WO2022021520A1 - 一种非正交多址接入功率分配方法及系统 - Google Patents

一种非正交多址接入功率分配方法及系统 Download PDF

Info

Publication number
WO2022021520A1
WO2022021520A1 PCT/CN2020/111674 CN2020111674W WO2022021520A1 WO 2022021520 A1 WO2022021520 A1 WO 2022021520A1 CN 2020111674 W CN2020111674 W CN 2020111674W WO 2022021520 A1 WO2022021520 A1 WO 2022021520A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
user
users
signal
noise ratio
Prior art date
Application number
PCT/CN2020/111674
Other languages
English (en)
French (fr)
Inventor
居金娟
姚居奕
章国安
段玮
孙强
Original Assignee
南通职业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通职业大学 filed Critical 南通职业大学
Publication of WO2022021520A1 publication Critical patent/WO2022021520A1/zh
Priority to ZA2022/01992A priority Critical patent/ZA202201992B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method and system for non-orthogonal multiple access power allocation.
  • NOMA non-orthogonal multiple access
  • OMA Orthogonal Multiple Access
  • NOMA achieves higher spectral efficiency. It is implemented based on the power domain.
  • the continuous interference cancellation technology is used to separate and demodulate each signal, that is, to accommodate more users by using power domain sharing in the transmitted signal.
  • the research on power allocation schemes has received extensive attention from scholars at home and abroad.
  • the cooperative relay scheme is introduced into NOMA.
  • NOMA channel state information
  • the system performance study shows that, compared with the traditional NOMA, the main advantage of cooperative NOMA is The advantage is that low system redundancy and better user fairness can be achieved.
  • the NOMA power allocation method has the problems of low access efficiency and high system complexity.
  • the present invention provides the following scheme:
  • a non-orthogonal multiple access power allocation method comprising:
  • the relay node Determine the relay node of each user group according to the service range of the base station or the user receiving capability; the relay node is a user in the corresponding user group;
  • the channel parameters from the base station to each relay node, the power distribution coefficient from the base station to each relay node, and the transmission are superimposed signal calculation;
  • the service quality requirements for users in the user group Based on the signal-to-interference-noise ratio received by the relay nodes of the first d-1 group of users or the signal-to-noise ratio received by the relay nodes of the d-th user group, the service quality requirements for users in the user group Perform reverse analysis, and calculate the range of power distribution coefficients corresponding to each of the relay nodes by Shannon's theorem;
  • the signal-to-interference-to-noise ratio decoding and the signal-to-noise ratio decoding are performed on the information received by each user in the user group, and the channel parameters from the relay node to each user in the user group and the channel parameters from the relay node to each user in the user group are determined.
  • the power distribution coefficient of the user and the non-orthogonal multiple access signal decoded and forwarded by the relay node are used to calculate the signal-to-interference and noise ratio received by the first n-1 users in the user group and the received signal by the nth user in the user group. to the signal-to-noise ratio;
  • the SNR received by the relay nodes of the first d-1 user group Based on the SNR received by the relay nodes of the first d-1 user group, the SNR received by the relay nodes of the d-th user group, the first n-1 in the user group
  • the signal-to-interference-noise ratio received by the user and the signal-to-noise ratio received by the nth user in the user group the sum of the traversal rates of the system is calculated by Shannon's theorem;
  • an exhaustive method is used to determine the optimal power distribution coefficient corresponding to each user in the user group; the range of the power distribution coefficient corresponding to the relay node and the corresponding power distribution coefficient of each user in the user group are used.
  • the optimal power distribution coefficient is used to achieve power distribution.
  • the present invention also provides a non-orthogonal multiple access power distribution system, including:
  • the division module is used to divide the users in the to-be-allocated area into multiple user groups according to the user's service quality requirements;
  • a relay node determination module configured to determine the relay node of each user group according to the service range of the base station or the user receiving capability; the relay node is a user in the corresponding user group;
  • the first calculation module is used for adopting the non-orthogonal multiple access technology, following the decoding rules of the non-orthogonal multiple access technology, and from the channel parameters from the base station to each relay node, and the channel parameters from the base station to each relay node. Calculate the signal-to-interference-to-noise ratio received by the relay nodes of the first d-1 group of user groups and the signal-to-noise ratio received by the relay nodes of the d-th group of user groups from the power distribution coefficient and the superimposed signal transmitted by the base station;
  • the second calculation module is configured to, based on the signal-to-interference-noise ratio received by the relay nodes of the first d-1 user group or the signal-to-noise ratio received by the relay nodes of the d-th user group, by The service quality requirements of users in the group are reversely analyzed, and the range of power distribution coefficients corresponding to each relay node is calculated by Shannon's theorem;
  • the third calculation module is used to perform SNR decoding and SNR decoding on the information received by each user in the user group, and calculate the channel parameters from the relay node to each user in the user group, and from the relay The power distribution coefficient from the node to each user in the user group and the non-orthogonal multiple access signal decoded and forwarded by the relay node Calculate the signal to interference and noise ratio received by the first n-1 users in the user group and the user The signal-to-noise ratio received by the nth user in the group;
  • the fourth calculation module is used for the signal-to-interference-noise ratio received by the relay nodes of the first d-1 user group, the signal-to-noise ratio received by the relay nodes of the d-th user group, the user
  • the signal-to-interference-to-noise ratio received by the first n-1 users in the group and the signal-to-noise ratio received by the nth user in the user group, the traversal rate sum of the system is calculated by Shannon's theorem;
  • the fifth calculation module is configured to, based on the sum of the traversal rates, use an exhaustive method to determine the optimal power distribution coefficient corresponding to each user in the user group; the scope of the power distribution coefficient corresponding to the relay node and the The optimal power distribution coefficient corresponding to each user in the user group is used to realize power distribution.
  • the present invention proposes a non-orthogonal multiple access power distribution method and system.
  • QoS quality-of-service
  • the grouping is performed first and then the distribution is performed based on the QoS requirements and channel quality differences.
  • layer proposes a power allocation method in the transmission process of different layers between groups and within a group.
  • the method or system can meet the needs of users in the group as much as possible, maximize the total rate in the group, and reduce the probability of system outage as much as possible, and minimize group outages on the other hand.
  • the outage probability of inter-device-to-device (D2D) relay nodes is determined, the range of power distribution coefficients of each layer transmission is determined, and finally the optimal power distribution coefficient corresponding to each user in the group is obtained by exhaustive traversal method.
  • the invention adopts the combination of layered NOMA transmission and D2D mode, which not only satisfies different QoS, but also reduces the interruption probability, greatly improves the system resource access efficiency, and significantly reduces the computational complexity in the power allocation process.
  • FIG. 1 is a flowchart of a non-orthogonal multiple access power allocation method provided by an embodiment of the present invention
  • FIG. 2 is a model diagram of non-orthogonal multiple access power allocation provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a non-orthogonal multiple access power distribution system according to an embodiment of the present invention.
  • the cooperative relay scheme is introduced into NOMA.
  • NOMA channel state information
  • CSI channel state information
  • the system performance study shows that, compared with the traditional NOMA, the main advantage of cooperative NOMA is The advantage is that low system redundancy and better user fairness can be achieved.
  • D2D-assisted cooperative relay communication has become a new attempt.
  • P2D power allocation
  • PA power allocation
  • FIG. 1 is a flowchart of a non-orthogonal multiple access power allocation method according to an embodiment of the present invention.
  • the non-orthogonal multiple access power allocation method in this embodiment includes:
  • Step 101 Divide the users in the area to be allocated into multiple user groups according to the user service quality requirements.
  • the user information of the area to be allocated is collected, and different user groups are divided according to service quality requirements.
  • a large number of users have more demand for high-quality services, and the corresponding target data rate or threshold is also high, which is defined as the first user group; on the contrary, a small number of users has relatively low demand for quality of service, and its target data rate is also low. , defined as the second user group.
  • two groups can be determined based on the number of users in the area to be allocated or a quality of service threshold.
  • Step 102 Determine the relay node of each user group according to the service range of the base station or the user receiving capability.
  • the relay node is a user in a corresponding user group.
  • the relay node is a user with the best reception capability in the corresponding user group.
  • the relay node is shown in the figure D1 and D2 in 2 are shown.
  • This embodiment adopts layered transmission. The first layer is transmitted from the base station to the relay node, and the second layer is transmitted from the relay node to each user in the group.
  • Step 103 Adopt the non-orthogonal multiple access technology and follow the decoding rules of the non-orthogonal multiple access technology.
  • the superimposed signal transmitted by the base station calculates the SNR received by the relay nodes of the first d-1 group of users and the SNR received by the relay nodes of the d-th group of users.
  • the decoding rule may adopt the continuous interference cancellation technique (SIC).
  • Step 103 specifically includes:
  • a 1 is the power allocation coefficient from the base station to the relay nodes of the first group of users
  • a 2 is the power allocation coefficient from the base station to the relay nodes of the second group of users
  • a 1 +a 2 1
  • P t is the transmit power of the base station
  • A is the transmit signal of the first group of users
  • B is the transmit signal of the second group of users.
  • AWGN additive white Gaussian noise
  • the non-orthogonal multiple access technology is adopted, and the decoding rules of the non-orthogonal multiple access technology are followed, and the signal B is used as noise to decode A, And use the SIC to obtain the signal B, and calculate the signal-to-interference and noise ratio (SINR) received by the relay nodes of the first d-1 user group, where the signal-to-interference and noise ratio (SINR) received by the relay nodes of the mth user group
  • is the signal-to-noise ratio transmitted by the base station.
  • ⁇ 2 is Variance.
  • Step 104 Based on the signal-to-interference-noise ratio received by the relay nodes of the first d-1 user group or the signal-to-noise ratio received by the relay nodes of the d-th user group The service quality requirement is reversely analyzed, and the range of the power distribution coefficient corresponding to each relay node is calculated by Shannon's theorem.
