WO2022018983A1 - Heat exchange ventilation device with air purification function - Google Patents

Heat exchange ventilation device with air purification function Download PDF

Info

Publication number
WO2022018983A1
WO2022018983A1 PCT/JP2021/021377 JP2021021377W WO2022018983A1 WO 2022018983 A1 WO2022018983 A1 WO 2022018983A1 JP 2021021377 W JP2021021377 W JP 2021021377W WO 2022018983 A1 WO2022018983 A1 WO 2022018983A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
humidity
heat exchange
unit
supply
Prior art date
Application number
PCT/JP2021/021377
Other languages
French (fr)
Japanese (ja)
Inventor
陽子 石田
智裕 林
真司 吉田
亮介 須賀
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020125009A external-priority patent/JP2022021449A/en
Priority claimed from JP2020125010A external-priority patent/JP2022021450A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022018983A1 publication Critical patent/WO2022018983A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/16Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • This disclosure relates to a heat exchange type ventilation device with an air purification function that disinfects a target space such as indoors while performing heat exchange ventilation.
  • hypochlorous acid is released together with water by using a humidifier, a two-fluid nozzle, or the like. For this reason, the humidity in the target space where hypochlorous acid was released increased, and there was a possibility that comfort would be impaired especially in the summer of Japan, where the relative humidity is high.
  • the present disclosure provides a heat exchange type ventilator with an air purification function capable of suppressing an increase in humidity due to the release of hypochlorous acid.
  • the heat exchange type ventilator with an air purification function has an exhaust flow flowing through an exhaust air passage that discharges air in an indoor space to an outdoor space, and an air supply air passage that supplies air in an outdoor space to an indoor space.
  • a heat exchange type ventilation device that exchanges heat with the circulating air supply, and an air purification unit that adds a component that purifies the air together with water to the air supply after heat exchange introduced from the air supply air passage.
  • On the upstream side of the air purification unit a heat exchange unit that dehumidifies the air supply air after heat exchange and a control unit that controls the heat exchange unit are provided.
  • control unit adjusts the humidity of the air supply air supply supplied to the indoor space to the target setting humidity of the air in the indoor space
  • the control unit exchanges heat based on the humidity information regarding the increase in the humidity of the air supply air flow by the air purification unit. Controls the amount of dehumidification for the air supply by the unit.
  • a heat exchange type ventilator with an air purification function capable of suppressing an increase in humidity due to the release of hypochlorous acid.
  • FIG. 1 is a schematic view showing an installation state of a heat exchange type ventilation device according to a premise example of the present disclosure in a house.
  • FIG. 2 is a schematic diagram showing the configuration of the heat exchange type ventilation device according to the premise example of the present disclosure.
  • FIG. 3 is a schematic view showing the configuration of the heat exchange type ventilation device with an air purification function according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram showing a humidity change of the supply air flow flowing through the air purification device according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram showing the humidity change of the supply airflow flowing through the air purification device according to the first embodiment of the present disclosure for each operating state condition.
  • FIG. 1 is a schematic view showing an installation state of a heat exchange type ventilation device according to a premise example of the present disclosure in a house.
  • FIG. 2 is a schematic diagram showing the configuration of the heat exchange type ventilation device according to the premise example of the present disclosure.
  • FIG. 3 is
  • FIG. 6 is a block diagram showing a configuration of a control unit in the air purification device according to the first embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing a processing procedure by the control unit according to the first embodiment of the present disclosure.
  • FIG. 8 is a schematic view showing an installation state of the heat exchange type ventilation device according to the premise example of the present disclosure in a house.
  • FIG. 9 is a schematic diagram showing the configuration of the heat exchange type ventilation device according to the premise example of the present disclosure.
  • FIG. 10 is a schematic view showing the configuration of the heat exchange type ventilation device with an air purification function according to the second embodiment of the present disclosure.
  • FIG. 11 illustrates the tendency of temperature and humidity changes due to the first operation and the second operation in the region divided by the reference values of temperature and humidity in the heat exchange type ventilation device with an air purification function according to the second embodiment of the present disclosure. It is a figure to do.
  • FIG. 12 is a schematic block diagram showing a configuration of a control unit in the heat exchange type ventilation device with an air purification function according to the second embodiment of the present disclosure.
  • FIG. 13 is a flowchart showing a process performed by the control unit in the heat exchange type ventilation device with an air purification function according to the second embodiment of the present disclosure.
  • the heat exchange unit reaches the target set humidity. Dehumidify according to the situation. Therefore, it is possible to suppress excessive humidification of the indoor space. That is, it is possible to provide a heat exchange type ventilation device with an air purification function capable of suppressing an increase in humidity due to the release of a component that purifies the air.
  • a component for example, hypochlorous acid
  • FIGS. 1 and 2 for the heat exchange type ventilator 10 according to the premise example of the present disclosure, which is a premise for explaining the heat exchange type ventilator 50 with an air purification function according to the embodiment of the present disclosure. I will explain.
  • FIG. 1 is a schematic view showing an installation state of the heat exchange type ventilation device 10 according to the premise example of the present disclosure in a house.
  • FIG. 2 is a schematic diagram showing the configuration of the heat exchange type ventilation device 10 according to the premise example of the present disclosure.
  • the exhaust flow 2 is discharged from the indoor space 11 such as the living room to the outdoor space 12 via the indoor exhaust port 9a, the heat exchange type ventilation device 10 and the outdoor exhaust port 9b as shown by the black arrow. .. That is, the exhaust flow 2 is a flow of air discharged from indoors to outdoors.
  • the air supply air flow 3 is taken into the indoor space 11 from the outdoor space 12 via the outdoor air supply port 9c, the heat exchange type ventilation device 10 and the indoor air supply port 9d as shown by the white arrow. That is, the supply airflow 3 is a flow of air taken in from the outside to the inside.
  • the exhaust flow 2 is 20 ° C to 25 ° C, while the air flow 3 may reach below freezing.
  • the heat exchange type ventilation device 10 ventilates and transfers the heat of the exhaust flow 2 to the supply airflow 3 at the time of ventilation to suppress the release of heat to the outside (heats the supply airflow 3 by the exhaust flow 2). There is.
  • the heat exchange type ventilation device 10 includes a main body case 10f, an inside air port 10a, an exhaust port 10b, an outside air port 10c, an air supply port 10d, a heat exchange element 10e, an exhaust fan 10g, an air supply fan 10h, and an exhaust. It is provided with an air passage 4 and an air supply air passage 5.
  • the main body case 10f is the outer frame of the heat exchange type ventilator 10.
  • An inside air port 10a, an exhaust port 10b, an outside air port 10c, and an air supply port 10d are formed on the outer periphery of the main body case 10f.
  • the inside air port 10a is a suction port for sucking the exhaust flow 2 into the heat exchange type ventilation device 10, and communicates with the indoor exhaust port 9a (see FIG. 1) via a duct or the like.
  • the exhaust port 10b is a discharge port for discharging the exhaust flow 2 from the heat exchange type ventilation device 10 to the outside, and communicates with the outdoor exhaust port 9b (see FIG. 1) via a duct or the like.
  • the outside air port 10c is a suction port for sucking the air supply air 3 into the heat exchange type ventilation device 10, and communicates with the outdoor air supply port 9c (see FIG. 1) via a duct or the like.
  • the air supply port 10d is a discharge port for discharging the air supply air 3 indoors from the heat exchange type ventilation device 10, and communicates with the indoor air supply port 9d via a duct or the like.
  • the air supply fan 10h is installed in the vicinity of the air supply port 10d, and is a blower for sucking the air supply airflow 3 from the outside air port 10c and discharging it from the air supply port 10d.
  • the exhaust air passage 4 includes an air passage that communicates the inside air port 10a and the exhaust port 10b.
  • the air supply air passage 5 includes an air passage that communicates the outside air port 10c and the air supply port 10d.
  • the exhaust flow 2 sucked from the inside air port 10a by driving the exhaust fan 10g is discharged to the outside from the exhaust port 10b via the heat exchange element 10e and the exhaust fan 10g.
  • the air supply airflow 3 sucked from the outside air port 10c by driving the air supply fan 10h is supplied indoors from the air supply port 10d via the heat exchange element 10e and the air supply fan 10h.
  • the heat exchange type ventilation device 10 When performing heat exchange ventilation, the heat exchange type ventilation device 10 operates an exhaust fan 10g and an air supply fan 10h, and has an exhaust flow 2 flowing through the exhaust air passage 4 in the heat exchange element 10e and an air supply air passage 5. Heat is exchanged with the air supply air 3 circulating in the air. As a result, the heat exchange type ventilation device 10 transfers the heat of the exhaust flow 2 released to the outside to the air supply airflow 3 which takes in the heat indoors when ventilating, suppresses the release of the heat to the outside, and indoors. Recover heat. As a result, for example, in winter in Japan, it is possible to suppress a decrease in indoor temperature due to low-temperature outdoor air during ventilation. On the other hand, for example, in the summer of Japan, when ventilation is performed, it is possible to suppress an indoor temperature rise due to high temperature outdoor air.
  • FIG. 3 is a schematic diagram showing the configuration of the heat exchange type ventilation device 50 with an air purification function according to the first embodiment of the present disclosure.
  • the airflow (exhaust flow 2 and supply airflow 3) or air passage (exhaust air passage 4 and supply air passage 5) after heat exchange passes through the heat exchange element 10e in the heat exchange type ventilation device 10.
  • the airflow or air passage after the heat is shown.
  • the air purification device 6 performs a cooling treatment (dehumidification treatment) on the supply airflow 3 after heat exchange from the heat exchange type ventilation device 10 as necessary.
  • the air purifying device 6 is a device that includes a purifying component (a component that purifies the air) together with the finely divided water in the air supply air 3 that circulates inside.
  • the air purification device 6 includes a main body case 6 g, an air flow inlet 6a, an air flow outlet 6c, a humidifier 6d, and a heat exchanger 16.
  • the humidifier 6d corresponds to the "air purification unit" in the claims
  • the heat exchanger 16 corresponds to the "heat exchange unit" in the claims.
  • the air supply inlet 6a is an intake port that takes in the air supply 3 from the heat exchange type ventilation device 10 into the air purification device 6.
  • the air supply inlet 6a is communicated with the air supply port 10d of the heat exchange type ventilation device 10 via a duct 7 forming a part of the air supply air passage 5.
  • the airflow outlet 6c is a discharge port that discharges the airflow 3 (or the airflow 3 to which the component that purifies the air is not added) to the air supply air passage 5 as the air supply SA. ..
  • the humidifier 6d is a unit for humidifying the air taken in inside (air supply airflow 3) and adding a purification component (component for purifying air). Then, when the humidifier 6d humidifies the air, the humidifier 6d contains the purifying component together with the water finely divided with respect to the air. More specifically, the humidifier 6d has a humidifying motor 6e and a humidifying nozzle 6f. The humidifier 6d uses a humidifying motor 6e to rotate the humidifying nozzle 6f, and centrifugally sucks up the water (water containing a purification component) stored in the water storage unit (not shown) of the humidifier 6d.
  • the humidifier 6d changes the rotation speed (hereinafter, also defined as a rotation output value) of the humidifying motor 6e according to the output signal from the control unit 8 described later, thereby humidifying the air (humidifying amount).
  • the humidification amount can be said to be an additional amount that adds a purification component to the air.
  • the supply of water containing a purifying component to the water storage section (not shown) of the humidifier 6d includes the purifying component by adding (adding) the purifying component to the water supplied from the water supply pipe of a water supply or the like. It is performed by the purification component supply unit (not shown) that produces water.
  • the purifying component for example, hypochlorous acid having bactericidal or deodorant properties is used. That is, indoor sterilization or deodorization can be performed by including the hypochlorous acid aqueous solution generated by adding hypochlorous acid to water in the air flow 3 and supplying it indoors.
  • the heat exchanger 16 is a member arranged on the upstream side of the humidifier 6d in the air purification device 6 for cooling or heating the introduced air (air supply airflow 3). Then, the heat exchanger 16 changes the output state (heating, cooling, or off) of the heat exchanger 16 according to the output signal from the control unit 8 described later. Thereby, the cooling capacity (cooling amount) or the heating capacity (heating amount) with respect to the introduced airflow 3 is adjusted.
  • cooling the introduced air means dehumidifying the introduced air. Therefore, the cooling capacity (cooling amount) for the supply airflow 3 can be said to be the dehumidifying capacity (dehumidification amount) for the supply airflow 3.
  • the heat exchanger 16 functions as a heat absorber or a radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber.
  • the heat exchanger 16 is configured to absorb heat (cool) or dissipate heat (heat) when the refrigerant introduced from the air conditioner (outdoor unit 20) circulates inside.
  • the heat exchanger 16 is an indoor unit built in the air purification device 6 installed in the indoor space 11, and the outdoor unit 20 is an outdoor unit installed in the outdoor space 12.
  • the outdoor unit 20 includes a compressor 20a, an expander 20b, an outdoor heat exchanger 20c, a blower fan 20d, and a four-way valve 20e.
  • a four-way valve 20e is connected to the refrigeration cycle.
  • the heat exchanger 16 is in a cooling mode (dehumidifying mode) in which the air (supply airflow 3) is cooled and dehumidified by the flow of the refrigerant in the first direction by the four-way valve 20e, and in the second direction by the four-way valve 20e. It has a heating mode state in which the air (supply airflow 3) is heated by the flow of the refrigerant.
  • the four-way valve 20e is a device (reversible valve) for switching the flow direction of the refrigerant flowing in the refrigerant circuit 21 in the refrigeration cycle. More specifically, the four-way valve 20e is connected between the compressor 20a and the heat exchanger 16 and between the compressor 20a and the outdoor heat exchanger 20c.
  • the four-way valve 20e has a cooling mode in which the compressor 20a, the outdoor heat exchanger 20c, the expander 20b, and the heat exchanger 16 circulate the refrigerant in this order (first direction), and the compressor 20a and the heat exchanger. 16 is switched between the heating mode in which the expander 20b and the outdoor heat exchanger 20c are circulated in this order (second direction). That is, the flow of the refrigerant is in the opposite direction in the cooling mode and the heating mode.
  • the cooling mode can also be said to be a dehumidification mode.
  • the cooling mode and the heating mode will be described.
  • the compressor 20a compresses low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, increases the pressure, and raises the temperature.
  • refrigerant gas working medium gas
  • the outdoor heat exchanger 20c functions as a radiator.
  • the outdoor heat exchanger 20c exchanges heat between the refrigerant gas whose high temperature and high pressure are increased by the compressor 20a and the air (air OA of the outdoor space 12 blown by the blower fan 20d), thereby exchanging heat to the outside (air OA in the outdoor space 12). Discharge to outside the refrigerant cycle).
  • the refrigerant gas is condensed and liquefied under high pressure.
  • the temperature of the introduced refrigerant gas is higher than the temperature of the air. Therefore, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
  • the blower fan 20d blows the air OA of the outdoor space 12 toward the outdoor heat exchanger 20c.
  • the expander 20b decompresses the high-pressure refrigerant liquefied by the outdoor heat exchanger 20c to the original low-temperature and low-pressure liquids.
  • the heat exchanger 16 functions as a heat absorber.
  • the liquid refrigerant flowing through the expander 20b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas.
  • the temperature of the introduced refrigerant is lower than the temperature of the air (supply airflow 3 after the introduced heat exchange). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
  • the heat exchanger 16 cools the introduced air (air supply airflow 3).
  • Heating mode In the heating mode, the refrigerant flows in the second direction described above.
  • the compressor 20a compresses the low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, and raises the pressure to raise the temperature.
  • working medium gas working medium gas
  • the heat exchanger 16 functions as a radiator.
  • the heat exchanger 16 performs the same function as the outdoor heat exchanger 20c in the cooling mode. Specifically, the heat exchanger 16 exchanges heat between the refrigerant gas having a high temperature and high pressure by the compressor 20a and air (the air supply airflow 3 after the heat exchange to be introduced), thereby exchanging heat to the outside. Discharge to (outside the refrigerant cycle). At this time, the refrigerant gas is condensed and liquefied under high pressure. In the heat exchanger 16, since the temperature of the introduced refrigerant gas is higher than the temperature of the air, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
  • the expander 20b decompresses the high-pressure refrigerant liquefied by the heat exchanger 16 to the original low-temperature and low-pressure liquids.
  • the outdoor heat exchanger 20c functions as a heat absorber.
  • the outdoor heat exchanger 20c performs the same function as the heat exchanger 16 in the dehumidification mode. Specifically, in the outdoor heat exchanger 20c, the liquid refrigerant flowing through the expander 20b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas. In the outdoor heat exchanger 20c, the temperature of the introduced refrigerant is lower than the temperature of the air (air OA of the outdoor space 12 blown by the blower fan 20d). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
  • the heat exchanger 16 heats the introduced air (air supply airflow 3).
  • the air purification device 6 is configured as described above, and adds a purification component (component for purifying air) by a cooling mode in the summer when it is desired to dehumidify the air (air supply airflow 3) introduced from the outside. Further, in the winter when it is desired to humidify the air introduced from the outside (air supply airflow 3), a purification component (component for purifying air) is added by the heating mode.
  • a purification component component for purifying air
  • FIG. 4 is a diagram showing a humidity change of the supply airflow 3 flowing through the air purification device 6 according to the first embodiment. More specifically, FIG. 4 is a diagram showing the humidity that changes according to each treatment in the heat exchanger 16 and the humidifier 6d constituting the air purification device 6 in chronological order. And FIG. 4 shows the humidity change by the conventional dehumidification control process (comparative example) and the humidity change by the dehumidification control process (example) of the present embodiment, respectively.
  • the humidity of the supply airflow 3 in the region T1 is the humidity H0.
  • the humidity of the supply airflow 3 is reduced to the humidity H2, which is the target setting humidity of the indoor air. That is, the heat exchanger 16 dehumidifies with a dehumidifying amount in which the humidity of the supply airflow 3 changes from humidity H0 to humidity H2.
  • a purification component is added to the supply airflow 3 together with water to increase the humidity of the supply airflow 3 to the humidity H1. That is, the humidifier 6d adds a purifying component while humidifying with a humidifying amount in which the humidity of the supply airflow 3 changes from humidity H2 to humidity H1.
  • the supply airflow 3 maintains the humidity H1 and is supplied to the indoor space 11 at a humidity higher than the target set humidity (humidity H2). Therefore, in the comparative example, since the increase in humidity due to the humidifier 6d is not taken into consideration, the humidity control of the indoor air is controlled in the over-humidified state. As a result, the comfort of the indoor space 11 may be impaired.
  • the supply airflow 3 maintains the humidity H2 and is supplied to the indoor space 11 at the same humidity as the target set humidity. Therefore, in the embodiment, the humidity increase by the humidifier 6d is reflected in the dehumidification amount by the heat exchanger 16, and the humidity control of the indoor air is performed in a state where the supply airflow 3 reaches the target set humidity. As a result, it becomes possible to supply the purifying component to the indoor space 11 while maintaining the comfort of the indoor space 11.
  • FIG. 5 is a diagram showing the humidity change of the supply airflow 3 flowing through the air purification device 6 according to the first embodiment for each operating state condition.
  • the upper graph of FIG. 5 is a diagram corresponding to FIG. 4, and shows the humidity change of the supply airflow 3 for each operating condition.
  • the lower table of FIG. 5 shows the detailed contents of the operating condition.
  • the operating state condition will be described as three stages according to the release level of the purification component to the supply airflow 3 supplied to the indoor space 11.
  • the operating condition conditions are the release amount A (low release), the release amount B (standard release), and the release amount C (high release) according to the release level of the purification component by the humidifier 6d. It is selected from three stages.
  • the air purification device 6 executes the operation control specified by the selected operating state conditions (first operating state to third operating state).
  • the amount of the purification component released to the air supply air 3 is in the relationship of the amount A ⁇ the amount B ⁇ the amount C released.
  • the air purification device 6 executes the operation operation based on the first operating state. Then, in the first operating state, the air purifying device 6 rotates the humidifying motor 6e of the humidifier 6d at the rotation speed A1 and cools (dehumidifies) the heat exchanger 16 in the on state A2.
  • the rotation speed A1 is a rotation condition that realizes a humidification amount that satisfies the difference between the humidity H3a and the target set humidity (humidity H2) with respect to the supply airflow 3 flowing through the humidifier 6d.
  • the on state A2 is a cooling condition that realizes a dehumidifying amount that removes the difference between the humidity H0 and the humidity H3a with respect to the supply airflow 3 flowing through the heat exchanger 16.
  • the humidity H3a which is lower than the target set humidity (humidity H2), is reduced in the region T2 with respect to the supply airflow 3 having the humidity H0 in the region T1.
  • a purifying component is added to the supply airflow 3 together with water to increase the humidity to H2.
  • the supply airflow 3 maintains the humidity H2 and is supplied to the indoor space 11 at the same humidity as the target set humidity. Therefore, the supply airflow 3 in the humidity H0 after the heat exchange is dehumidified to the humidity H3a by the heat exchanger 16 in the region T2. Therefore, even if the region T3 is humidified by the humidifier 6d at the rotation speed A1, the final humidity is the humidity H2, which is the target set humidity. Therefore, the supply airflow 3 can be supplied to the indoor space 11 without being excessively humidified.
  • the air purification device 6 executes the operation operation based on the second operating state. Then, in the second operating state, the air purifying device 6 rotates the humidifying motor 6e of the humidifier 6d at the rotation speed B1 and cools (dehumidifies) the heat exchanger 16 in the on state B2.
  • the rotation speed B1 is a rotation condition that realizes a humidification amount that satisfies the difference between the humidity H3b and the target set humidity (humidity H2) with respect to the supply airflow 3 flowing through the humidifier 6d.
  • the on state B2 is a cooling condition that realizes a dehumidifying amount that removes the difference between the humidity H0 and the humidity H3b with respect to the supply airflow 3 flowing through the heat exchanger 16.
  • the humidity H3b which is lower than the target set humidity (humidity H2), is reduced in the region T2 with respect to the supply airflow 3 having the humidity H0 in the region T1.
  • a purifying component is added to the supply airflow 3 together with water to increase the humidity to H2.
  • the supply airflow 3 maintains the humidity H2 and is supplied to the indoor space 11 at the same humidity as the target set humidity. Therefore, the supply airflow 3 in the humidity H0 after the heat exchange is dehumidified to the humidity H3b by the heat exchanger 16 in the region T2. Therefore, even if the region T3 is humidified by the humidifier 6d at the rotation speed B1, the final humidity is the humidity H2, which is the target set humidity. Therefore, the supply airflow 3 can be supplied to the indoor space 11 without being excessively humidified.
  • the air purification device 6 executes the operation operation based on the third operating state. Then, in the third operating state, the air purifying device 6 rotates the humidifying motor 6e of the humidifier 6d at the rotation speed C1 and cools (dehumidifies) the heat exchanger 16 in the on state C2.
  • the rotation speed C1 is a rotation condition that realizes a humidification amount that satisfies the difference between the humidity H3c and the target set humidity (humidity H2) with respect to the supply airflow 3 flowing through the humidifier 6d.
  • the on state C2 is a cooling condition that realizes a dehumidifying amount that removes the difference between the humidity H0 and the humidity H3c with respect to the supply airflow 3 flowing through the heat exchanger 16.
  • the humidity H3c which is lower than the target set humidity (humidity H2), is reduced in the region T2 with respect to the supply airflow 3 having the humidity H0 in the region T1.
  • a purifying component is added to the supply airflow 3 together with water to increase the humidity to H2.
  • the supply airflow 3 maintains the humidity H2 and is supplied to the indoor space 11 at the same humidity as the target set humidity. Therefore, the supply airflow 3 in the humidity H0 after the heat exchange is dehumidified to the humidity H3c by the heat exchanger 16 in the region T2. Therefore, even if the region T3 is humidified by the humidifier 6d at the rotation speed C1, the final humidity is the humidity H2, which is the target set humidity. Therefore, the supply airflow 3 can be supplied to the indoor space 11 without being excessively humidified.
  • the dehumidification amount by the heat exchanger 16 is set according to the humidification amount (addition amount of the purification component) when the purification component is added. Therefore, while adding the purifying component necessary for the indoor space 11, the humidity of the supply airflow 3 supplied to the indoor space 11 can be adjusted so as to be the target set humidity of the air in the indoor space 11.
  • FIG. 6 is a schematic block diagram showing the configuration of the control unit 8 in the air purification device 6 according to the first embodiment.
  • control unit 8 includes an input unit 8a, a processing unit 8b, an output unit 8c, a storage unit 8d, and a timing unit 8e.
  • the operation panel 18 is a terminal for inputting user input information regarding the air purification device 6 (for example, presence / absence of addition of purification component, presence / absence of humidification, addition level of purification component, humidification level, etc.), and is wireless or It is connected to the control unit 8 by wire so as to be communicable.
  • the first information also includes user input information.
  • the addition level and the humidification level of the purification component are set, for example, in three stages of "high”, "standard” and “low”, respectively.
  • the timekeeping unit 8e outputs the sixth information regarding the current time to the processing unit 8b.
  • the output unit 8c outputs the control information (rotational output value) received from the processing unit 8b to the humidifier 6d (humidifying motor 6e). Further, the output unit 8c outputs the control information (cooling output value) received from the processing unit 8b to the heat exchanger 16. Then, the humidifier 6d executes an additional operation operation according to the rotation output value output from the output unit 8c. Further, the heat exchanger 16 executes a cooling operation operation based on the cooling output value output from the output unit 8c.
  • control unit 8 controls the cooling operation (dehumidifying operation) and the addition operation of the purification component with respect to the supply airflow 3 flowing through the air purification device 6, respectively.
  • FIG. 7 is a flowchart showing a processing procedure by the control unit 8 according to the first embodiment.
  • control unit 8 starts processing in response to a control signal regarding the start of operation from the operation panel 18.
  • the input unit 8a of the control unit 8 acquires the humidity information (humidity value) of the air RA from the indoor space 11 transmitted from the humidity detection unit 15 (step S01).
  • the control unit 8 uses the humidifier 6d to purify the components based on the information output from the input unit 8a and the storage unit 8d (target set humidity of indoor air, set additional level of purification component, set humidification level, etc.).
  • the amount of humidification associated with the addition of the above is specified (step S02). That is, the control unit 8 specifies the control information (rotational output value) regarding the humidification operation.
  • control unit 8 operates the humidifier 6d (humidification motor 6e) based on the specified control information (rotational output value or cooling output value) to start the humidification operation, and the heat exchanger 16 (outdoor).
  • the compressor 20a) of the machine 20 is operated to start the dehumidifying operation (step S04).
  • the operation of the air purification device 6 (humidifier 6d and heat exchanger 16) is executed, and the air supply air 3 flowing through the air purification device 6 is supplied indoors in a state where the target set humidity is reached.
  • the control unit 8 continues the operation of the air purification device 6 as it is. (Return to step S05).
  • the predetermined time is a time measured with the operation time point of the air purification device 6 in step S04 as the start time, and is set to, for example, 5 minutes.
  • control unit 8 adjusts the humidity so that the humidity of the air flow 3 supplied to the indoor space 11 becomes the target set humidity of the air in the indoor space 11
  • the control unit 8 obtains humidity information regarding the humidity increase of the air flow 3 by the humidifier 6d. Based on this, the amount of dehumidification with respect to the air flow 3 by the heat exchanger 16 is controlled.
  • the operation is switched between the first operation state and the third operation state based on the addition level (addition amount) of the purification component set in advance.
  • Humidity control was performed, but it is not limited to this.
  • the operating state may be continuously switched based on the purification degree information of the air RA from the indoor space 11.
  • the relative humidity of the air in the indoor space 11 can be maintained within a comfortable range (40% to 60%) without the user switching the operation.
  • Embodiment 2 As a conventional heat exchange type ventilator with an air purification function, air conditioning that disinfects the indoor space by contacting the air supplied from the outside to the inside with the gas-liquid contact member containing hypochlorous acid and releasing it.
  • the system is known (see, for example, Patent Document 1).
  • the heat exchange type ventilation device with an air purification function includes a heat exchange type ventilation device, an air purification unit, a first heat exchange unit, and a second heat exchange unit.
  • the heat exchange type ventilator is between the exhaust flow that flows through the exhaust air passage that discharges the air in the indoor space to the outdoor space and the air supply air flow that flows through the air supply air passage that supplies the air in the outdoor space to the indoor space.
  • the air purification unit adds a component for purifying air together with water to the air supply after heat exchange introduced from the heat exchange type ventilator.
  • the first heat exchange unit dehumidifies the air supply after heat exchange on the upstream side of the air purification unit.
  • the second heat exchange unit heats the air supply dehumidified by the first heat exchange unit between the first heat exchange unit and the air purification unit. This will achieve the intended purpose.
  • an air purification device capable of suppressing an increase in humidity due to the release of hypochlorous acid.
  • the heat exchange type ventilation device with an air purification function includes a heat exchange type ventilation device, an air purification unit, a first heat exchange unit, and a second heat exchange unit.
  • the heat exchange type ventilator is between the exhaust flow that flows through the exhaust air passage that discharges the air in the indoor space to the outdoor space and the air supply air flow that flows through the air supply air passage that supplies the air in the outdoor space to the indoor space.
  • the air purification unit adds a component for purifying air together with water to the air supply after heat exchange introduced from the heat exchange type ventilator.
  • the first heat exchange unit dehumidifies the air supply after heat exchange on the upstream side of the air purification unit.
  • the second heat exchange unit heats the air supply dehumidified by the first heat exchange unit between the first heat exchange unit and the air purification unit.
  • the first heat exchanger and the air purification unit add and supply a component that purifies the air while lowering the absolute humidity of the air supply after the heat exchange.
  • a state in which the absolute humidity of the air supply air after heat exchange is decreased by the first heat exchanger and the second heat exchanger, and the temperature of the air supply air decreased due to dehumidification is increased and supplied. It is possible to combine them.
  • the heat exchange type ventilator with an air purification function further includes a control unit that controls the operation of the air purification unit, the first heat exchange unit, and the second heat exchange unit. Then, the control unit performs the first operation of dehumidifying the air supply air after heat exchange and adding it by the air purification unit based on the temperature / humidity information of the air in the indoor space. Control is performed to switch between dehumidification by the first heat exchange unit and second operation of heating by the second heat exchange unit with respect to the air supply airflow after heat exchange.
  • the first heat exchange unit functions as a heat absorber in a refrigeration cycle including a compressor, a radiator, an expander and a heat absorber.
  • the second heat exchange unit is composed of a second refrigerant coil that functions as a radiator in a refrigerating cycle different from the refrigerating cycle.
  • FIGS. 8 and 9 for the heat exchange type ventilator 110 according to the premise example of the present disclosure, which is a premise for explaining the heat exchange type ventilator 150 with an air purification function according to the embodiment of the present disclosure. I will explain.
  • FIG. 8 is a schematic view showing an installation state of the heat exchange type ventilation device 110 according to the premise example of the present disclosure in a house.
  • FIG. 9 is a schematic diagram showing the configuration of the heat exchange type ventilator 110 according to the premise example of the present disclosure.
  • the exhaust flow 102 is 20 ° C to 25 ° C, while the airflow 103 may reach below freezing.
  • the heat exchange type ventilation device 110 ventilates and transfers the heat of the exhaust flow 102 to the supply airflow 103 during ventilation to suppress the release of heat to the outside (heats the supply airflow 103 by the exhaust flow 102). There is.
  • the outside air port 110c is a suction port for sucking the air supply port 103 into the heat exchange type ventilation device 110, and communicates with the outdoor air supply port 109c (see FIG. 8) via a duct or the like.
  • the air supply port 110d is a discharge port for discharging the air supply port 103 indoors from the heat exchange type ventilation device 110, and communicates with the indoor air supply port 109d via a duct or the like.
  • a heat exchange element 110e, an exhaust fan 110g, and an air supply fan 110h are mounted inside the main body case 110f. Further, an exhaust air passage 104 and an air supply air passage 105 are configured inside the main body case 110f.
  • the heat exchange element 110e is a total heat type heat exchange element, and heat exchange (sensible heat and latent heat) between the exhaust flow 102 flowing through the exhaust air passage 104 and the supply airflow 103 flowing through the supply air passage 105 (sensible heat and latent heat). It is a member for performing.
  • the exhaust fan 110g is installed in the vicinity of the exhaust port 110b, and is a blower for sucking the exhaust flow 102 from the inside air port 110a and discharging it from the exhaust port 110b.
  • the air supply fan 110h is installed in the vicinity of the air supply port 110d, and is a blower for sucking the air supply airflow 103 from the outside air port 110c and discharging it from the air supply port 110d.
  • the exhaust air passage 104 is configured to include an air passage that communicates the inside air port 110a and the exhaust port 110b.
  • the air supply air passage 105 includes an air passage that communicates the outside air port 110c and the air supply port 110d.
  • the exhaust flow 102 sucked from the inside air port 110a by driving the exhaust fan 110g is discharged to the outside from the exhaust port 110b via the heat exchange element 110e in the exhaust air passage 104 and the exhaust fan 110g.
  • the air supply 103 sucked from the outside air port 110c by driving the air supply fan 110h is supplied indoors from the air supply port 110d via the heat exchange element 110e and the air supply fan 110h.
  • the heat exchange type ventilation device 110 When heat exchange ventilation is performed, the heat exchange type ventilation device 110 operates the exhaust fan 110g and the air supply fan 110h, and the exhaust flow 102 flowing through the exhaust air passage 104 in the heat exchange element 110e and the air supply air passage 105. Heat is exchanged with the air supply 103 flowing through the air. As a result, the heat exchange type ventilator 110 transfers the heat of the exhaust flow 102 released to the outside to the air supply 103 that takes in the heat indoors when ventilating, suppresses the release of the heat to the outside, and indoors. Recover heat. As a result, for example, in winter in Japan, it is possible to suppress a decrease in indoor temperature due to low-temperature outdoor air during ventilation. On the other hand, for example, in the summer of Japan, when ventilation is performed, it is possible to suppress an indoor temperature rise due to high temperature outdoor air.
  • FIG. 10 is a schematic view showing the configuration of the heat exchange type ventilation device 150 with an air purification function according to the second embodiment of the present disclosure.
  • the airflow exhaust flow 102 and supply airflow 103 or air passage (exhaust air passage 104 and supply air passage 105) after heat exchange passes through the heat exchange element 110e in the heat exchange type ventilation device 110.
  • the airflow or air passage after the heat is shown.
  • the heat exchange type ventilator 150 with an air purification function imparts an air purification function to the air supply air passage 105 of the heat exchange type ventilation device 110 according to the premise example. It has a configuration in which an air purifying device 106 is connected as a means for the ventilation.
  • the air supply inlet 106a is an intake that takes in the air supply 103 from the heat exchange type ventilation device 110 into the air purification device 106.
  • the air supply inlet 106a is communicated with the air supply port 110d of the heat exchange type ventilation device 110 via a duct 107 forming a part of the air supply air passage 105.
  • the airflow outlet 106c is a discharge port that discharges the airflow 103 (or the airflow 103 to which the component that purifies the air is not added) to the air supply air passage 105 as the air supply SA. ..
  • the humidifier 106d changes the rotation speed (hereinafter, also defined as a rotation output value) of the humidifying motor 106e according to the output signal from the control unit 141 described later, thereby humidifying the air (humidifying amount).
  • the humidification amount can be said to be an additional amount that adds a purification component to the air.
  • the supply of water containing a purifying component to the water storage section (not shown) of the humidifier 106d includes the purifying component by adding (adding) the purifying component to the water supplied from the water supply pipe of a water supply or the like. It is performed by the purification component supply unit (not shown) that produces water.
  • the purifying component for example, hypochlorous acid having bactericidal or deodorant properties is used. That is, indoor sterilization or deodorization can be performed by including hypochlorous acid water or the like generated by adding hypochlorous acid to water in the air flow 103 and supplying it indoors.
  • the first refrigerant coil 116 is arranged on the upstream side of the humidifier 106d in the air purification device 106, and is a member for cooling or heating the introduced air (air supply airflow 103). Then, the first refrigerant coil 116 changes the output state (cooling, heating, or off) of the first refrigerant coil 116 according to the output signal from the control unit 141 described later. Thereby, the cooling capacity (cooling amount) or the heating capacity (heating amount) with respect to the introduced airflow 103 is adjusted. In the first refrigerant coil 116, cooling the introduced air is, that is, dehumidifying the introduced air. Therefore, the cooling capacity (cooling amount) for the supply airflow 103 can be said to be the dehumidifying capacity (dehumidification amount) for the supply airflow 103.
  • the first refrigerant coil 116 functions as a heat absorber or radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber.
  • the first refrigerant coil 116 is configured to absorb heat (cool) or dissipate heat (heat) when the refrigerant introduced from the air conditioner (outdoor unit 120) circulates inside.
  • the first refrigerant coil 116 is an indoor unit built in the air purification device 106 installed in the indoor space 111
  • the outdoor unit 120 is an outdoor unit installed in the outdoor space 112.
  • the outdoor unit 120 includes a compressor 120a, an expander 120b, an outdoor heat exchanger 120c, a blower fan 120d, and a four-way valve 120e.
  • a four-way valve 120e is connected to the refrigeration cycle.
  • the first refrigerant coil 116 is in a cooling mode (dehumidifying mode) in which the air (supply airflow 103) is cooled and dehumidified by the flow of the refrigerant in the first direction by the four-way valve 120e, and the second direction by the four-way valve 120e. It has a heating mode state in which the air (supply airflow 103) is heated by the flow of the refrigerant.
  • the four-way valve 120e is a device (reversible valve) for switching the flow direction of the refrigerant flowing in the refrigerant circuit 121 in the refrigeration cycle. More specifically, the four-way valve 120e is connected between the compressor 120a and the first refrigerant coil 116, and between the compressor 120a and the outdoor heat exchanger 120c. The four-way valve 120e has a cooling mode in which the compressor 120a, the outdoor heat exchanger 120c, the expander 120b, and the first refrigerant coil 116 circulate the refrigerant in this order (first direction), and the compressor 120a and the first.
  • the refrigerant coil 116, the expander 120b, and the outdoor heat exchanger 120c are switched between a heating mode in which the refrigerant is circulated in this order (second direction). That is, the flow of the refrigerant is in the opposite direction in the cooling mode and the heating mode.
  • the cooling mode can also be said to be a dehumidification mode.
  • the compressor 120a compresses low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, increases the pressure, and raises the temperature.
  • the outdoor heat exchanger 120c functions as a radiator.
  • the outdoor heat exchanger 120c exchanges heat between the refrigerant gas whose high temperature and high pressure are increased by the compressor 120a and the air (air OA of the outdoor space 112 blown by the blower fan 120d), thereby exchanging heat with the outside (air OA in the outdoor space 112). Discharge to outside the refrigerant cycle).
  • the refrigerant gas is condensed and liquefied under high pressure.
  • the temperature of the introduced refrigerant gas is higher than the temperature of the air. Therefore, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
  • the blower fan 120d blows air OA in the outdoor space 112 toward the outdoor heat exchanger 120c.
  • the expander 120b decompresses the high-pressure refrigerant liquefied by the outdoor heat exchanger 120c to the original low-temperature and low-pressure liquids.
  • the first refrigerant coil 116 functions as a heat absorber.
  • the liquid refrigerant flowing through the expander 120b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas.
  • the temperature of the introduced refrigerant is lower than the temperature of the air (the introduced air flow 103 after heat exchange). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
  • the first refrigerant coil 116 cools the introduced air (air supply 103).
  • Heating mode In the heating mode, the refrigerant flows in the second direction described above.
  • the compressor 120a compresses the low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, and raises the pressure to raise the temperature.
  • the first refrigerant coil 116 functions as a radiator.
  • the first refrigerant coil 116 performs the same function as the outdoor heat exchanger 120c in the cooling mode. Specifically, the first refrigerant coil 116 transfers heat by exchanging heat between the refrigerant gas whose high temperature and high pressure have been increased by the compressor 120a and air (the supply airflow 103 after the heat exchange to be introduced). Discharge to the outside (outside the refrigerant cycle). At this time, the refrigerant gas is condensed and liquefied under high pressure. In the first refrigerant coil 116, since the temperature of the introduced refrigerant gas is higher than the temperature of the air, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
  • the expander 120b decompresses the high-pressure refrigerant liquefied by the first refrigerant coil 116 to obtain the original low-temperature and low-pressure liquids.
  • the outdoor heat exchanger 120c functions as a heat absorber.
  • the outdoor heat exchanger 120c performs the same function as the first refrigerant coil 116 in the cooling mode. Specifically, in the outdoor heat exchanger 120c, the liquid refrigerant flowing through the expander 120b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas. In the outdoor heat exchanger 120c, the temperature of the introduced refrigerant is lower than the temperature of the air (air OA of the outdoor space 112 blown by the blower fan 120d). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
  • the blower fan 120d blows air OA in the outdoor space 112 toward the outdoor heat exchanger 120c.
  • the first refrigerant coil 116 heats the introduced air (air supply 103).
  • the first refrigerant coil 116 can be cooled or heated with respect to the introduced air (air supply 103), but in the present embodiment, the first refrigerant coil 116 is in the cooling mode. It is used as a member for cooling (dehumidifying) the air introduced in.
  • the second refrigerant coil 117 is arranged between the first refrigerant coil 116 and the humidifier 106d in the air purification device 106, and cools the air (air supply airflow 103) introduced through the first refrigerant coil 116. Or it is a member for heating. Then, the second refrigerant coil 117 changes the output state (cooling, heating or off) of the second refrigerant coil 117 according to the output signal from the control unit 141 described later. Thereby, the heating capacity (heating amount) or the cooling capacity (cooling amount) with respect to the introduced airflow 103 is adjusted.
  • the second refrigerant coil 117 functions as a radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber.
  • the second refrigerant coil 117 is configured to dissipate (heat) the refrigerant introduced from the air conditioner (outdoor unit 130) when it circulates inside.
  • the second refrigerant coil 117 is an indoor unit built in the air purification device 106 installed in the indoor space 111
  • the outdoor unit 130 is an outdoor unit installed in the outdoor space 112.
  • the outdoor unit 130 includes a compressor 130a, an expander 130b, an outdoor heat exchanger 130c, a blower fan 130d, and a four-way valve 130e.
  • a four-way valve 130e is connected to the refrigeration cycle as in the refrigeration cycle having the first refrigerant coil 116.
  • the second refrigerant coil 117 is in a cooling mode (dehumidifying mode) in which the air (supply airflow 103) is cooled and dehumidified by the flow of the refrigerant in the first direction by the four-way valve 130e, and the second direction by the four-way valve 130e. It has a heating mode state in which the air (supply airflow 103) is heated by the flow of the refrigerant.
  • the four-way valve 130e is a device (reversible valve) for switching the flow direction of the refrigerant flowing in the refrigerant circuit 131 in the refrigeration cycle. More specifically, the four-way valve 130e is connected between the compressor 130a and the second refrigerant coil 117, and between the compressor 130a and the outdoor heat exchanger 130c.
  • the four-way valve 130e has a cooling mode in which the compressor 130a, the outdoor heat exchanger 130c, the expander 130b, and the second refrigerant coil 117 circulate the refrigerant in this order (first direction), and the compressor 130a and the second.
  • the heating mode in which the refrigerant coil 117, the expander 130b, and the outdoor heat exchanger 130c are circulated in this order (second direction) is switched. That is, the flow of the refrigerant is in the opposite direction in the cooling mode and the heating mode.
  • the cooling mode and the heating mode will be described.
  • the compressor 130a compresses low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, increases the pressure, and raises the temperature.
  • the outdoor heat exchanger 130c functions as a radiator.
  • the outdoor heat exchanger 130c exchanges heat between the refrigerant gas heated to high temperature and high pressure by the compressor 130a and the air (air OA of the outdoor space 112 blown by the blower fan 130d) to exchange heat with the outside (air OA in the outdoor space 112). Discharge to outside the refrigerant cycle).
  • the refrigerant gas is condensed and liquefied under high pressure.
  • the temperature of the introduced refrigerant gas is higher than the temperature of the air. Therefore, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
  • the blower fan 130d blows air OA in the outdoor space 112 toward the outdoor heat exchanger 130c.
  • the expander 130b decompresses the high-pressure refrigerant liquefied by the outdoor heat exchanger 130c to the original low-temperature and low-pressure liquids.
  • the second refrigerant coil 117 functions as a heat absorber.
  • the liquid refrigerant flowing through the expander 120b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas.
  • the temperature of the introduced refrigerant is lower than the temperature of the air (introduced air flow 103). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
  • the second refrigerant coil 117 cools the introduced air (air supply 103).
  • Heating mode In the heating mode, the refrigerant flows in the second direction described above.
  • the compressor 130a compresses low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, increases the pressure, and raises the temperature.
  • the second refrigerant coil 117 functions as a radiator.
  • the second refrigerant coil 117 releases heat to the outside (outside the refrigerant cycle) by exchanging heat between the refrigerant gas having a high temperature and high pressure by the compressor 130a and the air (introduced air flow 103). ..
  • the refrigerant gas is condensed and liquefied under high pressure.
  • the temperature of the introduced refrigerant gas is higher than the temperature of the air, so that when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
  • the expander 130b decompresses the high-pressure refrigerant liquefied by the second refrigerant coil 117 to obtain the original low-temperature and low-pressure liquids.
  • the outdoor heat exchanger 130c functions as a heat absorber.
  • the liquid refrigerant flowing through the expander 130b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas.
  • the temperature of the introduced refrigerant is lower than the temperature of the air (air OA of the outdoor space 112 blown by the blower fan 130d). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
  • the blower fan 130d blows air OA in the outdoor space 112 toward the outdoor heat exchanger 130c.
  • the second refrigerant coil 117 heats the introduced air (air supply 103).
  • the second refrigerant coil 117 can be cooled or heated with respect to the introduced air (air supply airflow 103), but in the present embodiment, the second refrigerant coil 117 is in the heating mode. It is used as a member for heating the air introduced in.
  • the air purification device 106 is configured as described above. Then, the air purification device 106 is in a state of adding and supplying a component that purifies the air while lowering the absolute humidity of the supply airflow 103 after heat exchange by the first refrigerant coil 116 (cooling mode) and the humidifier 106d.
  • the first refrigerant coil 116 (cooling mode) and the second refrigerant coil 117 (heating mode) lower the absolute humidity of the supply airflow 103 after heat exchange and raise the temperature of the supply airflow 103 that has decreased with dehumidification.
  • the air supply 103 is supplied to the indoor space 111 in combination with the state of supplying the air.
  • the air purification device 106 cools (dehumidifies) the supply airflow 103 after heat exchange by the first refrigerant coil 116 based on the indoor environment (temperature / humidity information of the air RA in the indoor space 111). And the first operation of adding the purification component by the humidifier 106d, and the second operation of cooling (dehumidifying) the supply airflow 103 after heat exchange by the first refrigerant coil 116 and heating by the second refrigerant coil 117.
  • the air supply 103 is supplied to the indoor space 111 while switching between. In the first operation, the second refrigerant coil 117 has stopped operating, and in the second operation, the humidifier 106d (humidifying motor 106e) has stopped operating. Therefore, in the second operation, the purifying component is hardly added to the air flow 103.
  • FIG. 11 shows the tendency of temperature and humidity changes due to the first operation and the second operation in the region divided by the reference values of temperature and humidity in the heat exchange type ventilation device 150 with an air purification function according to the second embodiment of the present disclosure. It is a figure for demonstrating.
  • the vertical axis represents humidity and the horizontal axis represents temperature.
  • the upper limit of the humidity reference value is the humidity H1, and the lower limit is the humidity H2.
  • the upper limit of the temperature reference value is the temperature T1, and the lower limit is the temperature T2.
  • the region divided by the upper and lower limits of temperature and humidity is set as the reference region E which is the target standard of temperature and humidity, and the upper limit of temperature and humidity (temperature T1 and humidity H1) and the lower limit of temperature and humidity (temperature T2 and humidity H2) are set.
  • the straight line connecting them is defined as the reference line C.
  • the temperature / humidity region (excluding the reference region E) above the reference line C is defined as the region A
  • the temperature / humidity region (excluding the reference region E) below the reference line C is defined as the region B.
  • the introduced airflow 103 has the effect (tendency) of lowering the temperature and increasing the humidity.
  • cooling (dehumidification) by the first refrigerant coil 116 and heating by the second refrigerant coil 117 are performed. Therefore, the introduced airflow 103 has the effect (tendency) of increasing the temperature and decreasing the humidity.
  • the effects of the first operation and the second operation can be adjusted by the outputs of the first refrigerant coil 116, the second refrigerant coil 117, and the humidifier 106d.
  • the tendency of temperature and humidity changes is the same.
  • the air purifying device 106 lowers the temperature of the introduced airflow 103 and increases the humidity by executing the first operation. As a result, the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the region A. At this time, a purification component is added to the supply airflow 103. Then, when the temperature and humidity of the air RA in the indoor space 111 becomes the region A, the air purification device 106 switches from the first operation to the second operation and executes the operation.
  • the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the reference region E by raising the temperature of the introduced air flow 103 and lowering the humidity.
  • the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the reference region E while repeating such an operation operation.
  • the purification component can be added to the air flow 103, which is the temperature and humidity of the region B, and the air RA of the indoor space 111 can be set to the target set temperature and humidity (reference region E).
  • the air purifying device 106 raises the temperature of the introduced airflow 103 and reduces the humidity by executing the second operation. As a result, the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the region B. Then, when the temperature / humidity of the air RA in the indoor space 111 becomes the region B, the air purifying device 106 switches from the second operation to the first operation and executes the operation to switch the temperature of the air supply 103 to be introduced. And increase the humidity.
  • the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the reference region E.
  • a purification component is added to the supply airflow 103.
  • the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the reference region E while repeating such an operation operation.
  • the purification component can be added to the air flow 103 which was the temperature and humidity of the region A, and the air RA of the indoor space 111 can be set to the target set temperature and humidity (reference region E).
  • the air purifying device 106 alternately repeats the first operation and the second operation under the condition within the range not deviating from the reference region E as much as possible, and the purifying component is continuously added to the indoor space 111. To control.
  • the heat exchange type ventilator 150 with an air purification function heats from the heat exchange type ventilator 110 by combining the operating operations of the first refrigerant coil 116, the second refrigerant coil 117, and the humidifier 106d. It is configured so that the air RA of the indoor space 111 can be adjusted to the optimum temperature / humidity (target setting temperature / humidity) while adding a component for purifying air to the air supply airflow 103 after replacement.
  • FIG. 12 is a schematic block diagram showing the configuration of the control unit 141 in the heat exchange type ventilation device 150 with an air purification function according to the second embodiment of the present disclosure.
  • control unit 141 includes an input unit 141a, a storage unit 141b, a timekeeping unit 141c, a processing unit 141d, and an output unit 141e.
  • the input unit 141a has first information regarding an operation start instruction or an operation stop instruction from the operation panel 143, second information regarding the air temperature of the indoor space 111 from the temperature detection unit 126a, and an indoor space from the humidity detection unit 126b. Accepts the third information regarding the humidity of the air of 111.
  • the input unit 141a outputs the received first information to the third information to the processing unit 141d.
  • the operation panel 143 is a terminal for the user to input user input information regarding the air purification device 106 (for example, presence / absence of addition of purification component, amount of addition of purification component, amount of air blown, etc.), and is controlled wirelessly or by wire. It is connected to the unit 141 so as to be communicable.
  • the first information also includes user input information.
  • the temperature detection unit 126a is a sensor provided in the heat exchange type ventilation device 110 and senses the temperature of the indoor air RA (exhaust flow 102) taken in from the indoor exhaust port 109a.
  • the humidity detection unit 126b is a sensor provided in the heat exchange type ventilation device 110 and senses the humidity of the indoor air RA taken in from the indoor exhaust port 109a.
  • the temperature detection unit 126a and the humidity detection unit 126b may be installed in the target space of the indoor space 111. Further, the temperature detection unit 126a and the humidity detection unit 126b may be combined into one temperature / humidity sensor.
  • the storage unit 141b has a fourth information regarding the addition processing setting in the application operation of the purification component (water containing the purification component) to the air supply 103 flowing through the air purification device 106, and a fifth information regarding the setting information corresponding to the user input information. And remember.
  • the storage unit 141b outputs the stored fourth information and the fifth information to the processing unit 141d.
  • the application processing setting in the purification component application operation can be said to be the humidification setting in the humidification operation of the air purification device 106.
  • the timekeeping unit 141c outputs the sixth information regarding the current time to the processing unit 141d.
  • the processing unit 141d receives the first information to the third information from the input unit 141a, the fourth information and the fifth information from the storage unit 141b, and the sixth information from the timekeeping unit 141c.
  • the processing unit 141d uses the received first information to sixth information to specify control information (rotational output value, cooling output value, and heating output value) related to the application operation based on the application processing setting.
  • the processing unit 141d outputs the specified control information to the output unit 141e.
  • the output unit 141e outputs the control information (rotational output value) received from the processing unit 141d to the humidifier 106d (humidifying motor 106e). Further, the output unit 141e outputs the control information (cooling output value and heating output value) received from the processing unit 141d to the first refrigerant coil 116 and the second refrigerant coil 117, respectively. Then, the humidifier 106d executes a humidifying operation according to the rotation output value output from the output unit 141e. Further, the first refrigerant coil 116 executes the cooling operation operation on or off based on the cooling output value output from the output unit 141e. Further, the second refrigerant coil 117 executes the heating operation operation on or off based on the heating output value output from the output unit 141e.
  • control unit 141 controls the cooling operation, the purification component imparting operation, and the heating operation of the supply airflow 103 flowing through the air purification device 106, respectively.
  • FIG. 13 is a flowchart showing a process performed by the control unit 141 in the heat exchange type ventilation device 150 with an air purification function according to the second embodiment of the present disclosure.
  • the processing unit 141d of the control unit 141 is mainly composed of three steps (steps S01 to S03), and starts processing according to a control signal from the operation panel 143.
  • Step S01 is a step for performing processing at the processing interval stored in the storage unit 141b. For example, when the processing interval is 5 minutes, the processing unit 141d repeats the determination of the time until 5 minutes have passed while receiving the time information output from the time measuring unit 141c, and after 5 minutes, the processing unit 141d performs processing in step S02. Proceed. When determining the time, the control signal of the operation panel 143 is received in the subsequent stage, and when the end signal is received, the process ends.
  • Step S02 is a step of updating the temperature / humidity value of the air RA in the indoor space 111.
  • the processing unit 141d updates the temperature / humidity value based on each information output from the input unit 141a and the storage unit 141b, and proceeds to the process in step S03.
  • Step S03 is a step of specifying an operation mode (operating state of the first refrigerant coil 116, the humidifier 106d, and the second refrigerant coil 117) according to the updated temperature / humidity value.
  • the processing unit 141d uses the reference values stored in the storage unit 141b (humidity H1 at the upper limit of the humidity reference value, humidity H2 at the lower limit of the humidity reference value, temperature T1 at the upper limit of the temperature reference value, and lower limit of the temperature reference value).
  • the magnitude relationship is compared between the lower limit T2) of the above and the updated temperature / humidity value (step S03A).
  • the temperature / humidity of the air RA of the indoor space 111 belongs to which region (region A, reference region E or region B) among the regions classified by the reference values of temperature and humidity. (Step S03B).
  • step S03C the operation mode assigned to each area is specified. Specifically, in each operation mode, the start order of the first operation and the second operation, the control information in the first operation (rotation output value and the cooling output value), and the control information in the second operation (cooling output) Value and heating output value) are specified.
  • the processing unit 141d outputs the control information based on the specified operation mode to the output unit 141e.
  • the heat exchange type ventilator 150 with an air purification function includes a heat exchange type ventilator 110, a humidifier 106d, a first refrigerant coil 116, and a second refrigerant coil 117.
  • the heat exchange type ventilation device 110 has an exhaust flow 102 that flows through an exhaust air passage 104 that discharges the air RA of the indoor space 111 to the outdoor space 112, and an air supply air passage that supplies air OA of the outdoor space 112 to the indoor space 111. Heat is exchanged with the air supply 103 flowing through 105.
  • the humidifier 106d adds hypochlorous acid (purifying component) together with water to the supply airflow 103 after heat exchange introduced from the heat exchange type ventilator 110.
  • the first refrigerant coil 116 cools (dehumidifies) the supply airflow 103 after heat exchange on the upstream side of the humidifier 106d.
  • the second refrigerant coil 117 heats the air flow 103 dehumidified by the first refrigerant coil 116 between the first refrigerant coil 116 and the humidifier 106d.
  • hypochlorous acid is added while lowering the absolute humidity of the air supply 103 after heat exchange by the first refrigerant coil 116 and the humidifier 106d.
  • the temperature of the supply airflow 103 which has decreased due to dehumidification, is increased and supplied while reducing the absolute humidity of the supply airflow 103 after heat exchange by the first refrigerant coil 116 and the second refrigerant coil 117. It is possible to combine the state with.
  • the heat exchange type ventilator 150 with an air purification function further includes a humidifier 106d, a first refrigerant coil 116, and a control unit 141 for controlling the operation of the second refrigerant coil 117. Then, the control unit 141 dehumidifies the supply airflow 103 after heat exchange with the first refrigerant coil 116 and adds it with the humidifier 106d based on the temperature / humidity information of the air RA in the indoor space 111. Control is performed to switch between one operation and a second operation in which the supply airflow 103 after heat exchange is dehumidified by the first refrigerant coil 116 and heated by the second refrigerant coil 117.
  • the control unit 141 can control switching between the first operation and the second operation based on the indoor environment (temperature / humidity information of the air RA in the indoor space 111).
  • hypochlorous acid can be added and supplied in a state where the amount of humidification to the supply airflow 103 is suppressed.
  • the second operation is switched to and the air supply airflow 103 in the first operation 103. It is possible to supply the supply airflow 103 whose temperature is higher than the temperature of.
  • the heat exchange type ventilator 150 with an air purification function includes a temperature detection unit 126a for detecting the temperature of the air RA in the indoor space 111 and a humidity detection unit 126b for detecting the humidity of the air RA in the indoor space 111. ..
  • the control unit 141 can control switching between the first operation and the second operation based on the temperature information from the temperature detection unit 126a and the humidity information from the humidity detection unit 126b.
  • the control unit 141 switches the operation based on the temperature / humidity information of the air RA in the indoor space 111. This makes it possible to maintain the humidity (for example, 40% to 60% RH) of the air RA of the indoor space 111, which is comfortable for the user, without the user switching the operation.
  • the first refrigerant coil 116 absorbs heat in a refrigerating cycle (refrigerant circuit 121) including a compressor, a radiator, an expander, and a heat absorber. It is configured to function as a vessel.
  • the second refrigerant coil 117 is configured to function as a radiator in a refrigerating cycle (refrigerant circuit 131) different from the refrigerating cycle (refrigerant circuit 121).
  • the first refrigerant coil 116 and the second refrigerant coil 117 can be incorporated into the heat exchange type ventilation device 150 (air purification device 106) with an air purification function with a simple configuration.
  • the humidifier 106d centrifuges the water containing the component for purifying the air to centrifuges the water supply airflow 103 introduced into the room, and the humidifier 106d has hypochlorous acid. Add acid.
  • the particle size or amount of crushed water can be controlled by changing the rotation speed during centrifugal crushing, and by extension, hypochlorous acid added to the airflow 103 introduced into the apparatus. The amount of addition can be controlled.
  • the heating operation in the heating mode was performed using the second refrigerant coil 117 constituting the outdoor unit 130 and the refrigerating cycle (refrigerant circuit 131).
  • a PTC Platinum Temperature Coefficient
  • the cooling mode of the first refrigerant coil 116 and the heating mode of the second refrigerant coil 117 are combined to generate heat.
  • the control of adding a purifying component (hypochlorite) to the air supply air force 103 after replacement has been described, but the present invention is not limited to this.
  • the heating mode of the first refrigerant coil 116 and the heating mode of the second refrigerant coil 117 may be combined to control the addition of a purifying component to the supply airflow 103 after heat exchange.
  • the switching between the first operation and the second operation in the air purification device 106 may be cycled in a predetermined time. Thereby, the air purifying device 106 can easily control the additional amount of the purifying component.
  • the heat exchange type ventilator with an air purification function relates to an air purification system that sterilizes a target space represented indoors, and adjusts the humidity of the target space to have a sterilization effect and comfort. It is useful because it can achieve both.

