WO2022021682A1 - 一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法 - Google Patents

一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法 Download PDF

Info

Publication number
WO2022021682A1
WO2022021682A1 PCT/CN2020/129993 CN2020129993W WO2022021682A1 WO 2022021682 A1 WO2022021682 A1 WO 2022021682A1 CN 2020129993 W CN2020129993 W CN 2020129993W WO 2022021682 A1 WO2022021682 A1 WO 2022021682A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
waveguide
atoms
tmga
Prior art date
Application number
PCT/CN2020/129993
Other languages
English (en)
French (fr)
Inventor
刘飞
秦鹏
朱振
邓桃
Original Assignee
山东华光光电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东华光光电子股份有限公司 filed Critical 山东华光光电子股份有限公司
Publication of WO2022021682A1 publication Critical patent/WO2022021682A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers

Definitions

  • the invention relates to a low-power AlGaInP red light semiconductor laser with double asymmetric waveguide layers and a preparation method thereof, belonging to the technical field of optoelectronics.
  • the low-power AlGaInP red semiconductor laser has the characteristics of low price and long life, and has a wide range of application prospects in the fields of medical beauty and industrial measurement.
  • high electro-optical conversion efficiency and good working stability not only help reduce the heat generation of the device and reduce the heat dissipation cost of the device, but also require high spot quality and reduce the generation of side modes.
  • low-power red light semiconductor lasers are mainly ridge-shaped structures with large lateral light-emitting areas, and the device's control of the lateral light field mode is weakened.
  • the conduction band gap difference between GaInP and Al(Ga)InP materials is small, which is easy to cause carrier leakage, and the light emitted by the quantum well diffuses out of the waveguide layer, resulting in carrier scattering and
  • the absorption loss causes the increase of the internal loss of the laser, the large threshold current and the low slope efficiency, which lead to the increase of the temperature of the active area, and the thermal lens effect is easily generated, which leads to the generation of high-order mode light and the deterioration of the spot quality, as shown in Figure 1a.
  • the quality light spot, shown in Figure 1b shows the existence of the right side mode, as shown by the arrow, which is a poor quality light spot.
  • the methods of improving beam quality include: (1) Modulation methods such as heat sinks with better thermal conductivity, spot shaping, and tapered ridge structures are used, but the process is complicated and the cost is high, which is not conducive to large-scale low-power red semiconductor lasers. (2) The ultra-large optical cavity structure is adopted to increase the thickness of the waveguide layer, but the overall resistance of the device will be increased, the optical confinement factor will be reduced, the threshold current will increase, the slope efficiency will decrease, and the heat dissipation capability of the active area will be poor.
  • narrowing the width of the ridge strips reduces the difference between the refractive indices on both sides of the ridge waveguide, but reduces the horizontal divergence angle, resulting in a narrower spot and a reduced ridge width, resulting in an increase in resistance. , more heat is generated during lasing, resulting in a gradient change in the effective refractive index, which deteriorates the spot quality; (4) The metal coating is used to absorb the side-mode light to ensure better spot quality, but it will lead to an increase in the threshold current and a decrease in the slope efficiency , deteriorating device performance.
  • the present invention proposes a low-power AlGaInP red light semiconductor laser with double asymmetric waveguide layers and a preparation method thereof.
  • resistance which drives the optical field to shift downward to the waveguide, reduces the internal loss caused by carrier absorption caused by the overlap of the optical field and the upper confinement layer, increases the slope efficiency to 0.9W/A, and reduces the waste heat generated in the active area , so that the metal coating is used to ensure the quality of the light spot, and at the same time, the output power is improved, and the reliability of high temperature operation is enhanced.
  • low power means that the power is less than 100 mW.
  • the present invention adopts following technical scheme:
  • a low-power AlGaInP red light semiconductor laser with double asymmetric waveguide layers comprising a GaAs substrate, a GaAs buffer layer, a Gax1In1 -x1P lower transition layer, (Al1 - x2Gax2 ) sequentially arranged from bottom to top y1 In 1-y1 P lower confinement layer, (Al 1-x3 Ga x3 ) y2 In 1-y2 P graded lower waveguide layer, Ga 1-x4 In x4 P first quantum well, (Al 1-x5 Ga x5 ) y3 In 1-y3 P barrier layer, Ga 1-x6 In x6 P second quantum well, (Al 1-x7 Ga x7 ) y4 In 1-y4 P graded upper waveguide layer, (Al 1-x8 Ga x8 ) y5 In 1 -y5 P first upper confinement layer, Ga 1-x9 In x9 P etch stop layer, (Al 1-x10 Ga x10 ) y6 In 1-y6
