WO2022021430A1 - 天线阵列、雷达和可移动平台 - Google Patents

天线阵列、雷达和可移动平台 Download PDF

Info

Publication number
WO2022021430A1
WO2022021430A1 PCT/CN2020/106431 CN2020106431W WO2022021430A1 WO 2022021430 A1 WO2022021430 A1 WO 2022021430A1 CN 2020106431 W CN2020106431 W CN 2020106431W WO 2022021430 A1 WO2022021430 A1 WO 2022021430A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna array
dielectric substrate
metal
radiation
patch
Prior art date
Application number
PCT/CN2020/106431
Other languages
English (en)
French (fr)
Inventor
唐哲
蔡铭
汤一君
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080006540.4A priority Critical patent/CN113169459A/zh
Priority to PCT/CN2020/106431 priority patent/WO2022021430A1/zh
Publication of WO2022021430A1 publication Critical patent/WO2022021430A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems

Definitions

  • the present application relates to the field of antenna technology, in particular to an antenna array, a radar and a movable platform.
  • the vehicle-mounted millimeter-wave radar transmits millimeter waves through the antenna, receives the reflected signal of the target, and obtains the physical environment information around the car body after data processing (such as the relative distance between the car and other objects, relative speed, angle, direction of movement, etc.) .
  • data processing such as the relative distance between the car and other objects, relative speed, angle, direction of movement, etc.
  • wideband millimeter-wave radar can greatly improve the range resolution, and is suitable for application scenarios with high range resolution, such as ultra-close detection scenarios such as vehicles in adjacent lanes cutting into the current lane and "blocking".
  • the antenna needs to have the ability to work with broadband, so as to provide guarantee for the safety of vehicle driving.
  • the embodiments of the present application provide an antenna array, a radar and a movable platform, which can have a wider bandwidth.
  • an embodiment of the present application provides an antenna array, including: an antenna base having an antenna side surface and a feeding side surface arranged oppositely;
  • the radiation unit is arranged on the side of the antenna, and includes a plurality of radiation patches arranged along the first direction, the plurality of radiation patches are connected in sequence, and each of the radiation patches is provided with a first groove;
  • a feeding unit arranged on the side of the feeding, for coupling energy to the middle of the radiating unit
  • each radiation patch along the second direction is the same, and the second direction is perpendicular to the first direction;
  • the groove depths of the first grooves opened in other radiation patches along the first direction increase sequentially from the middle part to the end part of the radiation unit.
  • embodiments of the present application provide a radar, including a power supply and the antenna array in various embodiments of the first aspect, where the power supply is used to supply power to the antenna array.
  • an embodiment of the present application provides a movable platform, including a fuselage and the radar provided in the second aspect, where the radar is arranged on the fuselage.
  • the width of each radiation patch is the same, and the opening of the first groove opened by the other radiation patches located at the non-end of the radiation unit
  • the depth of the slot increases sequentially from the middle to the end of the radiating element, so that the antenna array can effectively suppress side lobes on the basis of satisfying a wider working bandwidth, and achieve a high side lobe suppression ratio or low side lobe of the antenna array. valve characteristics.
  • FIG. 1 is an exploded schematic diagram of an antenna array provided by an embodiment of the present application
  • FIG. 2 is a partial structural schematic diagram of an antenna array provided by an embodiment of the present application, wherein a radiation unit and a second dielectric substrate are shown;
  • FIG. 3 is a schematic diagram of a partial structure of a radiation unit provided by an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of an antenna array provided by an embodiment of the present application.
  • FIG. 5 is a partial structural schematic diagram of an antenna array provided by an embodiment of the present application, wherein an intermediate dielectric substrate and an intermediate metal patch are shown;
  • FIG. 6 is a schematic diagram of a partial structure of a radiation unit provided by an embodiment of the present application.
  • FIG. 7 is a partial structural schematic diagram of an antenna array provided by an embodiment of the present application, in which a first dielectric substrate, a feeding unit, and a second metal patch are shown;
  • FIG. 8 is a partial structural schematic diagram of an antenna array provided by an embodiment of the present application, in which a feeding unit is shown;
  • FIG. 9 is a schematic structural diagram of an antenna array using a standing waveform, and the antenna array realizes the Taylor distribution modulation of radiated power by adjusting the width of the patch;
  • Fig. 10 is the partial structure schematic diagram in Fig. 9;
  • Fig. 11 is the phase shift schematic diagram of the antenna array in Fig. 9;
  • FIG. 12 is a schematic diagram of a phase shift of an antenna array provided by an embodiment of the present application.
  • Fig. 13 is the elevation plane pattern of the antenna array in Fig. 9;
  • FIG. 14 is an elevation plane pattern of an antenna array provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of an antenna echo damage of an antenna array provided by an embodiment of the present application.
  • Antenna base body 11. Antenna side surface; 12. Feeding side surface; 131, First dielectric substrate; 132, Second dielectric substrate; 14, First ground layer; 141, First slot; 15, Intermediate dielectric substrate; 16 , the second ground layer; 161, the second gap; 17, the first metal via;
  • a component when referred to as being "fixed to" another component, it can be directly on the other component or there may also be a centered component.
  • a component When a component is considered to be “connected” to another component, it may be directly connected to the other component or there may be a co-existence of an intervening component.
  • the 77-81GHz wideband radar can greatly improve the range resolution. It is suitable for short-range detection with high range resolution (0.15m to 0.3m).
  • the antenna is an important component of the radar front end. part, the ability to work with broadband is required, including impedance matching, sidelobe suppression, beam pointing and gain flatness over a wide frequency range.
  • Impedance matching Antennas can be divided into traveling wave antennas and standing wave antennas.
  • the existing antennas are mainly standing wave antennas, whose impedance characteristics change drastically with frequency, and there is a problem of narrow impedance bandwidth (the relative bandwidth is about 3%);
  • Beam pointing refers to the pointing position of the point with the maximum gain in the antenna pattern.
  • the beam pointing of the antenna array is determined by the phase of each radiating element.
  • the existing form of one-end side feed can only guarantee the beam in a narrow band. Pointing to be stable at the normal point;
  • Gain flatness In the prior art, the gain flatness of the broadband inner antenna is about 4 to 5 dB, and this value is too large, so that the radar detection distance is insufficient.
  • the antenna array includes an antenna base 10 , a radiation unit 20 and a feeding unit 30 .
  • the antenna base 10 has an antenna side 11 and a feed side 12 which are arranged opposite to each other.
  • the radiation unit 20 is arranged on the side surface 11 of the antenna.
  • the radiation unit 20 includes a plurality of radiation patches 21 arranged along the first direction. The plurality of radiation patches 21 are connected in sequence, and each radiation patch 21 is provided with a first groove 211 .
  • the feeding unit 30 is provided on the feeding side 12 for coupling energy to the middle of the radiating unit 20 .
  • each radiation patch 21 has the same width along the second direction, and the second direction is perpendicular to the first direction. Except for the first groove 211 a formed by the radiation patch 21 a located at the end of the radiation unit 20 , the groove depth of the first groove 211 formed by other radiation patches 21 along the first direction is from the middle of the radiation unit 20 to the end. The parts increase sequentially.
  • each radiation patch 21 has the same width, and the groove depth of the first grooves 211 opened by other radiation patches 21 located at the non-end of the radiation unit 20 is from the middle of the radiation unit 20 to the end.
  • the antenna array can be made to have a wider working bandwidth; and the size of the radiation energy of each radiation patch 21 can be adjusted to realize the Taylor distribution modulation of the radiation energy, which can meet the radiation requirements of the electromagnetic wave in the preset frequency band.
  • side lobes can also be effectively suppressed to achieve high side lobe suppression ratio or low side lobe characteristics of the antenna array.
  • the energy from the middle of the radiation unit 20 is radiated to both ends, the energy is gradually attenuated, and the more it is transmitted to the two ends, the weaker the energy. Therefore, the first grooves opened by the other radiation patches 21 The gradual change of the groove depth of 211 can make the energy distribution of each radiation patch 21 more reasonable and the side lobes lower.
  • the first direction is the lengthwise extension direction of the antenna array.
  • the second direction is the width extension direction of the antenna array.
  • the first direction is the lengthwise extension direction of the radiation unit 20 .
  • the second direction is the width extension direction of the radiation unit 20 .
  • the first direction is as shown in the Y direction in FIG. 2
  • the second direction is as shown in the X direction in FIG. 2 .
  • the first groove 211 a of the radiation patch 21 a located at the end of the radiation unit 20 faces the middle of the radiation unit 20 , and the first grooves 211 of other radiation patches 21 are away from the middle of the radiation unit 20 .
  • the first groove 211a of the radiation patch 21a at the end can be used to adjust impedance matching to realize the radiation characteristics of the antenna array. Understandably, by controlling the gradual change of the groove depth of the first grooves 211 opened by other radiation patches 21, the Taylor distribution modulation of the radiation power can be realized. With port matching, the electric field on the entire antenna array can be in a traveling wave distribution state.
  • the radiation patch 21 is square, and the length LS of the radiation patch 21 along the first direction is 0.5 ⁇ g .
  • the width WS of the radiation patch 21 along the second direction is 0.42 ⁇ g -1.12 ⁇ g , that is, 0.42 ⁇ g , 0.60 ⁇ g , 1.0 ⁇ g , 1.12 ⁇ g and any other suitable between 0.42 ⁇ g -1.12 ⁇ g numerical value.
  • ⁇ g is the wavelength of the equivalent medium at the center frequency.
  • the length LS of the radiation patch 21 determines the resonant frequency of the antenna array, and the width of the radiation patch 21 affects the radiation impedance and port matching effect of the antenna array.
  • the groove depths of the first grooves 211 in the other radiation patches 21 along the first direction increase sequentially from the middle to the end of the radiation unit 20 , so that the energy in the radiation patches 21 increases.
  • the generated resonant frequency and bandwidth are within the preset range, and the energy is reasonably distributed on the radiation patch 21, which can realize the characteristics of low side lobes.
  • the groove width of each first groove 211 along the second direction is the same, which facilitates the processing of the first groove.
  • the slot width of each first groove 211 along the second direction can also be gradually changed, so as to adjust the port matching characteristics.
  • the slot width WS of the first groove 211 along the second direction is 0.16 ⁇ g - 0.25 ⁇ g , that is, between 0.16 ⁇ g , 0.20 ⁇ g , 0.25 ⁇ g , and 0.16 ⁇ g - 0.25 ⁇ g any other suitable value in between.
  • the groove depth LS of the first groove 211 is 0.05 ⁇ g -0.18 ⁇ g , ie, 0.05 ⁇ g , 0.10 ⁇ g , 0.18 ⁇ g and any other suitable value between 0.05 ⁇ g -0.18 ⁇ g .
  • ⁇ g is the wavelength of the equivalent medium at the center frequency.
  • the slot width of the first groove 211 can be used to adjust the port matching characteristics.
  • the groove depth of the first groove 211 can be used to adjust the radiation impedance.
  • the groove depth of the first groove 211 can be used to adjust the radiation impedance.
