WO2022021039A1 - 用于风机叶片的主梁及其制造方法 - Google Patents

用于风机叶片的主梁及其制造方法 Download PDF

Info

Publication number
WO2022021039A1
WO2022021039A1 PCT/CN2020/105013 CN2020105013W WO2022021039A1 WO 2022021039 A1 WO2022021039 A1 WO 2022021039A1 CN 2020105013 W CN2020105013 W CN 2020105013W WO 2022021039 A1 WO2022021039 A1 WO 2022021039A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
pultruded
glass fiber
fiber pultruded
sheet
Prior art date
Application number
PCT/CN2020/105013
Other languages
English (en)
French (fr)
Inventor
梁嫄
马豪
拉尔斯·欧佛高
孙建旭
Original Assignee
远景能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远景能源有限公司 filed Critical 远景能源有限公司
Priority to PCT/CN2020/105013 priority Critical patent/WO2022021039A1/zh
Priority to GB2300368.4A priority patent/GB2611677B/en
Priority to MX2023000890A priority patent/MX2023000890A/es
Priority to CN202080003490.4A priority patent/CN114286891B/zh
Publication of WO2022021039A1 publication Critical patent/WO2022021039A1/zh
Priority to ZA2023/00355A priority patent/ZA202300355B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2006Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of wind turbines, in particular to a main beam used for wind turbine blades. Furthermore, the invention also relates to a method of manufacturing such a main beam.
  • the blades of the wind turbine are an important component of the wind turbine to capture wind energy.
  • the blades installed on the wind turbine hub rotate under the drive of wind energy to generate lift, which is further converted into torque through the transmission chain in the nacelle to drive the generator to generate electricity.
  • the larger the impeller composed of blades the more wind energy can be captured, so the blades of the fan tend to be longer and longer.
  • the headroom the distance from the tip of the fan blade to the tower, which is an important safety indicator
  • the blade main spar is a component that contributes about 90% of the swing stiffness, which basically determines the size of the headroom.
  • Hybrid fiber material is a composite material formed by mixing or mixing a certain amount of carbon fiber and glass fiber. Hybrid fiber materials offer the best balance of performance and cost.
  • the current hybrid fiber materials mainly have the following limitations:
  • the mixing method of hybrid fiber materials is mostly carried out at the material scale. For example, carbon fiber and glass fiber are mixed and woven in the same fabric layer in different proportions of fiber bundles, or a layer of carbon fiber and a layer of glass fiber are mixed.
  • the form is extremely lacking in design freedom, and the proportion of fiber mixing is completely controlled by the material supplier. For different types of blades, only fixed mixing ratio materials can be selected, which cannot meet the needs of customization for each model.
  • the final mechanical properties of carbon fiber are greatly affected by the process, so a stable process route is crucial to the performance stability of the final product.
  • the hybrid fiber material (that is, the hybrid material of carbon fiber and glass fiber) generally adopts the infusion process, that is, the multi-layer superposition of carbon-glass hybrid fabric is infused together, or several layers of carbon fiber and several layers of glass fiber cloth are superimposed and infused together.
  • the infusion process of this material is prone to defects such as bubbles and wrinkles, which greatly compromise the final properties.
  • the task of the present invention is to provide a main beam for wind turbine blades and a method for manufacturing the same, through which the main beam and/or the method can provide more economical, better performance, and better operability while reducing the amount of carbon fiber. Stronger hybrid form, thereby increasing the required stiffness and service life of the main beam.
  • this task is solved by a main beam for a wind turbine blade, the main beam comprising: one or more carbon fiber pultruded sheets arranged along the length of the blade; a or a plurality of glass fiber pultruded sheets, the glass fiber pultruded sheets are arranged along the length of the blade; the carbon fiber pultruded sheets and the glass fiber pultruded sheets are combined in one or more ways, and a or a combination of multiple ratios mixed so that the mixed carbon fiber pultruded sheet and glass fiber pultruded sheet have a positive hybrid effect and/or a bending-torsional coupling effect; and a first infusion material that infiltrates the carbon fiber pultruded sheet and The glass fiber pultruded sheet.
  • the term “spar” refers to the elongated structure in the shell on both sides of the blade for reinforcing the blade.
  • the main beams on both sides are connected with webs located inside the blade to support the inner space of the blade.
  • “Carbon fiber pultrusion board” refers to the material made of carbon fiber through resin infiltration and pultrusion process
  • glass fiber pultruded board refers to the material made of glass fiber through resin infiltration and pultrusion process.
  • the carbon fiber pultruded sheets and the glass fiber pultruded sheets in the girder together form a continuous girder surface, where necessary, the girder surface has the desired curvature.
  • the term "impregnated” refers to the pouring of a potting material into a potting object and at least partially bonding therewith and finally curing.
  • the second pouring material for forming the carbon fiber pultruded sheet can be the same as the first pouring material, or other pouring materials.
  • the third pouring material for forming the glass fiber pultruded sheet can be the same as the first pouring material, and also Other infusion materials are possible; carbon fiber pultruded sheets and glass fiber pultruded sheets can be arranged adjacent to each other in a direction perpendicular to the thickness of the main beam, such as in the length and width directions of the main beam, to form the coverage area of the main beam.
  • the carbon fiber pultruded sheet and the glass fiber pultruded sheet are in a strip structure
  • the carbon fiber pultruded sheet and the glass fiber pultruded sheet may be arranged adjacent to each other in the chord direction of the main beam.
  • chordwise refers to the direction perpendicular to the thickness of the main spar and perpendicular to the length of the blade.
  • the cross section of the main body of the glass fiber pultruded sheet is rectangular. According to different applications, different sizes of glass fiber pultruded sheets can be used. For example, fiberglass pultruded panels can be sized according to the desired final shape of the main beam.
  • the cross section of the carbon fiber pultruded sheet body is rectangular. According to different applications, different sizes of carbon fiber pultruded sheets can be used. For example, the carbon fiber pultruded sheet can be sized according to the desired final shape of the main beam.
  • m carbon fiber pultruded sheets are stacked along the blade thickness direction, and/or n carbon fiber pultruded sheets are stacked along the blade chord direction Stacked, where m and n are both integers from 1 to 100.
  • the carbon fiber pultruded sheet extends from 0.1% to 99.9% of the blade length.
  • the starting point of the blade length is the connection between the blade root and the hub, and the end point of the blade length is the blade tip.
  • the p glass fiber pultruded sheets are stacked along the blade thickness direction, and/or the q glass fiber pultruded sheets are stacked along the blade thickness direction.
  • the blades are stacked chordwise, where p and q are both integers from 1 to 100.
  • one or more glass fiber pultruded sheets may be arranged on the top, bottom, left and right, and front and rear of each carbon fiber pultruded sheet, and/or one or more carbon fiber pultruded sheets may be arranged.
  • one or more glass fiber pultruded boards and/or one or more carbon fiber pultruded boards may be arranged on the top, bottom, left, right, and front of each glass fiber pultruded board.
  • the stiffness of the main beam can be adjusted so that the glass fiber pultruded sheet and the carbon fiber pultruded sheet can be achieved after the secondary infusion together. Desired swing stiffness, and better formation of the desired surface.
  • the carbon fiber pultruded board is cured by using the second pouring material
  • the glass fiber pultruded board is cured by using the third pouring material.
  • the first potting material, the second potting material and the third potting material can be the same or different, or all three are the same or different, and all three include one or more of the following: Oxygen resins, vinyl resins, unsaturated polyester resins, phenolic resins, bismaleimides, and thermoplastic resins.
  • Other casting materials are also conceivable under the teachings of the present invention.
  • the thermoplastic resin includes one or more of the following items: polypropylene resin, polyethylene resin, polyvinyl chloride resin, polystyrene resin, polyacrylonitrile-butylene Diene-styrene resin, polyurethane, polyimide resin, polyether ether ketone resin, and polyphenylene sulfide resin.
  • polypropylene resin polyethylene resin
  • polyvinyl chloride resin polystyrene resin
  • polyacrylonitrile-butylene Diene-styrene resin polyurethane
  • polyimide resin polyimide resin
  • polyether ether ketone resin polyphenylene sulfide resin
  • the first end of the carbon fiber pultruded sheet and the second end of the glass fiber pultruded sheet are connected , and/or the first end of the carbon fiber pultruded sheet is inserted between two of the glass fiber pultruded sheets, and/or the second end of the glass fiber pultruded sheet is inserted into two of the carbon fiber pultruded sheets squeeze between the boards.
  • the first end and the second end may be the ends located in the length direction of the glass fiber pultruded board and the carbon fiber pultruded board, or may be located in the glass fiber pultruded board and the The end of the carbon fiber pultruded sheet in the width direction.
  • connection parts on the coordinate position can be distributed in a staggered manner, which can make the blade have a bending-torsional coupling effect, that is, torsional deformation occurs in the case of bending, and this response of the structure is used to passively reduce the load.
  • both sides of the carbon fiber pultruded sheet and the glass fiber pultruded sheet are inverted.
  • the angle is transitioned from 0 to full thickness, and multiple layers of fiber cloth are laid up and down in the blank area of the connection part.
  • the staggered size of the fiber cloth matches the slope angle of the pultruded boards on both sides.
  • the extruded board is connected by the cloth layer at the connecting part, which not only meets the requirements of strength but also meets the requirements of smooth geometric transition.
  • the fiber cloth starts from the connection point closest to the two pultruded boards.
  • the size of the fiber cloth is gradually changed from small to large.
  • the two pultruded boards are butted together to form a matching slope angle, and multiple layers of fiber cloth are arranged in the middle of the two boards. The hardness is better, and the friction coefficient is increased, so that the two pultruded plates do not move in position, and the local stiffness is enhanced; in addition, a and b layers of fiber cloth are arranged on the upper surface of the previous plate and the lower surface of the next plate.
  • the overall composition of the partial connection design so that the upper and lower surfaces of the two pultruded plates are more flat.
  • the main beam is composed of two kinds of pultruded plate main bodies and their connection parts in the thickness direction of the main beam, more mobility is provided in the direction perpendicular to the thickness direction of the main beam, such as the chord direction; these activities This facilitates the formation of a desired surface shape, such as a curved surface, of the spar material prior to infusion, so that the surface shape can be cured after infusion to maintain the surface shape.
  • the connecting portion includes one or more of glass fiber fabrics, carbon fiber fabrics, glass fiber non-woven fabrics, carbon fiber non-woven fabrics, and glass fiber rovings.
  • Other connection materials are also conceivable under the teachings.
  • the j connecting portions are stacked along the blade thickness direction, and/or the k connecting portions are stacked along the blade chord direction, wherein j and k are both integers from 1 to 100.