  • the thickness of the waveguide layer under the (Al 1-x3 Ga x3 ) y2 In 1-y2 P gradient is greater than that of the (Al 1-x7 Ga x7 ) y4 In 1-y4 P gradient upper waveguide layer, and the (Al 1- The thickness of the waveguide layer under the gradient of x3 Ga x3 ) y2 In 1-y2 P is 0.08-0.2 ⁇ m, preferably 0.12 ⁇ m, unintentionally doped, the composition of x3 is graded from 0.05 to 0.55, the (Al 1-x7 Ga The thickness of the waveguide layer on the x7 ) y4 In 1-y4 P graded grade is 0.05-0.15 ⁇ m, preferably 0.1 ⁇ m, doped by half, and the x7 composition is graded from 0.5 to 0.15.
  • the thickness of the waveguide layer under the (Al 1-x3 Ga x3 ) y2 In 1-y2 P gradient is greater than the thickness of the waveguide layer on the (Al 1-x7 Ga x7 ) y4 In 1-y4 P gradient, thereby realizing the light field
  • the offset of the downward confinement layer, (Al 1-x8 Ga x8 ) y5 In 1-y5 P, the first upper confinement layer is low-doped to reduce the internal loss caused by carrier absorption and improve the electrical parameters.
  • a preparation method of a low-power AlGaInP red light semiconductor laser with double asymmetric waveguide layers comprising the following steps:
  • S1 place the GaAs substrate in the MOCVD equipment growth chamber, heat it up to 720 ⁇ 10°C in the H 2 environment and bake it, and pass in AsH 3 to heat the surface of the GaAs substrate;
  • the temperature is slowly raised to 700 ⁇ 10°C, TMAl, TMIn, TMGa and PH 3 are continuously fed in, and n-type (Al 1-x2 Ga x2 ) y1 In1 is grown on the Ga x1 In 1-x1 P lower transition layer -y1P lower limit layer;
  • the temperature is kept at 650 ⁇ 10°C, TMAl, TMIn, TMGa and PH 3 are fed in, and (Al 1-x5 Ga x5 ) y3 In 1-y3 is grown on the first quantum well of Ga 1-x4 In x4 P P barrier layer;
  • the temperature is slowly raised to 700 ⁇ 10°C, TMAl, TMIn, TMGa and PH 3 are continuously fed in, and (Al 1-x7 Ga x7 ) y4 In 1 is grown on the Ga 1-x6 In x6 P second quantum well -y4 P graded upper waveguide layer;
  • the (Al 1-x7 Ga x7 ) y4 In 1-y4 P graded upper waveguide layer can also change the ratio of Al and Ga fluxes, thereby realizing the growth of (Al 1-x7 Ga x7 ) y4 In 1 - Composition gradient for y4 P material.
  • the "slow down” speed is all 40°C/min, and the “slow up” speed is all 60°C/min.
  • the thickness of the Ga x1 In 1-x1 P lower transition layer is 0.1-0.3 ⁇ m, 0.4 ⁇ x1 ⁇ 0.6, and the doping concentration is 1E18-3E18 atoms/cm 3 ;
  • the thickness of the n-type (Al 1-x2 Ga x2 ) y1 In 1-y1 P lower confinement layer is 0.5-1.5 ⁇ m, and the doping concentration is 5E17-3E18 atoms/cm 3 , 0.05 ⁇ x2 ⁇ 0.3, 0.4 ⁇ y1 ⁇ 0.6;
  • the thickness of the waveguide layer under the gradient of (Al 1-x3 Ga x3 ) y2 In 1-y2 P is 0.08-0.2 ⁇ m, unintentionally doped, 0.05 ⁇ x3 ⁇ 0.6, 0.4 ⁇ y2 ⁇ 0.6;
  • the thickness of the Ga 1-x4 In x4 P first quantum well is 4-7 nm, unintentionally doped, 0.3 ⁇ x4 ⁇ 0.7;
  • the thickness of the (Al 1-x5 Ga x5 ) y3 In 1-y3 P barrier layer is 5-15 nm, unintentionally doped, 0.25 ⁇ x5 ⁇ 0.7, 0.4 ⁇ y3 ⁇ 0.6;
  • the thickness of the Ga 1-x6 In x6 P second quantum well is 4-7 nm, unintentionally doped, 0.3 ⁇ x6 ⁇ 0.7;
  • the thickness of the (Al 1-x7 Ga x7 ) y4 In 1-y4 P graded upper waveguide layer is 0.05-0.15 ⁇ m, 1/2 doping, 0.05 ⁇ x7 ⁇ 0.6, 0.4 ⁇ y4 ⁇ 0.6;
  • the thickness of the P-type (Al 1-x8 Ga x8 ) y5 In 1-y5 P first upper confinement layer is 0.05-0.25 ⁇ m, and the doping concentration is 5E17-1E18 atoms/cm 3 , 0.05 ⁇ x8 ⁇ 0.3, 0.4 ⁇ y5 ⁇ 0.6;
  • the thickness of the P-type Ga 1-x9 In x9 P etching stop layer is 0.01-0.05 ⁇ m, and the doping concentration is 5E17-1.2E18 atoms/cm 3 , 0.4 ⁇ x9 ⁇ 0.6;
  • x9 0.6
  • the thickness is 0.01 ⁇ m
  • the doping concentration is 1E18 atoms/cm 3 .
  • the thickness of the P-type (Al 1-x10 Ga x10 ) y6 In 1-y6 P second upper confinement layer is 0.5-1.2 ⁇ m, and the doping concentration is 5E17-1.5E18 atoms/cm 3 , 0.05 ⁇ x10 ⁇ 0.3, 0.4 ⁇ y6 ⁇ 0.6;
  • the thickness of the P-type Ga 1-x11 In x11 P upper transition layer is 0.01-0.05 ⁇ m, the doping concentration is 1E18-3E18 atoms/cm 3 , 0.4 ⁇ x11 ⁇ 0.6;
  • the thickness of the GaAs cap layer is 0.1-0.5 ⁇ m, and the doping concentration is 4E19-1E20 atoms/cm 3 ;
  • the thickness of the GaAs cap layer is 0.02 ⁇ m, and the doping concentration is 7E19 atoms/cm 3 .
  • the lower waveguide layer and the upper waveguide layer of the present invention have different thicknesses, different compositions, and different refraction rates ⁇ n, and are designed for double asymmetry.
  • the waveguide layer AlGInP itself has a large resistance, and dopants (eg 1/2 doping in step S9), which reduces the resistance of the device, drives the optical field to shift to the lower waveguide layer, and reduces the internal loss caused by carrier absorption caused by the overlap of the optical field and the upper confinement layer.
  • the double asymmetry shifts the light field, reduces the carrier absorption loss, thereby improving the luminous efficiency, and the slope efficiency (similar to the ratio of the luminous power to the incoming electric power) is increased to 0.9W/A, reducing the waste heat generated in the active area. , so as to ensure the quality of the spot, improve the output power, and enhance the reliability of high temperature work.