  • the antenna array is a back-fed traveling wave antenna array, so that the antenna array has a wide operating bandwidth, and meets the requirements of good gain flatness and stable beam pointing within the wide bandwidth.
  • the antenna base 10 includes a first dielectric substrate 131 , a first ground layer 14 , an intermediate dielectric substrate 15 , a second ground layer 16 , a second dielectric substrate 132 and a plurality of first A metal via hole 17 .
  • the feeding unit 30 is provided on the surface of the first dielectric substrate 131 .
  • the first ground layer 14 is disposed on the surface of the first dielectric substrate 131 facing away from the feeding unit 30 .
  • the intermediate dielectric substrate 15 is disposed on the surface of the first ground layer 14 facing away from the first dielectric substrate 131 .
  • the second ground layer 16 is disposed on the surface of the intermediate dielectric substrate 15 facing away from the first ground layer 14 .
  • the second dielectric substrate 132 is disposed on the surface of the second ground layer 16 facing away from the intermediate dielectric substrate 15 , and the radiation unit 20 is disposed on the side of the second dielectric substrate 132 facing away from the second ground layer 16 .
  • the second dielectric substrate 132 , the second ground layer 16 , the intermediate dielectric substrate 15 , the first ground layer 14 and the first dielectric substrate 131 are sequentially stacked from top to bottom.
  • the feeding unit 30 may be bonded on the surface of the first dielectric substrate 131, or may be disposed on the surface of the first dielectric substrate 131 by any other suitable method such as etching.
  • the antenna array is fabricated by a PCB lamination process, including copper deposition, lamination and mixed pressing, and mechanical through-hole drilling.
  • the antenna array does not need to introduce blind and buried via design during fabrication, which reduces the processing cost and improves the processing yield. .
  • the side of the first dielectric substrate 131 away from the second dielectric substrate 132 is the feeding side surface 12 of the antenna base 10 .
  • the side of the second dielectric substrate 132 away from the first dielectric substrate 131 is the antenna side surface 11 of the antenna base 10 .
  • the first ground layer 14 is provided with a first slit 141 .
  • the second ground layer 16 is provided with a second slit 161 .
  • the plurality of first metal vias 17 penetrate through the first dielectric substrate 131 , the first ground layer 14 , the intermediate dielectric substrate 15 , the second ground layer 16 and the second dielectric substrate 132 , and the plurality of first metal vias 17 are surrounded by Around the first slit 141 and the second slit 161 .
  • the first slot 141 and the second slot 161 are used to couple the energy of the feeding unit 30 to the middle of the radiation unit 20 .
  • the antenna array in this embodiment adopts the form of a traveling wave antenna, supplemented by slot coupling and a feeding structure fed from the middle of the radiating element 20, combined with a plurality of first metal vias 17 that can be equivalent to a waveguide structure,
  • the antenna array can be made to have a wide working bandwidth, and meet the requirements of good gain flatness and stable beam pointing within the wide bandwidth.
  • the energy of the feeding unit 30 is transmitted to the first slot 141 by means of slot coupling, and the plurality of first metal vias 17 are enclosed around the first slot 141 and the second slot 161 to form an equivalent waveguide structure , so that the energy coupled by the first slot 141 propagates to the second slot 161 through the equivalent waveguide structure, and the second slot 161 then propagates the energy to the middle of the radiation unit 20 by coupling, and transmits the energy to the electromagnetic wave through the radiation unit 20. form radiates into space.
  • a plurality of first metal vias 17 are arranged to form an equivalent waveguide structure.
  • the attenuation is reduced, which can ensure the efficiency of the antenna.
  • the energy propagates on the radiation unit 20 it is radiated step by step from the middle of the radiation unit 20 to both ends, so as to achieve the effect of stable beam pointing.
  • the shape and structure of the first slot 141 are the same as the shape and structure of the second slot 161, so that the energy is less attenuated in the process of coupling the energy to the radiation unit 20 through the first slot 141 and the second slot 161. .
  • the shape of the first slot 141 and/or the second slot 161 can be designed according to actual requirements, such as any one of a rectangle, an H shape, a dumbbell shape, a bow-tie shape, an hourglass shape, and the like.
  • the size of the first slot 141 and the second slot 161 can be designed to be any suitable size according to actual requirements, so that the energy of the feeding unit 30 can be coupled efficiently in the second slot 161, or the energy of the first slot 141 can be transmitted to the radiation unit.
  • the coupling efficiency of 20 is high.
  • the first slit 141 corresponds to the position of the second slit 161 .
  • the orthographic projections of the first slit 141 and the second slit 161 overlap.
  • the extension direction of the plurality of first metal vias 17 is perpendicular to the board surface of the first dielectric substrate 131
  • the equivalent waveguide structure formed by the plurality of first metal vias 17 is perpendicular to the board surface of the first dielectric substrate 131 .
  • the cross-sectional shape in the direction is rectangular.
  • the cross-sectional shape of the equivalent waveguide structure formed by the space enclosed by the plurality of first metal vias 17 It may be the same as or different from the first slit 141 (or the second slit 161 ).
  • the cross-sectional shape may be any one of a rectangle, an H-shape, a dumbbell shape, a bow-tie shape, an hourglass shape, a circle, a parallelogram, a trapezoid, and the like.
  • each of the first metal vias 17 and the first slit 141 may be arranged at equal intervals. In other embodiments, the distance between each of the first metal vias 17 and the first slit 141 (or the second slit 161 ) may be different from each other or not all the same.
  • the plurality of first metal vias 17 are formed by opening corresponding vias on each layer of the dielectric substrate and the ground layer, and filling the vias with a metal material.
  • the second ground layer 16 , the intermediate dielectric substrate 15 and the first ground layer 14 are respectively provided with a plurality of through holes. The positions of the plurality of through holes on the second ground layer 16 , the plurality of through holes of the intermediate dielectric substrate 15 and the plurality of through holes on the first ground layer 14 correspond to each other and have the same shape.
  • a layer of metal is plated on the inner walls of the plurality of through holes of each layer, or the through holes of each layer are filled with metal, thereby forming the first metal vias 17 .
  • the metal material of the first metal via hole 17 may be copper, aluminum, silver, or the like.
  • the first ground layer 14 and the second ground layer 16 are made of metal materials, such as copper foil, aluminum foil, silver foil, and the like.
  • the first dielectric substrate 131, the intermediate dielectric substrate 15 and the second dielectric substrate 132 are laminates.
  • the materials of the first dielectric substrate 131 and the second dielectric substrate 132 are high-frequency and low-loss materials (such as Rogers Ro4835, Rogers Ro3003, etc.) .
  • the material of the intermediate layer dielectric substrate is FR4.
  • the material selection of the above-mentioned layers is divided according to the purpose.
  • the first dielectric substrate 131 is used as the bearing base of the feeding unit 30, on the one hand, it is used to provide sufficient support for the feeding unit 30, and on the other hand, it is used to isolate the feeding unit 30 and the feeding unit 30.
  • the first ground layer 14 enables the first slot 141 to be coupled with the feeding unit 30, so the first dielectric substrate 131 selects high-frequency and low-loss materials to reduce energy loss and improve coupling efficiency.
  • the second dielectric substrate 132 is also made of high-frequency and low-loss materials.
  • the intermediate dielectric substrate 15 can be used for radar wiring.
  • the intermediate dielectric substrate 15 Due to the introduction of the intermediate dielectric substrate 15, the longitudinal distance between the first slit 141 and the second slit 161 is increased, and the part enclosed by the plurality of first metal vias 17 is formed, etc.
  • the effective waveguide structure can transmit the energy coupled by the first slot 141 to the second slot 161 in a more concentrated manner.
  • the intermediate dielectric substrate 15 can be selected from a common FR4 material.
  • the number of intermediate dielectric substrates 15 can be set according to actual requirements, such as 1 layer, 2 layers, 3 layers, 4 layers, 5 layers, 6 layers...N layers, where N is a positive integer.
  • the thickness of each layer of the intermediate dielectric substrate 15 can be designed according to actual requirements, which is not limited herein.
  • the number of the intermediate dielectric substrates 15 is plural.
  • the number of intermediate dielectric substrates 15 is 5 layers, that is, intermediate dielectric substrates 151 , 152 , 153 , 154 , and 155 .
  • the quantity of the intermediate dielectric substrates 15 is related to the amplitude and phase characteristics of the energy. When the energy coupled to the first slot 141 by the feeding unit 30 propagates to the second slot 161 , the amplitude and phase characteristics need to be kept unchanged as much as possible.
  • the antenna array further includes two intermediate metal patches 40 .
  • the two intermediate metal patches 40 are respectively disposed on opposite sides of the intermediate dielectric substrate 15 .
  • the two intermediate metal patches 40 at least partially overlap on the projection plane parallel to the intermediate dielectric substrate 15 .
  • the two intermediate metal patches 40 have overlapping portions on the projection plane parallel to the intermediate dielectric substrate 15, and the overlapping portions are equivalent to adding capacitive loading to the antenna array, thereby canceling out the impedance of the antenna array.
  • the two middle metal patches 40 form an equivalent capacitance structure, which can provide a partial capacitance effect, and adjusting the overlapping length of the overlapping portion can be used for impedance matching of the antenna array.
  • the two middle metal patches 40 form an equivalent capacitance structure, and adjusting the overlapping length of the overlapping portion can adjust the equivalent capacitance of the equivalent capacitance structure, and can fine-tune the reactance.
  • the equivalent capacitance structure can make the reactance reach the required value, reduce the energy reflection of the antenna array, and improve the radiation efficiency of the antenna array.
  • the required value can be set according to actual needs, such as making the reactance close to zero.
  • the material of the intermediate metal patch 40 is copper.
  • the thickness of the intermediate metal patch 40 can be set according to actual requirements.
  • the middle metal patch 40 is square, and the length LT of the middle metal patch 40 along the first direction is 0.038 ⁇ g -0.13 ⁇ g , namely 0.038 ⁇ g , 0.05 ⁇ g , 0.10 ⁇ g , 0.13 ⁇ g and any other suitable value between 0.038 ⁇ g and 0.13 ⁇ g .
  • the width WT of the intermediate metal patch 40 along the second direction is 0.038 ⁇ g -0.25 ⁇ g , that is, 0.038 ⁇ g , 0.10 ⁇ g , 0.20 ⁇ g , 0.25 ⁇ g and any other between 0.038 ⁇ g -0.25 ⁇ g suitable value.
  • the two intermediate metal patches 40 can be designed in any suitable position according to actual requirements.
  • the intermediate metal patch 40 is located between the first ground plane 14 and the second ground plane 16 .
  • the first ground layer 14 , the two intermediate metal patches 40 and the second ground layer 16 are sequentially disposed along the stacking direction of the first ground layer 14 , the intermediate dielectric substrate 15 and the second ground layer 16 .
  • two intermediate metal patches 40 are respectively disposed on two opposite surfaces of the intermediate dielectric substrate 15 , and the intermediate dielectric substrate 15 is the most middle one of the plurality of intermediate dielectric substrates 15 .
  • the number of intermediate dielectric substrates 15 is five layers, ie, intermediate dielectric substrates 151 , 152 , 153 , 154 , and 155 .
  • the two intermediate metal patches 40 are respectively disposed on two opposite surfaces of the intermediate dielectric substrate 153 .
