WO2022017535A1 - 基于分散式控制和布局的电池储能系统及其能量调度方法 - Google Patents

基于分散式控制和布局的电池储能系统及其能量调度方法 Download PDF

Info

Publication number
WO2022017535A1
WO2022017535A1 PCT/CN2021/108494 CN2021108494W WO2022017535A1 WO 2022017535 A1 WO2022017535 A1 WO 2022017535A1 CN 2021108494 W CN2021108494 W CN 2021108494W WO 2022017535 A1 WO2022017535 A1 WO 2022017535A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
energy storage
module
cabinet
temperature
Prior art date
Application number
PCT/CN2021/108494
Other languages
English (en)
French (fr)
Inventor
刘明义
许世森
曹曦
曹传钊
裴杰
刘大为
徐若晨
朱勇
李�昊
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能集团技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能集团技术创新中心有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to JP2023600011U priority Critical patent/JP3242734U/ja
Publication of WO2022017535A1 publication Critical patent/WO2022017535A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Definitions

  • the invention belongs to the technical field of energy storage, and in particular relates to a battery energy storage system based on distributed control and layout and an energy scheduling method thereof.
  • the purpose of the present invention is to provide a battery energy storage system based on distributed control and layout and an energy scheduling method thereof, which has high reliability and safety, can greatly improve the working efficiency of the system, and finally realizes extended operation.
  • the purpose of the service life of the energy storage system is to provide a battery energy storage system based on distributed control and layout and an energy scheduling method thereof, which has high reliability and safety, can greatly improve the working efficiency of the system, and finally realizes extended operation.
  • the invention discloses a battery energy storage system based on distributed control and layout, comprising a transformer, a DC-AC module and an energy storage battery cabinet; each energy storage battery cabinet is connected in series with its corresponding DC-AC module, and several DC-AC modules are connected in series. After the modules are connected in parallel, one end of the transformer is connected, and the other end of the transformer is connected to the external power grid;
  • the DC-AC module includes a control module, a BMS battery management module and a charge and discharge circuit; the control module is respectively connected with the BMS battery management module and the charge and discharge circuit; the energy storage battery cabinet includes a battery module, A temperature sensor and a temperature control device; the battery module is respectively connected with the BMS battery management module and the charging and discharging circuit, and the temperature sensor and the temperature control device are respectively connected with the control module.
  • the battery module is composed of several single cells connected in series.
  • each energy storage battery cabinet is less than or equal to 300kWh.
  • the single battery is a lithium ion battery.
  • the single cells in the same energy storage battery cabinet are of the same type, and the single cells in different energy storage battery cabinets are of the same type or different.
  • the interior of the energy storage battery cabinet is a closed space
  • the cabinet body of the energy storage battery cabinet is made of fireproof material
  • an insulating layer is provided outside the energy storage battery cabinet.
  • all energy storage battery cabinets are distributed in a matrix, and there is a gap between adjacent energy storage battery cabinets.
  • the DC-AC modules are connected through long-distance networking.
  • the present invention discloses the energy scheduling method of the above-mentioned distributed control and layout-based battery energy storage system, including:
  • the temperature inside the energy storage battery cabinet is monitored in real time through the temperature sensor, and the data is fed back to the control module, which controls the temperature inside the energy storage battery cabinet through the temperature control device;
  • the temperature of the battery module is monitored in real time through the BMS battery management module.
  • the battery module When the temperature of the battery module is greater than the highest value of the safe temperature range, the battery module will stop running through the charging and discharging circuit; when the temperature of the battery module is at a safe temperature When the range is on the high side, the BMS battery management module reduces the charging and discharging current rate of the battery module; when the temperature of the battery module is lower than the minimum value of the safe temperature range, the battery module is charged and discharged through the charging and discharging circuit. ; If the temperature of the battery module is in the low range of the safe temperature range, increase the charge and discharge current rate of the battery module through the BMS battery management module, and reduce the charge and discharge of the battery modules in other energy storage battery cabinets. The current rate keeps the power of the entire battery energy storage system unchanged.
  • the present invention has the following beneficial technical effects:
  • the invention discloses a battery energy storage system based on distributed control and layout.
  • Each DC-AC module corresponds to an energy storage battery cabinet, the DC-AC module is connected to a transformer, and the transformer is connected to an external power grid.
  • Each energy storage battery The cabinets are connected in parallel. When a problem occurs in one energy storage battery cabinet, it will not have any impact on the safety and normal operation of other energy storage battery cabinets, which improves the single point failure of the battery modules in this energy storage battery cabinet. survival rate.
  • the distributed layout of the system can be applied to large-scale battery energy storage systems.
  • the temperature in the energy storage battery cabinet can be detected in real time through the temperature sensor, and can be adjusted in time through the temperature control device to maintain a stable operating temperature of the battery module, especially in hot and cold regions, which can greatly improve the safety of the system.
  • the BMS battery management module can monitor the working status of the battery modules in the energy storage battery cabinet in real time, manage and maintain each battery module intelligently, and make the battery module run in the best working condition through the charging and discharging circuit to prevent overcharging and overcharging.
  • the high heat phenomenon and other faults caused by discharge prolong the service life of the battery module, and at the same time improve the safety and stability of the entire system.
  • the battery module is composed of several single cells connected in series, with no circulating current and high safety.
  • each energy storage battery cabinet is less than or equal to 300kwh, which can realize fine control.
  • the single battery is a lithium-ion battery, which has high energy density and long life.
  • the single cells in the same energy storage battery cabinet are of the same type, which can ensure consistency and avoid the short-board effect affecting the efficiency of the entire energy storage battery cabinet; the single battery types in different energy storage battery cabinets are the same or different, Compatibility is good.
  • the interior of the energy storage battery cabinet is a closed space
  • the cabinet body of the energy storage battery cabinet is made of fireproof material
  • the exterior of the energy storage battery cabinet is provided with a thermal insulation layer, which is fireproof, rainproof, sandproof, windproof, and heat preservation (used in severe cold). region), etc., can ensure the normal operation of the battery module in the cabinet.
  • all energy storage battery cabinets are distributed in a matrix, and there is a gap between adjacent energy storage battery cabinets, which can prevent a fire in a single energy storage battery cabinet from causing a fire in the surrounding energy storage battery cabinets, avoid the expansion of losses, and greatly improve the performance. system security.
  • each DC-AC module is connected through a long-distance network, which can ensure communication and improve the reliability of the system when the distance is long or wiring is inconvenient.
  • the energy scheduling method of the battery energy storage system based on the decentralized control and layout disclosed in the present invention has high degree of automation, high reliability and safety, can greatly improve the working efficiency of the system, and finally achieve the purpose of extending the service life of the energy storage system .
  • FIG. 1 is a schematic diagram of the overall structure of a battery energy storage system based on distributed control and layout of the present invention
  • FIG. 2 is a schematic diagram of the site layout of the battery energy storage system based on distributed control and layout of the present invention
  • FIG. 3 is a schematic diagram of the connection of the battery energy storage system based on the distributed control and layout of the present invention.
  • 1 is the transformer
  • 2 is the DC-AC module
  • 2-1 is the control module
  • 2-2 is the BMS battery management module
  • 2-3 is the charging and discharging circuit
  • 3 is the energy storage battery cabinet
  • 3-1 is the battery Module
  • 3-2 is a temperature sensor
  • 3-3 is a temperature control device.
  • a battery energy storage system based on distributed control and layout of the present invention includes a transformer 1, a DC-AC module 2 and an energy storage battery cabinet 3; each energy storage battery cabinet 3 and its corresponding DC-AC
  • the modules 2 are connected in series, and a plurality of DC-AC modules 2 are connected in parallel to one end of the transformer 1 , and each DC-AC module 2 is preferably connected through a long-distance networking technology.
  • the other end of the transformer 1 is connected to the external power grid; all the energy storage battery cabinets 3 are distributed in a matrix, and there is a physical distance between adjacent energy storage battery cabinets 3 .
  • the capacity of each energy storage battery cabinet 3 is less than or equal to 300kWh