  • Figure 1a shows a higher quality light spot
  • Figure 1b is a poor quality spot
  • FIG. 2 is a schematic structural diagram of a low-power AlGaInP red semiconductor laser with double asymmetric waveguide layers of the present invention
  • Fig. 3 is the refractive index and light field distribution schematic diagram of the present invention.
  • a low-power AlGaInP red semiconductor laser with double asymmetric waveguide layers includes a GaAs substrate 1, a GaAs buffer layer 2, a Gax1In1 -x1P lower transition layer 3 sequentially arranged from bottom to top , (Al 1-x2 Ga x2 ) y1 In 1-y1 P lower confinement layer 4, (Al 1-x3 Ga x3 ) y2 In 1-y2 P graded lower waveguide layer 5, Ga 1-x4 In x4 P first quantum Well 6, (Al 1-x5 Ga x5 ) y3 In 1-y3 P barrier layer 7, Ga 1-x6 In x6 P second quantum well 8, (Al 1-x7 Ga x7 ) y4 In 1-y4 P gradient upper Waveguide layer 9, (Al 1-x8 Ga x8 ) y5 In 1-y5 P first upper confinement layer 10, Ga 1-x9 In x9 P etch stop layer 11, (Al 1-x10 Ga x10 ) y6 In 1-y6
  • the thickness of the waveguide layer 5 under the (Al 1-x3 Ga x3 ) y2 In 1-y2 P gradient is greater than the thickness of the waveguide layer 9 on the (Al 1-x7 Ga x7 ) y4 In 1-y4 P gradient, (Al 1- The thickness of the waveguide layer 5 under the x3 Ga x3 ) y2 In 1-y2 P gradient is 0.08-0.2 ⁇ m, unintentional doping, x3 composition gradient, gradient from 0.05 to 0.55, (Al 1-x7 Ga x7 ) y4 In 1
  • the thickness of the waveguide layer 9 on the -y4 P graded layer is 0.05-0.15 ⁇ m, 1/2 doping, and the x7 composition is graded from 0.5 to 0.15.
  • d1 and d2 are the thicknesses of the lower waveguide layer and the upper waveguide layer, respectively, ⁇ n1 and ⁇ n2 are the refractive index changes of the lower waveguide layer and the upper waveguide layer, respectively, d1>d2, ⁇ n1 ⁇ n2, thus
  • the light-emitting center is deviated, the downward confinement layer is offset, and the overlapping area of the light field and the upper confinement layer is reduced (S1 is less than S2), thereby reducing the loss caused by carrier absorption (the upper confinement layer carrier absorption loss coefficient is much larger than lower confinement layer absorption loss);
  • the thickness of the waveguide layer under the (Al 1-x3 Ga x3 ) y2 In 1-y2 P gradient is greater than the thickness of the waveguide layer on the (Al 1-x7 Ga x7 ) y4 In 1-y4 P gradient, thereby realizing the optical field direction.
  • the offset of the lower confinement layer, (Al 1-x8 Ga x8 ) y5 In 1-y5 P, the first upper confinement layer is low-doped to reduce the internal loss caused by carrier absorption and improve the electrical parameters.
  • a preparation method of a low-power AlGaInP red light semiconductor laser with double asymmetric waveguide layers comprising the following steps:
  • TMGa and AsH 3 slowly reduce the temperature to 680 ⁇ 10°C, continue to feed TMGa and AsH 3 , and grow the GaAs buffer layer 2 on the GaAs substrate; in this step, the feeding amount of TMGa and AsH 3 is related to V/III, which is related to V/III.
  • the quality of the growth material is related and will not be described in detail here;
  • the temperature is kept at 650 ⁇ 10°C, TMAl, TMIn, TMGa and PH 3 are fed into it, and (Al 1-x5 Ga x5 ) y3 In 1-y3 P is grown on the first quantum well 6 of Ga 1-x4 In x4 P barrier layer 7;
  • the (Al 1-x7 Ga x7 ) y4 In 1-y4 P graded upper waveguide layer can also change the ratio of Al and Ga fluxes, thereby realizing the growth of (Al 1-x7 Ga x7 ) y4 In 1 - Composition gradient for y4 P material.
  • the temperature is slowly lowered to 680 ⁇ 10°C, TMIn, TMGa and PH 3 are continuously fed in, and P-type Ga 1-x11 is grown on the second upper confinement layer 12 of (Al 1-x10 Ga x10 ) y6 In 1-y6 P In x11 P upper transition layer 13;
  • the "slow down” speed is all 40°C/min, and the “slow up” speed is all 60°C/min.
  • a preparation method of a low-power AlGaInP red semiconductor laser with double asymmetric waveguide layers, as described in Embodiment 2, the difference is that in step S3, the thickness of the Ga x1 In 1-x1 P lower transition layer 3 is 0.1 -0.3 ⁇ m, preferably 0.2 ⁇ m, 0.4 ⁇ x1 ⁇ 0.6, preferably x1 0.5, the doping concentration is 1E18-3E18 atoms/cm 3 , preferably 2E18 atoms/cm 3 .
  • step S7 (Al 1-x5 Ga x5 ) y3 In 1-y3 P barrier
  • the thickness of the P first upper confinement layer 10 is 0.05-0.25 ⁇ m, preferably 0.15 ⁇ m
  • step S14 the thickness of the GaAs cap layer 14 is 0.1-0.5 ⁇ m, preferably 0.02 ⁇ m ⁇ m, the doping concentration is 4E19-1E20 atoms/cm 3 , preferably 7E19 atoms/cm 3 .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法,包括由下至上依次设置的GaAs衬底(1)、GaAs缓冲层(2)、下过渡层(3)、下限制层(4)、渐变下波导层(5)、第一量子阱(6)、垒层(7)、第二量子阱(8)、渐变上波导层(9)、第一上限制层(10)、腐蚀终止层(11)、第二上限制层(12)、上过渡层(13)和GaAs帽层(14),下波导层为渐变下波导层(5),上波导层为渐变上波导层(9),二分之一掺杂。通过上波导层、下波导层厚度及组分的双非对称设计,降低器件电阻,驱使光场向下波导偏移,减小光场和上限制层的重合带来的载流子吸收造成的内损耗,斜率效率提高至0.9W/A,减少有源区产生的废热,从而利用金属镀层保证光斑质量的同时,提高输出功率,增强高温工作可靠性。

