WO2022017377A1 - 一种移动性参数配置方法及相关设备 - Google Patents

一种移动性参数配置方法及相关设备 Download PDF

Info

Publication number
WO2022017377A1
WO2022017377A1 PCT/CN2021/107351 CN2021107351W WO2022017377A1 WO 2022017377 A1 WO2022017377 A1 WO 2022017377A1 CN 2021107351 W CN2021107351 W CN 2021107351W WO 2022017377 A1 WO2022017377 A1 WO 2022017377A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
optimization
mobility
management device
network management
Prior art date
Application number
PCT/CN2021/107351
Other languages
English (en)
French (fr)
Inventor
石小丽
贾晓倩
邹兰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022017377A1 publication Critical patent/WO2022017377A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a mobility parameter configuration method and related equipment.
  • changes in the location of the terminal equipment or changes in the load in the network may cause the terminal equipment to switch from the first network equipment to the second network equipment.
  • a change in the location of the terminal equipment causes the terminal equipment to be handed over from base station 1 to base station 2. If the mobility optimization attribute is not set properly, it may cause problems such as premature handover, too late handover, and ping-pong effect, which will lead to handover failure and reduce system performance.
  • Embodiments of the present application provide a mobility parameter configuration method and related equipment.
  • the method provides mobility optimization attributes configured in the case of a secondary cell's radio link failure and/or near radio link failure, which is beneficial to reduce the number of intra-system or Inter-system handover failure rate to ensure mobility performance.
  • an embodiment of the present application provides a mobility parameter configuration method, and the method can be executed by a first network management device.
  • the first network management device may be a network management entity defined by the standardization organization 3GPP, such as a management service consumer (management service consumer).
  • the first network management device may send a mobility optimization attribute to the second network management device, where the mobility optimization attribute is used to indicate the attribute configured in the case of a secondary cell radio link failure and/or a near radio link failure.
  • the failure of the radio link of the secondary cell indicates that in the multi-link data transmission scenario, the radio link of the secondary cell fails due to the change of the secondary base station or the secondary cell.
  • the verge of wireless link failure means that the quality of the wireless link between the terminal device and the base station is poor in the scenario where the terminal device is successfully handed over, that is, the wireless link between the terminal device and the base station may be disconnected at any time.
  • the mobility optimization attributes provided by the embodiments of the present application can be configured with corresponding mobility optimization attributes for the above-mentioned two wireless link failure situations.
  • configuring the mobility optimization attribute for the radio link failure of the secondary cell and the mobility optimization attribute for the imminent radio link failure for the base station, cell or user is beneficial to reduce the handover failure rate in the system or between systems, and ensure the mobility. performance.
  • the mobility optimization attribute includes a first strategy parameter, where the first strategy parameter includes one or more of the following: a handover trigger definition parameter, a handover adjustment strategy parameter, an optimization period, or a handover optimization strategy parameter.
  • the handover trigger limitation parameter includes a maximum handover trigger deviation value and/or a minimum handover trigger time interval when the secondary cell is handed over.
  • the handover adjustment policy parameters include one or more of cell personality offset adjustment parameters, beam parameters, radio link monitoring parameters, and random access resource parameters.
  • the handover optimization strategy parameters include an optimization trigger threshold corresponding to a radio link failure of the secondary cell, and/or an optimization trigger threshold corresponding to a near radio link failure.
  • the first policy parameter can limit the parameters related to the cell personality offset during the handover of the secondary cell and the minimum time interval of the handover between the secondary cells, thereby helping to avoid premature handover of the secondary base station in the multi-link data transmission scenario.
  • the radio link failure of the secondary cell caused by too late, etc., and the probability of the near radio link failure in the scenario of successful handover is reduced.
  • the mobility optimization attribute includes a first target parameter, where the first target parameter includes one or more of the following: a cell identity, a maximum number of handover triggers, or a handover trigger optimization target parameter.
  • the handover trigger optimization target parameters include one or more of the ratio of secondary cell radio link failures, the ratio of near wireless link failures, the ratio of ping-pong handover times, the premature handover failure rate or the late handover drop rate.
  • the first target parameter can limit the maximum number of cell handover triggers, as well as the handover ratio in the case that the handover of the secondary base station is too early or too late, which is beneficial to reduce the premature and late handover of the secondary base station in the multi-link data transmission scenario.
  • the mobility optimization attribute includes a first control parameter
  • the first control parameter includes a mobility optimization function control parameter for a radio link failure of the secondary cell and/or a mobility optimization function on the verge of radio link failure control parameter.
  • the first control parameter can control the mobility optimization attribute to solve the problem of secondary cell link failure in the multi-link data transmission scenario, and can also control the mobility optimization attribute to solve the problem of near-to-wireless links in the scenario of successful handover Road failure problem.
  • the mobility optimization attribute includes a second policy parameter
  • the second policy parameter includes one or more of the following: network device identification, abnormal coverage policy parameter, or abnormal wireless link policy parameter.
  • the abnormal coverage policy parameters include one or more of abnormal coverage thresholds, reference signal received power thresholds of the serving cell, or reference signal received power thresholds of neighboring cells.
  • the abnormal wireless link policy parameter includes one or more of the abnormal wireless link failure ratio threshold, the network device group handover failure ratio threshold, or the near wireless link failure ratio threshold.
  • the second policy parameter can define parameters such as the abnormal coverage policy of the base station, the proportion threshold of secondary base station handover failure, and the proportion threshold of near wireless link failure, so as to determine the mobility optimization attribute at the base station level.
  • the mobility optimization attribute includes a second target parameter, where the second target parameter includes one or more of the following: network device identification, abnormal coverage ratio, or handover-triggered optimization target parameter.
  • the handover trigger optimization target parameter includes one or more of the ratio of secondary cell radio link failure, the ratio of secondary cell handover failure, or the ratio of near radio link failure.
  • the mobility optimization attribute includes one or more of a first strategy parameter, a first target parameter, a first control parameter, a second strategy parameter, or a second target parameter.
  • the first network management device may also receive a response message sent by the second network management device, where the response message indicates the configuration status of the second network management device.
  • the configuration status of the second network management device includes configuration success, configuration failure, or inability to configure, and the like.
  • the second network management device can configure the mobility optimization attribute. And the second network management device feeds back the configuration status to the first network management device, so that the first network management device knows whether the second network management device successfully configures the mobility optimization attribute.
  • the first network management device sends a request message to the second network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute An indication of the corresponding mobility optimization performance data.
  • the first network management device receives feedback information sent by the second network management device, where the feedback information includes mobility optimization performance data corresponding to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure and/or an indication of mobility optimization performance data corresponding to the mobility optimization attribute.
  • the second network management device may also report system performance data after the configuration of the mobility optimization attribute is performed, and record the improvement of the system performance caused by the configuration of the mobility optimization attribute.
  • the mobility optimization performance data includes one or more of the following: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, the number of times the secondary node is updated prematurely, The number of times the secondary node was updated too late, the number of times the secondary node switched to the wrong cell, or the number of times the radio link was on the verge of failure.
  • an embodiment of the present application provides a mobility parameter configuration method, and the method can be executed by a second network management device.
  • the second network management device may be a network management entity defined by the standardization organization 3GPP, such as a management service consumer.
  • the second network management device may receive the mobility optimization attribute sent by the first network management device, where the mobility optimization attribute is used to indicate the attribute configured in the case of a radio link failure of the secondary cell and/or a near radio link failure.
  • the second network management device may also send the mobility optimization attribute to the second network device, so that the second network device can perform the mobility optimization attribute according to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure. Adjust the switching parameters in the process of switching the terminal device from the first network device to the second network device.
  • the second network management device can receive the mobility optimization attribute, and can also send the mobility optimization attribute to a subordinate network device (such as a secondary base station, etc.), so that the network device can configure the handover parameter according to the mobility optimization attribute, Therefore, it is beneficial to reduce the probability of handover failure of the terminal equipment between the secondary cells or the secondary base stations.
  • a subordinate network device such as a secondary base station, etc.
  • the mobility optimization attribute includes a first strategy parameter, where the first strategy parameter includes one or more of the following: a handover trigger definition parameter, a handover adjustment strategy parameter, an optimization period, or a handover optimization strategy parameter.
  • the handover trigger limitation parameters include the maximum handover trigger deviation value and/or the minimum handover trigger time interval when the secondary cell is handed over;
  • the handover adjustment strategy parameters include cell personality offset adjustment parameters, beam parameters, radio link monitoring parameters, random access parameters One or more of the input resource parameters;
  • the handover optimization strategy parameters include the optimization trigger threshold corresponding to the radio link failure of the secondary cell, and/or the optimization trigger threshold corresponding to the near radio link failure.
  • the mobility optimization attribute includes a first target parameter, where the first target parameter includes one or more of the following: a cell identity, a maximum number of handover triggers, or a handover trigger optimization target parameter.
  • the handover trigger optimization target parameters include one or more of the ratio of secondary cell radio link failures, the ratio of near wireless link failures, the ratio of ping-pong handover times, the premature handover failure rate or the late handover drop rate.
  • the mobility optimization attribute includes a first control parameter
  • the first control parameter includes a mobility optimization function control parameter for a radio link failure of the secondary cell and/or a mobility optimization function on the verge of radio link failure control parameter.
  • the mobility optimization attribute includes a second policy parameter
  • the second policy parameter includes one or more of the following: network device identification, abnormal coverage policy parameter, or abnormal wireless link policy parameter.
  • the abnormal coverage policy parameters include one or more of abnormal coverage thresholds, reference signal received power thresholds of the serving cell, or reference signal received power thresholds of neighboring cells.
  • the abnormal wireless link policy parameter includes one or more of the abnormal wireless link failure ratio threshold, the network device group handover failure ratio threshold, or the near wireless link failure ratio threshold.
  • the mobility optimization attribute includes a second target parameter
  • the second target parameter includes one or more of the following: network device identification, abnormal coverage ratio, or handover trigger optimization target parameter.
  • the handover trigger optimization target parameter includes one or more of the ratio of secondary cell radio link failure, the ratio of secondary cell handover failure, or the ratio of near radio link failure.
  • the mobility optimization attributes include a first strategy parameter, a first target parameter, a first control parameter, a second strategy parameter, or one or more of the second target parameters.
  • the second network management device may further send a response message to the first network management device, where the response message indicates the configuration status of the second network management device.
  • the configuration status of the second network management device includes configuration success, configuration failure, or inability to configure, and the like.
  • the second network management device receives a request message sent by the first network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute An indication of the corresponding mobility optimization performance data.
  • the second network management device sends feedback information to the first network management device, where the feedback information includes the mobility optimization performance data corresponding to the mobility optimization attribute in the case that the secondary cell radio link fails and/or is on the verge of radio link failure and/or an indication of mobility optimization performance data corresponding to the mobility optimization attribute.
  • the mobility optimization performance data includes one or more of the following: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, the number of times the secondary node is updated prematurely, The number of times the secondary node was updated too late, the number of times the secondary node switched to the wrong cell, or the number of times the radio link was on the verge of failure.
  • an embodiment of the present application provides a first network management device, where the first network management device includes a processing unit and a transceiver unit.
  • the processing unit is used to determine the mobility optimization attribute
  • the mobility optimization attribute is used to indicate the attribute configured in the case that the radio link of the secondary cell fails and/or is on the verge of radio link failure.
  • the transceiver unit is configured to send the mobility optimization attribute to the second network management device.
  • the mobility optimization attribute includes a first strategy parameter, where the first strategy parameter includes one or more of the following: a handover trigger definition parameter, a handover adjustment strategy parameter, an optimization period, or a handover optimization strategy parameter.
  • the handover trigger limitation parameter includes a maximum handover trigger deviation value and/or a minimum handover trigger time interval when the secondary cell is handed over.
  • the handover adjustment policy parameters include one or more of cell personality offset adjustment parameters, beam parameters, radio link monitoring parameters, and random access resource parameters.
  • the handover optimization strategy parameters include an optimization trigger threshold corresponding to a radio link failure of the secondary cell, and/or an optimization trigger threshold corresponding to a near radio link failure.
  • the mobility optimization attribute includes a first target parameter, where the first target parameter includes one or more of the following: a cell identity, a maximum number of handover triggers, or a handover trigger optimization target parameter.
  • the handover trigger optimization target parameters include one or more of the ratio of secondary cell radio link failures, the ratio of near wireless link failures, the ratio of ping-pong handover times, the premature handover failure rate or the late handover drop rate.
  • the mobility optimization attribute includes a first control parameter
  • the first control parameter includes a mobility optimization function control parameter for a radio link failure of the secondary cell and/or a mobility optimization function on the verge of radio link failure control parameter.
  • the mobility optimization attribute includes a second policy parameter
  • the second policy parameter includes one or more of the following: network device identification, abnormal coverage policy parameter, or abnormal wireless link policy parameter.
  • the abnormal coverage policy parameters include one or more of abnormal coverage thresholds, reference signal received power thresholds of the serving cell, or reference signal received power thresholds of neighboring cells.
  • the abnormal wireless link policy parameter includes one or more of the abnormal wireless link failure ratio threshold, the network device group handover failure ratio threshold or the near wireless link failure ratio threshold.
  • the mobility optimization attribute includes a second target parameter, where the second target parameter includes one or more of the following: network device identification, abnormal coverage ratio, or handover-triggered optimization target parameter.
  • the handover trigger optimization target parameter includes one or more of the ratio of secondary cell radio link failure, the ratio of secondary cell handover failure, or the ratio of near radio link failure.
  • the mobility optimization attributes include a first strategy parameter, a first target parameter, a first control parameter, a second strategy parameter, or one or more of the second target parameters.
  • the transceiver unit is further configured to receive a response message sent by the second network management device, where the response message indicates a configuration state of the second network management device.
  • the configuration status of the second network management device includes configuration success, configuration failure, or inability to configure, and the like.
  • the transceiver unit is further configured to send a request message to the second network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute An indication of the corresponding mobility optimization performance data.
  • the transceiver unit is further configured to receive feedback information sent by the second network management device, where the feedback information includes mobility optimization performance data corresponding to the mobility optimization attributes in the case of a secondary cell radio link failure and/or a near radio link failure and/or an indication of mobility optimization performance data corresponding to the mobility optimization attribute.