  • the aforementioned task is solved by a method of manufacturing a main spar for a wind turbine blade, the method comprising the steps of: providing one or more carbon fiber pultruded sheets, the carbon fiber pultruded sheets along the The blades are arranged in the length direction; one or more glass fiber pultruded sheets are provided, and the glass fiber pultruded sheets are arranged along the length direction of the blades; Combining or combining in one or more ratios so that the mixed carbon fiber pultruded sheet and glass fiber pultruded sheet has a positive hybrid effect and/or a bending-torsional coupling effect; and using the first potting material The carbon fiber pultruded sheet and the glass fiber pultruded sheet are wetted.
  • providing one or more carbon fiber pultruded sheets, and providing one or more glass fiber pultruded sheets includes the following steps: the carbon fiber pultruded sheets are infiltrated and cured with a second infusion material, And the glass fiber pultruded board is infiltrated and cured with a third pouring material; one or more carbon fiber pultruded boards and/or glass fiber pultruded boards are arranged on top of each other, and each of the carbon fiber pultruded boards is A priming layer is provided around for the second infusion; and a priming layer is provided around each of the glass fiber pultruded sheets for the second infusion.
  • the present invention has at least the following beneficial effects: (1) the present invention adopts the mixing of carbon fiber pultrusion and glass fiber pultrusion, which solves the shortcoming of insufficient rigidity of the pure glass fiber main beam, and also avoids the disadvantage that the price of pure carbon fiber is too high; The proportion of carbon fiber and glass fiber hybrid is adjusted to achieve the overall optimal cost performance; (2) carbon fiber and glass fiber composite materials exist in their respective optimal process modes: pultrusion; hybrid materials have a positive hybrid effect, that is, due to The existence of the other party improves its own stiffness, which is better than the theoretical value of the simple mixing relationship; compared with pure carbon fiber pultrusion blades, the mixing and buffering effect of glass fiber will reduce the process sensitivity of carbon fiber and improve carbon fiber.
  • the special local connection design makes it possible for the carbon fiber pultruded plate to start from the blade, and the local connection design has two functions, one is to ensure that the local strength of the connection meets the requirements , In addition, it provides a gentle geometric transition to avoid defects such as resin-rich pultrusion caused by the suspension of the pultruded board; carbon fiber pultruded board and glass fiber pultruded board can be mixed in the same layer according to the design, or can be mixed in different layers, with a local connection design , can be arranged in any combination to the greatest extent; the local connection design is realized by the composite material cloth layer, and the soft layer is used to connect the two hard structures, which is very flexible and appropriate.
  • the present invention also provides a method for manufacturing a fan blade, comprising the following steps: prefabricating a main beam by the aforementioned method, placing the main beam in a casing, and performing a third injection with the casing; or providing one or more Carbon fiber pultruded sheet, the carbon fiber pultruded sheet is arranged in the outer casing along the length direction of the blade; one or more glass fiber pultruded sheets are provided, and the glass fiber pultruded sheet is arranged along the length direction of the blade in inside the outer shell; perform the second pouring, so that the carbon fiber pultruded board, the glass fiber pultruded board and other materials are integrally formed.
  • the hybrid girder can be used as a prefabricated girder to form before the shell, and then put into the shell and infuse the shell for a second time;
  • carbon fiber is a material with high specific strength and high specific modulus, which is expensive and limits its wide application. Therefore, the present invention achieves the most efficient use of carbon fiber materials.
  • Mixing carbon fiber and glass fiber is a more optimized design. Compared with the material-level hybridization of carbon-glass hybrid weaving or carbon-glass hybrid layup, the hybridization of the present invention from a higher dimension will bring a larger design space, and is not restricted by the customized hybrid ratio of materials.
  • the properties of carbon fiber are very sensitive to process stability.
  • the pultrusion process is currently recognized as a process that can maximize and stabilize the performance of carbon fiber materials.
  • glass fiber pultrusion can also stabilize the performance of cured glass fiber materials. To sum up, the carbon fiber pultrusion and glass fiber pultrusion material mixed main beam will give full play to the maximum potential of blade design and create the most cost-effective products.
  • FIG. 1A to 1G illustrate various embodiments of main beams according to the present invention
  • FIGS. 2A to 2C show schematic diagrams of the connection of various components in the main beam.
  • Figures 3A-3B show schematic views of a fan employing a main beam according to the present invention.
  • FIG. 4 shows the flow of a method of manufacturing a main spar for a wind turbine blade according to the present invention.
  • 100-main beam 101-carbon fiber pultruded board; 102-glass fiber pultruded board; 103-connecting part; 104-connecting part.
  • the quantifiers "a” and “an” do not exclude the scenario of multiple elements.
  • GFRP glass fiber reinforced plastic composite
  • the task of the present invention is to provide a main beam for wind turbine blades and a method for manufacturing the same, through which the main beam and/or the method can provide more economical, better performance, and better operability while reducing the amount of carbon fiber. Stronger hybrid form, thereby increasing the required stiffness and service life of the main beam.
  • the present invention provides a main beam for a fan blade and a manufacturing method thereof, comprising one or more carbon fiber pultruded sheets arranged along the length direction of the blade; one or more glass fiber pultruded sheets , which are arranged along the length of the blade, wherein the carbon fiber pultruded sheet and the glass fiber pultruded sheet are mixed and arranged so that the mixed carbon fiber pultruded sheet and glass fiber pultruded sheet have a positive confounding effect and/or or a bending-torsion coupling effect; and; a first infusion material that infiltrates the carbon fiber pultruded sheet and the glass fiber pultruded sheet.
  • Figure 1A shows a first embodiment according to the present invention.
  • the main beam includes: one or more carbon fiber pultruded sheets 101 arranged along the length direction z of the blade; one or more glass fiber pultruded sheets 102, the glass fiber pultruded sheets 102
  • the fiber pultruded plates 102 are also arranged along the length direction z of the blade, and the arrangement along the length direction z of the blade includes: several plates can be spliced to form 0.1%-99.9% of the length of the blade, or a whole plate can be used to form the length of the blade 0.1%-99.9%.
  • the starting point of the blade length is the connection between the blade root and the hub, and the end point of the blade length is the blade tip.
  • the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 extend from 0.1% to 99.9% of the blade length. Under the teaching of the present invention, the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 start at 0.1%-99.9% of the blade length, and the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 end at 0.1%- 99.9% blade length.
  • the carbon fiber pultruded sheet 101 is stacked along the blade thickness direction x, and in a certain area of the main beam, seven of the glass fiber pultruded sheets 102 are stacked along the blade thickness
  • the direction x is stacked, and it can be seen from this side view that the carbon fiber pultruded sheet 101 is arranged on the outermost side of the blade, and the glass fiber pultruded sheet 102 is on the inner side of the blade; the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet
  • the extruded sheets 102 are combined in one or more ways and mixed in one or more ratios; a second infusion material, which infiltrates the carbon fiber pultruded plate 101, and a third infusion material, which infiltrates the glass fiber pultrusion board 102 .
  • the cross section of the main body of the glass fiber pultruded sheet 102 is rectangular. According to different applications, different sizes of glass fiber pultruded sheets 102 can be adopted. For example, the fiberglass pultruded sheet 102 may be sized according to the desired final shape of the main beam.
  • the cross section of the main body of the carbon fiber pultruded sheet 101 is rectangular. According to different applications, carbon fiber pultruded sheets 101 of different sizes can be used. For example, the carbon fiber pultruded sheet 101 may be sized according to the desired final shape of the main beam.
  • FIG. 1B shows a second embodiment according to the present invention.
  • one or more glass fiber pultruded sheets 102 are arranged above and below each carbon fiber pultruded sheet 101 .
  • the carbon fiber pultruded board is arbitrarily embedded in the glass fiber pultruded board.
  • the carbon fiber pultruded sheet 101 is cured by using the second casting material
  • the glass fiber pultruded sheet 102 is cured by using the third casting material.
  • the first potting material, the second potting material and the third potting material include one or more of the following: containing thermosetting epoxy resin, vinyl resin, unsaturated polyester resin, phenolic resin, bismaleyl imines, and thermoplastic resins.
  • Other casting materials are also conceivable under the teachings of the present invention.
  • the thermoplastic resin includes one or more of the following items: polypropylene resin, polyethylene resin, polyvinyl chloride resin, polystyrene resin, polyacrylonitrile-butylene Diene-styrene resin, polyurethane, polyimide resin, polyether ether ketone resin, and polyphenylene sulfide resin.
  • polypropylene resin polyethylene resin
  • polyvinyl chloride resin polystyrene resin
  • polyacrylonitrile-butylene Diene-styrene resin polyurethane
  • polyimide resin polyimide resin
  • polyether ether ketone resin polyphenylene sulfide resin
  • the first end of the carbon fiber pultruded sheet 101 and the second end of the glass fiber pultruded sheet 102 The ends are connected, and/or the first end of the carbon fiber pultruded sheet 101 is inserted between the two glass fiber pultruded sheets 102, and/or the second end of the glass fiber pultruded sheet 102 is inserted between the two carbon fiber pultruded sheets 101 .
  • the first end and the second end may be the ends located in the length direction z of the glass fiber pultrusion plate 102 and the carbon fiber pultrusion plate 101, or may be located in the glass fiber pultrusion plate 102 and the carbon fiber pultrusion plate 101.
  • Figure 1C shows a third embodiment according to the present invention.
  • the carbon fiber pultruded sheet 101 is inserted and connected on the same side of the glass fiber pultruded sheet 102 .
  • the carbon fiber pultruded sheet 101 is only arranged in the blade tip area, and the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 are mixed in layers.
  • Figure ID shows a fourth embodiment according to the present invention.
  • a short carbon fiber pultruded sheet 101 is inserted between two long glass fiber pultruded sheets 102 .
  • the carbon fiber pultruded sheet 101 is only arranged in the blade tip area, and the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 are interlayered.
  • Figure 1E shows a fifth embodiment according to the present invention.
  • three carbon fiber pultruded sheets 101 are placed on the first layer, two carbon fiber pultruded sheets 101 are placed on the second layer, and one carbon fiber pultruded sheet 101 is placed on the third layer.
  • Carbon fiber pultruded plate 101 so that the torsion and shear center of each layer will be offset in the chord direction, so that the main beam will be deformed torsionally when it is subjected to bending load, and the increase of the negative torsion will reduce the angle of attack of the blade, This has the effect of reducing the load.
  • FIG. 1F shows a sixth embodiment according to the present invention.
  • the carbon fiber pultruded sheets 101 and the glass fiber pultruded sheets 102 are macroscopically connected in a straight line .
  • FIG. 1G shows a seventh embodiment according to the present invention.
  • the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 are butted in a macroscopic zigzag shape, and the zigzag butt joint can reduce the harm caused by the sudden change of local stress.