  • Step 104 specifically includes:
  • the power distribution coefficient of the first layer is related to the target data rate. Whether it is established, so as to determine the signal to be decoded first. Without loss of generality, according to the collected data, the number of users and QoS requirements of the first user group are higher than those of the second user group, and a 1 ⁇ a 2 can be obtained. According to the first layer power allocation criteria in the above steps, the power allocation coefficients a 1 and a 2 can be inversely derived from the pre-judged data rate of each user group. Assume that the rate corresponding to the QoS requirements of the first user group is R 1 bps/Hz, and the rate of the second user group is R 2 bps/Hz.
  • step 103 based on the signal-to-interference-noise ratio received by the relay nodes of the first d-1 group of user groups or the signal-to-noise ratio received by the relay nodes of the d-th group of user groups, Shannon Theorem (Shannon) determines the first expression and the second expression.
  • the first expression is The second expression is in, is the signal-to-interference-noise ratio received by the relay nodes of the first group of users, R 1 is the rate corresponding to the quality of service requirements of users of the first group of users, is the signal-to-noise ratio received by the relay nodes of the second group of users, and R 2 is the rate corresponding to the quality of service requirements of the users of the second group of users.
  • is the signal-to-noise ratio transmitted by the base station
  • ⁇ 2 is Variance
  • is the additive white Gaussian noise during the first-layer non-orthogonal multiple access transmission.
  • the reverse power allocation method based on the number of grouped users and QoS requirements of the first-layer NOMA not only ensures the QoS requirements of each group, but also satisfies the constraints of relay nodes.
  • subsequent analysis and numerical simulation can be performed according to the PA criteria in step 104 .
  • Step 105 Perform SNR decoding and SNR decoding on the information received by each user in the user group, and determine the channel parameters from the relay node to each user in the user group, and from the relay node to the user group.
  • the power distribution coefficient of each user in the user group and the non-orthogonal multiple access signal decoded and forwarded by the relay node calculate the signal-to-interference-noise ratio received by the first n-1 users in the user group and the nth signal in the user group. The signal-to-noise ratio received by each user.
  • Step 105 specifically includes:
  • step 104 After the value satisfies the range of the first-layer power allocation coefficient in step 104, consider the second-layer NOMA transmission, that is, from the relay node to each user in the group.
  • an end-to-end (D2D) strategy is proposed at the relay node of the mth user group, that is, the selected nearest or best receiving user will receive the superimposed signal Decoding of intra-group information and then forwarding of the reconstructed new NOMA signal to users in the group.
  • D2D end-to-end
  • the users in the user group are sorted according to the channel quality, and the sequence table corresponding to each user group is obtained; without loss of generality, it is assumed that the sequence table corresponding to the mth group of users is is the channel parameter from the relay node of the mth group of users to the first user in the mth group of users, is the channel parameter from the relay node of the mth group of users to the nth user in the mth group of users, and n is the total number of users in the mth group of users.
  • NOMA means that for D 1 , b 1 ⁇ ...b i and For D 2 , c 1 ⁇ ...c j and Among them, bn and cn represent new power distribution coefficients, which are the second-layer power distribution scheme.
  • the power allocation coefficient of 1 user b j is the power allocation coefficient from the relay node of the second group of users to the jth user in the second group of users, j is the total number of users in the second group of users, z 1 is the transmit signal corresponding to the first user in the second group of users, z j is the transmit signal corresponding to the jth user in the second group of users, is the transmission power of the second group of users, a 2 is the power allocation coefficient from the base station to the relay nodes of the second group of users.
  • the signal-to-interference-noise ratio received by the vth user in the mth user group is
  • ⁇ m is the transmission signal-to-noise ratio of the mth group of users.
  • the signal-to-noise ratio received by the nth user in the mth user group is
  • b n is the power distribution coefficient from the relay node of the mth group of users to the nth user in the mth group of users.
  • m ⁇ 1,2 ⁇ in order to realize signal reception and decoding, in the first user group, user 1 to user i-1 decode the received information, and user i
  • the received information is decoded by the SNR, the SNR corresponding to x k (1 ⁇ k ⁇ i-1) and the SNR of x i are respectively
  • the second group of users can be obtained in the same way, therefore, the corresponding z l (1 ⁇ l ⁇ j-1) effective SNR and the SNR corresponding to z j can be expressed as:
  • Step 106 Based on the SNR received by the relay nodes of the first d-1 group of users, the SNR received by the relay nodes of the d-th user group, the first n in the user group - The SNR received by 1 user and the SNR received by the nth user in the user group, the sum of the traversal rates of the system is calculated by Shannon's theorem.
  • Step 106 specifically includes:
  • the traversal reachable rate of the mth user group is calculated by Shannon's theorem
  • the traversal reachable rates of all users in the two groups can be obtained from the correlation rate expressions of the users in the group, using the complementary cumulative distribution function (CCDF) and the probability density function (PDF).
  • the traversal reachable rate of a group of users is The traversal reachable rate of the second group of users
  • Step 107 Based on the sum of the traversal rates, use an exhaustive method to determine the optimal power allocation coefficient corresponding to each user in the user group; The optimal power distribution coefficient corresponding to the user is used to realize power distribution.
  • the optimal power distribution coefficient is the optimal power distribution coefficient for the system capacity to meet the demand Power factor combination. So far, one performance index of the system can be solved.
  • the interruption probability On the basis of determining the power distribution coefficient of the first layer and the second layer, another performance index of the system, the interruption probability, is considered.
  • Each user has a predetermined target data according to the QoS required by the user. Communication interruption occurs when the link capacity cannot meet the required user rate.
  • the target rate threshold can be predefined according to the target rate R 1k of user k in the first group of users
  • the outage probability O 1 is calculated.
  • a similar analysis method can also be used to obtain the outage probability O 2 , where the target rate threshold is set as R 2l .
  • the calculation process is as follows:
  • the outage probability of each group and system is discussed in different cases, that is, the above methods are used to numerically analyze the outage probability performance of the first group of users and the second group of user groups in three cases.
  • the simulation results show that the above method improves the performance of outage probability by about 9dB, which reflects the performance advantage of the above non-orthogonal multiple access power allocation method, thereby improving the access efficiency, reducing the computational complexity, and achieving the best performance. Resource efficiency.
  • the present invention further provides a non-orthogonal multiple access power distribution system
  • FIG. 3 is a schematic structural diagram of the non-orthogonal multiple access power distribution system provided by an embodiment of the present invention.
  • the non-orthogonal multiple access power distribution system of this embodiment includes:
  • the dividing module 301 is configured to divide the users in the to-be-allocated area into multiple user groups according to user service quality requirements.
  • the relay node determination module 302 is configured to determine the relay node of each user group according to the service range of the base station or the user receiving capability; the relay node is a user in the corresponding user group.
  • the first calculation module 303 is used for adopting the non-orthogonal multiple access technology, following the decoding rules of the non-orthogonal multiple access technology, from the channel parameters from the base station to each relay node, from the base station to each relay node. Calculate the signal-to-interference-noise ratio received by the relay nodes of the first d-1 group of users and the signal-to-noise ratio received by the relay nodes of the d-th user group.
  • the second calculation module 304 is configured to, based on the signal-to-interference-to-noise ratio received by the relay nodes of the first d-1 group of users or the signal-to-noise ratio received by the relay nodes of the d-th user group, by calculating The service quality requirements of the users in the user group are reversely analyzed, and the range of the power distribution coefficient corresponding to each relay node is calculated by Shannon's theorem.
  • the third calculation module 305 is configured to perform SNR decoding and SNR decoding on the information received by each user in the user group, and calculate the channel parameters from the relay node to each user in the user group, The power distribution coefficient from the relay node to each user in the user group and the non-orthogonal multiple access signal decoded and forwarded by the relay node calculate the signal-to-interference and noise ratio received by the first n-1 users in the user group and the The signal-to-noise ratio received by the nth user in the user group.
  • the fourth calculation module 306 is configured to, based on the signal-to-interference-noise ratio received by the relay nodes of the first d-1 user groups, the signal-to-noise ratio received by the relay nodes of the d-th user group, the The signal-to-interference-to-noise ratio received by the first n-1 users in the user group and the signal-to-noise ratio received by the nth user in the user group are calculated by Shannon's theorem to calculate the traversal rate sum of the system.
  • the fifth calculation module 307 is configured to, based on the sum of the traversal rates, use an exhaustive method to determine the optimal power distribution coefficient corresponding to each user in the user group; The optimal power distribution coefficient corresponding to each user in the user group is used to realize power distribution.
  • the first computing module 303 specifically includes:
  • a relay node received signal determination unit configured to determine the received signal of the relay node of the mth group of users based on the superimposed signal
  • the channel parameter from the base station to the relay node of the mth group of users is the additive white Gaussian noise in the first-layer non-orthogonal multiple access transmission process, m ⁇ 1,2 ⁇ .
  • the first calculation unit is configured to calculate the first d- The signal-to-interference-noise ratio received by the relay nodes of a group of users; among them, the signal-to-interference and noise ratio received by the relay nodes of the mth group of users is
  • is the signal-to-noise ratio transmitted by the base station
  • ⁇ 2 is Variance
  • the second calculation unit is configured to calculate the user group of the dth group based on the received signal of the relay node of the dth group of users, using the non-orthogonal multiple access technology, and following the decoding rules of the non-orthogonal multiple access technology.
  • the second computing module 304 specifically includes:
  • An expression determination unit configured based on the signal-to-interference-to-noise ratio received by the relay nodes of the first d-1 user group or the signal-to-noise ratio received by the relay nodes of the d-th user group, determined by Shannon's theorem Determine the first expression and the second expression; the group number of the user group is m, m ⁇ 1,2 ⁇ ; the first expression is The second expression is in, is the signal-to-interference-noise ratio received by the relay nodes of the first group of users, R 1 is the rate corresponding to the quality of service requirements of users of the first group of users, is the signal-to-noise ratio received by the relay nodes of the second group of users, and R 2 is the rate corresponding to the quality of service requirements of the users of the second group of users.
