WO2022020983A1 - User equipment self-awareness interference management for radar sensing - Google Patents

User equipment self-awareness interference management for radar sensing Download PDF

Info

Publication number
WO2022020983A1
WO2022020983A1 PCT/CN2020/104737 CN2020104737W WO2022020983A1 WO 2022020983 A1 WO2022020983 A1 WO 2022020983A1 CN 2020104737 W CN2020104737 W CN 2020104737W WO 2022020983 A1 WO2022020983 A1 WO 2022020983A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
sensing
radar
available
radar sensing
Prior art date
Application number
PCT/CN2020/104737
Other languages
French (fr)
Inventor
Ruifeng MA
Yuwei REN
Huilin Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/104737 priority Critical patent/WO2022020983A1/en
Publication of WO2022020983A1 publication Critical patent/WO2022020983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for user equipment self-awareness interference management for radar sensing.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a UE includes: receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE; measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  • a method of wireless communication performed by base station includes: transmitting, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  • a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE; measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  • a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and transmit, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE; measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: transmit, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and transmit, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  • an apparatus for wireless communication includes: means for receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the apparatus; means for measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and means for determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  • an apparatus for wireless communication includes: means for transmitting, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and means for transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of radar sensing, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example of joint communication and radar sensing in a wireless network, in accordance with various aspects of the present disclosure.
  • Figs. 5-6 are diagrams illustrating examples associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure.
  • Figs. 7-8 are diagrams illustrating example processes associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure.
  • Figs. 9-10 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • a UE 120 may perform radar sensing, in which radio waves are used to image an environment of the UE 120.
  • the radar sensing by the UE 120 and data transmissions between the UE 120 and other devices (e.g., a base station 110 and/or other UEs 120) of the wireless network 100 may be performed using the same operating band.
  • UE radar sensing and data transmissions may coexist in the millimeter wave band and/or the other operating bands described above.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-8.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-8.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with UE self-awareness interference management for radar sensing, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • UE 120 may include means for receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE, means for measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set, means for determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for transmitting, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE, means for transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of radar sensing, in accordance with various aspects of the present disclosure.
  • Radar sensing uses radio waves to image an environment. Radar sensing has traditionally been used for large scale applications, such as detecting aircraft, ships, motor vehicles, weather formations, and/or the like. Radar sensing with a finer granularity may be achieved with a higher frequency, a larger bandwidth, a more compact array of radio waves, and/or the like. In some aspects, such fine grained radar sensing may be performed by one or more wireless network devices, such as a UE (e.g., UE 120 and/or the like) or a base station (e.g., base station 110 and/or the like) .
  • a UE e.g., UE 120 and/or the like
  • base station e.g., base station 110 and/or the like
  • Mobile or handheld radar devices may use radar sensing for various applications, such as gesture classification, in-car based controls, and/or the like.
  • radar sensing is used to perform gesture classification for gesture based control of a device.
  • the device may be a mobile device, such as a UE (e.g., UE 120 and/or the like) .
  • the device may be equipped with a sensing chip 305.
  • the sensing chip 305 may transmit radio waves, referred to as radar signals, with a pre-defined waveform (e.g., a frequency modulated continuous wave (FMCW) and/or a pulse wave) .
  • FMCW frequency modulated continuous wave
  • An object in the environment of the device may cause the radar signals to reflect and/or scatter based on the material of the object.
  • the radar signals are used to detect and/or image movement of a user’s hand.
  • Radar signals reflected by the object may be received at the sensing chip 305.
  • the reflected radar signals may be correlated to the transmitted radar signals to determine range, Doppler, and/or angle information.
  • raw data from the reflected radar signals may be processed using a fast Fourier transform (FFT) to determine the range, Doppler, and/or angle information.
  • the range, Doppler, and/or angle information may represent a shape of the object, a distance of the object from the sensing chip 305, motion of the object, and/or the like.
  • Gesture classification may be performed based at least in part on the range, Doppler, and/or angle information to map the range, Doppler, and/or angle information to a corresponding action.
  • the gesture classification may be performed using machine learning based classification.
  • the gesture classification may be used to map gestures (represented by the range, Doppler, and/or angle information) sensed by the radar signals to corresponding actions for controlling the device.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of joint communication and radar sensing in a wireless network, in accordance with various aspects of the present disclosure.
  • radar sensing by a UE and communications e.g., uplink and/or downlink data transmissions
  • the base station may be a millimeter wave base station, and the base station and the UE may communicate using radio waves in the millimeter wave band.
  • the UE may also use radio waves in the millimeter wave band for radar sensing.
  • the UE may use the same radio signals for radar sensing and for data transmission.
  • the radar signals for radar sensing may be embedded in data transmissions from the UE.
  • Such radar sensing by the UE may be used to provide insights on the surrounding environment, a target object, and/or movement of a target object.
  • radar sensing by the UE may be used to provide an image of the environment surrounding the UE (e.g., a 3D map for virtual reality and/or augmented reality applications) , to perform high resolution localization (e.g., for an industrial IoT UE) , to assist in communications with the base station (e.g., to increase accuracy of beam tracking) , to perform machine learning based applications, such as gesture tracking (e.g., to provide an interface between human and machine) , and/or the like.
  • image of the environment surrounding the UE e.g., a 3D map for virtual reality and/or augmented reality applications
  • high resolution localization e.g., for an industrial IoT UE
  • the base station e.g., to increase accuracy of beam tracking
  • machine learning based applications such as gesture tracking (e.g., to provide an interface between human and machine) , and/or the like.
  • UE radar sensing may be used for various applications. However, when radar sensing and wireless network communications coexist in the same operating band, radar sensing by the UE may cause interference with wireless network communications (e.g., uplink, downlink, and/or sidelink communications) associated with other UEs. Furthermore, radar sensing by the UE may experience interference due to wireless network communications and/or radar sensing associated with other UEs.
  • wireless network communications e.g., uplink, downlink, and/or sidelink communications
  • a current cross link interference procedure it is possible to use a current cross link interference procedure to address interference due to UE radar sensing.
  • a victim UE reports the interference, due to an aggressor UE, to a base station.
  • the base station configures a cross link interference resource, on which a signal is transmitted from the aggressor UE, and configures a resource for the victim UE to measure the corresponding interference.
  • the victim UE performs the interference measurement scheduled by the base station and sends a measurement report to the base station.
  • the base station then performs interference elimination actions, such as power control and/or resource scheduling.
  • the current cross link interference procedure may provide an accurate interference measurement, which may be helpful to reduce the interference due to UE radar sensing.
  • the base station coordinates with UEs to reduce the interference, which utilizes significant network resources and signaling overhead. This may cause a decrease in network speed and consume computing resources (e.g., processing resources, memory resources, communication resources, and/or the like) , networking resources, and/or the like.
  • the radar sensing may be considered to have a lower priority, as compared with wireless network communications in the same operating band.
  • the current cross link interference procedure may block or delay wireless network communications that cause interference with radar sensing signals.
  • radar sensing may be triggered by actions (e.g., gesture control) without a clear and periodic pattern.
  • actions e.g., gesture control
  • Frequent cross link interference measurement and resource scheduling due to radar sensing would be inefficient, and thus may result in a decrease in network speed and an increase in consumption of computing resources, networking resources, and/or the like.
  • Some techniques and apparatuses described herein enable a UE to receive, from a base station, a configuration of a sensing resource rule, measure an interference level for a resource pattern for radar sensing, and determine whether the resource pattern is available for radar sensing based at least in part on the measured interference level and the sensing resource rule.
  • the UE may perform a self-aware interference measurement before performing radar sensing and without scheduling by the base station. This may reduce network resources and signaling overhead, thus increasing network speed and conserving computing resources (e.g., processing resources, memory resources, communication resources, and/or the like) , networking resources, and/or the like, that would otherwise be consumed by performing a cross link interference procedure.
  • wireless network communications e.g., uplink, downlink, and/or sidelink communications
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure.
  • example 500 includes communication between a BS 110 and a UE 120.
  • BS 110 and UE 120 may be included in a wireless network, such as wireless network 100.
  • BS 110 and UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
  • the base station 110 may transmit (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, transmission component 1004, and/or the like) , to the UE 120, a configuration of a sensing resource set.
  • the sensing resource set may include one or more resource patterns to be used for radar sensing by the UE 120.
  • a resource pattern includes a time-frequency resource that the UE 120 may use to transmit radio waves (radar signals) for radar sensing.
  • the configuration of the sensing resource set may be transmitted to the UE 120 from the base station 110 in a radio resource control (RRC) communication.
  • RRC radio resource control
  • the configuration of the sensing resource set may be based at least in part on a capability of the UE 120 for radar sensing.
  • the base station 110 may transmit (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, transmission component 1004, and/or the like) , to the UE 120, a configuration of a sensing resource rule.
  • the sensing resource rule may include one or more rules to be used by the UE 120 to determine availability of the resource patterns in the sensing resource set for radar sensing.
  • the sensing resource rule may include an interference threshold, which is to be compared, by the UE 120, with an interference level measurement for a resource pattern to determine whether the resource pattern is available for radar sensing.
  • the sensing resource rule may include multiple interference thresholds associated with multiple categories of radar sensing.
  • the categories of radar sensing may correspond to different use cases and/or scales of radar sensing.
  • the sensing resource rule may include a first interference threshold associated with a first category of radar sensing and a second interference threshold associated with a second category of radar sensing.
  • the first category of radar sensing may correspond to a first scale (e.g., room scale sensing) of the radar sensing to be performed.
  • the second category of radar sensing may correspond to a second scale (e.g., short range gesture sensing) of the radar sensing to be performed.
  • the configuration of the sensing resource rule and the configuration of the sensing resource set may be transmitted from the base station 110 to the UE 120 in the same communication (e.g., RRC communication and/or the like) .
  • the configuration of the sensing resource rule may be transmitted from the base station 110 to the UE 120 in a separate communication (e.g., RRC communication, downlink control information (DCI) , a medium access control (MAC) control element (MAC-CE) , and/or the like) from the configuration of the sensing resource set.
