WO2022017805A1 - Procédé de dépôt d'un revêtement au moyen d'un champ magnétique - Google Patents

Procédé de dépôt d'un revêtement au moyen d'un champ magnétique Download PDF

Info

Publication number
WO2022017805A1
WO2022017805A1 PCT/EP2021/068886 EP2021068886W WO2022017805A1 WO 2022017805 A1 WO2022017805 A1 WO 2022017805A1 EP 2021068886 W EP2021068886 W EP 2021068886W WO 2022017805 A1 WO2022017805 A1 WO 2022017805A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
grains
brake disc
magnetic field
sensitive
Prior art date
Application number
PCT/EP2021/068886
Other languages
English (en)
Inventor
Laurent Aubanel
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to EP21740057.1A priority Critical patent/EP4185734A1/fr
Publication of WO2022017805A1 publication Critical patent/WO2022017805A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only

Definitions

  • the present invention relates to a method of depositing a coating by means of a magnetic field.
  • application US20130161136A1 discloses a method using surface preparation by sandblasting, a Nickel coating produced electrochemically and a deposition of tungsten carbide mixed with a nickel chromium matrix (WC-NiCr) produced by the HVOF (High Velocity Oxy/Fuel) technique.
  • WC-NiCr nickel chromium matrix
  • HVOF High Velocity Oxy/Fuel
  • this technique consists of accelerating a filler material (300 to 1500 m/s) in powder form beyond a critical speed. These speeds lead to plastic deformation on impact of this material on a substrate to be treated, which is large enough to form an adherent coating.
  • the projection temperatures are very low (typically between 300 and 1100°C) compared to the temperatures used in other processes. The material before impact is therefore not melted. However, the projected material must be ductile in order to be able to deform, which generally limits the use of this technique to metals. Such a process could make it possible to produce the coating with a cycle time reduced by a factor of 10.
  • a method according to the invention makes it possible to solve the main drawbacks noted in the state of the art.
  • the subject of the invention is a process for cold dynamic spraying of a powder against a brake disc, said powder comprising grains sensitive to an electric or magnetic field.
  • the method comprises the following steps:
  • the presence of an electric field or a magnetic field on the brake disc will make it possible to accelerate the grains of powder which are sensitive to said field in order to increase their speed of impact against said disc II. deposit, which is represented by the ratio of the amount of material deposited on the amount of material projected, is significantly improved, and that the adhesion of the coating on the brake disc is increased.
  • the creation of the electric field can be carried out by any means and the creation of the magnetic field can for example be carried out with at least one magnet or one electromagnet placed against the brake disc.
  • the step of spraying the grains of powder against the brake disc is carried out by means of a blown gas whose temperature is between 300 ⁇ and 1100 ⁇ . These are low temperatures which are not likely to significantly increase the temperature of the particles of powder projected and even less to melt them before their impact against the disc.
  • the method comprises a step of creating a magnetic field by means of at least one magnet or one electromagnet placed on the brake disc.
  • the magnetic field will therefore make it possible to accelerate the grains of powder sensitive to the magnetic field, at the end of their travel just before impacting the brake disc.
  • the brake disc has a first face against which the particles of powder are projected, and a second face which is placed behind said first face with respect to the direction of arrival of the grains of powder, said at least one magnet or electromagnet being positioned against the second face. In this way, the magnet or the electromagnet is moved away from the first face, and will therefore make it possible to effectively accelerate the grains of powder sensitive to the magnetic field, without interposing themselves on the trajectory of said grains.
  • the brake disc is made of cast iron and the grains of powder which are sensitive to the magnetic field are made of a ferromagnetic alloy.
  • the ferromagnetic alloy is a ferritic stainless steel.
  • the ferritic steel is to be chosen from a steel of the 410L and 430L type.
  • the powder projected against the brake disc is a mixture of a first powder whose grains are sensitive to the magnetic field and of a second powder whose grains are not sensitive to said magnetic field, the grains of the first powder representing at most 35% of the total number of grains of the projected powder.