Abstract

An heat exchange ventilation device (50) with an air purification function comprises: a heat exchange ventilation device (10) for exchanging heat between an exhaust air flow (2) circulating through an exhaust air channel (4), which discharges air in an indoor space (11) to an outdoor space (12), and a supply air flow (3) circulating through a supply air channel (5), which supplies air from the outdoor space (12) to the indoors space (11); a humidifier (6d) for adding a component that purifies air together with water to the supply air flow (3) after having exchanged heat, introduced from the supply air channel (5); a heat exchanger (16) for performing, on the upstream side of the humidifier (6d), dehumidification on the supply air flow (3) after having exchanged heat; and a control unit (8) for controlling the heat exchanger (16). When performing humidity adjustment so that the humidity of the supply air flow (3) fed to the indoor space (11) reaches a target setting humidity for the air in the indoor space (11), the control unit (8) controls, on the basis of humidity information relating to an increase in humidity of the supply air flow (3) due to the humidifier (6d), the amount of dehumidification performed on the supply air flow (3) by the heat exchanger (16).

Description

空気浄化機能付き熱交換形換気装置Heat exchange type ventilation device with air purification function
 本開示は、屋内等の対象空間に対して、熱交換換気を行いながら除菌を行う空気浄化機能付き熱交換形換気装置に関する。 This disclosure relates to a heat exchange type ventilation device with an air purification function that disinfects a target space such as indoors while performing heat exchange ventilation.
 従来の空気浄化機能付き熱交換形換気装置として、屋外から屋内に供給する空気を次亜塩素酸が含まれた気液接触部材部に接触させて放出することで屋内空間を除菌する空気調和システムが知られている(例えば、特許文献1参照)。 As a conventional heat exchange type ventilator with an air purification function, air conditioning that disinfects the indoor space by contacting the air supplied from the outside to the inside with the gas-liquid contact member containing hypochlorous acid and releasing it. The system is known (see, for example, Patent Document 1).
特開2009-133521号公報Japanese Unexamined Patent Publication No. 2009-133521
 しかしながら、従来の空気調和システムでは、加湿装置あるいは2流体ノズル等を用いて、水分と共に次亜塩素酸が放出される。このため、次亜塩素酸が放出された対象空間内の湿度は上昇し、特に相対湿度の高い日本の夏季において快適性が損なわれる可能性があった。 However, in the conventional air conditioning system, hypochlorous acid is released together with water by using a humidifier, a two-fluid nozzle, or the like. For this reason, the humidity in the target space where hypochlorous acid was released increased, and there was a possibility that comfort would be impaired especially in the summer of Japan, where the relative humidity is high.
 本開示は、次亜塩素酸の放出に伴う湿度の上昇を抑制することが可能な空気浄化機能付き熱交換形換気装置を提供する。 The present disclosure provides a heat exchange type ventilator with an air purification function capable of suppressing an increase in humidity due to the release of hypochlorous acid.
 本開示に係る空気浄化機能付き熱交換形換気装置は、屋内空間の空気を屋外空間に排出する排気風路を流通する排気流と、屋外空間の空気を屋内空間へ給気する給気風路を流通する給気流との間で熱交換する熱交換形換気装置と、給気風路から導入された熱交換後の給気流に対して、水とともに空気浄化を行う成分を付加する空気浄化部と、空気浄化部の上流側において、熱交換後の給気流に対して除湿を行う熱交換部と、熱交換部を制御する制御部と、を備える。制御部は、屋内空間に供給される給気流の湿度が屋内空間の空気の目標設定湿度となるように調湿する際、空気浄化部による給気流の湿度増加に関する湿度情報に基づいて、熱交換部による給気流に対する除湿量を制御する。 The heat exchange type ventilator with an air purification function according to the present disclosure has an exhaust flow flowing through an exhaust air passage that discharges air in an indoor space to an outdoor space, and an air supply air passage that supplies air in an outdoor space to an indoor space. A heat exchange type ventilation device that exchanges heat with the circulating air supply, and an air purification unit that adds a component that purifies the air together with water to the air supply after heat exchange introduced from the air supply air passage. On the upstream side of the air purification unit, a heat exchange unit that dehumidifies the air supply air after heat exchange and a control unit that controls the heat exchange unit are provided. When the control unit adjusts the humidity of the air supply air supply supplied to the indoor space to the target setting humidity of the air in the indoor space, the control unit exchanges heat based on the humidity information regarding the increase in the humidity of the air supply air flow by the air purification unit. Controls the amount of dehumidification for the air supply by the unit.
 本開示によれば、次亜塩素酸の放出に伴う湿度の上昇を抑制することが可能な空気浄化機能付き熱交換形換気装置を提供することができる。 According to the present disclosure, it is possible to provide a heat exchange type ventilator with an air purification function capable of suppressing an increase in humidity due to the release of hypochlorous acid.
図1は、本開示の前提例に係る熱交換形換気装置の住宅における設置状態を示す模式図である。FIG. 1 is a schematic view showing an installation state of a heat exchange type ventilation device according to a premise example of the present disclosure in a house. 図2は、本開示の前提例に係る熱交換形換気装置の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of the heat exchange type ventilation device according to the premise example of the present disclosure. 図3は、本開示の実施の形態1に係る空気浄化機能付き熱交換形換気装置の構成を示す模式図である。FIG. 3 is a schematic view showing the configuration of the heat exchange type ventilation device with an air purification function according to the first embodiment of the present disclosure. 図4は、本開示の実施の形態1に係る空気浄化装置を流通する給気流の湿度変化を示す図である。FIG. 4 is a diagram showing a humidity change of the supply air flow flowing through the air purification device according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1に係る空気浄化装置を流通する給気流の湿度変化を運転状態条件ごとに示した図である。FIG. 5 is a diagram showing the humidity change of the supply airflow flowing through the air purification device according to the first embodiment of the present disclosure for each operating state condition. 図6は、本開示の実施の形態1に係る空気浄化装置における制御部の構成を表すブロック図である。FIG. 6 is a block diagram showing a configuration of a control unit in the air purification device according to the first embodiment of the present disclosure. 図7は、本開示の実施の形態1に係る制御部による処理手順を示すフローチャートである。FIG. 7 is a flowchart showing a processing procedure by the control unit according to the first embodiment of the present disclosure. 図8は、本開示の前提例に係る熱交換形換気装置の住宅における設置状態を示す模式図である。FIG. 8 is a schematic view showing an installation state of the heat exchange type ventilation device according to the premise example of the present disclosure in a house. 図9は、本開示の前提例に係る熱交換形換気装置の構成を示す模式図である。FIG. 9 is a schematic diagram showing the configuration of the heat exchange type ventilation device according to the premise example of the present disclosure. 図10は、本開示の実施の形態2に係る空気浄化機能付き熱交換形換気装置の構成を示す模式図である。FIG. 10 is a schematic view showing the configuration of the heat exchange type ventilation device with an air purification function according to the second embodiment of the present disclosure. 図11は、本開示の実施の形態2に係る空気浄化機能付き熱交換形換気装置において、温度と湿度の基準値によって区分した領域における第一運転及び第二運転による温湿度の変化傾向を説明するための図である。FIG. 11 illustrates the tendency of temperature and humidity changes due to the first operation and the second operation in the region divided by the reference values of temperature and humidity in the heat exchange type ventilation device with an air purification function according to the second embodiment of the present disclosure. It is a figure to do. 図12は、本開示の実施の形態2に係る空気浄化機能付き熱交換形換気装置における制御部の構成を表す概略ブロック図である。FIG. 12 is a schematic block diagram showing a configuration of a control unit in the heat exchange type ventilation device with an air purification function according to the second embodiment of the present disclosure. 図13は、本開示の実施の形態2に係る空気浄化機能付き熱交換形換気装置における制御部で行う処理を表すフローチャートである。FIG. 13 is a flowchart showing a process performed by the control unit in the heat exchange type ventilation device with an air purification function according to the second embodiment of the present disclosure.
 本開示に係る空気浄化機能付き熱交換形換気装置は、屋内空間の空気を屋外空間に排出する排気風路を流通する排気流と、屋外空間の空気を屋内空間へ給気する給気風路を流通する給気流との間で熱交換する熱交換形換気装置と、給気風路から導入された熱交換後の給気流に対して、水とともに空気浄化を行う成分を付加する空気浄化部と、空気浄化部の上流側において、熱交換後の給気流に対して除湿を行う熱交換部と、熱交換部を制御する制御部と、を備える。制御部は、屋内空間に供給される給気流の湿度が屋内空間の空気の目標設定湿度となるように調湿する際、空気浄化部による給気流の湿度増加に関する湿度情報に基づいて、熱交換部による給気流に対する除湿量を制御する。 The heat exchange type ventilator with an air purification function according to the present disclosure has an exhaust flow flowing through an exhaust air passage that discharges air in an indoor space to an outdoor space, and an air supply air passage that supplies air in an outdoor space to an indoor space. A heat exchange type ventilation device that exchanges heat with the circulating air supply, and an air purification unit that adds a component that purifies the air together with water to the air supply after heat exchange introduced from the air supply air passage. On the upstream side of the air purification unit, a heat exchange unit that dehumidifies the air supply air after heat exchange and a control unit that controls the heat exchange unit are provided. When the control unit adjusts the humidity of the air supply air supply supplied to the indoor space to the target setting humidity of the air in the indoor space, the control unit exchanges heat based on the humidity information regarding the increase in the humidity of the air supply air flow by the air purification unit. Controls the amount of dehumidification for the air supply by the unit.
 こうした構成によれば、熱交換後の給気流に対して、空気浄化部によって加湿しながら空気浄化を行う成分(例えば、次亜塩素酸)を付加しても、熱交換部が目標設定湿度に応じた除湿を行う。このため、屋内空間の過剰加湿を抑制することができる。つまり、空気浄化を行う成分の放出に伴う湿度の上昇を抑制することが可能な空気浄化機能付き熱交換形換気装置とすることができる。 According to such a configuration, even if a component (for example, hypochlorous acid) that purifies the air while being humidified by the air purification unit is added to the air supply air after heat exchange, the heat exchange unit reaches the target set humidity. Dehumidify according to the situation. Therefore, it is possible to suppress excessive humidification of the indoor space. That is, it is possible to provide a heat exchange type ventilation device with an air purification function capable of suppressing an increase in humidity due to the release of a component that purifies the air.
 また、本開示に係る空気浄化機能付き熱交換形換気装置では、制御部は、熱交換部に導入される給気流の湿度を目標設定湿度にまで熱交換部によって除湿する際の除湿量よりも、給気流に対する除湿量を増加させるように制御している。これにより、少なくとも給気流に対する除湿量を増加させた分、空気浄化部による給気流の湿度増加が抑制される。このため、空気浄化を行う成分の放出に伴う湿度の上昇を抑制することができる。 Further, in the heat exchange type ventilator with an air purification function according to the present disclosure, the control unit has a dehumidification amount higher than the dehumidification amount when the heat exchange unit dehumidifies the humidity of the supply air flow introduced into the heat exchange unit to the target set humidity. , The amount of dehumidification for the air supply is controlled to increase. As a result, the increase in the humidity of the air supply air by the air purification unit is suppressed by at least the amount of dehumidification with respect to the air supply airflow is increased. Therefore, it is possible to suppress an increase in humidity due to the release of the component that purifies the air.
 また、本開示に係る空気浄化機能付き熱交換形換気装置では、制御部は、空気浄化部による給気流への湿度増加が第一加湿量である場合には、熱交換部による除湿を第一除湿量で行い、空気浄化部による給気流への湿度増加が第一加湿量よりも多い第二加湿量である場合には、熱交換部による除湿を第一除湿量よりも多い第二除湿量で行うように制御している。これにより、空気浄化部によって加湿しながら空気浄化を行う成分を付加する際の加湿量(空気浄化を行う成分の付加量)に応じて、熱交換部による除湿量が設定される。このため、屋内空間に必要な空気浄化を行う成分の付加を行いつつ、屋内空間に供給される給気流の湿度が屋内空間の空気の目標設定湿度となるように調湿することができる。 Further, in the heat exchange type ventilation device with an air purification function according to the present disclosure, the control unit first dehumidifies by the heat exchange unit when the humidity increase to the air supply by the air purification unit is the first humidification amount. If the dehumidification amount is used and the humidity increase to the air supply by the air purification unit is larger than the first dehumidification amount, the dehumidification by the heat exchange unit is larger than the first dehumidification amount. It is controlled to be done in. As a result, the dehumidification amount by the heat exchange unit is set according to the humidification amount (addition amount of the component that purifies the air) when the component that purifies the air while being humidified by the air purification unit is added. Therefore, it is possible to adjust the humidity of the air supply air supplied to the indoor space so that the humidity of the air supply in the indoor space becomes the target setting humidity of the air in the indoor space, while adding the components for purifying the air necessary for the indoor space.
 また、本開示に係る空気浄化機能付き熱交換形換気装置では、空気浄化部は、空気浄化を行う成分を含む水を遠心破砕することによって、内部に導入される給気流に対して、空気浄化を行う成分を付加することが好ましい。これにより、遠心破砕時の回転数を変化させることで、破砕する水の粒子径あるいは破砕量をコントロールすることができ、ひいては装置内に導入される給気流に対して付加する空気浄化を行う成分の付加量をコントロールすることができる。 Further, in the heat exchange type ventilator with an air purification function according to the present disclosure, the air purification unit purifies the air supply air introduced inside by centrifugally crushing the water containing the component for purifying the air. It is preferable to add a component that performs the above. As a result, by changing the rotation speed during centrifugal crushing, it is possible to control the particle size or crushing amount of the water to be crushed, and by extension, the component that purifies the air added to the air supply introduced into the device. The amount of addition can be controlled.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本開示に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。 Hereinafter, the mode for carrying out the present disclosure will be described with reference to the attached drawings. The following embodiments are examples that embody the present disclosure, and do not limit the technical scope of the present disclosure. Further, throughout the drawings, the same parts are designated by the same reference numerals and explanations are omitted. Furthermore, in order to avoid duplication of details of each part that is not directly related to the present disclosure, the description of each drawing is omitted.
 (前提例)
 まず、本開示の実施の形態に係る空気浄化機能付き熱交換形換気装置50を説明する上で前提となる本開示の前提例に係る熱交換形換気装置10について、図1及び図2を参照して説明する。図1は、本開示の前提例に係る熱交換形換気装置10の住宅における設置状態を示す模式図である。図2は、本開示の前提例に係る熱交換形換気装置10の構成を示す模式図である。
(Premise example)
First, refer to FIGS. 1 and 2 for the heat exchange type ventilator 10 according to the premise example of the present disclosure, which is a premise for explaining the heat exchange type ventilator 50 with an air purification function according to the embodiment of the present disclosure. I will explain. FIG. 1 is a schematic view showing an installation state of the heat exchange type ventilation device 10 according to the premise example of the present disclosure in a house. FIG. 2 is a schematic diagram showing the configuration of the heat exchange type ventilation device 10 according to the premise example of the present disclosure.
 図1において、家屋1の屋内(天井裏等)には、熱交換形換気装置10が設置されている。熱交換形換気装置10は、屋内空間11(以下、単に「屋内」ともいう)の空気と屋外空間12(以下、単に「屋外」ともいう)の空気とを熱交換しながら換気する装置(第二種の換気装置)である。 In FIG. 1, a heat exchange type ventilation device 10 is installed indoors (behind the ceiling, etc.) of the house 1. The heat exchange type ventilator 10 is a device (first) that ventilates while exchanging heat between the air in the indoor space 11 (hereinafter, also simply referred to as “indoor”) and the air in the outdoor space 12 (hereinafter, also simply referred to as “outdoor”). Two types of ventilation equipment).
 図1に示す通り、排気流2は、黒色矢印のごとく、リビング等の屋内空間11から、屋内排気口9a、熱交換形換気装置10及び屋外排気口9bを介して屋外空間12に放出される。すなわち、排気流2は、屋内から屋外に排出される空気の流れである。また、給気流3は、白色矢印のごとく、屋外空間12から、屋外給気口9c、熱交換形換気装置10及び屋内給気口9dを介して屋内空間11に取り入れられる。すなわち、給気流3は、屋外から屋内に取り込まれる空気の流れである。例えば、日本の冬季の場合、排気流2は20℃~25℃であるのに対して、給気流3は氷点下に達することもある。熱交換形換気装置10は、換気を行うとともに、換気時に排気流2の熱を給気流3へと伝達し、屋外への熱の放出を抑制(排気流2により給気流3を加熱)している。 As shown in FIG. 1, the exhaust flow 2 is discharged from the indoor space 11 such as the living room to the outdoor space 12 via the indoor exhaust port 9a, the heat exchange type ventilation device 10 and the outdoor exhaust port 9b as shown by the black arrow. .. That is, the exhaust flow 2 is a flow of air discharged from indoors to outdoors. Further, the air supply air flow 3 is taken into the indoor space 11 from the outdoor space 12 via the outdoor air supply port 9c, the heat exchange type ventilation device 10 and the indoor air supply port 9d as shown by the white arrow. That is, the supply airflow 3 is a flow of air taken in from the outside to the inside. For example, in winter in Japan, the exhaust flow 2 is 20 ° C to 25 ° C, while the air flow 3 may reach below freezing. The heat exchange type ventilation device 10 ventilates and transfers the heat of the exhaust flow 2 to the supply airflow 3 at the time of ventilation to suppress the release of heat to the outside (heats the supply airflow 3 by the exhaust flow 2). There is.
 熱交換形換気装置10は、図2に示す通り、本体ケース10f、内気口10a、排気口10b、外気口10c、給気口10d、熱交換素子10e、排気ファン10g、給気ファン10h、排気風路4、及び給気風路5を備えている。 As shown in FIG. 2, the heat exchange type ventilation device 10 includes a main body case 10f, an inside air port 10a, an exhaust port 10b, an outside air port 10c, an air supply port 10d, a heat exchange element 10e, an exhaust fan 10g, an air supply fan 10h, and an exhaust. It is provided with an air passage 4 and an air supply air passage 5.
 本体ケース10fは、熱交換形換気装置10の外枠である。本体ケース10fの外周には、内気口10a、排気口10b、外気口10c、及び給気口10dが形成されている。内気口10aは、排気流2を熱交換形換気装置10に吸い込む吸込口であり、ダクト等を介して屋内排気口9a(図1参照)と連通している。排気口10bは、排気流2を熱交換形換気装置10から屋外に吐き出す吐出口であり、ダクト等を介して屋外排気口9b(図1参照)と連通している。外気口10cは、給気流3を熱交換形換気装置10に吸い込む吸込口であり、ダクト等を介して屋外給気口9c(図1参照)と連通している。給気口10dは、給気流3を熱交換形換気装置10から屋内に吐き出す吐出口であり、ダクト等を介して屋内給気口9dと連通している。 The main body case 10f is the outer frame of the heat exchange type ventilator 10. An inside air port 10a, an exhaust port 10b, an outside air port 10c, and an air supply port 10d are formed on the outer periphery of the main body case 10f. The inside air port 10a is a suction port for sucking the exhaust flow 2 into the heat exchange type ventilation device 10, and communicates with the indoor exhaust port 9a (see FIG. 1) via a duct or the like. The exhaust port 10b is a discharge port for discharging the exhaust flow 2 from the heat exchange type ventilation device 10 to the outside, and communicates with the outdoor exhaust port 9b (see FIG. 1) via a duct or the like. The outside air port 10c is a suction port for sucking the air supply air 3 into the heat exchange type ventilation device 10, and communicates with the outdoor air supply port 9c (see FIG. 1) via a duct or the like. The air supply port 10d is a discharge port for discharging the air supply air 3 indoors from the heat exchange type ventilation device 10, and communicates with the indoor air supply port 9d via a duct or the like.
 本体ケース10fの内部には、熱交換素子10e、排気ファン10g、及び給気ファン10hが取り付けられている。また、本体ケース10fの内部には、排気風路4及び給気風路5が構成されている。熱交換素子10eは、全熱型の熱交換素子であり、排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換(顕熱と潜熱)を行うための部材である。排気ファン10gは、排気口10bの近傍に設置され、排気流2を内気口10aから吸い込み、排気口10bから吐出するための送風機である。給気ファン10hは、給気口10dの近傍に設置され、給気流3を外気口10cから吸い込み、給気口10dから吐出するための送風機である。排気風路4は、内気口10aと排気口10bとを連通する風路を含んで構成される。給気風路5は、外気口10cと給気口10dとを連通する風路を含んで構成される。排気ファン10gが駆動することにより内気口10aから吸い込まれた排気流2は、熱交換素子10e及び排気ファン10gを経由し、排気口10bから屋外へと排出される。また、給気ファン10hが駆動することにより外気口10cから吸い込まれた給気流3は、熱交換素子10e及び給気ファン10hを経由し、給気口10dから屋内へと供給される。 A heat exchange element 10e, an exhaust fan 10g, and an air supply fan 10h are mounted inside the main body case 10f. Further, an exhaust air passage 4 and an air supply air passage 5 are configured inside the main body case 10f. The heat exchange element 10e is a total heat type heat exchange element, and heat exchanges (sensible heat and latent heat) between the exhaust flow 2 flowing through the exhaust air passage 4 and the air supply air flow 3 flowing through the supply air passage 5. It is a member for performing. The exhaust fan 10g is installed in the vicinity of the exhaust port 10b, and is a blower for sucking the exhaust flow 2 from the inside air port 10a and discharging it from the exhaust port 10b. The air supply fan 10h is installed in the vicinity of the air supply port 10d, and is a blower for sucking the air supply airflow 3 from the outside air port 10c and discharging it from the air supply port 10d. The exhaust air passage 4 includes an air passage that communicates the inside air port 10a and the exhaust port 10b. The air supply air passage 5 includes an air passage that communicates the outside air port 10c and the air supply port 10d. The exhaust flow 2 sucked from the inside air port 10a by driving the exhaust fan 10g is discharged to the outside from the exhaust port 10b via the heat exchange element 10e and the exhaust fan 10g. Further, the air supply airflow 3 sucked from the outside air port 10c by driving the air supply fan 10h is supplied indoors from the air supply port 10d via the heat exchange element 10e and the air supply fan 10h.
 熱交換形換気装置10は、熱交換換気を行う場合には、排気ファン10g及び給気ファン10hを動作させ、熱交換素子10eにおいて排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換を行う。これにより、熱交換形換気装置10は、換気を行う際に、屋外に放出する排気流2の熱を屋内に取り入れる給気流3へと伝達し、屋外への熱の放出を抑制し、屋内に熱を回収する。この結果、例えば日本の冬季においては、換気を行う際に、温度が低い屋外の空気による屋内の温度低下を抑制することができる。一方、例えば日本の夏季においては、換気を行う際に、温度が高い屋外の空気による屋内の温度上昇を抑制することができる。 When performing heat exchange ventilation, the heat exchange type ventilation device 10 operates an exhaust fan 10g and an air supply fan 10h, and has an exhaust flow 2 flowing through the exhaust air passage 4 in the heat exchange element 10e and an air supply air passage 5. Heat is exchanged with the air supply air 3 circulating in the air. As a result, the heat exchange type ventilation device 10 transfers the heat of the exhaust flow 2 released to the outside to the air supply airflow 3 which takes in the heat indoors when ventilating, suppresses the release of the heat to the outside, and indoors. Recover heat. As a result, for example, in winter in Japan, it is possible to suppress a decrease in indoor temperature due to low-temperature outdoor air during ventilation. On the other hand, for example, in the summer of Japan, when ventilation is performed, it is possible to suppress an indoor temperature rise due to high temperature outdoor air.
 (実施の形態1)
 まず、図3を参照して、本実施の形態1に係る空気浄化機能付き熱交換形換気装置50について説明する。図3は、本開示の実施の形態1に係る空気浄化機能付き熱交換形換気装置50の構成を示す模式図である。なお、以下の説明では、熱交換後の気流(排気流2及び給気流3)又は風路(排気風路4及び給気風路5)は、熱交換形換気装置10における熱交換素子10eを通過した後の気流又は風路を示す。
(Embodiment 1)
First, with reference to FIG. 3, the heat exchange type ventilation device 50 with an air purification function according to the first embodiment will be described. FIG. 3 is a schematic diagram showing the configuration of the heat exchange type ventilation device 50 with an air purification function according to the first embodiment of the present disclosure. In the following description, the airflow (exhaust flow 2 and supply airflow 3) or air passage (exhaust air passage 4 and supply air passage 5) after heat exchange passes through the heat exchange element 10e in the heat exchange type ventilation device 10. The airflow or air passage after the heat is shown.
 本実施の形態1に係る空気浄化機能付き熱交換形換気装置50は、図3に示すように、前提例に係る熱交換形換気装置10の給気風路5に対して、空気浄化機能を付与する手段としての空気浄化装置6を連結した構成を有している。 As shown in FIG. 3, the heat exchange type ventilation device 50 with an air purification function according to the first embodiment imparts an air purification function to the air supply air passage 5 of the heat exchange type ventilation device 10 according to the premise example. It has a configuration in which an air purifying device 6 is connected as a means for the ventilation.
 空気浄化装置6は、熱交換形換気装置10からの熱交換後の給気流3に対して、必要に応じて冷却処理(除湿処理)を行う。また、空気浄化装置6は、内部を流通する給気流3に対して、微細化された水とともに浄化成分(空気浄化を行う成分)を含ませる装置である。具体的には、空気浄化装置6は、図3に示す通り、本体ケース6g、給気流入口6a、給気流出口6c、加湿器6d、及び熱交換器16を備えている。なお、加湿器6dは、請求の範囲の「空気浄化部」に相当し、熱交換器16は、請求の範囲の「熱交換部」に相当する。 The air purification device 6 performs a cooling treatment (dehumidification treatment) on the supply airflow 3 after heat exchange from the heat exchange type ventilation device 10 as necessary. Further, the air purifying device 6 is a device that includes a purifying component (a component that purifies the air) together with the finely divided water in the air supply air 3 that circulates inside. Specifically, as shown in FIG. 3, the air purification device 6 includes a main body case 6 g, an air flow inlet 6a, an air flow outlet 6c, a humidifier 6d, and a heat exchanger 16. The humidifier 6d corresponds to the "air purification unit" in the claims, and the heat exchanger 16 corresponds to the "heat exchange unit" in the claims.
 本体ケース6gは、空気浄化装置6の外枠である。本体ケース6gの外周には、給気流入口6a及び給気流出口6cが形成されている。そして、本体ケース6gの内部には、加湿器6d及び熱交換器16が取り付けられている。また、本体ケース6gの内部には、給気風路5の一部として、給気流入口6aと給気流出口6cとの間を連通する風路が構成されている。 The main body case 6 g is the outer frame of the air purification device 6. An airflow inlet 6a and an airflow outlet 6c are formed on the outer periphery of the main body case 6g. A humidifier 6d and a heat exchanger 16 are attached to the inside of the main body case 6g. Further, inside the main body case 6g, an air passage that communicates between the air supply inlet 6a and the airflow outlet 6c is configured as a part of the air supply air passage 5.
 給気流入口6aは、熱交換形換気装置10からの給気流3を空気浄化装置6に取り入れる取入口である。給気流入口6aは、熱交換形換気装置10の給気口10dとの間で給気風路5の一部を構成するダクト7を介して連通されている。 The air supply inlet 6a is an intake port that takes in the air supply 3 from the heat exchange type ventilation device 10 into the air purification device 6. The air supply inlet 6a is communicated with the air supply port 10d of the heat exchange type ventilation device 10 via a duct 7 forming a part of the air supply air passage 5.
 給気流出口6cは、水とともに空気浄化を行う成分を付加した給気流3(あるいは空気浄化を行う成分を付加していない給気流3)を給気SAとして給気風路5に吐き出す吐出口である。 The airflow outlet 6c is a discharge port that discharges the airflow 3 (or the airflow 3 to which the component that purifies the air is not added) to the air supply air passage 5 as the air supply SA. ..
 加湿器6dは、内部に取り入れた空気(給気流3)を加湿するとともに、浄化成分(空気浄化を行う成分)を付加するためのユニットである。そして、加湿器6dは、空気の加湿の際に、空気に対して微細化された水とともに浄化成分を含ませる。より詳細には、加湿器6dは、加湿モータ6eと加湿ノズル6fとを有している。加湿器6dは、加湿モータ6eを用いて加湿ノズル6fを回転させ、加湿器6dの貯水部(図示せず)に貯水されている水(浄化成分を含む水)を遠心力で吸い上げて、吸い上げた水を周囲(加湿モータ6eの遠心方向)に飛散、衝突及び破砕させることにより、加湿器6dを通過する空気に水分を含ませる遠心破砕式として構成されている。そして、加湿器6dは、後述する制御部8からの出力信号に応じて、加湿モータ6eの回転数(以下、回転出力値とも定義する)を変化させることにより、空気に対する加湿能力(加湿量)を調整する。なお、加湿量は、空気に対して浄化成分を付加する付加量とも言える。 The humidifier 6d is a unit for humidifying the air taken in inside (air supply airflow 3) and adding a purification component (component for purifying air). Then, when the humidifier 6d humidifies the air, the humidifier 6d contains the purifying component together with the water finely divided with respect to the air. More specifically, the humidifier 6d has a humidifying motor 6e and a humidifying nozzle 6f. The humidifier 6d uses a humidifying motor 6e to rotate the humidifying nozzle 6f, and centrifugally sucks up the water (water containing a purification component) stored in the water storage unit (not shown) of the humidifier 6d. It is configured as a centrifugal crushing type in which water is contained in the air passing through the humidifier 6d by scattering, colliding and crushing the water in the surroundings (centrifugal direction of the humidifying motor 6e). Then, the humidifier 6d changes the rotation speed (hereinafter, also defined as a rotation output value) of the humidifying motor 6e according to the output signal from the control unit 8 described later, thereby humidifying the air (humidifying amount). To adjust. The humidification amount can be said to be an additional amount that adds a purification component to the air.
 なお、加湿器6dの貯水部(図示せず)への浄化成分を含む水の供給は、水道等の給水管から給水される水に対して浄化成分を付加(添加)して浄化成分を含む水を生成する浄化成分供給部(図示せず)により行われる。ここで、浄化成分には、例えば、殺菌性あるいは消臭性を備えた次亜塩素酸等が用いられる。つまり、次亜塩素酸を水に付加して生成された次亜塩素酸水溶液等を給気流3に含ませて屋内に供給することにより、屋内の殺菌あるいは消臭を行うことができる。 The supply of water containing a purifying component to the water storage section (not shown) of the humidifier 6d includes the purifying component by adding (adding) the purifying component to the water supplied from the water supply pipe of a water supply or the like. It is performed by the purification component supply unit (not shown) that produces water. Here, as the purifying component, for example, hypochlorous acid having bactericidal or deodorant properties is used. That is, indoor sterilization or deodorization can be performed by including the hypochlorous acid aqueous solution generated by adding hypochlorous acid to water in the air flow 3 and supplying it indoors.
 熱交換器16は、空気浄化装置6内において、加湿器6dの上流側に配置され、導入される空気(給気流3)を冷却又は加熱するための部材である。そして、熱交換器16は、後述する制御部8からの出力信号に応じて、熱交換器16の出力状態(加熱、冷却又はオフ)を変化させる。これにより、導入される給気流3に対する冷却能力(冷却量)又は加熱能力(加熱量)を調整する。なお、熱交換器16では、導入される空気を冷却することは、すなわち、導入された空気を除湿することである。したがって、給気流3に対する冷却能力(冷却量)は、給気流3に対する除湿能力(除湿量)とも言える。 The heat exchanger 16 is a member arranged on the upstream side of the humidifier 6d in the air purification device 6 for cooling or heating the introduced air (air supply airflow 3). Then, the heat exchanger 16 changes the output state (heating, cooling, or off) of the heat exchanger 16 according to the output signal from the control unit 8 described later. Thereby, the cooling capacity (cooling amount) or the heating capacity (heating amount) with respect to the introduced airflow 3 is adjusted. In the heat exchanger 16, cooling the introduced air means dehumidifying the introduced air. Therefore, the cooling capacity (cooling amount) for the supply airflow 3 can be said to be the dehumidifying capacity (dehumidification amount) for the supply airflow 3.
 より詳細には、熱交換器16は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、吸熱器又は放熱器として機能する。熱交換器16は、空調機器(室外機20)から導入される冷媒が内部を流通する際に吸熱(冷却)又は放熱(加熱)するように構成されている。ここで、熱交換器16は、屋内空間11に設置される空気浄化装置6に内蔵される屋内ユニットであり、室外機20は、屋外空間12に設置される室外ユニットである。室外機20は、圧縮機20aと、膨張器20bと、屋外熱交換器20cと、送風ファン20dと、四方弁20eとを有して構成される。 More specifically, the heat exchanger 16 functions as a heat absorber or a radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. The heat exchanger 16 is configured to absorb heat (cool) or dissipate heat (heat) when the refrigerant introduced from the air conditioner (outdoor unit 20) circulates inside. Here, the heat exchanger 16 is an indoor unit built in the air purification device 6 installed in the indoor space 11, and the outdoor unit 20 is an outdoor unit installed in the outdoor space 12. The outdoor unit 20 includes a compressor 20a, an expander 20b, an outdoor heat exchanger 20c, a blower fan 20d, and a four-way valve 20e.