  • the mobility optimization performance data includes one or more of the following: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, the number of times the secondary node is updated prematurely, The number of times the secondary node was updated too late, the number of times the secondary node switched to the wrong cell, or the number of times the radio link was on the verge of failure.
  • an embodiment of the present application provides a second network management device, where the second network management device includes a transceiver unit.
  • the transceiver unit is configured to receive a mobility optimization attribute sent by the first network management device, where the mobility optimization attribute is used to indicate an attribute configured in the case of a radio link failure of the secondary cell and/or an approaching radio link failure.
  • the transceiver unit is further configured to send the mobility optimization attribute to the second network device, so that the second network device adjusts the terminal according to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure Handover parameters in the process of switching the device from the first network device to the second network device.
  • the mobility optimization attribute includes a first strategy parameter
  • the first strategy parameter includes one or more of the following: handover trigger definition parameter, handover adjustment strategy parameter, optimization Cycle or toggle optimization strategy parameters.
  • the handover trigger limitation parameters include the maximum handover trigger deviation value and/or the minimum handover trigger time interval when the secondary cell is handed over;
  • the handover adjustment strategy parameters include cell personality offset adjustment parameters, beam parameters, radio link monitoring parameters, random access parameters One or more of the input resource parameters;
  • the handover optimization strategy parameters include the optimization trigger threshold corresponding to the radio link failure of the secondary cell, and/or the optimization trigger threshold corresponding to the near radio link failure.
  • the mobility optimization attribute includes a first target parameter, where the first target parameter includes one or more of the following: a cell identity, a maximum number of handover triggers, or a handover trigger optimization target parameter.
  • the handover trigger optimization target parameters include one or more of the ratio of secondary cell radio link failures, the ratio of near wireless link failures, the ratio of ping-pong handover times, the premature handover failure rate or the late handover drop rate.
  • the mobility optimization attribute includes a first control parameter
  • the first control parameter includes a mobility optimization function control parameter for a radio link failure of the secondary cell and/or a mobility optimization function on the verge of radio link failure control parameter.
  • the mobility optimization attribute includes a second policy parameter
  • the second policy parameter includes one or more of the following: network device identification, abnormal coverage policy parameter, or abnormal wireless link policy parameter.
  • the abnormal coverage policy parameters include one or more of abnormal coverage thresholds, reference signal received power thresholds of the serving cell, or reference signal received power thresholds of neighboring cells.
  • the abnormal wireless link policy parameter includes one or more of the abnormal wireless link failure ratio threshold, the network device group handover failure ratio threshold, or the near wireless link failure ratio threshold.
  • the mobility optimization attribute includes a second target parameter, where the second target parameter includes one or more of the following: network device identification, abnormal coverage ratio, or handover-triggered optimization target parameter.
  • the handover trigger optimization target parameter includes one or more of the ratio of secondary cell radio link failure, the ratio of secondary cell handover failure, or the ratio of near radio link failure.
  • the mobility optimization attributes include a first strategy parameter, a first target parameter, a first control parameter, a second strategy parameter, or one or more of the second target parameters.
  • the transceiver unit is further configured to send a response message to the first network management device, where the response message indicates a configuration state of the second network management device.
  • the configuration status of the second network management device includes configuration success, configuration failure, or inability to configure, and the like.
  • the transceiver unit is further configured to receive a request message sent by the first network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute An indication of the corresponding mobility optimization performance data.
  • the transceiver unit is further configured to send feedback information to the first network management device, where the feedback information includes the mobility optimization performance data corresponding to the mobility optimization attribute in the case that the secondary cell radio link fails and/or is on the verge of radio link failure and/or an indication of mobility optimization performance data corresponding to the mobility optimization attribute.
  • the mobility optimization performance data includes one or more of the following: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, the number of times the secondary node is updated prematurely, The number of times the secondary node was updated too late, the number of times the secondary node switched to the wrong cell, or the number of times the radio link was on the verge of failure.
  • an embodiment of the present application provides a first network management device, where the first network management device has a function of implementing the mobility parameter configuration method provided in the first aspect.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a second network management device, where the second network management device has a function of implementing the mobility parameter configuration method provided in the second aspect.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication system, where the communication system includes the first network management device provided in the third aspect or the fifth aspect, and the second network management device provided in the fourth or sixth aspect.
  • embodiments of the present application provide a computer-readable storage medium, where the readable storage medium includes a program or an instruction, and when the program or instruction is run on a computer, the computer executes the first aspect or the first aspect. method in any of the possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium, where the readable storage medium includes a program or an instruction, when the program or instruction is run on a computer, the computer executes the second aspect or the second aspect. method in any of the possible implementations.
  • an embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected through a line, and the at least one processor is used for running a computer program or instruction, to perform the method described in any one of the first aspect or any of the possible implementations of the first aspect.
  • an embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected through a line, and the at least one processor is used for running a computer program or instruction , to perform the method described in any one of the second aspect or any possible implementation manner of the second aspect.
  • the interface in the chip may be an input/output interface, a pin or a circuit, or the like.
  • the chip system in the above aspects may be a system on chip (system on chip, SOC), or a baseband chip, etc.
  • the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, and the like.
  • the chip or chip system described above in this application further includes at least one memory, where instructions are stored in the at least one memory.
  • the memory may be a memory module inside the chip, for example, a register, a cache, etc., or a memory module (for example, a read-only memory, a random access memory, etc.) of the chip.
  • embodiments of the present application provide a computer program or computer program product, including codes or instructions, when the codes or instructions are run on a computer, the computer executes the first aspect or any one of the first aspects may be implemented method in method.
  • the embodiments of the present application provide a computer program or computer program product, including codes or instructions, when the codes or instructions are run on a computer, the computer executes the second aspect or any one of the second aspects may be implemented method in method.
  • FIG. 1a is a schematic diagram of a premature handover scenario provided by an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a mobility optimization scenario provided by an embodiment of the present application.
  • FIG. 2a is a schematic diagram of a multi-link data transmission scenario provided by an embodiment of the present application.
  • 2b is a schematic diagram of a terminal device failing to switch between secondary base stations in a multi-link data transmission scenario provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a near wireless link failure under a successful handover scenario provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a service-based management architecture provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a mobility parameter configuration method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a first network management device and a second network management device managing mobility optimization performance data according to an embodiment of the present application;
  • FIG. 8 is a schematic flowchart of a first network management device and a second network management device managing MRO performance indicators according to an embodiment of the present application;
  • FIG. 9 is a schematic flowchart of another first network management device and a second network management device for managing MRO performance indicators according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a first network management device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another first network management device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a second network management device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another second network management device according to an embodiment of the present application.
  • changes in the location of the terminal equipment or changes in the load in the network may cause the terminal equipment to switch from the first network equipment to the second network equipment.
  • a change in the location of the terminal equipment causes the terminal equipment to be handed over from base station 1 to base station 2. If the handover parameters of the network device are not properly set, it may lead to problems such as premature handover, late handover, and ping-pong effect, resulting in handover failure and reduced system performance.
  • FIG. 1a is a schematic diagram of a premature switching scenario provided by an embodiment of the present application.
  • the terminal device fails to switch to the target cell due to poor signal quality of the target cell. That is, the radio link failure (RLF) between the terminal device and the target cell occurs before the handover is completed.
  • the terminal equipment performs cell selection, selects the source cell, and attempts to perform radio resource control (radio resource control, RRC) re-establishment.
  • RRC radio resource control
  • the terminal device re-establishes to the source cell, and after the re-establishment is successful, the source cell recognizes that a handover is premature.
  • the switching parameters of the system can be adjusted by manual setting. However, it is very time-consuming to manually set the switching parameters of the system, and after the initial deployment of the network is completed, it will cost a lot to adjust the switching parameters of the system. Based on this, a mobility robust optimization (MRO) function is proposed in a long term evolution (LTE) network, and the MRO function can optimize the improperly set handover parameters.
  • MRO mobility robust optimization
  • the base station can count the number of abnormal handovers.
  • the relevant parameters of the handover are optimized according to the counted abnormal handover times and the preset threshold value.
  • the network management device can monitor whether various indicators of the handover are optimized. If the switching index is optimized, the parameters will not be rolled back in the next optimization cycle; if the switching index is deteriorated, the parameters will be rolled back in the next cycle. It can be seen that, by optimizing the relevant parameters of handover, MRO can reduce the handover failure rate and user call drop rate in the network, and reduce the number of premature and late handovers.
  • the MRO function can be applied in the scenario of premature handover as shown in Fig. 1a.
  • FIG. 1b is a mobility optimization scenario provided by an embodiment of the present application.
  • both base station 1 and base station 2 are configured with relevant parameters for performing MRO. Because the handover is too early, the handover may be performed before the terminal device reaches the normal handover area, resulting in poor reception of the terminal device in the target cell. Then, performing the MRO may reduce the cell individual offset (CIO) to make the handover come later.
  • CIO cell individual offset
  • new radio new radio
  • NR new radio access
  • FIG. 2a is a multi-link data transmission scenario provided by an embodiment of the present application.
  • the multi-link data transmission scenario may include a first network device, a second network device, and a terminal device.
  • FIG. 2a only shows a scenario of one first network device, one second network device, and one terminal device, which is only an example, and is not limited in this embodiment.
  • the terminal device may have a communication connection with the first network device and the second network device at the same time, and may send and receive data, and this scenario may be referred to as a dual connectivity (DC) scenario.
  • the first network device may be called a master node (master node, MN), which is responsible for exchanging radio resource control messages with the terminal device and for interacting with the core network control plane entity.
  • a network device other than the first network device, that is, the second network device may be referred to as a secondary node (secondary node, SN).
  • the scenario can be called a multi-connectivity (MC) scenario.
  • the multiple network devices there may be a first network device as the MN, responsible for exchanging radio resource control messages with the terminal device, and responsible for interacting with the core network control plane entity.
  • the rest of the multiple second network devices can all be used as SNs.
  • the first network device may be a master base station (eg, MeNB) of an LTE standard, or may be a master base station (eg, MgNB) of an NR standard.
  • the first network device may also be a master node (master node, MN) under a dual-link architecture, or an MN under a multi-link architecture, which is not limited in this embodiment.
  • the second network device may be a secondary base station of an LTE standard (eg, SeNB), or may be a secondary base station of an NR standard (eg, SgNB).
  • the second network device may also be a secondary node (secondary node, SN) under the DC architecture, or an SN under the MC architecture, which is not limited in this embodiment.
  • the radio link of the secondary cell may fail due to the SN change.
  • the radio link of the secondary cell fails because the SN is changed too early, the SN is changed too late, the SN is changed to the wrong cell, and so on.
  • FIG. 2b is a schematic diagram of a scenario where a terminal device fails to switch between secondary base stations in a multi-link data transmission scenario provided by an embodiment of the present application.
  • the premature change of the secondary base station may lead to premature handover of the secondary cell, thereby causing the radio link of the secondary cell to fail, as shown in Figure 2b.
  • the terminal equipment has a radio link failure under the S-SN, because the SN is a secondary base station, which is also called a secondary cell group failure (secondary cell group failure, SCG failure, SCG failure).
  • FIG. 3 is a situation in which a wireless link is on the verge of failure in a successful handover scenario provided by an embodiment of the present application.
  • near radio link failure near-RLF
  • the state of the wireless link between the terminal device and the network device is unstable and may be broken at any time. Open the connection, as shown in Figure 3.
  • an embodiment of the present application provides a mobility parameter configuration method, where the mobility optimization attribute provided by the method indicates the wireless link of the secondary cell
  • the attributes configured by the second network management device in the case of failure and/or on the verge of radio link failure enable MRO optimization in the NR system in the above two cases.
  • FIG. 4 provides a communication system according to an embodiment of the present application, where the communication system includes a first network management device and a second network management device.
  • the communication system may further include a first network device, a second network device and a terminal device.
  • the first network device and the second network device are devices in the access network (such as base stations, etc.), which are used to communicate with the terminal device.
  • the terminal device can switch between the first network device and the second network device to achieve seamless switching.
  • the first network management device and the second network management device are both management entities defined by 3GPP. That is to say, the mobility parameter configuration method provided in the embodiment of the present application can be applied to the network management architecture of the NR.
  • the externally visible behaviors and interfaces of management entities in the service-based management architecture defined by 3GPP are defined as management services.
  • a management function plays the role of a management service producer (MnS producer) or a management service consumer (MnS consumer).
  • MnS producer management service producer
  • MnS consumer management service consumer
  • the service-based management architecture focuses on the management service provider and the management service consumer, wherein the management service provider can also be called the management service producer.
  • FIG. 5 is a schematic diagram of a service-based management architecture provided by an embodiment of the present application.
  • the service-oriented management architecture includes a business support system (BSS), a cross-domain management function (CD-MnF), a domain management function (domain-MnF) and a network element.
  • BSS business support system
  • CD-MnF cross-domain management function
  • domain-MnF domain management function
  • network element a network element.
  • the management service is the management service provided by the cross-domain management functional unit
  • the cross-domain management functional unit is the management service producer
  • the business support system is the management service consumer
  • the domain management functional unit is the management service producer, and the cross-domain management functional unit is the management service consumer.
  • the management service is the management service provided by the network element
  • the network element is the management service producer
  • the domain management functional unit is the management service consumer
  • the business support system is communication service-oriented, and is used to provide functions and management services such as billing, settlement, accounting, customer service, business, network monitoring, communication business life cycle management, and business intent translation.
  • the business support system may be the operator's operation system, or may be the vertical industry's operation system (vertical OT system).
  • Cross-domain management functional unit also called network management function (NMF), for example, can be network management system (network management system, NMS), network function management service consumer (network function management service consumer, NFMS_C), etc. Network management entity.
  • the cross-domain management function unit provides one or more of the following management functions or management services: network life cycle management, network deployment, network fault management, network performance management, network configuration management, network assurance, network The optimization function and the translation of the network intent (intent from communication service provider, Intent-CSP) of the business producer, etc.
  • the network referred to in the above management function or management service may include one or more network elements or sub-networks, and may also be a network slice. That is to say, the network management functional unit may be a network slice management function (NSMF), a cross-domain management data analytical function (MDAF), or a cross-domain self-organizing network function (self -organization network function, SON Function) or cross-domain intent driven management service (Intent Driven MnS).
