WO2022021562A1 - 雷达状态数据通用采集设备及方法 - Google Patents

雷达状态数据通用采集设备及方法 Download PDF

Info

Publication number
WO2022021562A1
WO2022021562A1 PCT/CN2020/115318 CN2020115318W WO2022021562A1 WO 2022021562 A1 WO2022021562 A1 WO 2022021562A1 CN 2020115318 W CN2020115318 W CN 2020115318W WO 2022021562 A1 WO2022021562 A1 WO 2022021562A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
signal monitoring
module
radar
preprocessing module
Prior art date
Application number
PCT/CN2020/115318
Other languages
English (en)
French (fr)
Inventor
吕永乐
王莹
宋小安
渠浩
周闯
詹进雄
Original Assignee
中国电子科技集团公司第十四研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第十四研究所 filed Critical 中国电子科技集团公司第十四研究所
Publication of WO2022021562A1 publication Critical patent/WO2022021562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion

Definitions

  • the invention belongs to the technical field of comprehensive guarantee of a digital array radar system, and in particular relates to a general acquisition device and method of radar state data.
  • radar health data interfaces including network interface, optical fiber interface (optical fiber has different speeds), CAN bus interface, serial port, radio frequency interface and so on.
  • network interface optical fiber interface (optical fiber has different speeds), CAN bus interface, serial port, radio frequency interface and so on.
  • optical fiber optical fiber has different speeds
  • serial port serial port
  • radio frequency interface radio frequency interface
  • the purpose of the present invention is to provide a general acquisition device and method for radar state data in view of the deficiencies of the prior art, which can solve the problems of numerous digital phased array radar health data interfaces, inconsistent types, inconsistent rates, and difficult management.
  • the present invention is realized by adopting the following technical solutions.
  • the present invention provides a general acquisition device for radar state data, comprising a radio frequency signal monitoring module, an enhanced preprocessing module and a main controller;
  • the enhanced preprocessing module collects the digital signal monitoring data in the radar state data, and preprocesses it to realize standardization and refinement of the digital signal monitoring data; the preprocessing includes:
  • the enhanced preprocessing module removes the physical layer protocol in the digital signal monitoring data, extracts the valid data, and converts it into network protocol data uniformly;
  • the enhanced preprocessing module extracts a set of amplitude-phase data and amplitude-phase stability information from multiple sets of I and Q data of the collected digital signal monitoring data;
  • the radio frequency signal monitoring module collects the radio frequency signal monitoring data in the radar state data, converts it into a digital signal, performs signal processing on the converted digital signal, calculates performance indicators such as frequency and power, and analyzes the converted digital signal. And the calculated performance index data is recorded and stored;
  • the main controller is used for unified monitoring and scheduling of the enhanced preprocessing module and the radio frequency signal monitoring module.
  • the preprocessing further includes that the enhanced preprocessing module uses fusion judgment technology to filter out false alarms for the enhanced preprocessing module reporting abnormal data.
  • the RF signal monitoring module converts the RF signal monitoring data in the collected radar status data into digital signals, it also mixes the input RF signals of different frequencies with the corresponding local oscillator signals of different frequencies, so that the obtained intermediate frequency The frequency of the signal is stable to meet the operating frequency range of the amplifier and filter.
  • the main controller has a calibration function, and completes the calibration of the enhanced preprocessing module and the RF signal monitoring module through a preset calibration procedure, including amplitude calibration, frequency calibration, delay calibration, scan time calibration, flatness correction and Bandpass filter calibration.
  • the unified monitoring and scheduling of the enhanced preprocessing module and the RF signal monitoring module include:
  • the main controller collects the processing result data periodically reported by the enhanced preprocessing module and the RF signal monitoring module;
  • the main controller program-controlled enhanced preprocessing module and the RF signal monitoring module enter the deep data packet inspection mode, and forward the original data to the PHM management platform;
  • the raw data of the enhanced preprocessing module refers to the digital signal monitoring data before compression, and the raw data of the RF signal monitoring module refers to the RF signal monitoring data after ADC sampling.
  • the PHM management platform runs on the main controller.
  • the enhanced preprocessing module and the radio frequency signal monitoring module extract valid data from the collected signals according to the preset corresponding digital signal interface physical layer protocol and rate, and convert the data into network protocol data according to the preset protocol conversion data analysis method.
  • the present invention also provides a general acquisition method for radar state data, which is realized by the above-mentioned general acquisition device for radar state data, including:
  • the main controller will enhance the preprocessing module and the RF signal monitoring module.
  • the real-time running status is sent to the PHM management platform for display.
  • the general acquisition device for radar state data of the present invention realizes the effective acquisition, monitoring and management of digital phased array radar health data, performs unified format conversion for multi-bus interface data, radio frequency signals, etc., and reduces the upper-layer processing platform (such as radar health data).
  • the coupling of multi-bus interfaces improves the versatility of the processing platform.
  • the enhanced preprocessing module provides multiple input interfaces, including optical fiber, network, CAN, serial port, etc., to collect and analyze real-time data streams of different radar bus interfaces;
  • the data output from different data interfaces is converted into a customized standard network interface message and sent to the PHM management platform for processing, which realizes the adaptability to the radar multi-bus interface and enhances the versatility of the health data analysis software. and reusability; and the protocol type of the interface, the interface signal transmission rate, etc. can be reconfigured, which can realize the adaptation to multiple radars, and the general acquisition equipment has strong reusability and versatility.
  • the RF signal monitoring module provides multi-channel RF signal input interfaces, which can collect and measure various RF signals output by the radar frequency source in real time, realizing effective monitoring of RF signals.
  • the enhanced preprocessing module extracts a set of amplitude and phase data and the comprehensive results of the amplitude and phase stability from the collected multiple sets of I and Q data, realizes the rapid extraction of radar health data and effective information extraction, and increases the operating efficiency of the system.
  • the reliability and maintainability of the radar system are improved, and the processing pressure of the upper processing platform is reduced.
  • the main controller configures and schedules the enhanced preprocessing module and the RF signal monitoring module, and calibrates it before use to ensure the reliability of the data; the main controller performs preliminary analysis and diagnosis on the multi-bus interface data and RF signals to obtain a diagnosis As a result, interference and false alarms are filtered out, and the efficiency of later health data mining analysis is improved.