 次に、熱交換器16と室外機20とによって構成される冷凍サイクルについて説明する。 Next, the refrigeration cycle composed of the heat exchanger 16 and the outdoor unit 20 will be described.
 冷凍サイクルには、四方弁20eが接続されている。熱交換器16は、四方弁20eによって第一方向に冷媒が流通することにより空気(給気流3)を冷却して除湿する冷却モード(除湿モード)の状態と、四方弁20eによって第二方向に冷媒が流通することにより空気(給気流3)に対して加熱を行う加熱モードの状態とを有する。 A four-way valve 20e is connected to the refrigeration cycle. The heat exchanger 16 is in a cooling mode (dehumidifying mode) in which the air (supply airflow 3) is cooled and dehumidified by the flow of the refrigerant in the first direction by the four-way valve 20e, and in the second direction by the four-way valve 20e. It has a heating mode state in which the air (supply airflow 3) is heated by the flow of the refrigerant.
 ここで、四方弁20eは、冷凍サイクルにおいて、冷媒回路21内を流れる冷媒の流れる向きを切り替えるための機器(可逆弁)である。より詳細には、四方弁20eは、圧縮機20aと熱交換器16との間、及び、圧縮機20aと屋外熱交換器20cとの間において接続される。そして、四方弁20eは、圧縮機20aと屋外熱交換器20cと膨張器20bと熱交換器16とをこの順序(第一方向)で冷媒を流通させる冷却モードと、圧縮機20aと熱交換器16と膨張器20bと屋外熱交換器20cとをこの順序(第二方向)で冷媒を流通させる加熱モードとを切り替える。すなわち、冷却モードと加熱モードとでは、冷媒の流れが逆方向となる。なお、冷却モードは、除湿モードとも言える。以下、冷却モードと加熱モードとについて説明する。 Here, the four-way valve 20e is a device (reversible valve) for switching the flow direction of the refrigerant flowing in the refrigerant circuit 21 in the refrigeration cycle. More specifically, the four-way valve 20e is connected between the compressor 20a and the heat exchanger 16 and between the compressor 20a and the outdoor heat exchanger 20c. The four-way valve 20e has a cooling mode in which the compressor 20a, the outdoor heat exchanger 20c, the expander 20b, and the heat exchanger 16 circulate the refrigerant in this order (first direction), and the compressor 20a and the heat exchanger. 16 is switched between the heating mode in which the expander 20b and the outdoor heat exchanger 20c are circulated in this order (second direction). That is, the flow of the refrigerant is in the opposite direction in the cooling mode and the heating mode. The cooling mode can also be said to be a dehumidification mode. Hereinafter, the cooling mode and the heating mode will be described.
 [冷却モード]
 冷却モードでは、上述の第一方向で冷媒が流通する。
[Cooling mode]
In the cooling mode, the refrigerant flows in the above-mentioned first direction.
 圧縮機20aは、冷媒サイクルにおける低温及び低圧の冷媒ガス(作動媒体ガス)を圧縮し、圧力を高めて高温化する。 The compressor 20a compresses low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, increases the pressure, and raises the temperature.
 屋外熱交換器20cは、放熱器として機能する。屋外熱交換器20cは、圧縮機20aによって高温及び高圧となった冷媒ガスと空気(送風ファン20dによって送風される屋外空間12の空気OA)との間で熱交換することによって、熱を外部(冷媒サイクル外)に放出させる。このとき、冷媒ガスは、高圧下で凝縮されて液化する。屋外熱交換器20cでは、導入される冷媒ガスの温度が空気の温度より高いため、空気と冷媒ガスとが熱交換すると、空気は昇温され、冷媒ガスは冷却される。 The outdoor heat exchanger 20c functions as a radiator. The outdoor heat exchanger 20c exchanges heat between the refrigerant gas whose high temperature and high pressure are increased by the compressor 20a and the air (air OA of the outdoor space 12 blown by the blower fan 20d), thereby exchanging heat to the outside (air OA in the outdoor space 12). Discharge to outside the refrigerant cycle). At this time, the refrigerant gas is condensed and liquefied under high pressure. In the outdoor heat exchanger 20c, the temperature of the introduced refrigerant gas is higher than the temperature of the air. Therefore, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
 送風ファン20dは、屋外熱交換器20cに向けて屋外空間12の空気OAを送風する。 The blower fan 20d blows the air OA of the outdoor space 12 toward the outdoor heat exchanger 20c.
 膨張器20bは、屋外熱交換器20cによって液化した高圧の冷媒を減圧して元の低温及び低圧の液体とする。 The expander 20b decompresses the high-pressure refrigerant liquefied by the outdoor heat exchanger 20c to the original low-temperature and low-pressure liquids.
 熱交換器16は、吸熱器として機能する。熱交換器16において、膨張器20bを流通した液状の冷媒は、空気から熱を奪って蒸発することにより、低温及び低圧の冷媒ガスとなる。熱交換器16では、導入される冷媒の温度は空気(導入される熱交換後の給気流3)の温度より低い。このため、冷媒と空気とが熱交換すると、空気は冷却され、冷媒は昇温される。 The heat exchanger 16 functions as a heat absorber. In the heat exchanger 16, the liquid refrigerant flowing through the expander 20b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas. In the heat exchanger 16, the temperature of the introduced refrigerant is lower than the temperature of the air (supply airflow 3 after the introduced heat exchange). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
 以上により、熱交換器16では、導入される空気(給気流3)を冷却する。 From the above, the heat exchanger 16 cools the introduced air (air supply airflow 3).
 [加熱モード]
 加熱モードでは、上述の第二方向で冷媒が流通する。
[Heating mode]
In the heating mode, the refrigerant flows in the second direction described above.
 圧縮機20aは、除湿モードと同じく、冷媒サイクルにおける低温及び低圧の冷媒ガス(作動媒体ガス)を圧縮し、圧力を高めて高温化する。 Similar to the dehumidification mode, the compressor 20a compresses the low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, and raises the pressure to raise the temperature.
 熱交換器16は、放熱器として機能する。熱交換器16は、冷却モードでの屋外熱交換器20cと同じ機能を果たす。具体的には、熱交換器16は、圧縮機20aによって高温及び高圧となった冷媒ガスと空気(導入される熱交換後の給気流3)との間で熱交換することによって、熱を外部(冷媒サイクル外)に放出させる。このとき、冷媒ガスは、高圧下で凝縮されて液化する。熱交換器16では、導入される冷媒ガスの温度が空気の温度より高いため、空気と冷媒ガスとが熱交換すると、空気は昇温され、冷媒ガスは冷却される。 The heat exchanger 16 functions as a radiator. The heat exchanger 16 performs the same function as the outdoor heat exchanger 20c in the cooling mode. Specifically, the heat exchanger 16 exchanges heat between the refrigerant gas having a high temperature and high pressure by the compressor 20a and air (the air supply airflow 3 after the heat exchange to be introduced), thereby exchanging heat to the outside. Discharge to (outside the refrigerant cycle). At this time, the refrigerant gas is condensed and liquefied under high pressure. In the heat exchanger 16, since the temperature of the introduced refrigerant gas is higher than the temperature of the air, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
 膨張器20bは、熱交換器16によって液化した高圧の冷媒を減圧して元の低温及び低圧の液体とする。 The expander 20b decompresses the high-pressure refrigerant liquefied by the heat exchanger 16 to the original low-temperature and low-pressure liquids.
 屋外熱交換器20cは、吸熱器として機能する。屋外熱交換器20cは、除湿モードでの熱交換器16と同じ機能を果たす。具体的には、屋外熱交換器20cにおいて、膨張器20bを流通した液状の冷媒は、空気から熱を奪って蒸発することにより、低温及び低圧の冷媒ガスとなる。屋外熱交換器20cでは、導入される冷媒の温度は空気(送風ファン20dによって送風される屋外空間12の空気OA)の温度より低い。このため、冷媒と空気とが熱交換すると、空気は冷却され、冷媒は昇温される。 The outdoor heat exchanger 20c functions as a heat absorber. The outdoor heat exchanger 20c performs the same function as the heat exchanger 16 in the dehumidification mode. Specifically, in the outdoor heat exchanger 20c, the liquid refrigerant flowing through the expander 20b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas. In the outdoor heat exchanger 20c, the temperature of the introduced refrigerant is lower than the temperature of the air (air OA of the outdoor space 12 blown by the blower fan 20d). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
 送風ファン20dは、屋外熱交換器20cに向けて屋外空間12の空気OAを送風する。 The blower fan 20d blows the air OA of the outdoor space 12 toward the outdoor heat exchanger 20c.
 以上により、熱交換器16では、導入される空気(給気流3)を加熱する。 From the above, the heat exchanger 16 heats the introduced air (air supply airflow 3).
 空気浄化装置6は、上述のように構成され、屋外から導入する空気(給気流3)に対して除湿を行いたい夏季において、冷却モードによる浄化成分(空気浄化を行う成分)の付加を行う。また、屋外から導入する空気(給気流3)に対して加湿を行いたい冬季において、加熱モードによる浄化成分(空気浄化を行う成分)の付加を行う。 The air purification device 6 is configured as described above, and adds a purification component (component for purifying air) by a cooling mode in the summer when it is desired to dehumidify the air (air supply airflow 3) introduced from the outside. Further, in the winter when it is desired to humidify the air introduced from the outside (air supply airflow 3), a purification component (component for purifying air) is added by the heating mode.
 なお、以下の説明では、日本の夏季において、冷却モードによる浄化成分(空気浄化を行う成分)の付加を行うことを想定して説明する。 In the following explanation, it is assumed that the purification component (component that purifies the air) is added by the cooling mode in the summer of Japan.
 次に、図4を参照して、空気浄化装置6による給気流3に対する湿度制御について説明する。図4は、本実施の形態1に係る空気浄化装置6を流通する給気流3の湿度変化を示す図である。より詳細には、図4は、空気浄化装置6を構成する熱交換器16及び加湿器6dにおける各処理に応じて変化する湿度を時系列的に示す図である。そして、図4には、従来の除湿制御処理(比較例)による湿度変化と本実施の形態の除湿制御処理(実施例)による湿度変化とをそれぞれ示している。 Next, with reference to FIG. 4, the humidity control for the supply airflow 3 by the air purification device 6 will be described. FIG. 4 is a diagram showing a humidity change of the supply airflow 3 flowing through the air purification device 6 according to the first embodiment. More specifically, FIG. 4 is a diagram showing the humidity that changes according to each treatment in the heat exchanger 16 and the humidifier 6d constituting the air purification device 6 in chronological order. And FIG. 4 shows the humidity change by the conventional dehumidification control process (comparative example) and the humidity change by the dehumidification control process (example) of the present embodiment, respectively.
 図4では、縦軸を給気流3の湿度とし、横軸を経過時間としている。そして、経過時間は、時間の経過とともに、領域T1、領域T2、領域T3、及び領域T4の順に区画される。領域T1は、熱交換形換気装置10の流通後から熱交換器16への導入前における給気流3の湿度変化を示す領域である。領域T2は、熱交換器16を流通する給気流3の湿度変化を示す領域である。領域T3は、加湿器6dを流通する給気流3の湿度変化を示す領域である。領域T4は、加湿器6dから導出された給気流3の湿度変化を示す領域である。 In FIG. 4, the vertical axis is the humidity of the airflow 3 and the horizontal axis is the elapsed time. Then, the elapsed time is divided in the order of region T1, region T2, region T3, and region T4 with the passage of time. The region T1 is a region showing a change in humidity of the air supply air 3 after the heat exchange type ventilator 10 is distributed and before it is introduced into the heat exchanger 16. The region T2 is a region showing a humidity change of the supply airflow 3 flowing through the heat exchanger 16. The region T3 is a region showing a humidity change of the supply airflow 3 flowing through the humidifier 6d. The region T4 is a region showing a humidity change of the supply airflow 3 derived from the humidifier 6d.
 まず、領域T1における給気流3の湿度は、湿度H0となっている。そして、比較例では、領域T2において、給気流3の湿度を屋内の空気の目標設定湿度である湿度H2にまで減少させる。つまり、熱交換器16は、給気流3の湿度が湿度H0から湿度H2となる除湿量で除湿を行う。そして、領域T3において、給気流3に対して水とともに浄化成分を付加して、給気流3の湿度を湿度H1にまで増加させる。つまり、加湿器6dは、給気流3の湿度が湿度H2から湿度H1となる加湿量で加湿を行いつつ、浄化成分の付加を行う。そして、領域T4において、給気流3は、湿度H1を維持し、目標設定湿度(湿度H2)よりも高い湿度で屋内空間11に供給される。したがって、比較例では、加湿器6dによる湿度増加が考慮されていないため、過加湿の状態で屋内の空気の調湿制御がなされることになる。この結果、屋内空間11の快適性が損なわれる可能性がある。 First, the humidity of the supply airflow 3 in the region T1 is the humidity H0. Then, in the comparative example, in the region T2, the humidity of the supply airflow 3 is reduced to the humidity H2, which is the target setting humidity of the indoor air. That is, the heat exchanger 16 dehumidifies with a dehumidifying amount in which the humidity of the supply airflow 3 changes from humidity H0 to humidity H2. Then, in the region T3, a purification component is added to the supply airflow 3 together with water to increase the humidity of the supply airflow 3 to the humidity H1. That is, the humidifier 6d adds a purifying component while humidifying with a humidifying amount in which the humidity of the supply airflow 3 changes from humidity H2 to humidity H1. Then, in the region T4, the supply airflow 3 maintains the humidity H1 and is supplied to the indoor space 11 at a humidity higher than the target set humidity (humidity H2). Therefore, in the comparative example, since the increase in humidity due to the humidifier 6d is not taken into consideration, the humidity control of the indoor air is controlled in the over-humidified state. As a result, the comfort of the indoor space 11 may be impaired.
 これに対して、実施例では、領域T1において、湿度H0を有する給気流3に対して、領域T2において、給気流3の湿度を、目標設定湿度(湿度H2)よりも低い湿度である湿度H3にまで減少させる。つまり、熱交換器16は、給気流3の湿度が湿度H0から湿度H3となる除湿量で除湿を行う。そして、領域T3において、給気流3に対して水とともに浄化成分を付加して、給気流3の湿度を湿度H2にまで増加させる。つまり、加湿器6dは、給気流3の湿度が湿度H3から湿度H2となる加湿量で加湿を行いつつ、浄化成分の付加を行う。そして、領域T4において、給気流3は、湿度H2を維持し、目標設定湿度と同じ湿度で屋内空間11に供給される。したがって、実施例では、加湿器6dによる湿度増加が熱交換器16による除湿量に反映され、給気流3が目標設定湿度となった状態で屋内の空気の調湿制御が行われる。この結果、屋内空間11の快適性を維持しながら、屋内空間11に浄化成分を供給することが可能となる。 On the other hand, in the embodiment, the humidity of the supply airflow 3 in the region T2 is lower than the target set humidity (humidity H2) with respect to the supply airflow 3 having the humidity H0 in the region T1. To reduce to. That is, the heat exchanger 16 dehumidifies with a dehumidifying amount in which the humidity of the supply airflow 3 changes from humidity H0 to humidity H3. Then, in the region T3, a purification component is added to the supply airflow 3 together with water to increase the humidity of the supply airflow 3 to the humidity H2. That is, the humidifier 6d adds a purifying component while humidifying with a humidifying amount in which the humidity of the supply airflow 3 changes from humidity H3 to humidity H2. Then, in the region T4, the supply airflow 3 maintains the humidity H2 and is supplied to the indoor space 11 at the same humidity as the target set humidity. Therefore, in the embodiment, the humidity increase by the humidifier 6d is reflected in the dehumidification amount by the heat exchanger 16, and the humidity control of the indoor air is performed in a state where the supply airflow 3 reaches the target set humidity. As a result, it becomes possible to supply the purifying component to the indoor space 11 while maintaining the comfort of the indoor space 11.
 続いて、図5を参照して、空気浄化装置6の運転状態条件によって変化する給気流3に対する湿度制御について説明する。図5は、本実施の形態1に係る空気浄化装置6を流通する給気流3の湿度変化を運転状態条件ごとに示した図である。図5の上段のグラフは、図4に対応した図であり、運転状態条件ごとの給気流3の湿度変化を示している。図5の下段の表は、運転状態条件の詳細内容を示している。ここで、運転状態条件を、屋内空間11へ供給される給気流3への浄化成分の放出レベルに応じた三段階として説明する。 Subsequently, with reference to FIG. 5, the humidity control for the supply airflow 3 that changes depending on the operating condition of the air purification device 6 will be described. FIG. 5 is a diagram showing the humidity change of the supply airflow 3 flowing through the air purification device 6 according to the first embodiment for each operating state condition. The upper graph of FIG. 5 is a diagram corresponding to FIG. 4, and shows the humidity change of the supply airflow 3 for each operating condition. The lower table of FIG. 5 shows the detailed contents of the operating condition. Here, the operating state condition will be described as three stages according to the release level of the purification component to the supply airflow 3 supplied to the indoor space 11.
 図5に示すように、運転状態条件は、加湿器6dによる浄化成分の放出レベルに応じて、放出量A(低放出)、放出量B(標準放出)、及び放出量C(高放出)の三段階から選択される。空気浄化装置6は、選択された運転状態条件(第一運転状態~第三運転状態)で特定される運転制御を実行する。なお、給気流3への浄化成分の放出量は、放出量A<放出量B<放出量Cの関係である。 As shown in FIG. 5, the operating condition conditions are the release amount A (low release), the release amount B (standard release), and the release amount C (high release) according to the release level of the purification component by the humidifier 6d. It is selected from three stages. The air purification device 6 executes the operation control specified by the selected operating state conditions (first operating state to third operating state). The amount of the purification component released to the air supply air 3 is in the relationship of the amount A <the amount B <the amount C released.
 [第一運転状態]
 空気浄化装置6は、給気流3への浄化成分の放出量が放出量Aである場合、第一運転状態に基づく運転動作を実行する。そして、第一運転状態では、空気浄化装置6は、加湿器6dの加湿モータ6eを回転数A1で回転させるとともに、熱交換器16をオン状態A2で冷却(除湿)させる。ここで、回転数A1は、加湿器6dを流通する給気流3に対して、湿度H3aと目標設定湿度(湿度H2)との差分を充足する加湿量を実現する回転条件である。また、オン状態A2は、熱交換器16を流通する給気流3に対して、湿度H0と湿度H3aの差分を除去する除湿量を実現する冷却条件である。
[First operating state]
When the amount of the purification component released to the supply airflow 3 is the amount of discharge A, the air purification device 6 executes the operation operation based on the first operating state. Then, in the first operating state, the air purifying device 6 rotates the humidifying motor 6e of the humidifier 6d at the rotation speed A1 and cools (dehumidifies) the heat exchanger 16 in the on state A2. Here, the rotation speed A1 is a rotation condition that realizes a humidification amount that satisfies the difference between the humidity H3a and the target set humidity (humidity H2) with respect to the supply airflow 3 flowing through the humidifier 6d. Further, the on state A2 is a cooling condition that realizes a dehumidifying amount that removes the difference between the humidity H0 and the humidity H3a with respect to the supply airflow 3 flowing through the heat exchanger 16.
 つまり、領域T1において湿度H0を有する給気流3に対して、領域T2において、目標設定湿度(湿度H2)よりも低い湿度である湿度H3aにまで減少させる。そして、領域T3において、給気流3に対して水とともに浄化成分を付加して、湿度H2にまで増加させる。そして、領域T4において、給気流3は、湿度H2を維持し、目標設定湿度と同じ湿度で屋内空間11に供給される。したがって、熱交換後に湿度H0にある給気流3は、領域T2で熱交換器16によって湿度H3aまで除湿される。このため、領域T3で加湿器6dにより回転数A1で加湿されても、最終的な湿度が目標設定湿度である湿度H2となる。したがって、給気流3を過剰加湿することなく、屋内空間11に供給することができる。 That is, the humidity H3a, which is lower than the target set humidity (humidity H2), is reduced in the region T2 with respect to the supply airflow 3 having the humidity H0 in the region T1. Then, in the region T3, a purifying component is added to the supply airflow 3 together with water to increase the humidity to H2. Then, in the region T4, the supply airflow 3 maintains the humidity H2 and is supplied to the indoor space 11 at the same humidity as the target set humidity. Therefore, the supply airflow 3 in the humidity H0 after the heat exchange is dehumidified to the humidity H3a by the heat exchanger 16 in the region T2. Therefore, even if the region T3 is humidified by the humidifier 6d at the rotation speed A1, the final humidity is the humidity H2, which is the target set humidity. Therefore, the supply airflow 3 can be supplied to the indoor space 11 without being excessively humidified.
 [第二運転状態]
 空気浄化装置6は、給気流3への浄化成分の放出量が放出量Bである場合、第二運転状態に基づく運転動作を実行する。そして、第二運転状態では、空気浄化装置6は、加湿器6dの加湿モータ6eを回転数B1で回転させるとともに、熱交換器16をオン状態B2で冷却(除湿)させる。ここで、回転数B1は、加湿器6dを流通する給気流3に対して、湿度H3bと目標設定湿度(湿度H2)との差分を充足する加湿量を実現する回転条件である。また、オン状態B2は、熱交換器16を流通する給気流3に対して、湿度H0と湿度H3bの差分を除去する除湿量を実現する冷却条件である。
[Second operating state]
When the amount of the purification component released to the air supply air 3 is the amount B, the air purification device 6 executes the operation operation based on the second operating state. Then, in the second operating state, the air purifying device 6 rotates the humidifying motor 6e of the humidifier 6d at the rotation speed B1 and cools (dehumidifies) the heat exchanger 16 in the on state B2. Here, the rotation speed B1 is a rotation condition that realizes a humidification amount that satisfies the difference between the humidity H3b and the target set humidity (humidity H2) with respect to the supply airflow 3 flowing through the humidifier 6d. Further, the on state B2 is a cooling condition that realizes a dehumidifying amount that removes the difference between the humidity H0 and the humidity H3b with respect to the supply airflow 3 flowing through the heat exchanger 16.
 つまり、領域T1において湿度H0を有する給気流3に対して、領域T2において、目標設定湿度(湿度H2)よりも低い湿度である湿度H3bにまで減少させる。そして、領域T3において、給気流3に対して水とともに浄化成分を付加して湿度H2にまで増加させる。そして、領域T4において、給気流3は、湿度H2を維持し、目標設定湿度と同じ湿度で屋内空間11に供給される。したがって、熱交換後に湿度H0にある給気流3は、領域T2で熱交換器16によって湿度H3bまで除湿される。このため、領域T3で加湿器6dにより回転数B1で加湿されても、最終的な湿度が目標設定湿度である湿度H2となる。したがって、給気流3を過剰加湿することなく屋内空間11に供給することができる。 That is, the humidity H3b, which is lower than the target set humidity (humidity H2), is reduced in the region T2 with respect to the supply airflow 3 having the humidity H0 in the region T1. Then, in the region T3, a purifying component is added to the supply airflow 3 together with water to increase the humidity to H2. Then, in the region T4, the supply airflow 3 maintains the humidity H2 and is supplied to the indoor space 11 at the same humidity as the target set humidity. Therefore, the supply airflow 3 in the humidity H0 after the heat exchange is dehumidified to the humidity H3b by the heat exchanger 16 in the region T2. Therefore, even if the region T3 is humidified by the humidifier 6d at the rotation speed B1, the final humidity is the humidity H2, which is the target set humidity. Therefore, the supply airflow 3 can be supplied to the indoor space 11 without being excessively humidified.
 [第三運転状態]
 空気浄化装置6は、給気流3への浄化成分の放出量が放出量Cである場合、第三運転状態に基づく運転動作を実行する。そして、第三運転状態では、空気浄化装置6は、加湿器6dの加湿モータ6eを回転数C1で回転させるとともに、熱交換器16をオン状態C2で冷却(除湿)させる。ここで、回転数C1は、加湿器6dを流通する給気流3に対して、湿度H3cと目標設定湿度(湿度H2)との差分を充足する加湿量を実現する回転条件である。また、オン状態C2は、熱交換器16を流通する給気流3に対して、湿度H0と湿度H3cの差分を除去する除湿量を実現する冷却条件である。
[Third operating condition]
When the amount of the purification component released to the supply airflow 3 is the amount of discharge C, the air purification device 6 executes the operation operation based on the third operating state. Then, in the third operating state, the air purifying device 6 rotates the humidifying motor 6e of the humidifier 6d at the rotation speed C1 and cools (dehumidifies) the heat exchanger 16 in the on state C2. Here, the rotation speed C1 is a rotation condition that realizes a humidification amount that satisfies the difference between the humidity H3c and the target set humidity (humidity H2) with respect to the supply airflow 3 flowing through the humidifier 6d. Further, the on state C2 is a cooling condition that realizes a dehumidifying amount that removes the difference between the humidity H0 and the humidity H3c with respect to the supply airflow 3 flowing through the heat exchanger 16.
 つまり、領域T1において湿度H0を有する給気流3に対して、領域T2において、目標設定湿度(湿度H2)よりも低い湿度である湿度H3cにまで減少させる。そして、領域T3において給気流3に対して水とともに浄化成分を付加して湿度H2にまで増加させる。そして、領域T4において、給気流3は、湿度H2を維持し、目標設定湿度と同じ湿度で屋内空間11に供給される。したがって、熱交換後に湿度H0にある給気流3は、領域T2で熱交換器16によって湿度H3cまで除湿される。このため、領域T3で加湿器6dにより回転数C1で加湿されても、最終的な湿度が目標設定湿度である湿度H2となる。したがって、給気流3を過剰加湿することなく屋内空間11に供給することができる。 That is, the humidity H3c, which is lower than the target set humidity (humidity H2), is reduced in the region T2 with respect to the supply airflow 3 having the humidity H0 in the region T1. Then, in the region T3, a purifying component is added to the supply airflow 3 together with water to increase the humidity to H2. Then, in the region T4, the supply airflow 3 maintains the humidity H2 and is supplied to the indoor space 11 at the same humidity as the target set humidity. Therefore, the supply airflow 3 in the humidity H0 after the heat exchange is dehumidified to the humidity H3c by the heat exchanger 16 in the region T2. Therefore, even if the region T3 is humidified by the humidifier 6d at the rotation speed C1, the final humidity is the humidity H2, which is the target set humidity. Therefore, the supply airflow 3 can be supplied to the indoor space 11 without being excessively humidified.
 以上のように、空気浄化装置6では、浄化成分を付加する際の加湿量(浄化成分の付加量)に応じて、熱交換器16による除湿量が設定される。このため、屋内空間11に必要な浄化成分の付加を行いつつ、屋内空間11に供給される給気流3の湿度が屋内空間11の空気の目標設定湿度となるように調湿することができる。 As described above, in the air purification device 6, the dehumidification amount by the heat exchanger 16 is set according to the humidification amount (addition amount of the purification component) when the purification component is added. Therefore, while adding the purifying component necessary for the indoor space 11, the humidity of the supply airflow 3 supplied to the indoor space 11 can be adjusted so as to be the target set humidity of the air in the indoor space 11.
 次に、図6を参照して、空気浄化装置6の制御部8について説明する。図6は、本実施の形態1に係る空気浄化装置6における制御部8の構成を表す概略ブロック図である。 Next, the control unit 8 of the air purification device 6 will be described with reference to FIG. FIG. 6 is a schematic block diagram showing the configuration of the control unit 8 in the air purification device 6 according to the first embodiment.
 図6に示すように、制御部8は、入力部8a、処理部8b、出力部8c、記憶部8d、及び計時部8eを備える。 As shown in FIG. 6, the control unit 8 includes an input unit 8a, a processing unit 8b, an output unit 8c, a storage unit 8d, and a timing unit 8e.
 入力部8aは、操作パネル18からの運転開始指示又は運転停止指示に関する第一情報と、湿度検知部15からの屋内空間11の空気RAの温度に関する第二情報を受け付ける。入力部8aは、受け付けた情報を処理部8bに出力する。 The input unit 8a receives the first information regarding the operation start instruction or the operation stop instruction from the operation panel 18 and the second information regarding the temperature of the air RA of the indoor space 11 from the humidity detection unit 15. The input unit 8a outputs the received information to the processing unit 8b.
 ここで、操作パネル18は、空気浄化装置6に関するユーザ入力情報(例えば、浄化成分の付加の有無、加湿の有無、浄化成分の付加レベル、又は加湿レベル等)を入力する端末であり、無線又は有線により制御部8と通信可能に接続されている。なお、第一情報には、ユーザ入力情報も含まれる。なお、浄化成分の付加レベル及び加湿レベルは、例えば、「高」、「標準」及び「低」の三段階でそれぞれ設定される。 Here, the operation panel 18 is a terminal for inputting user input information regarding the air purification device 6 (for example, presence / absence of addition of purification component, presence / absence of humidification, addition level of purification component, humidification level, etc.), and is wireless or It is connected to the control unit 8 by wire so as to be communicable. The first information also includes user input information. The addition level and the humidification level of the purification component are set, for example, in three stages of "high", "standard" and "low", respectively.
 また、湿度検知部15は、熱交換形換気装置10内の熱交換前の排気風路4に設置され、屋内空間11からの空気RAの湿度を感知するセンサである。なお、湿度検知部15は、複数の屋内空間11のうち代表的な屋内空間11に設置するようにしてもよい。 Further, the humidity detection unit 15 is a sensor installed in the exhaust air passage 4 before heat exchange in the heat exchange type ventilation device 10 and detects the humidity of the air RA from the indoor space 11. The humidity detection unit 15 may be installed in a typical indoor space 11 among a plurality of indoor spaces 11.
 記憶部8dは、加湿器6dを流通する給気流3に対する浄化成分(浄化成分を含む水)の付加動作における付加処理設定に関する第三情報と、熱交換器16を流通する給気流3に対する冷却動作における冷却処理設定に関する第四情報と、ユーザ入力情報に対応する設定情報に関する第五情報とを記憶する。記憶部8dは、記憶した第三情報~第五情報を処理部8bに出力する。なお、浄化成分の付加動作における付加処理設定は、空気浄化装置6内に備えられた加湿器6dの加湿動作における加湿処理設定とも言える。また、給気流3に対する冷却動作における冷却処理設定は、給気流3に対する除湿冷却動作における除湿処理設定とも言える。 The storage unit 8d contains third information regarding the additional treatment setting in the additional operation of the purifying component (water containing the purifying component) with respect to the air supply 3 flowing through the humidifier 6d, and the cooling operation with respect to the air supply 3 flowing through the heat exchanger 16. The fourth information regarding the cooling process setting in the above and the fifth information regarding the setting information corresponding to the user input information are stored. The storage unit 8d outputs the stored third information to the fifth information to the processing unit 8b. The additional treatment setting in the additional operation of the purification component can be said to be the humidification treatment setting in the humidification operation of the humidifier 6d provided in the air purification device 6. Further, the cooling treatment setting in the cooling operation for the supply airflow 3 can be said to be the dehumidification treatment setting in the dehumidification / cooling operation for the supply airflow 3.
 計時部8eは、現在時刻に関する第六情報を処理部8bに出力する。 The timekeeping unit 8e outputs the sixth information regarding the current time to the processing unit 8b.
 処理部8bは、入力部8aからの第一情報及び第二情報と、記憶部8dからの第三情報~第五情報と、計時部8eからの第六情報とを受け付ける。処理部8bは、受け付けた第一情報~第六情報を用いて、付加処理設定に基づく付加動作に関する制御情報(回転出力値)及び冷却処理設定に基づく冷却動作に関する制御情報(冷却出力値)を特定する。処理部8bは、特定した制御情報(回転出力値及び冷却出力値)を出力部8cに出力する。ここで、回転出力値は、加湿器6dの加湿モータ6eを回転させる回転数に関する出力値である。冷却出力値は、熱交換器16の冷却能力を変化させる出力値である。なお、回転出力値及び冷却出力値には、それぞれの運転動作停止となる出力値も含まれる。 The processing unit 8b receives the first information and the second information from the input unit 8a, the third information to the fifth information from the storage unit 8d, and the sixth information from the timekeeping unit 8e. The processing unit 8b uses the received first information to sixth information to provide control information (rotational output value) regarding the additional operation based on the additional processing setting and control information (cooling output value) regarding the cooling operation based on the cooling processing setting. Identify. The processing unit 8b outputs the specified control information (rotational output value and cooling output value) to the output unit 8c. Here, the rotation output value is an output value related to the rotation speed for rotating the humidifying motor 6e of the humidifier 6d. The cooling output value is an output value that changes the cooling capacity of the heat exchanger 16. The rotation output value and the cooling output value include output values for stopping the respective operation operations.
 出力部8cは、処理部8bから受け付けた制御情報(回転出力値)を、加湿器6d(加湿モータ6e)に出力する。また、出力部8cは、処理部8bから受け付けた制御情報(冷却出力値)を、熱交換器16に出力する。そして、加湿器6dは、出力部8cから出力された回転出力値に応じて、付加運転動作を実行する。また、熱交換器16は、出力部8cから出力された冷却出力値に基づいて、冷却運転動作を実行する。 The output unit 8c outputs the control information (rotational output value) received from the processing unit 8b to the humidifier 6d (humidifying motor 6e). Further, the output unit 8c outputs the control information (cooling output value) received from the processing unit 8b to the heat exchanger 16. Then, the humidifier 6d executes an additional operation operation according to the rotation output value output from the output unit 8c. Further, the heat exchanger 16 executes a cooling operation operation based on the cooling output value output from the output unit 8c.
 以上のようにして、制御部8は、空気浄化装置6を流通する給気流3に対する冷却動作(除湿動作)の制御及び浄化成分の付加動作の制御をそれぞれ実行させる。 As described above, the control unit 8 controls the cooling operation (dehumidifying operation) and the addition operation of the purification component with respect to the supply airflow 3 flowing through the air purification device 6, respectively.
 次に、図7を参照して、日本の夏季において空気浄化装置6が行う給気流3に対する浄化成分の付加動作に伴う湿度制御の処理手順について説明する。図7は、本実施の形態1に係る制御部8による処理手順を示すフローチャートである。 Next, with reference to FIG. 7, the processing procedure of humidity control accompanying the addition operation of the purification component to the air supply air 3 performed by the air purification device 6 in the summer of Japan will be described. FIG. 7 is a flowchart showing a processing procedure by the control unit 8 according to the first embodiment.
 まず、図7に示すように、制御部8は、操作パネル18からの運転開始に関する制御信号に応じて処理を開始する。 First, as shown in FIG. 7, the control unit 8 starts processing in response to a control signal regarding the start of operation from the operation panel 18.
 制御部8の入力部8aは、湿度検知部15から送信される、屋内空間11からの空気RAの湿度情報(湿度値)を取得する(ステップS01)。 The input unit 8a of the control unit 8 acquires the humidity information (humidity value) of the air RA from the indoor space 11 transmitted from the humidity detection unit 15 (step S01).