Description

一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法 技术领域
本发明涉及一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法,属于光电子技术领域。
背景技术
小功率AlGaInP红光半导体激光器具有价格低、寿命长的特点,在医疗美容及工业测量等领域有着广泛的应用前景。在这些应用中,较高的电光转换效率和良好的工作稳定性,不仅有助于减小器件的发热量,降低器件的散热成本,同时需要较高的光斑质量,减少侧模的产生。
目前小功率红光半导体激光器主要为脊形结构,侧向发光区域较大,器件对侧向光场模式的控制减弱,光束容易出现丝状效应、空间烧孔等问题,产生侧模,严重影响了侧向光束质量;与此同时,GaInP和Al(Ga)InP材料导带带隙差小,容易产生载流子泄露,同时量子阱发出的光扩散到波导层外,导致载流子散射和吸收损耗,引起了激光器内损耗增加,阈值电流大、斜率效率低,导致有源区温度升高,容易产生热透镜效应,导致高阶模光产生,光斑质量变差,如图1a所示为较高质量光斑,图1b所示,可见右侧侧模存在,如箭头所示,为质量较差光斑。
提高光束质量的方法包括:(1)采用导热性较好的热沉、光斑整形、锥形脊条结构等调制方法,但工艺复杂、成本较高,不利于小功率红光半导体激光器的大规模生产;(2)采用超大光腔结构,增大波导层厚度,但会增加器件的整体电阻,光限制因子减小,导致阈值电流增大、斜率效率降低,有源区散热能力较差,不适用于小功率激光器的便携式使用;(3)缩小脊条宽度,减小脊波导两侧折射率的差值,但会减小水平发散角,导致光斑狭长,同时脊宽减小,导致电阻增加,激射时产生更多的热,导致有效折射率梯度变化,恶化光斑质量;(4)利用金属镀层吸收侧模光,保证较好的光斑质量,但会导致阈值电流增大、斜率效率降低,恶化器件性能。
发明内容
针对现有技术的不足,本发明提出一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法,通过上波导层、下波导层厚度及组分的双非对称设计,降低器件电阻,驱使光场向下波导偏移,减小光场和上限制层的重合带来的载流子吸收带来的内损耗,斜率效率提高至0.9W/A,减少有源区产生的废热,从而利用金属镀层保证光 斑质量的同时,提高输出功率,增强高温工作可靠性。
本发明中,“小功率”是指功率小于100mW。
本发明采用以下技术方案:
一种双非对称波导层的小功率AlGaInP红光半导体激光器,包括由下至上依次设置的GaAs衬底、GaAs缓冲层、Ga x1In 1-x1P下过渡层、(Al 1-x2Ga x2) y1In 1-y1P下限制层、(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层、Ga 1-x4In x4P第一量子阱、(Al 1-x5Ga x5) y3In 1-y3P垒层、Ga 1-x6In x6P第二量子阱、(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层、(Al 1-x8Ga x8) y5In 1-y5P第一上限制层、Ga 1-x9In x9P腐蚀终止层、(Al 1-x10Ga x10) y6In 1-y6P第二上限制层、Ga 1-x11In x11P上过渡层和GaAs帽层,0.4≤x1≤0.6;0.05≤x2≤0.3,0.4≤y1≤0.6;0.05≤x3≤0.6,0.4≤y2≤0.6;0.3≤x4≤0.7;0.25≤x5≤0.7,0.4≤y3≤0.6;0.3≤x6≤0.7;0.05≤x7≤0.6,0.4≤y4≤0.6;0.05≤x8≤0.3,0.4≤y5≤0.6;0.5≤x9≤0.7;0.05≤x10≤0.3,0.4≤y6≤0.6;0.4≤x11≤0.6;
其中,(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层的厚度大于(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度,所述(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层厚度为0.08-0.2μm,优选为0.12μm,非故意掺杂,x3组分渐变,由0.05渐变至0.55,所述(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度为0.05-0.15μm,优选为0.1μm,二分之一掺杂,x7组分渐变,由0.5渐变至0.15。
本发明中,(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层的厚度大于(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度,从而实现光场向下限制层的偏移,(Al 1-x8Ga x8) y5In 1-y5P第一上限制层低掺杂以减少载流子吸光造成的内损耗,提高电参数。
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,包括以下步骤:
S1,将GaAs衬底放在MOCVD设备生长室内,在H 2环境中升温到720±10℃烘烤,并通入AsH 3,对GaAs衬底进行表面热处理;
S2,将温度缓降到680±10℃,继续通入TMGa和AsH 3,在GaAs衬底上生长GaAs缓冲层;
S3,温度保持在680±10℃,继续通入TMIn、TMGa和PH 3,在GaAs缓冲层上生长Ga x1In 1-x1P下过渡层;
S4,温度缓升至700±10℃,继续通入TMAl、TMIn、TMGa和PH 3,在所述Ga x1In 1-x1P下过渡层上生长n型(Al 1-x2Ga x2) y1In1-y1P下限制层;
S5,温度缓降到650±10℃,通入TMAl、TMIn、TMGa和PH 3,在(Al 1-x2Ga x2) y1In1-y1P 下限制层上生长(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层;
本步骤中,可通过改变Al、Ga流量,分别由38cc渐变至22cc,由1.2cc渐变至13.2cc,从而实现(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层中x3由0.05渐变至0.55,实现组分渐变,即可改变Al、Ga通入流量的比例,从而实现生长(Al 1-x3Ga x3) y2In 1-y2P材料的组分渐变。
S6,温度保持在650±10℃,继续通入TMIn、TMGa和PH 3,在所述(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层上生长Ga 1-x4In x4P第一量子阱;
S7,温度保持在650±10℃,通入TMAl、TMIn、TMGa和PH 3,在所述Ga 1-x4In x4P第一量子阱上生长(Al 1-x5Ga x5) y3In 1-y3P垒层;
S8,温度保持在650±10℃,继续通入TMIn、TMGa和PH 3,在所述(Al 1-x5Ga x5) y3In 1-y3P垒层上生长Ga 1-x6In x6P第二量子阱;
S9,温度缓升至700±10℃,继续通入TMAl、TMIn、TMGa和PH 3,在所述Ga 1-x6In x6P第二量子阱上生长(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层;
同渐变下波导层,(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层也可改变Al、Ga通入流量的比例,从而实现生长(Al 1-x7Ga x7) y4In 1-y4P材料的组分渐变。
S10,温度保持在700±10℃,继续通入TMIn、TMAl、TMGa和PH 3,在所述(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层上生长P型(Al 1-x8Ga x8) y5In 1-5P第一上限制层;
S11,温度保持在700±10℃,继续通入TMIn、TMGa和PH 3,在(Al 1-x8Ga x8) y5In 1-5P第一上限制层上生长P型Ga 1-x9In x9P腐蚀终止层;
S12,温度保持在700±10℃,继续通入TMIn、TMAl、TMGa和PH 3,在Ga 1-x9In x9P腐蚀终止层上生长P型(Al 1-x10Ga x10) y6In 1-y6P第二上限制层;
S13,温度缓降至680±10℃,继续通入TMIn、TMGa和PH 3,在(Al 1-x10Ga x10) y6In 1-y6P第二上限制层上生长P型Ga 1-x11In x11P上过渡层;
S14,将温度降低到540±10℃,继续通入TMGa和AsH 3,在所述Ga 1-x11In x11P上过渡层上生长GaAs帽层。
本发明的工艺步骤中,“缓降”速度均为40℃/min,“缓升”速度均为60℃/min。
优选的,步骤S3中,所述Ga x1In 1-x1P下过渡层的厚度为0.1-0.3μm,0.4≤x1≤0.6,掺杂浓度为1E18-3E18个原子/cm 3
进一步优选的,Ga x1In 1-x1P下过渡层的厚度为0.2μm,x1=0.5,掺杂浓度为2E18个原子/cm 3
优选的,步骤S4中,n型(Al 1-x2Ga x2) y1In 1-y1P下限制层的厚度为0.5-1.5μm,掺杂 浓度为5E17-3E18个原子/cm 3,0.05≤x2≤0.3,0.4≤y1≤0.6;