  • RRC communication e.g., RRC communication, downlink control information (DCI) , a medium access control (MAC) control element (MAC-CE) , and/or the like
  • the UE 120 may measure (e.g., using controller/processor 280, measurement component 908, and/or the like) an interference level for a resource pattern of the sensing resource set. For example, the UE 120 may estimate the interference for the resource pattern based on interference reciprocity. In some aspects, the UE 120 may measure the interference level for the resource pattern using an instantaneous interference measurement for the resource pattern. In some aspects, the UE 120 may measure the interference level for the resource pattern by determining an average interference level over an observation time for the resource pattern. In this case, the observation time may be indicated in the configuration of the sensing resource rule and/or the configuration of the resource sensing set.
  • the UE 120 may select a resource pattern from the sensing resource set and measure the interference level for the selected resource pattern. In some aspects, the UE 120 may measure a respective interference level for each resource pattern in the sensing resource set. In some aspects, the UE 120 may measure the interference level for a first resource pattern in the sensing resource set, and then measure the interference level for a next resource pattern in the sensing resource set if it is determined that the first resource pattern is not available for radar sensing by the UE 120. In this case, the UE 120 may repeat the interference level measurement for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing or until the interference level measurement is performed for all of the resource patterns in the sensing resource set.
  • the UE 120 may determine (e.g., using controller/processor 280, determination component 910, and/or the like) whether the resource pattern is available for radar sensing.
  • the UE 120 may determine whether the resource pattern is available for radar sensing based at least in part on the interference level measured for the resource pattern and the sensing resource rule.
  • the sensing resource rule may include an interference threshold.
  • the UE 120 may compare the interference level measured for the resource pattern with the interference threshold to determine whether the resource pattern is available for radar sensing. If the interference level satisfies the interference threshold, the UE 120 may determine that the resource pattern is available for radar sensing. If the interference level does not satisfy the threshold, the UE 120 may determine that the resource pattern is not available for radar sensing.
  • the sensing resource rule may include multiple interference thresholds associated with multiple categories of radar sensing.
  • the sensing resource rule may include a first interference threshold associated with a first category (e.g., first scale) of radar sensing and a second interference threshold associated with a second category (e.g., second scale) of radar sensing. If a sensing task to be performed corresponds to the first category, the UE 120 may compare the interference level measured for the resource pattern with the first interference threshold to determine whether the resource pattern is available for the sensing task. If the sensing task to be performed corresponds to the second category, the UE 120 may compare the interference level measured for the resource pattern with the second interference threshold to determine whether the resource pattern is available for the sensing task.
  • a first interference threshold of -10 decibels relative to a milliwatt (dBm) may be specified for room scale radar sensing and a second interference threshold of 0 dBm may be specified for short range radar sensing.
  • the interference level measured for the resource pattern is -5 dBm, the resource pattern may be available for short range radar sensing, but not for room scale radar sensing.
  • the UE 120 may determine which of the resource patterns in the resource pattern set are available for resource sensing based at least in part on respective interference levels measured for the resource patterns and the sensing resource rule. In some aspects, the UE 120 may determine whether a first resource pattern in the sensing resource set is available for resource sensing based at least in part on the interference level measured for the first resource pattern and the sensing resource rule. If the first resource pattern is not available for radar sensing, the UE 120 may then determine whether a next resource pattern in the sensing resource set is available for radar sensing based at least in part on the interference level measured for the first resource pattern and the sensing resource rule.
  • the UE 120 may repeat the interference level measurement and the availability determination for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing or until a determination has been made that none of the resource patterns in the sensing resource set are available for radar sensing.
  • the UE 120 may perform (e.g., using controller/processor 280, transmission component 904, and/or the like) radar sensing using an available resource pattern. For example, when the UE 120 determines that a resource pattern is available for radar sensing, the UE 120 may transmit radio waves (radar signals) using that resource pattern to perform radar sensing.
  • radar signals radio waves
  • the UE 120 may determine which of the resource patterns in the sensing resource set are available for radar sensing. In this case, the UE 120 may determine that multiple resource patterns in the sensing resource set are available for radar sensing. In some aspects, the UE 120 may select a single resource pattern from the available resource patterns and perform radar sensing using the selected resource pattern. In some aspects, the UE 120 may select multiple resource patterns from the available resource patterns and perform radar sensing using the selected patterns. For example, the UE 120 may perform radar sensing using all or a subset of the resource patterns determined to be available for radar sensing.
  • the UE 120 may repeat the interference level measurement and the availability determination for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing. In this case, when the UE 120 determines that one of the resource patterns in the sensing set is available for radar sensing, the UE 120 may perform radar sensing using that resource pattern.
  • the UE 120 may receive, from the base station 110, the configuration of the sensing resource rule, measure the interference level for a resource pattern for radar sensing, and determine whether the resource pattern is available for radar sensing based at least in part on the measured interference level and the sensing resource rule.
  • the UE 120 may perform a self-aware interference measurement before performing radar sensing and without scheduling by the base station 110. This may reduce network resources and signaling overhead, thus increasing network speed and conserving computing resources (e.g., processing resources, memory resources, communication resources, and/or the like) , networking resources, and/or the like, that would otherwise be consumed by performing a cross link interference procedure.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure.
  • example 600 includes communication between a BS 110 and a UE 120.
  • BS 110 and UE 120 may be included in a wireless network, such as wireless network 100.
  • BS 110 and UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
  • the base station 110 may transmit (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, transmission component 1004, and/or the like) , to the UE 120, a configuration of a sensing resource set.
  • the sensing resource set may include one or more resource patterns to be used for radar sensing by the UE 120, as described above in connection with Fig. 5.
  • the base station 110 may transmit (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, transmission component 1004, and/or the like) , to the UE 120, a configuration of a sensing resource rule.
  • the sensing resource rule may include one or more rules to be used by the UE 120 to determine availability of the resource patterns in the sensing resource set for radar sensing.
  • the sensing resource rule may include an interference threshold (or multiple interference thresholds) to be compared, by the UE 120, with an interference level measurement for a resource pattern to determine whether the resource pattern is available for radar sensing, as described above in connection with Fig. 5.
  • the UE 120 may measure (e.g., using controller/processor 280, measurement component 908, and/or the like) interference levels for resource patterns of the sensing resource set.
  • the UE 120 may measure the interference levels for the resource patterns of the sensing resource set as described above in connection with Fig. 5.
  • the UE 120 may measure a respective interference level for each resource pattern in the sensing resource set. In some aspects, the UE 120 may perform the interference level measurement for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing or until the interference level measurement is performed for all of the resource patterns in the sensing resource set.
  • the UE 120 may determine (e.g., using controller/processor 280, determination component 910, and/or the like) whether the resource patterns are available for radar sensing.
  • the UE 120 may determine whether the resource patterns are available for radar sensing based at least in part on the interference levels measured for the resource patterns and the sensing resource rule, as described above in connection with Fig. 5.
  • the UE 120 may determine which of the resource patterns in the resource pattern set are available for resource sensing based at least in part on respective interference levels measured for the resource patterns and the sensing resource rule. In some aspects, the UE 120 may repeat the interference level measurement and the availability determination for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing or until a determination has been made that none of the resource patterns in the sensing resource set are available for radar sensing.
  • the UE 120 may perform radar sensing using one or more of the available resource patterns. In the example of Fig. 6, the UE 120 determines that no resource patterns in the sensing resource set are available for radar sensing.
  • the UE 120 may wait for a first waiting time duration, and then may perform (e.g., using controller/processor 280, measurement component 908, determination component 910, and/or the like) a first repetition of the interference level measurements (625-a) and the availability determination (625-b) for the resource patterns in the sensing resource set. Within the first waiting time duration, the UE 120 may not perform interference level measurements for the resource patterns. This provides a benefit of conserving power that may otherwise be consumed by the UE 120 performing continuous interference measurements.
  • the UE 120 may repeat (e.g., using controller/processor 280, measurement component 908, and/or the like) the interference level measurements for the resource patterns in the sensing resource set.
  • the UE 120 may perform the interference level measurements as described above in connection with Fig. 5 and reference number 615 of Fig. 6.
  • the UE 120 may then determine (e.g., using controller/processor 280, determination component 910, and/or the like) whether the resource patterns in the sensing resource set are available for radar sensing based at least in part on the re-measured interference levels for the resource patterns and the sensing resource rule.
  • the UE 120 may determine the availability of the resource patterns for radar sensing as described above in connection with Fig. 5 and reference number 620 of Fig. 6.
  • the UE 120 may perform radar sensing using one or more of the available resource patterns. If the UE 120 again determines that no resource patterns in the sensing resource set are available, the UE 120 may perform another repetition of the interference level measurements and the availability determinations. In the example of Fig. 6, the UE 120 determines, in the first repetition 625, that no resource patterns in the sensing resource set are available for radar sensing.
  • the UE 120 may wait for a second waiting time duration, and then may perform (e.g., using controller/processor 280, measurement component 908, determination component 910, and/or the like) a second repetition of the interference level measurements (630-a) and the availability determination (630-b) for the resource patterns in the sensing resource set.
  • the UE 120 may not perform interference level measurements for the resource patterns. This provides a benefit of conserving power that may otherwise be consumed by the UE 120 performing continuous interference measurements.
  • the UE 120 may repeat (e.g., using controller/processor 280, measurement component 908, and/or the like) the interference level measurements for the resource patterns in the sensing resource set.
  • the UE 120 may perform the interference level measurements as described above in connection with Fig. 5 and reference numbers 615 and 625-a of Fig. 6.
  • the UE 120 may then determine (e.g., using controller/processor 280, determination component 910, and/or the like) whether the resource patterns in the sensing resource set are available for radar sensing based at least in part on the re-measured interference levels for the resource patterns and the sensing resource rule.
  • the UE 120 may determine the availability of the resource patterns for radar sensing as described above in connection with Fig. 5 and reference numbers 620 and 625-b of Fig. 6.