  • the coating formed on the brake disc by such a powder makes it possible to delay the wear of this brake disc.
  • the grains of the second powder are ceramic.
  • the coating formed on the brake disc by a powder comprising grains having a high hardness, makes it possible in particular to delay the wear of this brake disc.
  • the average size of the grains of the second powder is between 5 ⁇ m and 70 ⁇ m.
  • a method according to the invention has the advantage of being able to overcome the drawbacks of existing methods by means of a clever implementation of simple and compact elements, such as for example magnets or electromagnets.
  • a dynamic cold spraying process according to the invention makes it possible to spray grains of powder against a brake disc, in order to create a specific coating making it possible both to delay the wear of said disc and to limit the emissions of polluting particles.
  • the principle of such a process is to accelerate a filler material (300 to 1500 m/s) in powder form beyond a critical speed. These speeds lead to a plastic deformation of the grains constituting this powder when they impact a surface of the brake disc, so as to form a homogeneous coating having good adhesion to the brake disc.
  • the spraying temperatures are very low (typically between 300 and 1100°C) in comparison with the temperatures used in the other processes, so that the particles of powder sprayed are not likely to melt before their impact against the disc.
  • the brake disc has a first face against which the grains of powder will be projected, and a second face which is parallel to said first surface and which is located behind the latter with respect to the direction of projection of the grains.
  • the powder comprises grains which are sensitive to a magnetic field
  • a first type of powder may consist exclusively of grains sensitive to a magnetic field, such as for example grains made of ferromagnetic steel, which may for example be a ferritic steel such as 410L or 430L.
  • a second type of powder can result from a mixture of at least two types of grains, grains sensitive to the magnetic field like those of the first type of powder, and grains having a certain hardness and not sensitive to the magnetic field, such as, for example, grains made of ceramic, which may for example be tungsten carbide or other carbides.
  • the grains sensitive to the magnetic field represent a maximum of 35% of all the grains constituting the powder. The presence of grains having a certain hardness makes it possible to guarantee a coating which will make it possible to slow down the wear of the brake disc and to limit the emissions of polluting particles.
  • the average size of the grains not sensitive to the magnetic field and having a certain hardness is between 7 ⁇ m and 70 ⁇ m.
  • a third type of powder can result from a mixture of at least two types of grains, grains sensitive to the magnetic field like those of the first type of powder, and grains having a certain hardness and also sensitive to the magnetic field.
  • the grains sensitive to the magnetic field entering into the composition of the three types of powder mentioned above can comprise grains of nickel or grains made from different oxides.
  • the grains having a certain hardness and entering into the composition of the second type of powder can comprise grains made of metals or metal alloys with high hardness such as tungsten (W) or steels with tools.
  • the acceleration of the powder grains can be achieved by means of an electric field replacing the magnetic field.
  • the powder used in the context of a method according to the invention making it possible in particular to deposit a coating on a brake disc must comprise grains which are sensitive to a magnetic field or to an electric field, and grains having a certain hardness, said grains possibly being distinct or merged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Braking Arrangements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention se rapporte à un procédé de projection dynamique à froid d'une poudre contre un disque de frein, ladite poudre comprenant des grains sensibles à un champ électrique ou magnétique. Selon l'invention, le procédé comprend les étapes suivantes : -une étape de création d'un champ magnétique ou électrique sur le disque de frein, -une étape de projection de la poudre contre le disque de frein, -une étape d'accélération des grains sensibles au champ électrique ou magnétique, -une étape de formation d'un revêtement sur le disque de frein à partir des grains de poudre projetés.