 制御部8は、入力部8a及び記憶部8dから出力された各情報(屋内の空気の目標設定湿度、浄化成分の設定付加レベル又は設定加湿レベル等)をもとに、加湿器6dによる浄化成分の付加に伴う加湿量を特定する(ステップS02)。つまり、制御部8は、加湿動作に関する制御情報(回転出力値)を特定する。 The control unit 8 uses the humidifier 6d to purify the components based on the information output from the input unit 8a and the storage unit 8d (target set humidity of indoor air, set additional level of purification component, set humidification level, etc.). The amount of humidification associated with the addition of the above is specified (step S02). That is, the control unit 8 specifies the control information (rotational output value) regarding the humidification operation.
 次に、制御部8は、空気浄化装置6を流通して屋内に供給される給気流3が目標設定湿度となるように、特定した加湿器6dによる加湿量に基づいて、熱交換器16による除湿量を特定する(ステップS03)。つまり、制御部8は、除湿動作に関する制御情報(冷却出力値)を特定する。 Next, the control unit 8 uses the heat exchanger 16 based on the amount of humidification by the specified humidifier 6d so that the air flow 3 supplied indoors through the air purification device 6 has the target set humidity. The amount of dehumidification is specified (step S03). That is, the control unit 8 specifies the control information (cooling output value) regarding the dehumidifying operation.
 続いて、制御部8は、特定した制御情報(回転出力値又は冷却出力値)に基づいて、加湿器6d(加湿モータ6e)を作動させて加湿動作を開始するとともに、熱交換器16(室外機20の圧縮機20a)を作動させて除湿動作を開始する(ステップS04)。これにより、空気浄化装置6(加湿器6d及び熱交換器16)の運転動作が実行され、空気浄化装置6を流通した給気流3が目標設定湿度となった状態で屋内に供給される。 Subsequently, the control unit 8 operates the humidifier 6d (humidification motor 6e) based on the specified control information (rotational output value or cooling output value) to start the humidification operation, and the heat exchanger 16 (outdoor). The compressor 20a) of the machine 20 is operated to start the dehumidifying operation (step S04). As a result, the operation of the air purification device 6 (humidifier 6d and heat exchanger 16) is executed, and the air supply air 3 flowing through the air purification device 6 is supplied indoors in a state where the target set humidity is reached.
 そして、空気浄化装置6の運転動作中に、ステップS04を起点とした所定時間が経過していない場合(ステップS05のNo)には、制御部8は、空気浄化装置6の運転動作をそのまま継続させる(ステップS05に戻る)。ここで、所定時間は、ステップS04での空気浄化装置6の作動時点を開始時間として計時される時間であり、例えば、5分に設定される。 If the predetermined time starting from step S04 has not elapsed during the operation of the air purification device 6 (No in step S05), the control unit 8 continues the operation of the air purification device 6 as it is. (Return to step S05). Here, the predetermined time is a time measured with the operation time point of the air purification device 6 in step S04 as the start time, and is set to, for example, 5 minutes.
 一方、所定時間が経過した場合(ステップS05のYes)には、制御部8は、空気浄化装置6の運転停止に関する制御信号が入力されているか否かを判断する(ステップS06)。その結果、空気浄化装置6の運転停止に関する制御信号が入力されていない場合(ステップS06のNo)には、制御部8は、ステップS01に戻り、屋内の空気の湿度情報を再び取得して、上述したステップS02~ステップS06を繰り返す。一方、空気浄化装置6の運転停止に関する制御信号が入力されている場合(ステップS06のYes)には、制御部8は、加湿器6d(加湿モータ6e)を停止させて加湿動作を停止するとともに、熱交換器16(室外機20の圧縮機20a)を停止させて除湿動作を停止する(ステップS07)。そして、制御部8は、空気浄化装置6の運転動作を終了させる。これにより、空気浄化装置6は、操作パネル18からの運転開始指示待ちの状態となる。 On the other hand, when the predetermined time has elapsed (Yes in step S05), the control unit 8 determines whether or not a control signal for stopping the operation of the air purification device 6 has been input (step S06). As a result, when the control signal for stopping the operation of the air purification device 6 is not input (No in step S06), the control unit 8 returns to step S01, acquires the humidity information of the indoor air again, and obtains the humidity information of the indoor air again. The above-mentioned steps S02 to S06 are repeated. On the other hand, when a control signal for stopping the operation of the air purification device 6 is input (Yes in step S06), the control unit 8 stops the humidifier 6d (humidifying motor 6e) and stops the humidifying operation. , The heat exchanger 16 (compressor 20a of the outdoor unit 20) is stopped to stop the dehumidifying operation (step S07). Then, the control unit 8 ends the operation of the air purification device 6. As a result, the air purification device 6 is in a state of waiting for an operation start instruction from the operation panel 18.
 以上、本実施の形態に係る空気浄化機能付き熱交換形換気装置50によれば、以下の効果を享受することができる。 As described above, according to the heat exchange type ventilation device 50 with an air purification function according to the present embodiment, the following effects can be enjoyed.
 (1)空気浄化機能付き熱交換形換気装置50は、屋内空間11の空気を屋外空間12に排出する排気風路4を流通する排気流2と、屋外空間12の空気を屋内空間11へ給気する給気風路5を流通する給気流3との間で熱交換する熱交換形換気装置10と、給気風路5から導入された熱交換後の給気流3に対して、水とともに空気浄化を行う成分を付加する加湿器6dと、加湿器6dの上流側において、熱交換後の給気流3に対して除湿を行う熱交換器16と、熱交換器16を制御する制御部8と、を備える。制御部8は、屋内空間11に供給される給気流3の湿度が屋内空間11の空気の目標設定湿度となるように調湿する際、加湿器6dによる給気流3の湿度増加に関する湿度情報に基づいて、熱交換器16による給気流3に対する除湿量を制御する。 (1) The heat exchange type ventilation device 50 with an air purification function supplies the exhaust flow 2 flowing through the exhaust air passage 4 that discharges the air of the indoor space 11 to the outdoor space 12 and the air of the outdoor space 12 to the indoor space 11. Air purification together with water for the heat exchange type ventilation device 10 that exchanges heat with the air supply air 3 flowing through the air supply air passage 5 and the air supply air flow 3 after heat exchange introduced from the air supply air passage 5. A heat exchanger 6d that adds a component to perform the above, a heat exchanger 16 that dehumidifies the air supply air 3 after heat exchange on the upstream side of the humidifier 6d, and a control unit 8 that controls the heat exchanger 16. Equipped with. When the control unit 8 adjusts the humidity so that the humidity of the air flow 3 supplied to the indoor space 11 becomes the target set humidity of the air in the indoor space 11, the control unit 8 obtains humidity information regarding the humidity increase of the air flow 3 by the humidifier 6d. Based on this, the amount of dehumidification with respect to the air flow 3 by the heat exchanger 16 is controlled.
 これにより、熱交換後の給気流3に対して、加湿器6dによって加湿しながら空気浄化を行う成分(例えば、次亜塩素酸)を付加しても、熱交換器16が目標設定湿度に応じた除湿を行う。このため、屋内空間11の過剰加湿を抑制することができる。つまり、空気浄化を行う成分の放出に伴う湿度の上昇を抑制することが可能な空気浄化機能付き熱交換形換気装置50とすることができる。 As a result, even if a component (for example, hypochlorite) that purifies the air while being humidified by the humidifier 6d is added to the supply airflow 3 after heat exchange, the heat exchanger 16 responds to the target set humidity. Dehumidify. Therefore, excessive humidification of the indoor space 11 can be suppressed. That is, the heat exchange type ventilation device 50 with an air purification function can be used, which can suppress an increase in humidity due to the release of a component for purifying air.
 (2)空気浄化機能付き熱交換形換気装置50では、制御部8によって、熱交換器16に導入される給気流3の湿度を目標設定湿度にまで熱交換器16によって除湿する際の除湿量よりも、給気流3に対する除湿量を増加させるように制御する。これにより、少なくとも給気流3に対する除湿量を増加させた分、加湿器6dによる給気流3の湿度増加が抑制される。このため、空気浄化を行う成分の放出に伴う湿度の上昇を抑制することができる。 (2) In the heat exchange type ventilator 50 with an air purification function, the dehumidification amount when the heat exchanger 16 dehumidifies the humidity of the supply airflow 3 introduced into the heat exchanger 16 to the target set humidity by the control unit 8. Rather, the amount of dehumidification with respect to the supply airflow 3 is controlled to be increased. As a result, the increase in humidity of the airflow 3 by the humidifier 6d is suppressed by at least the amount of dehumidification with respect to the airflow 3 is increased. Therefore, it is possible to suppress an increase in humidity due to the release of the component that purifies the air.
 (3)空気浄化機能付き熱交換形換気装置50では、制御部8によって、加湿器6dによる給気流3への湿度増加が第一加湿量(例えば、第一運転状態での加湿量)である場合には、熱交換器16による除湿を第一除湿量(例えば、第一運転状態での除湿量)で行い、加湿器6dによる給気流3への湿度増加が第一加湿量よりも多い第二加湿量(例えば、第二運転状態での加湿量)である場合には、熱交換器16による除湿を第一除湿量よりも多い第二除湿量(例えば、第二運転状態での除湿量)で行うように制御する。これにより、加湿器6dによって加湿しながら空気浄化を行う成分を付加する際の加湿量(空気浄化を行う成分の付加量)に応じて、熱交換器16による除湿量が設定される。このため、屋内空間11に必要な空気浄化を行う成分の付加を行いつつ、屋内空間11に供給される給気流3の湿度が屋内空間11の空気の目標設定湿度となるように調湿することができる。 (3) In the heat exchange type ventilation device 50 with an air purification function, the increase in humidity to the supply airflow 3 by the humidifier 6d by the control unit 8 is the first humidification amount (for example, the humidification amount in the first operating state). In this case, the dehumidification by the heat exchanger 16 is performed by the first dehumidifying amount (for example, the dehumidifying amount in the first operating state), and the humidity increase to the air supply 3 by the humidifier 6d is larger than the first humidifying amount. (2) In the case of a humidifying amount (for example, a humidifying amount in the second operating state), a second dehumidifying amount (for example, a dehumidifying amount in the second operating state) in which the dehumidification by the heat exchanger 16 is larger than the first dehumidifying amount. ) To control. As a result, the dehumidification amount by the heat exchanger 16 is set according to the humidification amount (addition amount of the component that purifies the air) when the component that purifies the air while being humidified by the humidifier 6d is added. Therefore, while adding the components for purifying the air necessary for the indoor space 11, the humidity of the supply airflow 3 supplied to the indoor space 11 is adjusted so as to be the target set humidity of the air in the indoor space 11. Can be done.
 (4)空気浄化機能付き熱交換形換気装置50では、加湿器6dを、空気浄化を行う成分を含む水を遠心破砕することによって、内部に導入される給気流3に対して、空気浄化を行う成分を付加するように構成した。これにより、遠心破砕時の回転数を変化させることで、破砕する水の粒子径あるいは破砕量をコントロールすることができ、ひいては装置内に導入される給気流3に対して付加する空気浄化を行う成分の付加量をコントロールすることができる。 (4) In the heat exchange type ventilator 50 with an air purification function, the humidifier 6d purifies the air to the air supply 3 introduced inside by centrifugally crushing the water containing the component for purifying the air. It was configured to add the components to be performed. Thereby, by changing the rotation speed at the time of centrifugal crushing, the particle size or the crushing amount of the water to be crushed can be controlled, and by extension, the air purification added to the supply airflow 3 introduced in the apparatus is performed. The amount of the component added can be controlled.
 (5)空気浄化機能付き熱交換形換気装置50では、熱交換器16によって、給気流3を目標設定湿度にまで除湿する際の除湿量よりも、過剰な冷却(除湿)運転を行うことで、加湿器6dによる加湿を行っても給気流3の湿度が目標設定湿度を越えないようにした。これにより、給気流3に対して空気浄化を行う成分の付加を行いつつ、給気流3の湿度を快適な範囲に維持した状態で屋内空間11に給気することができる。 (5) In the heat exchange type ventilator 50 with an air purification function, the heat exchanger 16 performs an excessive cooling (dehumidification) operation rather than the dehumidification amount when dehumidifying the supply airflow 3 to the target set humidity. Even if the humidifier 6d is used for humidification, the humidity of the air supply 3 does not exceed the target set humidity. As a result, it is possible to supply air to the indoor space 11 while maintaining the humidity of the supply airflow 3 within a comfortable range while adding a component for purifying the air to the supply airflow 3.
 (6)空気浄化機能付き熱交換形換気装置50は、屋内空間11からの空気RAの湿度を検出する湿度検知部15を備える。そして、制御部8は、湿度検知部15からの湿度情報に基づいて、加湿器6dの加湿運転の動作及び熱交換器16の除湿運転の動作を制御するようにした。これにより、給気流3の湿度情報に基づいて、加湿器6dと熱交換器16の運転切り替えを確実に行うことができ、熱交換後の給気流3の湿度を快適な範囲に維持した状態で屋内空間11に給気することができる。 (6) The heat exchange type ventilator 50 with an air purification function includes a humidity detection unit 15 that detects the humidity of the air RA from the indoor space 11. Then, the control unit 8 controls the operation of the humidifying operation of the humidifier 6d and the operation of the dehumidifying operation of the heat exchanger 16 based on the humidity information from the humidity detecting unit 15. As a result, the operation of the humidifier 6d and the heat exchanger 16 can be reliably switched based on the humidity information of the air supply air 3, and the humidity of the air supply air 3 after the heat exchange is maintained within a comfortable range. Air can be supplied to the indoor space 11.
 以上、実施の形態に基づき本開示を説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できる。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the spirit of the present disclosure. It can be easily inferred. For example, the numerical values given in the above embodiment are examples, and it is naturally possible to adopt other numerical values.
 本実施の形態に係る空気浄化機能付き熱交換形換気装置50では、予め設定された浄化成分の付加レベル(付加量)に基づいて第一運転状態~第三運転状態の三段階での運転切り替えて調湿制御を行ったが、これに限られない。例えば、屋内空間11からの空気RAの浄化度情報に基づいて、連続的に運転状態を切り替えるようにしてもよい。これにより、給気流3への浄化成分の付加をより高精度に制御することができる。また、利用者が運転の切り替えを行うことなく、屋内空間11の空気の相対湿度を快適な範囲(40%~60%)に維持することができる。 In the heat exchange type ventilator 50 with an air purification function according to the present embodiment, the operation is switched between the first operation state and the third operation state based on the addition level (addition amount) of the purification component set in advance. Humidity control was performed, but it is not limited to this. For example, the operating state may be continuously switched based on the purification degree information of the air RA from the indoor space 11. Thereby, it is possible to control the addition of the purification component to the supply airflow 3 with higher accuracy. In addition, the relative humidity of the air in the indoor space 11 can be maintained within a comfortable range (40% to 60%) without the user switching the operation.
 (実施の形態2)
 従来の空気浄化機能付き熱交換形換気装置として、屋外から屋内に供給する空気を次亜塩素酸が含まれた気液接触部材部に接触させて放出することで屋内空間を除菌する空気調和システムが知られている(例えば、特許文献1参照)。
(Embodiment 2)
As a conventional heat exchange type ventilator with an air purification function, air conditioning that disinfects the indoor space by contacting the air supplied from the outside to the inside with the gas-liquid contact member containing hypochlorous acid and releasing it. The system is known (see, for example, Patent Document 1).
 しかしながら、従来の空気調和システムでは、加湿装置あるいは2流体ノズル等を用いて、水分と共に次亜塩素酸が放出される。このため、次亜塩素酸が放出された対象空間内の湿度は上昇し、特に相対湿度の高い日本の夏季において快適性が損なわれる可能性があった。 However, in the conventional air conditioning system, hypochlorous acid is released together with water by using a humidifier, a two-fluid nozzle, or the like. For this reason, the humidity in the target space where hypochlorous acid was released increased, and there was a possibility that comfort would be impaired especially in the summer of Japan, where the relative humidity is high.
 本開示は、次亜塩素酸の放出に伴う湿度の上昇を抑制することが可能な空気浄化機能付き熱交換形換気装置を提供する。 The present disclosure provides a heat exchange type ventilator with an air purification function capable of suppressing an increase in humidity due to the release of hypochlorous acid.
 本開示に係る空気浄化機能付き熱交換形換気装置は、熱交換形換気装置と、空気浄化部と、第一熱交換部と、第二熱交換部とを備える。熱交換形換気装置は、屋内空間の空気を屋外空間に排出する排気風路を流通する排気流と、屋外空間の空気を屋内空間へ給気する給気風路を流通する給気流との間で熱交換する。空気浄化部は、熱交換形換気装置から導入された熱交換後の給気流に対して、水とともに空気浄化を行う成分を付加する。第一熱交換部は、空気浄化部の上流側において、熱交換後の給気流に対して除湿を行う。第二熱交換部は、第一熱交換部と空気浄化部との間において、第一熱交換部によって除湿された給気流に対して加熱を行う。これにより所期の目的を達成するものである。 The heat exchange type ventilation device with an air purification function according to the present disclosure includes a heat exchange type ventilation device, an air purification unit, a first heat exchange unit, and a second heat exchange unit. The heat exchange type ventilator is between the exhaust flow that flows through the exhaust air passage that discharges the air in the indoor space to the outdoor space and the air supply air flow that flows through the air supply air passage that supplies the air in the outdoor space to the indoor space. Heat exchange. The air purification unit adds a component for purifying air together with water to the air supply after heat exchange introduced from the heat exchange type ventilator. The first heat exchange unit dehumidifies the air supply after heat exchange on the upstream side of the air purification unit. The second heat exchange unit heats the air supply dehumidified by the first heat exchange unit between the first heat exchange unit and the air purification unit. This will achieve the intended purpose.
 本開示によれば、次亜塩素酸の放出に伴う湿度の上昇を抑制することが可能な空気浄化装置を提供することができる。 According to the present disclosure, it is possible to provide an air purification device capable of suppressing an increase in humidity due to the release of hypochlorous acid.
 改めて説明すると、本開示に係る空気浄化機能付き熱交換形換気装置は、熱交換形換気装置と、空気浄化部と、第一熱交換部と、第二熱交換部とを備える。熱交換形換気装置は、屋内空間の空気を屋外空間に排出する排気風路を流通する排気流と、屋外空間の空気を屋内空間へ給気する給気風路を流通する給気流との間で熱交換する。空気浄化部は、熱交換形換気装置から導入された熱交換後の給気流に対して、水とともに空気浄化を行う成分を付加する。第一熱交換部は、空気浄化部の上流側において、熱交換後の給気流に対して除湿を行う。第二熱交換部は、第一熱交換部と空気浄化部との間において、第一熱交換部によって除湿された給気流に対して加熱を行う。 Explaining again, the heat exchange type ventilation device with an air purification function according to the present disclosure includes a heat exchange type ventilation device, an air purification unit, a first heat exchange unit, and a second heat exchange unit. The heat exchange type ventilator is between the exhaust flow that flows through the exhaust air passage that discharges the air in the indoor space to the outdoor space and the air supply air flow that flows through the air supply air passage that supplies the air in the outdoor space to the indoor space. Heat exchange. The air purification unit adds a component for purifying air together with water to the air supply after heat exchange introduced from the heat exchange type ventilator. The first heat exchange unit dehumidifies the air supply after heat exchange on the upstream side of the air purification unit. The second heat exchange unit heats the air supply dehumidified by the first heat exchange unit between the first heat exchange unit and the air purification unit.
 こうした構成によれば、屋内空間への給気流の供給では、第一熱交換器と空気浄化部とによって熱交換後の給気流の絶対湿度を低下させつつ空気浄化を行う成分を付加して供給する状態と、第一熱交換器と第二熱交換器とによって熱交換後の給気流の絶対湿度を低下させつつ除湿に伴って低下した給気流の温度を上昇させて供給する状態と、を組み合わせることが可能となる。つまり、例えば日本の夏季のように、屋内空間の空気の相対湿度に比べて相対湿度の高い屋外空間からの空気に対して、熱交換しつつ空気浄化を行う成分を付加する場合において、次亜塩素酸の放出に伴う湿度の上昇を抑制することが可能な空気浄化機能付き熱交換形換気装置とすることができる。 According to such a configuration, in the supply of the air supply to the indoor space, the first heat exchanger and the air purification unit add and supply a component that purifies the air while lowering the absolute humidity of the air supply after the heat exchange. A state in which the absolute humidity of the air supply air after heat exchange is decreased by the first heat exchanger and the second heat exchanger, and the temperature of the air supply air decreased due to dehumidification is increased and supplied. It is possible to combine them. In other words, in the case of adding a component that purifies the air while exchanging heat to the air from the outdoor space where the relative humidity is higher than the relative humidity of the air in the indoor space, for example, in the summer of Japan, the hypothesis It can be a heat exchange type ventilation device with an air purification function that can suppress the increase in humidity due to the release of chloric acid.
 また、本開示に係る空気浄化機能付き熱交換形換気装置では、空気浄化部、第一熱交換部、及び第二熱交換部の運転動作を制御する制御部をさらに備える。そして、制御部は、屋内空間の空気の温湿度情報に基づいて、熱交換後の給気流に対して、第一熱交換部による除湿と、空気浄化部による付加とを行う第一運転と、熱交換後の給気流に対して、第一熱交換部による除湿と、第二熱交換部による加熱とを行う第二運転と、を切り替える制御を行う。 Further, the heat exchange type ventilator with an air purification function according to the present disclosure further includes a control unit that controls the operation of the air purification unit, the first heat exchange unit, and the second heat exchange unit. Then, the control unit performs the first operation of dehumidifying the air supply air after heat exchange and adding it by the air purification unit based on the temperature / humidity information of the air in the indoor space. Control is performed to switch between dehumidification by the first heat exchange unit and second operation of heating by the second heat exchange unit with respect to the air supply airflow after heat exchange.
 これにより、制御部は、屋内環境(屋内空間の空気の温湿度情報)に基づいて、第一運転と第二運転とを切り替える制御を行うことができる。この結果、第一運転において、給気流への加湿量を抑制した状態で空気浄化を行う成分を付加して供給することができる。また、第一運転において、第一熱交換部での除湿によって屋内空間の空気の温度が目標設定温度よりも下がる場合には、第二運転に切り替えて、第一運転での給気流の温度よりも温度が上昇した給気流を供給することができる。 This allows the control unit to control switching between the first operation and the second operation based on the indoor environment (air temperature / humidity information in the indoor space). As a result, in the first operation, it is possible to add and supply a component that purifies the air while suppressing the amount of humidification to the air supply. In the first operation, if the temperature of the air in the indoor space drops below the target set temperature due to dehumidification at the first heat exchange section, switch to the second operation and use the temperature of the air supply in the first operation. Can also supply airflow with increased temperature.
 また、本開示に係る空気浄化機能付き熱交換形換気装置では、第一熱交換部は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、吸熱器として機能する第一冷媒コイルで構成され、第二熱交換部は、冷凍サイクルとは異なる冷凍サイクルにおいて、放熱器として機能する第二冷媒コイルで構成されている。これにより、第一熱交換部及び第二熱交換部を、簡易な構成で空気浄化機能付き熱交換形換気装置内に組み込むことができる。 Further, in the heat exchange type ventilator with an air purification function according to the present disclosure, the first heat exchange unit functions as a heat absorber in a refrigeration cycle including a compressor, a radiator, an expander and a heat absorber. The second heat exchange unit is composed of a second refrigerant coil that functions as a radiator in a refrigerating cycle different from the refrigerating cycle. As a result, the first heat exchange unit and the second heat exchange unit can be incorporated into the heat exchange type ventilator with an air purification function with a simple configuration.
 また、本開示に係る空気浄化機能付き熱交換形換気装置では、空気浄化部は、空気浄化を行う成分を含む水を遠心破砕することによって、内部に導入される給気流に対して、空気浄化を行う成分を付加することが好ましい。これにより、遠心破砕時の回転数を変化させることで、破砕する水の粒子径あるいは破砕量をコントロールすることができ、ひいては装置内に導入される給気流に対して付加する空気浄化を行う成分の付加量をコントロールすることができる。 Further, in the heat exchange type ventilator with an air purification function according to the present disclosure, the air purification unit purifies the air supply air introduced inside by centrifugally crushing the water containing the component for purifying the air. It is preferable to add a component that performs the above. As a result, by changing the rotation speed during centrifugal crushing, it is possible to control the particle size or crushing amount of the water to be crushed, and by extension, the component that purifies the air added to the air supply introduced into the device. The amount of addition can be controlled.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本開示に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。 Hereinafter, the mode for carrying out the present disclosure will be described with reference to the attached drawings. The following embodiments are examples that embody the present disclosure, and do not limit the technical scope of the present disclosure. Further, throughout the drawings, the same parts are designated by the same reference numerals and explanations are omitted. Furthermore, in order to avoid duplication of details of each part that is not directly related to the present disclosure, the description of each drawing is omitted.
 (前提例)
 まず、本開示の実施の形態に係る空気浄化機能付き熱交換形換気装置150を説明する上で前提となる本開示の前提例に係る熱交換形換気装置110について、図8及び図9を参照して説明する。図8は、本開示の前提例に係る熱交換形換気装置110の住宅における設置状態を示す模式図である。図9は、本開示の前提例に係る熱交換形換気装置110の構成を示す模式図である。
(Premise example)
First, refer to FIGS. 8 and 9 for the heat exchange type ventilator 110 according to the premise example of the present disclosure, which is a premise for explaining the heat exchange type ventilator 150 with an air purification function according to the embodiment of the present disclosure. I will explain. FIG. 8 is a schematic view showing an installation state of the heat exchange type ventilation device 110 according to the premise example of the present disclosure in a house. FIG. 9 is a schematic diagram showing the configuration of the heat exchange type ventilator 110 according to the premise example of the present disclosure.
 図8において、家屋101の屋内(天井裏等)には、熱交換形換気装置110が設置されている。熱交換形換気装置110は、屋内空間111(以下、単に「屋内」ともいう)の空気と屋外空間112(以下、単に「屋外」ともいう)の空気とを熱交換しながら換気する装置(第二種の換気装置)である。 In FIG. 8, a heat exchange type ventilation device 110 is installed indoors (behind the ceiling, etc.) of the house 101. The heat exchange type ventilator 110 is a device (No. 1) that ventilates while exchanging heat between the air in the indoor space 111 (hereinafter, also simply referred to as “indoor”) and the air in the outdoor space 112 (hereinafter, also simply referred to as “outdoor”). Two types of ventilation equipment).
 図8に示す通り、排気流102は、黒色矢印のごとく、リビング等の屋内空間111から、屋内排気口109a、熱交換形換気装置110及び屋外排気口109bを介して屋外空間112に放出される。すなわち、排気流102は、屋内から屋外に排出される空気の流れである。また、給気流103は、白色矢印のごとく、屋外空間112から、屋外給気口109c、熱交換形換気装置110及び屋内給気口109dを介して屋内空間111に取り入れられる。すなわち、給気流103は、屋外から屋内に取り込まれる空気の流れである。例えば、日本の冬季の場合、排気流102は20℃~25℃であるのに対して、給気流103は氷点下に達することもある。熱交換形換気装置110は、換気を行うとともに、換気時に排気流102の熱を給気流103へと伝達し、屋外への熱の放出を抑制(排気流102により給気流103を加熱)している。 As shown in FIG. 8, the exhaust flow 102 is discharged from the indoor space 111 such as the living room to the outdoor space 112 via the indoor exhaust port 109a, the heat exchange type ventilation device 110, and the outdoor exhaust port 109b as shown by the black arrow. .. That is, the exhaust flow 102 is a flow of air discharged from indoors to outdoors. Further, the air flow 103 is taken into the indoor space 111 from the outdoor space 112 via the outdoor air supply port 109c, the heat exchange type ventilation device 110, and the indoor air supply port 109d as shown by the white arrow. That is, the air supply 103 is a flow of air taken in from the outside to the inside. For example, in winter in Japan, the exhaust flow 102 is 20 ° C to 25 ° C, while the airflow 103 may reach below freezing. The heat exchange type ventilation device 110 ventilates and transfers the heat of the exhaust flow 102 to the supply airflow 103 during ventilation to suppress the release of heat to the outside (heats the supply airflow 103 by the exhaust flow 102). There is.
 熱交換形換気装置110は、図9に示す通り、本体ケース110f、内気口110a、排気口110b、外気口110c、給気口110d、熱交換素子110e、排気ファン110g、給気ファン110h、排気風路104、及び給気風路105を備えている。 As shown in FIG. 9, the heat exchange type ventilation device 110 includes a main body case 110f, an inside air port 110a, an exhaust port 110b, an outside air port 110c, an air supply port 110d, a heat exchange element 110e, an exhaust fan 110g, an air supply fan 110h, and an exhaust. It is provided with an air passage 104 and an air supply air passage 105.
 本体ケース110fは、熱交換形換気装置110の外枠である。本体ケース110fの外周には、内気口110a、排気口110b、外気口110c、及び給気口110dが形成されている。内気口110aは、排気流102を熱交換形換気装置110に吸い込む吸込口であり、ダクト等を介して屋内排気口109a(図8参照)と連通している。排気口110bは、排気流102を熱交換形換気装置110から屋外に吐き出す吐出口であり、ダクト等を介して屋外排気口109b(図8参照)と連通している。外気口110cは、給気流103を熱交換形換気装置110に吸い込む吸込口であり、ダクト等を介して屋外給気口109c(図8参照)と連通している。給気口110dは、給気流103を熱交換形換気装置110から屋内に吐き出す吐出口であり、ダクト等を介して屋内給気口109dと連通している。 The main body case 110f is the outer frame of the heat exchange type ventilator 110. An inside air port 110a, an exhaust port 110b, an outside air port 110c, and an air supply port 110d are formed on the outer periphery of the main body case 110f. The inside air port 110a is a suction port for sucking the exhaust flow 102 into the heat exchange type ventilation device 110, and communicates with the indoor exhaust port 109a (see FIG. 8) via a duct or the like. The exhaust port 110b is a discharge port for discharging the exhaust flow 102 from the heat exchange type ventilation device 110 to the outside, and communicates with the outdoor exhaust port 109b (see FIG. 8) via a duct or the like. The outside air port 110c is a suction port for sucking the air supply port 103 into the heat exchange type ventilation device 110, and communicates with the outdoor air supply port 109c (see FIG. 8) via a duct or the like. The air supply port 110d is a discharge port for discharging the air supply port 103 indoors from the heat exchange type ventilation device 110, and communicates with the indoor air supply port 109d via a duct or the like.
 本体ケース110fの内部には、熱交換素子110e、排気ファン110g、及び給気ファン110hが取り付けられている。また、本体ケース110fの内部には、排気風路104及び給気風路105が構成されている。熱交換素子110eは、全熱型の熱交換素子であり、排気風路104を流通する排気流102と、給気風路105を流通する給気流103との間で熱交換(顕熱と潜熱)を行うための部材である。排気ファン110gは、排気口110bの近傍に設置され、排気流102を内気口110aから吸い込み、排気口110bから吐出するための送風機である。給気ファン110hは、給気口110dの近傍に設置され、給気流103を外気口110cから吸い込み、給気口110dから吐出するための送風機である。排気風路104は、内気口110aと排気口110bとを連通する風路を含んで構成される。給気風路105は、外気口110cと給気口110dとを連通する風路を含んで構成される。排気ファン110gが駆動することにより内気口110aから吸い込まれた排気流102は、排気風路104内の熱交換素子110e及び排気ファン110gを経由し、排気口110bから屋外へと排出される。また、給気ファン110hが駆動することにより外気口110cから吸い込まれた給気流103は、熱交換素子110e及び給気ファン110hを経由し、給気口110dから屋内へと供給される。 A heat exchange element 110e, an exhaust fan 110g, and an air supply fan 110h are mounted inside the main body case 110f. Further, an exhaust air passage 104 and an air supply air passage 105 are configured inside the main body case 110f. The heat exchange element 110e is a total heat type heat exchange element, and heat exchange (sensible heat and latent heat) between the exhaust flow 102 flowing through the exhaust air passage 104 and the supply airflow 103 flowing through the supply air passage 105 (sensible heat and latent heat). It is a member for performing. The exhaust fan 110g is installed in the vicinity of the exhaust port 110b, and is a blower for sucking the exhaust flow 102 from the inside air port 110a and discharging it from the exhaust port 110b. The air supply fan 110h is installed in the vicinity of the air supply port 110d, and is a blower for sucking the air supply airflow 103 from the outside air port 110c and discharging it from the air supply port 110d. The exhaust air passage 104 is configured to include an air passage that communicates the inside air port 110a and the exhaust port 110b. The air supply air passage 105 includes an air passage that communicates the outside air port 110c and the air supply port 110d. The exhaust flow 102 sucked from the inside air port 110a by driving the exhaust fan 110g is discharged to the outside from the exhaust port 110b via the heat exchange element 110e in the exhaust air passage 104 and the exhaust fan 110g. Further, the air supply 103 sucked from the outside air port 110c by driving the air supply fan 110h is supplied indoors from the air supply port 110d via the heat exchange element 110e and the air supply fan 110h.