  • a third calculation unit configured to calculate, based on the first expression and the second expression, the range of power distribution coefficients corresponding to the relay nodes of the first group of user groups
  • is the signal-to-noise ratio transmitted by the base station
  • ⁇ 2 is Variance
  • is the additive white Gaussian noise during the first-layer non-orthogonal multiple access transmission.
  • a fourth calculation unit configured to calculate, based on the first expression and the second expression, the range of power distribution coefficients corresponding to the relay nodes of the second group of user groups
  • the third computing module 305 specifically includes:
  • a sorting unit configured to sort the users in the user group according to the channel quality, and obtain a sequence table corresponding to each of the user groups; wherein, the sequence table corresponding to the mth group of users is: is the channel parameter from the relay node of the mth group of users to the first user in the mth group of users, is the channel parameter from the relay node of the mth group of users to the nth user in the mth group of users, and n is the total number of users in the mth group of users.
  • the relay node transmission signal determination unit is used to determine the transmission signal of the relay node of the mth group of users; m is the group number of the user group, m ⁇ 1,2 ⁇ , wherein, the relay of the first group of users Node's transmit signal Transmitting signals of relay nodes of the second group of users b 1 is the power distribution coefficient from the relay node of the first group of users to the first user in the first group of users, b 2 is from the relay node of the first group of users to the first user group
  • the power distribution coefficient of the i-th user i is the total number of users in the first user group, x 1 is the transmit signal corresponding to the first user in the first user group, x i is the first user group
  • the i-th user corresponds to the transmitted signal, is the transmission power of the first user group, a 1 is the power distribution coefficient from the base station to the relay node of the first group of users, P t is the transmit power of the base station; c 1 is from the relay node of
  • the power allocation coefficient of 1 user b j is the power allocation coefficient from the relay node of the second group of users to the jth user in the second group of users, j is the total number of users in the second group of users, z 1 is the transmit signal corresponding to the first user in the second group of users, z j is the transmit signal corresponding to the jth user in the second group of users, is the transmission power of the second group of users, a 2 is the power allocation coefficient from the base station to the relay nodes of the second group of users.
  • a user received signal determination unit configured to determine the received signal of the nth user in the mth group of users based on the transmit signals of the relay nodes of the mth group of users
  • the fifth calculation unit is configured to perform signal-to-interference and noise ratio decoding and signal-to-noise ratio decoding on the information received by each user in the user group based on the received signal of the nth user in the mth user group, and calculate the SNR received by the first n-1 users in the user group and the SNR received by the nth user in the user group;
  • the signal-to-interference-noise ratio received by the vth user in the mth user group is:
  • the power allocation coefficient of the users be is the power allocation coefficient from the relay node of the m-th user group to the e -th user in the m-th user group, n is the total number of users in the m-th user group, ⁇ m is the transmission signal-to-noise ratio of the mth group of users;
  • the signal-to-noise ratio received by the nth user in the mth user group is
  • b n is the power distribution coefficient from the relay node of the mth group of users to the nth user in the mth group of users.
  • the fourth computing module 306 specifically includes:
  • the sixth calculation unit is configured to be based on the signal-to-interference-noise ratio received by the relay nodes of the first d-1 user group, the signal-to-noise ratio received by the relay nodes of the d-th user group, the user
  • the signal-to-interference-to-noise ratio received by the first n-1 users in the group and the signal-to-noise ratio received by the nth user in the user group, the traversal reachable rate of the mth user group is calculated by Shannon's theorem
  • the seventh calculation unit is used to obtain the ergodic rate and
  • the non-orthogonal multiple access power allocation system of this embodiment takes the high-efficiency and low-complexity power allocation (PA) as the starting point.
  • PA power allocation
  • this embodiment analyzes layered transmission.
  • power allocation is performed according to different regional users, ie, the total QoS requirements of each group of users.
  • the ranking is based on the channel quality of users in the same area, that is, users in the group, taking into account user fairness. Users with poor channel quality are allocated more power, while users with good channel quality are allocated less power.
  • the value range of the PA is reversely derived by QoS, and the value is obtained; in the transmission of the second layer, the PA value is determined by the order of the channel quality.
  • a strong receiving user can be selected in each area to act as a relay node to decode and forward the second-layer transmission information.
  • the hierarchical end-to-end NOMA simplifies the power allocation method of multi-user systems, reduces the total system outage probability, and improves resource utilization efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明公开了一种非正交多址接入功率分配方法及系统。该方法包括:将待分配区域的用户划分为多个用户组,并确定各用户组的中继节点;采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,计算各中继节点接收到的信干噪比和信噪比,并由香农定理计算各中继节点对应的功率分配系数的所属范围;对用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,并计算用户组内前n-1个用户接收到的信干噪比和用户组内第n个用户接收到的信噪比;由香农定理计算系统的遍历速率和;基于遍历速率和,采用穷举法确定用户组内各用户对应的最优功率分配系数。本发明满足了不同的服务质量需求,降低了系统中断概率,能提高访问效率,降低系统复杂度。

Description

一种非正交多址接入功率分配方法及系统