  • the number of intermediate dielectric substrates 15 is 6 layers, ie, a first intermediate plate, a second intermediate plate, a third intermediate plate, a fourth intermediate plate, a fifth intermediate plate and a sixth intermediate plate.
  • the two intermediate metal patches 40 are respectively disposed on two opposite surfaces of the third intermediate plate (or the fourth intermediate plate).
  • the antenna array of this embodiment can be effectively used for impedance matching of the antenna array by arranging the two middle metal patches 40 at appropriate positions.
  • At least two intermediate dielectric substrates 15 are disposed between the two intermediate metal patches 40 .
  • the number of intermediate dielectric substrates 15 is 5 layers, that is, intermediate dielectric substrates 151 , 152 , 153 , 154 , and 155 .
  • Intermediate dielectric substrates 152 and 153 are provided between the two intermediate metal patches 40 .
  • One of the intermediate metal patches 40 is disposed on the side of the intermediate dielectric substrate 152 away from the intermediate dielectric substrate 153
  • the other intermediate metal patch 40 is disposed on the side of the intermediate dielectric substrate 153 away from the intermediate dielectric substrate 152 .
  • the number of intermediate dielectric substrates 15 is 5 layers, that is, intermediate dielectric substrates 151 , 152 , 153 , 154 , and 155 .
  • Intermediate dielectric substrates 152 , 153 and 154 are disposed between the two intermediate metal patches 40 .
  • One of the intermediate metal patches 40 is disposed on the side of the intermediate dielectric substrate 152 away from the intermediate dielectric substrate 153
  • the other intermediate metal patch 40 is disposed on the side of the intermediate dielectric substrate 154 away from the intermediate dielectric substrate 153 .
  • adjacent radiation patches 21 are connected by microstrip lines 22 .
  • the first slot 141 and the second slot 161 are used to couple the energy of the feeding unit 30 to the first microstrip line 221 in the middle of the radiation unit 20 .
  • the first microstrip line 221 is one of the plurality of microstrip lines 22 .
  • the radiation unit 20 is a microstrip patch serial feed structure.
  • the energy transmitted by the second slot 161 is coupled to the first microstrip line 221 , and the energy flows to both ends of the radiation unit 20 and is generated on the radiation patch 21 .
  • Radiation flows on the microstrip line 22 .
  • the second slit 161 intersects with the first microstrip line 221 and the included angle is 90°.
  • the extending direction of the microstrip line 22 (including the first microstrip line 221 ) and the length direction of the second slit 161 are perpendicular to each other.
  • the included angle between the length direction of the second slot 161 and the microstrip line 22 is allowed to float slightly, for example, the clamping
  • the angle is 85°-95°, it can also be considered that the length direction of the second slit 161 is perpendicular to the first microstrip line 221 .
  • the included angle is set so that the second slot 161 can couple with the first microstrip line 221 to transmit energy.
  • the radiation unit 20 adopts the form of a microstrip patch structure, and radiates step by step from the first microstrip line 221 in the middle to both ends, ensuring that the beam pointing is stable at the normal point in the broadband range, and the stability is good.
  • one end of the microstrip line 22 connecting two adjacent radiation patches 21 is connected to the bottom wall of the first groove 211, and the other end is connected to the adjacent radiation patches One end of 21 facing away from the first groove 211 .
  • the radiation units 20 are arranged symmetrically.
  • the symmetrical radiating unit 20 makes the energy radiated on the radiating patches 21 on both sides of the first microstrip line 221 in the same form.
  • the radiation unit 20 is symmetrical about the first microstrip line 221 .
  • the radiation unit 20 is symmetrically arranged with respect to the radiation patch 21 in the middle of the radiation unit 20 .
  • the antenna array further includes a first metal patch 50 .
  • the first metal patch 50 is disposed on the side surface 11 of the antenna and surrounds the middle of the radiation unit 20 .
  • the first metal sheet is connected to the first metal via hole 17 .
  • a first metal patch 50 is arranged around the first microstrip line 221 in the middle of the radiation unit 20 .
  • the first metal patch 50 is provided with a slit 51 and a first through hole 52 .
  • the slot 51 corresponds to the position of the first slot 141 and is used to expose the coupling space of the first slot 141 to avoid shielding.
  • the inner wall of the first through hole 52 is connected to the plurality of first metal vias 17 .
  • the feeding microstrip line 31 intersects the first slit 141 and the included angle is 90°, that is, the extension direction of the feeding microstrip line 31 and the first slit 141
  • the length directions are perpendicular to each other.
  • the form in which the feeding unit 30 couples energy to the first slot 141 is the same as the form in which the second slot 161 couples energy to the first microstrip line 221 of the radiating unit 20 , both in the form of slot coupling.
  • the structure of the feeding microstrip line 31 can be a long strip, and the width can be set wider at the front end position of the energy flow, and impedance matching can be performed.
  • the front end of the energy flow of the feeding microstrip line 31 is used for connecting with the feeding line for receiving the energy of the radio frequency chip.
  • the energy flows in the feeding microstrip line 31 and is coupled to the second slot 161 at the end of the energy flow.
  • the feeding unit 30 includes a feeding microstrip line 31
  • the antenna array further includes a second metal patch 60 .
  • the second metal patch 60 is disposed on the feeding side 12 .
  • the second metal patch 60 defines a second groove 61 , and the feeding microstrip line 31 extends into the second groove 61 and is connected to the second groove 61
  • the inner wall is spaced, and a plurality of first metal vias 17 are connected between the first metal patch 50 and the second metal patch 60 . Setting the second groove 61 to surround the feeding microstrip line 31 prevents the energy of the feeding microstrip line 31 from radiating to both sides, reduces energy loss, and increases the energy coupled to the second slot 161 .
  • the structure for coupling energy to the second slot 161 is not limited to the structure of the microstrip line 22, and may also adopt the form of coplanar waveguide (GCPW), the form of substrate integrated waveguide (SIW), and the like, the structure of which can be referred to in the prior art. That's it, no further details.
  • GCPW coplanar waveguide
  • SIW substrate integrated waveguide
  • the first dielectric substrate 131 is provided with a plurality of second metal vias 70 .
  • the plurality of second metal vias 70 are disposed on one edge of the second metal patch 60 facing away from the opening direction of the second groove 61 .
  • a plurality of second metal vias 70 are connected between the second metal patch 60 and the first ground layer 14 .
  • the second metal patch 60 is provided with a second through hole 62 , the second metal through hole 70 is connected to the side wall of the second through hole 62 , and the second metal through hole 70 constitutes a blocking and shielding structure to reduce the feeding microstrip line 31
  • the ability to transmit along its own extension direction makes the energy coupled to the first slit 141 as much as possible.
  • the second metal patch 60 is further provided with a plurality of third through holes 63 , and the side walls of the plurality of third through holes 63 are connected to the first metal through holes 17 , so that the first metal patch 50 and the second metal patch 60 together connect and fix the first metal vias 17 .
  • the arrows in FIG. 4 indicate the propagation direction of the energy.
  • the energy is coupled from the feeding unit 30 to the first slot 141 of the first ground layer 14 , and the space formed by the space enclosed by the plurality of first metal vias 17 is In the equivalent waveguide structure, the energy coupled by the first slot 141 propagates to the second slot 161 of the second ground layer 16 , and the energy propagated by the second slot 161 is coupled to the middle of the radiation unit 20 , and from the middle of the radiation unit 20 . Propagating to both ends, when the energy propagates on the radiation unit 20, electromagnetic waves are radiated to the surrounding space, thereby realizing the propagation process of energy to electromagnetic waves.
  • the two middle metal patches 40 form an equivalent capacitance structure, which can provide a partial capacitance effect for helping the impedance matching of the antenna array.
  • the antenna array provided by the embodiments of the present application, by setting the widths of the radiation patches 21 to be the same, the depth of the first grooves 211 opened by the other radiation patches 21 located at the non-end portions of the radiation unit 20 is reduced from the radiation
  • the middle part of the unit 20 is increased to the end in turn, which can make the antenna array have a wider working bandwidth; and can adjust the size of the radiation energy of each radiation patch 21, realize the Taylor distribution modulation of the radiation energy, and meet the preset frequency band. At the same time, it can effectively suppress side lobes and achieve low side lobe characteristics.
  • the antenna array of the embodiment of the present application has a simple structure and is easy to manufacture.
  • the impedance bandwidth of the antenna array of the embodiment of the present application is wide, and the working frequency band covers 76 GHz-81 GHz. Beam pointing can be stabilized at the normal point. Gain flatness is less than 1dB.
  • the present application also provides a comparative example. Please refer to FIG. 9 and FIG. 10.
  • the antenna array shown in FIG. 9 and FIG. 10 adopts a standing waveform.
  • the antenna array includes a plurality of patches 101 connected in sequence.
  • the patch 101 is not provided with a groove structure.
  • By adjusting each patch 101 The width of realizes Taylor distribution modulation of radiated power to achieve high side rejection ratio and low side lobe characteristics of the antenna array.
  • the antenna array in FIG. 9 is simulated, and it is found that in the bandwidth range of 76GHz-81GHz, due to the different widths of each patch 101, the phase velocity difference is obvious, and the phase shift between the centers of each patch 101 varies with frequency If it is larger, it will affect the stability of the pattern in the wide band, causing the distortion of the pattern and the raising of the side lobes.
  • the antenna array in FIG. 9 is simulated, and a schematic diagram of side lobe suppression performance on the elevation plane at the frequency points of 76.5 GHz, 77 GHz, 79 GHz and 81 GHz is obtained.
  • the sidelobe suppression on the elevation plane at the frequency points of 76.5GHz, 77GHz, 79GHz and 81GHz is less than 20dB, and the sidelobe suppression is good. Comparing FIG. 13 and FIG. 14 , it can be seen that the antenna array of the present application obviously has lower side lobes in the broadband, which can reduce the influence of side lobe interference.
  • the return loss of the antenna is less than -10 dB, and the matching effect is good.
  • An embodiment of the present application also provides a radar, where the radar is a millimeter wave radar.
  • the radar includes a power supply and the antenna array provided by the embodiments of the present application, and the power supply is used to supply power to the antenna array.
  • structures such as data lines may also be provided on the intermediate medium substrate of the antenna array for supplying power or transmitting control signals.
  • a signal processor may also be included in the radar, and the signal processor may include a radio frequency chip, which may be used to feed energy to the antenna array.
  • the signal processor can also process electrical signals received by the antenna.
  • the embodiments of the present application also provide a movable platform, such as a car, a ship, a train, etc.
  • the movable platform includes a fuselage and the radar provided by the embodiments of the present application, and the radar is arranged on the fuselage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供一种天线阵列、雷达和可移动平台,该天线阵列包括天线基体、辐射单元和馈电单元;天线基体具有相对设置的天线侧面和馈电侧面;辐射单元,设于天线侧面,包括沿第一方向排列的多个辐射贴片,多个辐射贴片依次相连,每个辐射贴片上开设有第一凹槽;馈电单元,设于馈电侧面,用于将能量耦合到辐射单元的中部;其中,各辐射贴片沿第二方向的宽度相同,第二方向垂直于第一方向;除了位于辐射单元端部的辐射贴片开设的第一凹槽之外,其他辐射贴片开设的第一凹槽沿第一方向的开槽深度从辐射单元的中部向端部依次增大。本申请提供的天线阵列具有较宽的工作带宽,并且在宽带内满足低旁瓣的要求。