进一步优选的,n型(Al 1-x2Ga x2) y1In 1-y1P下限制层的厚度为1.0μm,x2=0.05,y1=0.5,掺杂浓度为1E18个原子/cm 3
优选的,步骤S5中,(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层的厚度为0.08-0.2μm,非故意掺杂,0.05≤x3≤0.6,0.4≤y2≤0.6;
进一步优选的,x3由0.05渐变至0.55,y2=0.5,厚度为0.12μm。
优选的,步骤S6中,所述Ga 1-x4In x4P第一量子阱的厚度为4-7nm,非故意掺杂,0.3≤x4≤0.7;
进一步优选的,Ga 1-x4In x4P第一量子阱的厚度为5nm,x4=0.4。
优选的,步骤S7中,(Al 1-x5Ga x5) y3In 1-y3P垒层的厚度为5-15nm,非故意掺杂,0.25≤x5≤0.7,0.4≤y3≤0.6;
进一步优选的,(Al 1-x5Ga x5) y3In 1-y3P垒层的厚度为10nm,x5=0.65,y3=0.5。
优选的,步骤S8中,所述Ga 1-x6In x6P第二量子阱的厚度为4-7nm,非故意掺杂,0.3≤x6≤0.7;
进一步优选的,Ga 1-x6In x6P第二量子阱的厚度为5nm,x6=0.4。
优选的,步骤S9中,所述(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度为0.05-0.15μm,二分之一掺杂,0.05≤x7≤0.6,0.4≤y4≤0.6;
进一步优选的,(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度为0.1μm,x7由0.5渐变至0.15,y4=0.5,掺杂浓度为4E17个原子/cm 3
优选的,步骤S10中,P型(Al 1-x8Ga x8) y5In 1-y5P第一上限制层的厚度为0.05-0.25μm,掺杂浓度为5E17-1E18个原子/cm 3,0.05≤x8≤0.3,0.4≤y5≤0.6;
进一步优选的,P型(Al 1-x8Ga x8) y5In 1-y5P第一上限制层的厚度为0.15μm,x6=0.15,y2=0.5,掺杂浓度为5E17个原子/cm 3
优选的,步骤S11中,P型Ga 1-x9In x9P腐蚀终止层的厚度为0.01-0.05μm,掺杂浓度为5E17-1.2E18个原子/cm 3,0.4≤x9≤0.6;
进一步优选的,x9=0.6,厚度为0.01μm,掺杂浓度为1E18个原子/cm 3
优选的,步骤S12中,P型(Al 1-x10Ga x10) y6In 1-y6P第二上限制层的厚度为0.5-1.2μm,掺杂浓度为5E17-1.5E18个原子/cm 3,0.05≤x10≤0.3,0.4≤y6≤0.6;
进一步优选的,P型(Al 1-x10Ga x10) y6In 1-y6P第二上限制层的厚度为0.8μm,x10=0.15,y6=0.5,掺杂浓度为7E17个原子/cm 3
优选的,步骤S13中,P型Ga 1-x11In x11P上过渡层的厚度为0.01-0.05μm,掺杂浓度为1E18-3E18个原子/cm 3,0.4≤x11≤0.6;
进一步优选的,P型Ga 1-x11In x11P上过渡层的厚度为0.01μm,x11=0.5,掺杂浓度为2E18个原子/cm 3
优选的,步骤S14中,所述GaAs帽层的厚度为0.1-0.5μm,掺杂浓度为4E19-1E20个原子/cm 3
进一步优选的,GaAs帽层的厚度为0.02μm,掺杂浓度为7E19个原子/cm 3
本发明未详尽之处,均可采用现有技术。
本发明的有益效果为:
本发明的下波导层和上波导层厚度不同,组分不同,其折射变化率△n不同,为双非对称设计,波导层AlGInP本身电阻较大,通过上波导层掺入掺杂剂(如步骤S9中二分之一掺杂),降低了器件的电阻,驱使光场向下波导层偏移,减小光场和上限制层的重合带来的载流子吸收带来的内损耗,双非对称使光场偏移,减少了载流子吸收损耗,从而提高了发光效率,斜率效率(类似发光功率与通入电功率的比值)提高至0.9W/A,减少有源区产生的废热,从而保证光斑质量的同时,提高输出功率,增强高温工作可靠性。
附图说明
图1a为较高质量光斑;
图1b为较差质量光斑;
图2为本发明的一种双非对称波导层的小功率AlGaInP红光半导体激光器的结构示意图;
图3为本发明的折射率及光场分布示意图;
图中,1-GaAs衬底,2-GaAs缓冲层,3-Ga x1In 1-x1P下过渡层,4-(Al 1-x2Ga x2) y1In 1-y1P下限制层,5-(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层,6-Ga 1-x4In x4P第一量子阱,7-(Al 1-x5Ga x5) y3In 1-y3P垒层,8-Ga 1-x6In x6P第二量子阱,9-(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层,10-(Al 1-x8Ga x8) y5In 1-y5P第一上限制层,11-Ga 1-x9In x9P腐蚀终止层,12-(Al 1-x10Ga x10) y6In 1-y6P第二上限制层,13-Ga 1-x11In x11P上过渡层,14-GaAs帽层。
具体实施方式:
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述,但不仅限于此,本发明未详尽说明的,均按本领域常规技术。
实施例1:
一种双非对称波导层的小功率AlGaInP红光半导体激光器,如图2所示,包括由下至上依次设置的GaAs衬底1、GaAs缓冲层2、Ga x1In 1-x1P下过渡层3、(Al 1-x2Ga x2) y1In 1-y1P下限制层4、(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层5、Ga 1-x4In x4P第一量子阱6、(Al 1-x5Ga x5) y3In 1-y3P垒层7、Ga 1-x6In x6P第二量子阱8、(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层9、(Al 1-x8Ga x8) y5In 1-y5P第一上限制层10、Ga 1-x9In x9P腐蚀终止层11、(Al 1-x10Ga x10) y6In 1-y6P第二上限制层12、Ga 1-x11In x11P上过渡层13和GaAs帽层14,0.4≤x1≤0.6;0.05≤x2≤0.3,0.4≤y1≤0.6;0.05≤x3≤0.6,0.4≤y2≤0.6;0.3≤x4≤0.7;0.25≤x5≤0.7,0.4≤y3≤0.6;0.3≤x6≤0.7;0.05≤x7≤0.6,0.4≤y4≤0.6;0.05≤x8≤0.3,0.4≤y5≤0.6;0.5≤x9≤0.7;0.05≤x10≤0.3,0.4≤y6≤0.6;0.4≤x11≤0.6;
其中,(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层5的厚度大于(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层9的厚度,(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层5的厚度为0.08-0.2μm,非故意掺杂,x3组分渐变,由0.05渐变至0.55,(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层9的厚度为0.05-0.15μm,二分之一掺杂,x7组分渐变,由0.5渐变至0.15。
如图3所示,d1、d2分别为下波导层和上波导层厚度,△n1、△n2分别为下波导层和上波导层的折射变化率,d1>d2,△n1<△n2,从而使发光中心偏离,向下限制层偏移,减少光场与上限制层的重合面积(S1小于S2),从而减少载流子吸收带来的损耗(上限制层载流子吸收损耗系数远大于下限制层吸收损耗);
本发明中(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层的厚度大于(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度,从而实现光场向下限制层的偏移,(Al 1-x8Ga x8) y5In 1-y5P第一上限制层低掺杂以减少载流子吸光造成的内损耗,提高电参数。
实施例2:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,包括以下步骤:
S1,将GaAs衬底1放在MOCVD设备生长室内,在H 2环境中升温到720±10℃烘烤,并通入AsH 3,对GaAs衬底进行表面热处理,本步骤中,H 2浓度无具体要求,只是一种气体保护手段;
S2,将温度缓降到680±10℃,继续通入TMGa和AsH 3,在GaAs衬底上生长GaAs缓冲层2;此步骤中,TMGa和AsH 3的通入量与V/III有关,与生长材料质量有关,此处不再详述;
S3,温度保持在680±10℃,继续通入TMIn、TMGa和PH 3,在GaAs缓冲层上生 长Ga x1In 1-x1P下过渡层3;
S4,温度缓升至700±10℃,继续通入TMAl、TMIn、TMGa和PH 3,在Ga x1In 1-x1P下过渡层3上生长n型(Al 1-x2Ga x2) y1In1-y1P下限制层4;
S5,温度缓降到650±10℃,通入TMAl、TMIn、TMGa和PH 3,在(Al 1-x2Ga x2) y1In1-y1P下限制层上生长(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层5;