  • the main controller reports the software and hardware status of the enhanced preprocessing module and the RF signal monitoring module to the terminal, which is beneficial for users to manage and control the status of the general acquisition equipment for status data.
  • FIG. 1 is a schematic diagram of the composition of a general collecting device for radar state data in this embodiment.
  • FIG. 2 is a schematic diagram of the composition of the enhanced preprocessing module of this embodiment.
  • FIG. 3 is a schematic diagram of the composition of a radio frequency signal monitoring module in this embodiment.
  • FIG. 4 is a schematic diagram of the principle of the radio frequency signal monitoring module of this embodiment.
  • FIG. 5 is a flow chart of calibrating the module by the main controller of this embodiment.
  • An embodiment of the present invention provides a general acquisition device and method for radar state data.
  • Radar health data includes digital signal monitoring data and RF signal monitoring data.
  • the general state data collection device of this embodiment realizes adaptation to different types of radar health monitoring data interfaces, and performs normalization processing after collecting radar health monitoring data to realize standardized network interface message output.
  • the general state data acquisition device in this embodiment includes a radio frequency signal monitoring module, an enhanced preprocessing module, and a processor.
  • the enhanced preprocessing module performs operation and preprocessing on the received digital signal monitoring data to realize the compression, extraction and standardization of the digital signal monitoring data.
  • the RF signal monitoring module converts the received RF signal monitoring data into digital signals, performs digital processing on the converted digital signals, and calculates performance indicators such as frequency and power. Record storage.
  • the enhanced preprocessing module and the RF signal monitoring module are the core hardware modules of the design, which are connected to the processor through the network.
  • the processor realizes unified monitoring and scheduling of the enhanced preprocessing module and the RF signal monitoring module; the PHM management platform can also be run on the processor.
  • the enhanced preprocessing module includes a power supply module, a motherboard, an interface module, and a computer module.
  • the power module supplies power to other modules
  • the interface module realizes the collection and reception of digital signal monitoring data in the radar health monitoring data
  • the motherboard provides support for data interaction between the interface module and the computer module
  • the computer module mainly completes the radar health data received by the interface module.
  • the method of preprocessing radar health monitoring data includes:
  • the physical layer protocol is removed to realize the standardization of radar health monitoring data.
  • optical fiber data has physical layer protocol encapsulation, and the enhanced preprocessing module extracts the valid data and converts it into network protocol data uniformly.
  • the enhanced preprocessing module can use fusion judgment technology to filter false alarms.
  • the same radar echo data is output to 10 radar signal processing modules at the same time, and one radar signal processing module (such as the first module) is reported to the enhanced If the data of the preprocessing module is abnormal, but the data reported by other radar signal processing modules is normal, the abnormal data reported by the first module is considered to be a false alarm, and the abnormal data reported by this module can be filtered out.
  • the enhanced preprocessing module reports the processing results to the PHM management platform.
  • the radio frequency signal monitoring module includes a radio frequency unit, a digital circuit unit, and a recording unit, and processes the radio frequency signal monitoring data in the radar health monitoring data.
  • the radio frequency unit monitors the frequency source, collects the radio frequency signal of the frequency source and converts it into a digital signal;
  • the digital circuit unit performs signal processing on the digital signal converted from the radio frequency signal, and calculates performance indicators such as frequency and power.
  • the recording unit records and stores the original data (digital signal before processing by the digital circuit unit) and the data processed by the digital circuit unit.
  • the RF signal monitoring module adopts superheterodyne technology, and the signal generated by the local oscillator is mixed three times. Specifically:
  • a first intermediate frequency signal (intermediate frequency 1) is obtained; the first intermediate frequency signal is amplified and filtered (filtering out the first local oscillator signal and its harmonics) and sent to the second mixer.
  • the input radio frequency signals of different frequencies are mixed with the corresponding first local oscillator signals of different frequencies, so that the frequency of the obtained first intermediate frequency signal is stable in a certain range, thereby satisfying the working frequency range of the amplifier and the filter.
  • the second intermediate frequency signal (IF 2) is obtained, output after bandpass filter and amplifier.
  • the input RF signal is finally down-converted to an intermediate frequency, which can reduce the influence of the circuit on the noise figure of the entire receiver, and at the same time amplify the signal to a suitable mixer input level.
  • it can be understood that it is also possible to down-convert the input RF signal to an intermediate frequency after only one mixing; it is also possible to use two or more mixing to down-convert the input RF signal to an intermediate frequency, thereby reducing the effect of the circuit on the entire frequency. receiver noise figure while amplifying the signal to the appropriate mixer input level.
  • the sampled digital signal is down-converted to the baseband, and I and Q two-way signals are obtained.
  • the DSP performs frequency testing, phase noise analysis and spurious calculation on these two signals, and finally reports the processing results to the PHM management platform.
  • the processor realizes unified monitoring and scheduling of the enhanced preprocessing module and the RF signal monitoring module; the PHM management platform can also be run on the processor.
  • the main controller collects the processing result data periodically reported by the enhanced preprocessing module and the RF signal monitoring module;
  • the main controller can programmatically control the enhanced preprocessing module and the RF signal monitoring module to enter the deep data packet inspection mode, and forward the original data to the PHM management platform.
  • the raw data of the enhanced preprocessing module refers to the digital signal monitoring data before compression, and the raw data of the RF signal monitoring module refers to the RF signal monitoring data after ADC sampling.
  • the main controller has a calibration function, which can complete the calibration of the enhanced preprocessing module and the RF signal monitoring module through the preset calibration procedure, including amplitude calibration, frequency calibration, delay calibration, sweep time calibration, flatness correction and bandpass filter. calibration, etc.
  • the flow of the amplitude calibration of the RF signal monitoring module by the main controller is shown in Figure 5, and the amplitude calibration is performed according to different frequency points.