  • the DC-AC module 2 includes a control module 2-1, a BMS battery management module 2-2 and a charging and discharging circuit 2-3, and functions include power detection, information measurement, reporting and recording of system operating status, system fault diagnosis and system self-protection etc., which greatly improves the reliability and availability of the system.
  • the control module 2-1 is respectively connected with the BMS battery management module 2-2 and the charging and discharging circuit 2-3;
  • the energy storage battery cabinet 3 includes a battery module 3-1 and a temperature sensor 3 arranged inside the cabinet of the energy storage battery cabinet 3 -2 and a temperature control device 3-3, the temperature control device 3-3 may be an air conditioner.
  • the interior of the energy storage battery cabinet 3 is a closed space, and the cabinet body of the energy storage battery cabinet 3 is made of fireproof material, so that the energy storage battery cabinet 3 has the functions of fireproof, rainproof, sandproof, windproof, heat preservation (used in severe cold areas), etc. It has a certain metal structure to ensure rigidity, and an insulating layer is provided outside the energy storage battery cabinet 3 .
  • the battery module 3-1 is composed of several single cells in series or in parallel.
  • the preferred solution is series connection, no circulation, and high safety factor; the single cell can use various types of batteries, with good compatibility, preferably lithium-ion batteries. High energy density and long life.
  • the single cells in the same energy storage battery cabinet 3 are of the same type, which can ensure consistency and avoid the short-board effect affecting the efficiency of the entire energy storage battery cabinet; the single battery types in different energy storage battery cabinets 3 can be the same or different. , good compatibility.
  • the battery module 3-1 is respectively connected to the BMS battery management module 2-2 and the charging and discharging circuit 2-3, and the temperature sensor 3-2 and the temperature control device 3-3 are respectively connected to the control module 2-1.
  • the above-mentioned energy scheduling method for the battery energy storage system based on distributed control and layout includes:
  • Power matching goal DC energy storage plus AC energy storage in the energy storage system equals the total power of the energy storage system.
  • the energy storage system is composed of each energy storage battery cabinet 3 in parallel, then the total power of the energy storage system is the sum of the power of each energy storage battery cabinet 3, the power is sometimes positive and sometimes negative, positive means the battery is discharged, and negative means charging the battery .
  • the temperature inside the energy storage battery cabinet 3 is monitored in real time by the temperature sensor 3-2, and the data is fed back to the control module 2-1.
  • the control module 2-1 controls the storage battery through the temperature control device 3-3. The temperature inside the battery cabinet 3;
  • Safety temperature target Monitor the temperature of the battery module 3-1 in real time through the BMS battery management module 2-2. When the temperature of the battery module 3-1 is greater than the highest value of the safe temperature range, the charge and discharge circuit 2-3 will make the temperature of the battery module 3-1 higher.
  • the battery module 3-1 stops running; when the temperature of the battery module 3-1 is in the high range of the safe temperature range, the BMS battery management module 2-2 reduces the charging and discharging current rate of the battery module 3-1 ; When the temperature of the battery module 3-1 is less than the minimum value of the safe temperature range, the battery module 3-1 is charged and discharged through the charging and discharging circuit 2-3; if the temperature of the battery module 3-1 is in a safe When the temperature range is on the low side, increase the charge and discharge current rate of the battery module 3-1 through the BMS battery management module 2-2, and reduce the charge and discharge of the battery modules 3-1 in other energy storage battery cabinets 3 at the same time. The current rate keeps the power of the entire battery energy storage system unchanged.
  • the basic management and control operation process is as follows: monitor whether the voltage, current, temperature, integrated circuits, etc. of all energy storage battery cabinets 3 in the energy storage system are within the limit range; if the above monitoring contents are all within the limit range, the energy storage battery Cabinet 3 is connected and calculates the adaptive value of each DC-AC module 2 to ensure efficient and orderly supply of system power, and finds the optimal value of battery cells and battery modules under efficient and orderly supply of system power, otherwise, re-monitor the energy storage system Whether the voltage, current, temperature, integrated circuits, etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开的一种基于分散式控制和布局的电池储能系统及其能量调度方法,属于能量存储技术领域。每个储能电池柜与其对应的DC-AC模块串联,若干DC-AC模块并联后与变压器的一端连接,变压器的另一端连接至外部电网;DC-AC模块包括控制模块、BMS电池管理模块和充放电电路;控制模块分别与BMS电池管理模块和充放电电路连接;储能电池柜包括设在储能电池柜柜体内部的电池模组、温度传感器和温控装置;电池模组分别与BMS电池管理模块和充放电电路连接,温度传感器和温控装置分别与控制模块连接。可靠性和安全性高,能够大大提升系统的工作效率,最终实现延长储能系统使用年限的目的。