Description

天线阵列、雷达和可移动平台 技术领域
本申请涉及天线技术领域,具体涉及一种天线阵列、雷达和可移动平台。
背景技术
车载毫米波雷达通过天线向外发射毫米波,接收目标反射信号,经数据处理后获取汽车车身周围的物理环境信息(如汽车与其他物体之间的相对距离、相对速度、角度、运动方向等)。宽带毫米波雷达相比窄带低频段雷达能够大大地提高距离分辨率,适合于距离分辨率高的应用场景,比如相邻车道车辆切入本车道“加塞”等超近距离探测场景。天线作为雷达的重要组成部分,需要具备宽带工作能力,从而为车辆行驶的安全性提供保障。
发明内容
为解决上述技术问题,本申请实施例提供一种天线阵列、雷达和可移动平台,能具有较宽的带宽。
第一方面,本申请实施例提供一种天线阵列,包括:天线基体,具有相对设置的天线侧面和馈电侧面;
辐射单元,设于所述天线侧面,包括沿第一方向排列的多个辐射贴片,所述多个辐射贴片依次相连,每个所述辐射贴片上开设有第一凹槽;
馈电单元,设于所述馈电侧面,用于将能量耦合到所述辐射单元的中部;
其中,各所述辐射贴片沿第二方向的宽度相同,所述第二方向垂直于所述第一方向;除了位于所述辐射单元端部的辐射贴片开设的第一凹槽之外,其他辐射贴片开设的第一凹槽沿所述第一方向的开槽深度从所述辐射单元的中部向端部依次增大。
第二方面,本申请实施例提供一种雷达,包括电源和第一方面各种实施例中的天线阵列,所述电源用于向所述天线阵列供电。
第三方面,本申请实施例提供一种可移动平台,包括机身和第二方面提供的雷达,所述雷达设置在所述机身上。
本申请第一方面提供的本实施例中的天线阵列、雷达以及可移动平台,通过各辐射贴片的宽度相同,位于辐射单元的非端部的其他辐射贴片开设的第一凹槽的开槽深度从所述辐射单元的中部向端部依次增大,可以使得该天线阵列在满足较宽的工作带宽的基础上,能够有效抑制旁瓣,实现天线阵列的高旁瓣抑制比或者低旁瓣特性。
附图说明
图1是本申请一实施例提供的天线阵列的分解示意图;
图2是本申请一实施例提供的天线阵列的部分结构示意图,其中示出了辐射单元和第二介质基板;
图3是本申请一实施例提供的辐射单元的部分结构示意图;
图4是本申请一实施例提供的天线阵列的剖视图;
图5是本申请一实施例提供的天线阵列的部分结构示意图,其中示出了中间介质基板和中间金属贴片;
图6是本申请一实施例提供的辐射单元的部分结构示意图;
图7是本申请一实施例提供的天线阵列的部分结构示意图,其中示出了第一介质基板、馈电单元和第二金属贴片;
图8是本申请一实施例提供的天线阵列的部分结构示意图,其中示出了馈电单元;
图9是采用驻波形的天线阵列的结构示意图,该天线阵列通过调节贴片的宽度实现辐射功率的泰勒分布调制;
图10是图9中的部分结构示意图;
图11是图9中的天线阵列的相移示意图;
图12是本申请一实施例提供的天线阵列的相移示意图;
图13是图9中天线阵列的俯仰面方向图;
图14是本申请一实施例提供的天线阵列的俯仰面方向图;
图15是本申请一实施例提供的天线阵列的天线回波损坏示意图。
附图标号说明:
10、天线基体;11、天线侧面;12、馈电侧面;131、第一介质基板;132、第二介质基板;14、第一接地层;141、第一缝隙;15、中间介质基板;16、第二接地层;161、第二缝隙;17、第一金属过孔;
20、辐射单元;21、辐射贴片;211、第一凹槽;22、微带线;221、第一微带线;30、馈电单元;31、馈电微带线;
40、中间金属贴片;50、第一金属贴片;51、缝隙;52、第一贯穿孔;
60、第二金属贴片;61、第二凹槽;62、第二贯穿孔;63、第三贯穿孔;70、第二金属过孔;
101、贴片。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或 多个相关的所列项目的任意的和所有的组合。下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
各国规划将以79GHz为中心频率的77 ̄81GHz频段应用于车载毫米波宽带雷达中。77 ̄81GHz宽带雷达相比76 ̄77GHz窄带频段能够大大地提高距离分辨率,适合于对短距离探测中距离分辨率高(0.15m ̄0.3m)的应用场景中,天线作为雷达前端的重要组成部分,需要具备宽带工作的能力,包括宽频带范围的阻抗匹配,旁瓣抑制,波束指向和增益平坦度。
1)阻抗匹配:天线可以分为行波天线和驻波天线,现有天线以驻波天线为主,其阻抗特性随频率剧烈变化,存在阻抗带宽窄的问题(相对带宽3%左右);
2)旁瓣抑制带宽:现有技术可以实现在窄带范围内旁瓣抑制优于20dB,但宽带内实现旁瓣抑制是宽带雷达天线设计的难点;
3)波束指向:波束指向指的是天线方向图中增益最大点的指向位置,天线阵列的波束指向由每个辐射单元的相位决定,现有的一端侧馈的形式只能在窄带内保证波束指向稳定在法向点;
4)增益平坦度:现有技术中宽带内天线的增益平坦度约4~5dB,此数值过大,使得雷达探测距离不够。
为解决上述问题的至少一个,本申请实施例提供一种天线阵列。请参考图1和图2,该天线阵列包括天线基体10、辐射单元20和馈电单元30。天线基体10具有相对设置的天线侧面11和馈电侧面12。辐射单元20设于天线侧面11。辐射单元20包括沿第一方向排列的多个辐射贴片21。多个辐射贴片21依次相连,每个辐射贴片21上开设有第一凹槽211。馈电单元30设于馈电侧面12,用于将能量耦合到辐射单元20的中部。
其中,各辐射贴片21沿第二方向的宽度相同,第二方向垂直于第一方向。除了位于辐射单元20端部的辐射贴片21a开设的第一凹槽211a之外,其他辐射贴片21开设的第一凹槽211沿第一方向的开槽深度从辐射单元20的中部向端部依次增大。
本实施例中的天线阵列,各辐射贴片21的宽度相同,位于辐射单元20的非端部的其他辐射贴片21开设的第一凹槽211的开槽深度从辐射单元20的中部向端部依次增大,可以使得该天线阵列具有较宽的工作带宽;并且能够调节各辐射贴片21的辐射能量的大小,实现辐射能量的泰勒分布调制,在满足预设频段的电磁波的辐射需求的同时,还可以有效抑制旁瓣,实现天线阵列的高旁边抑制比或者低旁瓣特性。
可以理解地,由于从辐射单元20的中部的能量向两端辐射过程中,能量是逐级衰减的,越往两端传输,能量越弱,因此,其他辐射贴片21开设的第一凹槽211的开槽深度的逐渐变化,能够使得每个辐射贴片21的能量分布更加合理,旁瓣更低。
示例性地,第一方向为天线阵列的长度延伸方向。第二方向为天线阵列的宽度延伸方向。
示例性地,第一方向为辐射单元20的长度延伸方向。第二方向为辐射单元20的宽度延伸方向。
示例性地,第一方向为如图2中的Y方向所示,第二方向为如图2中的X方向所 示。
在一些实施例中,位于辐射单元20端部的辐射贴片21a开设的第一凹槽211a朝向辐射单元20的中部,其他辐射贴片21开设的第一凹槽211背离辐射单元20的中部。端部的辐射贴片21a的第一凹槽211a能够用于调节阻抗匹配,实现天线阵列的辐射特性。可以理解地,通过控制其他辐射贴片21开设的第一凹槽211的开槽深度的逐渐变化能够实现辐射功率的泰勒分布调制,通过将端部的辐射贴片21a的第一凹槽211a设计呈端口匹配,可以使得整个天线阵列上的电场呈行波分布状态。
请参考图3,在一些实施例中,辐射贴片21呈方形,辐射贴片21沿第一方向的长度LS为0.5λ g。辐射贴片21沿第二方向的宽度WS为0.42λ g-1.12λ g,即0.42λ g、0.60λ g、1.0λ g、1.12λ g以及0.42λ g-1.12λ g之间的其他任意合适数值。其中λ g为中心频点处等效介质波长。辐射贴片21的长度LS决定了天线阵列的谐振频率,辐射贴片21的宽度会影响到天线阵列的辐射阻抗和端口匹配效果。通过设置合理尺寸的辐射贴片21,其他辐射贴片21开设的第一凹槽211沿第一方向的开槽深度从辐射单元20的中部向端部依次增大,使得能量在辐射贴片21上辐射时,所产生的谐振频率和带宽在预设范围内,并且能量在辐射贴片21上分布合理,能够实现低旁瓣的特点。
在一些实施例中,各第一凹槽211沿第二方向的开槽宽度相同,便于第一开槽的加工。在其他实施例中,各第一凹槽211沿第二方向的开槽宽度也可以逐渐变化,以调节端口匹配特性。
在一些实施例中,第一凹槽211沿第二方向的开槽宽度WS为0.16λ g-0.25λ g,即0.16λ g、0.20λ g、0.25λ g以及0.16λ g-0.25λ g之间的其他任意合适数值。第一凹槽211的开槽深度LS为0.05λ g-0.18λ g,即0.05λ g、0.10λ g、0.18λ g以及0.05λ g-0.18λ g之间的其他任意合适数值。其中λ g为中心频点处等效介质波长。第一凹槽211的开槽宽度能够用于调节端口匹配特性。第一凹槽211的开槽深度能够用于调节辐射阻抗大小。通过设置合理的辐射贴片21的尺寸和第一凹槽211的尺寸,使得能量在辐射贴片21上辐射时,所产生的谐振频率和带宽在预设范围内,并且,能量在辐射贴片21上分布更加合理,有效减小旁瓣干扰的影响,实现更低的旁瓣。