本申请要求于2020年07月29日提交中国专利局、申请号为202010744645.1、发明名称为“一种非正交多址接入功率分配方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别是涉及一种非正交多址接入功率分配方法及系统。
背景技术
随着移动通信的迅速发展,网络的大规模连通需求日益增加,非正交多址接入(non-orthogonalmultiple access,NOMA)作为一种很有前景的技术受到了广泛关注。相对于传统的正交多址接入(orthogonalmultiple access,OMA),NOMA实现了更高的频谱效率,基于功率域实施,通过在发送端采用叠加编码,使得多路用户信号能够在能量域实现复用,最终在接收端通过连续干扰抵消技术分离、解调各路信号,即通过在发射信号中使用功率域共享来容纳更多的用户。为了兼顾用户服务质量需求与公平性,功率分配方案的研究受到了国内外学者的广泛关注。
为了解决无直达径的无线通信,协同中继方案被引入NOMA中,针对不同场景与信道模型,在信道状态信息(CSI)假设下,系统性能研究表明,与传统NOMA相比,协作NOMA的主要优点是能够实现低系统冗余与更好的用户公平性。目前,NOMA功率分配方法存在访问效率低、系统复杂度高的问题。
发明内容
基于此,有必要提供一种高效、低复杂度的非正交多址接入功率分配方法及系统。
为实现上述目的,本发明提供了如下方案:
一种非正交多址接入功率分配方法,包括:
根据用户服务质量需求将待分配区域的用户划分为多个用户组;
根据基站的服务范围或用户接收能力确定各所述用户组的中继节点;所述中继节点为对应的用户组内的用户;
采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,由从基站到各中继节点的信道参数、从基站到各中继节点的功率分配系数和基站发射的叠加信号计算前d-1组用户组的中继节点接收到的信干噪比和第d组用户组的中继节点接收到的信噪比;
基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,通过对用户组内用户的服务质量需求进行逆向分析,由香农定理计算各所述中继节点对应的功率分配系数的所属范围;
对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,并由从中继节点到用户组内的各用户的信道参数、从中继节点到用户组内的各用户的功率分配系数和中继节点解码转发的非正交多址接入信号计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比;
基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算系统的遍历速率和;
基于所述遍历速率和,采用穷举法确定所述用户组内各用户对应的最优功率分配系数;所述中继节点对应的功率分配系数的所属范围和所述用户组内各用户对应的最优功率分配系数用于实现功率分配。
本发明还提供了一种非正交多址接入功率分配系统,包括:
划分模块,用于根据用户服务质量需求将待分配区域的用户划分为多个用户组;
中继节点确定模块,用于根据基站的服务范围或用户接收能力确定各所述用户组的中继节点;所述中继节点为对应的用户组内的用户;
第一计算模块,用于采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,由从基站到各中继节点的信道参数、从基站到各中继节 点的功率分配系数和基站发射的叠加信号计算前d-1组用户组的中继节点接收到的信干噪比和第d组用户组的中继节点接收到的信噪比;
第二计算模块,用于基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,通过对用户组内用户的服务质量需求进行逆向分析,由香农定理计算各所述中继节点对应的功率分配系数的所属范围;
第三计算模块,用于对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,并由从中继节点到用户组内的各用户的信道参数、从中继节点到用户组内的各用户的功率分配系数和中继节点解码转发的非正交多址接入信号计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比;
第四计算模块,用于基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算系统的遍历速率和;
第五计算模块,用于基于所述遍历速率和,采用穷举法确定所述用户组内各用户对应的最优功率分配系数;所述中继节点对应的功率分配系数的所属范围和所述用户组内各用户对应的最优功率分配系数用于实现功率分配。
与现有技术相比,本发明的有益效果是:
本发明提出了一种非正交多址接入功率分配方法及系统,针对不同区域多用户不同服务质量(quality-of-service,QoS)需求,基于QoS需求和信道质量差异进行先分组后分层,提出组间、组内不同层传输过程中的功率分配方法。该方法或系统通过考虑组间、组内用户的性能效率和系统中断概率,一方面尽可能满足组内用户需求,最大化组内总速率,另一方面尽可能降低系统中断概率,最小化组间端到端(device-to-device,D2D)中继节点的中断概率,确定各层传输的功率分配系数的范围,最后通过穷举遍历法获得组内各用户对应的最优功率分配系数。本发明采用分层的NOMA传输和D2D方式相结合,既满足不同的QoS,又降低了中断概率,较大程度的提高了系统资源访问效率,显著降低了功率分配过程 中的计算复杂度。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的非正交多址接入功率分配方法的流程图;
图2为本发明实施例提供的非正交多址接入功率分配的模型图;
图3为本发明实施例提供的非正交多址接入功率分配系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决无直达径的无线通信,协同中继方案被引入NOMA中,针对不同场景与信道模型,在信道状态信息(CSI)假设下,系统性能研究表明,与传统NOMA相比,协作NOMA的主要优点是能够实现低系统冗余与更好的用户公平性。为了能够在多用户间实现更有效地访问,D2D辅助协作中继通信已经成为一种新的尝试。通过将端到端(D2D)引入NOMA,可以实现更高的频谱效率和更大的系统容量。然而,功率分配(power allocation,PA)尤其是在多用户场景中是困难和复杂的。目前,一些高级算法的研究与优化可以解决部分问题,但普遍需要大量的计算才能获得最优解,增加了系统的复杂性。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明实施例提供的非正交多址接入功率分配方法的流程图。
参见图1,本实施例的非正交多址接入功率分配方法,包括:
步骤101:根据用户服务质量需求将待分配区域的用户划分为多个用户组。
具体的,采集将待分配区域的用户信息,根据服务质量需求划分不同用户组。用户数量多对高质量服务的需求较多,相应的目标数据率或阈值也较高,定义为第1用户组;相反,用户数量少的服务质量需求相对较低,其目标数据速率也较低,定义为第2用户组。如此,可以根据待分配区域的用户的数量或服务质量阈值,确定两个组。
步骤102:根据基站的服务范围或用户接收能力确定各所述用户组的中继节点。所述中继节点为对应的用户组内的用户。
具体的,所述中继节点为对应的用户组内具有最佳接收能力的用户。在划分好的用户组内的用户中,根据基站有效服务范围或者选择具有最佳接收能力的组内部用户作为“中继节点”,以解码转发来自基站的组内发射信号,中继节点如图2中的D 1和D 2所示。本实施例采用分层传输,第一层是从基站传输到中继节点,第二层是由中继节点传输至组内各用户。
步骤103:采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,由从基站到各中继节点的信道参数、从基站到各中继节点的功率分配系数和基站发射的叠加信号计算前d-1组用户组的中继节点接收到的信干噪比和第d组用户组的中继节点接收到的信噪比。其中,解码规则可以采用连续干扰抵消技术(SIC)。
步骤103,具体包括:
1)确定基站发射的叠加信号;所述叠加信号为
Figure PCTCN2020111674-appb-000001
其中,a 1为从基站到第1组用户组的中继节点的功率分配系数,a 2为从基站到第2组用户组的中继节点的功率分配系数,a 1+a 2=1,P t为基站的发射功率,A为第1组用户组的发射信号,B为第2组用户组的发射信号。
2)基于所述叠加信号确定第m组用户组的中继节点的接收信号
Figure PCTCN2020111674-appb-000002
其中,
Figure PCTCN2020111674-appb-000003
为从基站到第m组用户组的中继节点的信道参数,
Figure PCTCN2020111674-appb-000004
为第一层非正交多址接入传输过程中的加性高斯白噪声(AWGN),
Figure PCTCN2020111674-appb-000005
的均值为0,方差为σ 2,m∈{1,2}。
3)基于前d-1组用户组的中继节点的接收信号,采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,将信号B作为噪声来解码A,并利用SIC获取信号B,计算前d-1组用户组的中继节点接收到的信干噪比(SINR),其中,第m组用户组的中继节点接收到的信干噪比
Figure PCTCN2020111674-appb-000006
其中,ρ为基站发射的信噪比,为了分析方便,定义
Figure PCTCN2020111674-appb-000007
σ 2
Figure PCTCN2020111674-appb-000008
的方差。
4)基于第d组用户组的中继节点的接收信号,采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,计算第d组用户组的中继节点接收到的信噪比(SNR)
Figure PCTCN2020111674-appb-000009
其中,
Figure PCTCN2020111674-appb-000010
为从基站到第d组用户组的中继节点的信道参数。
步骤104:基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,通过对用户组内用户的服务质量需求进行逆向分析,由香农定理计算各所述中继节点对应的功率分配系数的所属范围。
步骤104,具体包括:
1)第一层功率分配系数与目标数据率有关,判断
Figure PCTCN2020111674-appb-000011
是否成立,从而确定先进行解码的信号。不失一般性,根据采集到的数据可知,第1用户组的用户数与QoS需求高于第二组用户组,可以得到a 1≥a 2。根据上述步骤中的第一层功率分配准则,功率分配系数a 1和a 2可以从每一用户组的预先判断的数据率逆向推导。假设第1用户组QoS需求对应的速率为R 1bps/Hz,第2用户组的速率为R 2bps/Hz。这样在步骤103的基础上,基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,由香农定理(Shannon)确定第一表达式和第二表达式。
所述第一表达式为
Figure PCTCN2020111674-appb-000012
所述第二表达式为
Figure PCTCN2020111674-appb-000013
其中,
Figure PCTCN2020111674-appb-000014
为第1组用户组的中继节点接收到的信干噪比,R 1为第1组用户组用户服务质量需求对应的速率,
Figure PCTCN2020111674-appb-000015
为第2组用户组的中继节点接收到的信噪比,R 2为第2组用户组用户服务质量需求对应的速率。
2)基于所述第一表达式和所述第二表达式计算第1组用户组的中继节点对应的功率分配系数的所属范围,即第1组用户组的中继节点对应的功率分配系数的上下界
Figure PCTCN2020111674-appb-000016
其中,
Figure PCTCN2020111674-appb-000017
为从基站到第1组用户组的中继节点的信道参数,
Figure PCTCN2020111674-appb-000018
为从基站到第2组用户组的中继节点的信道参数,ρ为基站发射的信噪比,
Figure PCTCN2020111674-appb-000019
σ 2
Figure PCTCN2020111674-appb-000020
的方差,
Figure PCTCN2020111674-appb-000021
为第一层非正交多址接入传输过程中的加性高斯白噪声。
3)基于所述第一表达式和所述第二表达式计算第2组用户组的中继节点对应的功率分配系数的所属范围,即第2组用户组的中继节点对应的功率分配系数的上下界
Figure PCTCN2020111674-appb-000022
如此,基于第一层NOMA的分组用户数量与QoS需求的逆向功率分配方法,既保证了每组QoS需求,又满足了中继节点约束条件。
在实际应用中,按照步骤104的PA准则可以进行后续分析和数值模拟。尤其在数值分析中,判断a 1和a 2的取值是否满足θ 1和θ 2的量程要求,只有在满足量程要求后,才可以继续第二层的传输分析。
步骤105:对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,并由从中继节点到用户组内的各用户的信道参数、从中继节点到用户组内的各用户的功率分配系数和中继节点解码转发的非正交多址接入信号计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比。
步骤105,具体包括:
1)在取值满足步骤104的第一层功率分配系数的所属范围后,考虑第二层NOMA传输,即由中继节点至组内各用户。该阶段,在第m个用户组的中继节点处提出一种端到端(D2D)策略,即,所选择的最近或者最佳接收用户将接收到的叠加信号
Figure PCTCN2020111674-appb-000023
组内信息解码,然后转发重建的新NOMA信号
Figure PCTCN2020111674-appb-000024
至组内用户。
对所述用户组内的用户按照信道质量进行排序,得到各所述用户组对应的序列表;不失一般性,假设第m组用户组对应的序列表为
Figure PCTCN2020111674-appb-000025
Figure PCTCN2020111674-appb-000026