Description

基于分散式控制和布局的电池储能系统及其能量调度方法 技术领域
本发明属于能量存储技术领域,具体涉及一种基于分散式控制和布局的电池储能系统及其能量调度方法。
背景技术
在经济全球化的今天,随着科技的不断进步,新能源被世界各国所青睐,然而在开发和利用新能源的同时储能技术的表现形式也逐渐朝着多元化的方向发展。目前使用最为广泛的是蓄水充能技术、压缩空气储能技术,储能系统在可再生能源与传统火力发电方面都有着强烈的需求。新能源的开发与运用需要有先进技术设备的支持,储能系统线路较多,但成套系统解决方案尚未成熟,在面临实际商业化的模式中储能系统仍处于科研探索阶段。国内外相关学者对电池本体性能方面进行了深入研究,目前已取得飞速进展,基于锂离子电池飞速发展与价格的不断下降,锂离子电池储能已成为电化学储能的主流技术。
然而在应用中还存在一些问题,如安全隐患、工作效率、系统布局、柜内配置、成本高低、稳定与否。这些问题归因于目前电池储能技术普遍采用电池组串联成组再并联的方式,也就是将电池模组串联来提高电池串电压等级,为满足系统容量,还要把电池串并联,最终构成高压电池系统或低压大电流电池系统。基于电池模组间是相互串联的关系且电池模组间无隔离阻断措施,一旦其中一个电池模组发生短路断路等问题,其他邻近的电池模组不可避免会受到影响,电池储能系统的运行效率逐渐低下,最终导致整串电池无法运行;由于电池模组不具有系统保护功能,一旦短路等易引发电池发热高温的故障发生时,很可能产生电池模组失控起火,酿成无法估量的损失。
发明内容
为了解决上述现有问题,本发明的目的在于提供一种基于分散式控制和布局的电池储能系统及其能量调度方法,可靠性和安全性高,能够大大提升系统的工作效率,最终实现延长储能系统使用年限的目的。
本发明通过以下技术方案来实现:
本发明公开了一种基于分散式控制和布局的电池储能系统,包括变压器、DC-AC模块和储能电池柜;每个储能电池柜与其对应的DC-AC模块串联,若干DC-AC模块并联后与变压器的一端连接,变压器的另一端连接至外部电网;
DC-AC模块包括控制模块、BMS电池管理模块和充放电电路;控制模块分别与BMS电池管理模块和充放电电路连接;储能电池柜包括设在储能电池柜柜体内部的电池模组、温度传感器和温控装置;电池模组分别与BMS电池管理模块和充放电电路连接,温度传感器和温控装置分别与控制模块连接。
优选地,电池模组由若干单体电池串联组成。
进一步优选地,每个储能电池柜的容量≤300kWh。
进一步优选地,单体电池为锂离子电池。
进一步优选地,同一储能电池柜中的单体电池类型相同,不同储能电池柜中的单体电池类型相同或不同。
优选地,储能电池柜内部为封闭空间,储能电池柜的柜体为防火材质,储能电池柜外部设有保温层。
优选地,所有储能电池柜呈矩阵分布,相邻储能电池柜之间存在间距。
优选地,各DC-AC模块之间通过远距离组网连接。
本发明公开了上述基于分散式控制和布局的电池储能系统的能量调度方法,包括:
在电池储能系统运行时,通过温度传感器实时监测储能电池柜内部的温度,并将数据反馈给控制模块,控制模块通过温控装置控制储能电池柜内部的温度;
通过BMS电池管理模块实时监测电池模组的温度,当电池模组的温度大于安全温度区间的最高值时,通过充放电电路使该电池模组停止运行;当电池模组的温度处在安全温度区间的偏高范围时,通过BMS电池管理模块减小该电池模组充放电电流倍率;当电池模组的温度小于安全温度区间的最低值时,通过 充放电电路使该电池模组进行充放电;如果电池模组的温度处在安全温度区间的偏低范围时,通过BMS电池管理模块加大该电池模组的充放电电流倍率,同时减小其它储能电池柜中电池模组的充放电电流倍率,保持整个电池储能系统的功率不变。