在一些实施例中,天线阵列为背馈式行波天线阵列,使得该天线阵列具有较宽的工作带宽,并且在宽带内满足增益平坦度好、波束指向稳定的要求。
请参考图1和图4,在一些实施例中,天线基体10包括第一介质基板131、第一接地层14、中间介质基板15、第二接地层16、第二介质基板132和多个第一金属过孔17。第一介质基板131的表面设有馈电单元30。第一接地层14设置在第一介质基板131之背向馈电单元30的表面。中间介质基板15设置在第一接地层14之背向第一介质基板131的表面。第二接地层16设置在中间介质基板15之背向第一接地层14的表面。第 二介质基板132设置在第二接地层16之背向中间介质基板15的表面,辐射单元20设于第二介质基板132之背向第二接地层16的一侧。第二介质基板132、第二接地层16、中间介质基板15、第一接地层14和第一介质基板131由上而下依次层叠设置。
示例性地,馈电单元30可以粘结在第一介质基板131的表面,也可以通过刻蚀等其他任意合适的方法设置在第一介质基板131的表面。
在一些实施例中,天线阵列采用PCB压合工艺制备,包括敷铜,层叠混压,打机械通孔,天线阵列在制备时不需要引入盲埋孔设计,降低加工成本,提高加工的良率。
示例性地,第一介质基板131远离第二介质基板132的一侧即为天线基体10的馈电侧面12。第二介质基板132远离第一介质基板131的一侧即为天线基体10的天线侧面11。
请参考图1,第一接地层14设有第一缝隙141。第二接地层16设有第二缝隙161。多个第一金属过孔17贯穿第一介质基板131、第一接地层14、中间介质基板15、第二接地层16和第二介质基板132,且多个第一金属过孔17围合在第一缝隙141和第二缝隙161的四周。其中,第一缝隙141和第二缝隙161用于将馈电单元30的能量耦合到辐射单元20的中部。本实施例中的天线阵列,通过采用行波天线的形式,辅以缝隙耦合以及从辐射单元20中部馈电的馈电结构,结合可等效为波导结构的多个第一金属过孔17,可以使得该天线阵列具有较宽的工作带宽,并且在宽带内满足增益平坦度好、波束指向稳定的要求。
可以理解地,馈电单元30的能量通过缝隙耦合的方式传播到第一缝隙141,多个第一金属过孔17围合在第一缝隙141和第二缝隙161的四周而构成等效波导结构,使得第一缝隙141耦合的能量通过该等效波导结构传播到第二缝隙161,第二缝隙161再通过耦合的方式将能量传播到辐射单元20的中部,并通过辐射单元20将能量以电磁波形式向空间辐射。
设置多个第一金属过孔17构成等效波导结构,能量在该等效波导结构中传播时,衰减少,能保证天线的效率。能量在辐射单元20上传播时,是从辐射单元20的中部向两端逐级辐射,实现波束指向稳定的效果。
示例性地,第一缝隙141的形状、结构与第二缝隙161的形状、结构相同,可以使得能量通过第一缝隙141和第二缝隙161耦合至辐射单元20的过程中,能量的衰减较小。
其中,第一缝隙141和/或第二缝隙161的形状可以根据实际需求进行设计,比如为矩形、H形、哑铃形、蝴蝶结形、沙漏形等中的任意一种。
第一缝隙141和第二缝隙161的尺寸可以根据实际需求设计为任意合适的尺寸,以使得馈电单元30的能量在第二缝隙161的耦合效率高,或者第一缝隙141的能量向辐射单元20的耦合效率高。
在一些实施例中,第一缝隙141与第二缝隙161的位置对应。具体的,在第一介质基板131的板面上,第一缝隙141和第二缝隙161的正投影重合。进一步的,多个第一金属过孔17的延伸方向与第一介质基板131的板面垂直,多个第一金属过孔17构成的等效波导结构在垂直于第一介质基板131板面的方向上的截面形状呈矩形。通过在第一 缝隙141和第二缝隙161的周围设置可等效为波导结构的多个金属过孔,可以有效的降低能量在介质中的损耗。
在设置多个第一金属过孔17时,在平行于第一介质基板131的板面的方向上,多个第一金属过孔17所围合的空间所构成的等效波导结构的截面形状可以与第一缝隙141(或第二缝隙161)相同或者不同。比如该截面形状可以为矩形、H形、哑铃形、蝴蝶结形、沙漏形、圆形、平行四边形、梯形等中的任意一种。
在一些实施方式中,每个第一金属过孔17与第一缝隙141(或第二缝隙161)可以等间距间隔设置。在另一些实施方式中,每个第一金属过孔17与第一缝隙141(或第二缝隙161)的间距可以互不相同或者不全相同。
请参考图1,在一些实施例中,多个第一金属过孔17为采用在各层介质基板和接地层上开设对应的通孔,并在通孔内填充金属材料形成。具体的,第二接地层16、中间介质基板15和第一接地层14上分别开设有多个通孔。第二接地层16上的多个通孔、中间介质基板15的多个通孔和第一接地层14上的多个通孔的位置对应,形状相同。在将各层层叠形成整体后,在各层的多个通孔内壁镀制一层金属,或者在各层的通孔填满金属,从而形成第一金属过孔17。第一金属过孔17的金属材质可以为铜、铝、银等。
在一些实施例中,第一接地层14和第二接地层16为金属材质,例如铜箔、铝箔、银箔等。第一介质基板131、中间介质基板15和第二介质基板132为层压板,例如,第一介质基板131和第二介质基板132的材质为高频低损耗材料(如Rogers Ro4835,Rogers Ro3003等)。中间层介质基板的材质为FR4。
上述各层的材质选择是根据用途划分,第一介质基板131作为馈电单元30的承载基础,一方面用于给予馈电单元30足够的支撑,另一方面,用于隔离馈电单元30和第一接地层14,使得第一缝隙141能够和馈电单元30产生耦合,因而第一介质基板131选择高频低损耗材料,降低能量损耗,可提升耦合效率。第二介质基板132与第一介质基板131类似,亦选择高频低损耗材料。中间介质基板15可用于雷达走线,由于中间介质基板15的引入,使得第一缝隙141和第二缝隙161的纵向距离增大,通过多个第一金属过孔17所围合的部分构成等效波导结构,可将第一缝隙141耦合的能量更加集中地传输到第二缝隙161,考虑到成本因素,中间介质基板15可选择普通的FR4材料。
可以理解地,中间介质基板15的数量可以根据实际需求进行设置,比如为为1层、2层、3层、4层、5层、6层……N层,N为正整数。每层中间介质基板15的板厚可以根据实际需求进行设计,在此不作限制。在一些实施例中,请参考图1,中间介质基板15的数量为多个。示例性地,中间介质基板15的数量为5层,即中间介质基板151、152、153、154、155。中间介质基板15的数量与能量的幅相特性相关,馈电单元30耦合到第一缝隙141的能量传播到第二缝隙161时,需尽可能的保持幅相特性不变。
请参考图1和图4,在一些实施例中,天线阵列还包括两个中间金属贴片40。两个中间金属贴片40分别设于中间介质基板15的相对两侧。两个中间金属贴片40在平行于中间介质基板15的投影面上至少部分重合。
本实施例的天线阵列,两个中间金属贴片40在平行于中间介质基板15的投影面上具有重合部分,该重合部分相当于给该天线阵列增加了容性加载,从而抵消天线阵列阻 抗的感性部分。两个中间金属贴片40构成等效电容结构,可以提供部分电容效应,调节该重合部分的重合长度能够用于天线阵列的阻抗匹配。
示例性地,两个中间金属贴片40构成等效电容结构,调节该重合部分的重合长度能够调节等效电容结构的等效电容,可以对电抗进行微调。
示例性地,该等效电容结构能够使得电抗达到所需值,降低天线阵列的能量反射,提高天线阵列的辐射效率。所需值可以根据实际需求进行设定,比如使得电抗接近于零。
在一些实施例中,中间金属贴片40的材料为铜。中间金属贴片40的厚度可以根据实际需求进行设置。比如,请参考图5,中间金属贴片40呈方形,中间金属贴片40沿第一方向的长度LT为0.038λ g-0.13λ g,即0.038λ g、0.05λ g、0.10λ g、0.13λ g以及0.038λ g-0.13λ g之间的其他任意合适数值。中间金属贴片40沿第二方向的宽度WT为0.038λ g-0.25λ g,即0.038λ g、0.10λ g、0.20λ g、0.25λ g以及0.038λ g-0.25λ g之间的其他任意合适数值。
两个中间金属贴片40可以根据实际需求设计在任意合适位置。在一些实施例中,中间金属贴片40位于第一接地层14和第二接地层16之间。具体地,第一接地层14、两个中间金属贴片40和第二接地层16沿第一接地层14、中间介质基板15和第二接地层16的层叠方向依次设置。