  • better passive load reduction of the main beam can be achieved, for example, in a certain layer in the thickness direction x of the blade, design a specific hybrid row along the chord direction y cloth, at the y-coordinate position of the first chord, the first carbon fiber pultruded sheet 101 and the first glass fiber pultruded sheet 102 are locally connected, and at the y-coordinate position of the second chord, the second carbon fiber pultruded sheet that is partially connected is distributed Plate 101 and the second glass fiber pultruded plate 102, and so on, at the y-coordinate position of the Nth chord, the Nth carbon fiber pultruded plate 101 and the Nth glass fiber pultruded plate 102 are distributed locally connected, then the first chord
  • the connection part 104 on the y-coordinate position, the connection part 104 on the second chord-direction y-coordinate position, and the connection part 104 on the Nth chord-direction y-coordinate position can be distributed in a certain layer in the thickness direction x of
  • one or more connecting portions 103 cover the carbon fiber.
  • the first end of the pultruded sheet 101 and/or the second end of the glass fiber pultruded sheet 102 are stipulated that at the connecting portion 104 of the glass fiber pultruded sheet 102 and the carbon fiber pultruded sheet 101.
  • the connecting portion includes one or more of glass fiber fabrics, carbon fiber fabrics, glass fiber non-woven fabrics, carbon fiber non-woven fabrics, and glass fiber rovings.
  • Other connection materials are also conceivable under the teachings.
  • the j connecting portions are stacked along the blade thickness direction x, and/or the k connecting portions are stacked along the blade chord direction y, where j and k are both integers from 1 to 100.
  • connection part 104 the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 are on both sides There are chamfers transitioning from 0 to full thickness, and multiple layers of fiber cloth (connecting part 103) are laid up and down in the blank area of the connection part 104.
  • the fiber cloth (connecting part 103 ) changes gradually from small to large when the fiber cloth (connecting part 103 ) transitions from the point closest to the connection of the two pultruded boards to the full thickness.
  • the two pultruded boards When the chamfers of the two pultruded boards face to both sides, the two pultruded boards are butted together to form a matching slope angle, and multiple layers of fiber cloth are arranged in the middle of the two boards.
  • the hardness is better, and the friction coefficient is increased, so that the two pultruded plates do not move in position, and the local stiffness is enhanced; in addition, a and b layers of fiber cloth are arranged on the upper surface of the previous plate and the lower surface of the next plate. , the overall composition of the partial connection design, so that the upper and lower surfaces of the two pultruded plates are more flat.
  • the main girder is composed of two pultruded sheet bodies and the connecting parts 104 of the two in the thickness direction x of the main girder, more mobility is provided in the direction perpendicular to the thickness direction x of the main girder, such as the chord direction y direction ; These activities facilitate the formation of the desired surface shape, such as a curved surface, of the main beam material prior to infusion, and thus can cure to maintain the surface shape after infusion.
  • Both sides of the carbon fiber pultruded board 101 and the glass fiber pultruded board 102 have chamfers transitioning from full thickness to 0.
  • x layers of fiber cloth are laid up and down. The slope angle is matched, and the left and right pultruded plates are connected by the middle cloth layer, which not only meets the requirements of strength but also meets the requirements of smooth geometric transition.
  • FIG. 2A shows an eighth embodiment according to the present invention.
  • the chamfered sides of the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 face one side, that is, in the third embodiment, the fifth embodiment, the sixth embodiment and the seventh embodiment, the carbon fiber
  • Figure 2B shows a ninth embodiment according to the present invention.
  • the chamfers of the carbon fiber pultruded sheet 101 and the glass fiber pultruded sheet 102 face to both sides, that is, in the third embodiment, the fifth embodiment, the sixth embodiment and the seventh embodiment, the carbon fiber pultruded
  • the upper side of the glass fiber pultruded board 102 and the lower side of the glass fiber pultruded board 102 have y and z layers of fiber cloth (connecting part 103 ) respectively, which form a partial connection design as a whole.
  • Figure 2C shows a tenth embodiment according to the present invention.
  • the carbon fiber pultruded sheet 101 has chamfered corners, and the glass fiber pultruded sheet 102 is smooth.
  • the carbon fiber pultruded board 101 is inserted into the middle of the glass fiber pultruded board 102, a reliable and gentle connection design is also required, and y and x layers of cloth are placed on the top and bottom of the carbon fiber pultruded board 101 (connection part 103). ), which acts as a local connection.
  • the aforementioned task is solved by a method of manufacturing a main spar for a wind turbine blade, the method comprising the steps of: providing one or more carbon fiber pultruded sheets 101 , the carbon fiber pultruded sheets 101 are arranged along the length direction z of the blade; one or more glass fiber pultruded sheets 102 are provided, and the glass fiber pultruded sheets 102 are arranged along the length direction z of the blade;
  • the fiber pultruded sheets 102 are combined in one or more ways and mixed in one or more ratios; the carbon fiber pultruded sheets 101 and the glass fiber pultruded sheets 102 are infiltrated with the first infusion material.
  • providing one or more carbon fiber pultruded sheets 101 and providing one or more glass fiber pultruded sheets 102 includes the following steps: the carbon fiber pultruded sheets 101 are infiltrated with a second potting material and curing, and the glass fiber pultruded sheet 102 is impregnated and cured with a third potting material; one or more carbon fiber pultruded sheets 101 and/or glass fiber pultruded sheets 102 are arranged on top of each other, and each A glass fiber infusion layer is arranged around the carbon fiber pultruded plate 101 for the second infusion; and a glass fiber infusion layer is arranged around each of the glass fiber pultruded plates 102 for the second infusion.
  • the present invention also provides a method for manufacturing a fan blade, comprising the following steps: prefabricating a main beam by the aforementioned method, placing the main beam in a casing, and performing a third injection with the casing; or providing one or more Carbon fiber pultrusion board 101, the carbon fiber pultrusion board 101 is arranged in the casing along the blade length direction z; one or more glass fiber pultrusion boards 102 are provided, and the glass fiber pultrusion board 102 is arranged along the The blades are arranged in the casing in the longitudinal direction z; the second injection is performed to make the carbon fiber pultruded sheet 101, the glass fiber pultruded sheet 102 and other materials integrally formed.
  • the hybrid main beam can be used as a prefabricated main beam to be formed before the shell, and then put into the shell and injected into the shell for a second time;
  • carbon fiber is a material with high specific strength and high specific modulus, which is expensive and limits its wide application. Therefore, the present invention achieves the most efficient use of carbon fiber materials.
  • Mixing carbon fiber and glass fiber is a more optimized design. Compared with the material-level hybridization of carbon-glass hybrid weaving or carbon-glass hybrid layup, the hybridization of the present invention from a higher dimension will bring a larger design space, and is not restricted by the customized hybrid ratio of materials.
  • the properties of carbon fiber are very sensitive to process stability.
  • the pultrusion process is currently recognized as a process that can maximize and stabilize the performance of carbon fiber materials.
  • glass fiber pultrusion can also stabilize the performance of cured glass fiber materials. To sum up, the carbon fiber pultrusion and glass fiber pultrusion material mixed main beam will give full play to the maximum potential of blade design and create the most cost-effective products.
  • FIG. 3A shows a schematic cross-sectional view of a wind turbine blade 1 using a main beam 100 according to the present invention in a vertical blade thickness direction.
  • FIG. 3B shows a schematic cross-sectional view of the wind turbine blade 1 in the vertical blade length direction using the main beam 100 according to the present invention.
  • the blade 1 has a leading edge 2 and a trailing edge 8, and the part of the blade 1 in front of the leading edge 2 and the trailing edge 8 is divided into a windward side 5 and a leeward side 6.
  • the trailing edge beam 7 is arranged near the trailing edge 8 to increase the strength of the trailing edge.
  • the main beams 100 are arranged on the windward face 5 and the leeward face 6, respectively, between the leading edge 2 of the blade and the trailing edge 8 of the blade.
  • the main beams 100 are connected by the web 4 to increase the stability of the blade and prevent inward collapse. With the main beam 100 of the present invention, the rigidity of the blade 1 can be improved, and the compliance of the material of the main beam can be enhanced, thereby improving the aerodynamic performance and service life of the blade.
  • FIG. 4 shows a method flow 400 of manufacturing a main spar for a wind turbine blade according to the present invention.
  • step 402 one or more carbon fiber pultruded sheets are provided, the carbon fiber pultruded sheets are stacked in the thickness direction, the length direction and/or the chord direction, wherein the carbon fiber pultruded sheets are cured by using the second infusion material, Wherein, a glass fiber infusion material is arranged between every two carbon fiber pultruded sheets;
  • one or more fiberglass pultruded sheets are provided that are stacked in thickness, length, and/or chord direction, wherein the glass fiber pultruded sheets are cured with a third potting material formed, wherein a glass fiber infusion material is arranged between every two glass fiber pultruded plates; it can be arranged adjacent to the carbon fiber pultruded plate;
  • one or more covering layers are arranged on the carbon fiber pultruded sheet and/or the glass fiber pultruded sheet on both sides in the thickness direction of the main beam;
  • the carbon fiber pultruded sheet, the glass fiber pultruded sheet and the cover layer are impregnated with a first infusion material.
  • the present invention has at least the following beneficial effects: (1) the present invention adopts the mixing of carbon fiber pultrusion and glass fiber pultrusion, which solves the shortcoming of insufficient rigidity of the pure glass fiber main beam, and also avoids the disadvantage that the price of pure carbon fiber is too high; The proportion of carbon fiber and glass fiber hybrid is adjusted to achieve the overall optimal cost performance; (2) carbon fiber and glass fiber composite materials exist in their respective optimal process modes: pultrusion; hybrid materials have a positive hybrid effect, that is, due to The existence of the other party improves its own stiffness, which is better than the theoretical value of the simple mixing relationship; compared with pure carbon fiber pultrusion blades, the mixing and buffering effect of glass fiber will reduce the process sensitivity of carbon fiber and improve carbon fiber.
  • the special local connection design makes it possible for the carbon fiber pultruded plate to start from the blade, and the local connection design has two functions, one is to ensure that the local strength of the connection meets the requirements , In addition, it provides a smooth geometric transition to avoid defects such as resin-rich pultrusion caused by the suspension of the pultruded board;
  • the connection design can be arranged in any combination to the greatest extent; the local connection design is realized by the composite material cloth layer, and the soft layer is used to connect the two hard structures, which is very flexible and appropriate;
  • the above embodiments have described in detail the different configurations of the main beam used for the fan blade and its manufacturing method.
  • the present invention includes but is not limited to the configurations listed in the above embodiments. Contents that are transformed on the basis of the provided configuration all belong to the protection scope of the present invention. Those skilled in the art can draw inferences from the contents of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Wind Motors (AREA)