  • the waiting time duration associated with a particular repetition is based at least in part on a number of repetitions of the interference level measurements and the availability determination that have been performed. For example, the waiting time duration may be increased with each repetition performed. In some aspects, the waiting time duration for a particular repetition may be determined based at least in part on an index number that is incremented with each repetition. For example, the first waiting time duration may be T, and the second waiting time duration may be 2T. In some aspects, the first waiting time duration T may be specified in the configuration of the sensing resource rule and/or the configuration of the sensing resource set.
  • a stop condition may be specified in the configuration of the sensing resource rule and/or the configuration of the sensing resource set.
  • the stop condition may include a time threshold and/or a repetition threshold.
  • the time threshold may be a time limit on the waiting time duration, or may be a time limit on a total amount of time for the UE 120 to perform repetitions of the interference level measurements and the availability determination.
  • the repetition threshold may be a limit on the number of repetitions of the interference level measurements and the availability determination to be performed by the UE 120.
  • the UE 120 may transmit (e.g., using controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, transmission component 904, and/or the like) a failure report to the base station 110.
  • the stop condition may be satisfied when the time threshold is satisfied and/or when the repetition threshold is satisfied.
  • the UE 120 may determine that a sensing failure has occurred.
  • the UE 120 may transmit the failure message to the base station 110, as shown in Fig. 6. Additionally, and/or alternatively, when the UE 120 determines that the sensing failure has occurred, the UE 120 may switch to an inactive/idle mode.
  • the base station 110 may trigger one or more additional resource patterns for radar sensing by the UE 120. For example, the base station 110 may transmit a configuration (e.g., RRC communication and/or the like) that includes the one or more additional resource patterns. The UE 120 may then perform the interference level measurements and the availability determination for the one or more additional resource patterns.
  • a configuration e.g., RRC communication and/or the like
  • Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
  • Figs. 7-8 are diagrams illustrating example processes associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with UE self-awareness interference management for radar sensing.
  • the UE e.g., UE 120
  • process 700 may include receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE (block 710) .
  • the UE e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282
  • process 700 may include measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set (block 720) .
  • the UE e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • process 700 may include determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule (block 730) .
  • the UE e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the configuration identifies the sensing resource set.
  • the at least one sensing resource rule specifies an interference threshold.
  • determining whether the at least one resource pattern is available for radar sensing comprises determining whether the at least one resource pattern is available for radar sensing based at least in part on a comparison between the interference level measured for the at least one resource pattern and the interference threshold.
  • the at least one sensing resource rule specifies a first interference threshold associated with a first category of radar sensing and a second interference threshold associated with a second category of radar sensing.
  • the first category of radar sensing corresponds to a first scale of radar sensing and the second category of radar sensing corresponds to a second scale of radar sensing.
  • determining whether the at least one resource pattern is available for radar sensing comprises: if a sensing task corresponds to the first category of radar sensing, determining whether the at least one resource pattern is available for the sensing task based at least in part on a comparison between the interference level measured for the at least one resource pattern and the first interference threshold, and if the sensing task corresponds to the second category of radar sensing, determining whether the at least one resource pattern is available for the sensing task based at least in part on a comparison between the interference level measured for the at least one resource pattern and the second interference threshold.
  • measuring the interference level for the at least one resource pattern comprises measuring an instantaneous interference level for the at least one resource pattern.
  • measuring the interference level for the at least one resource pattern comprises determining an average interference level over an observation time for the at least one resource pattern.
  • the configuration indicates the observation time.
  • process 700 includes performing radar sensing using the at least one resource pattern based at least in part on a determination that the at least one resource pattern is available for radar sensing.
  • measuring the interference level for the at least one resource pattern and determining whether the at least one resource pattern is available for radar sensing are repeated for one or more different resource patterns of the one or more resource patterns in the sensing resource set until a resource pattern is determined to be available for radar sensing.
  • process 700 includes performing radar sensing using the resource pattern determined to be available for radar sensing.
  • measuring the interference level for the at least one resource pattern comprises measuring a respective interference level for each of the one or more resource patterns in the sensing resource set, and determining whether the at least one resource pattern is available for radar sensing comprises determining which of the one or more resource patterns are available for radar sensing based at least on the respective interference level for each of the one or more resource patterns and the at least one sensing resource rule.
  • process 700 includes, if multiple resource patterns of the one or more resource patterns are determined to be available for radar sensing, selecting a resource pattern to perform radar sensing from the multiple resource patterns determined to be available for radar sensing. In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, process 700 includes performing radar sensing using the resource pattern selected from the multiple resource patterns determined to be available for radar sensing.
  • process 700 includes, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing, performing, after a waiting time duration, a repetition of measuring the interference level for the at least one resource pattern and determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  • process 700 includes, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing in the repetition of measuring the interference level and determining whether the at least one resource pattern is available, performing, after an adjusted waiting time duration, another repetition of measuring the interference level for the at least one resource pattern and determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule, wherein the adjusted waiting time duration is based at least in part on a number of repetitions performed.
  • process 700 includes, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing, determining a sensing failure when at least one of a time threshold or a threshold on the number of repetitions has been reached.
  • the at least one of the time threshold or the threshold on the number of repetitions is indicated in the configuration.
  • process 700 includes transmitting a failure message to a base station based at least in part on determining the sensing failure.
  • process 700 includes switching to an inactive mode based at least in part on determining the sensing failure.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where the base station (e.g., base station 110) performs operations associated with UE self-awareness interference management for radar sensing.
  • the base station e.g., base station 110
  • process 800 may include transmitting, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE (block 810) .
  • the base station e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246) may transmit, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE, as described above, for example with reference to Fig. 5 (e.g., reference number 505) and Fig. 6 (e.g., reference numbers 605) .
  • process 800 may include transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing (block 820) .
  • the base station e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246 may transmit, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing, as described above, for example with reference to Fig. 5 (e.g., reference number 510) and Fig. 6 (e.g., reference numbers 610) .
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the at least one sensing resource rule specifies an interference threshold.
  • the at least one sensing resource rule specifies a first interference threshold associated with a first category of radar sensing and a second interference threshold associated with a second category of radar sensing.
  • the first category of radar sensing corresponds to a first scale of radar sensing and the second category of radar sensing corresponds to a second scale of radar sensing.
  • the at least one sensing resource rule is based at least in part on an instantaneous interference level for a resource pattern of the one or more resource patterns.
  • the at least one sensing resource rule is based at least in part on an average interference level over an observation time for a resource pattern of the one or more resource patterns.
  • the configuration of the at least one sensing resource rule indicates the observation time.
  • At least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a waiting time duration for the UE to wait before repeating a determination of whether the one or more resource patterns are available for radar sensing.
  • the waiting time duration is based at least in part on a number of repetitions performed by the UE of the determination of whether the one or more resource patterns are available for radar sensing.
  • At least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a time threshold for the UE to repeat a determination of whether the one or more resource patterns are available for radar sensing.
  • at least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a threshold on a number of repetitions to be performed by the UE of a determination of whether the one or more resource patterns are available for radar sensing.
  • process 800 includes receiving, from the UE, a failure message indicating that no resource patterns of the one or more resource patterns in the sensing resource set are available for radar sensing by the UE.
  • process 800 includes transmitting, to the UE, one or more additional resource patterns for radar sensing by the UE, based at least in part on the failure message received from the UE.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a block diagram of an example apparatus 900 for wireless communication.
  • the apparatus 900 may be a UE, or a UE may include the apparatus 900.
  • the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 900 may communicate with another apparatus 906 (such as a UE, a base station, or another wireless communication device) using the reception component 902 and the transmission component 904.
  • the apparatus 900 may include one or more of a measurement component 908 or a determination component 910, among other examples.
  • the apparatus 900 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7.
  • the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906.
  • the reception component 902 may provide received communications to one or more other components of the apparatus 900.
  • the reception component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 906.
  • the reception component 902 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906.
  • one or more other components of the apparatus 906 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906.
  • the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 906.
  • the transmission component 904 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 904 may be collocated with the reception component 902 in a transceiver.
  • the reception component 902 may receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE.
  • the measurement component 908 may measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set.
  • the measurement component 908 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the determination component 910 may determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  • the determination component 910 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • Fig. 9 The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
  • Fig. 10 is a block diagram of an example apparatus 1000 for wireless communication.
  • the apparatus 1000 may be a base station, or a base station may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • the apparatus 1000 may include a determination component 1008, among other examples.
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1006.
  • the reception component 1002 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1006 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 1004 may be collocated with the reception component 1002 in a transceiver.
  • the determination component 1008 may determine a sensing resource set including one or more resource patterns for radar sensing by the UE.
  • the transmission component 1004 may transmit, to a UE, a configuration that identifies the sensing resource set including the one or more resource patterns for radar sensing by the UE.
  • the determination component 1008 may determine at least one resource sensing rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  • the transmission component 1004 may transmit, to the UE, a configuration of the at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE. The UE may measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set. The UE may determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule. Numerous other aspects are provided.