Description

Titre de l'invention : Procédé de dépôt d’un revêtement au moyen d’un champ magnétique
La présente invention concerne un procédé de dépôt d’un revêtement au moyen d’un champ magnétique.
Dans le domaine de l’automobile, les réglementations sur les émissions de polluants sont de plus en plus importantes en Europe et dans le monde, et ont pour principal objet de limiter les émissions polluantes du groupe motopropulseur. Cependant, le groupe motopropulseur n’est pas le seul élément d’un véhicule automobile susceptible d’émettre des polluants. En effet, les systèmes de freinage sont aussi de forts émetteurs de particules fines, et il apparait que de nouvelles réglementations européennes pourraient voir le jour à relativement court terme, pour encadrer ce type d’émissions.
Il est donc important d’anticiper ces nouvelles réglementations en cherchant donc des solutions pour diminuer l’usure de ses disques de frein en fonte, et donc les émissions de particules associées. Une des voies explorées est la réalisation de revêtement sur ces disques.
Certains constructeurs automobiles, ont déjà mis au point des revêtements sur leurs disques de frein en fonte. Cependant les procédés mis en oeuvre par ces constructeurs sont généralement complexes et/ou lents, et ne permettent donc pas de répondre au besoin de produire des véhicules à un prix abordable, à des cadences de production forte.
A titre d’exemple, la demande US20130161136A1 divulgue un procédé mettant en oeuvre une préparation de surface par sablage, un revêtement en Nickel réalisé par voie électrochimique et un dépôt de carbure de tungstène mélangé à une matrice nickel chrome (WC-NiCr) réalisé par la technique HVOF (de l’anglais Hight Velocity Oxy/Fuel). Or, ce procédé implique la réalisation de plusieurs étapes successives, réalisées avec des procédés différents et tous relativement lents et coûteux.
On peut également citer les demandes US8657082 et US8877296, se rapportant à un procédé se composant d’une préparation de surface réalisée par usinage, d’une nitrocarburation accompagnée d’une oxydation, d’un dépôt d’Inconel réalisé avec le procédé HVOF, et pour finir d’un dépôt APS (de l’anglais Air Plasma Spraying) d’une céramique. Or, un tel procédé met en oeuvre également un grand nombre d’étapes, consommatrices de temps et génératrices de coûts supplémentaires.
On peut enfin citer la demande US20120058363, décrivant un procédé basé sur l’application d’un revêtement de carbure de niobium et de carbure de vanadium dans une matrice d’acier duplex (austéno-ferritique) par un procédé de type « laser cladding ». Bien que ce procédé ne présente qu’une seule étape de réalisation et est donc plus simple à mettre en oeuvre, il demeure toutefois relativement lent et ne peut donc pas être appliqué pour réaliser des productions de grandes séries.
Tous les procédés de projection thermique ont besoin d’une préparation de surface, voire d’une sous-couche, pour permettre l’accroche du revêtement et sa tenue dans le temps, à l’exception de deux procédés :
-le laser cladding, mais celui-ci est un procédé trop lent,
-la projection dynamique à froid ou cold spray. Pour rappel, cette technique consiste à accélérer au-delà d'une vitesse critique un matériau d’apport (300 à 1500 m/s) sous forme de poudre. Ces vitesses entraînent une déformation plastique à l’impact de ce matériau sur un substrat à traiter, qui est suffisamment importante pour former un revêtement adhérent. Les températures de projection sont très faibles (typiquement comprises entre 300 à 1100 O) en comparaison des températures utilisées dans les autres procédés La matière avant impact n'est donc pas fondue. Il faut cependant que le matériau projeté soit ductile pour pouvoir se déformer, ce qui limite généralement l’utilisation de cette technique aux métaux. Un tel procédé pourrait permettre de réaliser le revêtement avec un temps de cycle réduit par un facteur 10. Mais les deux limitations du procédé « cold spray » par rapport au procédé « laser cladding », sont le rendement de dépôt (rapport de la quantité de matière déposée sur la quantité de matière projetée) et l’adhérence du dépôt sur le substrat. Ceci est particulièrement vrai quand il s’agit de faire un dépôt cold spray sur un substrat dur comme de la fonte.