为从第m组用户组的中继节点到第m组用户组内的第1个用户的信道参数,
Figure PCTCN2020111674-appb-000027
为从第m组用户组的中继节点到第m组用户组内的第n个用户的信道参数,n为第m组用户组内的用户总数。
NOMA的使用意味着对于D 1,有b 1≥...b i
Figure PCTCN2020111674-appb-000028
对于D 2,有c 1≥...c j
Figure PCTCN2020111674-appb-000029
其中,b n、c n代表新的功率分配系数,此为第二层功率分配方案。
2)确定第m组用户组的中继节点的发射信号;m为用户组的组号,m∈{1,2},其中,第1组用户组的中继节点的发射信号
Figure PCTCN2020111674-appb-000030
第2组用户组的中继节点的发射信号
Figure PCTCN2020111674-appb-000031
b 1为从第1组用户组的中继节点到第1组用户组内的第1个用户的功率分配系数,b 2为从第1组用户组的中继节点到第1 组用户组内的第i个用户的功率分配系数,i为第1组用户组内的用户总数,x 1为第1组用户组的内第1个用户对应的发射信号,x i为第1组用户组的内第i个用户对应发射信号,
Figure PCTCN2020111674-appb-000032
为第1组用户组的传输功率,
Figure PCTCN2020111674-appb-000033
a 1为从基站到第1组用户组的中继节点的功率分配系数,P t为基站的发射功率;c 1为从第2组用户组的中继节点到第2组用户组内的第1个用户的功率分配系数,b j为从第2组用户组的中继节点到第2组用户组内的第j个用户的功率分配系数,j为第2组用户组内的用户总数,z 1为第2组用户组的内第1个用户对应发射信号,z j为第2组用户组的内第j个用户对应的发射信号,
Figure PCTCN2020111674-appb-000034
为第2组用户组的传输功率,
Figure PCTCN2020111674-appb-000035
a 2为从基站到第2组用户组的中继节点的功率分配系数。
3)基于所述第m组用户组的中继节点的发射信号确定第m组用户组内的第n个用户的接收信号
Figure PCTCN2020111674-appb-000036
其中,
Figure PCTCN2020111674-appb-000037
为第m组用户组的中继节点的发射信号,
Figure PCTCN2020111674-appb-000038
为第二层非正交多址接入传输过程中的加性高斯白噪声,
Figure PCTCN2020111674-appb-000039
的均值为0,方差为σ 2
4)基于第m组用户组内的第n个用户的接收信号,对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比。
第m组用户组内第v个用户接收到的信干噪比为
Figure PCTCN2020111674-appb-000040
Figure PCTCN2020111674-appb-000041
为从第m组用户组的中继节点到第m组用户组内的第v个用户 的信道参数,b m为从第m组用户组的中继节点到第m组用户组内的第v个用户的功率分配系数,b e为从第m组用户组的中继节点到第m组用户组内的第e个用户的功率分配系数,n为第m组用户组内的用户总数,ξ m为第m组用户组的传输信噪比。
其中,第m组用户组内第n个用户接收到的信噪比为
Figure PCTCN2020111674-appb-000042
b n为从第m组用户组的中继节点到第m组用户组内的第n个用户的功率分配系数。
本实施例中m∈{1,2},为了实现信号的接收和解码,在第1组用户组中,用户1到用户i-1将接收到的信息进行信干噪比解码,而用户i将接收到的信息进行信噪比解码,x k(1≤k≤i-1)对应的信干噪比和x i的信噪比分别为
Figure PCTCN2020111674-appb-000043
Figure PCTCN2020111674-appb-000044
其中,
Figure PCTCN2020111674-appb-000045
第2组用户组可以以同样的方式获得,因此,对应的z l(1≤l≤j-1)有效信干噪比与z j对应的信噪比可以表示为:
Figure PCTCN2020111674-appb-000046
Figure PCTCN2020111674-appb-000047
其中,
Figure PCTCN2020111674-appb-000048
步骤106:基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算系统的遍历速率和。
步骤106,具体包括:
1)基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算第m组用户组的遍历可达速率
Figure PCTCN2020111674-appb-000049
其中,
Figure PCTCN2020111674-appb-000050
为第m组用户组内的第τ个用户的遍历可达速率,
Figure PCTCN2020111674-appb-000051
Figure PCTCN2020111674-appb-000052
为第m组用户组的中继节点接收到的信干噪比或第m组用户组的中继节点接收到的信噪比,
Figure PCTCN2020111674-appb-000053
为第m组用户组内第τ个用户接收到的信干噪比。
2)对于两组用户组,由组内用户的相关速率表达式,利用互补累积分布函数(CCDF)和概率密度函数(PDF),可以得到两组内所有用户的遍历可达速率,其中,第1组用户组的遍历可达速率为
Figure PCTCN2020111674-appb-000054
第2组用户组的遍历可达速率
Figure PCTCN2020111674-appb-000055
3)由所述遍历可达速率得到系统的遍历速率和
Figure PCTCN2020111674-appb-000056
步骤107:基于所述遍历速率和,采用穷举法确定所述用户组内各用 户对应的最优功率分配系数;所述中继节点对应的功率分配系数的所属范围和所述用户组内各用户对应的最优功率分配系数用于实现功率分配。
遍历b n、c n,通过穷举符合条件功率分配系数的方法,获得C sum最大时对应的功率分配系数,得到最优功率分配系数,最优功率分配系数即为系统容量满足需求的最优功率系数组合。至此,系统的一个性能指标可达速率和就得以解决了。
下面对上述非正交多址接入功率分配方法进行性能分析,以验证该方法的有效性。
在第一层与第二层功率分配系数确定的基础上,考虑系统的另一个性能指标,中断概率。根据用户所需的QoS,每个用户都有一个预定的目标数据。当链路容量不能满足所需的用户速率时,将发生通信中断。分析过程,可根据第1组用户组中的用户k的目标率R 1k,预定义目标速率阈值
Figure PCTCN2020111674-appb-000057
计算中断概率O 1。对于第1组用户组中的用户l,也可以采用类似的分析方法得到中断概率O 2,其中目标速率阈值设为R 2l。计算过程如下所示:
Figure PCTCN2020111674-appb-000058
为简化计算,进一步设
Figure PCTCN2020111674-appb-000059
G 1k的精确表达式可以描述为
Figure PCTCN2020111674-appb-000060
在上述功率分配系数基础上,经数学分析与计算,可得第1组用户组的中断概率的闭式表达式
Figure PCTCN2020111674-appb-000061
类似的分析,相应地,第2组用户组的中断概率的闭式表达式
Figure PCTCN2020111674-appb-000062
最后,分情况讨论各组与系统的中断概率,即,在三种情况下分别采用上述方法对第1组用户组和第2组用户组的中断概率性能进行数值分析。仿真结果表明,采用上述方法在中断概率性能上大约提升了9dB,体现了上述非正交多址接入功率分配方法的性能优势,从而提升了访问效率,降低了计算复杂度,实现了最佳资源效率。
本发明还提供了一种非正交多址接入功率分配系统,图3为本发明实施例提供的非正交多址接入功率分配系统的结构示意图。
参见图3,本实施例的非正交多址接入功率分配系统,包括:
划分模块301,用于根据用户服务质量需求将待分配区域的用户划分为多个用户组。
中继节点确定模块302,用于根据基站的服务范围或用户接收能力确定各所述用户组的中继节点;所述中继节点为对应的用户组内的用户。
第一计算模块303,用于采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,由从基站到各中继节点的信道参数、从基站到各中继节点的功率分配系数和基站发射的叠加信号计算前d-1组用户组的中继节点接收到的信干噪比和第d组用户组的中继节点接收到的信噪比。
第二计算模块304,用于基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,通过对用户组内用户的服务质量需求进行逆向分析,由香农定理计算各所述中继节点对应的功率分配系数的所属范围。
第三计算模块305,用于对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,并由从中继节点到用户组内的各用户的信道参数、从中继节点到用户组内的各用户的功率分配系数和中继节点解码转发的非正交多址接入信号计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比。
第四计算模块306,用于基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算系统的遍历速率和。
第五计算模块307,用于基于所述遍历速率和,采用穷举法确定所述用户组内各用户对应的最优功率分配系数;所述中继节点对应的功率分配系数的所属范围和所述用户组内各用户对应的最优功率分配系数用于实现功率分配。
作为一种可选的实施方式,所述第一计算模块303,具体包括:
基站发射信号确定单元,用于确定基站发射的叠加信号;所述叠加信号为
Figure PCTCN2020111674-appb-000063
其中,a 1为从基站到第1组用户组的中继节点的功率分配系数,a 2为从基站到第2组用户组的中继节点的功率分配系数,a 1+a 2=1,P t为基站的发射功率,A为第1组用户组的发射信号,B为第2组用户组的发射信号。
中继节点接收信号确定单元,用于基于所述叠加信号确定第m组用户组的中继节点的接收信号
Figure PCTCN2020111674-appb-000064
其中,
Figure PCTCN2020111674-appb-000065
为从基站到第m组用户组的中继节点的信道参数,
Figure PCTCN2020111674-appb-000066
为第一层非正交多址接入传输过程中的加性高斯白噪声,m∈{1,2}。
第一计算单元,用于基于前d-1组用户组的中继节点的接收信号,采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,计算前d-1组用户组的中继节点接收到的信干噪比;其中,第m组用户组的中继节点接收到的信干噪比为
Figure PCTCN2020111674-appb-000067
其中,ρ为基站发射的信噪比,
Figure PCTCN2020111674-appb-000068
σ 2
Figure PCTCN2020111674-appb-000069
的方差。
第二计算单元,用于基于第d组用户组的中继节点的接收信号,采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,计算第d 组用户组的中继节点接收到的信噪比
Figure PCTCN2020111674-appb-000070
其中,
Figure PCTCN2020111674-appb-000071
为从基站到第d组用户组的中继节点的信道参数。
作为一种可选的实施方式,所述第二计算模块304,具体包括:
表达式确定单元,用于基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,由香农定理确定第一表达式和第二表达式;用户组的组号为m,m∈{1,2};所述第一表达式为
Figure PCTCN2020111674-appb-000072
所述第二表达式为
Figure PCTCN2020111674-appb-000073
其中,
Figure PCTCN2020111674-appb-000074
为第1组用户组的中继节点接收到的信干噪比,R 1为第1组用户组用户服务质量需求对应的速率,
Figure PCTCN2020111674-appb-000075
为第2组用户组的中继节点接收到的信噪比,R 2为第2组用户组用户服务质量需求对应的速率。
第三计算单元,用于基于所述第一表达式和所述第二表达式计算第1组用户组的中继节点对应的功率分配系数的所属范围
Figure PCTCN2020111674-appb-000076
其中,
Figure PCTCN2020111674-appb-000077
为从基站到第1组用户组的中继节点的信道参数,
Figure PCTCN2020111674-appb-000078
为从基站到第2组用户组的中继节点的信道参数,ρ为基站发射的信噪比,
Figure PCTCN2020111674-appb-000079
σ 2
Figure PCTCN2020111674-appb-000080
的方差,
Figure PCTCN2020111674-appb-000081
为第一层非正交多址接入传输过程中的加性高斯白噪声。
第四计算单元,用于基于所述第一表达式和所述第二表达式计算第2组用户组的中继节点对应的功率分配系数的所属范围
Figure PCTCN2020111674-appb-000082
作为一种可选的实施方式,所述第三计算模块305,具体包括:
排序单元,用于对所述用户组内的用户按照信道质量进行排序,得到 各所述用户组对应的序列表;其中,第m组用户组对应的序列表为
Figure PCTCN2020111674-appb-000083
Figure PCTCN2020111674-appb-000084
为从第m组用户组的中继节点到第m组用户组内的第1个用户的信道参数,
Figure PCTCN2020111674-appb-000085
为从第m组用户组的中继节点到第m组用户组内的第n个用户的信道参数,n为第m组用户组内的用户总数。