  • Set the output power of the signal source divide the output signal of the signal source into two channels and send them to the general acquisition equipment and power meter of radar status data; set the center frequency, span, and front end of the two signals; read the general acquisition of radar status data separately.
  • the measured value of the signal amplitude of the device and the power meter, the difference between the two is obtained and stored, and the attenuation is set with the difference, which is used to calibrate the signal amplitude of the general acquisition device for radar status data; if the amplitude calibration is completed, that is, the radar If the signal amplitude difference between the general acquisition device for status data and the power meter is 0, the amplitude calibration of the signal at the next frequency point is performed. If the amplitude calibration is not completed, the attenuation value is changed. For example, the attenuation value is higher than the attenuation value used in the previous calibration.
  • Halve use the changed attenuation to calibrate the signal amplitude of the general acquisition device for radar status data again, and repeat this cycle until the amplitude calibration is completed, and then perform amplitude calibration on the signal of the next frequency point until the amplitude calibration of all frequency points are all done.
  • the main controller receives the real-time BIT (Build-in-test) information of the enhanced preprocessing module and the RF signal monitoring module.
  • BIT Build-in-test
  • the main controller will report it to the PHM management platform in time to remind the PHM.
  • the management platform handles it accordingly.
  • the specific process for collecting radar state data by using the general collecting device for radar state data of the present invention is as follows:
  • Run the general acquisition equipment for radar status data of the present invention collect, process and diagnose monitoring data of different interface buses, send the analysis and processing results to the PHM management platform for display and in-depth mining, and the main controller will enhance the preprocessing module, radio frequency
  • the real-time running status of the signal monitoring module is sent to the PHM management platform for display.
  • the general acquisition device for radar state data of the present invention realizes the effective acquisition, monitoring and management of digital phased array radar health data, performs unified format conversion for multi-bus interface data, radio frequency signals, etc., and reduces the upper-layer processing platform (such as radar health data).
  • the coupling of multi-bus interfaces improves the versatility of the processing platform.
  • the enhanced preprocessing module provides multiple input interfaces, including optical fiber, network, CAN, serial port, etc., to collect and analyze real-time data streams of different radar bus interfaces;
  • the data output from different data interfaces is converted into a customized standard network interface message and sent to the PHM management platform for processing, which realizes the adaptability to the radar multi-bus interface and enhances the versatility of the health data analysis software. and reusability; and the protocol type of the interface, the interface signal transmission rate, etc. can be reconfigured, which can realize the adaptation to multiple radars, and the general acquisition equipment has strong reusability and versatility.
  • the RF signal monitoring module provides multiple RF signal input interfaces, which can collect and measure various RF signals output by the radar frequency source in real time, realizing effective monitoring of RF signals;
  • the frequency of the first local oscillator signal is mixed, so that the frequency of the obtained first intermediate frequency signal is stabilized in a certain range, so as to satisfy the working frequency range of the amplifier and the filter.
  • the enhanced preprocessing module extracts a set of amplitude and phase data and the comprehensive results of the amplitude and phase stability from the collected multiple sets of I and Q data, realizes the rapid extraction of radar health data and effective information extraction, and increases the operating efficiency of the system.
  • the reliability and maintainability of the radar system are improved, and the processing pressure of the upper processing platform is reduced.
  • the main controller configures and schedules the enhanced preprocessing module and the RF signal monitoring module, and calibrates it before use to ensure the reliability of the data; the main controller performs preliminary analysis and diagnosis on the multi-bus interface data and RF signals to obtain a diagnosis As a result, interference and false alarms are filtered out, and the efficiency of later health data mining analysis is improved.
  • the main controller reports the software and hardware status of the enhanced preprocessing module and the RF signal monitoring module to the terminal, which is beneficial for users to manage and control the status of the general acquisition equipment for status data.
  • certain aspects of the techniques described above may be implemented by one or more processors of a processing system executing software.
  • the software includes one or more sets of executable instructions stored or otherwise tangibly embodied on a non-transitory computer-readable storage medium.
  • Software may include instructions and certain data that, when executed by one or more processors, manipulate one or more processors to perform one or more aspects of the techniques described above.
  • Non-transitory computer readable storage media may include, for example, magnetic or optical disk storage devices, solid state storage devices such as flash memory, cache memory, random access memory (RAM), etc., or other nonvolatile memory devices.
  • Executable instructions stored on a non-transitory computer-readable storage medium may be in source code, assembly language code, object code, or other instruction formats that are interpreted or otherwise executed by one or more processors.
  • a computer-readable storage medium may include any storage medium or combination of storage media that can be accessed by a computer system to provide instructions and/or data to the computer system during use.
  • Such storage media may include, but are not limited to, optical media (eg, compact disc (CD), digital versatile disc (DVD), Blu-ray disc), magnetic media (eg, floppy disk, magnetic tape, or magnetic hard drive), volatile memory ( For example, random access memory (RAM) or cache), non-volatile memory (eg, read only memory (ROM) or flash memory), or microelectromechanical systems (MEMS) based storage media.
  • optical media eg, compact disc (CD), digital versatile disc (DVD), Blu-ray disc
  • magnetic media eg, floppy disk, magnetic tape, or magnetic hard drive
  • volatile memory For example, random access memory (RAM) or cache
  • non-volatile memory eg, read only memory (ROM) or flash memory
  • MEMS microelectromechanical systems
  • the computer-readable storage medium can be embedded in a computing system (eg, system RAM or ROM), fixedly attached to the computing system (eg, a magnetic hard drive), removably attached to the computing system (eg, an optical disc or general-purpose based Serial bus (USB) flash memory), or coupled to the computer system via a wired or wireless network (eg, Network Accessible Storage (NAS)).
  • a computing system eg, system RAM or ROM
  • fixedly attached to the computing system eg, a magnetic hard drive
  • removably attached to the computing system eg, an optical disc or general-purpose based Serial bus (USB) flash memory
  • USB general-purpose based Serial bus
  • NAS Network Accessible Storage