Un procédé selon l’invention permet de résoudre les principaux inconvénients relevés dans l’état de la technique. L’invention a pour objet un procédé de projection dynamique à froid d’une poudre contre un disque de frein, ladite poudre comprenant des grains sensibles à un champ électrique ou magnétique.
Selon l’invention, le procédé comprend les étapes suivantes :
-une étape de création d’un champ magnétique ou électrique sur le disque de frein,
-une étape de projection de la poudre contre le disque de frein,
-une étape d’accélération des grains sensibles au champ électrique ou magnétique,
-une étape de formation d’un revêtement sur le disque de frein à partir des grains de poudre projetés.
La présence d’un champ électrique ou d’un champ magnétique sur le disque de frein va permettre d’accélérer les grains de poudre qui sont sensibles audit champ afin d’augmenter leur vitesse d’impact contre ledit disque II en résulte que le rendement de dépôt, qui est représenté par le rapport de la quantité de matière déposée sur la quantité de matière projetée, est nettement amélioré, et que l’adhérence du revêtement sur le disque de frein est augmentée. La création du champ électrique peut être réalisée par tout moyen et la création du champ magnétique peut par exemple être réalisée avec au moins un aimant ou un électro-aimant placé contre le disque de frein.
Selon une caractéristique possible de l’invention, l’étape de projection des grains de poudre contre le disque de frein s’effectue au moyen d’un gaz soufflé dont la température est comprise entre 300Ό et 1100Ό. Il s’agit de températures faibles qui ne risquent pas d’augmenter significativement la température des grains de poudre projetés et encore moins de les faire fondre avant leur impact contre le disque.
Selon une caractéristique possible de l’invention, le procédé comprend une étape de création d’un champ magnétique au moyen d’au moins un aimant ou un électroaimant placé sur le disque de frein. Le champ magnétique va donc permettre accélérer les grains de poudre sensibles au champ magnétique, en fin de course juste avant d’impacter le disque de frein. Selon une caractéristique possible de l’invention, le disque de frein présente une première face contre laquelle sont projetées les particules de poudre, et une deuxième face qui est placée derrière ladite première face par rapport au sens d’arrivée des grains de poudre, ledit au moins un aimant ou électroaimant étant positionné contre la deuxième face. De cette manière, l’aimant ou l’électroaimant est éloigné de la première face, et va donc permettre d’accélérer efficacement les grains de poudre sensibles au champ magnétique, sans venir s’interposer sur la trajectoire desdits grains.
Selon une caractéristique possible de l’invention, le disque de frein est en fonte et les grains de poudre qui sont sensibles au champ magnétique sont réalisés dans un alliage ferromagnétique.
Selon une caractéristique possible de l’invention, l’alliage ferromagnétique est un acier inox ferritique.
Selon une caractéristique possible de l’invention, l’acier ferritique est à choisir parmi un acier de type 410L et 430L.
Selon une caractéristique possible de l’invention, la poudre projetée contre le disque de frein est un mélange d’une première poudre dont les grains sont sensibles au champ magnétique et d’une deuxième poudre dont les grains ne sont pas sensibles audit champ magnétique, les grains de la première poudre représentant au plus 35% du nombre total des grains de la poudre projetée. Le revêtement formé sur le disque de frein par une telle poudre permet de retarder l’usure de ce disque de frein.
Selon une caractéristique possible de l’invention, les grains de la deuxième poudre sont en céramique. Le revêtement formé sur le disque de frein par une poudre comprenant des grains ayant une dureté élevée, permet notamment de retarder l’usure de ce disque de frein.
Selon une caractéristique possible de l’invention, la taille moyenne des grains de la deuxième poudre est comprise entre 5pm et 70pm.