中继节点发射信号确定单元,用于确定第m组用户组的中继节点的发射信号;m为用户组的组号,m∈{1,2},其中,第1组用户组的中继节点的发射信号
Figure PCTCN2020111674-appb-000086
第2组用户组的中继节点的发射信号
Figure PCTCN2020111674-appb-000087
b 1为从第1组用户组的中继节点到第1组用户组内的第1个用户的功率分配系数,b 2为从第1组用户组的中继节点到第1组用户组内的第i个用户的功率分配系数,i为第1组用户组内的用户总数,x 1为第1组用户组的内第1个用户对应的发射信号,x i为第1组用户组的内第i个用户对应发射信号,
Figure PCTCN2020111674-appb-000088
为第1组用户组的传输功率,
Figure PCTCN2020111674-appb-000089
a 1为从基站到第1组用户组的中继节点的功率分配系数,P t为基站的发射功率;c 1为从第2组用户组的中继节点到第2组用户组内的第1个用户的功率分配系数,b j为从第2组用户组的中继节点到第2组用户组内的第j个用户的功率分配系数,j为第2组用户组内的用户总数,z 1为第2组用户组的内第1个用户对应发射信号,z j为第2组用户组的内第j个用户对应的发射信号,
Figure PCTCN2020111674-appb-000090
为第2组用户组的传输功率,
Figure PCTCN2020111674-appb-000091
a 2为从基站到第2组用户组的中继节点的功率分配系数。
用户接收信号确定单元,用于基于所述第m组用户组的中继节点的发射信号确定第m组用户组内的第n个用户的接收信号
Figure PCTCN2020111674-appb-000092
其中,
Figure PCTCN2020111674-appb-000093
为第m组用户组的中继节点的发射信号,
Figure PCTCN2020111674-appb-000094
为第二层 非正交多址接入传输过程中的加性高斯白噪声。
第五计算单元,用于基于第m组用户组内的第n个用户的接收信号,对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比;
其中,第m组用户组内第v个用户接收到的信干噪比为
Figure PCTCN2020111674-appb-000095
Figure PCTCN2020111674-appb-000096
为从第m组用户组的中继节点到第m组用户组内的第v个用户的信道参数,b m为从第m组用户组的中继节点到第m组用户组内的第v个用户的功率分配系数,b e为从第m组用户组的中继节点到第m组用户组内的第e个用户的功率分配系数,n为第m组用户组内的用户总数,ξ m为第m组用户组的传输信噪比;
其中,第m组用户组内第n个用户接收到的信噪比为
Figure PCTCN2020111674-appb-000097
b n为从第m组用户组的中继节点到第m组用户组内的第n个用户的功率分配系数。
作为一种可选的实施方式,所述第四计算模块306,具体包括:
第六计算单元,用于基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算第m组用户组的遍历可达速率
Figure PCTCN2020111674-appb-000098
其中,
Figure PCTCN2020111674-appb-000099
为第m组用户组内的第τ个用户的遍历可达速率,
Figure PCTCN2020111674-appb-000100
Figure PCTCN2020111674-appb-000101
为第m组用户组的中继节点接收到的信干噪比或第m组用户组的中继节点接收到的信噪比,
Figure PCTCN2020111674-appb-000102
为第m组用户组内第τ个用户接收到的信干噪比。
第七计算单元,用于由所述遍历可达速率得到系统的遍历速率和
Figure PCTCN2020111674-appb-000103
其中,
Figure PCTCN2020111674-appb-000104
为第1组用户组的遍历可达速率,
Figure PCTCN2020111674-appb-000105
为第2组用户组的遍历可达速率。
本实施例的非正交多址接入功率分配系统,以高效、低复杂度的功率分配(PA)为出发点。对于不同区域的多个用户有不同的服务质量需求,本实施例分析分层传输。第一层,根据不同区域用户,即,各组用户总QoS需求来执行功率分配。第二层,根据同一区域内用户,即,组内用户的信道质量进行排序,兼顾用户公平性,信道质量差的用户分配的功率多,相反,信道质量好的用户分配功率少。第一层的传输中,是由QoS反向推导PA的值范围,并进行取值;第二层的传输中,则由信道质量好差的排序来决定PA值。此外,可以在区域中各自选择一个强的接收用户充当中继节点,进行第二层传输信息的解码转发。分层端到端的NOMA简化了多用户系统功率分配方法,降低了系统总的中断概率,提高了资源利用效率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种非正交多址接入功率分配方法,其特征在于,包括:
    根据用户服务质量需求将待分配区域的用户划分为多个用户组;
    根据基站的服务范围或用户接收能力确定各所述用户组的中继节点;所述中继节点为对应的用户组内的用户;
    采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,由从基站到各中继节点的信道参数、从基站到各中继节点的功率分配系数和基站发射的叠加信号计算前d-1组用户组的中继节点接收到的信干噪比和第d组用户组的中继节点接收到的信噪比;
    基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,通过对用户组内用户的服务质量需求进行逆向分析,由香农定理计算各所述中继节点对应的功率分配系数的所属范围;
    对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,并由从中继节点到用户组内的各用户的信道参数、从中继节点到用户组内的各用户的功率分配系数和中继节点解码转发的非正交多址接入信号计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比;
    基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算系统的遍历速率和;
    基于所述遍历速率和,采用穷举法确定所述用户组内各用户对应的最优功率分配系数;所述中继节点对应的功率分配系数的所属范围和所述用户组内各用户对应的最优功率分配系数用于实现功率分配。
  2. 根据权利要求1所述的一种非正交多址接入功率分配方法,其特征在于,所述采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,由从基站到各中继节点的信道参数、从基站到各中继节点的功率分配系数和基站发射的叠加信号计算前d-1组用户组的中继节点接收到的信干噪比和第d组用户组的中继节点接收到的信噪比,具体包括:
    确定基站发射的叠加信号;所述叠加信号为
    Figure PCTCN2020111674-appb-100001
    其中, a 1为从基站到第1组用户组的中继节点的功率分配系数,a 2为从基站到第2组用户组的中继节点的功率分配系数,a 1+a 2=1,P t为基站的发射功率,A为第1组用户组的发射信号,B为第2组用户组的发射信号;
    基于所述叠加信号确定第m组用户组的中继节点的接收信号
    Figure PCTCN2020111674-appb-100002
    其中,
    Figure PCTCN2020111674-appb-100003
    为从基站到第m组用户组的中继节点的信道参数,
    Figure PCTCN2020111674-appb-100004
    为第一层非正交多址接入传输过程中的加性高斯白噪声,m∈{1,2};
    基于前d-1组用户组的中继节点的接收信号,采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,计算前d-1组用户组的中继节点接收到的信干噪比;其中,第m组用户组的中继节点接收到的信干噪比为
    Figure PCTCN2020111674-appb-100005
    其中,ρ为基站发射的信噪比,
    Figure PCTCN2020111674-appb-100006
    σ 2
    Figure PCTCN2020111674-appb-100007
    的方差;
    基于第d组用户组的中继节点的接收信号,采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,计算第d组用户组的中继节点接收到的信噪比
    Figure PCTCN2020111674-appb-100008
    其中,
    Figure PCTCN2020111674-appb-100009
    为从基站到第d组用户组的中继节点的信道参数。
  3. 根据权利要求1所述的一种非正交多址接入功率分配方法,其特征在于,所述基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,通过对用户组内用户的服务质量需求进行逆向分析,由香农定理计算各所述中继节点对应的功率分配系数的所属范围,具体包括:
    基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,由香农定理确定第一表达式和第二表达式;用户组的组号为m,m∈{1,2};所述第一表达式为
    Figure PCTCN2020111674-appb-100010
    所述第二表达式为
    Figure PCTCN2020111674-appb-100011
    其中,
    Figure PCTCN2020111674-appb-100012
    为第1组用户组的中继节点接收到的信干噪比,R 1为第1组用户组用户服务质量需求对应的速率,
    Figure PCTCN2020111674-appb-100013
    为第2组用户组的中继节点接收到的信噪比,R 2为第2组用户组用户服务质量需求对应的速率;
    基于所述第一表达式和所述第二表达式计算第1组用户组的中继节点对应的功率分配系数的所属范围
    Figure PCTCN2020111674-appb-100014
    其中,
    Figure PCTCN2020111674-appb-100015
    为从基站到第1组用户组的中继节点的信道参数,
    Figure PCTCN2020111674-appb-100016
    为从基站到第2组用户组的中继节点的信道参数,ρ为基站发射的信噪比,
    Figure PCTCN2020111674-appb-100017
    σ 2
    Figure PCTCN2020111674-appb-100018
    的方差,
    Figure PCTCN2020111674-appb-100019
    为第一层非正交多址接入传输过程中的加性高斯白噪声;
    基于所述第一表达式和所述第二表达式计算第2组用户组的中继节点对应的功率分配系数的所属范围
    Figure PCTCN2020111674-appb-100020
  4. 根据权利要求1所述的一种非正交多址接入功率分配方法,其特征在于,所述对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,并由从中继节点到用户组内的各用户的信道参数、从中继节点到用户组内的各用户的功率分配系数和中继节点解码转发的非正交多址接入信号计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,具体包括:
    对所述用户组内的用户按照信道质量进行排序,得到各所述用户组对应的序列表;其中,第m组用户组对应的序列表为
    Figure PCTCN2020111674-appb-100021
    为从第m组用户组的中继节点到第m组用户组内的第1个用户的信道参 数,
    Figure PCTCN2020111674-appb-100022
    为从第m组用户组的中继节点到第m组用户组内的第n个用户的信道参数,n为第m组用户组内的用户总数;
    确定第m组用户组的中继节点的发射信号;m为用户组的组号,m∈{1,2},其中,第1组用户组的中继节点的发射信号
    Figure PCTCN2020111674-appb-100023
    第2组用户组的中继节点的发射信号
    Figure PCTCN2020111674-appb-100024
    b 1为从第1组用户组的中继节点到第1组用户组内的第1个用户的功率分配系数,b 2为从第1组用户组的中继节点到第1组用户组内的第i个用户的功率分配系数,i为第1组用户组内的用户总数,x 1为第1组用户组的内第1个用户对应的发射信号,x i为第1组用户组的内第i个用户对应发射信号,
    Figure PCTCN2020111674-appb-100025
    为第1组用户组的传输功率,
    Figure PCTCN2020111674-appb-100026
    a 1为从基站到第1组用户组的中继节点的功率分配系数,P t为基站的发射功率;c 1为从第2组用户组的中继节点到第2组用户组内的第1个用户的功率分配系数,b j为从第2组用户组的中继节点到第2组用户组内的第j个用户的功率分配系数,j为第2组用户组内的用户总数,z 1为第2组用户组的内第1个用户对应发射信号,z j为第2组用户组的内第j个用户对应的发射信号,
    Figure PCTCN2020111674-appb-100027
    为第2组用户组的传输功率,
    Figure PCTCN2020111674-appb-100028
    a 2为从基站到第2组用户组的中继节点的功率分配系数;
    基于所述第m组用户组的中继节点的发射信号确定第m组用户组内的第n个用户的接收信号
    Figure PCTCN2020111674-appb-100029
    其中,
    Figure PCTCN2020111674-appb-100030