本步骤中,可通过改变Al、Ga流量,分别由38cc渐变至22cc,由1.2cc渐变至13.2cc,从而实现(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层中x3由0.05渐变至0.55,实现组分渐变,即可改变Al、Ga通入流量的比例,从而实现生长(Al 1-x3Ga x3) y2In 1-y2P材料的组分渐变。
S6,温度保持在650±10℃,继续通入TMIn、TMGa和PH 3,在(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层5上生长Ga 1-x4In x4P第一量子阱6;
S7,温度保持在650±10℃,通入TMAl、TMIn、TMGa和PH 3,在Ga 1-x4In x4P第一量子阱6上生长(Al 1-x5Ga x5) y3In 1-y3P垒层7;
S8,温度保持在650±10℃,继续通入TMIn、TMGa和PH 3,在(Al 1-x5Ga x5) y3In 1-y3P垒层7上生长Ga 1-x6In x6P第二量子阱8;
S9,温度缓升至700±10℃,继续通入TMAl、TMIn、TMGa和PH 3,在Ga 1-x6In x6P第二量子阱8上生长(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层9;
同渐变下波导层,(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层也可改变Al、Ga通入流量的比例,从而实现生长(Al 1-x7Ga x7) y4In 1-y4P材料的组分渐变。
S10,温度保持在700±10℃,继续通入TMIn、TMAl、TMGa和PH 3,在(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层9上生长P型(Al 1-x8Ga x8) y5In 1-5P第一上限制层10;
S11,温度保持在700±10℃,继续通入TMIn、TMGa和PH 3,在(Al 1-x8Ga x8) y5In 1-5P第一上限制层10上生长P型Ga 1-x9In x9P腐蚀终止层11;
S12,温度保持在700±10℃,继续通入TMIn、TMAl、TMGa和PH 3,在Ga 1-x9In x9P腐蚀终止层11上生长P型(Al 1-x10Ga x10) y6In 1-y6P第二上限制层12;
S13,温度缓降至680±10℃,继续通入TMIn、TMGa和PH 3,在(Al 1-x10Ga x10) y6In 1-y6P第二上限制层12上生长P型Ga 1-x11In x11P上过渡层13;
S14,将温度降低到540±10℃,继续通入TMGa和AsH 3,在Ga 1-x11In x11P上过渡层13上生长GaAs帽层14。
本发明的工艺步骤中,“缓降”速度均为40℃/min,“缓升”速度均为60℃/min。
实施例3:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S3中,Ga x1In 1-x1P下过渡层3的厚度为0.1-0.3μm,优选为0.2μm,0.4≤x1≤0.6,优选x1=0.5,掺杂浓度为1E18-3E18个原子/cm 3,优选为2E18个原子/cm 3
实施例4:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S4中,n型(Al 1-x2Ga x2) y1In 1-y1P下限制层4的厚度为0.5-1.5μm,优选为1.0μm,掺杂浓度为5E17-3E18个原子/cm 3,优选为1E18个原子/cm 3,0.05≤x2≤0.3,0.4≤y1≤0.6,优选的,x2=0.05,y1=0.5。
实施例5:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S5中,(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层5的厚度为0.12μm,非故意掺杂,0.05≤x3≤0.6,0.4≤y2≤0.6,x3由0.05渐变至0.55,y2=0.5。
实施例6:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S6中,Ga 1-x4In x4P第一量子阱6的厚度为4-7nm,优选为5nm,非故意掺杂,0.3≤x4≤0.7,优选的x4=0.4。
实施例7:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S7中,(Al 1-x5Ga x5) y3In 1-y3P垒层7的厚度为5-15nm,优选为10nm,非故意掺杂,0.25≤x5≤0.7,0.4≤y3≤0.6,优选的,x5=0.65,y3=0.5。
实施例8:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S8中,Ga 1-x6In x6P第二量子阱8的厚度为4-7nm,优选为5nm,非故意掺杂,0.3≤x6≤0.7,优选的,x6=0.4。
实施例9:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S9中,(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层9的厚度为0.1μm,二分之一掺杂,0.05≤x7≤0.6,0.4≤y4≤0.6,x7由0.5渐变至0.15,y4=0.5,掺杂浓度为4E17个原子/cm 3
实施例10:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S10中,P型(Al 1-x8Ga x8) y5In 1-y5P第一上限制层10的厚度为0.05-0.25μm,优选为0.15μm,掺杂浓度为5E17-1E18个原子/cm 3,优选为5E17个原子/cm 3,0.05≤x8≤0.3,0.4≤y5≤0.6,优选的x6=0.15,y2=0.5。
实施例11:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S11中,P型Ga 1-x9In x9P腐蚀终止层11的厚度为0.01-0.05μm,优选为0.01μm,掺杂浓度为5E17-1.2E18个原子/cm 3,优选为1E18个原子/cm 3,0.4≤x9≤0.6,优选的,x9=0.6。
实施例12:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S12中,P型(Al 1-x10Ga x10) y6In 1-y6P第二上限制层12的厚度为0.5-1.2μm,优选为0.8μm,掺杂浓度为5E17-1.5E18个原子/cm 3,优选为7E17个原子/cm 3,0.05≤x10≤0.3,0.4≤y6≤0.6,优选的,x10=0.15,y6=0.5。
实施例13:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S13中,P型Ga 1-x11In x11P上过渡层13的厚度为0.01-0.05μm,优选为0.01μm,掺杂浓度为1E18-3E18个原子/cm 3,优选为2E18个原子/cm 3,0.4≤x11≤0.6,优选的,x11=0.5。
实施例14:
一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,如实施例2所述,所不同的是,步骤S14中,GaAs帽层14的厚度为0.1-0.5μm,优选为0.02μm,掺杂浓度为4E19-1E20个原子/cm 3,优选为7E19个原子/cm 3
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种双非对称波导层的小功率AlGaInP红光半导体激光器,其特征在于,包括由下至上依次设置的GaAs衬底、GaAs缓冲层、Ga x1In 1-x1P下过渡层、(Al 1-x2Ga x2) y1In 1-y1P下限制层、(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层、Ga 1-x4In x4P第一量子阱、(Al 1-x5Ga x5) y3In 1-y3P垒层、Ga 1-x6In x6P第二量子阱、(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层、(Al 1-x8Ga x8) y5In 1-y5P第一上限制层、Ga 1-x9In x9P腐蚀终止层、(Al 1-x10Ga x10) y6In 1-y6P第二上限制层、Ga 1-x11In x11P上过渡层和GaAs帽层,0.4≤x1≤0.6;0.05≤x2≤0.3,0.4≤y1≤0.6;0.05≤x3≤0.6,0.4≤y2≤0.6;0.3≤x4≤0.7;0.25≤x5≤0.7,0.4≤y3≤0.6;0.3≤x6≤0.7;0.05≤x7≤0.6,0.4≤y4≤0.6;0.05≤x8≤0.3,0.4≤y5≤0.6;0.5≤x9≤0.7;0.05≤x10≤0.3,0.4≤y6≤0.6;0.4≤x11≤0.6;