在一些实施例中,两个中间金属贴片40分别设于中间介质基板15的相对的两个表面,中间介质基板15为多个中间介质基板15中最中间的一个。请参考图4,示例性地,中间介质基板15的数量为5层,即中间介质基板151、152、153、154、155。两个中间金属贴片40分别设于中间介质基板153的相对的两个表面。
示例性地,中间介质基板15的数量为6层,即第一中间板、第二中间板、第三中间板、第四中间板、第五中间板和第六中间板。两个中间金属贴片40分别设于第三中间板(或者第四中间板)的相对的两个表面。
本实施例的天线阵列,通过将两个中间金属贴片40设置在合适的位置,能够有效用于天线阵列的阻抗匹配。
在一些实施例中,两个中间金属贴片40之间设有至少两个中间介质基板15。示例性地,中间介质基板15的数量为5层,即中间介质基板151、152、153、154、155。两个中间金属贴片40之间设有中间介质基板152、153。其中一个中间金属贴片40设置在中间介质基板152远离中间介质基板153的一侧,另一个中间金属贴片40设置在中间介质基板153远离中间介质基板152的一侧。
示例性地,中间介质基板15的数量为5层,即中间介质基板151、152、153、154、155。两个中间金属贴片40之间设有中间介质基板152、153、154。其中一个中间金属贴片40设置在中间介质基板152远离中间介质基板153的一侧,另一个中间金属贴片40设置在中间介质基板154远离中间介质基板153的一侧。
请参考图1、图2和图6,在一些实施例中,相邻辐射贴片21通过微带线22连接。第一缝隙141和第二缝隙161用于将馈电单元30的能量耦合到辐射单元20中部的第一微带线221上。第一微带线221为多个微带线22中的其中一个。
辐射单元20为微带贴片串馈形式的结构,第二缝隙161传输的能量耦合到第一微 带线221上,能量再向辐射单元20的两端流动,并在辐射贴片21上产生辐射,在微带线22上流动。在第一介质基板131的板面上的正投影中,第二缝隙161与第一微带线221相交且夹角为90°。换而言之,微带线22(包括第一微带线221)的延伸方向与第二缝隙161的长度方向相互垂直。可以理解的是,在实际产品上,由于制造公差等原因,允许第二缝隙161的长度方向与微带线22(包括第一微带线221)之间的夹角稍有浮动,例如,夹角在85°-95°时,亦可认为第二缝隙161的长度方向与第一微带线221垂直。设置此夹角,使得第二缝隙161能够与第一微带线221耦合而传播能量。辐射单元20采用微带贴片结构的形式,从中部的第一微带线221向两端逐级辐射,保证在宽带范围内波束指向稳定在法向点,稳定性好。
请参考图2,在一些实施例中,连接相邻的两个辐射贴片21的微带线22的一端连接在第一凹槽211的底壁上,另一端连接在相邻的辐射贴片21的背向第一凹槽211的一端。
请参考图2,在一些实施例中,辐射单元20对称设置。对称的辐射单元20,使得能量以相同的形式在第一微带线221两侧的辐射贴片21上进行辐射,得到的天线方向图呈对称结构,波束在宽带范围内稳定指向法向点。请参考图2,在一些实施方式中,辐射单元20关于第一微带线221对称。在另一些实施方式中,辐射单元20关于辐射单元20中部的辐射贴片21对称设置。
请参考图1和图2,在一些实施例中,天线阵列还包括第一金属贴片50。第一金属贴片50设置于天线侧面11并围合辐射单元20的中部。
可以理解地,第一金属片与第一金属过孔17连接。在辐射单元20中部的第一微带线221的周围,设置第一金属贴片50。第一金属贴片50上设有缝隙51和第一贯穿孔52。缝隙51与第一缝隙141位置对应,用于露出第一缝隙141的耦合空间,避免造成屏蔽。第一贯穿孔52内壁与多个第一金属过孔17连接。
在第一介质基板131的板面的正投影中,馈电微带线31与第一缝隙141相交且夹角为90°,即,馈电微带线31的延伸方向与第一缝隙141的长度方向相互垂直。馈电单元30将能量耦合到第一缝隙141的形式与第二缝隙161将能量耦合到辐射单元20的第一微带线221的形式相同,均为缝隙耦合方式。
馈电微带线31的结构可以为长条状,并且在能量流动的前端位置可设置宽度更宽,可进行阻抗匹配。馈电微带线31的能量流动的前端用于与馈线连接,用于接收射频芯片的能量,能量在馈电微带线31流动并在能量流动的末端将能量耦合到第二缝隙161。
请参考图1、图7和图8,在一些实施例中,馈电单元30包括馈电微带线31,天线阵列还包括第二金属贴片60。第二金属贴片60设置于馈电侧面12,第二金属贴片60开设有第二凹槽61,馈电微带线31伸入第二凹槽61内,并与第二凹槽61的内壁具有间隔,多个第一金属过孔17连接于第一金属贴片50与第二金属贴片60之间。设置第二凹槽61包围馈电微带线31,避免馈电微带线31的能量向两侧辐射,降低能量的损耗,使得耦合到第二缝隙161的能量越多。
其他实施例中,将能量耦合到第二缝隙161的结构不限于微带线22结构,还可以采用共面波导形式(GCPW)、基片集成波导形式(SIW)等,其结构参照现有技术即 可,不再赘述。
请参阅图1和图8,在一些实施例中,第一介质基板131开设有多个第二金属过孔70。多个第二金属过孔70设置在第二金属贴片60背向第二凹槽61的开口方向的一侧边缘。多个第二金属过孔70连接于第二金属贴片60与第一接地层14之间。第二金属贴片60上开设有第二贯穿孔62,第二金属过孔70与第二贯穿孔62的侧壁连接,第二金属过孔70构成阻隔屏蔽结构,降低馈电微带线31的能力沿自身的延伸方向传输,使得能量尽可能的耦合到第一缝隙141。
第二金属贴片60还设有多个第三贯穿孔63,多个第三贯穿孔63的侧壁与第一金属过孔17连接,以使得第一金属贴片50和第二金属贴片60共同将第一金属过孔17连接固定。
可以理解地,图4中箭头表示能量的传播方向,能量从馈电单元30耦合到第一接地层14的第一缝隙141上,在多个第一金属过孔17围合的空间所构成的等效波导结构中,第一缝隙141耦合的能量传播到第二接地层16的第二缝隙161上,第二缝隙161传播的能量再耦合到辐射单元20的中部,并从辐射单元20的中部向两端传播,能量在辐射单元20上传播时,向周围空间辐射电磁波,从而实现能量到电磁波的传播过程。两个中间金属贴片40构成等效电容结构,可以提供部分电容效应,用于帮助天线阵列的阻抗匹配。
综上,本申请实施例提供的天线阵列,通过将各辐射贴片21的宽度相同,位于辐射单元20的非端部的其他辐射贴片21开设的第一凹槽211的开槽深度从辐射单元20的中部向端部依次增大,可以使得该天线阵列具有较宽的工作带宽;并且能够调节各辐射贴片21的辐射能量的大小,实现辐射能量的泰勒分布调制,在满足预设频段的电磁波的辐射需求的同时,还可以有效抑制旁瓣,实现低旁瓣特性。此外,本申请实施例的天线阵列,结构简单,易于加工制作。另外,本申请实施例的天线阵列阻抗带宽宽,工作频带覆盖76GHz-81GHz。波束指向能稳定在法向点。增益平坦度小于1dB。
本申请还提供一对比实施例。请参阅图9和图10,图9和图10示出的天线阵列采用驻波形,天线阵列包括多个依次相连的贴片101,贴片101上不设置凹槽结构,通过调节各个贴片101的宽度实现辐射功率的泰勒分布调制,以实现高旁边抑制比,实现天线阵列的低旁瓣特性。
请参考图11,对图9中的天线阵列进行仿真,得到在76GHz-81GHz带宽范围内,由于各贴片101的宽度不同,相速差异明显,各贴片101中心间的相移随频率变化较大,这会影响方向图在宽带内的稳定性,造成方向图畸变,旁瓣抬升的问题。
请参考图12,对本申请的天线阵列进行仿真,得到在76GHz-81GHz带宽范围内,各辐射贴片中心间的相移保持稳定。
请参考图13,对图9中的天线阵列进行仿真,得到在76.5GHz、77GHz、79GHz和81GHz频点的俯仰面的旁瓣抑制性能示意图。
请参考图14,对本申请的天线阵列进行仿真,得到在76.5GHz、77GHz、79GHz和81GHz频点的俯仰面的旁瓣抑制小于20dB,旁瓣抑制好。对比图13和图14可知,本申请的天线阵列在宽带内明显具有更低的旁瓣,可以减小旁瓣干扰的影响。
请参考图15,对本申请的天线阵列进行仿真,得到在76GHz~81GHz频段内,天线回波损耗小于-10dB,匹配效果良好。
本申请实施例还提供一种雷达,该雷达为毫米波雷达。雷达包括电源以及本申请实施例提供的天线阵列,电源用于向天线阵列供电。
其中,在天线阵列的中间介质基板上,还可以设置有数据线等结构,用于供电或传输控制信号等。雷达中还可包括信号处理器,信号处理器可以包括射频芯片,可用于向天线阵列馈入能量。信号处理器还可以处理天线接收到的电信号。
本申请实施例还提供了一种可移动平台,例如汽车、轮船、火车等,该可移动平台包括机身和本申请实施例提供的雷达,雷达设置在机身上。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (22)