Un procédé selon l’invention présente l’avantage de pouvoir s’affranchir des inconvénients des procédés existants au moyen d’une mise en oeuvre astucieuse d’éléments simples et peu encombrants, comme par exemple des aimants ou des électroaimants. Un procédé de projection dynamique à froid selon l’invention permet de projeter des grains de poudre contre un disque de frein, afin de créer un revêtement spécifique permettant à la fois de retarder l’usure dudit disque et de limiter les émissions de particules polluantes.
Le principe d’un tel procédé est d’accélérer au-delà d'une vitesse critique un matériau d’apport (300 à 1500 m/s) sous forme de poudre. Ces vitesses entraînent une déformation plastique des grains constituant cette poudre lorsqu’ils impactent une surface du disque de frein, de manière à former un revêtement homogène ayant une bonne adhérence sur le disque de frein. Les températures de projection sont très faibles (typiquement comprises entre 300 à 1100 O) en comparaison des températures utilisées dans les autres procédés, si bien que les grains de poudre projetés ne risquent pas de fondre avant leur impact contre le disque.
Le disque de frein présente une première face contre laquelle les grains de poudre vont être projetés, et une deuxième face qui est parallèle à ladite première surface et qui est située derrière celle-ci par rapport au sens de projection des grains. La particularité d’un procédé selon l’invention est que :
-la poudre comprend des grains qui sont sensibles à un champ magnétique,
-au moins un aimant ou un électroaimant est placé contre la deuxième face du disque, afin d’accélérer les grains de poudre qui sont sensibles au champ magnétique.
Le fait d’augmenter la vitesse de certains grains de la poudre permet d’une part d’augmenter le rendement de dépôt, qui est le rapport entre la quantité de matière déposée sur le disque et la quantité totale de matière projetée, et d’autre part, d’améliorer l’adhérence du revêtement ainsi déposé sur ledit disque.
Un premier type de poudre peut être constituée exclusivement de grains sensibles à un champ magnétique, comme par exemple des grains réalisés en acier ferromagnétique, pouvant par exemple être un acier ferritique comme le 410L ou le 430L.
Selon une autre variante de réalisation de l’invention, un deuxième type de poudre peut résulter d’un mélange d’au moins deux types de grains, des grains sensibles au champ magnétique comme ceux du premier type de poudre, et des grains présentant une certaine dureté et non sensibles au champ magnétique, comme par exemple des grains réalisés en céramique, pouvant par exemple être du carbure de tungstène ou d’autres carbures. Dans le cas du deuxième type de poudre, les grains sensibles au champ magnétique représentent au maximum 35% de la totalité des grains constituant la poudre. La présence de grains présentant une certaine dureté permet de garantir un revêtement qui va permettre de ralentir l’usure du disque de frein et de limiter les émissions de particules polluantes.
La taille moyenne des grains non sensibles au champ magnétique et présentant une certaine dureté est comprise entre 7pm et 70pm.
Un troisième type de poudre peut résulter d’un mélange d’au moins deux types de grains, des grains sensibles au champ magnétique comme ceux du premier type de poudre, et des grains présentant une certaine dureté et également sensibles au champ magnétique.
Selon une variante de réalisation de l’invention, les grains sensibles au champ magnétique entrant dans la composition des trois types de poudre précédemment évoqués, peuvent comprendre des grains de Nickel ou des grains réalisés à base de différents oxydes.
Selon une variante de réalisation de l’invention, les grains présentant une certaine dureté et entrant dans la composition du deuxième type de poudre, peuvent comprendre des grains réalisés en métaux ou alliages métalliques à haute dureté comme le tungstène (W) ou des aciers à outils.
Selon une variante de réalisation de l’invention, l’accélération des grains de poudre peut être réalisée par le biais d’un champ électrique se substituant au champ magnétique.
Pour résumer, la poudre utilisée dans le cadre d’un procédé selon l’invention permettant notamment de déposer un revêtement sur un disque de frein, doit comporter des grains qui sont sensibles à un champ magnétique ou à un champ électrique, et des grains présentant une certaine dureté, lesdits grains pouvant être distincts ou confondus.