    其中,(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层的厚度大于(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度,所述(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层厚度为0.08-0.2μm,非故意掺杂,x3组分渐变,由0.05渐变至0.55,所述(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度为0.05-0.15μm,二分之一掺杂,x7组分渐变,由0.5渐变至0.15。
  2. 一种双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,包括以下步骤:
    S1,将GaAs衬底放在MOCVD设备生长室内,在H 2环境中升温到720±10℃烘烤,并通入AsH 3,对GaAs衬底进行表面热处理;
    S2,将温度缓降到680±10℃,继续通入TMGa和AsH 3,在GaAs衬底上生长GaAs缓冲层;
    S3,温度保持在680±10℃,继续通入TMIn、TMGa和PH 3,在GaAs缓冲层上生长Ga x1In 1-x1P下过渡层;
    S4,温度缓升至700±10℃,继续通入TMAl、TMIn、TMGa和PH 3,在所述Ga x1In 1-x1P下过渡层上生长n型(Al 1-x2Ga x2) y1In1-y1P下限制层;
    S5,温度缓降到650±10℃,通入TMAl、TMIn、TMGa和PH 3,在(Al 1-x2Ga x2) y1In1-y1P下限制层上生长(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层;
    S6,温度保持在650±10℃,继续通入TMIn、TMGa和PH 3,在所述(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层上生长Ga 1-x4In x4P第一量子阱;
    S7,温度保持在650±10℃,通入TMAl、TMIn、TMGa和PH 3,在所述Ga 1-x4In x4P第一量子阱上生长(Al 1-x5Ga x5) y3In 1-y3P垒层;
    S8,温度保持在650±10℃,继续通入TMIn、TMGa和PH 3,在所述(Al 1-x5Ga x5) y3In 1-y3P 垒层上生长Ga 1-x6In x6P第二量子阱;
    S9,温度缓升至700±10℃,继续通入TMAl、TMIn、TMGa和PH 3,在所述Ga 1-x6In x6P第二量子阱上生长(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层;
    S10,温度保持在700±10℃,继续通入TMIn、TMAl、TMGa和PH 3,在所述(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层上生长P型(Al 1-x8Ga x8) y5In 1-5P第一上限制层;
    S11,温度保持在700±10℃,继续通入TMIn、TMGa和PH 3,在(Al 1-x8Ga x8) y5In 1-5P第一上限制层上生长P型Ga 1-x9In x9P腐蚀终止层;
    S12,温度保持在700±10℃,继续通入TMIn、TMAl、TMGa和PH 3,在Ga 1-x9In x9P腐蚀终止层上生长P型(Al 1-x10Ga x10) y6In 1-y6P第二上限制层;
    S13,温度缓降至680±10℃,继续通入TMIn、TMGa和PH 3,在(Al 1-x10Ga x10) y6In 1-y6P第二上限制层上生长P型Ga 1-x11In x11P上过渡层;
    S14,将温度降低到540±10℃,继续通入TMGa和AsH 3,在所述Ga 1-x11In x11P上过渡层上生长GaAs帽层。
  3. 根据权利要求2所述的双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,步骤S3中,所述Ga x1In 1-x1P下过渡层的厚度为0.1-0.3μm,0.4≤x1≤0.6,掺杂浓度为1E18-3E18个原子/cm 3
    进一步优选的,Ga x1In 1-x1P下过渡层的厚度为0.2μm,x1=0.5,掺杂浓度为2E18个原子/cm 3
    优选的,步骤S4中,n型(Al 1-x2Ga x2) y1In 1-y1P下限制层的厚度为0.5-1.5μm,掺杂浓度为5E17-3E18个原子/cm 3,0.05≤x2≤0.3,0.4≤y1≤0.6;
    进一步优选的,n型(Al 1-x2Ga x2) y1In 1-y1P下限制层的厚度为1.0μm,x2=0.05,y1=0.5,掺杂浓度为1E18个原子/cm 3
  4. 根据权利要求2所述的双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,步骤S5中,(Al 1-x3Ga x3) y2In 1-y2P渐变下波导层的厚度为0.08-0.2μm,非故意掺杂,0.05≤x3≤0.6,0.4≤y2≤0.6;
    进一步优选的,x3由0.05渐变至0.55,y2=0.5,厚度为0.12μm。
  5. 根据权利要求2所述的双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,步骤S6中,所述Ga 1-x4In x4P第一量子阱的厚度为4-7nm,非故意掺杂,0.3≤x4≤0.7;
    优选的,步骤S7中,(Al 1-x5Ga x5) y3In 1-y3P垒层的厚度为5-15nm,非故意掺杂, 0.25≤x5≤0.7,0.4≤y3≤0.6;
    进一步优选的,(Al 1-x5Ga x5) y3In 1-y3P垒层的厚度为10nm,x5=0.65,y3=0.5。
  6. 根据权利要求2所述的双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,步骤S8中,所述Ga 1-x6In x6P第二量子阱的厚度为4-7nm,非故意掺杂,0.3≤x6≤0.7;
    进一步优选的,Ga 1-x6In x6P第二量子阱的厚度为5nm,x6=0.4。
  7. 根据权利要求2所述的双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,步骤S9中,所述(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度为0.05-0.15μm,二分之一掺杂,0.05≤x7≤0.6,0.4≤y4≤0.6;
    进一步优选的,(Al 1-x7Ga x7) y4In 1-y4P渐变上波导层的厚度为0.1μm,x7由0.5渐变至0.15,y4=0.5,掺杂浓度为4E17个原子/cm 3
  8. 根据权利要求2所述的双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,步骤S10中,P型(Al 1-x8Ga x8) y5In 1-y5P第一上限制层的厚度为0.05-0.25μm,掺杂浓度为5E17-1E18个原子/cm 3,0.05≤x8≤0.3,0.4≤y5≤0.6;
    进一步优选的,P型(Al 1-x8Ga x8) y5In 1-y5P第一上限制层的厚度为0.15μm,x6=0.15,y2=0.5,掺杂浓度为5E17个原子/cm 3
    优选的,步骤S11中,P型Ga 1-x9In x9P腐蚀终止层的厚度为0.01-0.05μm,掺杂浓度为5E17-1.2E18个原子/cm 3,0.4≤x9≤0.6;
    进一步优选的,x9=0.6,厚度为0.01μm,掺杂浓度为1E18个原子/cm 3
  9. 根据权利要求2所述的双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,步骤S12中,P型(Al 1-x10Ga x10) y6In 1-y6P第二上限制层的厚度为0.5-1.2μm,掺杂浓度为5E17-1.5E18个原子/cm 3,0.05≤x10≤0.3,0.4≤y6≤0.6;
    进一步优选的,P型(Al 1-x10Ga x10) y6In 1-y6P第二上限制层的厚度为0.8μm,x10=0.15,y6=0.5,掺杂浓度为7E17个原子/cm 3
  10. 根据权利要求2所述的双非对称波导层的小功率AlGaInP红光半导体激光器的制备方法,其特征在于,步骤S13中,P型Ga 1-x11In x11P上过渡层的厚度为0.01-0.05μm,掺杂浓度为1E18-3E18个原子/cm 3,0.4≤x11≤0.6;
    进一步优选的,P型Ga 1-x11In x11P上过渡层的厚度为0.01μm,x11=0.5,掺杂浓度为2E18个原子/cm 3
    优选的,步骤S14中,所述GaAs帽层的厚度为0.1-0.5μm,掺杂浓度为4E19-1E20 个原子/cm 3
    进一步优选的,GaAs帽层的厚度为0.02μm,掺杂浓度为7E19个原子/cm 3
PCT/CN2020/129993 2020-07-27 2020-11-19 一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法 WO2022021682A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010730261.4 2020-07-27
CN202010730261.4A CN113991427B (zh) 2020-07-27 2020-07-27 双非对称波导层的小功率红光半导体激光器及制备方法