  • NMF network slice management function
  • MDAF cross-domain management data analytical function
  • SON Function self-organization network function
  • Intent Driven MnS cross-domain intent driven management service
  • the cross-domain management functional unit can also provide sub-network lifecycle management, sub-network deployment, sub-network fault management, sub-network performance management, sub-network configuration management, sub-network Network assurance, sub-network optimization functions, translation of the network intent (Intent-CSP) of the sub-network service producer or the network intent (intent from communication service consumer, Intent-CSC) of the sub-network service consumer, etc.
  • the sub-network here consists of multiple small sub-networks, which can be network slice sub-networks.
  • Domain management function also called network management function (NMF) or network element management function.
  • the domain management functional unit may be a wireless automation engine (MBB automation engine, MAE), a network element management system (element management system, EMS), a network function management service provider (network function management service provider, NFMS_P) and other network element management systems entity.
  • MBB automation engine MAE
  • EMS network element management system
  • NFMS_P network function management service provider
  • the domain management functional unit provides one or more of the following functions or management services: life cycle management of sub-networks or network elements, deployment of sub-networks or network elements, fault management of sub-networks or network elements, sub-network or network elements performance management, assurance of sub-networks or network elements, optimization functions of sub-networks or network elements, and translation of intent from network operators (Intent-NOP) of sub-networks or network elements.
  • the sub-network here includes one or more network elements.
  • Sub-networks can also include sub-networks, that is, one or more sub-networks form a larger sub-network.
  • the sub-network here can also be a network slice sub-network.
  • the domain management system may be a network slice subnet management function (NSSMF), a domain management data analytical function (Domain MDAF), a domain self-organization network function (self-organization network function, SON Function), domain intent management functional unit (Intent Driven MnS), etc.
  • the domain management functional units can be classified in the following ways, including:
  • Classification by network type can be divided into: access network domain management function (radio access network domain management function, RAN-Domain-MnF), core network domain management function (core network domain management function, CN-Domain-MnF), Transport network domain management function unit (transport network domain management function, TN-Domain-MnF) and so on.
  • access network domain management function radio access network domain management function, RAN-Domain-MnF
  • core network domain management function core network domain management function
  • CN-Domain-MnF Core network domain management function
  • Transport network domain management function unit transport network domain management function, TN-Domain-MnF
  • the domain management functional unit can also be a domain network management system, which can manage one or more of the access network, core network or transmission network;
  • domain management functional units of a certain area such as Shanghai sea area management functional units, Beijing domain management functional units, etc.
  • Network elements are entities that provide network services, including core network elements, access network elements, and the like.
  • the core network elements include: access and mobility management function (AMF), session management function (session management function, SMF), policy control function (policy control function, PCF), network data analysis Unit (network data analytical function, NWDAF), network warehouse unit (NF Repository Function, NRF) and gateways.
  • the network elements of the access network include: base station (such as gNB, eNB), centralized control unit (central unit control plane, CUCP), centralized unit (central unit, CU), distributed unit (distribution unit, DU), centralized user plane unit (central unit user plane, CUUP), etc.
  • the network element may provide one or more of the following management functions or management services: network element life cycle management, network element deployment, network element fault management, network element performance management, network element guarantee, network element Optimization functions and translation of network element intent, etc.
  • FIG. 6 is a schematic flowchart of a mobility parameter configuration method provided by an embodiment of the present application.
  • the flow of the mobility parameter configuration method in FIG. 6 is realized by interaction between the first network management device and the second network management device.
  • the first network management device described in this embodiment may be a cross-domain management functional unit (eg, NMS) in FIG. 5
  • the second network management device may be a domain management functional unit (eg, EMS) in FIG. 5 .
  • the method may include the following steps:
  • the first network management device determines a mobility optimization attribute, where the mobility optimization attribute is used to indicate an attribute configured in the case of a secondary cell radio link failure and/or a near radio link failure.
  • the first network management device determines mobility optimization attributes (MRO attributes).
  • MRO attributes mobility optimization attributes
  • the first network management device can also target the situation in which the radio link of the secondary cell fails in the multi-link data transmission scenario, and the situation where the radio link fails in the handover successful scenario.
  • the corresponding mobility optimization attributes are determined respectively, so as to realize the MRO optimization in the above two scenarios.
  • the mobility optimization attribute is a parameter for the mobile robustness optimization (MRO) function
  • MRO mobile robustness optimization
  • the MRO function can be used in a base station, a cell, a base station CU, a base station DU, a cell on the base station CU, a cell on the base station DU, or a sub-cell. It is implemented on one or more nodes of the network management node, which is not limited in this embodiment, and its main purpose is to optimize the mobility of the terminal.
  • the mobility optimization attribute determined by the first network management device is the mobility optimization attribute of the network node, and the network node may be one of a cell, a base station, a base station CU, a base station DU, a cell on the base station CU, and a cell on the base station DU. one or more, which is not limited in this embodiment.
  • the MRO optimization described in the embodiments of the present application includes the optimization of mobility parameters (such as cell-specific paranoid CIO) in the scenario where the SN is replaced too early, too late, or the ping-pong scenario causes the secondary cell radio link failure scenario, and handover.
  • Mobility parameters such as cell-specific paranoid CIO
  • the cell-level mobility optimization attributes corresponding to the cell-level optimization are described in detail below.
  • the first policy parameter includes a policy corresponding to a situation in which the radio link of the secondary cell fails in a multi-link data transmission scenario, and a situation in which the radio link is on the verge of failure in a successful handover scenario.
  • the radio link failure of the secondary cell can refer to FIG. 2b and the corresponding description.
  • the situation on the verge of radio link failure can refer to FIG. 3 and the corresponding description, which will not be repeated here. Repeat.
  • the first policy parameter may include one or more of a cell identifier (cell local ID), a handover trigger definition parameter, a handover adjustment policy parameter, an optimization period, or a handover optimization policy parameter.
  • the cell identifier is used to indicate the cell for which the mobility optimization attribute is to be configured.
  • the cell identity may be one or more of physical cell identity (physical cell identity, PCI), global cell identity (cell global identity, CGI), cell name (cell name), or cell ID (cell ID). , which is not limited in this embodiment.
  • PCI 1 physical cell identity
  • CGI global cell identity
  • cell name cell name
  • cell ID cell ID
  • the handover trigger limit parameters include maximum deviation handover trigger, minimum time between handover trigger change, maximum deviation SN change trigger, and minimum SN change trigger change time ( One or more of the minimum time between SN change trigger change), which is not limited in this embodiment.
  • the maximum handover trigger deviation represents the maximum deviation of the handover trigger parameter, that is, the maximum adjustment value of cell specific offset (cell individual offset, CIO), for example, the maximum adjustment value is 10 dB.
  • CIO cell individual offset
  • the minimum switching trigger change time represents the minimum time for updating the switching trigger parameters, that is, the minimum time for CIO adjustment. That is to say, the minimum handover trigger change time represents the minimum time interval between two handover trigger parameter updates, and is used to control the stability and convergence of the MRO algorithm.
  • the maximum SN replacement trigger deviation represents the maximum deviation of the trigger parameter for SN replacement, that is, the maximum adjustment value of the CIO for SN replacement, for example, the maximum adjustment value is 10 dB.
  • the CIO of the SN or the cell under the SN can be adjusted to reduce the CIO value of the SN or the cell under the SN, and the degree of reduction can refer to the maximum SN replacement described in this embodiment.
  • Trigger deviation By determining the maximum SN replacement trigger deviation, the first network management device helps to avoid the auxiliary node replacement too early (SN change too early), the auxiliary node replacement too late (SN change too late), and the auxiliary node replacement error (SN change too wrong cell). ), etc., so as to avoid secondary cell radio link problems caused by secondary node replacement.
  • the SN replacement here is SN handover, or secondary cell handover between SNs, or secondary cell handover, that is, the UE performs handover between secondary cells.
  • the minimum SN replacement trigger change time indicates the minimum time for SN replacement trigger parameter update, that is, the CIO adjustment minimum time for SN replacement, that is, the minimum SN replacement trigger change time indicates the minimum time interval between two SN replacement trigger parameter updates .
  • the minimum SN replacement trigger change time is used to control the stability and convergence of the MRO algorithm for SN replacement.
  • the handover adjustment strategy parameters include one or more of the adjustment parameters of the cell personality offset CIO, beam parameters, radio link monitoring parameters, and random access resource parameters.
  • the adjustment parameters of the cell personality offset CIO include parameters such as CIO adjustment range maximum intra-frequency MRO, CIO adjustment range minimum intra-frequency MRO, CIO adjustment range maximum inter-frequency MRO, CIO adjustment range minimum inter-frequency MRO and other parameters.
  • the beam parameters include parameters such as the maximum value/minimum value of Qin and the maximum value/minimum value of Qout detected by the beam.
  • the radio link monitoring parameters include parameters such as the maximum/minimum value of the radio link monitoring time stamp T310, the maximum value/minimum value of T312, the maximum value/minimum value of the RLC retransmission times of the radio link control, and the like.
  • the random access resource parameters include parameters such as the maximum/minimum value of the downlink signal strength threshold of the beam (such as RSRP Threshold SSB, RSRP Threshold CSIRS), the downlink signal strength threshold of the supplementary carrier (such as RSRP Threshold SSB-SUL) and other parameters.
  • the maximum value of the CIO adjustment range and the same frequency MRO represents the maximum value of the same frequency MRO optimized CIO adjustment
  • the minimum value of the CIO adjustment range represents the minimum value of the same frequency MRO optimized CIO adjustment. That is to say, the same-frequency MRO with the maximum value of the CIO adjustment range and the same-frequency MRO with the minimum value of the CIO adjustment range limit the adjustment range of the CIO during the same-frequency switching.
  • the first network management device may determine that the maximum value of the intra-frequency MRO optimized CIO adjustment is 5dB, and the minimum value of the intra-frequency MRO optimized CIO adjustment is -5dB.
  • the adjustment range of the CIO is between -5dB and 5dB.
  • the maximum value of the CIO adjustment range and the inter-frequency MRO represents the maximum value of the inter-frequency MRO optimized CIO adjustment, and the minimum value of the CIO adjustment range.
  • the inter-frequency MRO represents the minimum value of the inter-frequency MRO optimized CIO adjustment. That is to say, the CIO adjustment range maximum value inter-frequency MRO and the CIO adjustment range minimum value inter-frequency MRO limit the CIO adjustment range during inter-frequency switching.
  • the first network management device may determine that the maximum value of the inter-frequency MRO-optimized CIO adjustment is 10 dB, and the minimum value of the inter-frequency MRO-optimized CIO adjustment is -10 dB.
  • the adjustment range of the CIO is between -10dB and 10dB.
  • the MRO optimization period represents the period in which MRO statistics and optimization are performed. That is, the MRO optimization period indicates how often the first network device or the second network device performs MRO statistics and optimization.
  • the parameters of the handover optimization strategy include one or more parameters, such as an optimization trigger threshold corresponding to a radio link failure of the secondary cell, an optimization trigger threshold corresponding to a near radio link failure, and the like.
  • the parameters of the handover optimization strategy include abnormal handover ratio threshold, premature handover optimization ratio threshold, late handover optimization ratio threshold, abnormal SN replacement ratio threshold, SN replacement premature optimization ratio threshold, SN replacement too late optimization ratio threshold, ping pong
  • One or more parameters such as proportional threshold, SN replacement ping-pong proportional threshold, near-RLF proportional threshold, beam failure proportional threshold, etc.
  • abnormal switching includes switching too early and switching too late.
  • the abnormal switching ratio threshold limits the maximum value of the abnormal switching ratio. That is, if the abnormal switching ratio of the system is greater than the abnormal switching ratio threshold, MRO optimization is triggered.
  • the handover premature optimization ratio threshold defines the maximum value of the handover premature ratio. That is to say, if the premature handover ratio of the system is greater than the handover premature optimization ratio threshold, MRO optimization is triggered.
  • the handover too late optimization ratio threshold defines the maximum value of the handover too late ratio. That is to say, if the handover too late ratio of the system is greater than the handover too late optimization ratio threshold, MRO optimization is triggered.
  • the abnormal SN replacement includes premature SN switching and too late SN switching.
  • the abnormal SN replacement ratio threshold defines the maximum value of the abnormal SN replacement ratio. That is, if the abnormal SN replacement ratio of the system is greater than the abnormal SN replacement ratio threshold, MRO optimization is triggered.
  • the SN replacement premature optimization ratio threshold defines the maximum value of the SN replacement premature ratio. That is to say, if the premature SN replacement ratio of the system is greater than the SN replacement premature optimization ratio threshold, MRO optimization is triggered.
  • the SN replacement too late optimization ratio threshold defines the maximum value of the SN replacement too late ratio. That is to say, if the ratio of the system's SN replacement too late is greater than the SN replacement too late optimization ratio threshold, MRO optimization is triggered.
  • the above-mentioned abnormal SN replacement ratio threshold, SN replacement premature optimization ratio threshold, and SN replacement too late optimization ratio threshold are mainly aimed at the problem that the wireless link of the secondary cell fails due to the SN change in the scenario of multi-link data transmission.
  • the ping-pong ratio threshold defines the maximum value of the ping-pong handover ratio.
  • the SN replacement ping-pong ratio threshold defines the maximum value of the SN replacement ping-pong ratio.
  • the near-RLF ratio threshold defines the maximum value of the near-RLF ratio.
  • the beam failure ratio threshold defines the maximum value of the beam failure ratio.
  • the first target parameter may include one or more parameters such as cell identity, maximum number of handover triggers, and handover trigger optimization target parameters. Wherein, the first target parameter can be understood as the target that the MRO expects or needs to achieve.
  • the cell identifier is used to indicate the cell for which the mobility optimization attribute is to be configured. That is, the cell identity indicates the cell that is expected or required to reach the target.
  • the cell identifier please refer to the description of the foregoing embodiments, and details are not repeated here.
  • the maximum number of handover triggers is used to limit the number of handover trigger parameter changes. For better algorithm convergence, the number of handover trigger changes in a cell cannot be too many, that is, the maximum number of handover triggers cannot be exceeded.
  • the ping-pong handover ratio of cell 1 exceeds the ping-pong ratio threshold many times, and MRO optimization will be triggered each time it exceeds the threshold.
  • the number of times that the MRO optimization is triggered by handover is too large, a large amount of management overhead may be added to the system. Therefore, the number of times of triggering the MRO optimization needs to be limited to no more than the maximum number of times the handover is triggered.