Description

USER EQUIPMENT SELF-AWARENESS INTERFERENCE MANAGEMENT FOR RADAR SENSING
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for user equipment self-awareness interference management for radar sensing.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level.  New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a UE includes: receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE; measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
In some aspects, a method of wireless communication performed by base station includes: transmitting, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
In some aspects, a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE; measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and determine whether the at  least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
In some aspects, a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and transmit, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE; measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: transmit, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and transmit, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
In some aspects, an apparatus for wireless communication includes: means for receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the apparatus; means for measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and means for determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
In some aspects, an apparatus for wireless communication includes: means for transmitting, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and means for transmitting, to  the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of radar sensing, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example of joint communication and radar sensing in a wireless network, in accordance with various aspects of the present disclosure.
Figs. 5-6 are diagrams illustrating examples associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure.
Figs. 7-8 are diagrams illustrating example processes associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure.
Figs. 9-10 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying  drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular  component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, a UE 120 may perform radar sensing, in which radio waves are used to image an environment of the UE 120. The radar sensing by the UE 120 and data transmissions between the UE 120 and other devices (e.g., a base station 110 and/or other UEs 120) of the wireless network 100 may be performed using the same operating band. For example, UE radar sensing and data transmissions may coexist in the millimeter wave band and/or the other operating bands described above.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received  signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-8.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-8.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with UE self-awareness interference management for radar sensing, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, UE 120 may include means for receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE, means for measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set, means for determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for transmitting, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE, means for transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing, and/or the like. In some aspects, such means may include one or more components of  base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of radar sensing, in accordance with various aspects of the present disclosure. Radar sensing uses radio waves to image an environment. Radar sensing has traditionally been used for large scale applications, such as detecting aircraft, ships, motor vehicles, weather formations, and/or the like. Radar sensing with a finer granularity may be achieved with a higher frequency, a larger bandwidth, a more compact array of radio waves, and/or the like. In some aspects, such fine grained radar sensing may be performed by one or more wireless network devices, such as a UE (e.g., UE 120 and/or the like) or a base station (e.g., base station 110 and/or the like) .
Mobile or handheld radar devices may use radar sensing for various applications, such as gesture classification, in-car based controls, and/or the like. In the example 300 of Fig. 3, radar sensing is used to perform gesture classification for gesture based control of a device. For example, the device may be a mobile device, such as a UE (e.g., UE 120 and/or the like) . As shown in Fig. 3, the device may be equipped with a sensing chip 305. The sensing chip 305 may transmit radio waves, referred to as radar signals, with a pre-defined waveform (e.g., a frequency modulated continuous wave (FMCW) and/or a pulse wave) . An object in the environment of the device may cause the radar signals to reflect and/or scatter based on the material of the object. In the example 300 of Fig. 3, the radar signals are used to detect and/or image movement of a user’s hand.
Radar signals reflected by the object (e.g., the user’s hand) may be received at the sensing chip 305. The reflected radar signals may be correlated to the transmitted radar signals to determine range, Doppler, and/or angle information. For example, raw  data from the reflected radar signals may be processed using a fast Fourier transform (FFT) to determine the range, Doppler, and/or angle information. The range, Doppler, and/or angle information may represent a shape of the object, a distance of the object from the sensing chip 305, motion of the object, and/or the like. Gesture classification may be performed based at least in part on the range, Doppler, and/or angle information to map the range, Doppler, and/or angle information to a corresponding action. For example, the gesture classification may be performed using machine learning based classification. The gesture classification may be used to map gestures (represented by the range, Doppler, and/or angle information) sensed by the radar signals to corresponding actions for controlling the device.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of joint communication and radar sensing in a wireless network, in accordance with various aspects of the present disclosure. As shown in Fig. 4, radar sensing by a UE and communications (e.g., uplink and/or downlink data transmissions) between the UE and a base station may coexist in the same operating band. For example, the base station may be a millimeter wave base station, and the base station and the UE may communicate using radio waves in the millimeter wave band. In this case, the UE may also use radio waves in the millimeter wave band for radar sensing.
In some cases, the UE may use the same radio signals for radar sensing and for data transmission. For example, the radar signals for radar sensing may be embedded in data transmissions from the UE. Such radar sensing by the UE may be used to provide insights on the surrounding environment, a target object, and/or movement of a target object. For example, radar sensing by the UE may be used to provide an image of the environment surrounding the UE (e.g., a 3D map for virtual reality and/or augmented reality applications) , to perform high resolution localization (e.g., for an industrial IoT UE) , to assist in communications with the base station (e.g., to increase accuracy of beam tracking) , to perform machine learning based applications, such as gesture tracking (e.g., to provide an interface between human and machine) , and/or the like.
As described above, UE radar sensing may be used for various applications. However, when radar sensing and wireless network communications coexist in the same operating band, radar sensing by the UE may cause interference with wireless network communications (e.g., uplink, downlink, and/or sidelink communications) associated  with other UEs. Furthermore, radar sensing by the UE may experience interference due to wireless network communications and/or radar sensing associated with other UEs.
It is possible to use a current cross link interference procedure to address interference due to UE radar sensing. In the current cross link interference procedure, a victim UE reports the interference, due to an aggressor UE, to a base station. The base station configures a cross link interference resource, on which a signal is transmitted from the aggressor UE, and configures a resource for the victim UE to measure the corresponding interference. The victim UE performs the interference measurement scheduled by the base station and sends a measurement report to the base station. The base station then performs interference elimination actions, such as power control and/or resource scheduling.
The current cross link interference procedure may provide an accurate interference measurement, which may be helpful to reduce the interference due to UE radar sensing. However, in the current cross link interference procedure, the base station coordinates with UEs to reduce the interference, which utilizes significant network resources and signaling overhead. This may cause a decrease in network speed and consume computing resources (e.g., processing resources, memory resources, communication resources, and/or the like) , networking resources, and/or the like. Furthermore, in some cases, the radar sensing may be considered to have a lower priority, as compared with wireless network communications in the same operating band. The current cross link interference procedure may block or delay wireless network communications that cause interference with radar sensing signals. In addition, radar sensing may be triggered by actions (e.g., gesture control) without a clear and periodic pattern. Frequent cross link interference measurement and resource scheduling due to radar sensing would be inefficient, and thus may result in a decrease in network speed and an increase in consumption of computing resources, networking resources, and/or the like.
Some techniques and apparatuses described herein enable a UE to receive, from a base station, a configuration of a sensing resource rule, measure an interference level for a resource pattern for radar sensing, and determine whether the resource pattern is available for radar sensing based at least in part on the measured interference level and the sensing resource rule. As a result, the UE may perform a self-aware interference measurement before performing radar sensing and without scheduling by the base station. This may reduce network resources and signaling overhead, thus  increasing network speed and conserving computing resources (e.g., processing resources, memory resources, communication resources, and/or the like) , networking resources, and/or the like, that would otherwise be consumed by performing a cross link interference procedure. Furthermore, since the UE performs the interference measurement before performing radar sensing, wireless network communications (e.g., uplink, downlink, and/or sidelink communications) are not blocked and/or delayed for causing interference to radar sensing signals.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure. As shown in Fig. 5, example 500 includes communication between a BS 110 and a UE 120. In some aspects, BS 110 and UE 120 may be included in a wireless network, such as wireless network 100. BS 110 and UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
As shown in Fig. 5, and by reference number 505, the base station 110 may transmit (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, transmission component 1004, and/or the like) , to the UE 120, a configuration of a sensing resource set. The sensing resource set may include one or more resource patterns to be used for radar sensing by the UE 120. A resource pattern includes a time-frequency resource that the UE 120 may use to transmit radio waves (radar signals) for radar sensing. In some aspects, the configuration of the sensing resource set may be transmitted to the UE 120 from the base station 110 in a radio resource control (RRC) communication. In some aspects, the configuration of the sensing resource set may be based at least in part on a capability of the UE 120 for radar sensing.
As further shown in Fig. 5, and by reference number 510, the base station 110 may transmit (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, transmission component 1004, and/or the like) , to the UE 120, a configuration of a sensing resource rule. The sensing resource rule may include one or more rules to be used by the UE 120 to determine availability of the resource patterns in the sensing resource set for radar sensing. In some aspects, the sensing resource rule may include an interference threshold, which is to be compared,  by the UE 120, with an interference level measurement for a resource pattern to determine whether the resource pattern is available for radar sensing.
In some aspects, the sensing resource rule may include multiple interference thresholds associated with multiple categories of radar sensing. The categories of radar sensing may correspond to different use cases and/or scales of radar sensing. For example, the sensing resource rule may include a first interference threshold associated with a first category of radar sensing and a second interference threshold associated with a second category of radar sensing. The first category of radar sensing may correspond to a first scale (e.g., room scale sensing) of the radar sensing to be performed. The second category of radar sensing may correspond to a second scale (e.g., short range gesture sensing) of the radar sensing to be performed.
In some aspects, the configuration of the sensing resource rule and the configuration of the sensing resource set may be transmitted from the base station 110 to the UE 120 in the same communication (e.g., RRC communication and/or the like) . In some aspects, the configuration of the sensing resource rule may be transmitted from the base station 110 to the UE 120 in a separate communication (e.g., RRC communication, downlink control information (DCI) , a medium access control (MAC) control element (MAC-CE) , and/or the like) from the configuration of the sensing resource set.
As further shown in Fig. 5, and by reference number 515, the UE 120 may measure (e.g., using controller/processor 280, measurement component 908, and/or the like) an interference level for a resource pattern of the sensing resource set. For example, the UE 120 may estimate the interference for the resource pattern based on interference reciprocity. In some aspects, the UE 120 may measure the interference level for the resource pattern using an instantaneous interference measurement for the resource pattern. In some aspects, the UE 120 may measure the interference level for the resource pattern by determining an average interference level over an observation time for the resource pattern. In this case, the observation time may be indicated in the configuration of the sensing resource rule and/or the configuration of the resource sensing set.