Publications (1)

Publication Number Publication Date
WO2022021682A1 true WO2022021682A1 (zh) 2022-02-03

Family

ID=79731424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129993 WO2022021682A1 (zh) 2020-07-27 2020-11-19 一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法

Country Status (2)

Country Link
CN (1) CN113991427B (zh)
WO (1) WO2022021682A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447164A (zh) * 2022-04-08 2022-05-06 南昌凯迅光电股份有限公司 一种具有渐变结构的正极性led及其制备方法
CN114744485A (zh) * 2022-03-18 2022-07-12 太原理工大学 具有Al组分的双波导半导体激光器结构及其制备方法
CN115799991A (zh) * 2023-01-06 2023-03-14 深圳市星汉激光科技股份有限公司 一种分立侧壁光栅的激光芯片及制备方法
CN117117635A (zh) * 2023-08-24 2023-11-24 武汉敏芯半导体股份有限公司 一种半导体光放大器及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002914A1 (en) * 2005-06-27 2007-01-04 Samsung Electronics Co., Ltd. Semiconductor laser diode having an asymmetric optical waveguide layer
US20110134951A1 (en) * 2008-05-28 2011-06-09 Boris Ryvkin Semiconductor Laser
CN103124046A (zh) * 2013-01-18 2013-05-29 西安卓铭光电科技有限公司 一种半导体激光器
CN104242057A (zh) * 2014-09-22 2014-12-24 山东华光光电子有限公司 具有低工作电压及高功率转换效率的半导体激光器
CN104269741A (zh) * 2014-09-22 2015-01-07 山东华光光电子有限公司 一种高可靠性的红光半导体激光器
CN107579431A (zh) * 2017-10-23 2018-01-12 海南师范大学 一种m型渐变波导半导体激光器结构
CN108899761A (zh) * 2018-07-12 2018-11-27 中国科学院半导体研究所 非对称模式扩展小发散角半导体激光器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384046B (zh) * 2013-01-15 2016-08-31 长春理工大学 一种超晶格波导半导体激光器结构
CN105390937B (zh) * 2015-12-30 2018-08-17 山东华光光电子股份有限公司 一种短波长AlGaInP红光半导体激光器
CN110148886B (zh) * 2019-05-27 2020-06-09 山东华光光电子股份有限公司 一种含有界面δ掺杂的高可靠性激光器及其制备方法
CN110932094A (zh) * 2019-11-24 2020-03-27 太原理工大学 一种非对称双波导结构的激光二极管及其制备方法
CN111404024B (zh) * 2020-03-27 2021-05-11 中国科学院半导体研究所 具有复合波导层的氮化镓基近紫外激光器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002914A1 (en) * 2005-06-27 2007-01-04 Samsung Electronics Co., Ltd. Semiconductor laser diode having an asymmetric optical waveguide layer
US20110134951A1 (en) * 2008-05-28 2011-06-09 Boris Ryvkin Semiconductor Laser
CN103124046A (zh) * 2013-01-18 2013-05-29 西安卓铭光电科技有限公司 一种半导体激光器
CN104242057A (zh) * 2014-09-22 2014-12-24 山东华光光电子有限公司 具有低工作电压及高功率转换效率的半导体激光器
CN104269741A (zh) * 2014-09-22 2015-01-07 山东华光光电子有限公司 一种高可靠性的红光半导体激光器
CN107579431A (zh) * 2017-10-23 2018-01-12 海南师范大学 一种m型渐变波导半导体激光器结构
CN108899761A (zh) * 2018-07-12 2018-11-27 中国科学院半导体研究所 非对称模式扩展小发散角半导体激光器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744485A (zh) * 2022-03-18 2022-07-12 太原理工大学 具有Al组分的双波导半导体激光器结构及其制备方法
CN114447164A (zh) * 2022-04-08 2022-05-06 南昌凯迅光电股份有限公司 一种具有渐变结构的正极性led及其制备方法
CN114447164B (zh) * 2022-04-08 2022-07-19 南昌凯迅光电股份有限公司 一种具有渐变结构的正极性led及其制备方法
CN115799991A (zh) * 2023-01-06 2023-03-14 深圳市星汉激光科技股份有限公司 一种分立侧壁光栅的激光芯片及制备方法
CN117117635A (zh) * 2023-08-24 2023-11-24 武汉敏芯半导体股份有限公司 一种半导体光放大器及其制造方法

Also Published As

Publication number Publication date
CN113991427A (zh) 2022-01-28
CN113991427B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2022021682A1 (zh) 一种双非对称波导层的小功率AlGaInP红光半导体激光器及其制备方法
CN104795729B (zh) 应变平衡有源区梯度势阱层半导体激光器结构
WO2021102722A1 (zh) 侧面光栅氧化限制结构单纵模边发射激光器及其制备方法
JP4251529B2 (ja) 窒化物半導体レーザ素子およびそれを用いた光学式情報再生装置
CN101820136A (zh) 高功率非对称宽波导980nm半导体激光器结构
CN101340060A (zh) 非对称结构的无铝有源区808nm大功率量子阱激光器
CN108233179B (zh) 一种无铝波导层的红光半导体激光器结构
CN108233180B (zh) 一种AlGaInP结构的808nm半导体激光器结构
CN204376193U (zh) 应变平衡有源区梯度势阱层半导体激光器结构
CN112398002B (zh) 一种基于渐变波导层的小功率激光器及其制备方法
WO2022222425A1 (zh) 一种半导体激光器外延结构及其制备方法
WO2024104500A1 (zh) 高铝组分的氧化限制半导体激光器及其制备方法
CN113659433A (zh) 带有n面非注入区窗口的半导体激光器
US7852893B2 (en) Semiconductor laser device
CN104242058A (zh) 无铝半导体激光器结构
CN114389151B (zh) 一种具有超晶格电子阻挡层的小功率AlGaInP红光半导体激光器及其制备方法
JP2008244454A (ja) 半導体レーザ装置
CN114400502A (zh) 一种圆形光斑单模半导体激光器
TWI832199B (zh) 具有非對稱結構之高功率邊射型半導體雷射
CN113140964B (zh) 一种带折射率反渐变波导层的半导体激光器及其制备方法
CN111755947B (zh) 一种带布拉格反射镜的非对称结构大功率激光器及其制备方法
JPH0671121B2 (ja) 半導体レーザ装置
CN118645880A (zh) 一种低电压高电光转换效率半导体激光器结构
CN118299932A (zh) 一种非对称势垒的单模660nm半导体激光器件及其制备方法
JP2008124485A (ja) 窒化物半導体レーザ素子およびそれを用いた光学式情報再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947319

Country of ref document: EP

Kind code of ref document: A1