Claims

Revendications
[Revendication 1] Procédé de projection dynamique à froid d’une poudre contre un disque de frein, ladite poudre comprenant des grains sensibles à un champ électrique ou magnétique, caractérisé en ce qu’il comprend les étapes suivantes :
-une étape de création d’un champ magnétique ou électrique sur le disque de frein,
-une étape de projection de la poudre contre le disque de frein,
-une étape d’accélération des grains sensibles au champ électrique ou magnétique,
-une étape de formation d’un revêtement sur le disque de frein à partir des grains de poudre projetés.
[Revendication 2] Procédé de projection selon la revendication 1 , caractérisé en ce que l’étape de projection des grains de poudre contre le disque de frein s’effectue au moyen d’un gaz soufflé dont la température est comprise entre 300Ό et 1100Ό.
[Revendication 3] Procédé de projection selon l’une quelconque des revendications 1 ou 2, caractérisé en ce qu’il comprend une étape de création d’un champ magnétique au moyen d’au moins un aimant ou un électroaimant placé sur le disque de frein.
[Revendication 4] Procédé de projection selon la revendication 3, caractérisé en ce que le disque de frein présente une première face contre laquelle sont projetées les particules de poudre, et une deuxième face qui est placée derrière ladite première face par rapport au sens d’arrivée des grains de poudre, et en ce que ledit au moins un aimant ou électroaimant est positionné contre la deuxième face.
[Revendication 5] Procédé de projection selon l’une quelconque des revendications 3 ou 4, caractérisé en ce que le disque de frein est en fonte et les grains de poudre qui sont sensibles au champ magnétique sont réalisés dans un alliage ferromagnétique.
[Revendication 6] Procédé selon la revendication 5, caractérisé en ce que l’alliage ferromagnétique est un acier inox ferritique.
[Revendication 7] Procédé selon la revendication 6, caractérisé en ce que l’acier ferritique est à choisir parmi un acier de type 410L et 430L.
[Revendication 8] Procédé selon l’une quelconque des revendications 3 à 7, caractérisé en ce que la poudre projetée contre le disque de frein est un mélange d’une première poudre dont les grains sont sensibles au champ magnétique et d’une deuxième poudre dont les grains ne sont pas sensibles audit champ magnétique, et en ce que les grains de la première poudre représentent au plus 35% du nombre total des grains de la poudre projetée.
[Revendication 9] Procédé selon la revendication 8, caractérisé en ce que les grains de la deuxième poudre sont en céramique.
[Revendication 10] Procédé selon la revendication 9, caractérisé en ce que la taille moyenne des grains de la deuxième poudre est comprise entre 5pm et 70pm.
PCT/EP2021/068886 2020-07-21 2021-07-07 Procédé de dépôt d'un revêtement au moyen d'un champ magnétique WO2022017805A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21740057.1A EP4185734A1 (fr) 2020-07-21 2021-07-07 Procédé de dépôt d'un revêtement au moyen d'un champ magnétique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007656A FR3112798B1 (fr) 2020-07-21 2020-07-21 Procédé de dépôt d’un revêtement au moyen d’un champ magnétique
FR2007656 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022017805A1 true WO2022017805A1 (fr) 2022-01-27

Family

ID=73013620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/068886 WO2022017805A1 (fr) 2020-07-21 2021-07-07 Procédé de dépôt d'un revêtement au moyen d'un champ magnétique

Country Status (3)

Country Link
EP (1) EP4185734A1 (fr)
FR (1) FR3112798B1 (fr)
WO (1) WO2022017805A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094409A (zh) * 2022-06-28 2022-09-23 中国航发北京航空材料研究院 一种含镉涂层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052970A1 (de) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Kaltgasspritzdüse und Kaltgasspritzvorrichtung mit einer derartigen Spritzdüse
WO2011088818A1 (fr) * 2010-01-22 2011-07-28 Mtu Aero Engines Gmbh Dispositif et procédé pour la pulvérisation de poudre avec une vitesse de flux de gaz élevée
US20120058363A1 (en) 2009-05-13 2012-03-08 Ford Global Technologies, Llc Coated lightweight metal disk
US20130161136A1 (en) 2011-12-27 2013-06-27 Robert Bosch Gmbh Process for coating a brake disk and brake disk produced by the process
US8657082B2 (en) 2009-02-09 2014-02-25 Daimler Ag Brake disc for a vehicle and method for the production thereof
US8877296B2 (en) 2009-02-09 2014-11-04 Daimler Ag Method for producing a brake disc