In some aspects, the UE 120 may select a resource pattern from the sensing resource set and measure the interference level for the selected resource pattern. In some aspects, the UE 120 may measure a respective interference level for each resource pattern in the sensing resource set. In some aspects, the UE 120 may measure the  interference level for a first resource pattern in the sensing resource set, and then measure the interference level for a next resource pattern in the sensing resource set if it is determined that the first resource pattern is not available for radar sensing by the UE 120. In this case, the UE 120 may repeat the interference level measurement for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing or until the interference level measurement is performed for all of the resource patterns in the sensing resource set.
As further shown in Fig. 5, and by reference number 520, the UE 120 may determine (e.g., using controller/processor 280, determination component 910, and/or the like) whether the resource pattern is available for radar sensing. The UE 120 may determine whether the resource pattern is available for radar sensing based at least in part on the interference level measured for the resource pattern and the sensing resource rule.
In some aspects, the sensing resource rule may include an interference threshold. In this case, the UE 120 may compare the interference level measured for the resource pattern with the interference threshold to determine whether the resource pattern is available for radar sensing. If the interference level satisfies the interference threshold, the UE 120 may determine that the resource pattern is available for radar sensing. If the interference level does not satisfy the threshold, the UE 120 may determine that the resource pattern is not available for radar sensing.
In some aspects, the sensing resource rule may include multiple interference thresholds associated with multiple categories of radar sensing. For example, the sensing resource rule may include a first interference threshold associated with a first category (e.g., first scale) of radar sensing and a second interference threshold associated with a second category (e.g., second scale) of radar sensing. If a sensing task to be performed corresponds to the first category, the UE 120 may compare the interference level measured for the resource pattern with the first interference threshold to determine whether the resource pattern is available for the sensing task. If the sensing task to be performed corresponds to the second category, the UE 120 may compare the interference level measured for the resource pattern with the second interference threshold to determine whether the resource pattern is available for the sensing task. For example, a first interference threshold of -10 decibels relative to a milliwatt (dBm) may be specified for room scale radar sensing and a second interference threshold of 0 dBm may be specified for short range radar sensing. In this  case, if the interference level measured for the resource pattern is -5 dBm, the resource pattern may be available for short range radar sensing, but not for room scale radar sensing.
In some aspects, the UE 120 may determine which of the resource patterns in the resource pattern set are available for resource sensing based at least in part on respective interference levels measured for the resource patterns and the sensing resource rule. In some aspects, the UE 120 may determine whether a first resource pattern in the sensing resource set is available for resource sensing based at least in part on the interference level measured for the first resource pattern and the sensing resource rule. If the first resource pattern is not available for radar sensing, the UE 120 may then determine whether a next resource pattern in the sensing resource set is available for radar sensing based at least in part on the interference level measured for the first resource pattern and the sensing resource rule. In this case, the UE 120 may repeat the interference level measurement and the availability determination for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing or until a determination has been made that none of the resource patterns in the sensing resource set are available for radar sensing.
As further shown in Fig. 5, and by reference number 525, the UE 120 may perform (e.g., using controller/processor 280, transmission component 904, and/or the like) radar sensing using an available resource pattern. For example, when the UE 120 determines that a resource pattern is available for radar sensing, the UE 120 may transmit radio waves (radar signals) using that resource pattern to perform radar sensing.
In some aspects, the UE 120 may determine which of the resource patterns in the sensing resource set are available for radar sensing. In this case, the UE 120 may determine that multiple resource patterns in the sensing resource set are available for radar sensing. In some aspects, the UE 120 may select a single resource pattern from the available resource patterns and perform radar sensing using the selected resource pattern. In some aspects, the UE 120 may select multiple resource patterns from the available resource patterns and perform radar sensing using the selected patterns. For example, the UE 120 may perform radar sensing using all or a subset of the resource patterns determined to be available for radar sensing.
In some aspects, the UE 120 may repeat the interference level measurement and the availability determination for different resource patterns in the sensing resource  set until one of the resource patterns is determined to be available for radar sensing. In this case, when the UE 120 determines that one of the resource patterns in the sensing set is available for radar sensing, the UE 120 may perform radar sensing using that resource pattern.
As described above in connection with Fig. 5, the UE 120 may receive, from the base station 110, the configuration of the sensing resource rule, measure the interference level for a resource pattern for radar sensing, and determine whether the resource pattern is available for radar sensing based at least in part on the measured interference level and the sensing resource rule. As a result, the UE 120 may perform a self-aware interference measurement before performing radar sensing and without scheduling by the base station 110. This may reduce network resources and signaling overhead, thus increasing network speed and conserving computing resources (e.g., processing resources, memory resources, communication resources, and/or the like) , networking resources, and/or the like, that would otherwise be consumed by performing a cross link interference procedure.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure. As shown in Fig. 6, example 600 includes communication between a BS 110 and a UE 120. In some aspects, BS 110 and UE 120 may be included in a wireless network, such as wireless network 100. BS 110 and UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
As shown in Fig. 6, and by reference number 605, the base station 110 may transmit (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, transmission component 1004, and/or the like) , to the UE 120, a configuration of a sensing resource set. The sensing resource set may include one or more resource patterns to be used for radar sensing by the UE 120, as described above in connection with Fig. 5.
As further shown in Fig. 6 and by reference number 610, the base station 110 may transmit (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, transmission component 1004, and/or the like) , to the UE 120, a configuration of a sensing resource rule. The sensing resource rule  may include one or more rules to be used by the UE 120 to determine availability of the resource patterns in the sensing resource set for radar sensing. The sensing resource rule may include an interference threshold (or multiple interference thresholds) to be compared, by the UE 120, with an interference level measurement for a resource pattern to determine whether the resource pattern is available for radar sensing, as described above in connection with Fig. 5.
As further shown in Fig. 6, and by reference number 615, the UE 120 may measure (e.g., using controller/processor 280, measurement component 908, and/or the like) interference levels for resource patterns of the sensing resource set. The UE 120 may measure the interference levels for the resource patterns of the sensing resource set as described above in connection with Fig. 5.
In some aspects, the UE 120 may measure a respective interference level for each resource pattern in the sensing resource set. In some aspects, the UE 120 may perform the interference level measurement for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing or until the interference level measurement is performed for all of the resource patterns in the sensing resource set.
As further shown in Fig. 6, and by reference number 620, the UE 120 may determine (e.g., using controller/processor 280, determination component 910, and/or the like) whether the resource patterns are available for radar sensing. The UE 120 may determine whether the resource patterns are available for radar sensing based at least in part on the interference levels measured for the resource patterns and the sensing resource rule, as described above in connection with Fig. 5.
In some aspects, the UE 120 may determine which of the resource patterns in the resource pattern set are available for resource sensing based at least in part on respective interference levels measured for the resource patterns and the sensing resource rule. In some aspects, the UE 120 may repeat the interference level measurement and the availability determination for different resource patterns in the sensing resource set until one of the resource patterns is determined to be available for radar sensing or until a determination has been made that none of the resource patterns in the sensing resource set are available for radar sensing.
As described above in connection with Fig. 5, if the UE 120 determines that one or more of the resource patterns in the sensing resource set are available for radar sensing, the UE 120 may perform radar sensing using one or more of the available  resource patterns. In the example of Fig. 6, the UE 120 determines that no resource patterns in the sensing resource set are available for radar sensing.
As further shown in Fig. 6, and by reference number 625, when the UE 120 determines that no resource patterns in the sensing resource set are available for radar sensing, the UE 120 may wait for a first waiting time duration, and then may perform (e.g., using controller/processor 280, measurement component 908, determination component 910, and/or the like) a first repetition of the interference level measurements (625-a) and the availability determination (625-b) for the resource patterns in the sensing resource set. Within the first waiting time duration, the UE 120 may not perform interference level measurements for the resource patterns. This provides a benefit of conserving power that may otherwise be consumed by the UE 120 performing continuous interference measurements.
As shown by reference number 625-a, after the first waiting time duration, the UE 120 may repeat (e.g., using controller/processor 280, measurement component 908, and/or the like) the interference level measurements for the resource patterns in the sensing resource set. The UE 120 may perform the interference level measurements as described above in connection with Fig. 5 and reference number 615 of Fig. 6.
As shown by reference number 625-b, the UE 120 may then determine (e.g., using controller/processor 280, determination component 910, and/or the like) whether the resource patterns in the sensing resource set are available for radar sensing based at least in part on the re-measured interference levels for the resource patterns and the sensing resource rule. The UE 120 may determine the availability of the resource patterns for radar sensing as described above in connection with Fig. 5 and reference number 620 of Fig. 6.
If the UE 120 determines that one or more of the resource patterns in the sensing resource set are now available for radar sensing, the UE 120 may perform radar sensing using one or more of the available resource patterns. If the UE 120 again determines that no resource patterns in the sensing resource set are available, the UE 120 may perform another repetition of the interference level measurements and the availability determinations. In the example of Fig. 6, the UE 120 determines, in the first repetition 625, that no resource patterns in the sensing resource set are available for radar sensing.
As further shown in Fig. 6, and by reference number 630, when the UE 120 determines, in the first repetition 625, that no resource patterns in the sensing resource  set are available for radar sensing, the UE 120 may wait for a second waiting time duration, and then may perform (e.g., using controller/processor 280, measurement component 908, determination component 910, and/or the like) a second repetition of the interference level measurements (630-a) and the availability determination (630-b) for the resource patterns in the sensing resource set. Within the second waiting time duration, the UE 120 may not perform interference level measurements for the resource patterns. This provides a benefit of conserving power that may otherwise be consumed by the UE 120 performing continuous interference measurements.
As shown by reference number 630-a, after the second waiting time duration, the UE 120 may repeat (e.g., using controller/processor 280, measurement component 908, and/or the like) the interference level measurements for the resource patterns in the sensing resource set. The UE 120 may perform the interference level measurements as described above in connection with Fig. 5 and reference numbers 615 and 625-a of Fig. 6.
As shown by reference number 630-b, the UE 120 may then determine (e.g., using controller/processor 280, determination component 910, and/or the like) whether the resource patterns in the sensing resource set are available for radar sensing based at least in part on the re-measured interference levels for the resource patterns and the sensing resource rule. The UE 120 may determine the availability of the resource patterns for radar sensing as described above in connection with Fig. 5 and reference numbers 620 and 625-b of Fig. 6.
In some aspects, the waiting time duration associated with a particular repetition is based at least in part on a number of repetitions of the interference level measurements and the availability determination that have been performed. For example, the waiting time duration may be increased with each repetition performed. In some aspects, the waiting time duration for a particular repetition may be determined based at least in part on an index number that is incremented with each repetition. For example, the first waiting time duration may be T, and the second waiting time duration may be 2T. In some aspects, the first waiting time duration T may be specified in the configuration of the sensing resource rule and/or the configuration of the sensing resource set.