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开的一种基于分散式控制和布局的电池储能系统,每个DC-AC模块对应一个储能电池柜,DC-AC模块与变压器相连,变压器在连接至外部电网,各储能电池柜通过并联的方式相连接,当一个储能电池柜内发生问题时不会对其他储能电池柜的安全与正常工作产生任何影响,提高了本储能电池柜中电池模组单点故障的生存率。在布局方面,该系统分散布局可以应用于大规模的电池储能系统。通过温度传感器可以实时检测储能电池柜中的温度,并能够通过温控装置及时调整,维持电池模组稳定的工作温度,特别是对于炎热和严寒地区,能够极大地提高系统的安全性。BMS电池管理模块能够实时监控储能电池柜中电池模组的工作状态,智能化管理及维护各个电池模组,通过充放电电路使电池模组运行在最佳工况,防止出现过充电、过放电产生的高热现象及其它故障,延长电池模组的使用寿命,同时提高整个系统的安全性和稳定性。
进一步地,电池模组由若干单体电池串联组成,无环流,安全性高。
更进一步地,每个储能电池柜的容量≤300kwh,能够实现精细控制。
更进一步地,单体电池为锂离子电池,能量密度高、寿命长。
更进一步地,同一储能电池柜中的单体电池类型相同,能够保证一致性,避免短板效应影响整个储能电池柜的效率;不同储能电池柜中的单体电池类型相同或不同,兼容性好。
进一步地,储能电池柜内部为封闭空间,储能电池柜的柜体为防火材质,储能电池柜外部设有保温层,兼具防火、防雨、防沙、防风、保温(应用于严寒地区)等作用,能够保证柜内电池模组的正常运行。
进一步地,所有储能电池柜呈矩阵分布,相邻储能电池柜之间存在间距,能够避免单个储能电池柜发生火灾时引发周围储能电池柜发生火灾,避免了损失扩大化,大大提升了系统的安全性。
更进一步地,各DC-AC模块之间通过远距离组网连接,当距离较远或不方便布线时能够保证通信,提升系统的可靠性。
本发明公开的上述基于分散式控制和布局的电池储能系统的能量调度方法,自动化程度高、可靠性和安全性高,能够大大提升系统的工作效率,最终实现延长储能系统使用年限的目的。
附图说明
图1为本发明的基于分散式控制和布局的电池储能系统的整体结构示意图;
图2为本发明的基于分散式控制和布局的电池储能系统的场地排布示意图;
图3为本发明的基于分散式控制和布局的电池储能系统的连接示意图。
图中:1为变压器,2为DC-AC模块,2-1为控制模块,2-2为BMS电池管理模块,2-3为充放电电路,3为储能电池柜,3-1为电池模组,3-2为温度传感器,3-3为温控装置。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细描述,其内容是对本发明的解释而不是限定:
如图1,本发明的一种基于分散式控制和布局的电池储能系统,包括变压器1、DC-AC模块2和储能电池柜3;每个储能电池柜3与其对应的DC-AC模块2串联,若干DC-AC模块2并联后与变压器1的一端连接,各DC-AC模块2之间优选通过远距离组网技术连接。变压器1的另一端连接至外部电网;所有储能电池柜3呈矩阵分布,相邻储能电池柜3之间存在物理间距。每个储能电池柜3的容量≤300kWh,
DC-AC模块2包括控制模块2-1、BMS电池管理模块2-2和充放电电路2-3,功能包括电量检测、信息测量、系统运行状态时时报告与记录以及系统故障诊断与系统自我保护等,这样大大提升了系统的可靠性与可用性。控制模块2-1分别与BMS电池管理模块2-2和充放电电路2-3连接;储能电池柜3包括设在储能电池柜3柜体内部的电池模组3-1、温度传感器3-2和温控装置3-3,温控装置3-3可以是空 调。