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657082B2 (en) 2009-02-09 2014-02-25 Daimler Ag Brake disc for a vehicle and method for the production thereof
US8877296B2 (en) 2009-02-09 2014-11-04 Daimler Ag Method for producing a brake disc
US20120058363A1 (en) 2009-05-13 2012-03-08 Ford Global Technologies, Llc Coated lightweight metal disk
DE102009052970A1 (de) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Kaltgasspritzdüse und Kaltgasspritzvorrichtung mit einer derartigen Spritzdüse
WO2011088818A1 (fr) * 2010-01-22 2011-07-28 Mtu Aero Engines Gmbh Dispositif et procédé pour la pulvérisation de poudre avec une vitesse de flux de gaz élevée
US20130161136A1 (en) 2011-12-27 2013-06-27 Robert Bosch Gmbh Process for coating a brake disk and brake disk produced by the process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094409A (zh) * 2022-06-28 2022-09-23 中国航发北京航空材料研究院 一种含镉涂层的制备方法
CN115094409B (zh) * 2022-06-28 2024-03-01 中国航发北京航空材料研究院 一种含镉涂层的制备方法

Also Published As

Publication number Publication date
FR3112798A1 (fr) 2022-01-28
FR3112798B1 (fr) 2023-01-13
EP4185734A1 (fr) 2023-05-31

Similar Documents

Publication Publication Date Title
EP0674114B1 (fr) Disque multimatériaux pour freinage à haute énergie
US11725704B2 (en) Brake disk and method for producing a brake disk
JP5822314B2 (ja) 車両用ブレーキディスク
US20060093736A1 (en) Aluminum articles with wear-resistant coatings and methods for applying the coatings onto the articles
US8591986B1 (en) Cold spray deposition method
MXPA05013017A (es) Proceso de aspersion en frio por vacio.
US20070116890A1 (en) Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
EP4185734A1 (fr) Procédé de dépôt d'un revêtement au moyen d'un champ magnétique
US20140251501A1 (en) Method and system for die compensation and restoration using high-velocity oxy-fuel thermal spray coating and plasma ion nitriding
US20070098913A1 (en) Method for coating turbine engine components with metal alloys using high velocity mixed elemental metals
JP2023506976A (ja) ディスクブレーキ用ディスクのブレーキバンド
FR2541297A1 (fr) Materiau pulverulent pour projection thermique
EP2337044A1 (fr) Procédés de fabrication d'un plot de contact électrique et d'un contact électrique
JPH0854060A (ja) 溶射方法、溶射層を摺動面とする摺動部材の製造方法、ピストンおよびピストンの製造方法
US20060269685A1 (en) Method for coating turbine engine components with high velocity particles
EP0428517A1 (fr) Dispositif de frein a disque pour automobiles, disque de frein et machoire de frein prevus a cet effet et leurs procedes de fabrication
EP0169858A1 (fr) Materiau pour pulverisation thermique et son procede de fabrication
FR2775913A1 (fr) Procede de depose d'une couche protectrice sur des surfaces d'une piece a traiter
FR2813318A1 (fr) Formation d'un revetement aluminiure incorporant un element reactif, sur un substrat metallique
US20230135647A1 (en) Method for producing a brake disc, and a brake disc
GB2239264A (en) Method for depositing wear-resistant dispersion coatings
US20110076414A1 (en) Process for Applying a Bonding Primer Layer
FR2716898A1 (fr) Pièce, telle qu'un moule de fonderie, et son procédé de réalisation.
FR2717875A1 (fr) Disque multimatériaux pour freinage à haute énergie.
FR2538280A1 (fr) Procede d'atomisation rotatif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021740057

Country of ref document: EP

Effective date: 20230221