In some aspects, a stop condition may be specified in the configuration of the sensing resource rule and/or the configuration of the sensing resource set. The stop condition may include a time threshold and/or a repetition threshold. The time  threshold may be a time limit on the waiting time duration, or may be a time limit on a total amount of time for the UE 120 to perform repetitions of the interference level measurements and the availability determination. The repetition threshold may be a limit on the number of repetitions of the interference level measurements and the availability determination to be performed by the UE 120.
If, in the second repetition 630, the UE 120 determines that one or more of the resource patterns in the sensing resource set are now available for radar sensing, the UE 120 may perform radar sensing using one or more of the available resource patterns. If the UE 120 again determines that no resource patterns in the sensing resource set are available, the UE 120 may determine whether the stop condition (e.g., the time threshold and/or the repetition threshold) has been satisfied. If the stop condition has not been satisfied, the UE 120 may perform another repetition of the interference level measurements and the availability determinations. If the stop condition has been satisfied, the UE 120 may determine that a sensing failure has occurred. In the example of Fig. 6, the UE 120 determines, in the second repetition 630, that no resource patterns in the sensing resource set are available for radar sensing and determines that the stop condition (e.g., repetition threshold = 2) has been satisfied.
As further shown in Fig. 6, and by reference number 635, when the UE 120 determines that no resource patterns in the sensing resource set are available for radar sensing and the stop condition has been satisfied, the UE 120 may transmit (e.g., using controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, transmission component 904, and/or the like) a failure report to the base station 110. As described above, the stop condition may be satisfied when the time threshold is satisfied and/or when the repetition threshold is satisfied. When the stop condition is satisfied, the UE 120 may determine that a sensing failure has occurred. In some aspects, when the UE 120 determines that the sensing failure has occurred, the UE 120 may transmit the failure message to the base station 110, as shown in Fig. 6. Additionally, and/or alternatively, when the UE 120 determines that the sensing failure has occurred, the UE 120 may switch to an inactive/idle mode.
In some aspects, based at least in part on the failure message received from the UE 120, the base station 110 may trigger one or more additional resource patterns for radar sensing by the UE 120. For example, the base station 110 may transmit a configuration (e.g., RRC communication and/or the like) that includes the one or more additional resource patterns. The UE 120 may then perform the interference level  measurements and the availability determination for the one or more additional resource patterns.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
Figs. 7-8 are diagrams illustrating example processes associated with UE self-awareness interference management for radar sensing, in accordance with various aspects of the present disclosure.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with UE self-awareness interference management for radar sensing.
As shown in Fig. 7, in some aspects, process 700 may include receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE (block 710) . For example, the UE (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or memory 282) may receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE, as described above, for example with reference to Fig. 5 (e.g., reference number 510) and Fig. 6 (e.g., reference number 610) .
As further shown in Fig. 7, in some aspects, process 700 may include measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set (block 720) . For example, the UE (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282) may measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set, as described above, for example with reference to Fig. 5 (e.g., reference number 515) and Fig. 6 (e.g., reference number 615) .
As further shown in Fig. 7, in some aspects, process 700 may include determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule (block 730) . For example, the UE (e.g., using antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266,  modulator 254, controller/processor 280, and/or memory 282) may determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule, as described above, for example with reference to Fig. 5 (e.g., reference number 520) and Fig. 6 (e.g., reference number 620) .
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the configuration identifies the sensing resource set. In a second aspect, alone or in combination with the first aspect, the at least one sensing resource rule specifies an interference threshold. In a third aspect, alone or in combination with one or more of the first and second aspects, determining whether the at least one resource pattern is available for radar sensing comprises determining whether the at least one resource pattern is available for radar sensing based at least in part on a comparison between the interference level measured for the at least one resource pattern and the interference threshold.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the at least one sensing resource rule specifies a first interference threshold associated with a first category of radar sensing and a second interference threshold associated with a second category of radar sensing. In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the first category of radar sensing corresponds to a first scale of radar sensing and the second category of radar sensing corresponds to a second scale of radar sensing. In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, determining whether the at least one resource pattern is available for radar sensing comprises: if a sensing task corresponds to the first category of radar sensing, determining whether the at least one resource pattern is available for the sensing task based at least in part on a comparison between the interference level measured for the at least one resource pattern and the first interference threshold, and if the sensing task corresponds to the second category of radar sensing, determining whether the at least one resource pattern is available for the sensing task based at least in part on a comparison between the interference level measured for the at least one resource pattern and the second interference threshold.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, measuring the interference level for the at least one resource pattern comprises measuring an instantaneous interference level for the at least one resource pattern. In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, measuring the interference level for the at least one resource pattern comprises determining an average interference level over an observation time for the at least one resource pattern. In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the configuration indicates the observation time.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 700 includes performing radar sensing using the at least one resource pattern based at least in part on a determination that the at least one resource pattern is available for radar sensing.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, measuring the interference level for the at least one resource pattern and determining whether the at least one resource pattern is available for radar sensing are repeated for one or more different resource patterns of the one or more resource patterns in the sensing resource set until a resource pattern is determined to be available for radar sensing. In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, process 700 includes performing radar sensing using the resource pattern determined to be available for radar sensing.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, measuring the interference level for the at least one resource pattern comprises measuring a respective interference level for each of the one or more resource patterns in the sensing resource set, and determining whether the at least one resource pattern is available for radar sensing comprises determining which of the one or more resource patterns are available for radar sensing based at least on the respective interference level for each of the one or more resource patterns and the at least one sensing resource rule. In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, process 700 includes, if multiple resource patterns of the one or more resource patterns are determined to be available for radar sensing, selecting a resource pattern to perform radar sensing from the multiple resource patterns determined to be available for radar sensing. In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, process 700  includes performing radar sensing using the resource pattern selected from the multiple resource patterns determined to be available for radar sensing.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, process 700 includes, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing, performing, after a waiting time duration, a repetition of measuring the interference level for the at least one resource pattern and determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule. In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, process 700 includes, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing in the repetition of measuring the interference level and determining whether the at least one resource pattern is available, performing, after an adjusted waiting time duration, another repetition of measuring the interference level for the at least one resource pattern and determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule, wherein the adjusted waiting time duration is based at least in part on a number of repetitions performed.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, process 700 includes, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing, determining a sensing failure when at least one of a time threshold or a threshold on the number of repetitions has been reached. In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, the at least one of the time threshold or the threshold on the number of repetitions is indicated in the configuration. In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, process 700 includes transmitting a failure message to a base station based at least in part on determining the sensing failure. In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, process 700 includes switching to an inactive mode based at least in part on determining the sensing failure.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently  arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 800 is an example where the base station (e.g., base station 110) performs operations associated with UE self-awareness interference management for radar sensing.
As shown in Fig. 8, in some aspects, process 800 may include transmitting, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE (block 810) . For example, the base station (e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246) may transmit, to a UE, a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE, as described above, for example with reference to Fig. 5 (e.g., reference number 505) and Fig. 6 (e.g., reference numbers 605) .
As further shown in Fig. 8, in some aspects, process 800 may include transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing (block 820) . For example, the base station (e.g., using transmit processor 220, TX MIMO processor 230, modulator 232, antenna 234, controller/processor 240, memory 242, and/or scheduler 246) may transmit, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing, as described above, for example with reference to Fig. 5 (e.g., reference number 510) and Fig. 6 (e.g., reference numbers 610) .
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the at least one sensing resource rule specifies an interference threshold. In a second aspect, alone or in combination with the first aspect, the at least one sensing resource rule specifies a first interference threshold associated with a first category of radar sensing and a second interference threshold associated with a second category of radar sensing. In a third aspect, alone or in combination with one or more of the first and second aspects, the first category of radar sensing corresponds to a first  scale of radar sensing and the second category of radar sensing corresponds to a second scale of radar sensing.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the at least one sensing resource rule is based at least in part on an instantaneous interference level for a resource pattern of the one or more resource patterns. In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the at least one sensing resource rule is based at least in part on an average interference level over an observation time for a resource pattern of the one or more resource patterns. In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the configuration of the at least one sensing resource rule indicates the observation time.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, at least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a waiting time duration for the UE to wait before repeating a determination of whether the one or more resource patterns are available for radar sensing. In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the waiting time duration is based at least in part on a number of repetitions performed by the UE of the determination of whether the one or more resource patterns are available for radar sensing.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, at least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a time threshold for the UE to repeat a determination of whether the one or more resource patterns are available for radar sensing. In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, at least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a threshold on a number of repetitions to be performed by the UE of a determination of whether the one or more resource patterns are available for radar sensing.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 800 includes receiving, from the UE, a failure message indicating that no resource patterns of the one or more resource patterns in the sensing resource set are available for radar sensing by the UE. In a twelfth aspect, alone or in  combination with one or more of the first through eleventh aspects, process 800 includes transmitting, to the UE, one or more additional resource patterns for radar sensing by the UE, based at least in part on the failure message received from the UE.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a block diagram of an example apparatus 900 for wireless communication. The apparatus 900 may be a UE, or a UE may include the apparatus 900. In some aspects, the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 900 may communicate with another apparatus 906 (such as a UE, a base station, or another wireless communication device) using the reception component 902 and the transmission component 904. As further shown, the apparatus 900 may include one or more of a measurement component 908 or a determination component 910, among other examples.