 熱交換形換気装置110は、熱交換換気を行う場合には、排気ファン110g及び給気ファン110hを動作させ、熱交換素子110eにおいて排気風路104を流通する排気流102と、給気風路105を流通する給気流103との間で熱交換を行う。これにより、熱交換形換気装置110は、換気を行う際に、屋外に放出する排気流102の熱を屋内に取り入れる給気流103へと伝達し、屋外への熱の放出を抑制し、屋内に熱を回収する。この結果、例えば日本の冬季においては、換気を行う際に、温度が低い屋外の空気による屋内の温度低下を抑制することができる。一方、例えば日本の夏季においては、換気を行う際に、温度が高い屋外の空気による屋内の温度上昇を抑制することができる。 When heat exchange ventilation is performed, the heat exchange type ventilation device 110 operates the exhaust fan 110g and the air supply fan 110h, and the exhaust flow 102 flowing through the exhaust air passage 104 in the heat exchange element 110e and the air supply air passage 105. Heat is exchanged with the air supply 103 flowing through the air. As a result, the heat exchange type ventilator 110 transfers the heat of the exhaust flow 102 released to the outside to the air supply 103 that takes in the heat indoors when ventilating, suppresses the release of the heat to the outside, and indoors. Recover heat. As a result, for example, in winter in Japan, it is possible to suppress a decrease in indoor temperature due to low-temperature outdoor air during ventilation. On the other hand, for example, in the summer of Japan, when ventilation is performed, it is possible to suppress an indoor temperature rise due to high temperature outdoor air.
 以下、本実施の形態2について説明する。 Hereinafter, the second embodiment will be described.
 まず、図10を参照して、本実施の形態2に係る空気浄化機能付き熱交換形換気装置150について説明する。図10は、本開示の実施の形態2に係る空気浄化機能付き熱交換形換気装置150の構成を示す模式図である。なお、以下の説明では、熱交換後の気流(排気流102及び給気流103)又は風路(排気風路104及び給気風路105)は、熱交換形換気装置110における熱交換素子110eを通過した後の気流又は風路を示す。 First, with reference to FIG. 10, the heat exchange type ventilation device 150 with an air purification function according to the second embodiment will be described. FIG. 10 is a schematic view showing the configuration of the heat exchange type ventilation device 150 with an air purification function according to the second embodiment of the present disclosure. In the following description, the airflow (exhaust flow 102 and supply airflow 103) or air passage (exhaust air passage 104 and supply air passage 105) after heat exchange passes through the heat exchange element 110e in the heat exchange type ventilation device 110. The airflow or air passage after the heat is shown.
 本実施の形態2に係る空気浄化機能付き熱交換形換気装置150は、図10に示すように、前提例に係る熱交換形換気装置110の給気風路105に対して、空気浄化機能を付与する手段としての空気浄化装置106を連結した構成を有している。 As shown in FIG. 10, the heat exchange type ventilator 150 with an air purification function according to the second embodiment imparts an air purification function to the air supply air passage 105 of the heat exchange type ventilation device 110 according to the premise example. It has a configuration in which an air purifying device 106 is connected as a means for the ventilation.
 空気浄化装置106は、熱交換形換気装置110からの熱交換後の給気流103に対して、必要に応じて冷却処理(除湿処理)又は加熱処理を行う。また、空気浄化装置106は、内部を流通する給気流103に対して、微細化された水とともに浄化成分(空気浄化を行う成分)を含ませる装置である。具体的には、空気浄化装置106は、図10に示す通り、給気流入口106a、給気流出口106c、加湿器106d、第一冷媒コイル116、及び第二冷媒コイル117を備えている。なお、加湿器106dは、「空気浄化部」とも言え、第一冷媒コイル116は、「第一熱交換部」とも言え、第二冷媒コイル117は、「第二熱交換部」とも言える。 The air purification device 106 performs a cooling treatment (dehumidifying treatment) or a heat treatment on the supply airflow 103 after heat exchange from the heat exchange type ventilation device 110, if necessary. Further, the air purifying device 106 is a device that includes a purifying component (a component that purifies the air) together with the finely divided water in the air supply 103 that circulates inside. Specifically, as shown in FIG. 10, the air purification device 106 includes an air supply inlet 106a, an airflow outlet 106c, a humidifier 106d, a first refrigerant coil 116, and a second refrigerant coil 117. The humidifier 106d can be said to be an "air purification unit", the first refrigerant coil 116 can be said to be a "first heat exchange unit", and the second refrigerant coil 117 can be said to be a "second heat exchange unit".
 給気流入口106aは、熱交換形換気装置110からの給気流103を空気浄化装置106に取り入れる取入口である。給気流入口106aは、熱交換形換気装置110の給気口110dとの間で給気風路105の一部を構成するダクト107を介して連通されている。 The air supply inlet 106a is an intake that takes in the air supply 103 from the heat exchange type ventilation device 110 into the air purification device 106. The air supply inlet 106a is communicated with the air supply port 110d of the heat exchange type ventilation device 110 via a duct 107 forming a part of the air supply air passage 105.
 給気流出口106cは、水とともに空気浄化を行う成分を付加した給気流103(あるいは空気浄化を行う成分を付加していない給気流103)を給気SAとして給気風路105に吐き出す吐出口である。 The airflow outlet 106c is a discharge port that discharges the airflow 103 (or the airflow 103 to which the component that purifies the air is not added) to the air supply air passage 105 as the air supply SA. ..
 加湿器106dは、内部に取り入れた空気(給気流103)を加湿するためのユニットであり、空気の加湿の際に、空気に対して微細化された水とともに浄化成分(空気浄化を行う成分)を含ませる。より詳細には、加湿器106dは、加湿モータ106eと加湿ノズル106fとを有している。加湿器106dは、加湿モータ106eを用いて加湿ノズル106fを回転させ、加湿器106dの貯水部(図示せず)に貯水されている水(浄化成分を含む水)を遠心力で吸い上げて、吸い上げた水を周囲(加湿モータ106eの遠心方向)に飛散、衝突及び破砕させることにより、加湿器106dを通過する空気に水分を含ませる遠心破砕式として構成されている。そして、加湿器106dは、後述する制御部141からの出力信号に応じて、加湿モータ106eの回転数(以下、回転出力値とも定義する)を変化させることにより、空気に対する加湿能力(加湿量)を調整する。なお、加湿量は、空気に対して浄化成分を付加する付加量とも言える。 The humidifier 106d is a unit for humidifying the air (air supply airflow 103) taken into the inside, and when the air is humidified, it is a purification component (a component that purifies the air) together with water finely divided with respect to the air. To include. More specifically, the humidifier 106d has a humidifying motor 106e and a humidifying nozzle 106f. The humidifier 106d rotates the humidifying nozzle 106f using the humidifying motor 106e, and sucks up the water (water containing a purification component) stored in the water storage unit (not shown) of the humidifier 106d by centrifugal force. It is configured as a centrifugal crushing type in which water is contained in the air passing through the humidifier 106d by scattering, colliding and crushing the collected water in the surroundings (centrifugal direction of the humidifying motor 106e). Then, the humidifier 106d changes the rotation speed (hereinafter, also defined as a rotation output value) of the humidifying motor 106e according to the output signal from the control unit 141 described later, thereby humidifying the air (humidifying amount). To adjust. The humidification amount can be said to be an additional amount that adds a purification component to the air.
 なお、加湿器106dの貯水部(図示せず)への浄化成分を含む水の供給は、水道等の給水管から給水される水に対して浄化成分を付加(添加)して浄化成分を含む水を生成する浄化成分供給部(図示せず)により行われる。ここで、浄化成分には、例えば、殺菌性あるいは消臭性を備えた次亜塩素酸等が用いられる。つまり、次亜塩素酸を水に付加して生成された次亜塩素酸水等を給気流103に含ませて屋内に供給することにより、屋内の殺菌あるいは消臭を行うことができる。 The supply of water containing a purifying component to the water storage section (not shown) of the humidifier 106d includes the purifying component by adding (adding) the purifying component to the water supplied from the water supply pipe of a water supply or the like. It is performed by the purification component supply unit (not shown) that produces water. Here, as the purifying component, for example, hypochlorous acid having bactericidal or deodorant properties is used. That is, indoor sterilization or deodorization can be performed by including hypochlorous acid water or the like generated by adding hypochlorous acid to water in the air flow 103 and supplying it indoors.
 第一冷媒コイル116は、空気浄化装置106内において、加湿器106dの上流側に配置され、導入される空気(給気流103)を冷却又は加熱するための部材である。そして、第一冷媒コイル116は、後述する制御部141からの出力信号に応じて、第一冷媒コイル116の出力状態(冷却、加熱又はオフ)を変化させる。これにより、導入される給気流103に対する冷却能力(冷却量)又は加熱能力(加熱量)を調整する。なお、第一冷媒コイル116では、導入される空気を冷却することは、すなわち、導入された空気を除湿することである。したがって、給気流103に対する冷却能力(冷却量)は、給気流103に対する除湿能力(除湿量)とも言える。 The first refrigerant coil 116 is arranged on the upstream side of the humidifier 106d in the air purification device 106, and is a member for cooling or heating the introduced air (air supply airflow 103). Then, the first refrigerant coil 116 changes the output state (cooling, heating, or off) of the first refrigerant coil 116 according to the output signal from the control unit 141 described later. Thereby, the cooling capacity (cooling amount) or the heating capacity (heating amount) with respect to the introduced airflow 103 is adjusted. In the first refrigerant coil 116, cooling the introduced air is, that is, dehumidifying the introduced air. Therefore, the cooling capacity (cooling amount) for the supply airflow 103 can be said to be the dehumidifying capacity (dehumidification amount) for the supply airflow 103.
 より詳細には、第一冷媒コイル116は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、吸熱器又は放熱器として機能する。第一冷媒コイル116は、空調機器(室外機120)から導入される冷媒が内部を流通する際に吸熱(冷却)又は放熱(加熱)するように構成されている。ここで、第一冷媒コイル116は、屋内空間111に設置される空気浄化装置106に内蔵される屋内ユニットであり、室外機120は、屋外空間112に設置される室外ユニットである。室外機120は、圧縮機120aと、膨張器120bと、屋外熱交換器120cと、送風ファン120dと、四方弁120eとを有して構成される。 More specifically, the first refrigerant coil 116 functions as a heat absorber or radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. The first refrigerant coil 116 is configured to absorb heat (cool) or dissipate heat (heat) when the refrigerant introduced from the air conditioner (outdoor unit 120) circulates inside. Here, the first refrigerant coil 116 is an indoor unit built in the air purification device 106 installed in the indoor space 111, and the outdoor unit 120 is an outdoor unit installed in the outdoor space 112. The outdoor unit 120 includes a compressor 120a, an expander 120b, an outdoor heat exchanger 120c, a blower fan 120d, and a four-way valve 120e.
 次に、第一冷媒コイル116と室外機120とによって構成される冷凍サイクルについて説明する。 Next, the refrigeration cycle composed of the first refrigerant coil 116 and the outdoor unit 120 will be described.
 冷凍サイクルには、四方弁120eが接続されている。第一冷媒コイル116は、四方弁120eによって第一方向に冷媒が流通することにより空気(給気流103)を冷却して除湿する冷却モード(除湿モード)の状態と、四方弁120eによって第二方向に冷媒が流通することにより空気(給気流103)に対して加熱を行う加熱モードの状態とを有する。 A four-way valve 120e is connected to the refrigeration cycle. The first refrigerant coil 116 is in a cooling mode (dehumidifying mode) in which the air (supply airflow 103) is cooled and dehumidified by the flow of the refrigerant in the first direction by the four-way valve 120e, and the second direction by the four-way valve 120e. It has a heating mode state in which the air (supply airflow 103) is heated by the flow of the refrigerant.
 ここで、四方弁120eは、冷凍サイクルにおいて、冷媒回路121内を流れる冷媒の流れる向きを切り替えるための機器(可逆弁)である。より詳細には、四方弁120eは、圧縮機120aと第一冷媒コイル116との間、及び、圧縮機120aと屋外熱交換器120cとの間において接続される。そして、四方弁120eは、圧縮機120aと屋外熱交換器120cと膨張器120bと第一冷媒コイル116とをこの順序(第一方向)で冷媒を流通させる冷却モードと、圧縮機120aと第一冷媒コイル116と膨張器120bと屋外熱交換器120cとをこの順序(第二方向)で冷媒を流通させる加熱モードとを切り替える。すなわち、冷却モードと加熱モードとでは、冷媒の流れが逆方向となる。なお、冷却モードは、除湿モードとも言える。 Here, the four-way valve 120e is a device (reversible valve) for switching the flow direction of the refrigerant flowing in the refrigerant circuit 121 in the refrigeration cycle. More specifically, the four-way valve 120e is connected between the compressor 120a and the first refrigerant coil 116, and between the compressor 120a and the outdoor heat exchanger 120c. The four-way valve 120e has a cooling mode in which the compressor 120a, the outdoor heat exchanger 120c, the expander 120b, and the first refrigerant coil 116 circulate the refrigerant in this order (first direction), and the compressor 120a and the first. The refrigerant coil 116, the expander 120b, and the outdoor heat exchanger 120c are switched between a heating mode in which the refrigerant is circulated in this order (second direction). That is, the flow of the refrigerant is in the opposite direction in the cooling mode and the heating mode. The cooling mode can also be said to be a dehumidification mode.
 [冷却モード]
 冷却モードでは、上述の第一方向で冷媒が流通する。
[Cooling mode]
In the cooling mode, the refrigerant flows in the above-mentioned first direction.
 圧縮機120aは、冷媒サイクルにおける低温及び低圧の冷媒ガス(作動媒体ガス)を圧縮し、圧力を高めて高温化する。 The compressor 120a compresses low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, increases the pressure, and raises the temperature.
 屋外熱交換器120cは、放熱器として機能する。屋外熱交換器120cは、圧縮機120aによって高温及び高圧となった冷媒ガスと空気(送風ファン120dによって送風される屋外空間112の空気OA)との間で熱交換することによって、熱を外部(冷媒サイクル外)に放出させる。このとき、冷媒ガスは、高圧下で凝縮されて液化する。屋外熱交換器120cでは、導入される冷媒ガスの温度が空気の温度より高いため、空気と冷媒ガスとが熱交換すると、空気は昇温され、冷媒ガスは冷却される。 The outdoor heat exchanger 120c functions as a radiator. The outdoor heat exchanger 120c exchanges heat between the refrigerant gas whose high temperature and high pressure are increased by the compressor 120a and the air (air OA of the outdoor space 112 blown by the blower fan 120d), thereby exchanging heat with the outside (air OA in the outdoor space 112). Discharge to outside the refrigerant cycle). At this time, the refrigerant gas is condensed and liquefied under high pressure. In the outdoor heat exchanger 120c, the temperature of the introduced refrigerant gas is higher than the temperature of the air. Therefore, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
 送風ファン120dは、屋外熱交換器120cに向けて屋外空間112の空気OAを送風する。 The blower fan 120d blows air OA in the outdoor space 112 toward the outdoor heat exchanger 120c.
 膨張器120bは、屋外熱交換器120cによって液化した高圧の冷媒を減圧して元の低温及び低圧の液体とする。 The expander 120b decompresses the high-pressure refrigerant liquefied by the outdoor heat exchanger 120c to the original low-temperature and low-pressure liquids.
 第一冷媒コイル116は、吸熱器として機能する。第一冷媒コイル116において、膨張器120bを流通した液状の冷媒は、空気から熱を奪って蒸発することにより、低温及び低圧の冷媒ガスとなる。第一冷媒コイル116では、導入される冷媒の温度は空気(導入される熱交換後の給気流103)の温度より低い。このため、冷媒と空気とが熱交換すると、空気は冷却され、冷媒は昇温される。 The first refrigerant coil 116 functions as a heat absorber. In the first refrigerant coil 116, the liquid refrigerant flowing through the expander 120b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas. In the first refrigerant coil 116, the temperature of the introduced refrigerant is lower than the temperature of the air (the introduced air flow 103 after heat exchange). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
 このようにして、第一冷媒コイル116では、導入される空気(給気流103)を冷却する。 In this way, the first refrigerant coil 116 cools the introduced air (air supply 103).
 [加熱モード]
 加熱モードでは、上述の第二方向で冷媒が流通する。
[Heating mode]
In the heating mode, the refrigerant flows in the second direction described above.
 圧縮機120aは、除湿モードと同じく、冷媒サイクルにおける低温及び低圧の冷媒ガス(作動媒体ガス)を圧縮し、圧力を高めて高温化する。 Similar to the dehumidification mode, the compressor 120a compresses the low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, and raises the pressure to raise the temperature.
 第一冷媒コイル116は、放熱器として機能する。第一冷媒コイル116は、冷却モードでの屋外熱交換器120cと同じ機能を果たす。具体的には、第一冷媒コイル116は、圧縮機120aによって高温及び高圧となった冷媒ガスと空気(導入される熱交換後の給気流103)との間で熱交換することによって、熱を外部(冷媒サイクル外)に放出させる。このとき、冷媒ガスは、高圧下で凝縮されて液化する。第一冷媒コイル116では、導入される冷媒ガスの温度が空気の温度より高いため、空気と冷媒ガスとが熱交換すると、空気は昇温され、冷媒ガスは冷却される。 The first refrigerant coil 116 functions as a radiator. The first refrigerant coil 116 performs the same function as the outdoor heat exchanger 120c in the cooling mode. Specifically, the first refrigerant coil 116 transfers heat by exchanging heat between the refrigerant gas whose high temperature and high pressure have been increased by the compressor 120a and air (the supply airflow 103 after the heat exchange to be introduced). Discharge to the outside (outside the refrigerant cycle). At this time, the refrigerant gas is condensed and liquefied under high pressure. In the first refrigerant coil 116, since the temperature of the introduced refrigerant gas is higher than the temperature of the air, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
 膨張器120bは、第一冷媒コイル116によって液化した高圧の冷媒を減圧して元の低温及び低圧の液体とする。 The expander 120b decompresses the high-pressure refrigerant liquefied by the first refrigerant coil 116 to obtain the original low-temperature and low-pressure liquids.
 屋外熱交換器120cは、吸熱器として機能する。屋外熱交換器120cは、冷却モードでの第一冷媒コイル116と同じ機能を果たす。具体的には、屋外熱交換器120cにおいて、膨張器120bを流通した液状の冷媒は、空気から熱を奪って蒸発することにより、低温及び低圧の冷媒ガスとなる。屋外熱交換器120cでは、導入される冷媒の温度は空気(送風ファン120dによって送風される屋外空間112の空気OA)の温度より低い。このため、冷媒と空気とが熱交換すると、空気は冷却され、冷媒は昇温される。 The outdoor heat exchanger 120c functions as a heat absorber. The outdoor heat exchanger 120c performs the same function as the first refrigerant coil 116 in the cooling mode. Specifically, in the outdoor heat exchanger 120c, the liquid refrigerant flowing through the expander 120b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas. In the outdoor heat exchanger 120c, the temperature of the introduced refrigerant is lower than the temperature of the air (air OA of the outdoor space 112 blown by the blower fan 120d). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
 送風ファン120dは、屋外熱交換器120cに向けて屋外空間112の空気OAを送風する。 The blower fan 120d blows air OA in the outdoor space 112 toward the outdoor heat exchanger 120c.
 このようにして、第一冷媒コイル116では、導入される空気(給気流103)を加熱する。 In this way, the first refrigerant coil 116 heats the introduced air (air supply 103).
 以上のように、第一冷媒コイル116では、導入される空気(給気流103)に対して冷却又は加熱することが可能であるが、本実施の形態では、第一冷媒コイル116は、冷却モードにおいて導入される空気を冷却(除湿)する部材として用いられる。 As described above, the first refrigerant coil 116 can be cooled or heated with respect to the introduced air (air supply 103), but in the present embodiment, the first refrigerant coil 116 is in the cooling mode. It is used as a member for cooling (dehumidifying) the air introduced in.
 第二冷媒コイル117は、空気浄化装置106内において、第一冷媒コイル116と加湿器106dとの間に配置され、第一冷媒コイル116を流通して導入される空気(給気流103)を冷却又は加熱するための部材である。そして、第二冷媒コイル117は、後述する制御部141からの出力信号に応じて、第二冷媒コイル117の出力状態(冷却、加熱又はオフ)を変化させる。これにより、導入される給気流103に対する加熱能力(加熱量)又は冷却能力(冷却量)を調整する。 The second refrigerant coil 117 is arranged between the first refrigerant coil 116 and the humidifier 106d in the air purification device 106, and cools the air (air supply airflow 103) introduced through the first refrigerant coil 116. Or it is a member for heating. Then, the second refrigerant coil 117 changes the output state (cooling, heating or off) of the second refrigerant coil 117 according to the output signal from the control unit 141 described later. Thereby, the heating capacity (heating amount) or the cooling capacity (cooling amount) with respect to the introduced airflow 103 is adjusted.
 より詳細には、第二冷媒コイル117は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、放熱器として機能する。第二冷媒コイル117は、空調機器(室外機130)から導入される冷媒が内部を流通する際に放熱(加熱)するように構成されている。ここで、第二冷媒コイル117は、屋内空間111に設置される空気浄化装置106に内蔵される屋内ユニットであり、室外機130は、屋外空間112に設置される室外ユニットである。室外機130は、圧縮機130aと、膨張器130bと、屋外熱交換器130cと、送風ファン130dと、四方弁130eとを有して構成される。 More specifically, the second refrigerant coil 117 functions as a radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. The second refrigerant coil 117 is configured to dissipate (heat) the refrigerant introduced from the air conditioner (outdoor unit 130) when it circulates inside. Here, the second refrigerant coil 117 is an indoor unit built in the air purification device 106 installed in the indoor space 111, and the outdoor unit 130 is an outdoor unit installed in the outdoor space 112. The outdoor unit 130 includes a compressor 130a, an expander 130b, an outdoor heat exchanger 130c, a blower fan 130d, and a four-way valve 130e.
 次に、第二冷媒コイル117と室外機130とによって構成される冷凍サイクルについて説明する。 Next, the refrigeration cycle composed of the second refrigerant coil 117 and the outdoor unit 130 will be described.
 冷凍サイクルには、第一冷媒コイル116を有して構成される冷凍サイクルと同様、四方弁130eが接続されている。第二冷媒コイル117は、四方弁130eによって第一方向に冷媒が流通することにより空気(給気流103)を冷却して除湿する冷却モード(除湿モード)の状態と、四方弁130eによって第二方向に冷媒が流通することにより空気(給気流103)に対して加熱を行う加熱モードの状態とを有する。 A four-way valve 130e is connected to the refrigeration cycle as in the refrigeration cycle having the first refrigerant coil 116. The second refrigerant coil 117 is in a cooling mode (dehumidifying mode) in which the air (supply airflow 103) is cooled and dehumidified by the flow of the refrigerant in the first direction by the four-way valve 130e, and the second direction by the four-way valve 130e. It has a heating mode state in which the air (supply airflow 103) is heated by the flow of the refrigerant.
 ここで、四方弁130eは、冷凍サイクルにおいて、冷媒回路131内を流れる冷媒の流れる向きを切り替えるための機器(可逆弁)である。より詳細には、四方弁130eは、圧縮機130aと第二冷媒コイル117との間、及び、圧縮機130aと屋外熱交換器130cとの間において接続される。そして、四方弁130eは、圧縮機130aと屋外熱交換器130cと膨張器130bと第二冷媒コイル117とをこの順序(第一方向)で冷媒を流通させる冷却モードと、圧縮機130aと第二冷媒コイル117と膨張器130bと屋外熱交換器130cとをこの順序(第二方向)で冷媒を流通させる加熱モードとを切り替える。すなわち、冷却モードと加熱モードとでは、冷媒の流れが逆方向となる。以下、冷却モードと加熱モードとについて説明する。 Here, the four-way valve 130e is a device (reversible valve) for switching the flow direction of the refrigerant flowing in the refrigerant circuit 131 in the refrigeration cycle. More specifically, the four-way valve 130e is connected between the compressor 130a and the second refrigerant coil 117, and between the compressor 130a and the outdoor heat exchanger 130c. The four-way valve 130e has a cooling mode in which the compressor 130a, the outdoor heat exchanger 130c, the expander 130b, and the second refrigerant coil 117 circulate the refrigerant in this order (first direction), and the compressor 130a and the second. The heating mode in which the refrigerant coil 117, the expander 130b, and the outdoor heat exchanger 130c are circulated in this order (second direction) is switched. That is, the flow of the refrigerant is in the opposite direction in the cooling mode and the heating mode. Hereinafter, the cooling mode and the heating mode will be described.
 [冷却モード]
 冷却モードでは、上述の第一方向で冷媒が流通する。
[Cooling mode]
In the cooling mode, the refrigerant flows in the above-mentioned first direction.
 圧縮機130aは、冷媒サイクルにおける低温及び低圧の冷媒ガス(作動媒体ガス)を圧縮し、圧力を高めて高温化する。 The compressor 130a compresses low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, increases the pressure, and raises the temperature.
 屋外熱交換器130cは、放熱器として機能する。屋外熱交換器130cは、圧縮機130aによって高温及び高圧となった冷媒ガスと空気(送風ファン130dによって送風される屋外空間112の空気OA)との間で熱交換することによって、熱を外部(冷媒サイクル外)に放出させる。このとき、冷媒ガスは、高圧下で凝縮されて液化する。屋外熱交換器130cでは、導入される冷媒ガスの温度が空気の温度より高いため、空気と冷媒ガスとが熱交換すると、空気は昇温され、冷媒ガスは冷却される。 The outdoor heat exchanger 130c functions as a radiator. The outdoor heat exchanger 130c exchanges heat between the refrigerant gas heated to high temperature and high pressure by the compressor 130a and the air (air OA of the outdoor space 112 blown by the blower fan 130d) to exchange heat with the outside (air OA in the outdoor space 112). Discharge to outside the refrigerant cycle). At this time, the refrigerant gas is condensed and liquefied under high pressure. In the outdoor heat exchanger 130c, the temperature of the introduced refrigerant gas is higher than the temperature of the air. Therefore, when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
 送風ファン130dは、屋外熱交換器130cに向けて屋外空間112の空気OAを送風する。 The blower fan 130d blows air OA in the outdoor space 112 toward the outdoor heat exchanger 130c.
 膨張器130bは、屋外熱交換器130cによって液化した高圧の冷媒を減圧して元の低温及び低圧の液体とする。 The expander 130b decompresses the high-pressure refrigerant liquefied by the outdoor heat exchanger 130c to the original low-temperature and low-pressure liquids.
 第二冷媒コイル117は、吸熱器として機能する。第二冷媒コイル117において、膨張器120bを流通した液状の冷媒は、空気から熱を奪って蒸発することにより、低温及び低圧の冷媒ガスとなる。第二冷媒コイル117では、導入される冷媒の温度は空気(導入される給気流103)の温度より低い。このため、冷媒と空気とが熱交換すると、空気は冷却され、冷媒は昇温される。 The second refrigerant coil 117 functions as a heat absorber. In the second refrigerant coil 117, the liquid refrigerant flowing through the expander 120b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas. In the second refrigerant coil 117, the temperature of the introduced refrigerant is lower than the temperature of the air (introduced air flow 103). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
 このようにして、第二冷媒コイル117では、導入される空気(給気流103)を冷却する。 In this way, the second refrigerant coil 117 cools the introduced air (air supply 103).
 [加熱モード]
 加熱モードでは、上述の第二方向で冷媒が流通する。
[Heating mode]
In the heating mode, the refrigerant flows in the second direction described above.
 圧縮機130aは、冷媒サイクルにおける低温及び低圧の冷媒ガス(作動媒体ガス)を圧縮し、圧力を高めて高温化する。 The compressor 130a compresses low-temperature and low-pressure refrigerant gas (working medium gas) in the refrigerant cycle, increases the pressure, and raises the temperature.
 第二冷媒コイル117は、放熱器として機能する。第二冷媒コイル117は、圧縮機130aによって高温及び高圧となった冷媒ガスと空気(導入される給気流103)との間で熱交換することによって、熱を外部(冷媒サイクル外)に放出させる。このとき、冷媒ガスは、高圧下で凝縮されて液化する。第二冷媒コイル117では、導入される冷媒ガスの温度が空気の温度より高いため、空気と冷媒ガスとが熱交換すると、空気は昇温され、冷媒ガスは冷却される。 The second refrigerant coil 117 functions as a radiator. The second refrigerant coil 117 releases heat to the outside (outside the refrigerant cycle) by exchanging heat between the refrigerant gas having a high temperature and high pressure by the compressor 130a and the air (introduced air flow 103). .. At this time, the refrigerant gas is condensed and liquefied under high pressure. In the second refrigerant coil 117, the temperature of the introduced refrigerant gas is higher than the temperature of the air, so that when the air and the refrigerant gas exchange heat, the air is heated and the refrigerant gas is cooled.
 膨張器130bは、第二冷媒コイル117によって液化した高圧の冷媒を減圧して元の低温及び低圧の液体とする。 The expander 130b decompresses the high-pressure refrigerant liquefied by the second refrigerant coil 117 to obtain the original low-temperature and low-pressure liquids.
 屋外熱交換器130cは、吸熱器として機能する。屋外熱交換器130cにおいて、膨張器130bを流通した液状の冷媒は、空気から熱を奪って蒸発することにより、低温及び低圧の冷媒ガスとなる。屋外熱交換器130cでは、導入される冷媒の温度は空気(送風ファン130dによって送風される屋外空間112の空気OA)の温度より低い。このため、冷媒と空気とが熱交換すると、空気は冷却され、冷媒は昇温される。 The outdoor heat exchanger 130c functions as a heat absorber. In the outdoor heat exchanger 130c, the liquid refrigerant flowing through the expander 130b takes heat from the air and evaporates to become low-temperature and low-pressure refrigerant gas. In the outdoor heat exchanger 130c, the temperature of the introduced refrigerant is lower than the temperature of the air (air OA of the outdoor space 112 blown by the blower fan 130d). Therefore, when the refrigerant and the air exchange heat, the air is cooled and the temperature of the refrigerant is raised.
 送風ファン130dは、屋外熱交換器130cに向けて屋外空間112の空気OAを送風する。 The blower fan 130d blows air OA in the outdoor space 112 toward the outdoor heat exchanger 130c.
 このようにして、第二冷媒コイル117では、導入される空気(給気流103)を加熱する。 In this way, the second refrigerant coil 117 heats the introduced air (air supply 103).
 以上のように、第二冷媒コイル117では、導入される空気(給気流103)に対して冷却又は加熱することが可能であるが、本実施の形態では、第二冷媒コイル117は、加熱モードにおいて導入される空気を加熱する部材として用いられる。 As described above, the second refrigerant coil 117 can be cooled or heated with respect to the introduced air (air supply airflow 103), but in the present embodiment, the second refrigerant coil 117 is in the heating mode. It is used as a member for heating the air introduced in.
 以上のように空気浄化装置106は構成される。そして、空気浄化装置106は、第一冷媒コイル116(冷却モード)と加湿器106dとによって熱交換後の給気流103の絶対湿度を低下させつつ空気浄化を行う成分を付加して供給する状態と、第一冷媒コイル116(冷却モード)と第二冷媒コイル117(加熱モード)とによって熱交換後の給気流103の絶対湿度を低下させつつ除湿に伴って低下した給気流103の温度を上昇させて供給する状態と、を組み合わせて、屋内空間111への給気流103の供給を行う。 The air purification device 106 is configured as described above. Then, the air purification device 106 is in a state of adding and supplying a component that purifies the air while lowering the absolute humidity of the supply airflow 103 after heat exchange by the first refrigerant coil 116 (cooling mode) and the humidifier 106d. The first refrigerant coil 116 (cooling mode) and the second refrigerant coil 117 (heating mode) lower the absolute humidity of the supply airflow 103 after heat exchange and raise the temperature of the supply airflow 103 that has decreased with dehumidification. The air supply 103 is supplied to the indoor space 111 in combination with the state of supplying the air.
 具体的には、空気浄化装置106は、屋内環境(屋内空間111の空気RAの温湿度情報)に基づいて、熱交換後の給気流103に対して、第一冷媒コイル116による冷却(除湿)及び加湿器106dによる浄化成分の付加を行う第一運転と、熱交換後の給気流103に対して、第一冷媒コイル116による冷却(除湿)及び第二冷媒コイル117による加熱を行う第二運転と、を切り替えながら、屋内空間111への給気流103の供給を行っている。なお、第一運転では、第二冷媒コイル117は動作を停止しており、第二運転では、加湿器106d(加湿モータ106e)は動作を停止している。このため、第二運転では、給気流103への浄化成分の付加はほとんどなされない。 Specifically, the air purification device 106 cools (dehumidifies) the supply airflow 103 after heat exchange by the first refrigerant coil 116 based on the indoor environment (temperature / humidity information of the air RA in the indoor space 111). And the first operation of adding the purification component by the humidifier 106d, and the second operation of cooling (dehumidifying) the supply airflow 103 after heat exchange by the first refrigerant coil 116 and heating by the second refrigerant coil 117. The air supply 103 is supplied to the indoor space 111 while switching between. In the first operation, the second refrigerant coil 117 has stopped operating, and in the second operation, the humidifier 106d (humidifying motor 106e) has stopped operating. Therefore, in the second operation, the purifying component is hardly added to the air flow 103.
 次に、図11を参照して、空気浄化装置106による給気流103に対する温湿度制御について説明する。図11は、本開示の実施の形態2に係る空気浄化機能付き熱交換形換気装置150において、温度と湿度の基準値によって区分した領域における第一運転及び第二運転による温湿度の変化傾向を説明するための図である。 Next, with reference to FIG. 11, the temperature / humidity control for the supply airflow 103 by the air purification device 106 will be described. FIG. 11 shows the tendency of temperature and humidity changes due to the first operation and the second operation in the region divided by the reference values of temperature and humidity in the heat exchange type ventilation device 150 with an air purification function according to the second embodiment of the present disclosure. It is a figure for demonstrating.
 図11では、縦軸に湿度をとり、横軸に温度をとっている。また、湿度基準値の上限を湿度H1とし、下限を湿度H2としている。温度基準値の上限を温度T1とし、下限を温度T2としている。そして、温湿度の上下限によって区切られる領域を、温湿度の目標基準となる基準領域Eとし、温湿度の上限(温度T1及び湿度H1)と温湿度の下限(温度T2及び湿度H2)とを結ぶ直線を、基準線Cとしている。そして、基準線Cよりも上側の温湿度領域(基準領域Eを除く)を領域Aとし、基準線Cよりも下側の温湿度領域(基準領域Eを除く)を領域Bとしている。 In FIG. 11, the vertical axis represents humidity and the horizontal axis represents temperature. Further, the upper limit of the humidity reference value is the humidity H1, and the lower limit is the humidity H2. The upper limit of the temperature reference value is the temperature T1, and the lower limit is the temperature T2. Then, the region divided by the upper and lower limits of temperature and humidity is set as the reference region E which is the target standard of temperature and humidity, and the upper limit of temperature and humidity (temperature T1 and humidity H1) and the lower limit of temperature and humidity (temperature T2 and humidity H2) are set. The straight line connecting them is defined as the reference line C. The temperature / humidity region (excluding the reference region E) above the reference line C is defined as the region A, and the temperature / humidity region (excluding the reference region E) below the reference line C is defined as the region B.
 第一運転では、第一冷媒コイル116による冷却(除湿)と、加湿器106dによる浄化成分の付加とがなされる。このため、図11に示すように、導入される給気流103は、温度が下がり、且つ、湿度が上がる効果(傾向)を有する。一方、第二運転では、第一冷媒コイル116による冷却(除湿)と、第二冷媒コイル117による加熱とがなされる。このため、導入される給気流103は、温度が上がり、且つ、湿度が下がる効果(傾向)を有する。なお、第一運転及び第二運転による効果(矢印で示す運転効果の長さ及び角度)は、第一冷媒コイル116、第二冷媒コイル117、及び加湿器106dの出力によって調整することが可能であるが、どの場合においても温湿度変化の傾向は同じである。 In the first operation, cooling (dehumidification) is performed by the first refrigerant coil 116, and purification components are added by the humidifier 106d. Therefore, as shown in FIG. 11, the introduced airflow 103 has the effect (tendency) of lowering the temperature and increasing the humidity. On the other hand, in the second operation, cooling (dehumidification) by the first refrigerant coil 116 and heating by the second refrigerant coil 117 are performed. Therefore, the introduced airflow 103 has the effect (tendency) of increasing the temperature and decreasing the humidity. The effects of the first operation and the second operation (the length and angle of the operation effect indicated by the arrows) can be adjusted by the outputs of the first refrigerant coil 116, the second refrigerant coil 117, and the humidifier 106d. However, in all cases, the tendency of temperature and humidity changes is the same.