Abstract

本发明属于数字阵列雷达系统综合保障技术领域,公开了一种雷达状态数据通用采集设备及方法,用于对雷达各个设备进行状态监测、健康数据的采集和处理。本发明的雷达状态数据通用采集设备,包括射频信号监测模块、增强预处理模块和处理器;增强预处理模块采集数字信号监测数据,对其进行标准化和提炼;射频信号监测模块采集射频信号监测数据,将其转换成数字信号,对转换后的数字信号进行信号处理并记录;处理器实现对增强预处理模块、射频信号监测模块的统一监控和调度。采用本发明能够实现雷达状态数据的不同接口类型快速适配,转换成标准的健康数据网络报文。

Description

雷达状态数据通用采集设备及方法 技术领域
本发明属于数字阵列雷达系统综合保障技术领域,具体涉及一种雷达状态数据通用采集设备及方法。
背景技术
随着数字化相控阵雷达的快速发展和大量应用,系统的复杂程度越来越高,设备数量越来越庞大,急需对雷达各个设备进行有效的状态监测,健康数据的采集和处理是实现状态监测的必由之路。雷达系统数字化后,具有种类繁多的数据接口,包括网络接口、不同种速率的光纤接口(包括3.125Gbps、3.2Gbps、2.0Gbps)、串口、CAN总线接口、射频接口。要实现对雷达全系统的健康状态监测、分析、评估,需要对不同种数据接口的数据进行采集和处理。
然而,雷达的健康数据接口种类多,包括网络接口、光纤接口(光纤具有不同速率)、CAN总线接口、串口、射频接口等等。接口种类繁多导致健康数据难以统一管理,因此,雷达状态数据通用采集设备的设计是迫切需要解决的难题。
发明内容
本发明目的是:针对现有技术的不足,提供一种雷达状态数据通用采集设备及方法,能够解决数字相控阵雷达健康数据接口繁多、类型不统一、速率不一致、不易于管理的难题。
具体地说,本发明是采用以下技术方案实现的。
一方面,本发明提供一种雷达状态数据通用采集设备,包括射频信号监测模块、增强预处理模块和主控器;
所述增强预处理模块采集雷达状态数据中数字信号监测数据,对其进行预处理,实现数字信号监测数据的标准化和提炼;所述预处理包括:
(1)增强预处理模块去除数字信号监测数据中物理层协议,提取其中有效数据,统一转换成网络协议数据;
(2)增强预处理模块从采集的数字信号监测数据的多组I、Q数据中提炼出一组幅相数据和幅相稳定性信息;
所述射频信号监测模块采集雷达状态数据中射频信号监测数据,将其转换成数字信号,对转换后的数字信号进行信号处理后,计算得到频率、功率等性能指标,并对转换后的数字信号及计算所得性能指标数据进行记录存储;
所述主控器用于对增强预处理模块、射频信号监测模块进行统一监控和调度。
进一步的,所述预处理还包括增强预处理模块采用融合判断技术对上报数据异常的增强预处理模块滤除虚警。
进一步的,所述射频信号监测模块将采集的雷达状态数据中射频信号监测数据转换成数字信号之前,还将不同频率的输入射频信号与相应的不同频率的本振信号混频,使得得到的中频信号的频率稳定从而满足放大器、滤波器的工作频率范围。
进一步的,所述主控器具备校准功能,通过预设的校准程序完成增强预处理模块和射频信号监测模块的校准,包括幅度校准、频率校准、延时校准、扫描时间校准、平坦度修正和带通滤波器校准。
进一步的,对增强预处理模块、射频信号监测模块的统一监控和调度包括:
当增强预处理模块、射频信号监测模块对监测数据的处理结果为正常时,主控器收集增强预处理模块、射频信号监测模块周期性上报的处理结果数据;
当增强预处理模块、射频信号监测模块对监测数据的处理结果为异常时,主控器程控增强预处理模块、射频信号监测模块进入深度数据包检测模式,并将原始数据转发至PHM管理平台;增强预处理模块的原始数据指压缩前的数字信号监测数据,射频信号监测模块的原始数据指ADC采样后的射频信号监测数据。
进一步的,所述PHM管理平台运行在主控器上。
进一步的,所述增强预处理模块和射频信号监测模块根据预设的相应数字信号接口物理层协议、速率对采集的信号提取有效数据,根据预设的协议转换数据解析方式转换成网络协议数据。
另一方面,本发明还提供一种雷达状态数据通用采集方法,采用上述雷达状态数据通用采集设备实现,包括:
设置增强预处理模块和射频信号监测模块的接口物理层协议和速率;
设置协议转换的数据解析方式;
将数字相控阵雷达的信号处理、数据处理、DBF分系统的总线监测信号连接至增强预处理模块;
将数字相控阵雷达的频率源监测信号连接至射频信号监测模块;
利用主控器对增强预处理模块、射频信号监测模块进行校准和输出协议的配置;
运行所述雷达状态数据通用采集设备,采集、处理、诊断不同接口总线的监测数据,将分析处理结果送至PHM管理平台进行显示和深度挖掘,主控器将增强预处理模块、射频信号监测模块实时的运行状态送至PHM管理平台显示。
本发明的雷达状态数据通用采集设备及方法的有益效果如下:
本发明的雷达状态数据通用采集设备,实现数字相控阵雷达健康数据的有效采集和监测、管理,对多总线接口数据、射频信号等进行统一格式转换,减少了上层处理平台(如雷达健康数据分析软件)与多总线接口(光纤、网络、串口、射频等)的耦合性,提高了处理平台的通用性。通过增强预处理模块提供多路输入接口,包括光纤、网络、CAN、串口等,可对雷达不同种总线接口的实时数据流进行采集和分析;通过对雷达多总线接口的适配和协议转换,将不同种数据接口输出的数据统型为自定义的标准的网络接口报文,送至PHM管理平台进行处理,实现了对雷达多总线接口的适配性,增强了健康数据分析软件的通用性和可复用性;且接口的协议类型、接口信号传输速率等可重构,可实现对多部雷达的适配,通用采集设备复用性和通用性强。通过射频信号监测模块提供多路射频信号输入接口,可对雷达频率源输出的多种射频信号进行实时采集和测量,实现了射频信号的有效监测。
增强预处理模块通过从采集的多组I、Q数据中提炼出一组幅相数据和幅相稳定性的综合结果,实现了对雷达健康数据的快速提炼和有效信息提取,增加系统运行效率,提高了雷达系统的可靠性和可维护性,减少了上层处理平台的处理压力。
主控器对增强预处理模块和射频信号监测模块进行配置和调度,并在使用前进行校准,保证数据的可靠性;主控器对多总线接口数据、射频信号进行初步分析诊断,得出诊断结果,滤除干扰和虚警,提高后期健康数据挖掘分析的效率。