In some aspects, the apparatus 900 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7. In some aspects, the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906. The reception component 902 may provide received communications to one or more other components of the apparatus 900. In some aspects, the reception  component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 906. In some aspects, the reception component 902 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
The transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906. In some aspects, one or more other components of the apparatus 906 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906. In some aspects, the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 906. In some aspects, the transmission component 904 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 904 may be collocated with the reception component 902 in a transceiver.
The reception component 902 may receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE. The measurement component 908 may measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set. In some aspects, the measurement component 908 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. The determination component 910 may determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule. In some aspects, the determination component 910 may include one or more antennas, a demodulator, a  MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
Fig. 10 is a block diagram of an example apparatus 1000 for wireless communication. The apparatus 1000 may be a base station, or a base station may include the apparatus 1000. In some aspects, the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004. As further shown, the apparatus 1000 may include a determination component 1008, among other examples.
In some aspects, the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8. In some aspects, the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006. The reception component 1002 may provide received communications to one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1006. In some aspects, the reception component 1002 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
The transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006. In some aspects, one or more other components of the apparatus 1006 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006. In some aspects, the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006. In some aspects, the transmission component 1004 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 1004 may be collocated with the reception component 1002 in a transceiver.
The determination component 1008 may determine a sensing resource set including one or more resource patterns for radar sensing by the UE. The transmission component 1004 may transmit, to a UE, a configuration that identifies the sensing resource set including the one or more resource patterns for radar sensing by the UE. The determination component 1008 may determine at least one resource sensing rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing. The transmission component 1004 may transmit, to the UE, a configuration of the at least one sensing resource rule to be used  by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the  disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (41)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE;
    measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and
    determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  2. The method of claim 1, wherein the configuration identifies the sensing resource set.
  3. The method of any of claims 1-2, wherein the at least one sensing resource rule specifies an interference threshold.
  4. The method of claim 3, wherein determining whether the at least one resource pattern is available for radar sensing comprises:
    determining whether the at least one resource pattern is available for radar sensing based at least in part on a comparison between the interference level measured for the at least one resource pattern and the interference threshold.
  5. The method of any of claims 1-4, wherein the at least one sensing resource rule specifies a first interference threshold associated with a first category of radar sensing and a second interference threshold associated with a second category of radar sensing.
  6. The method of claim 5, wherein the first category of radar sensing corresponds to a first scale of radar sensing and the second category of radar sensing corresponds to a second scale of radar sensing.
  7. The method of any of claims 5-6, wherein determining whether the at least one resource pattern is available for radar sensing comprises:
    if a sensing task corresponds to the first category of radar sensing, determining whether the at least one resource pattern is available for the sensing task based at least in part on a comparison between the interference level measured for the at least one resource pattern and the first interference threshold; and
    if the sensing task corresponds to the second category of radar sensing, determining whether the at least one resource pattern is available for the sensing task based at least in part on a comparison between the interference level measured for the at least one resource pattern and the second interference threshold.
  8. The method of any of claims 1-7, wherein measuring the interference level for the at least one resource pattern comprises:
    measuring an instantaneous interference level for the at least one resource pattern.
  9. The method of any of claims 1-8, wherein measuring the interference level for the at least one resource pattern comprises:
    determining an average interference level over an observation time for the at least one resource pattern.
  10. The method of claim 9, wherein the configuration indicates the observation time.
  11. The method of any of claims 1-10, further comprising:
    performing radar sensing using the at least one resource pattern based at least in part on a determination that the at least one resource pattern is available for radar sensing.
  12. The method of any of claims 1-11, wherein measuring the interference level for the at least one resource pattern and determining whether the at least one resource pattern is available for radar sensing are repeated for one or more different resource patterns of the one or more resource patterns in the sensing resource set until a resource pattern is determined to be available for radar sensing.
  13. The method of claim 12, further comprising:
    performing radar sensing using the resource pattern determined to be available for radar sensing.
  14. The method of any of claims 1-13, wherein measuring the interference level for the at least one resource pattern comprises measuring a respective interference level for each of the one or more resource patterns in the sensing resource set, and wherein determining whether the at least one resource pattern is available for radar sensing comprises determining which of the one or more resource patterns are available for radar sensing based at least on the respective interference level for each of the one or more resource patterns and the at least one sensing resource rule.
  15. The method of claim 14, further comprising:
    if multiple resource patterns of the one or more resource patterns are determined to be available for radar sensing, selecting a resource pattern to perform radar sensing from the multiple resource patterns determined to be available for radar sensing.
  16. The method of claim 15, further comprising:
    performing radar sensing using the resource pattern selected from the multiple resource patterns determined to be available for radar sensing.
  17. The method of any of claims 1-16, further comprising, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing:
    performing, after a waiting time duration, a repetition of measuring the interference level for the at least one resource pattern and determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  18. The method of claim 17, further comprising, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing in the repetition of measuring the interference level and determining whether the at least one resource pattern is available:
    performing, after an adjusted waiting time duration, another repetition of measuring the interference level for the at least one resource pattern and determining  whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule, wherein the adjusted waiting time duration is based at least in part on a number of repetitions performed.
  19. The method of claim 18, further comprising, based at least in part on a determination that no resource patterns of the one or more resource patterns are available for radar sensing:
    determining a sensing failure when at least one of a time threshold or a threshold on the number of repetitions has been reached.
  20. The method of claim 19, wherein the at least one of the time threshold or the threshold on the number of repetitions is indicated in the configuration.
  21. The method of any of claims 19-20, further comprising:
    transmitting a failure message to a base station based at least in part on determining the sensing failure.
  22. The method of any of claims 19-21, further comprising:
    switching to an inactive mode based at least in part on determining the sensing failure.
  23. A method of wireless communication performed by base station, comprising:
    transmitting, to a user equipment (UE) , a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and
    transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  24. The method of claim 23, wherein the at least one sensing resource rule specifies an interference threshold.
  25. The method of any of claims 23-24, wherein the at least one sensing resource rule specifies a first interference threshold associated with a first category of radar  sensing and a second interference threshold associated with a second category of radar sensing.
  26. The method of claim 25, wherein the first category of radar sensing corresponds to a first scale of radar sensing and the second category of radar sensing corresponds to a second scale of radar sensing.
  27. The method of any of claims 23-26, wherein the at least one sensing resource rule is based at least in part on an instantaneous interference level for a resource pattern of the one or more resource patterns.
  28. The method of any of claims 23-27, wherein the at least one sensing resource rule is based at least in part on an average interference level over an observation time for a resource pattern of the one or more resource patterns.
  29. The method of claim 28, wherein the configuration of the at least one sensing resource rule indicates the observation time.
  30. The method of any of claims 23-29, wherein at least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a waiting time duration for the UE to wait before repeating a determination of whether the one or more resource patterns are available for radar sensing.
  31. The method of claim 30, wherein the waiting time duration is based at least in part on a number of repetitions performed by the UE of the determination of whether the one or more resource patterns are available for radar sensing.
  32. The method of any of claims 23-31, wherein at least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a time threshold for the UE to repeat a determination of whether the one or more resource patterns are available for radar sensing.
  33. The method of any of claims 23-32, wherein at least one of the configuration of the at least one sensing resource rule or the configuration that identifies the sensing resource set indicates a threshold on a number of repetitions to be performed by the UE of a determination of whether the one or more resource patterns are available for radar sensing.
  34. The method of any of claims 23-33, further comprising:
    receiving, from the UE, a failure message indicating that no resource patterns of the one or more resource patterns in the sensing resource set are available for radar sensing by the UE.
  35. The method of claim 34, further comprising:
    transmitting, to the UE, one or more additional resource patterns for radar sensing by the UE, based at least in part on the failure message received from the UE.
  36. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE;
    measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and
    determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  37. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a user equipment (UE) , a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and
    transmit, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  38. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    receive a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the UE;
    measure an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and
    determine whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  39. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the base station to:
    transmit, to a user equipment (UE) , a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and
    transmit, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
  40. An apparatus for wireless communication, comprising:
    means for receiving a configuration of at least one sensing resource rule relating to a sensing resource set including one or more resource patterns for radar sensing by the apparatus;
    means for measuring an interference level for at least one resource pattern of the one or more resource patterns in the sensing resource set; and
    means for determining whether the at least one resource pattern is available for radar sensing based at least on the interference level and the at least one sensing resource rule.
  41. An apparatus for wireless communication, comprising:
    means for transmitting, to a user equipment (UE) , a configuration that identifies a sensing resource set including one or more resource patterns for radar sensing by the UE; and
    means for transmitting, to the UE, a configuration of at least one sensing resource rule to be used by the UE to determine whether the one or more resource patterns in the sensing resource set are available for radar sensing.
PCT/CN2020/104737 2020-07-27 2020-07-27 User equipment self-awareness interference management for radar sensing WO2022020983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/104737 WO2022020983A1 (en) 2020-07-27 2020-07-27 User equipment self-awareness interference management for radar sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/104737 WO2022020983A1 (en) 2020-07-27 2020-07-27 User equipment self-awareness interference management for radar sensing