Abstract

一种用于风机叶片(1)的主梁(100)及其制造方法,包括:一个或多个碳纤拉挤板(101),其沿叶片(1)的长度方向布置;一个或多个玻纤拉挤板(102),其沿叶片(1)的长度方向布置,其中碳纤拉挤板(101)和玻纤拉挤板(102)被混合布置为使得所混合的碳纤拉挤板(101)和玻纤拉挤板(102)具有正向的混杂效应和/或弯扭耦合效应;以及;第一灌注材料,其浸润碳纤拉挤板(101)和玻纤拉挤板(102)。

Description

用于风机叶片的主梁及其制造方法 技术领域
本发明涉及风力发电机领域,具体而言,涉及一种用于风机叶片的主梁。此外,本发明还涉及一种制造这样的主梁的方法。
背景技术
近年来,随着各国对环境的重视度提高,清洁能源领域在世界范围内呈现出快速发展的趋势。清洁能源作为一种新型能源,与传统化石燃料相比具有分布广泛、可再生、环境污染小等优点。作为清洁能源的最有潜力的代表,风力发电机的应用日益增多,并有望进一步取代传统化石能源。风电是典型的清洁能源,因近年来环保问题越来越受到各方重视。而风电的核心和灵魂是叶片设计,而叶片设计的关键则依赖于主承力结构—主梁设计。
风力发电机的叶片是风力发电机捕捉风能的重要组件,其中安装在风机轮毂上的叶片在风能驱动下旋转以产生升力,通过机舱内的传动链进一步转化为转矩带动发电机发电。在相同情况下,叶片构成的叶轮越大,则能够捕捉的风能越多,因此风机的叶片有越来越长的趋势。随着叶片越来越长,净空(净空是指,风机叶片的尖端到塔架的距离,是一个重要的安全指标)越来越成为瓶颈,开发新型叶片材料或叶片设计来提高净空已迫在眉睫。叶片主梁作为贡献挥舞刚度约90%的部件,由此基本决定了净空的大小。
碳纤维是一种高模量高强度材料,但同时价格也较高。因此,如何合理地将碳纤维引入叶片中以达到既提高净空的余量、又尽量少地增加叶片成本,是各大风电公司的当前重要研究课题。由于纯碳纤维主梁的成本过高,一次性投入回本时间过长,因此混杂纤维材料应运而生。混杂纤维材料是通过将一定量的碳纤维与玻璃纤维进行混编或混铺而成的复合材料。 混杂纤维材料可尽量平衡性能和成本。
然而,目前的混杂纤维材料主要具有如下局限性:
1、混杂纤维材料的混合方式多是在材料尺度进行的,例如碳纤维和玻璃纤维以纤维束不同比例混杂编织在同一织物层,或一层碳纤维与一层玻璃纤维混铺而成,这样的混杂形式极度缺少设计自由度,纤维混杂的比例完全由材料供应商制约,对于不同型号的叶片,只有固定的混配比材料可以选用,无法达到针对每一款型号进行定制的需求。
2、碳纤维的最终力学性能受工艺影响很大,因此一个稳定的工艺路线对最终产品的性能稳定性至关重要。混杂纤维材料(即碳纤维和玻璃纤维的混杂材料)一般多采用灌注工艺,即碳玻混合织物多层叠加一同灌注,或几层碳纤维几层玻纤布叠加一起灌注。然而,这种材料的灌注工艺容易产生气泡和褶皱等缺陷,对最终性能大打折扣。
目前需要一种至少部分地消除上述局限性的新型风机主梁或主梁材料。
发明内容
本发明的任务是,提供一种用于风机叶片的主梁及其制造方法,通过该主梁和/或该方法,可以在降低碳纤维用量的情况下提出更加经济、性能更优、可操作性更强的混杂形式,从而提高主梁的所需刚度和使用寿命。
在本发明的第一方面,该任务通过一种用于风机叶片的主梁来解决,该主梁包括:一个或多个碳纤拉挤板,所述碳纤拉挤板沿叶片长度方向排列;一个或多个玻纤拉挤板,所述玻纤拉挤板沿所述叶片长度方向排列;所述碳纤拉挤板和所述玻纤拉挤板以一种或多种方式组合、以及一种或多种比例组合混杂为使得所混合的碳纤拉挤板和玻纤拉挤板具有正向的混杂效应和/或弯扭耦合效应;以及第一灌注材料,其浸润所述碳纤拉挤板和所述玻纤拉挤板。
在本发明中,术语“主梁”是指叶片两侧壳体中用于增强叶片的狭长结构。通常,两侧主梁与位于叶片内部的腹板连接以支撑叶片内部空间。“碳纤拉挤板”是指碳纤维经过树脂浸润以及拉挤过程固化而成的材料, “玻纤拉挤板”是指玻璃纤维经过树脂浸润以及拉挤过程固化而成的材料。优选地,主梁中的碳纤拉挤板和玻纤拉挤板一起形成连续的主梁表面,必要时所述主梁表面具有所期望的曲率。术语“浸润”是指灌注材料浇注进灌注对象中并与之至少部分地结合并最终固化。另外,形成碳纤拉挤板的第二灌注材料可以和第一灌注材料相同,也可以是其他灌注材料,同理,形成玻纤拉挤板的第三灌注材料可以与第一灌注材料相同,也可以是其他灌注材料;碳纤拉挤板和玻纤拉挤板可以在垂直于主梁的厚度的方向上、如在主梁的长度和宽度方向上彼此相邻布置以构成主梁的覆盖面积。在碳纤拉挤板和玻纤拉挤板为条状结构的情况下,碳纤拉挤板和玻纤拉挤板可以在主梁的弦向上彼此相邻布置。在此,术语“弦向”是指垂直于主梁的厚度且垂直于叶片长度方向的方向。
在本发明的一个扩展方案中规定,玻纤拉挤板主体的截面为矩形。根据不同应用场合,可以采取不同尺寸的玻纤拉挤板。例如,可以根据主梁的所期望的最终形状来确定玻纤拉挤板的尺寸。
在本发明的一个扩展方案中规定,碳纤拉挤板主体的截面为矩形。根据不同应用场合,可以采取不同尺寸的碳纤拉挤板。例如,可以根据主梁的所期望的最终形状来确定碳纤拉挤板的尺寸。
在本发明的一个扩展方案中规定,在所述主梁的某一区域,m个所述碳纤拉挤板沿叶片厚度方向叠放,和/或n个所述碳纤拉挤板沿叶片弦向叠放,其中m、n均为1至100的整数。所述碳纤拉挤板延伸于0.1%-99.9%叶片长度。叶片长度的起点为叶片根部与轮毂连接处,叶片长度的终点为叶尖。
在本发明的另一个扩展方案中规定,在所述主梁的某一区域,p个所述玻纤拉挤板沿叶片厚度方向叠放,和/或q个所述玻纤拉挤板沿叶片弦向叠放,其中p、q均为1至100的整数。
例如,在每个碳纤拉挤板的上下、左右、前后可以布置一个或多个玻纤拉挤板,和/或布置一个或多个碳纤拉挤板。同理,在每个玻纤拉挤板的上下、左右、前后可以布置一个或多个玻纤拉挤板,和/或布置一个或多个碳纤拉挤板。通过调节碳纤拉挤板和玻纤拉挤板不同的混杂方案、混杂尺 寸、以及混杂比例,可以调节主梁的刚度,以便玻纤拉挤板与碳纤拉挤板一起在二次灌注以后实现所期望的挥舞刚度,以及更好地形成所期望的曲面。
在本发明的另一个优选方案中规定,所述碳纤拉挤板利用所述第二灌注材料固化而成,所述玻纤拉挤板利用所述第三灌注材料固化而成。其中第一灌注材料、第二灌注材料及第三灌注材料两两之间可以相同或不同,或三者均相同或均不同,三者均包括下列各项中的一个或多个:含热固性环氧树脂、乙烯基树脂、不饱和聚酯树脂、酚醛树脂、双马来酰亚胺、以及热塑性树脂。在本发明的教导下,其它浇注材料也是可设想的。
在本发明的又一个优选方案中规定,其中所述热塑性树脂包括下列各项中的一个或多个:聚丙烯树脂、聚乙烯树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚丙烯腈-丁二烯-苯乙烯树脂、聚氨酯、聚酰亚胺树脂、聚醚醚酮树脂、以及聚苯硫醚树脂。在本发明的教导下,其它热塑性树脂也是可设想的。
在本发明的另一扩展方案中规定,在所述叶片厚度方向的一层或多层上,所述碳纤拉挤板的第一端部和所述玻纤拉挤板的第二端部连接,和/或所述碳纤拉挤板的第一端部插入两个所述玻纤拉挤板之间,和/或所述玻纤拉挤板的第二端部插入两个所述碳纤拉挤板之间。所述第一端部和所述第二端部即可以是位于所述玻纤拉挤板和所述碳纤拉挤板长度方向上的端部,也可以是位于所述玻纤拉挤板和所述碳纤拉挤板宽度方向上的端部。
通过该优选方案,可以实现主梁更好的被动降载,例如,在所述叶片厚度方向的某一层,沿弦向设计特定的混杂排布,第一弦向坐标位置上,分布局部连接的第一碳纤拉挤板和第一玻纤拉挤板,第二弦向坐标位置上,分布局部连接的第二碳纤拉挤板和第二玻纤拉挤板,以此类推,第N弦向坐标位置上,分布局部连接的第N碳纤拉挤板和第N玻纤拉挤板,则第一弦向坐标位置上的连接部位、第二弦向坐标位置上的连接部位和第N弦向坐标位置上的连接部位可以错落分布,可以使叶片具有弯扭耦合效应,即在受弯的情况下产生扭转变形,利用结构的这种响应来被动降载。
在本发明的又一个优选方案中规定,在所述玻纤拉挤板和所述碳纤拉 挤板的连接部位,一个或多个连接部,所述连接部覆盖所述碳纤拉挤板的第一端部和/或所述玻纤拉挤板的第二端部。
通过该优选方案,可以实现主梁的更好的局部强度,以及提供平缓的几何过渡,其原因在于,首先,从连接部位处开始,碳纤拉挤板与玻纤拉挤板两侧均有倒角从0过渡到全厚度,在连接部位的空白区域上下各铺设多层纤维布,纤维布的错层尺寸与两侧拉挤板的斜坡角度匹配,局部连接的碳纤拉挤板与玻纤拉挤板利用连接部位的布层进行连接,既满足强度又满足几何平缓过渡的要求,当两块拉挤板的倒角侧朝向一侧时,纤维布从最靠近两块拉挤板的连接处到完全过渡到全厚度时,纤维布的尺寸是由小到大渐变的。当两块拉挤板的倒角朝向两侧时,两块拉挤板对接刚好形成斜坡角度匹配,布置多层纤维布在两块板中间,两块拉挤板之间的空隙不在,贴合度更好,且增加了摩擦系数,使两块拉挤板之间不错位移动,局部刚度增强;另外在上一块板的上表面,及下一块板的下表面各布置a和b层纤维布,整体组成局部连接设计,这样使两块拉挤板的上下表面更加平整。由于在主梁的厚度方向上由两种拉挤板主体和两者的连接部位构成,因此在主梁的厚度方向垂直的方向、如弦向方向上提供了更多的活动性;这些活动性有利于主梁材料在灌注前形成所期望的表面形状、如曲面,因此可在灌注后固化保持所述表面形状。
在本发明的又一个优选方案中规定,所述连接部包括玻纤织物、碳纤织物、玻纤无纺布、碳纤无纺布,以及玻纤粗纱中的一种或几种,在本发明的教导下,其它连接部的材料也是可设想的。j个所述连接部沿叶片厚度方向叠放,和/或k个所述连接部沿叶片弦向叠放,其中j、k均为1至100的整数。
在本发明的第二方面,前述任务通过一种制造用于风机叶片的主梁的方法来解决,该方法包括下列步骤:提供一个或多个碳纤拉挤板,将所述碳纤拉挤板沿叶片长度方向排列;提供一个或多个玻纤拉挤板,将所述玻纤拉挤板沿所述叶片长度方向排列;使所述碳纤拉挤板和所述玻纤拉挤板以一种或多种方式组合、以及一种或多种比例组合混杂为使得所混合的碳 纤拉挤板和玻纤拉挤板具有正向的混杂效应和/或弯扭耦合效应;以及用第一灌注材料浸润所述碳纤拉挤板和所述玻纤拉挤板。