    为第m组用户组的中继节点的发射信号,
    Figure PCTCN2020111674-appb-100031
    为第二层非正交多址接入传输过程中的加性高斯白噪声;
    基于第m组用户组内的第n个用户的接收信号,对所述用户组内的 各用户接收到的信息进行信干噪比解码和信噪比解码,计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比;
    其中,第m组用户组内第v个用户接收到的信干噪比为
    Figure PCTCN2020111674-appb-100032
    Figure PCTCN2020111674-appb-100033
    为从第m组用户组的中继节点到第m组用户组内的第v个用户的信道参数,b m为从第m组用户组的中继节点到第m组用户组内的第v个用户的功率分配系数,b e为从第m组用户组的中继节点到第m组用户组内的第e个用户的功率分配系数,n为第m组用户组内的用户总数,ξ m为第m组用户组的传输信噪比;
    其中,第m组用户组内第n个用户接收到的信噪比为
    Figure PCTCN2020111674-appb-100034
    b n为从第m组用户组的中继节点到第m组用户组内的第n个用户的功率分配系数。
  5. 根据权利要求1所述的一种非正交多址接入功率分配方法,其特征在于,所述基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算系统的遍历速率和,具体包括:
    基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算第m组用户组的遍历可达速率
    Figure PCTCN2020111674-appb-100035
    其中,
    Figure PCTCN2020111674-appb-100036
    为第m组用户组内的第τ个用户的遍历可达速率,
    Figure PCTCN2020111674-appb-100037
    为第m组用户组的中继节点接收到的信干噪比或第m组用户组的中继节点接收到的信噪比,
    Figure PCTCN2020111674-appb-100038
    为第m组用户组内第τ个用户接收到的信干噪比;
    由所述遍历可达速率得到系统的遍历速率和
    Figure PCTCN2020111674-appb-100039
    其中,
    Figure PCTCN2020111674-appb-100040
    为第1组用户组的遍历可达速率,
    Figure PCTCN2020111674-appb-100041
    为第2组用户组的遍历可达速率。
  6. 一种非正交多址接入功率分配系统,其特征在于,包括:
    划分模块,用于根据用户服务质量需求将待分配区域的用户划分为多个用户组;
    中继节点确定模块,用于根据基站的服务范围或用户接收能力确定各所述用户组的中继节点;所述中继节点为对应的用户组内的用户;
    第一计算模块,用于采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,由从基站到各中继节点的信道参数、从基站到各中继节点的功率分配系数和基站发射的叠加信号计算前d-1组用户组的中继节点接收到的信干噪比和第d组用户组的中继节点接收到的信噪比;
    第二计算模块,用于基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,通过对用户组内用户的服务质量需求进行逆向分析,由香农定理计算各所述中继节点对应的功率分配系数的所属范围;
    第三计算模块,用于对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,并由从中继节点到用户组内的各用户的信道参数、从中继节点到用户组内的各用户的功率分配系数和中继节点解码转发的非正交多址接入信号计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比;
    第四计算模块,用于基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算系统的遍历速率和;
    第五计算模块,用于基于所述遍历速率和,采用穷举法确定所述用户组内各用户对应的最优功率分配系数;所述中继节点对应的功率分配系数的所属范围和所述用户组内各用户对应的最优功率分配系数用于实现功率分配。
  7. 根据权利要求6所述的一种非正交多址接入功率分配系统,其特征在于,所述第一计算模块,具体包括:
    基站发射信号确定单元,用于确定基站发射的叠加信号;所述叠加信号为
    Figure PCTCN2020111674-appb-100042
    其中,a 1为从基站到第1组用户组的中继节点的功率分配系数,a 2为从基站到第2组用户组的中继节点的功率分配系数,a 1+a 2=1,P t为基站的发射功率,A为第1组用户组的发射信号,B为第2组用户组的发射信号;
    中继节点接收信号确定单元,用于基于所述叠加信号确定第m组用户组的中继节点的接收信号
    Figure PCTCN2020111674-appb-100043
    其中,
    Figure PCTCN2020111674-appb-100044
    为从基站到第m组用户组的中继节点的信道参数,
    Figure PCTCN2020111674-appb-100045
    为第一层非正交多址接入传输过程中的加性高斯白噪声,m∈{1,2};
    第一计算单元,用于基于前d-1组用户组的中继节点的接收信号,采用非正交多址接入技术,遵循非正交多址接入技术的解码规则,计算前d-1组用户组的中继节点接收到的信干噪比;其中,第m组用户组的中继节点接收到的信干噪比为
    Figure PCTCN2020111674-appb-100046
    其中,ρ为基站发射的信噪比,
    Figure PCTCN2020111674-appb-100047
    σ 2
    Figure PCTCN2020111674-appb-100048
    的方差;
    第二计算单元,用于基于第d组用户组的中继节点的接收信号,采用 非正交多址接入技术,遵循非正交多址接入技术的解码规则,计算第d组用户组的中继节点接收到的信噪比
    Figure PCTCN2020111674-appb-100049
    其中,
    Figure PCTCN2020111674-appb-100050
    为从基站到第d组用户组的中继节点的信道参数。
  8. 根据权利要求6所述的一种非正交多址接入功率分配系统,其特征在于,所述第二计算模块,具体包括:
    表达式确定单元,用于基于所述前d-1组用户组的中继节点接收到的信干噪比或所述第d组用户组的中继节点接收到的信噪比,由香农定理确定第一表达式和第二表达式;用户组的组号为m,m∈{1,2};所述第一表达式为
    Figure PCTCN2020111674-appb-100051
    所述第二表达式为
    Figure PCTCN2020111674-appb-100052
    其中,
    Figure PCTCN2020111674-appb-100053
    为第1组用户组的中继节点接收到的信干噪比,R 1为第1组用户组用户服务质量需求对应的速率,
    Figure PCTCN2020111674-appb-100054
    为第2组用户组的中继节点接收到的信噪比,R 2为第2组用户组用户服务质量需求对应的速率;
    第三计算单元,用于基于所述第一表达式和所述第二表达式计算第1组用户组的中继节点对应的功率分配系数的所属范围
    Figure PCTCN2020111674-appb-100055
    其中,
    Figure PCTCN2020111674-appb-100056
    为从基站到第1组用户组的中继节点的信道参数,
    Figure PCTCN2020111674-appb-100057
    为从基站到第2组用户组的中继节点的信道参数,ρ为基站发射的信噪比,
    Figure PCTCN2020111674-appb-100058
    σ 2
    Figure PCTCN2020111674-appb-100059
    的方差,
    Figure PCTCN2020111674-appb-100060
    为第一层非正交多址接入传输过程中的加性高斯白噪声;
    第四计算单元,用于基于所述第一表达式和所述第二表达式计算第2组用户组的中继节点对应的功率分配系数的所属范围
    Figure PCTCN2020111674-appb-100061
  9. 根据权利要求6所述的一种非正交多址接入功率分配系统,其特 征在于,所述第三计算模块,具体包括:
    排序单元,用于对所述用户组内的用户按照信道质量进行排序,得到各所述用户组对应的序列表;其中,第m组用户组对应的序列表为
    Figure PCTCN2020111674-appb-100062
    为从第m组用户组的中继节点到第m组用户组内的第1个用户的信道参数,
    Figure PCTCN2020111674-appb-100063
    为从第m组用户组的中继节点到第m组用户组内的第n个用户的信道参数,n为第m组用户组内的用户总数;
    中继节点发射信号确定单元,用于确定第m组用户组的中继节点的发射信号;m为用户组的组号,m∈{1,2},其中,第1组用户组的中继节点的发射信号
    Figure PCTCN2020111674-appb-100064
    第2组用户组的中继节点的发射信号
    Figure PCTCN2020111674-appb-100065
    b 1为从第1组用户组的中继节点到第1组用户组内的第1个用户的功率分配系数,b 2为从第1组用户组的中继节点到第1组用户组内的第i个用户的功率分配系数,i为第1组用户组内的用户总数,x 1为第1组用户组的内第1个用户对应的发射信号,x i为第1组用户组的内第i个用户对应发射信号,
    Figure PCTCN2020111674-appb-100066
    为第1组用户组的传输功率,
    Figure PCTCN2020111674-appb-100067
    a 1为从基站到第1组用户组的中继节点的功率分配系数,P t为基站的发射功率;c 1为从第2组用户组的中继节点到第2组用户组内的第1个用户的功率分配系数,b j为从第2组用户组的中继节点到第2组用户组内的第j个用户的功率分配系数,j为第2组用户组内的用户总数,z 1为第2组用户组的内第1个用户对应发射信号,z j为第2组用户组的内第j个用户对应的发射信号,
    Figure PCTCN2020111674-appb-100068
    为第2组用户组的传输功率,
    Figure PCTCN2020111674-appb-100069
    a 2为从基站到第2组用户组的中继节点的功率分配系数;
    用户接收信号确定单元,用于基于所述第m组用户组的中继节点的 发射信号确定第m组用户组内的第n个用户的接收信号
    Figure PCTCN2020111674-appb-100070
    其中,
    Figure PCTCN2020111674-appb-100071
    为第m组用户组的中继节点的发射信号,
    Figure PCTCN2020111674-appb-100072
    为第二层非正交多址接入传输过程中的加性高斯白噪声;
    第五计算单元,用于基于第m组用户组内的第n个用户的接收信号,对所述用户组内的各用户接收到的信息进行信干噪比解码和信噪比解码,计算所述用户组内前n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比;
    其中,第m组用户组内第v个用户接收到的信干噪比为
    Figure PCTCN2020111674-appb-100073
    Figure PCTCN2020111674-appb-100074
    为从第m组用户组的中继节点到第m组用户组内的第v个用户的信道参数,b m为从第m组用户组的中继节点到第m组用户组内的第v个用户的功率分配系数,b e为从第m组用户组的中继节点到第m组用户组内的第e个用户的功率分配系数,n为第m组用户组内的用户总数,ξ m为第m组用户组的传输信噪比;
    其中,第m组用户组内第n个用户接收到的信噪比为
    Figure PCTCN2020111674-appb-100075
    b n为从第m组用户组的中继节点到第m组用户组内的第n个用户的功率分配系数。
  10. 根据权利要求6所述的一种非正交多址接入功率分配系统,其特征在于,所述第四计算模块,具体包括:
    第六计算单元,用于基于所述前d-1组用户组的中继节点接收到的信干噪比、所述第d组用户组的中继节点接收到的信噪比、所述用户组内前 n-1个用户接收到的信干噪比和所述用户组内第n个用户接收到的信噪比,由香农定理计算第m组用户组的遍历可达速率
    Figure PCTCN2020111674-appb-100076
    其中,
    Figure PCTCN2020111674-appb-100077
    为第m组用户组内的第τ个用户的遍历可达速率,
    Figure PCTCN2020111674-appb-100078
    为第m组用户组的中继节点接收到的信干噪比或第m组用户组的中继节点接收到的信噪比,
    Figure PCTCN2020111674-appb-100079
    为第m组用户组内第τ个用户接收到的信干噪比;
    第七计算单元,用于由所述遍历可达速率得到系统的遍历速率和
    Figure PCTCN2020111674-appb-100080
    其中,
    Figure PCTCN2020111674-appb-100081
    为第1组用户组的遍历可达速率,
    Figure PCTCN2020111674-appb-100082
    为第2组用户组的遍历可达速率。