 次に、屋内空間111の空気RAの温湿度情報に基づいて、現在の屋内空間111の空気RAの温湿度が領域Bにあった場合について説明する。この場合には、空気浄化装置106は、第一運転を実行することによって、導入される給気流103の温度を低下させ、且つ、湿度を増加させる。これにより、空気浄化装置106は、屋内空間111の空気RAの温湿度が領域Aに入るように制御する。この際、給気流103には、浄化成分が付加される。そして、屋内空間111の空気RAの温湿度が領域Aとなった場合には、空気浄化装置106は、第一運転から第二運転に切り替えて実行する。これにより、空気浄化装置106は、導入される給気流103の温度を上昇させ、且つ、湿度を低下させることにより、屋内空間111の空気RAの温湿度が基準領域Eに入るように制御する。空気浄化装置106は、こうした運転動作を繰り返しながら、屋内空間111の空気RAの温湿度が基準領域Eに入るように制御する。このようにして、領域Bの温湿度であった給気流103に対して、浄化成分を付加するとともに、屋内空間111の空気RAを目標設定温湿度(基準領域E)にすることができる。 Next, a case where the temperature and humidity of the current air RA of the indoor space 111 is in the region B will be described based on the temperature and humidity information of the air RA of the indoor space 111. In this case, the air purifying device 106 lowers the temperature of the introduced airflow 103 and increases the humidity by executing the first operation. As a result, the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the region A. At this time, a purification component is added to the supply airflow 103. Then, when the temperature and humidity of the air RA in the indoor space 111 becomes the region A, the air purification device 106 switches from the first operation to the second operation and executes the operation. As a result, the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the reference region E by raising the temperature of the introduced air flow 103 and lowering the humidity. The air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the reference region E while repeating such an operation operation. In this way, the purification component can be added to the air flow 103, which is the temperature and humidity of the region B, and the air RA of the indoor space 111 can be set to the target set temperature and humidity (reference region E).
 次に、屋内空間111の空気RAの温湿度情報に基づいて、現在の屋内空間111の空気RAの温湿度が領域Aにあった場合について説明する。この場合には、空気浄化装置106は、第二運転を実行することによって、導入される給気流103の温度を上昇させ、且つ、湿度を減少させる。これにより、空気浄化装置106は、屋内空間111の空気RAの温湿度が領域Bに入るように制御する。そして、屋内空間111の空気RAの温湿度が領域Bとなった場合には、空気浄化装置106は、第二運転から第一運転に切り替えて実行することによって、導入される給気流103の温度を低下させ、且つ、湿度を増加させる。これにより、空気浄化装置106は、屋内空間111の空気RAの温湿度が基準領域Eに入るように制御する。この際、給気流103には、浄化成分が付加される。空気浄化装置106は、こうした運転動作を繰り返しながら、屋内空間111の空気RAの温湿度が基準領域Eに入るように制御する。このようにして、領域Aの温湿度であった給気流103に対して、浄化成分を付加するとともに、屋内空間111の空気RAを目標設定温湿度(基準領域E)にすることができる。 Next, a case where the temperature and humidity of the current air RA of the indoor space 111 is in the region A will be described based on the temperature and humidity information of the air RA of the indoor space 111. In this case, the air purifying device 106 raises the temperature of the introduced airflow 103 and reduces the humidity by executing the second operation. As a result, the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the region B. Then, when the temperature / humidity of the air RA in the indoor space 111 becomes the region B, the air purifying device 106 switches from the second operation to the first operation and executes the operation to switch the temperature of the air supply 103 to be introduced. And increase the humidity. As a result, the air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the reference region E. At this time, a purification component is added to the supply airflow 103. The air purification device 106 controls the temperature and humidity of the air RA in the indoor space 111 so as to enter the reference region E while repeating such an operation operation. In this way, the purification component can be added to the air flow 103 which was the temperature and humidity of the region A, and the air RA of the indoor space 111 can be set to the target set temperature and humidity (reference region E).
 さらに、屋内空間111の空気RAの温湿度情報に基づいて、現在の屋内空間111の空気RAの温湿度が目標設定温湿度である基準領域Eにあった場合(あるいは上述した対応により、領域A又は領域Bから基準領域Eに入った場合)を考える。この場合には、空気浄化装置106は、可能な限り基準領域Eから逸脱しない範囲の条件で、第一運転と第二運転を交互に繰り返して、屋内空間111に浄化成分が継続的に付加されるように制御する。 Further, when the temperature / humidity of the current air RA of the indoor space 111 is in the reference region E which is the target set temperature / humidity based on the temperature / humidity information of the air RA of the indoor space 111 (or by the above-mentioned correspondence, the region A Or when entering the reference area E from the area B). In this case, the air purifying device 106 alternately repeats the first operation and the second operation under the condition within the range not deviating from the reference region E as much as possible, and the purifying component is continuously added to the indoor space 111. To control.
 以上のように、空気浄化機能付き熱交換形換気装置150は、第一冷媒コイル116、第二冷媒コイル117、及び加湿器106dの運転動作を組み合わせることで、熱交換形換気装置110からの熱交換後の給気流103に対して空気浄化を行う成分を付加しつつ、屋内空間111の空気RAを最適な温湿度(目標設定温湿度)に調整できるように構成されている。 As described above, the heat exchange type ventilator 150 with an air purification function heats from the heat exchange type ventilator 110 by combining the operating operations of the first refrigerant coil 116, the second refrigerant coil 117, and the humidifier 106d. It is configured so that the air RA of the indoor space 111 can be adjusted to the optimum temperature / humidity (target setting temperature / humidity) while adding a component for purifying air to the air supply airflow 103 after replacement.
 次に、図12を参照して、空気浄化装置106の制御部141について説明する。図12は、本開示の実施の形態2に係る空気浄化機能付き熱交換形換気装置150における制御部141の構成を表す概略ブロック図である。 Next, the control unit 141 of the air purification device 106 will be described with reference to FIG. 12. FIG. 12 is a schematic block diagram showing the configuration of the control unit 141 in the heat exchange type ventilation device 150 with an air purification function according to the second embodiment of the present disclosure.
 図12に示すように、制御部141は、入力部141a、記憶部141b、計時部141c、処理部141d、及び出力部141eを備える。 As shown in FIG. 12, the control unit 141 includes an input unit 141a, a storage unit 141b, a timekeeping unit 141c, a processing unit 141d, and an output unit 141e.
 入力部141aは、操作パネル143からの運転開始指示又は運転停止指示に関する第一情報と、温度検知部126aからの屋内空間111の空気の温度に関する第二情報と、湿度検知部126bからの屋内空間111の空気の湿度に関する第三情報とを受け付ける。入力部141aは、受け付けた第一情報~第三情報を処理部141dに出力する。 The input unit 141a has first information regarding an operation start instruction or an operation stop instruction from the operation panel 143, second information regarding the air temperature of the indoor space 111 from the temperature detection unit 126a, and an indoor space from the humidity detection unit 126b. Accepts the third information regarding the humidity of the air of 111. The input unit 141a outputs the received first information to the third information to the processing unit 141d.
 ここで、操作パネル143は、ユーザが空気浄化装置106に関するユーザ入力情報(例えば、浄化成分の添加の有無、浄化成分の添加量又は送風量等)を入力する端末であり、無線又は有線により制御部141と通信可能に接続されている。なお、第一情報には、ユーザ入力情報も含まれる。 Here, the operation panel 143 is a terminal for the user to input user input information regarding the air purification device 106 (for example, presence / absence of addition of purification component, amount of addition of purification component, amount of air blown, etc.), and is controlled wirelessly or by wire. It is connected to the unit 141 so as to be communicable. The first information also includes user input information.
 また、温度検知部126aは、熱交換形換気装置110内に設けられ、屋内排気口109aから取り込まれた屋内の空気RA(排気流102)の温度を感知するセンサである。また、湿度検知部126bは、熱交換形換気装置110内に設けられ、屋内排気口109aから取り込まれた屋内の空気RAの湿度を感知するセンサである。なお、温度検知部126a及び湿度検知部126bは、屋内空間111の対象空間に設置してもよい。また、温度検知部126aと湿度検知部126bとを一つの温湿度センサとしてもよい。 Further, the temperature detection unit 126a is a sensor provided in the heat exchange type ventilation device 110 and senses the temperature of the indoor air RA (exhaust flow 102) taken in from the indoor exhaust port 109a. Further, the humidity detection unit 126b is a sensor provided in the heat exchange type ventilation device 110 and senses the humidity of the indoor air RA taken in from the indoor exhaust port 109a. The temperature detection unit 126a and the humidity detection unit 126b may be installed in the target space of the indoor space 111. Further, the temperature detection unit 126a and the humidity detection unit 126b may be combined into one temperature / humidity sensor.
 記憶部141bは、空気浄化装置106を流通する給気流103に対する浄化成分(浄化成分を含む水)の付与動作における付与処理設定に関する第四情報と、ユーザ入力情報に対応する設定情報に関する第五情報とを記憶する。記憶部141bは、記憶した第四情報及び第五情報を処理部141dに出力する。なお、浄化成分の付与動作における付与処理設定は、空気浄化装置106の加湿動作における加湿設定とも言える。 The storage unit 141b has a fourth information regarding the addition processing setting in the application operation of the purification component (water containing the purification component) to the air supply 103 flowing through the air purification device 106, and a fifth information regarding the setting information corresponding to the user input information. And remember. The storage unit 141b outputs the stored fourth information and the fifth information to the processing unit 141d. It should be noted that the application processing setting in the purification component application operation can be said to be the humidification setting in the humidification operation of the air purification device 106.
 計時部141cは、現在時刻に関する第六情報を処理部141dに出力する。 The timekeeping unit 141c outputs the sixth information regarding the current time to the processing unit 141d.
 処理部141dは、入力部141aからの第一情報~第三情報と、記憶部141bからの第四情報及び第五情報と、計時部141cからの第六情報とを受け付ける。処理部141dは、受け付けた第一情報~第六情報を用いて、付与処理設定に基づく付与動作に関する制御情報(回転出力値、冷却出力値及び加熱出力値)を特定する。処理部141dは、特定した制御情報を出力部141eに出力する。 The processing unit 141d receives the first information to the third information from the input unit 141a, the fourth information and the fifth information from the storage unit 141b, and the sixth information from the timekeeping unit 141c. The processing unit 141d uses the received first information to sixth information to specify control information (rotational output value, cooling output value, and heating output value) related to the application operation based on the application processing setting. The processing unit 141d outputs the specified control information to the output unit 141e.
 出力部141eは、処理部141dから受け付けた制御情報(回転出力値)を、加湿器106d(加湿モータ106e)に出力する。また、出力部141eは、処理部141dから受け付けた制御情報(冷却出力値及び加熱出力値)を、第一冷媒コイル116及び第二冷媒コイル117にそれぞれ出力する。そして、加湿器106dは、出力部141eから出力された回転出力値に応じて、加湿運転動作を実行する。また、第一冷媒コイル116は、出力部141eから出力された冷却出力値に基づいて、冷却運転動作のオン又はオフを実行する。また、第二冷媒コイル117は、出力部141eから出力された加熱出力値に基づいて、加熱運転動作のオン又はオフを実行する。 The output unit 141e outputs the control information (rotational output value) received from the processing unit 141d to the humidifier 106d (humidifying motor 106e). Further, the output unit 141e outputs the control information (cooling output value and heating output value) received from the processing unit 141d to the first refrigerant coil 116 and the second refrigerant coil 117, respectively. Then, the humidifier 106d executes a humidifying operation according to the rotation output value output from the output unit 141e. Further, the first refrigerant coil 116 executes the cooling operation operation on or off based on the cooling output value output from the output unit 141e. Further, the second refrigerant coil 117 executes the heating operation operation on or off based on the heating output value output from the output unit 141e.
 以上のようにして、制御部141は、空気浄化装置106を流通する給気流103に対する冷却動作、浄化成分付与動作、及び加熱動作の制御をそれぞれ実行させる。 As described above, the control unit 141 controls the cooling operation, the purification component imparting operation, and the heating operation of the supply airflow 103 flowing through the air purification device 106, respectively.
 次に、図13を参照して、空気浄化装置106による温湿度制御及び浄化成分の付与動作における処理手順について説明する。図13は、本開示の実施の形態2に係る空気浄化機能付き熱交換形換気装置150における制御部141で行う処理を示すフローチャートである。 Next, with reference to FIG. 13, the processing procedure in the temperature / humidity control by the air purification device 106 and the application operation of the purification component will be described. FIG. 13 is a flowchart showing a process performed by the control unit 141 in the heat exchange type ventilation device 150 with an air purification function according to the second embodiment of the present disclosure.
 制御部141の処理部141dは、図13に示すように、主に3つのステップ(ステップS01~ステップS03)で構成され、操作パネル143からの制御信号に応じて処理を開始する。 As shown in FIG. 13, the processing unit 141d of the control unit 141 is mainly composed of three steps (steps S01 to S03), and starts processing according to a control signal from the operation panel 143.
 ステップS01は、記憶部141bに記憶された処理間隔で処理を行うためのステップである。処理部141dは、例えば、処理間隔が5分である場合、計時部141cから出力される時刻情報を受け付けながら、5分経過するまでは時刻の判定を繰り返し、5分経過したらステップS02に処理を進める。時刻の判定の際には、後段で操作パネル143の制御信号を受け付け、終了の信号を受け付けた場合には処理を終了する。 Step S01 is a step for performing processing at the processing interval stored in the storage unit 141b. For example, when the processing interval is 5 minutes, the processing unit 141d repeats the determination of the time until 5 minutes have passed while receiving the time information output from the time measuring unit 141c, and after 5 minutes, the processing unit 141d performs processing in step S02. Proceed. When determining the time, the control signal of the operation panel 143 is received in the subsequent stage, and when the end signal is received, the process ends.
 ステップS02は、屋内空間111の空気RAの温湿度値を更新するステップである。ここでは、処理部141dは、入力部141a及び記憶部141bから出力された各情報をもとに、温湿度値の更新を行い、ステップS03に処理を進める。 Step S02 is a step of updating the temperature / humidity value of the air RA in the indoor space 111. Here, the processing unit 141d updates the temperature / humidity value based on each information output from the input unit 141a and the storage unit 141b, and proceeds to the process in step S03.
 ステップS03は、更新された温湿度値に応じた運転モード(第一冷媒コイル116、加湿器106d及び第二冷媒コイル117の運転状態)を特定するステップである。 Step S03 is a step of specifying an operation mode (operating state of the first refrigerant coil 116, the humidifier 106d, and the second refrigerant coil 117) according to the updated temperature / humidity value.
 ここでは、処理部141dは、記憶部141bに記憶された基準値(湿度基準値の上限の湿度H1、湿度基準値の下限の湿度H2、温度基準値の上限の温度T1及び温度基準値の下限の下限T2)と、更新された温湿度値との間で、大小関係をそれぞれ比較する(ステップS03A)。 Here, the processing unit 141d uses the reference values stored in the storage unit 141b (humidity H1 at the upper limit of the humidity reference value, humidity H2 at the lower limit of the humidity reference value, temperature T1 at the upper limit of the temperature reference value, and lower limit of the temperature reference value). The magnitude relationship is compared between the lower limit T2) of the above and the updated temperature / humidity value (step S03A).
 そして、大小関係の比較結果に基づいて、屋内空間111の空気RAの温湿度が、温度と湿度の基準値によって区分した領域のうち、どの領域(領域A、基準領域E又は領域B)に属しているかを特定する(ステップS03B)。 Then, based on the comparison result of the magnitude relationship, the temperature / humidity of the air RA of the indoor space 111 belongs to which region (region A, reference region E or region B) among the regions classified by the reference values of temperature and humidity. (Step S03B).
 そして、特定した領域に関する情報に基づいて、領域ごとに割り当てられた運転モードを特定する(ステップS03C)。具体的には、各運転モードには、第一運転と第二運転の開始順序、第一運転での制御情報(回転出力値及び冷却出力値)、及び第二運転での制御情報(冷却出力値及び加熱出力値)が規定されている。 Then, based on the information about the specified area, the operation mode assigned to each area is specified (step S03C). Specifically, in each operation mode, the start order of the first operation and the second operation, the control information in the first operation (rotation output value and the cooling output value), and the control information in the second operation (cooling output) Value and heating output value) are specified.
 そして、処理部141dは、特定した運転モードに基づく制御情報を出力部141eに出力する。 Then, the processing unit 141d outputs the control information based on the specified operation mode to the output unit 141e.
 なお、図11に示した温度と湿度の基準値によって区分した領域(領域A、基準領域E又は領域B)に関する情報、並びに、各運転モードに対応する第一冷媒コイル116、加湿器106d及び第二冷媒コイル117の運転状態に関する情報は、記憶部141bに記憶されている。 Information on the regions (region A, reference region E, or region B) divided by the reference values of temperature and humidity shown in FIG. 11, as well as the first refrigerant coil 116, the humidifier 106d, and the first humidifier corresponding to each operation mode. (2) Information regarding the operating state of the refrigerant coil 117 is stored in the storage unit 141b.
 以上、本実施の形態2に係る空気浄化機能付き熱交換形換気装置150によれば、以下の効果を享受することができる。 As described above, according to the heat exchange type ventilation device 150 with an air purification function according to the second embodiment, the following effects can be enjoyed.
 (1)空気浄化機能付き熱交換形換気装置150は、熱交換形換気装置110と、加湿器106dと、第一冷媒コイル116と、第二冷媒コイル117とを備える。熱交換形換気装置110は、屋内空間111の空気RAを屋外空間112に排出する排気風路104を流通する排気流102と、屋外空間112の空気OAを屋内空間111へ給気する給気風路105を流通する給気流103との間で熱交換する。加湿器106dは、熱交換形換気装置110から導入された熱交換後の給気流103に対して、水とともに次亜塩素酸(浄化成分)を付加する。第一冷媒コイル116は、加湿器106dの上流側において、熱交換後の給気流103に対して冷却(除湿)を行う。第二冷媒コイル117は、第一冷媒コイル116と加湿器106dとの間において、第一冷媒コイル116によって除湿された給気流103に対して加熱を行う。 (1) The heat exchange type ventilator 150 with an air purification function includes a heat exchange type ventilator 110, a humidifier 106d, a first refrigerant coil 116, and a second refrigerant coil 117. The heat exchange type ventilation device 110 has an exhaust flow 102 that flows through an exhaust air passage 104 that discharges the air RA of the indoor space 111 to the outdoor space 112, and an air supply air passage that supplies air OA of the outdoor space 112 to the indoor space 111. Heat is exchanged with the air supply 103 flowing through 105. The humidifier 106d adds hypochlorous acid (purifying component) together with water to the supply airflow 103 after heat exchange introduced from the heat exchange type ventilator 110. The first refrigerant coil 116 cools (dehumidifies) the supply airflow 103 after heat exchange on the upstream side of the humidifier 106d. The second refrigerant coil 117 heats the air flow 103 dehumidified by the first refrigerant coil 116 between the first refrigerant coil 116 and the humidifier 106d.
 こうした構成によれば、屋内空間111への給気流103の供給では、第一冷媒コイル116と加湿器106dとによって熱交換後の給気流103の絶対湿度を低下させつつ次亜塩素酸を付加して供給する状態と、第一冷媒コイル116と第二冷媒コイル117とによって熱交換後の給気流103の絶対湿度を低下させつつ除湿に伴って低下した給気流103の温度を上昇させて供給する状態と、を組み合わせることが可能となる。つまり、例えば日本の夏季のように、屋内空間111の空気RAの相対湿度に比べて相対湿度の高い屋外空間112からの空気OAに対して熱交換しつつ次亜塩素酸を付加する場合において、次亜塩素酸の放出に伴う湿度の上昇を抑制することが可能な空気浄化機能付き熱交換形換気装置150とすることができる。 According to such a configuration, in the supply of the air supply 103 to the indoor space 111, hypochlorous acid is added while lowering the absolute humidity of the air supply 103 after heat exchange by the first refrigerant coil 116 and the humidifier 106d. The temperature of the supply airflow 103, which has decreased due to dehumidification, is increased and supplied while reducing the absolute humidity of the supply airflow 103 after heat exchange by the first refrigerant coil 116 and the second refrigerant coil 117. It is possible to combine the state with. That is, in the case of adding hypochlorite while exchanging heat with the air OA from the outdoor space 112, which has a higher relative humidity than the relative humidity of the air RA of the indoor space 111, for example, in the summer of Japan. It is possible to use a heat exchange type ventilator 150 with an air purification function capable of suppressing an increase in humidity due to the release of hypochlorite.
 (2)空気浄化機能付き熱交換形換気装置150は、加湿器106d、第一冷媒コイル116、及び第二冷媒コイル117の運転動作を制御する制御部141をさらに備える。そして、制御部141は、屋内空間111の空気RAの温湿度情報に基づいて、熱交換後の給気流103に対して、第一冷媒コイル116による除湿と、加湿器106dによる付加とを行う第一運転と、熱交換後の給気流103に対して、第一冷媒コイル116による除湿と、第二冷媒コイル117による加熱とを行う第二運転と、を切り替える制御を行う。これにより、制御部141は、屋内環境(屋内空間111の空気RAの温湿度情報)に基づいて、第一運転と第二運転とを切り替える制御を行うことができる。この結果、第一運転において、給気流103への加湿量を抑制した状態で次亜塩素酸を付加して供給することができる。一方、第一運転において、第一冷媒コイル116での除湿によって屋内空間111の空気RAの温度が目標設定温度よりも下がる場合には、第二運転に切り替えて、第一運転での給気流103の温度よりも温度が上昇した給気流103を供給することができる。 (2) The heat exchange type ventilator 150 with an air purification function further includes a humidifier 106d, a first refrigerant coil 116, and a control unit 141 for controlling the operation of the second refrigerant coil 117. Then, the control unit 141 dehumidifies the supply airflow 103 after heat exchange with the first refrigerant coil 116 and adds it with the humidifier 106d based on the temperature / humidity information of the air RA in the indoor space 111. Control is performed to switch between one operation and a second operation in which the supply airflow 103 after heat exchange is dehumidified by the first refrigerant coil 116 and heated by the second refrigerant coil 117. As a result, the control unit 141 can control switching between the first operation and the second operation based on the indoor environment (temperature / humidity information of the air RA in the indoor space 111). As a result, in the first operation, hypochlorous acid can be added and supplied in a state where the amount of humidification to the supply airflow 103 is suppressed. On the other hand, in the first operation, when the temperature of the air RA in the indoor space 111 drops below the target set temperature due to dehumidification by the first refrigerant coil 116, the second operation is switched to and the air supply airflow 103 in the first operation 103. It is possible to supply the supply airflow 103 whose temperature is higher than the temperature of.
 (3)空気浄化機能付き熱交換形換気装置150は、屋内空間111の空気RAの温度を検出する温度検知部126aと、屋内空間111の空気RAの湿度を検出する湿度検知部126bとを備える。これにより、制御部141は、温度検知部126aからの温度情報と、湿度検知部126bからの湿度情報とに基づいて、第一運転と第二運転とを切り替える制御を行うことができる。 (3) The heat exchange type ventilator 150 with an air purification function includes a temperature detection unit 126a for detecting the temperature of the air RA in the indoor space 111 and a humidity detection unit 126b for detecting the humidity of the air RA in the indoor space 111. .. As a result, the control unit 141 can control switching between the first operation and the second operation based on the temperature information from the temperature detection unit 126a and the humidity information from the humidity detection unit 126b.
 (4)空気浄化機能付き熱交換形換気装置150では、制御部141は、屋内空間111の空気RAの温湿度情報に基づいて、運転を切り替える。これにより、利用者が運転の切り替えを行うことなく、利用者にとって快適な屋内空間111の空気RAの湿度(例えば、40%~60%RH)を維持することができる。 (4) In the heat exchange type ventilator 150 with an air purification function, the control unit 141 switches the operation based on the temperature / humidity information of the air RA in the indoor space 111. This makes it possible to maintain the humidity (for example, 40% to 60% RH) of the air RA of the indoor space 111, which is comfortable for the user, without the user switching the operation.
 (5)空気浄化機能付き熱交換形換気装置150では、第一冷媒コイル116は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクル(冷媒回路121)において、吸熱器として機能するように構成されている。第二冷媒コイル117は、冷凍サイクル(冷媒回路121)とは異なる冷凍サイクル(冷媒回路131)において、放熱器として機能するように構成されている。これにより、第一冷媒コイル116及び第二冷媒コイル117を、簡易な構成で空気浄化機能付き熱交換形換気装置150(空気浄化装置106)内に組み込むことができる。 (5) In the heat exchange type ventilator 150 with an air purification function, the first refrigerant coil 116 absorbs heat in a refrigerating cycle (refrigerant circuit 121) including a compressor, a radiator, an expander, and a heat absorber. It is configured to function as a vessel. The second refrigerant coil 117 is configured to function as a radiator in a refrigerating cycle (refrigerant circuit 131) different from the refrigerating cycle (refrigerant circuit 121). As a result, the first refrigerant coil 116 and the second refrigerant coil 117 can be incorporated into the heat exchange type ventilation device 150 (air purification device 106) with an air purification function with a simple configuration.
 (6)空気浄化機能付き熱交換形換気装置150では、加湿器106dは、空気浄化を行う成分を含む水を遠心破砕することによって、内部に導入される給気流103に対して、次亜塩素酸を付加する。これにより、遠心破砕時の回転数を変化させることで、破砕する水の粒子径あるいは破砕量をコントロールすることができ、ひいては装置内に導入される給気流103に対して付加する次亜塩素酸の付加量をコントロールすることができる。 (6) In the heat exchange type ventilator 150 with an air purification function, the humidifier 106d centrifuges the water containing the component for purifying the air to centrifuges the water supply airflow 103 introduced into the room, and the humidifier 106d has hypochlorous acid. Add acid. As a result, the particle size or amount of crushed water can be controlled by changing the rotation speed during centrifugal crushing, and by extension, hypochlorous acid added to the airflow 103 introduced into the apparatus. The amount of addition can be controlled.
 以上、実施の形態に基づき本開示を説明したが、本開示は上述した実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上述した実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the spirit of the present disclosure. Can be easily inferred. For example, the numerical values given in the above-described embodiment are examples, and it is naturally possible to adopt other numerical values.
 本実施の形態に係る空気浄化機能付き熱交換形換気装置150では、室外機130と冷凍サイクル(冷媒回路131)とを構成する第二冷媒コイル117を用いて加熱モードでの加熱動作を行ったが、これに限られない。例えば、発熱体として、PTC(Positive Temperature Coefficient)を用いて加熱動作を行うようにしてもよい。これにより、空気浄化装置106の装置構成をさらに簡略化することができる。 In the heat exchange type ventilator 150 with an air purification function according to the present embodiment, the heating operation in the heating mode was performed using the second refrigerant coil 117 constituting the outdoor unit 130 and the refrigerating cycle (refrigerant circuit 131). However, it is not limited to this. For example, a PTC (Positive Temperature Coefficient) may be used as the heating element to perform the heating operation. This makes it possible to further simplify the device configuration of the air purification device 106.
 また、本実施の形態に係る空気浄化機能付き熱交換形換気装置150では、例えば日本の夏季において、第一冷媒コイル116の冷却モードと、第二冷媒コイル117の加熱モードとを組み合わせて、熱交換後の給気流103に対して浄化成分(次亜塩素酸)を付加する制御を説明したが、これに限られない。例えば、日本の冬季において、第一冷媒コイル116の加熱モードと、第二冷媒コイル117の加熱モードとを組み合わせて、熱交換後の給気流103に対して浄化成分を付加する制御としてもよい。このようにすることで、熱交換後の給気流103に対する加湿量を増加させて空浄化成分を付加することができる。このため、熱交換後の給気流103に対して浄化成分を付加しつつ、屋内空間111の空気RAの相対湿度(絶対湿度)を高めることができる。 Further, in the heat exchange type ventilator 150 with an air purification function according to the present embodiment, for example, in the summer of Japan, the cooling mode of the first refrigerant coil 116 and the heating mode of the second refrigerant coil 117 are combined to generate heat. The control of adding a purifying component (hypochlorite) to the air supply air force 103 after replacement has been described, but the present invention is not limited to this. For example, in winter in Japan, the heating mode of the first refrigerant coil 116 and the heating mode of the second refrigerant coil 117 may be combined to control the addition of a purifying component to the supply airflow 103 after heat exchange. By doing so, it is possible to increase the amount of humidification for the supply airflow 103 after heat exchange and add an empty purification component. Therefore, it is possible to increase the relative humidity (absolute humidity) of the air RA in the indoor space 111 while adding a purification component to the supply airflow 103 after heat exchange.
 また、本実施の形態に係る空気浄化機能付き熱交換形換気装置150では、空気浄化装置106における第一運転と第二運転との切り替えを所定時間でサイクルさせるようにしてもよい。これにより、空気浄化装置106は、浄化成分の付加量のコントロールを容易にすることができる。 Further, in the heat exchange type ventilation device 150 with an air purification function according to the present embodiment, the switching between the first operation and the second operation in the air purification device 106 may be cycled in a predetermined time. Thereby, the air purifying device 106 can easily control the additional amount of the purifying component.
 本開示に係る空気浄化機能付き熱交換形換気装置は、屋内を代表とする対象空間の除菌を行う空気浄化システムに関するものであり、対象空間の湿度を調整して、除菌効果と快適性を両立させることができ有用である。 The heat exchange type ventilator with an air purification function according to the present disclosure relates to an air purification system that sterilizes a target space represented indoors, and adjusts the humidity of the target space to have a sterilization effect and comfort. It is useful because it can achieve both.
 1、101  家屋
 2、102  排気流
 3、103  給気流
 4、104  排気風路
 5、105  給気風路
 6、106  空気浄化装置
 6a、106a  給気流入口
 6c、106c  給気流出口
 6d、106d  加湿器
 6e、106e  加湿モータ
 6f、106f  加湿ノズル
 6g  本体ケース
 7、107  ダクト
 8  制御部
 8a  入力部
 8b  処理部
 8c  出力部
 8d  記憶部
 8e  計時部
 9a、109a  屋内排気口
 9b、109b  屋外排気口
 9c、109c  屋外給気口
 9d、109d  屋内給気口
 10、110  熱交換形換気装置
 10a、110a  内気口
 10b、110b  排気口
 10c、110c  外気口
 10d、110d  給気口
 10e、110e  熱交換素子
 10f、110f  本体ケース
 10g、110g  排気ファン
 10h、110h  給気ファン
 11、111  屋内空間
 12、112  屋外空間
 15  湿度検知部
 16  熱交換器
 18  操作パネル
 20、120  室外機
 20a、120a  圧縮機
 20b、120b  膨張器
 20c、120c  屋外熱交換器
 20d、120d  送風ファン
 20e、120e  四方弁
 21、121  冷媒回路
 50、150  空気浄化機能付き熱交換形換気装置
 116  第一冷媒コイル
 117  第二冷媒コイル
 126a  温度検知部
 126b  湿度検知部
 130  室外機
 130a  圧縮機
 130b  膨張器
 130c  屋外熱交換器
 130d  送風ファン
 130e  四方弁
 131  冷媒回路
 141  制御部
 141a  入力部
 141b  記憶部
 141c  計時部
 141d  処理部
 141e  出力部
 143  操作パネル
1,101 House 2,102 Exhaust flow 3,103 Air supply 4,104 Exhaust air passage 5,105 Air supply air passage 6,106 Air purification device 6a, 106a Air supply inlet 6c, 106c Air supply outlet 6d, 106d Humidifier 6e , 106e Humidification motor 6f, 106f Humidification nozzle 6g Main body case 7,107 Duct 8 Control unit 8a Input unit 8b Processing unit 8c Output unit 8d Storage unit 8e Timing unit 9a, 109a Indoor exhaust port 9b, 109b Outdoor exhaust port 9c, 109c Outdoor Air supply port 9d, 109d Indoor air supply port 10,110 Heat exchange type ventilation device 10a, 110a Inner air port 10b, 110b Exhaust port 10c, 110c Outside air port 10d, 110d Air supply port 10e, 110e Heat exchange element 10f, 110f Main body case 10g, 110g Exhaust fan 10h, 110h Air supply fan 11,111 Indoor space 12,112 Outdoor space 15 Humidifier detector 16 Heat exchanger 18 Operation panel 20,120 Outdoor unit 20a, 120a Compressor 20b, 120b Inflator 20c, 120c Outdoor heat exchanger 20d, 120d Blower fan 20e, 120e Four-way valve 21,121 Humidifier circuit 50,150 Heat exchange type ventilator with air purification function 116 First refrigerant coil 117 Second refrigerant coil 126a Temperature detector 126b Humidifier detector 130 Outdoor unit 130a Compressor 130b Expander 130c Outdoor heat exchanger 130d Blower fan 130e Four-way valve 131 Humidifier circuit 141 Control unit 141a Input unit 141b Storage unit 141c Timing unit 141d Processing unit 141e Output unit 143 Operation panel