在本发明的一个优选方案中规定,提供一个或多个碳纤拉挤板,以及提供一个或多个玻纤拉挤板包括下列步骤:所述碳纤拉挤板利用第二灌注材料浸润并固化,且所述玻纤拉挤板利用第三灌注材料浸润并固化;将一个或多个碳纤拉挤板和/或玻纤拉挤板彼此相叠布置,以及在每个所述碳纤拉挤板的周围设置灌注层以备第二次灌注;以及在每个所述玻纤拉挤板的周围设置灌注层以备第二次灌注。
本发明至少具有如下有益效果:(1)本发明采用了碳纤拉挤和玻纤拉挤混杂,解决了纯玻纤主梁刚度不足的缺点,也避免了纯碳纤维价格过高的弊端;可以任意调配碳纤维和玻璃纤维混杂的比例,来达到整体最优性价比;(2)碳纤维和玻璃纤维复合材料以它们各自最优的工艺方式存在:拉挤;混杂材料存在正向的混杂效应,即,由于对方的存在而提高了本身的刚度,优于单纯的混配关系理论值;与纯碳纤维拉挤叶片相比,有了玻纤的混入和缓冲作用,将会降低碳纤维的工艺敏感性,提高碳纤维工艺和质量鲁棒性;(3)特殊的局部连接设计,可以使碳纤维拉挤板从叶片叶中起始成为可能,并且局部的连接设计有两个作用,一个是保证连接的局部强度满足要求,另外是提供平缓的几何过渡,避免拉挤板悬空造成富树脂等缺陷;碳纤拉挤板和玻纤拉挤板可以根据设计在同一层混杂,也可以在不同层混杂,有了局部连接设计,可以最大程度的任意组合排布;局部连接设计是由复合材料布层来实现的,软的铺层用来连接两个硬质结构,非常灵活恰当。
本发明还提供一种制造风机叶片的方法,包括下列步骤:利用前述的方法预制主梁,将所述主梁放置于壳体中,与壳体进行第三次灌注;或提供一个或多个碳纤拉挤板,将所述碳纤拉挤板沿叶片长度方向排列于所述外壳内;提供一个或多个玻纤拉挤板,将所述玻纤拉挤板沿所述叶片长度方向排列于所述外壳内;进行第二次灌注,使所述碳纤拉挤板、所述玻纤拉挤板与其他材料一体成型。该混杂主梁可以作为预制主梁先于壳体成型,后放到壳体跟壳体二次灌注;或在初始就将两种拉挤板放到壳体中与壳体 其它部分一次成型。
在本发明提供的用于风机叶片的主梁及其制造方法中,碳纤维是一种高比强度、高比模量的材料,价格昂贵,限制了其广泛应用。因此,本发明实现了最大效益的利用碳纤维材料。将碳纤维和玻璃纤维混杂,是一种更加优化的设计方式。而相比于碳玻混杂编织或碳玻混杂铺层这些材料级别的混杂,本发明从更高维度上来混杂会带来更大的设计空间,不受材料定制化混杂比的制约。另外,碳纤维的各项性能对于工艺稳定性非常敏感,拉挤工艺是目前公认可以最大程度且稳定发挥碳纤维材料性能的工艺,同样,玻纤拉挤也可以稳定固化玻纤材料的性能。综上所述,碳纤拉挤和玻纤拉挤材料混杂主梁,将会发挥叶片设计最大的潜能,创造最优性价比的产品。
附图说明
图1A至图1G示出了根据本发明的主梁的多个实施例;
图2A至图2C示出了主梁中各个部件连接的示意图;以及
图3A至图3B示出了采用根据本发明的主梁的风机的示意图;以及
图4示出了根据本发明的制造用于风机叶片的主梁的方法流程。
图中所示:100-主梁;101-碳纤拉挤板;102-玻纤拉挤板;103-连接部;104-连接部位。
具体实施方式
应当指出,各附图中的各组件可能为了图解说明而被夸大地示出,而不一定是比例正确的。在各附图中,给相同或功能相同的组件配备了相同的附图标记。
在本发明中,除非特别指出,“布置在…上”、“布置在…上方”以及“布置在…之上”并未排除二者之间存在中间物的情况。此外,“布置在…上或上方”仅仅表示两个部件之间的相对位置关系,而在一定情况下、如在颠倒产品方向后,也可以转换为“布置在…下或下方”,反之亦然。
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为限制性的。
在本发明中,除非特别指出,量词“一个”、“一”并未排除多个元素的场景。
在此还应当指出,在本发明的实施例中,为清楚、简单起见,可能示出了仅仅一部分部件或组件,但是本领域的普通技术人员能够理解,在本发明的教导下,可根据具体场景需要添加所需的部件或组件。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。以此类推,在本发明中,表方向的术语“垂直于”、“平行于”等等同样涵盖了“基本上垂直于”、“基本上平行于”的含义。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺序。除非特别指出,各方法步骤可以以不同顺序执行。
大多数传统的主梁采用玻璃纤维增强塑料复合材料(GFRP),在单独的主梁模具中灌注成型,先形成预制件,再放入壳模中与其他材料组装成整体的叶片壳体。
目前市场上大部分还是纯玻纤主梁,在叶片80m以上,玻纤材料已无法满足长叶片对刚度的需求,导致玻纤叶片往往异常笨重,而加入碳纤维材料可以极其高效的解决刚度问题。但目前的碳纤维主梁要么就只有纯碳纤维拉挤或纯碳纤维灌注主梁,价格极其昂贵;即使碳玻混杂主梁,也多为碳玻混杂编织或混杂铺设的材料级别混杂形式,而并没有在更高的结构设计维度进行碳材料和玻纤材料的混排。另外,即使个别专利提到了碳纤维和玻璃纤维拉挤混杂设计,也并没有解决实际两种材料连接的细节设计问题,在可操作性上有所欠缺。
本发明的任务是,提供一种用于风机叶片的主梁及其制造方法,通过该主梁和/或该方法,可以在降低碳纤维用量的情况下提出更加经济、性能更优、可操作性更强的混杂形式,从而提高主梁的所需刚度和使用寿命。
为实现上述思想,本发明提供了一种用于风机叶片的主梁及其制造方 法,包括一个或多个碳纤拉挤板,其沿叶片的长度方向布置;一个或多个玻纤拉挤板,其沿叶片的长度方向布置,其中所述碳纤拉挤板和所述玻纤拉挤板被混合布置为使得所混合的碳纤拉挤板和玻纤拉挤板具有正向的混杂效应和/或弯扭耦合效应;以及;第一灌注材料,其浸润所述碳纤拉挤板和所述玻纤拉挤板。
以下结合附图和具体实施例对本发明提出的用于风机叶片的主梁及其制造方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
可以根据设计优化结果,来决定碳板是否排布于叶片的最外侧,还是排布在中间层(在主梁厚度方向的维度),参见第一实施例和第二实施例。图1A示出了根据本发明的第一实施例。
在第一实施例中,该主梁包括:一个或多个碳纤拉挤板101,所述碳纤拉挤板101沿叶片长度方向z排列;一个或多个玻纤拉挤板102,所述玻纤拉挤板102也沿所述叶片长度方向z排列,沿所述叶片长度方向z排列包括:可以由几块板拼接构成叶片长度0.1%-99.9%,也可以由一整块板构成叶片长度的0.1%-99.9%。叶片长度的起点为叶片根部与轮毂连接处,叶片长度的终点为叶尖。所述碳纤拉挤板101及玻纤拉挤板102延伸于0.1%-99.9%叶片长度。在本发明的教导下,所述碳纤拉挤板101及玻纤拉挤板102起于0.1%-99.9%叶片长度,所述碳纤拉挤板101及玻纤拉挤板102止于0.1%-99.9%叶片长度。
在所述主梁的某一区域,3个所述碳纤拉挤板101沿叶片厚度方向x叠放,在所述主梁的某一区域,7个所述玻纤拉挤板102沿叶片厚度方向x叠放,且由该侧视图看出,碳纤拉挤板101排布在叶片的最外侧,玻纤拉挤板102在叶片的内侧;所述碳纤拉挤板101和所述玻纤拉挤板102以一种或多种方式组合、以及一种或多种比例组合混杂;第二灌注材料,其浸润所述碳纤拉挤板101,第三灌注材料,其浸润所述玻纤拉挤板102。
玻纤拉挤板102主体的截面为矩形。根据不同应用场合,可以采取不同尺寸的玻纤拉挤板102。例如,可以根据主梁的所期望的最终形状来确 定玻纤拉挤板102的尺寸。碳纤拉挤板101主体的截面为矩形。根据不同应用场合,可以采取不同尺寸的碳纤拉挤板101。例如,可以根据主梁的所期望的最终形状来确定碳纤拉挤板101的尺寸。
图1B示出了根据本发明的第二实施例。
在第二实施例中,在每个碳纤拉挤板101的上下布置了一个或多个玻纤拉挤板102。碳纤拉挤板任意嵌入玻纤拉挤板,通过调节碳纤拉挤板101和玻纤拉挤板102不同的混杂方案、混杂尺寸、以及混杂比例,可以调节主梁的刚度,以便玻纤拉挤板102与碳纤拉挤板101一起在二次灌注以后实现所期望的挥舞刚度,以及更好地形成所期望的曲面。
在本发明的另一个优选方案中规定,所述碳纤拉挤板101利用所述第二灌注材料固化而成,所述玻纤拉挤板102利用所述第三灌注材料固化而成。其中第一灌注材料、第二灌注材料及第三灌注材料均包括下列各项中的一个或多个:含热固性环氧树脂、乙烯基树脂、不饱和聚酯树脂、酚醛树脂、双马来酰亚胺、以及热塑性树脂。在本发明的教导下,其它浇注材料也是可设想的。
在本发明的又一个优选方案中规定,其中所述热塑性树脂包括下列各项中的一个或多个:聚丙烯树脂、聚乙烯树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚丙烯腈-丁二烯-苯乙烯树脂、聚氨酯、聚酰亚胺树脂、聚醚醚酮树脂、以及聚苯硫醚树脂。在本发明的教导下,其它热塑性树脂也是可设想的。
在本发明的另一扩展方案中规定,在所述叶片厚度方向x的一层或多层上,所述碳纤拉挤板101的第一端部和所述玻纤拉挤板102的第二端部连接,和/或所述碳纤拉挤板101的第一端部插入两个所述玻纤拉挤板102之间,和/或所述玻纤拉挤板102的第二端部插入两个所述碳纤拉挤板101之间。所述第一端部和所述第二端部即可以是位于所述玻纤拉挤板102和所述碳纤拉挤板101长度方向z上的端部,也可以是位于所述玻纤拉挤板102和所述碳纤拉挤板101宽度方向上的端部。
可以根据设计优化结果,来决定碳板是否排布于叶片的最叶尖部分(叶 片长度方向上的维度),参见第三实施例和第四实施例。
图1C示出了根据本发明的第三实施例。
在第三实施例中,碳纤拉挤板101在玻纤拉挤板102同一侧插入并连接。碳纤拉挤板101仅排布在叶尖区域,碳纤拉挤板101和玻纤拉挤板102是层内混杂。
图1D示出了根据本发明的第四实施例。