通过实时BIT功能,主控器将增强预处理模块、射频信号监测模块自身的软硬件状态上报至终端,有利于用户对状态数据通用采集设备状态的管控。
附图说明
图1是本实施例的雷达状态数据通用采集设备组成示意图。
图2是本实施例的增强预处理模块组成示意图。
图3是本实施例的射频信号监测模块组成示意图。
图4是本实施例的射频信号监测模块原理示意图。
图5是本实施例的主控器对模块进行校准流程图。
具体实施方式
下面结合实施例并参照附图对本发明作进一步详细描述。
实施例1:
本发明的一个实施例,提供一种雷达状态数据通用采集设备及方法。
雷达健康数据包括数字信号监测数据和射频信号监测数据。
如图1所示,本实施例的状态数据通用采集设备,实现对不同种类的雷达健康监测数据接口进行适配,采集雷达健康监测数据后进行归一化处理,实现标准化的网络接口报文输出至PHM(prognostics and health management,故障预测与健康管理)管理平台。本实施例的状态数据通用采集设备,包括射频信号监测模块、增强预处理模块和处理器。增强预处理模块对接收的数字信号监测数据进行运算及预处理,实现数字信号监测数据的压缩、提炼和标准化。射频信号监测模块对接收的射频信号监测数据转换成数字信号,对转换后的数字信号进行数字处理后,计算得到频率、功率等性能指标,并对转换后的数字信号及计算所得性能指标数据进行记录存储。增强预处理模块和射频信号监测模块为设计的核心硬件模块,通过网络与处理器连接。处理器作为主控器,实现对增强预处理模块、射频信号监测模块的统一监控和调度;也可以将PHM管理平台运行在处理器上。
1.增强预处理模块
如图2所示,增强预处理模块包括电源模块、母板、接口模块、计算机模块。电源模块为其他模块供电,接口模块实现雷达健康监测数据中数字信号监测数据的采集接收,母板为接口模块与计算机模块之间数据交互提供支撑,计算机模块主要完成对接口模块接收的雷达健康数据进行预处理,实现雷达健康监测数据的压缩、提炼和标准化。其中,对雷达健康监测数据进行预处理的方法包括:
(1)物理层协议去除,实现雷达健康监测数据的标准化。例如光纤数据具有物理层协议封装,增强预处理模块提取其中有效数据,统一转换成网络协议数据。
(2)数据压缩。数字信号监测数据中具有很多冗余数据信息,例如从采集的多组I、Q数据可提炼出一组有效信息(包括幅相数据和幅相稳定性信息)。例如,若有96个通道的数字信号监测数据,每个通道32组I、Q数据,每组I、Q数据分别为2字节(Byte),则数字信号监测数据量为96*32*2*2=12MB;将每个通道的32组监测数据提炼成一组4类数据,每类数据为4字节,则经过压缩后监测数据量为96*4*4=1.5MB。由此,通过从数字信号监测数据中精确提炼出有效信息,可实现对数字信号监测数据的压缩。
进一步的,针对数字信号监测数据中偶尔出现误报的虚警情况,进行虚警滤除。例如增强预处理模块可以采用融合判断技术进行虚警滤除,如相同的雷达回波数据,同时输出至10个雷达信号处理模块,其中一个雷达信号处理模块(例如第一个模块)上报给增强预处理模块的数据异常,而其他雷达信号处理模块上报的数据正常,则认为第一个模块上报的数据异常为虚警,可滤除该模块上报的数据异常。
经过上述处理后,增强预处理模块将处理结果上报至PHM管理平台。
2.射频信号监测模块
如图3所示,射频信号监测模块包括射频单元、数字电路单元、记录单元,对雷达健康监测数据中的射频信号监测数据进行处理。具体来说,射频单元对频率源进行监测,采集频率源的射频信号并将其转换成数字信号;数字电路单元将射频信号转换后的数字信号进行信号处理后,计算得到频率、功率等性能指标;记录单元记录和存储原始数据(数字电路单元处理前的数字信号)和经数字电路单元处理后数据。如图4所示,射频信号监测模块采用超外差技术,利用本地振荡器产生的信号经过三次混频。具体为:
1)把输入的射频信号分别与第一本振信号(本振1)混频后,得到第一中频信号(中频1);第一中频信号经过放大、滤波(滤除第一本振信号及其谐波)后,送入第二混频器。不同频率的输入射频信号与相应的不同频率的第一本振信号混频,使得得到的第一中频信号的频率稳定在某一范围,从而满足放大器、滤波器的工作频率范围。
2)送入第二混频器的第一中频信号(中频1)与第二本振信号(本振2)经第二混频器混频后,得到第二中频信号(中频2),经过带通滤波器和放大器后输出。
3)该输出信号再与第三本振信号(本振3)混频,得到第三中频信号(中频3)。
经过上述多次混频,最终把输入的射频信号下变频到中频,可以降低电路对整个接收机噪声系数的影响,同时把信号放大至合适的混频器输入电平。可以理解,也可以只进行一次混频后将输入的射频信号下变频到中频;也可以采用两次混频或更多次混频,将输入的射频信号下变频到中频,从而降低电路对整个接收机噪声系数的影响,同时把信号放大至合适的混频器输入电平。
4)利用ADC对经混频后下变频到中频的信号进行采样。根据软件无线电理论,把采样的数字信号下变频到基带,得到I和Q两路信号。DSP对这两路信号进行频率测试、相噪分析和杂散计算,并最终将处理结果上报至PHM管理平台。
3.处理器
处理器作为主控器,实现对增强预处理模块、射频信号监测模块的统一监控和调度;也可以将PHM管理平台运行在处理器上。当增强预处理模块、射频信号监测模块对监测数据的处理结果为正常时,主控器收集增强预处理模块、射频信号监测模块周期性上报的处理结果数据;当增强预处理模块、射频信号监测模块对监测数据的处理结果为异常时,主控器可程控增强预处理模块、射频信号监测模块进入深度数据包检测模式,并将原始数据转发至PHM管理平台。增强预处理模块的原始数据指压缩前的数字信号监测数据,射频信号监测模块的原始数据指ADC采样后的射频信号监测数据。
