权利要求7所述的方法,其特征在于,所述逐点校正系数和所述热补偿校正系数存储的位置不同。
  9. 一种LED显示屏的校正装置,其特征在于,包括:
    计算单元,用于根据LED显示屏箱体的热补偿校正系数和逐点校正系数,计算得到逐点热补偿校正系数;其中,所述热补偿校正系数与所述LED显示屏箱体的机械结构具有关联性且和所述LED显示屏箱体的模组位置无关,所述逐点校正系数与所述LED显示屏箱体的模组位置具有关联性,所述逐点热补偿校正系数与所述LED显示屏箱体的机械结构具有关联性且和所述LED显示屏箱体的模组位置无关;
    校正单元,用于根据所述逐点热补偿校正系数对所述LED显示屏箱体校正。
  10. 一种电子设备,其特征在于,包括:处理器和存储器,其中,所述存储器存储有程序指令,所述程序指令被所述处理器执行时,使所述处理器执行权利要求1-8中任一项所述的方法。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在一个或多个处理器上运行时,执行如权利要求1-8中任一项所述的方法。
PCT/CN2021/078684 2020-07-30 2021-03-02 一种led显示屏的校正方法及相关装置 WO2022021874A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021539394A JP2022545991A (ja) 2020-07-30 2021-03-02 Ledディスプレイの補正方法及び関連装置
US17/365,375 US11380251B2 (en) 2020-07-30 2021-07-01 LED display screen calibration method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010751971.5 2020-07-30
CN202010751971.5A CN111951696B (zh) 2020-07-30 2020-07-30 一种led显示屏的校正方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/365,375 Continuation US11380251B2 (en) 2020-07-30 2021-07-01 LED display screen calibration method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022021874A1 true WO2022021874A1 (zh) 2022-02-03

Family

ID=73338711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078684 WO2022021874A1 (zh) 2020-07-30 2021-03-02 一种led显示屏的校正方法及相关装置

Country Status (2)

Country Link
CN (1) CN111951696B (zh)
WO (1) WO2022021874A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927091A (zh) * 2022-05-30 2022-08-19 卡莱特云科技股份有限公司 一种led显示屏的热屏效应处理方法、装置及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111951696B (zh) * 2020-07-30 2022-10-25 深圳市艾比森光电股份有限公司 一种led显示屏的校正方法及相关装置
CN113657066B (zh) * 2021-08-18 2024-04-26 上海航天电子通讯设备研究所 Smt贴装数据快速转换方法及系统
CN114203086B (zh) * 2021-12-01 2023-10-20 西安诺瓦星云科技股份有限公司 热力补偿校正的方法、装置及设备
CN117253448B (zh) * 2023-11-16 2024-05-14 深圳市连硕显电子有限公司 Led显示屏校正方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652898A (zh) * 2017-02-14 2017-05-10 西安诺瓦电子科技有限公司 Led显示逐点校正方法
CN206628249U (zh) * 2017-04-13 2017-11-10 上海得倍电子技术有限公司 Led显示校正系统
CN109671388A (zh) * 2019-01-22 2019-04-23 利亚德光电股份有限公司 校正数据的获取方法及装置
KR20190078316A (ko) * 2017-12-26 2019-07-04 엘지디스플레이 주식회사 유기 발광 표시 장치와 그의 구동 방법
CN110689841A (zh) * 2019-11-18 2020-01-14 颜色空间(北京)科技有限公司 Led显示屏逐点校正方法
CN111951696A (zh) * 2020-07-30 2020-11-17 深圳市艾比森光电股份有限公司 一种led显示屏的校正方法及相关装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489169B2 (ja) * 1993-02-25 2004-01-19 セイコーエプソン株式会社 液晶表示装置の駆動方法
KR102557420B1 (ko) * 2016-02-17 2023-07-20 삼성디스플레이 주식회사 표시 장치의 휘도 보상 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652898A (zh) * 2017-02-14 2017-05-10 西安诺瓦电子科技有限公司 Led显示逐点校正方法
CN206628249U (zh) * 2017-04-13 2017-11-10 上海得倍电子技术有限公司 Led显示校正系统
KR20190078316A (ko) * 2017-12-26 2019-07-04 엘지디스플레이 주식회사 유기 발광 표시 장치와 그의 구동 방법
CN109671388A (zh) * 2019-01-22 2019-04-23 利亚德光电股份有限公司 校正数据的获取方法及装置
CN110689841A (zh) * 2019-11-18 2020-01-14 颜色空间(北京)科技有限公司 Led显示屏逐点校正方法
CN111951696A (zh) * 2020-07-30 2020-11-17 深圳市艾比森光电股份有限公司 一种led显示屏的校正方法及相关装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927091A (zh) * 2022-05-30 2022-08-19 卡莱特云科技股份有限公司 一种led显示屏的热屏效应处理方法、装置及系统
CN114927091B (zh) * 2022-05-30 2023-11-28 卡莱特云科技股份有限公司 一种led显示屏的热屏效应处理方法、装置及系统

Also Published As

Publication number Publication date
CN111951696B (zh) 2022-10-25
CN111951696A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2022021874A1 (zh) 一种led显示屏的校正方法及相关装置
US10825408B2 (en) Display driving method, device and apparatus
US10347198B2 (en) Image displaying methods and display devices
US20070268236A1 (en) Methods and systems for LCD backlight color control
AU2017310447A1 (en) Method for improving image effect and apparatus therefor
CN112634819A (zh) 一种led显示屏的校正方法及相关装置
US20150364081A1 (en) Image processing apparatus, image processing method, display device, computer program and computer-readable medium
US10706798B2 (en) Display driving method, device and apparatus
US9286857B2 (en) Display apparatus and method for transforming color thereof
CN111683439B (zh) 彩光灯带的控制方法与显示设备
CN113327532B (zh) 一种显示面板的色偏补偿方法及装置、计算机设备及介质
US10210788B2 (en) Displaying method and display with subpixel rendering
US7965884B2 (en) System and method for testing LEDs on a motherboard
CN114203086B (zh) 热力补偿校正的方法、装置及设备
US10043458B2 (en) Display apparatus for changing color distribution of light generated by display and method thereof
US20240046874A1 (en) Compensating for Voltage Losses in OLED Displays
CN112071257A (zh) 一种led屏校正方法、装置、存储介质及led屏
WO2022178666A1 (zh) 一种led显示屏及其显示控制方法
WO2017107266A1 (zh) 显示面板、显示器及提高四基色纯色画面显示亮度的方法
US11380251B2 (en) LED display screen calibration method and related apparatus
Sugiura et al. 41.4: Late‐News Paper: Wide Color Gamut and High Brightness Assured by the Support of LED Backlighting in WUXGA LCD Monitor
CN102956218A (zh) 显示系统与显示单元控制方法
TWI814637B (zh) 色域轉換方法、顯示裝置以及資訊處理裝置
CN113267928B (zh) 背光模块、显示模组及校色方法、系统和设备
WO2022109783A1 (zh) 一种led显示屏的数据存储方法及相关装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021539394

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850539

Country of ref document: EP

Kind code of ref document: A1