  • the target parameters for handover trigger optimization include abnormal RLF ratio, ping-pong handover times ratio, premature handover failure rate, late handover call drop rate, abnormal SCG failure ratio, SN replacement premature failure rate or SN replacement too late call drop rate and other parameters.
  • the abnormal RLF includes RLF caused by premature handover and RLF caused by too late handover.
  • the abnormal RLF ratio is the optimization objective of MRO, that is, through MRO optimization, it is beneficial to reduce the abnormal RLF ratio.
  • the ratio of the number of ping-pong handovers is an optimization target of MRO, that is, through MRO optimization, it is beneficial to reduce the ratio of the number of ping-pong handovers.
  • the handover too late call drop rate is an optimization target of MRO, that is to say, through MRO optimization, it is beneficial to reduce the handover too late call drop rate.
  • abnormal SCG failures include SCG failure caused by premature SN replacement and SCG failure caused by SN replacement too late.
  • the abnormal SCG failure ratio is the optimization target of MRO, that is, the MRO optimization through SN replacement is beneficial to reduce the abnormal SCG failure ratio.
  • the call drop rate of the SN replacement too late is an optimization objective of the MRO for the SN replacement, that is to say, through MRO optimization, it is beneficial to reduce the call drop rate of the SN replacement too late.
  • the first control parameter is also called the control switch of the MRO function.
  • two types of control switches are newly added to the existing MRO function control switch, including the mobility optimization function control switch for the failure of the wireless link of the secondary cell and the near-wireless control switch. Mobility optimization function control switch for link failure.
  • both the mobility optimization function control switch in which the radio link of the secondary cell fails and the mobility optimization function control switch on the verge of radio link failure may be of Boolean data type.
  • using on means that the mobility optimization function of the secondary cell radio link failure is enabled, and using off means that the mobility optimization function of the secondary cell radio link failure is disabled.
  • using on means that the mobility optimization function on the verge of radio link failure is turned on, and using off means that the mobility optimization function on the verge of radio link failure is turned off.
  • the control switch of the MRO function may also be an enumeration (Enumeration) data type, such as yes or no, or other data types that can represent switches, which are not limited in this embodiment.
  • the mobility optimization function control switch of the radio link failure of the secondary cell may also be called the MR-DC MRO function switch or the SN Change MRO function switch, and the mobility optimization function control switch of the radio link failure of the secondary cell is used for the occurrence of
  • the base station is controlled to perform MRO optimization.
  • the base station can detect the number of premature SN changes, the number of late SN changes and the total number of handovers. If the SN replacement fails, for example, the SN is replaced too many times too early, the MR-DC MRO function switch controls the MRO function to be turned on.
  • the MR-DC MRO function switch controls the MRO function to be on and the system reaches the MRO trigger condition, trigger the MRO optimization, such as modifying the switching parameters.
  • the mobility optimization function control switch on the verge of wireless link failure may also be called the successful handover optimization function switch.
  • the base station is controlled to perform MRO optimization. For example, in a successful handover scenario, the base station can detect the number of near-RLF links. If the number of near-RLF links is large, the successful handover optimization function switch controls the MRO function to be enabled, triggering MRO optimization.
  • the mobility optimization attribute at the base station level corresponding to the base station level optimization will be described in detail below.
  • the mobility optimization attribute at the base station level may include a second strategy parameter, a second target parameter, a second control parameter, and the like.
  • the second policy parameter includes policies respectively corresponding to the situation in which the radio link of the secondary cell fails in the scenario of multi-link data transmission and the situation in which the radio link is on the verge of failure in the scenario of successful handover.
  • the second policy parameter may include: a network device identifier, an abnormal coverage policy parameter, an abnormal wireless link policy parameter, and the like.
  • the network device identifier may be a base station identifier (base station ID) or a base station name, which is used to indicate different network devices (eg, a base station, etc.), which is not limited in this embodiment.
  • base station ID base station identifier
  • base station name a base station name
  • the base station identifier in the second policy parameter is base station 1 (base station ID1 )
  • the abnormal coverage policy parameters include one or more parameters such as an abnormal coverage threshold, a reference signal receiving power (RSRP) threshold of a serving cell, and a reference signal received power threshold of an adjacent cell, which are not limited in this embodiment.
  • RSRP reference signal receiving power
  • the abnormal coverage threshold represents the maximum value of the abnormal coverage ratio between the serving cell and the neighboring cells in one MRO optimization period. If in an MRO optimization period, the abnormal coverage ratio between the serving cell and the neighboring cell exceeds the abnormal coverage threshold, MRO is not triggered. That is to say, since the abnormal coverage threshold indicates coverage performance rather than mobility performance, even if the abnormal coverage ratio of the system exceeds the abnormal coverage threshold, mobility performance optimization will not be triggered, that is, MRO optimization will not be triggered.
  • the reference signal received power threshold of the serving cell indicates that when RLF or handover failure occurs in the terminal equipment, the RSRP value of the serving cell included in the RLF report after successful re-establishment is less than the threshold, and the RSRP of the neighboring cell is also less than the threshold, it is considered to exist Exception coverage. That is, the reference signal received power threshold of the serving cell may indicate whether there is abnormal coverage. Optionally, if the reference signal received power threshold of the serving cell indicates that there is abnormal coverage, and the abnormal coverage ratio exceeds the abnormal coverage threshold, MRO optimization is not triggered.
  • the reference signal received power threshold of the adjacent cell means that when the terminal equipment has RLF or handover failure, the RSRP value of the serving cell included in the RLF report after successful reconstruction is smaller than the threshold, and the RSRP of the adjacent cell is also smaller than the threshold, it is considered that There is exception coverage. That is, the reference signal received power threshold of the neighboring cell may indicate whether there is abnormal coverage. Optionally, if the reference signal received power threshold of the neighboring cell indicates that there is abnormal coverage, and the abnormal coverage ratio exceeds the abnormal coverage threshold, MRO optimization is not triggered.
  • the abnormal wireless link policy parameters include one or more parameters such as abnormal wireless link failure ratio threshold, network device group handover failure ratio threshold, and near wireless link failure ratio threshold.
  • the abnormal radio link failure is also called abnormal RLF, including abnormal RLF caused by premature handover and abnormal RLF caused by too late handover.
  • network device group switching failure is also called abnormal SCG failure, including SCG failure caused by premature SN replacement and SCG failure caused by SN replacement too late.
  • the near-RLF ratio threshold defines the maximum value of the near-RLF ratio, that is, in a successful handover scenario, if the near-RLF ratio reaches the near-RLF ratio threshold, MRO optimization is triggered.
  • the second policy parameter may also include the first policy parameter in the cell-level mobility optimization attributes described in the foregoing embodiments. That is to say, the second policy parameter may also include one or more parameters, such as a cell identifier, a handover trigger limitation parameter, a handover adjustment policy parameter, an optimization period or a handover optimization policy parameter.
  • the description of each parameter please refer to the foregoing embodiments The description in , will not be repeated here.
  • the second target parameter may include one or more parameters such as network device identification, abnormal coverage ratio, and handover trigger optimization target parameter.
  • the description of the network device identifier is the same as the description and function of the network device identifier in the second policy parameter, and details are not repeated here.
  • the abnormal coverage ratio indicates the abnormal coverage ratio between the serving cell and the neighboring cells in one MRO optimization period.
  • the ratio of the overlapping coverage area between the serving cell and the neighboring cells to the sum of the coverage areas formed by the serving cell and the neighboring cells can reflect the abnormal coverage ratio between the serving cell and the neighboring cells.
  • the overlapping coverage area between the serving cell and the neighboring cell may be regarded as an abnormal coverage area.
  • the handover-triggered optimization target parameters include one or more parameters such as abnormal RLF ratio, abnormal SCG failure ratio, and near-RLF ratio.
  • abnormal RLF ratio abnormal SCG failure ratio
  • near-RLF ratio the abnormal SCG failure ratio
  • the near-RLF ratio is the optimization objective of MRO, that is, through MRO optimization, it is beneficial to reduce the near-RLF ratio.
  • the second control parameter is also called the control switch of the MRO function.
  • two new types of control switches are added to the existing MRO function control switch, including the mobility optimization function control switch for the failure of the radio link of the secondary cell and the control switch for the near wireless function. Mobility optimization function control switch for link failure.
  • Mobility optimization function control switch for link failure For the specific description of the above two types of switches, reference may be made to the detailed description in the first control parameter, which is not repeated here.
  • the MRO optimization described in this embodiment may also be optimization at the subnet level.
  • the subnet-level mobility optimization attribute corresponding to the subnet-level optimization is the same as the base-station-level mobility optimization attribute.
  • the first network management device sends the mobility optimization attribute to the second network management device; correspondingly, the second network management device receives the mobility optimization attribute sent by the first network management device.
  • the first network management device may send the mobility optimization attribute to the second network management device.
  • the first network management device sends network node information to the second network management device through the northbound interface, where the network node information includes the mobility optimization attribute.
  • the network node may be a network function node, such as a base station, a cell, a base station CU or a base station DU, a base station CU cell, or a base station DU cell, and the like.
  • the first network management device sends one or more of cell identification information, base station identification information, and slice identification information to the second network management device.
  • the second network management device receives the object creation notification sent by the first network management device that carries the mobility optimization attribute of the network node, and the second network management device creates the management of the network node instance according to the received object creation notification.
  • the network node may be a network function node, such as a base station, a cell, a base station CU, a base station DU, a base station CU cell, or a base station DU cell, etc.
  • the second network management device configures the mobility optimization attribute in the management object of the network node.
  • the object creation notification is used to enable the first network management device to create corresponding management objects and perform corresponding configuration for these management objects.
  • the object creation notification further includes one or more of a base station identifier, a cell identifier, or a slice identifier, which are respectively used to indicate whether the mobility optimization attribute is at the base station, cell, or slice level.
  • the management service consumer sends a create MOI operation to the management service producer, and the operation carries the relevant attributes of the mobility optimization function.
  • the management service consumer can send the get MOI Attributes operation to the management service producer to actively obtain the configuration parameters of an object.
  • the management service consumer can also send the modify MOI Attributes operation to the management service producer to modify the parameters of an object.
  • the management service consumer can also send the delete MOI Attributes operation to the management service producer to delete an object.
  • the above-mentioned operation may use an existing operation message, or may also use a newly defined operation message, which is not limited in this embodiment.
  • the second network management device may also send the mobility optimization attribute to the second network device, so that the first network management device can send the mobility optimization attribute to the second network device.
  • the second network device adjusts the handover parameters of the terminal device during the process of switching from the first network device to the second network device according to the mobility optimization attribute.
  • the sending of the mobility optimization attribute by the second network management device to the second network device may be implemented through a private interface or the like between the second network management device and the second network device.
  • the management service consumer determines the mobility optimization attribute, and delivers the mobility optimization attribute to the managed base station 1 and base station 2 through the management service producer.
  • Base station 1 and base station 2 perform corresponding parameter configuration according to the received mobility optimization attribute. If the terminal equipment is handed over successfully from base station 1 to base station 2, but the near-RLF ratio exceeds the near-RLF ratio threshold in the mobility optimization attribute, base station 2 triggers MRO optimization, and the mobility parameters, beam parameters etc. to optimize.
  • the interaction between the first network management device and the second network management device in this embodiment may further include the following steps:
  • the first network management device receives the response message sent by the second network management device; correspondingly, the second network management device sends the response message to the first network management device.
  • the second network management device may perform corresponding configuration according to the mobility optimization attribute, and after the configuration, the second network management device sends a response message to the first network management device.
  • the response message may be an existing Create MOI response operation message, or a newly defined operation message, which is not limited in this embodiment.
  • the response message may carry the identifier of the management object and/or the identifier of the second network management device.
  • the identifier of the management object may be created by the first network management device and sent to the second network management device in the Create MOI request.
  • the response message may further include one or more of a configuration success message, a configuration failure message, or information that cannot be configured, which is not limited in this embodiment.
  • the configuration status of the second network management device includes configuration success, configuration failure or inability to configure. For example, if the configuration of the mobility optimization attribute of the second network management device is successful, the response message sent by the second network management device to the first network management device is a configuration success message.
  • the response message may also carry the reason why the configuration fails or cannot be configured.
  • the response message sent by the second network management device to the first network management device is a configuration failure message, and the response message further includes a reason for the configuration failure.
  • the embodiment of the present application provides a mobility parameter configuration method, and the method can be executed interactively between a first network management device and a second network management device.
  • the first network management device may send the mobility optimization attribute to the second network management device, where the mobility optimization attribute is used to indicate the attribute configured in the case that the radio link of the secondary cell fails and/or is on the verge of radio link failure. That is to say, the method realizes the management of mobility parameter optimization in the multi-link data transmission scenario and the successful handover scenario, and ensures the mobility performance in the two scenarios.
  • the following describes in detail the management process of performance indicators between the network management device and the network device in the scenario of multi-link data transmission and in the scenario of successful handover.
  • FIG. 7 is a schematic flowchart of a first network management device and a second network management device managing mobility optimization performance data according to an embodiment of the present application. The process is realized by the interaction between the first network management device and the second network management device, and includes the following steps:
  • the first network management device sends a request message to the second network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization performance corresponding to the mobility optimization attribute data indication;
  • the request message sent by the first network management device to the second network management device may be a data subscription operation message, where the data subscription operation message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute A notification of the corresponding mobility optimization performance data.
  • the data subscription operation message may carry the information of the network node.
  • the information of the network node may be information of various types of network nodes such as a base station, a cell, a base station CU or a base station DU, a base station CU cell, or a base station DU cell.
  • the data subscription operation message is used to request the mobility optimization performance data of the network node and/or the indication of the mobility optimization performance data of the network node.
  • the data subscription operation message may also carry the identification information of the slice, for example, identification information such as NSSAI, S-NSSAI, NSSI and the like.
  • the subscription operation is used to request the mobility-optimized performance data of the specified slice and/or an indication of the mobility-optimized performance data of the specified slice.
  • the first network management device sends a data subscription operation message of the network node to the second network management device, where the data subscription operation carries the mobility optimization performance data of the requested network node.
  • the network node may be a network function node, such as one or more of a base station, a cell, a base station CU or a base station DU, a base station CU cell, or a base station DU cell.
  • the data subscription operation message further includes a period for sending performance data, a trigger threshold, and the like.