主控器具备校准功能,可通过预设的校准程序完成增强预处理模块和射频信号监测模块的校准,包括幅度校准、频率校准、延时校准、扫描时间校准、平坦度修正和带通滤波器校准等。主控器对射频信号监测模块进行幅度校准的流程如图5所示,按不同频点分别进行幅度校准。设置信号源输出功率,将信号源输出信号分成两路分别送给雷达状态数据通用采集设备和功率计;设置此两路信号的的中心频率、扫宽、前端;分别读取雷达状态数据通用采集设备和功率计的信号幅度测量值,求出二者的差值并存储,以该差值设置衰减量,用来对雷达状态数据通用采集设备的信号幅度进行校准;若幅度校准完成,即雷达状态数据通用采集设备与功率计的信号幅度差值为0,则对下一频点的信号进行幅度校准,若幅度校准未完成,则改变衰减量,例如衰减量比前一次校准使用的衰减量减半,用改变后的衰减量再次对雷达状态数据通用采集设备的信号幅度进行校准,如此循环,直到幅度校准完成,之后对下一频点的信号进行幅度校准,直到所有频点的幅度校准都完成。
另外,主控器接收增强预处理模块、射频信号监测模块的实时BIT(Build-in-test机内自检测)信息,当某模块出现异常时,主控器及时上报至PHM管理平台,提醒PHM管理平台进行相应处理。
采用本发明的雷达状态数据通用采集设备进行雷达状态数据采集的具体流程如下:
1.设置增强预处理模块和射频信号监测模块的接口物理层协议和速率。
2.设置协议转换的数据解析方式。
3.将数字相控阵雷达的信号处理、数据处理、DBF等分系统的总线监测信号连接至增强预处理模块。
4.将数字相控阵雷达的频率源监测信号连接至射频信号监测模块。
5.利用主控器对增强预处理模块、射频信号监测模块进行校准和输出协议的配置。
6.运行本发明的雷达状态数据通用采集设备,采集、处理、诊断不同接口总线的监测数据,将分析处理结果送至PHM管理平台进行显示和深度挖掘,主控器将增强预处理模块、射频信号监测模块实时的运行状态送至PHM管理平台显示。
本发明的雷达状态数据通用采集设备,实现数字相控阵雷达健康数据的有效采集和监测、管理,对多总线接口数据、射频信号等进行统一格式转换,减少了上层处理平台(如雷达健康数据分析软件)与多总线接口(光纤、网络、串口、射频等)的耦合性,提高了处理平台的通用性。通过增强预处理模块提供多路输入接口,包括光纤、网络、CAN、串口等,可对雷达不同种总线接口的实时数据流进行采集和分析;通过对雷达多总线接口的适配和协议转换,将不同种数据接口输出的数据统型为自定义的标准的网络接口报文,送至PHM管理平台进行 处理,实现了对雷达多总线接口的适配性,增强了健康数据分析软件的通用性和可复用性;且接口的协议类型、接口信号传输速率等可重构,可实现对多部雷达的适配,通用采集设备复用性和通用性强。通过射频信号监测模块提供多路射频信号输入接口,可对雷达频率源输出的多种射频信号进行实时采集和测量,实现了射频信号的有效监测;通过将不同频率的输入射频信号与相应的不同频率的第一本振信号混频,使得得到的第一中频信号的频率稳定在某一范围,从而满足放大器、滤波器的工作频率范围。
增强预处理模块通过从采集的多组I、Q数据中提炼出一组幅相数据和幅相稳定性的综合结果,实现了对雷达健康数据的快速提炼和有效信息提取,增加系统运行效率,提高了雷达系统的可靠性和可维护性,减少了上层处理平台的处理压力。
主控器对增强预处理模块和射频信号监测模块进行配置和调度,并在使用前进行校准,保证数据的可靠性;主控器对多总线接口数据、射频信号进行初步分析诊断,得出诊断结果,滤除干扰和虚警,提高后期健康数据挖掘分析的效率。
通过实时BIT功能,主控器将增强预处理模块、射频信号监测模块自身的软硬件状态上报至终端,有利于用户对状态数据通用采集设备状态的管控。
在一些实施例中,上述技术的某些方面可以由执行软件的处理系统的一个或多个处理器来实现。该软件包括存储或以其他方式有形实施在非暂时性计算机可读存储介质上的一个或多个可执行指令集合。软件可以包括指令和某些数据,这些指令和某些数据在由一个或多个处理器执行时操纵一个或多个处理器以执行上述技术的一个或多个方面。非暂时性计算机可读存储介质可以包括例如磁或光盘存储设备,诸如闪存、高速缓存、随机存取存储器(RAM)等的固态存储设备或其他非易失性存储器设备。存储在非临时性计算机可读存储介质上的可执行指令可以是源代码、汇编语言代码、目标代码或被一个或多个处理器解释或以其他方式执行的其他指令格式。
计算机可读存储介质可以包括在使用期间可由计算机系统访问以向计算机系统提供指令和/或数据的任何存储介质或存储介质的组合。这样的存储介质可以包括但不限于光学介质(例如,光盘(CD)、数字多功能光盘(DVD)、蓝光光盘)、磁介质(例如,软盘、磁带或磁性硬盘驱动器)、易失性存储器(例如,随机存取存储器(RAM)或高速缓存)、非易失性存储器(例如,只读存储器(ROM)或闪存)或基于微机电系统(MEMS)的存储介质。计算机可读存储介质可以嵌入计算系统(例如,系统RAM或ROM)中,固定地附接到计算系统(例如,磁性硬盘驱动器),可移除地附接到计算系统(例如,光盘或通用基于串行总线(USB)的闪存),或者经由有线或无线网络(例如,网络可访问存储(NAS))耦合到计算机系统。
请注意,并非上述一般性描述中的所有活动或要素都是必需的,特定活动或设备的一部分可能不是必需的,并且除了描述的那些之外可以执行一个或多个进一步的活动或包括的要素。更进一步,活动列出的顺序不必是执行它们的顺序。而且,已经参考具体实施例描述了这些概念。然而,本领域的普通技术人员认识到,在不脱离如下权利要求书中阐述的本公开的范围的情况下,可以进行各种修改和改变。因此,说明书和附图被认为是说明性的而不是限制性的,并且所有这样的修改被包括在本公开的范围内。
上面已经关于具体实施例描述了益处、其他优点和问题的解决方案。然而,可能导致任何益处、优点或解决方案发生或变得更明显的益处、优点、问题的解决方案以及任何特征都不应被解释为任何或其他方面的关键、必需或任何或所有权利要求的基本特征。此外,上面公开的特定实施例仅仅是说明性的,因为所公开的主题可以以受益于这里的教导的本领域技术人员显而易见的不同但等同的方式进行修改和实施。除了在下面的权利要求书中描述的以外,没有意图限制在此示出的构造或设计的细节。因此明显的是,上面公开的特定实施例可以被改变或修改,并且所有这样的变化被认为在所公开的主题的范围内。因此,本文寻求的保护如下面的权利要求中所述。