Publications (1)

Publication Number Publication Date
WO2022020983A1 true WO2022020983A1 (en) 2022-02-03

Family

ID=80037243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104737 WO2022020983A1 (en) 2020-07-27 2020-07-27 User equipment self-awareness interference management for radar sensing

Country Status (1)

Country Link
WO (1) WO2022020983A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019200093A1 (en) * 2018-04-12 2019-10-17 Qualcomm Incorporated Communicating multiple instances of a message in a random medium access control system
US20190383925A1 (en) * 2018-06-18 2019-12-19 Qualcomm Incorporated Multi-radar coexistence using phase-coded frequency modulated continuous wave waveforms
US20190391247A1 (en) * 2018-06-25 2019-12-26 Qualcomm Incorporated Selection of frequency modulated continuous wave (fmcw) waveform parameters for multi-radar coexistence
US20200107249A1 (en) * 2018-09-27 2020-04-02 Google Llc Controlling Radar Transmissions Within a Licensed Frequency Band

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019200093A1 (en) * 2018-04-12 2019-10-17 Qualcomm Incorporated Communicating multiple instances of a message in a random medium access control system
US20190383925A1 (en) * 2018-06-18 2019-12-19 Qualcomm Incorporated Multi-radar coexistence using phase-coded frequency modulated continuous wave waveforms
US20190391247A1 (en) * 2018-06-25 2019-12-26 Qualcomm Incorporated Selection of frequency modulated continuous wave (fmcw) waveform parameters for multi-radar coexistence
US20200107249A1 (en) * 2018-09-27 2020-04-02 Google Llc Controlling Radar Transmissions Within a Licensed Frequency Band

Similar Documents

Publication Publication Date Title
WO2021237486A1 (en) User equipment capability for wireless sensing
EP4333331A2 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2020164063A1 (en) User equipment grouping for cross-link interference reference signal configuration
EP4189845A1 (en) Transmission type selection for beam switching
WO2022000229A1 (en) Sensing interference reports
WO2022027417A1 (en) Channel state information report type configuration
US20230163910A1 (en) Tracking reference signal availability indication
EP4173343A1 (en) Directional sensing signal request
US11791886B2 (en) Allocation of resources for beam management operations
US20220312232A1 (en) Unified measurement configurations for cross-link interference, self-interference, and wireless sensing
US20220141695A1 (en) Resource counting rule for determining maximum measured reference signals
US20220128648A1 (en) Timing for listen before talk for radar
WO2022000227A1 (en) Channel state information reports and channel state information interference measurement reports associated with joint sensing and communication services
WO2021253388A1 (en) Beam feedback for passive sensing
WO2022020983A1 (en) User equipment self-awareness interference management for radar sensing
WO2022040654A1 (en) Uplink beam management using mixed downlink and uplink reference signals
EP4098003A1 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2023050139A1 (en) Beam reporting for inter-cell beam management
US11863488B2 (en) Single reference signal timing information for measurements of multiple reference signals of multiple cells
WO2022205087A1 (en) Beam switching gap based on user equipment capability
US11451327B2 (en) Frame based listen before talk for radar enabled devices with variable chirp lengths
WO2022155807A1 (en) Configuration and signaling support for half-duplex frequency division duplex operation of reduced-capability user equipments
WO2022217572A1 (en) Passive device reference signals
WO2022205410A1 (en) Channel measurements in channel sensing contention slots
WO2022000235A1 (en) Precoding for joint sensing and communication services

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946917

Country of ref document: EP

Kind code of ref document: A1