  • the data subscription operation message indicates specific mobility optimization performance data, for example, it may indicate one or more of performance data related to multi-link data transmission and performance data related to handover success, which is not performed in this embodiment. limited.
  • the data subscription operation message may be an existing subscribe operation message, or a new message may also be defined, which is not limited in this embodiment.
  • the first network management device receives the feedback information sent by the second network management device.
  • the feedback information received by the first network device may include the mobility optimization performance data corresponding to the mobility optimization attribute and/or the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure An indication of the corresponding mobility-optimized performance data. That is, the feedback information may only include specific performance data, may only include an indication of the performance data, or may include specific performance data and an indication of the performance data.
  • the feedback information may include mobility optimization performance data corresponding to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure.
  • the mobility optimization performance data corresponding to the mobility optimization attribute is the performance index of the handover performed by the network element managed by the second network management device.
  • the mobility optimization data may include, but is not limited to: the total number of handovers, the total number of handover failures, the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, and the secondary node is updated prematurely.
  • the number of times, the number of times the secondary node is updated too late, the number of times the secondary node is handed over to the wrong cell, the number of times the secondary node is ping-pong handover, the number of times the wireless link is on the verge of failure or the number of beam failures, etc.
  • the total number of handover events is the number of handover events counted in one MRO optimization period, regardless of RAT. That is to say, the total number of handover occurrences may be the number of intra-RAT handover events in the same format (number of intra-RAT handover events), or the number of inter-RAT handover events in different formats .
  • intra-RAT refers to handover under the same standard, such as handover between LTE and LTE, and between NR and NR.
  • inter-RAT refers to handover under different systems, for example, between LTE and NR, or between eLTE and NR under the NG-RAN architecture, which is not limited in this embodiment.
  • the total number of handover failures is the number of handover failures counted in one MRO optimization period, regardless of RAT. That is, the total number of handover failures may be the number of intra-RAT handover failures (number of intra-RAT handover failures), or the number of inter-RAT handover failures (number of inter-RAT handover failures).
  • the total number of handover failures can also be the number of premature handover failures under inter-RAT (number of inter-RAT too early handover failures), or the number of late handover failures under intra-RAT (number of intra-RAT).
  • RAT too late handover failures or the number of intra-RAT handover failures to wrong cell (number of intra-RAT handover failures to wrong cell), or the number of inter-RAT too early failures handover failures), or the number of inter-RAT too late handover failures (number of inter-RAT too late handover failures), or the number of unnecessary handover to another RAT, etc.
  • the following will introduce the mobility optimization performance data of the multi-link data transmission scenario and the mobility optimization performance data of the handover successful scenario. It may include: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect occurs, the number of times the secondary node is updated too early, the number of times the secondary node is updated too late, the number of times the secondary node is switched to the wrong cell, or The number of times the wireless link is on the verge of failure, etc.
  • the total number of SN change events (number of SN change events) of the secondary node is the number of SN switching events counted in one MRO optimization period.
  • the total number of secondary node switching times may be the total number of secondary node switching times under inter-RAT (number of inter-RAT SN change events), or the total number of secondary node switching times under intra-RAT (number of intra-RAT).
  • RAT SN change events may be the total number of secondary node switching times under inter-RAT (number of inter-RAT SN change events), or the total number of secondary node switching times under intra-RAT (number of intra-RAT).
  • the total number of SN change failures of the secondary node is the number of SN switch failures counted in one MRO optimization period.
  • the total number of secondary node switching failures may be the total number of secondary node switching failures under inter-RAT (number of inter-RAT SN change failures), or the total number of secondary node switching failures under intra-RAT (number of intra-RAT). -RAT SN change failures).
  • the number of handover ping pong generation is the number of ping-pong handovers that are counted in one MRO optimization period.
  • the number of times the ping-pong effect is generated may be the number of inter-RAT handover ping pong, or the number of intra-RAT handover ping pong.
  • the number of SN too early HO failures of the secondary node is the number of handover failures caused by the premature update of the SN in one MRO optimization period.
  • the number of times the secondary node is updated too early may be the number of handover failures (number of inter-RAT SN too early HO failures) caused by the premature update of the secondary node under inter-RAT, or the number of times the secondary node under intra-RAT has been updated.
  • the number of handover failures caused by early (number of intra-RAT SN too early HO failures).
  • the number of SN too late HO failures (number of SN too late HO failures) of the secondary node is the number of handover failures caused by too late SN updating in one MRO optimization period.
  • the number of times that the secondary node is updated too late can be the number of handover failures (number of inter-RAT SN too late HO failures) caused by the late update of the secondary node under inter-RAT, or the number of times that the secondary node under intra-RAT has been updated. Number of handover failures caused by late (number of intra-RAT SN too late HO failures).
  • the number of SN to wrong cell of the secondary node is the number of SN to wrong cell that is counted in one MRO optimization period.
  • the number of times the secondary node switches to the wrong cell may be the number of times the secondary node switches to the wrong cell under inter-RAT (number of inter-RAT SN to wrong cell), or the number of times the secondary node switches to the wrong cell under intra-RAT. Number of times (number of intra-RAT SN to wrong cell).
  • the number of SN change ping pong of the secondary node is the number of SN change ping pong counted in one MRO optimization period.
  • the number of times of the ping-pong handover of the secondary node may be the number of inter-RAT SN change ping pong times (number of inter-RAT SN change ping pong), or the number of intra-RAT ping-pong changes (number of intra-RAT).
  • RAT SN change ping pong is the number of SN change ping pong counted in one MRO optimization period.
  • the number of times of the ping-pong handover of the secondary node may be the number of inter-RAT SN change ping pong times (number of inter-RAT SN change ping pong), or the number of intra-RAT ping-pong changes (number of intra-RAT).
  • RAT SN change ping pong may be the number of intra-RAT ping pong times (number of inter-RAT SN change pong), or the number of intra-RAT ping
  • the number of near-RLFs on the verge of wireless link failure is the number of near-RLFs counted in one MRO optimization period.
  • the number of times of near-radio link failure can be the number of times of near-radio link failure under inter-RAT (number of inter-RAT near-RLF), or the number of times of near-radio link failure under intra-RAT (number of intra-RAT near-RLF).
  • the number of beam failures (number of Beam Failure) is the number of beam failures counted in one MRO optimization period.
  • the feedback information may not include the above-mentioned performance data, but only includes an indication (eg, notify ready) of the mobility optimization performance data corresponding to the mobility optimization attribute.
  • the feedback information includes notify ready, which may indicate the performance data requested by the request message.
  • Two processes for managing MRO performance indicators are described below through two examples. Among them, one is that the first network management device triggers a subscription to obtain the mobility optimization performance data, and the second network management device reports in a file-based manner. The other is to trigger the measurement task and report the mobility optimization performance data through the second network management device, and the second network management device reports the data in a stream-based manner.
  • FIG. 8 is a schematic flowchart of a first network management device and a second network management device managing MRO performance indicators according to an embodiment of the present application.
  • the process is realized by the interaction between the first network management device and the second network management device, and includes the following steps:
  • a first network management device sends a subscription operation to a second network management device
  • the second network management device sends an indication message to the first network management device, where the indication message is used to indicate that the file data is ready;
  • the first network management device sends a request message to the second network management device, where the request message is used to request to obtain available file data.
  • the subscription operation sent by the first network management device to the second network management device is used to subscribe to the MRO performance indicator of the second network management device.
  • the first network management device may acquire specific MRO performance indicators through the subscription operation.
  • the subscription operation may carry the information of the network node.
  • the information of the network node may be information of a base station, a cell, a base station CU, a base station DU, a base station CU cell or a base station DU cell.
  • the subscription operation is used to request the sending of mobility-optimized performance data of the network node and/or an indication of the mobility-optimized performance data of the network node.
  • the subscription operation may also carry the identification information of the slice, for example, identification information such as NSSAI, S-NSSAI, and NSSI.
  • the subscription operation is used to instruct a request for the mobility-optimized performance data of the specified slice and/or an indication of the mobility-optimized performance data of the specified slice.
  • the first network management device sends a subscription operation of the network node to the second network management device, where the subscription operation carries the mobility optimization performance data of the network node.
  • the network node may be a network function node, such as one or more of a base station, a cell, a base station CU, a base station DU, a base station CU cell, or a base station DU cell.
  • the subscription operation further includes a period for sending performance data, a trigger threshold, and the like.
  • the subscription operation may carry an indication of a specific MRO performance indicator.
  • the subscription operation sent by the first network management device to the second network management device carries the first indication and/or the second indication.
  • the first indication is used to indicate performance indicators related to multi-link data transmission (such as performance indicators related to SN change)
  • the second indication is used to indicate performance indicators related to handover success (such as near-RLF related performance indicators).
  • the subscription operation may use an existing subscribe operation message or define a new message, which is not limited in this embodiment.
  • the second network management device may collect relevant mobility optimization performance data, and record the relevant mobility optimization performance data in files.
  • the second network management device may send an indication message to the first network management device, where the indication message is used to indicate that the file data is ready (file ready).
  • the indication message sent by the second network management device may use an existing Notify Ready operation message, or may define a new message, which is not limited in this embodiment.
  • the indication message may carry an indication of a specific MRO performance indicator ready.
  • the indication message sent by the second network management device to the first network management device carries the first ready indication and/or the second ready indication.
  • the first ready indication is used to indicate that performance indicators related to multi-link data transmission (such as performance indicators related to SN change) are included in the file
  • the second ready indication is used to indicate performance indicators related to handover success (such as near-RLF related performance indicators) performance metrics) are included in the file.
  • the first network management device may send a request message to the second network management device, where the request message is used to request to obtain available file data (available files).
  • the request message may use the existing list Available Files operation message, or may define a new message, which is not limited in this embodiment.
  • FIG. 9 is a schematic flowchart of another first network management device and a second network management device for managing MRO performance indicators according to an embodiment of the present application.
  • the process is realized by the interaction between the first network management device and the second network management device, and includes the following steps:
  • the first network management device sends an operation of creating a measurement task to a second network management device
  • the second network management device sends a data stream connection establishment operation to the first network management device
  • the second network management device sends a data stream to the first network management device.
  • measurement tasks are used to collect the same measurement type for the same instance with different granularity periods.
  • the first network management device may send the measurement work list to the second network management device, so that the second network management device establishes a corresponding measurement task data flow.
  • the information of the network node may be carried in the operation of creating a measurement task.
  • the information of the network node may be information of a base station, a cell, a base station CU or a base station DU, a base station CU cell or a base station DU cell.
  • the create measurement task operation is used to request the creation of a measurement connection for the mobility optimization performance data of the network node.
  • the operation of creating a measurement task may also carry the identification information of the slice, for example, identification information such as NSSAI, S-NSSAI, NSSI, and the like.
  • the Create Measurement Task action is used to request the creation of a measurement connection for mobility-optimized performance data for the specified slice.
  • the first network management device sends an operation of creating a measurement task of the network node to the second network management device, where the operation of creating a measurement task carries the mobility optimization performance data of the network node.
  • the network node may be a network function node, such as one or more of a base station, a cell, a base station CU or a base station DU, a base station CU cell, or a base station DU cell.
  • the operation of creating a measurement task further includes a period for sending performance data, a trigger threshold, and the like.
  • the measurement task operation can use the existing create measurement job operation message.
  • the measurement task list may use the existing list measurement jobs operation message, or use the existing create MOI operation message, or use other newly defined messages, which is not limited in this embodiment.
  • the data flow connection establishment operation is used to establish a data flow between the first network management device and the second network management device.
  • a flow information list may be carried in the data flow connection establishment operation, wherein the flow information list includes flow identification, measurement management object DN information, and the like.
  • the data stream connection establishment operation may use an existing establish streaming connection operation message, or define a new operation message, which is not limited in this embodiment.
  • the data stream connection establishment operation may carry an indication of a specific MRO performance indicator.
  • the data flow connection establishment operation sent by the first network management device to the second network management device carries the first indication and the second indication.
  • the first indication is used to indicate performance indicators related to multi-link data transmission (such as performance indicators related to SN change)
  • the second indication is used to indicate performance indicators related to handover success (such as near-RLF related performance indicators).
  • the embodiments of the present application provide a management process of performance indicators between a network management device and a network device in a multi-link data transmission scenario and a successful handover scenario, and solve the mobility optimization performance in a multi-link data transmission scenario and a successful handover scenario data management.
  • the management process is beneficial to enable the first network management device to adjust the mobility optimization attribute according to the mobility optimization performance data, thereby helping to reduce the handover failure rate of the user during the handover process.
  • An embodiment of the present application provides a first network management device.
  • the first network management device 1000 may be used to implement the mobility parameter configuration method in the embodiment of the present application.
  • the first network management device 1000 may include:
  • a processing unit 1001 configured to determine a mobility optimization attribute, where the mobility optimization attribute is used to indicate an attribute configured in the case of a secondary cell radio link failure and/or a near radio link failure;
  • the transceiver unit 1002 is configured to send the mobility optimization attribute to the second network management device.
  • the mobility optimization attribute includes a first strategy parameter
  • the first strategy parameter includes one or more of the following: a handover trigger limit parameter, a handover adjustment strategy parameter, an optimization period, or a handover optimization strategy parameter.
  • the handover trigger limitation parameter includes a maximum handover trigger deviation value and/or a minimum handover trigger time interval when the secondary cell is handed over.
  • the handover adjustment policy parameters include one or more of cell personality offset adjustment parameters, beam parameters, radio link monitoring parameters, and random access resource parameters.
  • the handover optimization strategy parameters include an optimization trigger threshold corresponding to a radio link failure of the secondary cell, and/or an optimization trigger threshold corresponding to a near radio link failure.
  • the mobility optimization attribute includes a first target parameter
  • the first target parameter includes one or more of the following: a cell identity, a maximum number of handover triggers, or a handover trigger optimization target parameter.
  • the handover trigger optimization target parameters include one or more of the ratio of secondary cell radio link failures, the ratio of near wireless link failures, the ratio of ping-pong handover times, the premature handover failure rate or the late handover drop rate.
  • the mobility optimization attribute includes a first control parameter, where the first control parameter includes a mobility optimization function control parameter for a radio link failure of the secondary cell and/or a mobility optimization function control for a near radio link failure parameter.