Claims (8)

  1. 一种雷达状态数据通用采集设备,其特征在于,包括射频信号监测模块、增强预处理模块和主控器;
    所述增强预处理模块采集雷达状态数据中数字信号监测数据,对其进行预处理,实现数字信号监测数据的标准化和提炼;所述预处理包括:
    (1)增强预处理模块去除数字信号监测数据中物理层协议,提取其中有效数据,统一转换成网络协议数据;
    (2)增强预处理模块从采集的数字信号监测数据的多组I、Q数据中提炼出一组幅相数据和幅相稳定性信息;
    所述射频信号监测模块采集雷达状态数据中射频信号监测数据,将其转换成数字信号,对转换后的数字信号进行信号处理后,计算得到频率、功率等性能指标,并对转换后的数字信号及计算所得性能指标数据进行记录存储;
    所述主控器用于对增强预处理模块、射频信号监测模块进行统一监控和调度。
  2. 根据权利要求1所述的雷达状态数据通用采集设备,其特征在于,所述预处理还包括增强预处理模块采用融合判断技术对上报数据异常的增强预处理模块滤除虚警。
  3. 根据权利要求1所述的雷达状态数据通用采集设备,其特征在于,所述射频信号监测模块将采集的雷达状态数据中射频信号监测数据转换成数字信号之前,还将不同频率的输入射频信号与相应的不同频率的本振信号混频,使得得到的中频信号的频率稳定从而满足放大器、滤波器的工作频率范围。
  4. 根据权利要求1所述的雷达状态数据通用采集设备,其特征在于,所述主控器具备校准功能,通过预设的校准程序完成增强预处理模块和射频信号监测模块的校准,包括幅度校准、频率校准、延时校准、扫描时间校准、平坦度修正和带通滤波器校准。
  5. 根据权利要求1所述的雷达状态数据通用采集设备,其特征在于,对增强预处理模块、射频信号监测模块的统一监控和调度包括:
    当增强预处理模块、射频信号监测模块对监测数据的处理结果为正常时,主控器收集增强预处理模块、射频信号监测模块周期性上报的处理结果数据;
    当增强预处理模块、射频信号监测模块对监测数据的处理结果为异常时,主控器程控增强预处理模块、射频信号监测模块进入深度数据包检测模式,并将原始数据转发至PHM管理平台;增强预处理模块的原始数据指压缩前的数字信号监测数据,射频信号监测模块的原始数据指ADC采样后的射频信号监测数据。
  6. 根据权利要求5所述的雷达状态数据通用采集设备,其特征在于,所述PHM管理平台运行在主控器上。
  7. 根据权利要求5所述的雷达状态数据通用采集设备,其特征在于,所述增强预处理模块和射频信号监测模块根据预设的相应数字信号接口物理层协议、速率对采集的信号提取有效数据,根据预设的协议转换数据解析方式转换成网络协议数据。
  8. 一种雷达状态数据通用采集方法,采用根据权利要求1-9任一所述的雷达状态数据通用采集设备实现,其特征在于,包括:
    设置增强预处理模块和射频信号监测模块的接口物理层协议和速率;
    设置协议转换的数据解析方式;
    将数字相控阵雷达的信号处理、数据处理、DBF分系统的总线监测信号连接至增强预处理模块;
    将数字相控阵雷达的频率源监测信号连接至射频信号监测模块;
    利用主控器对增强预处理模块、射频信号监测模块进行校准和输出协议的配置;
    运行所述雷达状态数据通用采集设备,采集、处理、诊断不同接口总线的监测数据,将分析处理结果送至PHM管理平台进行显示和深度挖掘,主控器将增强预处理模块、射频信号监测模块实时的运行状态送至PHM管理平台显示。
PCT/CN2020/115318 2020-07-29 2020-09-15 雷达状态数据通用采集设备及方法 WO2022021562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010744362.7A CN111769886B (zh) 2020-07-29 2020-07-29 雷达状态数据通用采集设备及方法
CN202010744362.7 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022021562A1 true WO2022021562A1 (zh) 2022-02-03

Family

ID=72727991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115318 WO2022021562A1 (zh) 2020-07-29 2020-09-15 雷达状态数据通用采集设备及方法

Country Status (2)