在第四实施例中,在两层长的玻纤拉挤板102中间插入短的碳纤拉挤板101。碳纤拉挤板101仅排布在叶尖区域,碳纤拉挤板101和玻纤拉挤板102是层间混杂。
图1E示出了根据本发明的第五实施例。
在第五实施例中,第一层放置3块碳纤拉挤板101,第二层放置2块碳纤拉挤板101,第三层放置1块碳纤拉挤板101,弦向排布不同数目的碳纤拉挤板101,这样每一层的扭转和剪切中心会产生弦向偏移,可使主梁在受到弯曲载荷时产生扭转的变形,而扭转负向增加会导致叶片攻角减小,从而具有降载的作用。
图1F示出了根据本发明的第六实施例。
在第六实施例中,在第五实施例中的每一层(该层应具有多块碳纤拉挤板101)上,碳纤拉挤板101和玻纤拉挤板102为宏观上的直线对接。
图1G示出了根据本发明的第七实施例。
与第六实施例不同的是,在第七实施例中,碳纤拉挤板101和玻纤拉挤板102为宏观上的之字型对接,之字形对接可减少局部应力突变带来的危害。
通过第五实施例、第六实施例和第七实施例,可以实现主梁更好的被动降载,例如,在所述叶片厚度方向x的某一层,沿弦向y设计特定的混杂排布,第一弦向y坐标位置上,分布局部连接的第一碳纤拉挤板101和第一玻纤拉挤板102,第二弦向y坐标位置上,分布局部连接的第二碳纤拉挤板101和第二玻纤拉挤板102,以此类推,第N弦向y坐标位置上,分布局部连接的第N碳纤拉挤板101和第N玻纤拉挤板102,则第一弦向y坐标位置上的连接部位104、第二弦向y坐标位置上的连接部位104和第 N弦向y坐标位置上的连接部位104可以错落分布,可以使叶片具有弯扭耦合效应,即在受弯的情况下产生扭转变形,利用结构的这种响应来被动降载。
在本发明的又一个优选方案中规定,在所述玻纤拉挤板102和所述碳纤拉挤板101的连接部位104,一个或多个连接部103,所述连接部103覆盖所述碳纤拉挤板101的第一端部和/或所述玻纤拉挤板102的第二端部。
在本发明的又一个优选方案中规定,所述连接部包括玻纤织物、碳纤织物、玻纤无纺布、碳纤无纺布,以及玻纤粗纱中的一种或几种,在本发明的教导下,其它连接部的材料也是可设想的。j个所述连接部沿叶片厚度方向x叠放,和/或k个所述连接部沿叶片弦向y叠放,其中j、k均为1至100的整数。
通过该优选方案,可以实现主梁的更好的局部强度,以及提供平缓的几何过渡,其原因在于,首先,从连接部位104处开始,碳纤拉挤板101与玻纤拉挤板102两侧均有倒角从0过渡到全厚度,在连接部位104的空白区域上下各铺设多层纤维布(连接部103),纤维布(连接部103)的错层尺寸与两侧拉挤板的斜坡角度匹配,局部连接的碳纤拉挤板101与玻纤拉挤板102利用连接部位104的布层进行连接,既满足强度又满足几何平缓过渡的要求,当两块拉挤板的倒角侧朝向一侧时,纤维布(连接部103)从最靠近两块拉挤板的连接处到完全过渡到全厚度时,纤维布(连接部103)的尺寸是由小到大渐变的。当两块拉挤板的倒角朝向两侧时,两块拉挤板对接刚好形成斜坡角度匹配,布置多层纤维布在两块板中间,两块拉挤板之间的空隙不在,贴合度更好,且增加了摩擦系数,使两块拉挤板之间不错位移动,局部刚度增强;另外在上一块板的上表面,及下一块板的下表面各布置a和b层纤维布,整体组成局部连接设计,这样使两块拉挤板的上下表面更加平整。由于在主梁的厚度方向x上由两种拉挤板主体和两者的连接部位104构成,因此在主梁的厚度方向x垂直的方向、如弦向y方向上提供了更多的活动性;这些活动性有利于主梁材料在灌注前形成所期望的表面形状、如曲面,因此可在灌注后固化保持所述表面形状。
碳纤拉挤板101与玻纤拉挤板102两侧均有倒角从全厚度过渡到0, 在中间空白区域上下各铺设x层纤维布,纤维布的错层尺寸与两侧拉挤板的斜坡角度匹配,左右两块拉挤板利用中间的布层进行连接,既满足强度又满足几何平缓过渡的要求。
图2A示出了根据本发明的第八实施例。
在第八实施例中,碳纤拉挤板101与玻纤拉挤板102的倒角侧朝向一侧,即第三实施例、第五实施例、第六实施例及第七实施例中,碳纤拉挤板101与玻纤拉挤板102在层内混杂时的第一种连接方式;
图2B示出了根据本发明的第九实施例。
在第九实施例中,碳纤拉挤板101与玻纤拉挤板102的倒角朝向两侧,即第三实施例、第五实施例、第六实施例及第七实施例中,碳纤拉挤板101与玻纤拉挤板102在层内混杂时的第二种连接方式;有x层纤维布在碳纤拉挤板101与玻纤拉挤板102之间,另外在碳纤拉挤板101的上侧与玻纤拉挤板102的下侧各另有y和z层纤维布(连接部103),整体组成局部连接设计。
图2C示出了根据本发明的第十实施例。
在第十实施例中,碳纤拉挤板101具有倒角,玻纤拉挤板102平滑,即第四实施例中,碳纤拉挤板101插入到玻纤拉挤板102中间,在层间混杂时的第一种连接方式;碳纤拉挤板101插入到玻纤拉挤板102中间,也需要做可靠平缓的连接设计,在碳纤拉挤板101上下各放置y和x层布(连接部103),起到局部连接的作用。
在本发明的第二方面,前述任务通过一种制造用于风机叶片的主梁的方法来解决,该方法包括下列步骤:提供一个或多个碳纤拉挤板101,将所述碳纤拉挤板101沿叶片长度方向z排列;提供一个或多个玻纤拉挤板102,将所述玻纤拉挤板102沿所述叶片长度方向z排列;使所述碳纤拉挤板101和所述玻纤拉挤板102以一种或多种方式组合、以及一种或多种比例组合混杂;用第一灌注材料浸润所述碳纤拉挤板101和所述玻纤拉挤板102。
在本发明的一个优选方案中规定,提供一个或多个碳纤拉挤板101, 以及提供一个或多个玻纤拉挤板102包括下列步骤:所述碳纤拉挤板101利用第二灌注材料浸润并固化,且所述玻纤拉挤板102利用第三灌注材料浸润并固化;将一个或多个碳纤拉挤板101和/或玻纤拉挤板102彼此相叠布置,以及在每个所述碳纤拉挤板101的周围设置玻纤灌注层以备第二次灌注;以及在每个所述玻纤拉挤板102的周围设置玻纤灌注层以备第二次灌注。
本发明还提供一种制造风机叶片的方法,包括下列步骤:利用前述的方法预制主梁,将所述主梁放置于壳体中,与壳体进行第三次灌注;或提供一个或多个碳纤拉挤板101,将所述碳纤拉挤板101沿叶片长度方向z排列于所述外壳内;提供一个或多个玻纤拉挤板102,将所述玻纤拉挤板102沿所述叶片长度方向z排列于所述外壳内;进行第二次灌注,使所述碳纤拉挤板101、所述玻纤拉挤板102与其他材料一体成型。该混杂主梁可以作为预制主梁先于壳体成型,后放到壳体跟壳体二次灌注;或在初始就将两种拉挤板放到壳体中与壳体其它部分一次成型。
在本发明提供的用于风机叶片的主梁及其制造方法中,碳纤维是一种高比强度、高比模量的材料,价格昂贵,限制了其广泛应用。因此,本发明实现了最大效益的利用碳纤维材料。将碳纤维和玻璃纤维混杂,是一种更加优化的设计方式。而相比于碳玻混杂编织或碳玻混杂铺层这些材料级别的混杂,本发明从更高维度上来混杂会带来更大的设计空间,不受材料定制化混杂比的制约。另外,碳纤维的各项性能对于工艺稳定性非常敏感,拉挤工艺是目前公认可以最大程度且稳定发挥碳纤维材料性能的工艺,同样,玻纤拉挤也可以稳定固化玻纤材料的性能。综上所述,碳纤拉挤和玻纤拉挤材料混杂主梁,将会发挥叶片设计最大的潜能,创造最优性价比的产品。
图3A示出了采用根据本发明的主梁100的风力发电机叶片1的垂直叶片厚度方向的横截面示意图。
图3B示出了采用根据本发明的主梁100的风力发电机叶片1的垂直叶片长度方向的横截面示意图。
如图3B所示,叶片1具有叶片前缘2和叶片尾缘8,叶片1处于叶片 前缘2与叶片尾缘8之前的部分被分为迎风面5和背风面6。尾缘梁7布置在靠近尾缘8处,以提高尾缘强度。主梁100分别布置在迎风面5和背风面6上、叶片前缘2与叶片尾缘8之间。主梁100之间通过腹板4连接,以增加叶片稳定性,防止向内塌陷。通过本发明的主梁100,可以提高叶片1的刚度,并且增强主梁材料的服帖性,从而提高叶片的气动性能和使用寿命。
图4示出了根据本发明的制造用于风机叶片的主梁的方法流程400。
在步骤402,提供一个或多个碳纤拉挤板,所述碳纤拉挤板沿厚度方向、长度方向和/或弦向叠放,其中所述碳纤拉挤板利用第二灌注材料固化而成,其中在每两个碳纤拉挤板之间设置有玻纤灌注材料;
在步骤404,提供一个或多个玻纤拉挤板,所述玻纤拉挤板沿厚度方向、长度方向和/或弦向叠放,其中所述玻纤拉挤板利用第三灌注材料固化而成,其中在每两个玻纤拉挤板之间设置有玻纤灌注材料;其可以与所述碳纤拉挤板相邻布置;
在步骤406,在主梁的厚度方向上的两侧在碳纤拉挤板和/或玻纤拉挤板上布置一个或多个覆盖层;以及
在步骤408,用第一灌注材料浸润所述碳纤拉挤板、玻纤拉挤板和覆盖层。
本发明至少具有如下有益效果:(1)本发明采用了碳纤拉挤和玻纤拉挤混杂,解决了纯玻纤主梁刚度不足的缺点,也避免了纯碳纤维价格过高的弊端;可以任意调配碳纤维和玻璃纤维混杂的比例,来达到整体最优性价比;(2)碳纤维和玻璃纤维复合材料以它们各自最优的工艺方式存在:拉挤;混杂材料存在正向的混杂效应,即,由于对方的存在而提高了本身的刚度,优于单纯的混配关系理论值;与纯碳纤维拉挤叶片相比,有了玻纤的混入和缓冲作用,将会降低碳纤维的工艺敏感性,提高碳纤维工艺和质量鲁棒性;(3)特殊的局部连接设计,可以使碳纤维拉挤板从叶片叶中起始成为可能,并且局部的连接设计有两个作用,一个是保证连接的局部强度满足要求,另外是提供平缓的几何过渡,避免拉挤板悬空造成富树脂等缺陷;碳纤拉挤板101和玻纤拉挤板102可以根据设计在同一层混杂, 也可以在不同层混杂,有了局部连接设计,可以最大程度的任意组合排布;局部连接设计是由复合材料布层来实现的,软的铺层用来连接两个硬质结构,非常灵活恰当;
综上,上述实施例对用于风机叶片的主梁及其制造方法的不同构型进行了详细说明,当然,本发明包括但不局限于上述实施中所列举的构型,任何在上述实施例提供的构型基础上进行变换的内容,均属于本发明所保护的范围。本领域技术人员可以根据上述实施例的内容举一反三。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (14)