  • the mobility optimization attribute includes a second policy parameter
  • the second policy parameter includes one or more of the following: a network device identifier, an abnormal coverage policy parameter, or an abnormal wireless link policy parameter.
  • the abnormal coverage policy parameters include one or more of abnormal coverage thresholds, reference signal received power thresholds of the serving cell, or reference signal received power thresholds of neighboring cells.
  • the abnormal wireless link policy parameter includes one or more of the abnormal wireless link failure ratio threshold, the network device group handover failure ratio threshold, or the near wireless link failure ratio threshold.
  • the mobility optimization attribute includes a second target parameter, where the second target parameter includes one or more of the following: network device identification, abnormal coverage ratio, or handover trigger optimization target parameter.
  • the handover trigger optimization target parameter includes one or more of the ratio of secondary cell radio link failure, the ratio of secondary cell handover failure, or the ratio of near radio link failure.
  • the mobility optimization attribute includes one or more of a first strategy parameter, a first target parameter, a first control parameter, a second strategy parameter, or a second target parameter.
  • the transceiver unit 1002 is further configured to receive a response message sent by the second network management device, where the response message indicates a configuration state of the second network management device.
  • the configuration status of the second network management device includes configuration success, configuration failure, or inability to configure, and the like.
  • the transceiver unit 1002 is further configured to send a request message to the second network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute An indication of the corresponding mobility optimization performance data.
  • the transceiver unit 1002 is further configured to receive feedback information sent by the second network management device, where the feedback information includes the mobility optimization performance corresponding to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure data and/or an indication of mobility-optimized performance data to which the mobility-optimized attribute corresponds.
  • the mobility optimization performance data includes one or more of the following: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, the number of times the secondary node is updated too early, the secondary node The number of times the node was updated too late, the number of times the secondary node was handed over to the wrong cell, or the number of times the radio link was on the verge of failure.
  • the total number of times of handover of secondary nodes the total number of failed handovers of secondary nodes, the number of times of ping-pong effect, the number of times that secondary nodes are updated too early, the number of times that secondary nodes are updated too late, the number of times that secondary nodes are updated too late, and the The detailed description of the number of times the node switches to the wrong cell or the number of times the radio link is on the verge of failure will not be repeated here.
  • the transceiver unit 1002 is further configured to:
  • a request message is sent to the second network management device, where the request message is used for requesting to acquire available file data.
  • the transceiver unit 1002 is further configured to:
  • FIG. 11 is a schematic structural diagram of a first network management device provided by an embodiment of the present application.
  • the first network management device may be a device having the function of performing the mobility parameter configuration described in the embodiment of the present application (such as chips).
  • the first network management device 1100 may include a transceiver 1101 , at least one processor 1102 and a memory 1103 .
  • the transceiver 1101, the processor 1102 and the memory 1103 may be connected to each other through one or more communication buses, or may be connected to each other in other ways. In this embodiment, a bus connection is used as an example, as shown in FIG. 11 .
  • the transceiver 1101 may be used to transmit or receive data. It can be understood that the transceiver 1101 is a general term and may include a receiver and a transmitter.
  • the sender is configured to send the mobility optimization attribute to the second network management device.
  • the processor 1102 may be used to process data. For example, processor 1102 may invoke program code stored in memory 1103 to determine mobility optimization properties.
  • the processor 1102 may include one or more processors, for example, the processor 1102 may be one or more central processing units (CPUs), network processors (NPs), hardware chips, or any combination thereof . In the case where the processor 1102 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 1103 is used for storing program codes and the like.
  • the memory 1103 may include volatile memory, such as random access memory (RAM).
  • the memory 1103 may also include non-volatile memory (non-volatile memory), such as read-only memory (ROM), flash memory (flash memory), hard disk drive (HDD) or solid state hard disk ( solid-state drive, SSD).
  • non-volatile memory such as read-only memory (ROM), flash memory (flash memory), hard disk drive (HDD) or solid state hard disk ( solid-state drive, SSD).
  • ROM read-only memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid state hard disk
  • transceiver 1101 and processor 1102 may be used to implement the mobility parameter configuration method in this embodiment of the present application, where the specific implementation is as follows:
  • the mobility optimization attribute is used to indicate an attribute configured in the case of a secondary cell radio link failure and/or a near radio link failure
  • the mobility optimization attribute is sent to the second network management device.
  • the mobility optimization attribute includes a first strategy parameter
  • the first strategy parameter includes one or more of the following: handover trigger definition parameter, handover adjustment strategy parameter, optimization period, or handover optimization strategy parameter.
  • the handover trigger limitation parameter includes a maximum handover trigger deviation value and/or a minimum handover trigger time interval when the secondary cell is handed over.
  • the handover adjustment policy parameters include one or more of cell personality offset adjustment parameters, beam parameters, radio link monitoring parameters, and random access resource parameters.
  • the handover optimization strategy parameters include an optimization trigger threshold corresponding to a radio link failure of the secondary cell, and/or an optimization trigger threshold corresponding to a near radio link failure.
  • the mobility optimization attribute includes a first target parameter
  • the first target parameter includes one or more of the following: a cell identity, a maximum number of handover triggers, or a handover trigger optimization target parameter.
  • the handover trigger optimization target parameters include one or more of the ratio of secondary cell radio link failures, the ratio of near wireless link failures, the ratio of ping-pong handover times, the premature handover failure rate or the late handover drop rate.
  • the mobility optimization attribute includes a first control parameter
  • the first control parameter includes a mobility optimization function control parameter for a radio link failure of the secondary cell and/or a mobility optimization function control for a near radio link failure parameter.
  • the mobility optimization attribute includes a second policy parameter
  • the second policy parameter includes one or more of the following: a network device identifier, an abnormal coverage policy parameter, or an abnormal wireless link policy parameter.
  • the abnormal coverage policy parameters include one or more of abnormal coverage thresholds, reference signal received power thresholds of the serving cell, or reference signal received power thresholds of neighboring cells.
  • the abnormal wireless link policy parameter includes one or more of the abnormal wireless link failure ratio threshold, the network device group handover failure ratio threshold, or the near wireless link failure ratio threshold.
  • the mobility optimization attribute includes a second target parameter, where the second target parameter includes one or more of the following: network device identification, abnormal coverage ratio, or handover trigger optimization target parameter.
  • the handover trigger optimization target parameter includes one or more of the ratio of secondary cell radio link failure, the ratio of secondary cell handover failure, or the ratio of near radio link failure.
  • the mobility optimization attribute includes one or more of a first strategy parameter, a first target parameter, a first control parameter, a second strategy parameter, or a second target parameter.
  • the transceiver 1101 is further configured to receive a response message sent by the second network management device, where the response message indicates a configuration state of the second network management device.
  • the configuration status of the second network management device includes configuration success, configuration failure, or inability to configure, and the like.
  • the transceiver 1101 is further configured to send a request message to the second network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute An indication of the corresponding mobility optimization performance data.
  • the transceiver 1101 is further configured to receive feedback information sent by the second network management device, where the feedback information includes the mobility optimization performance corresponding to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure data and/or an indication of mobility-optimized performance data to which the mobility-optimized attribute corresponds.
  • the mobility optimization performance data includes one or more of the following: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, the number of times the secondary node is updated too early, the secondary node The number of times the node was updated too late, the number of times the secondary node was handed over to the wrong cell, or the number of times the radio link was on the verge of failure.
  • the total number of times of handover of secondary nodes the total number of failed handovers of secondary nodes, the number of times of ping-pong effect, the number of times that secondary nodes are updated too early, the number of times that secondary nodes are updated too late, the number of times that secondary nodes are updated too late, and the The detailed description of the number of times the node switches to the wrong cell or the number of times the radio link is on the verge of failure will not be repeated here.
  • transceiver 1101 is also used to:
  • a request message is sent to the second network management device, where the request message is used for requesting to acquire available file data.
  • transceiver 1101 is also used to:
  • An embodiment of the present application provides a second network management device.
  • the second network management device 1200 may be used to implement the mobility parameter configuration method in the embodiment of the present application.
  • the second network management device 1200 may include:
  • a transceiver unit 1201 configured to receive a mobility optimization attribute sent by a first network management device, where the mobility optimization attribute is used to indicate an attribute configured in the case of a secondary cell radio link failure and/or a near radio link failure; a transceiver unit 1201 is further configured to send the mobility optimization attribute to the second network device, so that the second network device adjusts the terminal device according to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure Handover parameters during handover from the first network device to the second network device.
  • the mobility optimization attribute includes a first strategy parameter
  • the first strategy parameter includes one or more of the following: handover trigger definition parameter, handover adjustment strategy parameter, optimization period, or handover optimization strategy parameter.
  • the handover trigger limitation parameter includes the maximum handover trigger deviation value and/or the minimum handover trigger time interval when the secondary cell is handed over.
  • the handover adjustment policy parameters include one or more of cell personality offset adjustment parameters, beam parameters, radio link monitoring parameters, and random access resource parameters.
  • the handover optimization strategy parameters include an optimization trigger threshold corresponding to a radio link failure of the secondary cell, and/or an optimization trigger threshold corresponding to a near radio link failure.
  • the mobility optimization attribute includes a first target parameter
  • the first target parameter includes one or more of the following: a cell identity, a maximum number of handover triggers, or a handover trigger optimization target parameter.
  • the handover trigger optimization target parameters include one or more of the ratio of secondary cell radio link failures, the ratio of near wireless link failures, the ratio of ping-pong handover times, the premature handover failure rate or the late handover drop rate.
  • the mobility optimization attribute includes a first control parameter, where the first control parameter includes a mobility optimization function control parameter for a radio link failure of the secondary cell and/or a mobility optimization function control for a near radio link failure parameter.
  • the mobility optimization attribute includes a second policy parameter
  • the second policy parameter includes one or more of the following: a network device identifier, an abnormal coverage policy parameter, or an abnormal wireless link policy parameter.
  • the abnormal coverage policy parameters include one or more of abnormal coverage thresholds, reference signal received power thresholds of the serving cell, or reference signal received power thresholds of neighboring cells.
  • the abnormal wireless link policy parameter includes one or more of the abnormal wireless link failure ratio threshold, the network device group handover failure ratio threshold, or the near wireless link failure ratio threshold.
  • the mobility optimization attribute includes a second target parameter, where the second target parameter includes one or more of the following: network device identification, abnormal coverage ratio, or handover trigger optimization target parameter.
  • the handover trigger optimization target parameter includes one or more of the ratio of secondary cell radio link failure, the ratio of secondary cell handover failure, or the ratio of near radio link failure.
  • the mobility optimization attribute includes one or more of a first strategy parameter, a first target parameter, a first control parameter, a second strategy parameter, or a second target parameter.
  • the transceiver unit 1201 is further configured to send a response message to the first network management device, where the response message indicates the configuration status of the second network management device.
  • the configuration status of the second network management device includes configuration success, configuration failure, or inability to configure, and the like.
  • the transceiver unit 1201 is further configured to receive a request message sent by the first network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute An indication of the corresponding mobility optimization performance data.
  • the transceiver unit 1201 is further configured to send feedback information to the first network management device, where the feedback information includes the mobility optimization performance corresponding to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure data and/or an indication of mobility-optimized performance data to which the mobility-optimized attribute corresponds.
  • the mobility optimization performance data includes one or more of the following: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, the number of times the secondary node is updated too early, the secondary node The number of times the node was updated too late, the number of times the secondary node was handed over to the wrong cell, or the number of times the radio link was on the verge of failure.
  • the total number of times of handover of secondary nodes the total number of failed handovers of secondary nodes, the number of times of ping-pong effect, the number of times that secondary nodes are updated too early, the number of times that secondary nodes are updated too late, the number of times that secondary nodes are updated too late, and the The detailed description of the number of times the node switches to the wrong cell or the number of times the radio link is on the verge of failure will not be repeated here.
  • the transceiver unit 1201 is further configured to receive a subscription operation sent by the first network management device.
  • the processing unit 1202 determines that the file data is ready.
  • the transceiver unit 1201 is further configured to send an instruction message to the first network management device, where the instruction message is used to indicate that the file data is ready; the transceiver unit 1201 is further configured to receive a request message sent by the first network management device, where the request message is used to request Get available file data.
  • the transceiver unit 1201 is further configured to:
  • a data stream is sent to the first network management device.
  • FIG. 13 is a schematic structural diagram of a second network management device provided by an embodiment of the present application.
  • the second network management device may be a device having the function of performing the mobility parameter configuration described in the embodiment of the present application (such as chips).
  • the second network management device 1300 may include a transceiver 1301 , at least one processor 1302 and a memory 1303 .
  • the transceiver 1301, the processor 1302 and the memory 1303 may be connected to each other through one or more communication buses, or may be connected to each other in other ways. In this embodiment, a bus connection is used as an example, as shown in FIG. 13 .
  • the transceiver 1301 may be used to transmit or receive data. It can be understood that the transceiver 1301 is a general term and may include a receiver and a transmitter. For example, the receiver is configured to receive the mobility optimization attribute sent by the first network management device.
  • the processor 1302 can be used to process the data.
  • the processor 1302 may include one or more processors, for example, the processor 1302 may be one or more central processing units (CPUs), network processors (NPs), hardware chips, or any combination thereof .
  • the processor 1302 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 1303 is used for storing program codes and the like.
  • the memory 1303 may include volatile memory, such as random access memory (RAM).
  • the memory 1303 may also include non-volatile memory (non-volatile memory), such as read-only memory (ROM), flash memory (flash memory), hard disk drive (HDD) or solid state hard disk ( solid-state drive, SSD).
  • ROM read-only memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid state hard disk
  • Memory 1303 may also include a combination of the above-described types of memory.
  • the foregoing transceiver 1301 may be used to implement the mobility parameter configuration method in this embodiment of the present application, where the specific implementation is as follows:
  • the mobility optimization attribute is used to indicate an attribute configured in the case of a secondary cell radio link failure and/or a near radio link failure
  • the mobility optimization attribute includes a first strategy parameter
  • the first strategy parameter includes one or more of the following: handover trigger definition parameter, handover adjustment strategy parameter, optimization period, or handover optimization strategy parameter.
  • the handover trigger limitation parameter includes a maximum handover trigger deviation value and/or a minimum handover trigger time interval when the secondary cell is handed over.
  • the handover adjustment policy parameters include one or more of cell personality offset adjustment parameters, beam parameters, radio link monitoring parameters, and random access resource parameters.