PCT/CN2020/111674 2020-07-29 2020-08-27 一种非正交多址接入功率分配方法及系统 WO2022021520A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/01992A ZA202201992B (en) 2020-07-29 2022-02-16 Non-orthogonal multiple access power distribution method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010744645.1A CN111885728B (zh) 2020-07-29 2020-07-29 一种非正交多址接入功率分配方法及系统
CN202010744645.1 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022021520A1 true WO2022021520A1 (zh) 2022-02-03

Family

ID=73201054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111674 WO2022021520A1 (zh) 2020-07-29 2020-08-27 一种非正交多址接入功率分配方法及系统

Country Status (3)

Country Link
CN (1) CN111885728B (zh)
WO (1) WO2022021520A1 (zh)
ZA (1) ZA202201992B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159586A1 (en) * 2020-11-17 2022-05-19 Industry-Academic Cooperation Foundation, Chosun University Transmission power allocation method based on user clustering and reinforcement learning
CN114745735A (zh) * 2022-04-11 2022-07-12 重庆邮电大学 一种基于大规模IoT场景的高能效高可靠的资源分配方法
CN115314099A (zh) * 2022-06-10 2022-11-08 北京邮电大学 无人机基站通信覆盖网络增强方法及系统
CN115866736A (zh) * 2022-12-09 2023-03-28 北京航空航天大学 一种无人机辅助非正交多址系统有效容量最大化方法
CN116647264A (zh) * 2023-06-02 2023-08-25 中国人民解放军军事科学院系统工程研究院 一种星地协作接入方法
CN117081704A (zh) * 2023-08-09 2023-11-17 江南大学 一种启用环境反向散射通信的非正交多址接入传输方法
CN117560049A (zh) * 2023-05-11 2024-02-13 武汉能钠智能装备技术股份有限公司四川省成都市分公司 一种卫星地面站中继转发系统
CN117081704B (zh) * 2023-08-09 2024-05-31 江南大学 一种启用环境反向散射通信的非正交多址接入传输方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713982B (zh) * 2020-12-23 2023-05-23 香港中文大学(深圳) 可行域确定方法、装置、电子设备及可读存储介质
CN112887042B (zh) * 2021-01-22 2022-06-10 重庆邮电大学 一种基于非正交多址接入的携能通信网络用户配对方法
CN113852942A (zh) * 2021-09-22 2021-12-28 天翼数字生活科技有限公司 一种基于d2d通信的noma异构网络的资源分配方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160262158A1 (en) * 2015-03-04 2016-09-08 Ntt Docomo, Inc. Radio base station, mobile station and method for determining transmitting power
CN108430040A (zh) * 2017-02-14 2018-08-21 王晋良 联合用户分组与功率分配方法以及使用所述方法的基站
CN108601088A (zh) * 2018-05-09 2018-09-28 华南理工大学 一种基于非正交多址接入的协作通信方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512585B (zh) * 2018-04-04 2020-07-24 哈尔滨工业大学 基于功率域非正交多址接入技术的动态协作中继传输方法
CN108834112B (zh) * 2018-06-13 2020-12-29 南京邮电大学 一种基于noma的中继辅助d2d通信系统功率分配方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160262158A1 (en) * 2015-03-04 2016-09-08 Ntt Docomo, Inc. Radio base station, mobile station and method for determining transmitting power
CN108430040A (zh) * 2017-02-14 2018-08-21 王晋良 联合用户分组与功率分配方法以及使用所述方法的基站
CN108601088A (zh) * 2018-05-09 2018-09-28 华南理工大学 一种基于非正交多址接入的协作通信方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANWAR ASIM, SEET BOON-CHONG, LI XUE: "Quality of Service Based NOMA Group D2D Communications", FUTURE INTERNET, vol. 9, no. 4, 1 November 2017 (2017-11-01), pages 73, XP055891778, DOI: 10.3390/fi9040073 *
CHOI JAEHO; DUAN WEI; YU HAIYANG; JU JINJUAN: "Practical Power Allocation Schemes for Cooperative Relay Networking with NOMA", 2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC WORKSHOPS), IEEE, 16 August 2018 (2018-08-16), pages 85 - 89, XP033532754, DOI: 10.1109/ICCChinaW.2018.8674496 *
DUAN WEI, WEN MIAOWEN, XIONG ZIXIANG, LEE MOON HO: "Two-Stage Power Allocation for Dual-Hop Relaying Systems With Non-Orthogonal Multiple Access", IEEE ACCESS, vol. 5, 1 January 2017 (2017-01-01), pages 2254 - 2261, XP055891788, DOI: 10.1109/ACCESS.2017.2655138 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159586A1 (en) * 2020-11-17 2022-05-19 Industry-Academic Cooperation Foundation, Chosun University Transmission power allocation method based on user clustering and reinforcement learning
US11647468B2 (en) * 2020-11-17 2023-05-09 Industry-Academic Cooperation Foundation, Chosun University Transmission power allocation method based on user clustering and reinforcement learning
CN114745735A (zh) * 2022-04-11 2022-07-12 重庆邮电大学 一种基于大规模IoT场景的高能效高可靠的资源分配方法
CN114745735B (zh) * 2022-04-11 2024-01-30 北京兴艺凯晨文化传媒有限公司 一种基于大规模IoT场景的高能效高可靠的资源分配方法
CN115314099A (zh) * 2022-06-10 2022-11-08 北京邮电大学 无人机基站通信覆盖网络增强方法及系统
CN115314099B (zh) * 2022-06-10 2023-08-01 北京邮电大学 无人机基站通信覆盖网络增强方法及系统
CN115866736A (zh) * 2022-12-09 2023-03-28 北京航空航天大学 一种无人机辅助非正交多址系统有效容量最大化方法
CN117560049A (zh) * 2023-05-11 2024-02-13 武汉能钠智能装备技术股份有限公司四川省成都市分公司 一种卫星地面站中继转发系统
CN116647264A (zh) * 2023-06-02 2023-08-25 中国人民解放军军事科学院系统工程研究院 一种星地协作接入方法
CN116647264B (zh) * 2023-06-02 2024-01-23 中国人民解放军军事科学院系统工程研究院 一种星地协作接入方法
CN117081704A (zh) * 2023-08-09 2023-11-17 江南大学 一种启用环境反向散射通信的非正交多址接入传输方法
CN117081704B (zh) * 2023-08-09 2024-05-31 江南大学 一种启用环境反向散射通信的非正交多址接入传输方法

Also Published As

Publication number Publication date
ZA202201992B (en) 2022-07-27
CN111885728B (zh) 2022-09-06
CN111885728A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2022021520A1 (zh) 一种非正交多址接入功率分配方法及系统
Zhang et al. Resource allocation in NOMA-based fog radio access networks
CN104640220B (zh) 一种基于noma系统的频率和功率分配方法
Ren et al. Dynamic channel access to improve energy efficiency in cognitive radio sensor networks
CN107613555B (zh) 非正交多址接入蜂窝和终端直通密集网络资源管控方法
WO2021159551A1 (zh) 一种mimo-noma下行通信系统的用户匹配和功率分配方法
CN101951307A (zh) 在CoMP下的小区协作集的选择方法
Khan et al. Multiobjective optimization of uplink NOMA-enabled vehicle-to-infrastructure communication
Tao et al. Spectrum leasing and cooperative resource allocation in cognitive OFDMA networks
CN107343268B (zh) 非正交多播和单播传输波束赋型方法及系统
CN106162846A (zh) 一种考虑sic能耗的两用户noma下行能效优化方法
CN103415077A (zh) 一种联合中继选择和功率分配的方法和系统
CN108063632B (zh) 异构云接入网络中基于能效的协作资源分配方法
CN113596785A (zh) 基于深度q网络的d2d-noma通信系统资源分配方法
CN112566261A (zh) 一种基于深度强化学习的上行noma资源分配方法
CN106912111A (zh) 一种基于调度与竞争细粒度融合的非正交多址接入方法
Zhang et al. Dynamic user-centric clustering for uplink cooperation in multi-cell wireless networks
Lyu et al. NOMA-assisted on-demand transmissions for monitoring applications in industrial IoT networks
Wang et al. Energy efficiency maximization for multi-carrier cooperative non-orthogonal multiple access systems
López et al. Hybrid resource scheduling for aggregation in massive machine-type communication networks
CN114423028A (zh) 基于多智能体深度强化学习的CoMP-NOMA协作成簇与功率分配方法
CN104640217A (zh) 基于网络编码的ofdma网络上下行资源联合分配方法
CN102256301B (zh) 一种同时满足单播及多播业务的用户选择方法
CN108449737B (zh) 分布式天线系统中基于d2d的下行链路高能效功率分配方法
Qian et al. Enabling Fully-Decoupled Radio Access with Elastic Resource Allocation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947430

Country of ref document: EP

Kind code of ref document: A1