  1. 一种天线阵列,其特征在于,包括:
    天线基体,具有相对设置的天线侧面和馈电侧面;
    辐射单元,设于所述天线侧面,包括沿第一方向排列的多个辐射贴片,所述多个辐射贴片依次相连,每个所述辐射贴片上开设有第一凹槽;
    馈电单元,设于所述馈电侧面,用于将能量耦合到所述辐射单元的中部;
    其中,各所述辐射贴片沿第二方向的宽度相同,所述第二方向垂直于所述第一方向;除了位于所述辐射单元端部的辐射贴片开设的第一凹槽之外,其他辐射贴片开设的第一凹槽沿所述第一方向的开槽深度从所述辐射单元的中部向端部依次增大。
  2. 根据权利要求1所述的天线阵列,其特征在于,位于所述辐射单元端部的辐射贴片开设的第一凹槽朝向所述辐射单元的中部,其他辐射贴片开设的第一凹槽背离所述辐射单元的中部。
  3. 根据权利要求1所述的天线阵列,其特征在于,所述辐射贴片呈方形,所述辐射贴片沿第一方向的长度为0.5λ g,所述辐射贴片沿第二方向的宽度为0.42λ g-1.12λ g,其中λ g为中心频点处等效介质波长。
  4. 根据权利要求1所述的天线阵列,其特征在于,各所述第一凹槽沿第二方向的开槽宽度相同。
  5. 根据权利要求1所述的天线阵列,其特征在于,所述第一凹槽沿第二方向的开槽宽度为0.16λ g-0.25λ g,所述第一凹槽的开槽深度为0.05λ g-0.18λ g,其中λ g为中心频点处等效介质波长。
  6. 根据权利要求1所述的天线阵列,其特征在于,所述天线基体包括:
    第一介质基板,所述第一介质基板的表面设有所述馈电单元;
    第一接地层,设置在所述第一介质基板之背向所述馈电单元的表面,所述第一接地层设有第一缝隙;
    中间介质基板,设置在所述第一接地层之背向所述第一介质基板的表面;
    第二接地层,设置在所述中间介质基板之背向所述第一接地层的表面,所述第二接地层设有第二缝隙;
    第二介质基板,设置在所述第二接地层之背向所述中间介质基板的表面,所述辐 射单元设于所述第二介质基板之背向所述第二接地层的一侧;
    多个第一金属过孔,所述多个第一金属过孔贯穿所述第一介质基板、所述第一接地层、所述中间介质基板、所述第二接地层和所述第二介质基板,且所述多个第一金属过孔围合在所述第一缝隙和所述第二缝隙的四周;
    其中,所述第一缝隙和所述第二缝隙用于将所述馈电单元的能量耦合到所述辐射单元的中部。
  7. 根据权利要求6所述的天线阵列,其特征在于,所述天线阵列还包括:
    两个中间金属贴片,分别设于所述中间介质基板的相对两侧;两个所述中间金属贴片在平行于所述中间介质基板的投影面上至少部分重合。
  8. 根据权利要求7所述的天线阵列,其特征在于,所述中间金属贴片位于所述第一接地层和所述第二接地层之间。
  9. 根据权利要求7所述的天线阵列,其特征在于,所述中间介质基板的数量为多个。
  10. 根据权利要求7所述的天线阵列,其特征在于,两个所述中间金属贴片分别设于中间介质基板的相对的两个表面,所述中间介质基板为多个所述中间介质基板中最中间的一个。
  11. 根据权利要求7所述的天线阵列,其特征在于,两个所述中间金属贴片之间设有至少两个中间介质基板。
  12. 根据权利要求7所述的天线阵列,其特征在于,所述中间金属贴片呈方形,所述中间金属贴片沿所述第一方向的长度为0.038λ g-0.13λ g,所述中间金属贴片沿所述第二方向的宽度为0.038λ g-0.25λ g
  13. 根据权利要求7所述的天线阵列,其特征在于,多个所述第一金属过孔围设在所述中间金属贴片的四周。
  14. 根据权利要求6所述的天线阵列,其特征在于,所述第一缝隙或者所述第二缝隙为矩形、H形、哑铃形、蝴蝶结形、沙漏形的任意一种。
  15. 根据权利要求6所述的天线阵列,其特征在于,所述第一缝隙与所述第二缝隙的位置对应。
  16. 根据权利要求6所述的天线阵列,其特征在于,所述第一接地层和所述第二接地层为金属材质,所述第一介质基板、所述中间介质基板和所述第二介质基板为层压 板。
  17. 根据权利要求6所述的天线阵列,其特征在于,相邻所述辐射贴片通过微带线连接,所述第一缝隙和所述第二缝隙用于将所述馈电单元的能量耦合到所述辐射单元中部的第一微带线上,所述第一微带线为多个所述微带线中的其中一个。
  18. 根据权利要求17所述的天线阵列,其特征在于,所述辐射单元对称设置。
  19. 根据权利要求6所述的天线阵列,其特征在于,所述馈电单元包括馈电微带线,所述天线阵列还包括第一金属贴片和第二金属贴片,所述第一金属贴片设置于所述天线侧面并围合所述辐射单元的中部,所述第二金属贴片设置于所述馈电侧面,所述第二金属贴片开设有第二凹槽,所述馈电微带线伸入所述第二凹槽内,并与所述第二凹槽的内壁具有间隔,所述多个第一金属过孔连接于所述第一金属贴片与所述第二金属贴片之间。
  20. 如权利要求19所述的天线阵列,其特征在于,所述第一介质基板开设有多个第二金属过孔,所述多个第二金属过孔设置在所述第二金属贴片背向所述第二凹槽开口方向的一侧边缘,所述多个第二金属过孔连接于所述第二金属贴片与所述第一接地层之间。
  21. 一种雷达,其特征在于,包括:
    电源;以及
    权利要求1至20任一项所述的天线阵列,所述电源用于向所述天线阵列供电。
  22. 一种可移动平台,其特征在于,包括:
    机身;以及
    权利要求21所述的雷达,所述雷达设置在所述机身上。
PCT/CN2020/106431 2020-07-31 2020-07-31 天线阵列、雷达和可移动平台 WO2022021430A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080006540.4A CN113169459A (zh) 2020-07-31 2020-07-31 天线阵列、雷达和可移动平台
PCT/CN2020/106431 WO2022021430A1 (zh) 2020-07-31 2020-07-31 天线阵列、雷达和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106431 WO2022021430A1 (zh) 2020-07-31 2020-07-31 天线阵列、雷达和可移动平台