  • the handover optimization strategy parameters include an optimization trigger threshold corresponding to a radio link failure of the secondary cell, and/or an optimization trigger threshold corresponding to a near radio link failure.
  • the mobility optimization attribute includes a first target parameter
  • the first target parameter includes one or more of the following: a cell identity, a maximum number of handover triggers, or a handover trigger optimization target parameter.
  • the handover trigger optimization target parameters include one or more of the ratio of secondary cell radio link failures, the ratio of near wireless link failures, the ratio of ping-pong handover times, the premature handover failure rate or the late handover drop rate.
  • the mobility optimization attribute includes a first control parameter, where the first control parameter includes a mobility optimization function control parameter for a radio link failure of the secondary cell and/or a mobility optimization function control for a near radio link failure parameter.
  • the mobility optimization attribute includes a second policy parameter
  • the second policy parameter includes one or more of the following: a network device identifier, an abnormal coverage policy parameter, or an abnormal wireless link policy parameter.
  • the abnormal coverage policy parameters include one or more of abnormal coverage thresholds, reference signal received power thresholds of the serving cell, or reference signal received power thresholds of neighboring cells.
  • the abnormal wireless link policy parameter includes one or more of the abnormal wireless link failure ratio threshold, the network device group handover failure ratio threshold, or the near wireless link failure ratio threshold.
  • the mobility optimization attribute includes a second target parameter, where the second target parameter includes one or more of the following: network device identification, abnormal coverage ratio, or handover trigger optimization target parameter.
  • the handover trigger optimization target parameter includes one or more of the ratio of secondary cell radio link failure, the ratio of secondary cell handover failure, or the ratio of near radio link failure.
  • the mobility optimization attribute includes one or more of a first strategy parameter, a first target parameter, a first control parameter, a second strategy parameter, or a second target parameter.
  • the transceiver 1301 is further configured to send a response message to the first network management device, where the response message indicates the configuration status of the second network management device.
  • the configuration status of the second network management device includes configuration success, configuration failure, or inability to configure, and the like.
  • the transceiver 1301 is further configured to receive a request message sent by the first network management device, where the request message is used to request the mobility optimization performance data corresponding to the mobility optimization attribute and/or request the mobility optimization attribute An indication of the corresponding mobility optimization performance data.
  • the transceiver 1301 is further configured to send feedback information to the first network management device, where the feedback information includes the mobility optimization performance corresponding to the mobility optimization attribute when the secondary cell radio link fails and/or is on the verge of radio link failure data and/or an indication of mobility-optimized performance data to which the mobility-optimized attribute corresponds.
  • the mobility optimization performance data includes one or more of the following: the total number of secondary node handovers, the total number of secondary node handover failures, the number of times the ping-pong effect is generated, the number of times the secondary node is updated too early, the secondary node The number of times the node was updated too late, the number of times the secondary node was handed over to the wrong cell, or the number of times the radio link was on the verge of failure.
  • the total number of times of handover of secondary nodes the total number of failed handovers of secondary nodes, the number of times of ping-pong effect, the number of times that secondary nodes are updated too early, the number of times that secondary nodes are updated too late, the number of times that secondary nodes are updated too late, and the The detailed description of the number of times the node switches to the wrong cell or the number of times the radio link is on the verge of failure will not be repeated here.
  • the transceiver 1301 is further configured to receive a subscription operation sent by the first network management device.
  • Processor 1302 determines that the file data is ready.
  • the transceiver 1301 is further configured to send an instruction message to the first network management device, where the instruction message is used to indicate that the file data is ready;
  • the transceiver 1301 is further configured to receive a request message sent by the first network management device, where the request message is used to request Get available file data.
  • transceiver 1301 is also used to:
  • a data stream is sent to the first network management device.
  • An embodiment of the present application provides a computer-readable storage medium, where a program or an instruction is stored in the computer-readable storage medium, and when the program or instruction is executed on a computer, the computer can execute the mobility parameter setting in the embodiment of the present application. method.
  • An embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected through a line, and the at least one processor is used to run a computer program or instruction to execute the present application
  • the mobility parameter setting method in the embodiment is used to run a computer program or instruction to execute the present application.
  • the interface in the chip may be an input/output interface, a pin or a circuit, or the like.
  • the chip system in the above aspects may be a system on chip (system on chip, SOC), or a baseband chip, etc.
  • the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, and the like.
  • the chip or chip system described above in this application further includes at least one memory, where instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (eg, a read-only memory, a random access memory, etc.).
  • An embodiment of the present application provides a communication system, including the first network management device and the second network management device of the embodiment of the present application.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (Digital Subscriber Line, DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more of the available mediums integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVD)), or semiconductor media (eg, solid state disks, SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种移动性参数配置方法及相关设备。其中,该方法可以由第一网络管理设备和第二网络管理设备之间的交互实现。第一网络管理设备可以向第二网络管理设备发送移动性优化属性,该移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性。也就是说,该方法实现了在多链接数据传输场景下以及切换成功场景下的移动性参数优化,保证了移动性性能。

Description

一种移动性参数配置方法及相关设备
本申请要求于2020年7月23日提交中国国家知识产权局、申请号为202010716141.9、申请名称为“一种移动性参数配置方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种移动性参数配置方法及相关设备。
背景技术
在移动通信系统中,终端设备的位置变化或者网络中的负载变化,都可能使终端设备需要从第一网络设备切换至第二网络设备。例如,终端设备的位置变化导致终端设备需要从基站1切换至基站2。若移动性优化属性设置不当,可能会导致切换过早、过晚、乒乓效应等问题,从而导致切换失败,降低系统性能。
发明内容
本申请实施例提供一种移动性参数配置方法及相关设备,该方法提供了辅小区无线链路失败和/或濒临无线链路失效的情况下配置的移动性优化属性,有利于降低系统内或系统间切换失败率,保证移动性性能。
第一方面,本申请实施例提供一种移动性参数配置方法,该方法可以由第一网络管理设备所执行。其中,第一网络管理设备可以是标准化组织3GPP定义的网络管理实体,例如管理服务消费者(management service consumer)。第一网络管理设备可以向第二网络管理设备发送移动性优化属性,该移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性。
其中,辅小区无线链路失败表示在多链接的数据传输场景下,辅基站或者辅小区更改导致的辅小区无线链路失败。濒临无线链路失败表示在终端设备切换成功的场景下,终端设备与基站之间的无线链路质量差,也就是说,终端设备与基站之间无线链路可能随时断开。
可见,本申请实施例提供的移动性优化属性针对于上述两种无线链路失败的情况,可以配置相应的移动性优化属性。例如,为基站或小区或用户配置针对辅小区无线链路失败的移动性优化属性以及针对濒临无线链路失败的移动性优化属性,有利于降低系统内或系统间切换失败率,保证了移动性性能。
在一种可能的设计中,移动性优化属性包括第一策略参数,该第一策略参数包括以下一种或多种:切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数。
其中,切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔。切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种。切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
可见,第一策略参数可以限定辅小区切换时的小区个性偏移的相关参数以及辅小区间 切换的最小时间间隔等参数,从而有利于避免多链接的数据传输场景下的辅基站切换过早、过晚等导致的辅小区无线链路失败,以及降低切换成功场景下的濒临无线链路失败的概率。
在一种可能的设计中,移动性优化属性包括第一目标参数,该第一目标参数包括以下一种或多种:小区标识、切换触发最大次数或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
可见,第一目标参数可以限定小区切换触发的最大次数,以及辅基站切换过早、过晚等情况下的切换比例,有利于降低多链接的数据传输场景下的辅基站切换过早、过晚等导致的辅小区无线链路失败的概率,以及降低切换成功场景下的濒临无线链路失败的概率。
在一种可能的设计中,移动性优化属性包括第一控制参数,该第一控制参数包括辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
可见,第一控制参数可以控制移动性优化属性用于在多链接的数据传输场景下解决辅小区链路失败的问题,还可以控制移动性优化属性用于在切换成功的场景下解决濒临无线链路失败的问题。
第一目标参数在一种可能的设计中,移动性优化属性包括第二策略参数,该第二策略参数包括以下一种或多种:网络设备标识、异常覆盖策略参数、或异常无线链路策略参数。
其中,异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种。异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
可见,第二策略参数可以限定基站的异常覆盖策略,以及辅基站切换失败的比例门限,濒临无线链路失败的比例门限等参数,从而确定基站级别的移动性优化属性。
在一种可能的设计中,移动性优化属性包括第二目标参数,该第二目标参数包括以下一种或多种:网络设备标识、异常覆盖比例、或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
在一种可能的设计中,移动性优化属性包括第一策略参数、第一目标参数、第一控制参数、第二策略参数或第二目标参数中的一种或多种。
在一种可能的设计中,第一网络管理设备还可以接收第二网络管理设备发送的响应消息,该响应消息指示第二网络管理设备的配置状态。其中,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置等。
可见,第二网络管理设备接收移动性优化属性后,可以进行移动性优化属性的配置。并且第二网络管理设备向第一网络管理设备反馈配置状态,以使第一网络管理设备了解第二网络管理设备是否成功配置该移动性优化属性。
在一种可能的设计中,第一网络管理设备向第二网络管理设备发送请求消息,该请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示。第一网络管理设备接收第二网络管理设备发送的反馈 信息,反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
可见,第二网络管理设备还可以上报进行移动性优化属性配置后的系统性能数据,记录该移动性优化属性的配置对系统性能的提升。
在一种可能的设计中,移动性优化性能数据包括以下一种或多种:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数。
第二方面,本申请实施例提供一种移动性参数配置方法,该方法可以由第二网络管理设备所执行。其中,第二网络管理设备可以是标准化组织3GPP定义的网络管理实体,例如管理服务消费者。第二网络管理设备可以接收第一网络管理设备发送的移动性优化属性,该移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性。第二网络管理设备还可以向第二网络设备发送该移动性优化属性,以使第二网络设备在辅小区无线链路失败和/或濒临无线链路失败的情况下,根据该移动性优化属性调整终端设备从第一网络设备切换至第二网络设备过程中的切换参数。
可见,第二网络管理设备可以接收该移动性优化属性,还可以将该移动性优化属性发送给下属的网络设备(如辅基站等),以使网络设备根据该移动性优化属性配置切换参数,从而有利于降低终端设备在辅小区或辅基站间切换失败的概率。
在一种可能的设计中,移动性优化属性包括第一策略参数,该第一策略参数包括以下一种或多种:切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数。
其中,切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔;切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种;切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
在一种可能的设计中,移动性优化属性包括第一目标参数,该第一目标参数包括以下一种或多种:小区标识、切换触发最大次数或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
在一种可能的设计中,移动性优化属性包括第一控制参数,该第一控制参数包括辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