Claims (4)

  1.  屋内空間の空気を屋外空間に排出する排気風路を流通する排気流と、前記屋外空間の空気を前記屋内空間へ給気する給気風路を流通する給気流との間で熱交換する熱交換形換気装置と、
     前記給気風路から導入された熱交換後の前記給気流に対して、水とともに空気浄化を行う成分を付加する空気浄化部と、
     前記空気浄化部の上流側において、熱交換後の前記給気流に対して除湿を行う熱交換部と、
     前記熱交換部を制御する制御部と、
    を備え、
     前記制御部は、前記屋内空間に供給される前記給気流の湿度が前記屋内空間の空気の目標設定湿度となるように調湿する際、前記空気浄化部による前記給気流の湿度増加に関する湿度情報に基づいて、前記熱交換部による前記給気流に対する除湿量を制御する、空気浄化機能付き熱交換形換気装置。
    Heat exchange that exchanges heat between the exhaust flow that flows through the exhaust air passage that discharges the air in the indoor space to the outdoor space and the air supply air that flows through the air supply air passage that supplies the air in the outdoor space to the indoor space. Shape ventilation system and
    An air purification unit that adds a component that purifies air together with water to the air supply air after heat exchange introduced from the air supply air passage.
    On the upstream side of the air purification unit, a heat exchange unit that dehumidifies the air supply airflow after heat exchange, and a heat exchange unit.
    A control unit that controls the heat exchange unit and
    Equipped with
    When the control unit adjusts the humidity so that the humidity of the air supply air supplied to the indoor space becomes the target set humidity of the air in the indoor space, the humidity information regarding the humidity increase of the air supply air by the air purification unit is performed. A heat exchange type ventilation device with an air purification function that controls the amount of dehumidification of the air supply by the heat exchange unit based on the above.
  2.  前記制御部は、前記熱交換部に導入される前記給気流の湿度を前記目標設定湿度にまで前記熱交換部によって除湿する際の除湿量よりも、前記給気流に対する除湿量を増加させるように制御する、請求項1に記載の空気浄化機能付き熱交換形換気装置。 The control unit increases the dehumidification amount for the air supply airflow more than the dehumidification amount when the heat exchange unit dehumidifies the humidity of the air supply air introduced into the heat exchange unit to the target set humidity. The heat exchange type ventilation device with an air purification function according to claim 1, which is controlled.
  3.  前記制御部は、前記空気浄化部による前記給気流への湿度増加が第一加湿量である場合には、前記熱交換部による除湿を第一除湿量で行い、前記空気浄化部による前記給気流への湿度増加が前記第一加湿量よりも多い第二加湿量である場合には、前記熱交換部による除湿を前記第一除湿量よりも多い第二除湿量で行うように制御する、請求項1又は2に記載の空気浄化機能付き熱交換形換気装置。 When the humidity increase to the air supply by the air purification unit is the first humidification amount, the control unit dehumidifies by the heat exchange unit with the first dehumidification amount, and the air supply unit by the air purification unit dehumidifies the air supply. When the increase in humidity to the second dehumidification amount is larger than the first dehumidification amount, the dehumidification by the heat exchange unit is controlled to be performed by the second dehumidification amount larger than the first dehumidification amount. Item 2. The heat exchange type ventilation device with an air purification function according to Item 1 or 2.
  4.  前記空気浄化部は、前記空気浄化を行う成分を含む水を遠心破砕することによって、内部に導入される前記給気流に対して、前記空気浄化を行う成分を付加する、請求項1~3のいずれか一項に記載の空気浄化機能付き熱交換形換気装置。 3. The heat exchange type ventilation device with an air purification function according to any one of the items.
PCT/JP2021/021377 2020-07-22 2021-06-04 Heat exchange ventilation device with air purification function WO2022018983A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020125009A JP2022021449A (en) 2020-07-22 2020-07-22 Heat exchange type ventilation device with air cleaning function
JP2020-125009 2020-07-22
JP2020125010A JP2022021450A (en) 2020-07-22 2020-07-22 Heat exchange type ventilation device with air cleaning function
JP2020-125010 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022018983A1 true WO2022018983A1 (en) 2022-01-27