储能电池柜3内部为封闭空间,储能电池柜3的柜体为防火材质,使储能电池柜3具有防火、防雨、防沙、防风、保温(应用于严寒地区)等作用,同时具有一定的金属结构以保证刚度,储能电池柜3外部设有保温层。
电池模组3-1由若干单体电池串联或并联组成,优选方案为串联,无环流,安全性系数高;单体电池可以采用各种类型的电池,兼容性好,优选采用锂离子电池,能量密度高、寿命长。同一储能电池柜3中的单体电池类型相同,能够保证一致性,避免短板效应影响整个储能电池柜的效率;不同储能电池柜3中的单体电池类型可以相同,也可以不同,兼容性好。
电池模组3-1分别与BMS电池管理模块2-2和充放电电路2-3连接,温度传感器3-2和温控装置3-3分别与控制模块2-1连接。
上述基于分散式控制和布局的电池储能系统的能量调度方法,包括:
功率匹配目标:储能系统中直流储能加上交流储能等于储能系统的总功率。储能系统由各个储能电池柜3并联组成,则储能系统总功率即为各个储能电池柜3的功率相加,功率有时为正有时为负,正代表电池放电,负代表给电池充电。
在电池储能系统运行时,通过温度传感器3-2实时监测储能电池柜3内部的温度,并将数据反馈给控制模块2-1,控制模块2-1通过温控装置3-3控制储能电池柜3内部的温度;
安全温度目标:通过BMS电池管理模块2-2实时监测电池模组3-1的温度,当电池模组3-1的温度大于安全温度区间的最高值时,通过充放电电路2-3使该电池模组3-1停止运行;当电池模组3-1的温度处在安全温度区间的偏高范围时,通过BMS电池管理模块2-2减小该电池模组3-1充放电电流倍率;当电池模组3-1的温度小于安全温度区间的最低值时,通过充放电电路2-3使该电池模组3-1进行充放电;如果电池模组3-1的温度处在安全温度区间的偏低范围时,通过BMS电池管理模块2-2加大该电池模组3-1的充放电电流倍率,同时减小其它储能电池柜3中电池模组3-1的充放电电流倍率,保持整个电池储能系统的功率不变。
基本管控运行流程如下:监测储能系统中所有储能电池柜3的电压、电流、温度、集成电路等是否在限值范围内;如以上监测内容均在限值范围內,则将储能电池柜3接入并计算各DC-AC模块2在保证高效有序提供系统功率的适应值,找到高效有序提供系统功率下电池单体和电池模组的最优值,反之重新监测储能系统中所有储能电池柜3的电压、电流、温度、集成电路等是否在限值范围内;接下来要保证储能系统中的所有储能电池柜3工作在安全温度,如温度在安全范围内,则计算各DC-AC模块2在储能电池柜3工作安全温度的适应值,找出电池单体和电池模组工作在安全温度的最优值,反之重新计算各DC-AC模块2在保证高效有序提供系统功率的适应值;接下来寻找系统最优值并输出各储能电池柜3功率分配,并重复上述操作。
需要说明的是,以上所述仅为本发明实施方式之一,根据本发明所描述的系统所做的等效变化,均包括在本发明的保护范围内。在本申请所提供的实施例中,应该理解到,所揭露的技术内容,可以通过其他的方式实现。其中以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能的划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另外一个系统,或一些特征可以忽略,或不执行。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元可以通过硬件的形式实现,也可以通过软件功能单元的形式实现。本发明所属技术领域的技术人员可以对所描述的具体实例做类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均属于本发明的保护范围。