Country Link
CN (1) CN111769886B (zh)
WO (1) WO2022021562A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114706809A (zh) * 2022-03-29 2022-07-05 中国电子科技集团公司第十五研究所 一种对串口数据的通用化处理方法及装置
CN114910876A (zh) * 2022-07-14 2022-08-16 南京恩瑞特实业有限公司 一种相控阵体制天气雷达机内相干性测试系统
CN115765820A (zh) * 2023-01-10 2023-03-07 北京东远润兴科技有限公司 数据采集方法、装置、设备及储存介质
CN115856428A (zh) * 2022-11-24 2023-03-28 中国科学院国家空间科学中心 一种模块化的复杂电磁环境频谱态势感知采集装置
CN117834750A (zh) * 2024-03-04 2024-04-05 苏州元脑智能科技有限公司 获取协议数据的装置、方法、系统、设备、介质及服务器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325918A (zh) * 2020-10-19 2021-02-05 中国电子科技集团公司第三十八研究所 一种标准仪器的状态预测处理系统
CN112485766B (zh) * 2020-11-13 2022-03-08 中国电子科技集团公司第十四研究所 一种相控阵雷达天线阵面性能在线评估方法
CN112540358A (zh) * 2020-12-02 2021-03-23 中国电子科技集团公司第三十八研究所 一种基于状态预测的功能自修复雷达系统
CN113253636B (zh) * 2021-04-09 2022-04-26 广东盛路通信科技股份有限公司 一种通信设备的数据采集器终端、远程监控方法及系统
CN113253190B (zh) * 2021-04-22 2022-07-08 中国电子科技集团公司第二十九研究所 一种分布式系统的射频通道全频段幅度校正的方法
CN113434358B (zh) * 2021-04-27 2023-10-13 中国电子科技集团公司第十四研究所 一种软件化雷达信息处理软件的监测方法
CN113892911A (zh) * 2021-09-28 2022-01-07 北京清雷科技有限公司 睡眠呼吸数据的采集装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010039A (zh) * 2014-06-05 2014-08-27 北京航空航天大学 一种基于WebSocket的多雷达远程监控系统及方法
CN104569934A (zh) * 2014-12-31 2015-04-29 中国气象局气象探测中心 一种雷达故障处理系统
CN105548864A (zh) * 2016-02-03 2016-05-04 中国电子科技集团公司第三十八研究所 一种数字阵列雷达dam接收数字电路测试系统
CN107462940A (zh) * 2017-07-04 2017-12-12 西安飞机工业(集团)有限责任公司 一种气象雷达的自动测试系统
US20190235070A1 (en) * 2016-08-01 2019-08-01 Mitsubishi Electric Corporation Synthetic-aperture radar device
US10613213B2 (en) * 2016-05-13 2020-04-07 Google Llc Systems, methods, and devices for utilizing radar with smart devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421528B1 (en) * 1999-04-29 2002-07-16 Hughes Electronics Corp. Satellite transmission system with adaptive transmission loss compensation
CN106571896B (zh) * 2016-11-11 2019-09-03 西安长远电子工程有限责任公司 一种雷达通讯方法
CN106788479B (zh) * 2017-03-17 2022-06-24 成都玖锦科技有限公司 单通道射频信号采集回放系统
CN108919214A (zh) * 2018-08-08 2018-11-30 航天南湖电子信息技术股份有限公司 一种相控阵雷达数字t/r组件幅相校正装置及其校正方法
CN109884594B (zh) * 2019-02-28 2021-07-23 中国电子科技集团公司第三十八研究所 一种高性能一体化有源模块
CN110309528A (zh) * 2019-04-15 2019-10-08 南京航空航天大学 一种基于机器学习的雷达方案设计方法
CN110488284B (zh) * 2019-07-29 2021-08-10 中国科学院电子学研究所 一种双基星载sar系统多通道接收机设计方法及装置
CN111443338A (zh) * 2020-05-06 2020-07-24 中国电子科技集团公司第十四研究所 一种有源相控阵雷达阵面故障注入设备和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010039A (zh) * 2014-06-05 2014-08-27 北京航空航天大学 一种基于WebSocket的多雷达远程监控系统及方法
CN104569934A (zh) * 2014-12-31 2015-04-29 中国气象局气象探测中心 一种雷达故障处理系统
CN105548864A (zh) * 2016-02-03 2016-05-04 中国电子科技集团公司第三十八研究所 一种数字阵列雷达dam接收数字电路测试系统
US10613213B2 (en) * 2016-05-13 2020-04-07 Google Llc Systems, methods, and devices for utilizing radar with smart devices
US20190235070A1 (en) * 2016-08-01 2019-08-01 Mitsubishi Electric Corporation Synthetic-aperture radar device
CN107462940A (zh) * 2017-07-04 2017-12-12 西安飞机工业(集团)有限责任公司 一种气象雷达的自动测试系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114706809A (zh) * 2022-03-29 2022-07-05 中国电子科技集团公司第十五研究所 一种对串口数据的通用化处理方法及装置
CN114910876A (zh) * 2022-07-14 2022-08-16 南京恩瑞特实业有限公司 一种相控阵体制天气雷达机内相干性测试系统
CN115856428A (zh) * 2022-11-24 2023-03-28 中国科学院国家空间科学中心 一种模块化的复杂电磁环境频谱态势感知采集装置
CN115765820A (zh) * 2023-01-10 2023-03-07 北京东远润兴科技有限公司 数据采集方法、装置、设备及储存介质
CN115765820B (zh) * 2023-01-10 2023-04-28 北京东远润兴科技有限公司 数据采集方法、装置、设备及储存介质
CN117834750A (zh) * 2024-03-04 2024-04-05 苏州元脑智能科技有限公司 获取协议数据的装置、方法、系统、设备、介质及服务器

Also Published As

Publication number Publication date
CN111769886B (zh) 2021-06-18
CN111769886A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2022021562A1 (zh) 雷达状态数据通用采集设备及方法
CN102759675B (zh) 一种在线式电能质量监测装置
CN110329308A (zh) 一种轨道断裂检查方法及系统
CN202119872U (zh) 基于超声信号的智能开关柜局部放电检测装置
CN110221261B (zh) 一种雷达波形产生模块测试分析方法及装置
CN103856364A (zh) 总线信号监测装置及方法
CN101750571B (zh) 电力系统动稳态记录方法
CN101841541B (zh) 一种基于多播网络监控集群的方法及系统
CN101915719A (zh) 双通道高低频超声波衰减信号检测装置
CN110824215A (zh) 基于宽带载波的窃电行为检测方法及装置
CN206181009U (zh) 综合防撞多通道接收机
CN202915884U (zh) 一种绕组变形测试仪
CN204990662U (zh) 一种具有数据筛选功能的无线传输系统
CN112152733B (zh) 用于精确测量调幅广播发射机输出功率的系统及方法
CN207718361U (zh) Pcm信号采集装置及系统
CN202978989U (zh) 一种刀片式服务器监测装置
CN201242809Y (zh) 一种发电机状态网络监测系统
CN203849334U (zh) 基于dsp和msp430的低功耗电力系统故障录波器
CN202058148U (zh) 轴芯轨迹分析仪
CN209070063U (zh) 一种gis设备局部放电检测装置
CN211149230U (zh) 基于fpga和arm的叶尖间隙信号高速采集处理装置
CN203493632U (zh) 被动式胎心率测量系统
CN204667646U (zh) 一种航空器多元监视数据采集处理监视设备
CN109870315A (zh) 便携式动车组异音异响辅助诊断装置
CN103606918A (zh) 一种电力系统负荷监控与能耗管理系统及其实现方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947395

Country of ref document: EP

Kind code of ref document: A1