Family

ID=79728669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021377 WO2022018983A1 (en) 2020-07-22 2021-06-04 Heat exchange ventilation device with air purification function

Country Status (1)

Country Link
WO (1) WO2022018983A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142430A (en) * 1992-11-11 1994-05-24 Shin Apex Boeki Kk Method and device for purifying air
JPH07127895A (en) * 1993-11-04 1995-05-16 Nec Home Electron Ltd Controlling method for atmosphere and control system for the atmosphere
JP2005308305A (en) * 2004-04-21 2005-11-04 Matsushita Electric Works Ltd Ventilating installation
WO2016170701A1 (en) * 2015-04-23 2016-10-27 株式会社 東芝 Storage method and sterilization device
JP2019163898A (en) * 2018-03-20 2019-09-26 株式会社コロナ Humidifying air cleaner
JP2020046109A (en) * 2018-09-19 2020-03-26 パナソニックIpマネジメント株式会社 Liquid atomizer and heat exchange ventilation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142430A (en) * 1992-11-11 1994-05-24 Shin Apex Boeki Kk Method and device for purifying air
JPH07127895A (en) * 1993-11-04 1995-05-16 Nec Home Electron Ltd Controlling method for atmosphere and control system for the atmosphere
JP2005308305A (en) * 2004-04-21 2005-11-04 Matsushita Electric Works Ltd Ventilating installation
WO2016170701A1 (en) * 2015-04-23 2016-10-27 株式会社 東芝 Storage method and sterilization device
JP2019163898A (en) * 2018-03-20 2019-09-26 株式会社コロナ Humidifying air cleaner
JP2020046109A (en) * 2018-09-19 2020-03-26 パナソニックIpマネジメント株式会社 Liquid atomizer and heat exchange ventilation device

Similar Documents

Publication Publication Date Title
US10272745B2 (en) Humidifying device for vehicle
JP6253459B2 (en) Ventilator for air conditioning
US20220268460A1 (en) Air conditioning system
WO2020241358A1 (en) Air-conditioning system
CN108253598B (en) Control method of air conditioner and air conditioner
WO2022054616A1 (en) Air purification device and air purifying function-equipped heat exchange-type ventilation device using same
JP2008267795A (en) Air-conditioning management system
CN108266866B (en) Control method of air conditioner and air conditioner
CN108278661B (en) Control method of air conditioner and air conditioner
WO2020261982A1 (en) Air conditioning system
WO2020261794A1 (en) Outside air treatment device and air conditioning system
JP2010078217A (en) Air conditioning system
JP2007032998A (en) Air conditioner
JP2007187335A (en) Air conditioner
JP2007071495A (en) Air conditioner
WO2022018983A1 (en) Heat exchange ventilation device with air purification function
JP4938536B2 (en) Air conditioner
WO2022004264A1 (en) Heat exchange ventilation device with air purification function
JP2022021449A (en) Heat exchange type ventilation device with air cleaning function
JP2003130382A (en) Air conditioner
JP2022021450A (en) Heat exchange type ventilation device with air cleaning function
JP2022044108A (en) Air purification device
JP2022042571A (en) Air purification device
WO2018078755A1 (en) Air-conditioning system
JP7336641B2 (en) air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845757

Country of ref document: EP

Kind code of ref document: A1