Claims (9)

  1. 一种基于分散式控制和布局的电池储能系统,其特征在于,包括变压器(1)、DC-AC模块(2)和储能电池柜(3);每个储能电池柜(3)与其对应的DC-AC模块(2)串联,若干DC-AC模块(2)并联后与变压器(1)的一端连接,变压器(1)的另一端连接至外部电网;
    DC-AC模块(2)包括控制模块(2-1)、BMS电池管理模块(2-2)和充放电电路(2-3);控制模块(2-1)分别与BMS电池管理模块(2-2)和充放电电路(2-3)连接;储能电池柜(3)包括设在储能电池柜(3)柜体内部的电池模组(3-1)、温度传感器(3-2)和温控装置(3-3);电池模组(3-1)分别与BMS电池管理模块(2-2)和充放电电路(2-3)连接,温度传感器(3-2)和温控装置(3-3)分别与控制模块(2-1)连接。
  2. 根据权利要求1所述的基于分散式控制和布局的电池储能系统,其特征在于,电池模组(3-1)由若干单体电池串联组成。
  3. 根据权利要求2所述的基于分散式控制和布局的电池储能系统,其特征在于,每个储能电池柜(3)的容量≤300kWh。
  4. 根据权利要求2所述的基于分散式控制和布局的电池储能系统,其特征在于,单体电池为锂离子电池。
  5. 根据权利要求2所述的基于分散式控制和布局的电池储能系统,其特征在于,同一储能电池柜(3)中的单体电池类型相同,不同储能电池柜(3)中的单体电池类型相同或不同。
  6. 根据权利要求1所述的基于分散式控制和布局的电池储能系统,其特征在于,储能电池柜(3)内部为封闭空间,储能电池柜(3)的柜体为防火材质,储能电池柜(3)外部设有保温层。
  7. 根据权利要求1所述的基于分散式控制和布局的电池储能系统,其特征在于,所有储能电池柜(3)呈矩阵分布,相邻储能电池柜(3)之间存在间距。
  8. 根据权利要求1所述的基于分散式控制和布局的电池储能系统,其特征在于,各DC-AC模块(2)之间通过远距离组网连接。
  9. 权利要求1~8所述的基于分散式控制和布局的电池储能系统的能量调度方法,其特征在于,包括:
    在电池储能系统运行时,通过温度传感器(3-2)实时监测储能电池柜(3)内部的温度,并将数据反馈给控制模块(2-1),控制模块(2-1)通过温控装置(3-3)控制储能电池柜(3)内部的温度;
    通过BMS电池管理模块(2-2)实时监测电池模组(3-1)的温度,当电池模组(3-1)的温度大于安全温度区间的最高值时,通过充放电电路(2-3)使该电池模组(3-1)停止运行;当电池模组(3-1)的温度处在安全温度区间的偏高范围时,通过BMS电池管理模块(2-2)减小该电池模组(3-1)充放电电流倍率;当电池模组(3-1)的温度小于安全温度区间的最低值时,通过充放电电路(2-3)使该电池模组(3-1)进行充放电;如果电池模组(3-1)的温度处在安全温度区间的偏低范围时,通过BMS电池管理模块(2-2)加大该电池模组(3-1)的充放电电流倍率,同时减小其它储能电池柜(3)中电池模组(3-1)的充放电电流倍率,保持整个电池储能系统的功率不变。
PCT/CN2021/108494 2020-07-24 2021-07-26 基于分散式控制和布局的电池储能系统及其能量调度方法 WO2022017535A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023600011U JP3242734U (ja) 2020-07-24 2021-07-26 分散型制御とレイアウトに基づく電池エネルギー貯蔵システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010724541.4A CN111740474A (zh) 2020-07-24 2020-07-24 基于分散式控制和布局的电池储能系统及其能量调度方法
CN202010724541.4 2020-07-24

Publications (1)

Publication Number Publication Date
WO2022017535A1 true WO2022017535A1 (zh) 2022-01-27

Family

ID=72657654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108494 WO2022017535A1 (zh) 2020-07-24 2021-07-26 基于分散式控制和布局的电池储能系统及其能量调度方法

Country Status (3)