  1. 一种用于风机叶片的主梁,其特征在于,包括:
    一个或多个碳纤拉挤板,其沿叶片的长度方向布置;
    一个或多个玻纤拉挤板,其沿叶片的长度方向布置,其中所述碳纤拉挤板和所述玻纤拉挤板被混合布置为使得所混合的碳纤拉挤板和玻纤拉挤板具有正向的混杂效应和/或弯扭耦合效应;以及
    第一灌注材料,其浸润所述碳纤拉挤板和所述玻纤拉挤板。
  2. 如权利要求1所述的主梁,其特征在于,在所述主梁的某一区域,m个所述碳纤拉挤板沿叶片厚度方向叠放,和/或n个所述碳纤拉挤板沿叶片弦向叠放,其中m、n均为1至100的整数。
  3. 如权利要求1所述的主梁,其特征在于,在所述主梁的某一区域,p个所述玻纤拉挤板沿叶片厚度方向叠放,和/或q个所述玻纤拉挤板沿叶片弦向叠放,其中p、q均为1至100的整数。
  4. 如权利要求1所述的主梁,其特征在于,所述碳纤拉挤板利用所述第二灌注材料固化而成,所述玻纤拉挤板利用所述第三灌注材料固化而成。
  5. 如权利要求4所述的主梁,其特征在于,其中第一灌注材料包括下列各项中的一个或多个:含热固性环氧树脂、乙烯基树脂、不饱和聚酯树脂、酚醛树脂、双马来酰亚胺、以及热塑性树脂;
    所述第二灌注材料包括下列各项中的一个或多个:含热固性环氧树脂、乙烯基树脂、不饱和聚酯树脂、酚醛树脂、双马来酰亚胺、以及热塑性树脂;
    所述第三灌注材料包括下列各项中的一个或多个:含热固性环氧树脂、乙烯基树脂、不饱和聚酯树脂、酚醛树脂、双马来酰亚胺、以及热塑性树脂。
  6. 如权利要求5所述的主梁,其特征在于,其中所述热塑性树脂包括下列各项中的一个或多个:聚丙烯树脂、聚乙烯树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚丙烯腈-丁二烯-苯乙烯树脂、聚氨酯、聚酰亚胺树脂、聚醚醚酮树脂、以及聚苯硫醚树脂。
  7. 如权利要求1所述的主梁,其特征在于,在所述叶片厚度方向的一 层或多层上,所述碳纤拉挤板的端部和所述玻纤拉挤板的端部连接,和/或所述碳纤拉挤板的端部插入两个所述玻纤拉挤板之间,和/或所述玻纤拉挤板的端部插入两个所述碳纤拉挤板之间。
  8. 如权利要求7所述的主梁,其特征在于,在所述玻纤拉挤板和所述碳纤拉挤板的连接部位,一个或多个连接部,所述连接部覆盖所述碳纤拉挤板的端部和/或所述玻纤拉挤板的端部。
  9. 如权利要求8所述的主梁,其特征在于,所述连接部包括玻纤织物、碳纤织物、玻纤无纺布、碳纤无纺布,以及玻纤粗纱中的一种或几种,j个所述连接部沿叶片厚度方向叠放,和/或k个所述连接部沿叶片弦向叠放,其中j、k均为1至100的整数。
  10. 如权利要求1所述的主梁,其特征在于,所述碳纤拉挤板起于0.1%-99.9%叶片长度,所述碳纤拉挤板止于0.1%-99.9%叶片长度。
  11. 一种制造用于风机叶片的主梁的方法,其特征在于,包括下列步骤:
    提供一个或多个碳纤拉挤板,将其沿叶片的长度方向布置;
    提供一个或多个玻纤拉挤板,将其沿叶片的长度方向布置;
    使所述碳纤拉挤板和所述玻纤拉挤板混合布置以使得所混合的碳纤拉挤板和玻纤拉挤板具有正向的混杂效应和/或弯扭耦合效应;以及
    用第一灌注材料浸润所述碳纤拉挤板和所述玻纤拉挤板。
  12. 如权利要求11所述的方法,其特征在于,其中提供一个或多个碳纤拉挤板,以及提供一个或多个玻纤拉挤板包括下列步骤:
    所述碳纤拉挤板利用第二灌注材料浸润并固化,且所述玻纤拉挤板利用第三灌注材料浸润并固化;
    将一个或多个碳纤拉挤板和/或玻纤拉挤板彼此相叠布置,以及
    在每个所述碳纤拉挤板的周围设置灌注层以备第二次灌注;以及
    在每个所述玻纤拉挤板的周围设置灌注层以备第二次灌注。
  13. 一种制造风机叶片的方法,其特征在于,包括下列步骤:
    利用权利要求11所述的方法预制主梁,将所述主梁放置于壳体中,与壳体进行第三次灌注;或
    提供一个或多个碳纤拉挤板,将其沿叶片的长度方向布置于所述外壳内;
    提供一个或多个玻纤拉挤板,将其沿叶片的长度方向布置于所述外壳内;
    进行第二次灌注,使所述碳纤拉挤板、所述玻纤拉挤板与其他材料一体成型。
  14. 一种风力发电机,其具有根据权利要求1至10之一所述的主梁。
PCT/CN2020/105013 2020-07-28 2020-07-28 用于风机叶片的主梁及其制造方法 WO2022021039A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/105013 WO2022021039A1 (zh) 2020-07-28 2020-07-28 用于风机叶片的主梁及其制造方法
GB2300368.4A GB2611677B (en) 2020-07-28 2020-07-28 Main beam for use in wind-driven generator blade and manufacturing method therefor
MX2023000890A MX2023000890A (es) 2020-07-28 2020-07-28 Viga principal para uso en palas de aerogeneradores y metodo de fabricacion de las mismas.
CN202080003490.4A CN114286891B (zh) 2020-07-28 2020-07-28 用于风机叶片的主梁及其制造方法
ZA2023/00355A ZA202300355B (en) 2020-07-28 2023-01-09 Main beam for use in wind-driven generator blade and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105013 WO2022021039A1 (zh) 2020-07-28 2020-07-28 用于风机叶片的主梁及其制造方法