Publications (1)

Publication Number Publication Date
WO2022021430A1 true WO2022021430A1 (zh) 2022-02-03

Family

ID=76879305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106431 WO2022021430A1 (zh) 2020-07-31 2020-07-31 天线阵列、雷达和可移动平台

Country Status (2)

Country Link
CN (1) CN113169459A (zh)
WO (1) WO2022021430A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784494A (zh) * 2022-05-11 2022-07-22 南通至晟微电子技术有限公司 一种宽带解耦的叠层贴片天线
CN114914674A (zh) * 2022-04-22 2022-08-16 哈尔滨工业大学(深圳) 一种单层线极化磁电偶极子天线及天线阵列
CN115084845A (zh) * 2022-07-18 2022-09-20 西安电子科技大学 一种宽带法布里-珀罗谐振腔天线
CN115528422A (zh) * 2022-10-14 2022-12-27 四川九洲电器集团有限责任公司 一种柔性天线及其加工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690576B (zh) * 2021-08-25 2024-05-07 南京隼眼电子科技有限公司 微带天线以及无线信号传输设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055272A1 (en) * 2011-10-14 2013-04-18 Saab Ab Short range radar system
CN106972244A (zh) * 2017-02-28 2017-07-21 惠州硕贝德无线科技股份有限公司 一种车载雷达阵列天线
CN108987911A (zh) * 2018-06-08 2018-12-11 西安电子科技大学 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
CN110112567A (zh) * 2019-04-13 2019-08-09 一汽轿车股份有限公司 一种提高车载毫米波雷达天线收发隔离度的方法
CN110224224A (zh) * 2019-04-30 2019-09-10 惠州市德赛西威智能交通技术研究院有限公司 一种宽波束77GHz毫米波车载雷达天线
CN110380232A (zh) * 2019-05-29 2019-10-25 惠州市德赛西威汽车电子股份有限公司 一种基于77GHz汽车雷达的双层贴片阵列天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055272A1 (en) * 2011-10-14 2013-04-18 Saab Ab Short range radar system
CN106972244A (zh) * 2017-02-28 2017-07-21 惠州硕贝德无线科技股份有限公司 一种车载雷达阵列天线
CN108987911A (zh) * 2018-06-08 2018-12-11 西安电子科技大学 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
CN110112567A (zh) * 2019-04-13 2019-08-09 一汽轿车股份有限公司 一种提高车载毫米波雷达天线收发隔离度的方法
CN110224224A (zh) * 2019-04-30 2019-09-10 惠州市德赛西威智能交通技术研究院有限公司 一种宽波束77GHz毫米波车载雷达天线
CN110380232A (zh) * 2019-05-29 2019-10-25 惠州市德赛西威汽车电子股份有限公司 一种基于77GHz汽车雷达的双层贴片阵列天线

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914674A (zh) * 2022-04-22 2022-08-16 哈尔滨工业大学(深圳) 一种单层线极化磁电偶极子天线及天线阵列
CN114914674B (zh) * 2022-04-22 2023-12-29 哈尔滨工业大学(深圳) 一种单层线极化磁电偶极子天线及天线阵列
CN114784494A (zh) * 2022-05-11 2022-07-22 南通至晟微电子技术有限公司 一种宽带解耦的叠层贴片天线
CN114784494B (zh) * 2022-05-11 2023-11-07 南通至晟微电子技术有限公司 一种宽带解耦的叠层贴片天线
CN115084845A (zh) * 2022-07-18 2022-09-20 西安电子科技大学 一种宽带法布里-珀罗谐振腔天线
CN115528422A (zh) * 2022-10-14 2022-12-27 四川九洲电器集团有限责任公司 一种柔性天线及其加工方法

Also Published As

Publication number Publication date
CN113169459A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2020258214A1 (zh) 背馈式行波天线阵列、雷达和可移动平台
WO2022021430A1 (zh) 天线阵列、雷达和可移动平台
US6424298B1 (en) Microstrip array antenna
WO2022000351A1 (zh) 天线阵列、雷达和可移动平台
US8786496B2 (en) Three-dimensional array antenna on a substrate with enhanced backlobe suppression for mm-wave automotive applications
JP2001339207A (ja) アンテナ給電線路およびそれを用いたアンテナモジュール
CN109950693B (zh) 集成基片间隙波导圆极化缝隙行波阵列天线
CN110165372B (zh) 一种x波段船用雷达微带天线阵
CN203596414U (zh) 渐变缝隙天线及其相控阵天线
US11411319B2 (en) Antenna apparatus
CN111600133A (zh) 一种毫米波雷达单脊波导缝隙阵天线
CN113725600B (zh) 一种用于毫米波汽车雷达的mimo阵列天线
CN115621728A (zh) 一种宽带电容耦合梳状天线及车载毫米波雷达系统
CN113471706B (zh) 一种具有寄生辐射抑制功能的低副瓣天线阵列
CN113725599A (zh) 一种用于毫米波汽车雷达的组合天线
CN112054305A (zh) 一种基于复合左右手结构增益高度稳定的周期性漏波天线
CN109950688B (zh) 微带型isgw圆极化缝隙行波天线
CN114336043B (zh) 一种小型化集成相控阵天线及其设计方法
CN111541031A (zh) 一种宽带低剖面传输阵列天线及无线通信设备
CN113725601B (zh) 一种用于毫米波汽车雷达的多视场阵列天线
CN115939768A (zh) 间隙波导缝隙天线及角雷达
CN212114019U (zh) 一种毫米波雷达单脊波导缝隙阵天线
CN111786097A (zh) 一种波导毫米波雷达天线
CN113690605A (zh) 基于77GHz毫米波雷达的微带阵列天线系统
WO1996010277A9 (en) Planar high gain microwave antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947633

Country of ref document: EP

Kind code of ref document: A1