Country Link
JP (1) JP3242734U (zh)
CN (1) CN111740474A (zh)
WO (1) WO2022017535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883701A (zh) * 2022-03-01 2022-08-09 东方电气集团科学技术研究院有限公司 一种均衡控制锂离子电池充放电过程温度的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740474A (zh) * 2020-07-24 2020-10-02 中国华能集团清洁能源技术研究院有限公司 基于分散式控制和布局的电池储能系统及其能量调度方法
CN112910048A (zh) * 2021-03-05 2021-06-04 东方醒狮(福建)储能科技有限公司 基于热管理技术的新能源储充平台的控制方法
CN112803553A (zh) * 2021-03-05 2021-05-14 东方醒狮(福建)储能科技有限公司 基于热管理技术的新能源储充平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447285A (zh) * 2011-10-10 2012-05-09 南方电网科学研究院有限责任公司 一种大容量电池换流器及其控制方法
CN104917242A (zh) * 2015-06-16 2015-09-16 北京亿利智慧能源科技有限公司 一种基于温度场控制的大型电池储能系统及其能量调度方法
CN109617106A (zh) * 2019-01-15 2019-04-12 中国华能集团清洁能源技术研究院有限公司 一种分散式电池储能系统
CN111355252A (zh) * 2018-12-20 2020-06-30 南京四象新能源科技有限公司 一种分布式储能系统及其充放电方法
CN111434000A (zh) * 2017-10-12 2020-07-17 通用电气公司 对储能系统的温度控制
CN111740474A (zh) * 2020-07-24 2020-10-02 中国华能集团清洁能源技术研究院有限公司 基于分散式控制和布局的电池储能系统及其能量调度方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447285A (zh) * 2011-10-10 2012-05-09 南方电网科学研究院有限责任公司 一种大容量电池换流器及其控制方法
CN104917242A (zh) * 2015-06-16 2015-09-16 北京亿利智慧能源科技有限公司 一种基于温度场控制的大型电池储能系统及其能量调度方法
CN111434000A (zh) * 2017-10-12 2020-07-17 通用电气公司 对储能系统的温度控制
CN111355252A (zh) * 2018-12-20 2020-06-30 南京四象新能源科技有限公司 一种分布式储能系统及其充放电方法
CN109617106A (zh) * 2019-01-15 2019-04-12 中国华能集团清洁能源技术研究院有限公司 一种分散式电池储能系统
CN111740474A (zh) * 2020-07-24 2020-10-02 中国华能集团清洁能源技术研究院有限公司 基于分散式控制和布局的电池储能系统及其能量调度方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883701A (zh) * 2022-03-01 2022-08-09 东方电气集团科学技术研究院有限公司 一种均衡控制锂离子电池充放电过程温度的方法
CN114883701B (zh) * 2022-03-01 2024-05-10 东方电气集团科学技术研究院有限公司 一种均衡控制锂离子电池充放电过程温度的方法

Also Published As

Publication number Publication date
JP3242734U (ja) 2023-07-07
CN111740474A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2022017535A1 (zh) 基于分散式控制和布局的电池储能系统及其能量调度方法
CN103532158B (zh) 一种微网新能源混合储能系统
CN205509569U (zh) 一种光伏基站用锂电池后备电源系统
CN107579296B (zh) 锂电池动力电源系统及车辆
CN212627257U (zh) 一种包含预诊断模块的组串式两级变换电池储能系统
WO2023184700A1 (zh) 基于动态可重构电池网络的电池系统充放电控制方法
CN113675952A (zh) 一种多元储能融合控制终端及其控制系统
CN112600264B (zh) 并联电池包的控制方法、系统、电子设备及车辆
CN101814768A (zh) 一种基于燃料电池的备用电源系统
CN204407391U (zh) 一种恒温矩阵式储能箱
WO2022017536A1 (zh) 一种模块化分散式水冷电池储能系统
CN103117595B (zh) 分布式直流独立供电系统
CN209472019U (zh) 储能设备
CN104659307A (zh) 一种可快速更换的恒温矩阵式储能箱
CN110098630A (zh) 储能供电系统和储能供电箱
CN115378014A (zh) 智能组串式储能系统及其储能装置
CN202121023U (zh) 电池组智能在线监测补偿器
CN116094180A (zh) 一种储能系统用的本地能量管理机
CN115912663A (zh) 一种分布式储能系统
CN110380506A (zh) 一种用于预制舱式组合设备的分布式并联蓄电池系统
CN104467627A (zh) 一种基于分布式光伏发电的平板电站及储能系统
CN204167920U (zh) 一种智能配变终端
CN115589060A (zh) 一种站用直流系统备用装置
CN212343401U (zh) 基于分散式控制和布局的电池储能系统
CN113659699A (zh) 用于基站的应急供电智能控制方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023600011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845174

Country of ref document: EP

Kind code of ref document: A1