Publications (1)

Publication Number Publication Date
WO2022021039A1 true WO2022021039A1 (zh) 2022-02-03

Family

ID=80038038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105013 WO2022021039A1 (zh) 2020-07-28 2020-07-28 用于风机叶片的主梁及其制造方法

Country Status (5)

Country Link
CN (1) CN114286891B (zh)
GB (1) GB2611677B (zh)
MX (1) MX2023000890A (zh)
WO (1) WO2022021039A1 (zh)
ZA (1) ZA202300355B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115054952A (zh) * 2022-07-22 2022-09-16 合肥茂腾环保科技有限公司 一种剥离液废水处理雾化处理装置
CN117162561A (zh) * 2023-11-02 2023-12-05 中材科技风电叶片股份有限公司 热塑性复合主梁成型方法及风电叶片主梁

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465844A (zh) * 2010-11-04 2012-05-23 三一电气有限责任公司 一种风力发电机叶片
CN103921457A (zh) * 2014-04-28 2014-07-16 连云港中复连众复合材料集团有限公司 一种采用拉挤工艺制造的单向片材制造风机叶片主梁或辅梁的方法
CN106368894A (zh) * 2015-07-22 2017-02-01 通用电气公司 用于风力涡轮的转子叶片根部组件
US20180156202A1 (en) * 2016-12-05 2018-06-07 Nordex Energy Gmbh Spar cap assembly for a wind turbine rotor blade
CN109098929A (zh) * 2017-06-21 2018-12-28 通用电气公司 具有混合式翼梁帽的风力涡轮叶片及制造的相关联方法
CN109094075A (zh) * 2017-06-21 2018-12-28 通用电气公司 具有混合翼梁帽的风力涡轮叶片及相关制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497578B (en) * 2011-12-16 2015-01-14 Vestas Wind Sys As Wind turbine blades
CN210859042U (zh) * 2019-10-15 2020-06-26 中材科技风电叶片股份有限公司 一种主梁帽拼接结构及风机转子叶片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465844A (zh) * 2010-11-04 2012-05-23 三一电气有限责任公司 一种风力发电机叶片
CN103921457A (zh) * 2014-04-28 2014-07-16 连云港中复连众复合材料集团有限公司 一种采用拉挤工艺制造的单向片材制造风机叶片主梁或辅梁的方法
CN106368894A (zh) * 2015-07-22 2017-02-01 通用电气公司 用于风力涡轮的转子叶片根部组件
US20180156202A1 (en) * 2016-12-05 2018-06-07 Nordex Energy Gmbh Spar cap assembly for a wind turbine rotor blade
CN109098929A (zh) * 2017-06-21 2018-12-28 通用电气公司 具有混合式翼梁帽的风力涡轮叶片及制造的相关联方法
CN109094075A (zh) * 2017-06-21 2018-12-28 通用电气公司 具有混合翼梁帽的风力涡轮叶片及相关制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115054952A (zh) * 2022-07-22 2022-09-16 合肥茂腾环保科技有限公司 一种剥离液废水处理雾化处理装置
CN115054952B (zh) * 2022-07-22 2023-08-08 合肥茂腾环保科技有限公司 一种剥离液废水处理雾化处理装置
CN117162561A (zh) * 2023-11-02 2023-12-05 中材科技风电叶片股份有限公司 热塑性复合主梁成型方法及风电叶片主梁
CN117162561B (zh) * 2023-11-02 2024-03-22 中材科技风电叶片股份有限公司 热塑性复合主梁成型方法及风电叶片主梁

Also Published As

Publication number Publication date
CN114286891B (zh) 2023-10-20
MX2023000890A (es) 2023-02-22
GB2611677B (en) 2024-04-03
ZA202300355B (en) 2024-02-28
GB2611677A (en) 2023-04-12
CN114286891A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN109098929B (zh) 具有混合式翼梁帽的风力涡轮叶片及制造的相关联方法
CN111608852B (zh) 一种轻量化风机叶片及其制作方法
US20170122287A1 (en) A tip system for a wind turbine blade
WO2022021039A1 (zh) 用于风机叶片的主梁及其制造方法
US20140271217A1 (en) Efficient wind turbine blade design and associated manufacturing methods using rectangular spars and segmented shear web
CN111601966B (zh) 用于转子叶片的打印增强结构的多种材料组合
CN106401865A (zh) 具有用于平板翼梁缘条的内部支架的转子叶片
EP2691634B1 (en) Spar for a water-driven turbine blade and manufacture thereof
CN114183296B (zh) 一种风电叶片展向分块连接结构
KR20110100192A (ko) 풍력 터빈 날개 및 이를 사용하는 풍력 터빈 발전장치
WO2021163875A1 (zh) 用于风机叶片的主梁及其制造方法
WO2016058325A1 (zh) 一种多梁结构大尺寸风电叶片及其的制作方法
CN114526193B (zh) 风电叶片主承力结构连接接头和风力发电机组
CN113357075A (zh) 一种风电叶片及风力发电机
CN210622996U (zh) 风力发电机组的叶片的主梁、叶片和风力发电机组
CN210106062U (zh) 一种风轮叶片
CN115596604B (zh) 一种多腹板结构模块化风电叶片
CN113954388B (zh) 预制限位件、翼梁帽、风机叶片及制造方法、预制板材固定方法
CN112292256A (zh) 制造用于风力涡轮的转子叶片构件的方法
CN115807731A (zh) 一种风电叶片腹板及其成型方法
US20230175476A1 (en) Wind turbine blade
CN115485126A (zh) 用于风力涡轮机叶片的翼梁帽的优化夹层
JP2020176538A (ja) 風車ブレード及び風力発電システム
CN221169853U (zh) 风电机组及其复合型拉挤板主梁结构的叶片
WO2023123712A1 (zh) 叶片的腹板及叶片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202300368

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200728

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947331

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 523442326

Country of ref document: SA