第一目标参数在一种可能的设计中,移动性优化属性包括第二策略参数,该第二策略参数包括以下一种或多种:网络设备标识、异常覆盖策略参数、或异常无线链路策略参数。
其中,异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种。异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
在一种可能的设计中,移动性优化属性包括第二目标参数,该第二目标参数包括以下 一种或多种:网络设备标识、异常覆盖比例、或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
在一种可能的设计中,移动性优化属性包括第一策略参数、第一目标参数、第一控制参数、第二策略参数或第二目标参数中的一种或多种第二目标参数。
在一种可能的设计中,第二网络管理设备还可以向第一网络管理设备发送响应消息,该响应消息指示第二网络管理设备的配置状态。其中,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置等。
在一种可能的设计中,第二网络管理设备接收第一网络管理设备发送的请求消息,请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示。第二网络管理设备向第一网络管理设备发送反馈信息,该反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
在一种可能的设计中,移动性优化性能数据包括以下一种或多种:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数。
第三方面,本申请实施例提供一种第一网络管理设备,该第一网络管理设备包括处理单元和收发单元。其中,处理单元用于确定移动性优化属性,移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性。收发单元用于向第二网络管理设备发送所述移动性优化属性。
在一种可能的设计中,移动性优化属性包括第一策略参数,该第一策略参数包括以下一种或多种:切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数。
其中,切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔。切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种。切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
在一种可能的设计中,移动性优化属性包括第一目标参数,该第一目标参数包括以下一种或多种:小区标识、切换触发最大次数或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
在一种可能的设计中,移动性优化属性包括第一控制参数,该第一控制参数包括辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
第一目标参数在一种可能的设计中,移动性优化属性包括第二策略参数,该第二策略参数包括以下一种或多种:网络设备标识、异常覆盖策略参数、或异常无线链路策略参数。
其中,异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种。异常无线链路策略参数包括异常无线链 路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
在一种可能的设计中,移动性优化属性包括第二目标参数,该第二目标参数包括以下一种或多种:网络设备标识、异常覆盖比例、或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
在一种可能的设计中,移动性优化属性包括第一策略参数、第一目标参数、第一控制参数、第二策略参数或第二目标参数中的一种或多种第二目标参数。
在一种可能的设计中,收发单元还用于接收第二网络管理设备发送的响应消息,该响应消息指示第二网络管理设备的配置状态。其中,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置等。
在一种可能的设计中,收发单元还用于向第二网络管理设备发送请求消息,该请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示。收发单元还用于接收第二网络管理设备发送的反馈信息,反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
在一种可能的设计中,移动性优化性能数据包括以下一种或多种:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数。
第四方面,本申请实施例提供一种第二网络管理设备,该第二网络管理设备包括收发单元。收发单元用于接收第一网络管理设备发送的移动性优化属性,该移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性。收发单元还用于向第二网络设备发送该移动性优化属性,以使第二网络设备在辅小区无线链路失败和/或濒临无线链路失败的情况下,根据该移动性优化属性调整终端设备从第一网络设备切换至第二网络设备过程中的切换参数。
在一种可能的设计中,在一种可能的设计中,移动性优化属性包括第一策略参数,该第一策略参数包括以下一种或多种:切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数。
其中,切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔;切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种;切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
在一种可能的设计中,移动性优化属性包括第一目标参数,该第一目标参数包括以下一种或多种:小区标识、切换触发最大次数或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
在一种可能的设计中,移动性优化属性包括第一控制参数,该第一控制参数包括辅小 区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
第一目标参数在一种可能的设计中,移动性优化属性包括第二策略参数,该第二策略参数包括以下一种或多种:网络设备标识、异常覆盖策略参数、或异常无线链路策略参数。
其中,异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种。异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
在一种可能的设计中,移动性优化属性包括第二目标参数,该第二目标参数包括以下一种或多种:网络设备标识、异常覆盖比例、或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
在一种可能的设计中,移动性优化属性包括第一策略参数、第一目标参数、第一控制参数、第二策略参数或第二目标参数中的一种或多种第二目标参数。
在一种可能的设计中,收发单元还用于向第一网络管理设备发送响应消息,该响应消息指示第二网络管理设备的配置状态。其中,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置等。
在一种可能的设计中,收发单元还用于接收第一网络管理设备发送的请求消息,请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示。收发单元还用于向第一网络管理设备发送反馈信息,该反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
在一种可能的设计中,移动性优化性能数据包括以下一种或多种:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数。
第五方面,本申请实施例提供一种第一网络管理设备,该第一网络管理设备具有实现第一方面所提供的移动性参数配置方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,本申请实施例提供一种第二网络管理设备,该第二网络管理设备具有实现第二方面所提供的移动性参数配置方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请实施例提供一种通信系统,该通信系统包括上述第三方面或第五方面提供的第一网络管理设备,以及第四方面或第六方面提供的第二网络管理设备。
第八方面,本申请实施例提供一种计算机可读存储介质,该可读存储介质包括程序或指令,当所述程序或指令在计算机上运行时,使得计算机执行第一方面或第一方面中任一种可能实现方式中的方法。
第九方面,本申请实施例提供一种计算机可读存储介质,该可读存储介质包括程序或 指令,当所述程序或指令在计算机上运行时,使得计算机执行第二方面或第二方面中任一种可能实现方式中的方法。
第十方面,本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第一方面或第一方面的任一种可能的实现方式中任一项所描述的方法。
第十一方面,本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第二方面或第二方面的任一种可能的实现方式中任一项所描述的方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种可能的实现中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储模块,例如,寄存器、缓存等,也可以是该芯片的存储模块(例如,只读存储器、随机存取存储器等)。
第十二方面,本申请实施例提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行第一方面或第一方面中任一种可能实现方式中的方法。
第十三方面,本申请实施例提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行第二方面或第二方面中任一种可能实现方式中的方法。
附图说明
图1a为本申请实施例提供的一种切换过早场景的示意图;
图1b为本申请实施例提供的一种移动性优化场景的示意图;
图2a为本申请实施例提供的一种多链接数据传输场景的示意图;
图2b为本申请实施例提供的一种多链接数据传输场景下终端设备在辅基站之间切换失败的示意图;
图3为本申请实施例提供的一种切换成功场景下的濒临无线链路失败的示意图;
图4为本申请实施例提供的一种通信系统的示意图;
图5为本申请实施例提供的一种服务化管理架构的示意图;
图6为本申请实施例提供的一种移动性参数配置方法的流程示意图;
图7本申请实施例提供的一种第一网络管理设备和第二网络管理设备管理移动性优化性能数据的流程示意图;
图8为本申请实施例提供的一种第一网络管理设备和第二网络管理设备管理MRO性能指标的流程示意图;
图9为本申请实施例提供的另一种第一网络管理设备和第二网络管理设备管理MRO性能指标的流程示意图;
图10为本申请实施例提供的一种第一网络管理设备的结构示意图;
图11为本申请实施例提供的另一种第一网络管理设备的结构示意图;
图12为本申请实施例提供的一种第二网络管理设备的结构示意图;
图13为本申请实施例提供的另一种第二网络管理设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请实施例的描述之前,首先对相关概念进行阐述。
在移动通信系统中,终端设备的位置变化或者网络中的负载变化,都可能使终端设备需要从第一网络设备切换至第二网络设备。例如,终端设备的位置变化导致终端设备需要从基站1切换至基站2。若网络设备的切换参数设置不当,则可能会导致切换过早、切换过晚、乒乓效应等问题,从而导致切换失败,降低系统性能。
举例来说,请参见图1a,图1a为本申请实施例提供的一种切换过早场景的示意图。其中,源小区对终端设备下发切换命令后,由于目标小区的信号质量不佳,终端设备切换到目标小区发生失败。也就是说,终端设备与目标小区之间的无线链路失败(radio link failure,RLF)发生在切换完成之前。终端设备执行小区选择,选择到了源小区并尝试进行无线资源控制(radio resource control,RRC)重建。终端设备重建立到源小区,在重建立成功后,源小区识别出是一个切换过早的场景。
若切换参数设置不当,可以通过手动设置的方式对系统的切换参数进行调整。但是,通过手动设置系统的切换参数非常耗时,并且当网络的初始部署完成后,再对系统的切换参数进行调整将耗费较大的成本。基于此,在长期演进(long term evolution,LTE)网络中提出了移动性鲁棒性优化(mobility robust optimization,MRO)功能,该MRO功能可以优化设置不当的切换参数。
其中,在MRO优化周期内,基站可以对异常切换的次数进行统计。当优化周期到达时,根据统计的异常切换次数与预设的门限值,对切换的相关参数进行优化。
进一步,对切换的相关参数进行优化后,网络管理设备可以监控切换的各项指标是否得到优化。若切换指标得到优化,则在下一个优化周期不会回退参数;若切换指标恶化,则在下一个周期进行参数回退。可见,MRO通过对切换的相关参数进行优化,可以降低网络中的切换失败率、用户掉话率,以及降低切换过早、切换过晚的次数。
例如,MRO功能可以应用于如图1a所示的切换过早的场景中。请参见图1b,图1b为本申请实施例提供的一种移动性优化场景。其中,基站1和基站2均配置了用于执行MRO的相关参数。由于切换过早可能是在终端设备没有到达正常切换区域就进行切换,从而导致终端设备在目标小区的接收信号差。那么执行MRO可以是将小区个性偏移(cell individual offset,CIO)调小,以使切换更晚一点到来。
随着网络的演进,在新无线接入(new radio,NR)系统下,引入了两种新的通信场景。其中,一种场景是在多链接数据传输的场景,一种是终端设备在网络设备间切换成功的场景。
请参见图2a,图2a为本申请实施例提供的一种多链接数据传输的场景。其中,多链接数据传输场景可以包括第一网络设备、第二网络设备和终端设备。图2a中仅示出了一个第 一网络设备、一个第二网络设备和一个终端设备的场景,仅为一种示例,本实施例不作限定。
其中,终端设备可以同时与第一网络设备、与第二网络设备存在通信连接并可收发数据,该场景可以称之为双链接(dual connectivity,DC)场景。其中,第一网络设备可以称为主节点(master node,MN),用于负责与终端设备交互无线资源控制消息,并负责与核心网控制平面实体交互。除第一网络设备之外的网络设备,即第二网络设备,可以称为辅节点(secondary node,SN)。
类似的,若终端设备可以同时与第一网络设备、与多个第二网络设备存在通信连接并可收发数据,该场景可以称之为多链接(multi connectivity,MC)场景。在多个网络设备之中,可以有第一网络设备作为MN,负责与终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互。其余的多个第二网络设备均可以作为SN。
其中,第一网络设备可以是LTE制式的主基站(例如MeNB),也可以是NR制式的主基站(例如MgNB)。第一网络设备还可以是双链接架构下的主节点(master node,MN),或者是多链接架构下的MN,本实施例不作限定。
其中,第二网络设备可以是LTE制式的辅基站(例如SeNB),也可以是NR制式的辅基站(例如SgNB)。第二网络设备还可以是DC架构下的辅节点(secondary node,SN),或者是MC架构下的SN,本实施例不作限定。
但是,在多链接数据传输的场景中,可能由于SN更改导致辅小区无线链路失败。例如,由于SN更改过早、SN更改过晚、SN更改至错误小区等导致辅小区无线链路失败。
请参见图2b,图2b为本申请实施例提供的一种多链接数据传输场景下终端设备在辅基站之间切换失败的场景示意图。其中,由于辅基站更改过早可能导致辅小区切换过早,从而导致辅小区无线链路失败,如图2b所示。其中,该场景中终端设备是在S-SN下发生无线链路失败,因为SN是辅基站,也称之为辅小区无线链路失败(secondary cell group failure,SCG failure,SCG failure)。
请参见图3,图3为本申请实施例提供的一种切换成功场景中的濒临无线链路失败的情况。其中,濒临无线链路失败(near radio link failure,near-RLF)是指终端设备在网络设备间虽然切换成功了,但是终端设备和网络设备之间的无线链路的状态不稳定,随时可能断开连接,如图3所示。
那么为了解决上述多链接数据传输场景中和切换成功场景中的无线链路的问题,本申请实施例提供一种移动性参数配置方法,该方法提供的移动性优化属性指示了辅小区无线链路失败和/或濒临无线链路失败的情况下第二网络管理设备配置的属性,实现了上述两种情况下NR系统中的MRO优化。
其中,本申请实施例提供的移动性参数配置方法可以应用于如图4所示的通信系统中。请参见图4,图4为本申请实施例提供的一种通信系统,该通信系统包括第一网络管理设备和第二网络管理设备。可选的,该通信系统还可以包括第一网络设备、第二网络设备和终端设备。其中,第一网络设备和第二网络设备为接入网中的设备(如基站等),用于与终端设备进行通信。终端设备可以在第一网络设备和第二网络设备间切换,实现无缝切换。
其中,第一网络管理设备和第二网络管理设备均为3GPP定义的管理实体。也就是说, 本申请实施例提供的移动性参数配置方法可以应用于NR的网络管理架构中。
3GPP定义的服务化管理架构中的管理实体的外部可见的行为和接口被定义为管理服务(management service)。在给予服务的管理体系结构中,管理功能(management function,MnF)扮演着管理服务提供者(management service producer,MnS producer)或者管理服务消费者(management service consumer,MnS consumer)的角色。该服务化管理架构聚焦于管理服务提供者和管理服务消费者,其中,管理服务提供者也可以称之为管理服务生产者。
请参见图5,图5为本申请实施例提供的一种服务化管理架构的示意图。其中,该服务化管理架构包括业务支撑系统(business support system,BSS)、跨域管理功能单元(cross domain management function,CD-MnF)、域管理功能单元(domain management function,Domain-MnF)和网元(element)。
若管理服务为跨域管理功能单元提供的管理服务,则跨域管理功能单元为管理服务生产者,业务支撑系统为管理服务消费者。
若管理服务为域管理功能单元提供的管理服务,则域管理功能单元为管理服务生产者,跨域管理功能单元为管理服务消费者。
当管理服务为网元提供的管理服务,则网元为管理服务生产者,域管理功能单元为管理服务消费者。
业务支撑系统是面向通信业务(communication service),用于提供计费、结算、帐务、客服、营业、网络监控、通信业务生命周期管理、业务意图翻译等功能和管理服务。其中,业务支撑系统可以为运营商的运营系统,也可以为垂直行业的运营系统(vertical OT system)。
跨域管理功能单元,也叫网络管理功能单元(network management function,NMF),例如可以是网络管理系统(network management system,NMS)、网络功能管理业务消费者(network function management service consumer,NFMS_C)等网络管理实体。其中,跨域管理功能单元提供以下一项或者多项管理功能或者管理服务:网络的生命周期管理、网络的部署、网络的故障管理、网络的性能管理、网络的配置管理、网络的保障、网络的优化功能以及业务生产者的网络意图(intent from communication service provider,Intent-CSP)的翻译等。
其中,上述管理功能或管理服务中所指的网络可以包括一个或者多个网元或者子网络,也可以是网络切片。也就是说,网络管理功能单元可以是网络切片管理功能单元(network slice management function,NSMF),或者跨域管理数据分析功能单元(management data analytical function,MDAF),或者跨域自组织网络功能(self-organization network function,SON Function)或者跨域意图管理功能单元(intent driven management service,Intent Driven MnS)。
可选的,在某些部署场景下,跨域管理功能单元还可以提供子网络的生命周期管理、子网络的部署、子网络的故障管理、子网络的性能管理、子网络的配置管理、子网络的保障、子网络的优化功能、子网络的业务生产者的网络意图(Intent-CSP)或子网络的业务消费者的网络意图(intent from communication service consumer,Intent-CSC)的翻译等。这里的子网络由多个小的子网络组成,可以是网络切片子网络。
域管理功能单元(domain management function,Domain-MnF),也叫子网络管理功能单元(network management function,NMF)或者网元管理功能单元。例如,域管理功能单元可以是无线自动化引擎(MBB automation engine,MAE)、网元管理系统(element management system,EMS)、网络功能管理业务提供者(network function management service provider,NFMS_P)等网元管理实体。
其中,域管理功能单元提供以下一项或者多项功能或者管理服务:子网络或者网元的生命周期管理、子网络或者网元的部署、子网络或者网元的故障管理、子网络或者网元的性能管理、子网络或者网元的保障、子网络或者网元的优化功能以及子网络或者网元的意图(intent from network operator,Intent-NOP)的翻译等。这里的子网络包括一个或者多个网元。子网络也可以包括子网络,即一个或者多个子网络组成一个更大的子网络。
可选的,这里的子网络也可以是网络切片子网络。域管理系统可以是网络切片子网络管理功能单元(network slice subnet management function,NSSMF)、域管理数据分析功能单元(management data analytical function,Domain MDAF)、域自组织网络功能(self-organization network function,SON Function)、域意图管理功能单元(Intent Driven MnS)等。
其中,域管理功能单元可以按以下方式分类,包括:
按网络类型分类可以分为:接入网域管理功能单元(radio access network domain management function,RAN-Domain-MnF)、核心网域管理功能单元(core network domain management function,CN-Domain-MnF)、传输网域管理功能单元(transport network domain management function,TN-Domain-MnF)等。需要注意的是,域管理功能单元也可以是某个域网络管理系统,可以管理接入网、核心网或传输网中的一种或多种;
按行政区域分类可以分为:某个地区的域管理功能单元,比如上海域管理功能单元,北京域管理功能单元等。
网元是提供网络服务的实体,包括核心网网元、接入网网元等。其中,核心网网元包括:接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)、网络数据分析单元(network data analytical function,NWDAF)、网络仓库单元(NF Repository Function,NRF)以及网关等。接入网网元包括:基站(如gNB,eNB)、集中控制单元(central unit control plane,CUCP)、集中单元(central unit,CU)、分布式单元(distribution unit,DU)、集中用户面单元(central unit user plane,CUUP)等。
其中,网元可以提供以下一项或者多项管理功能或者管理服务:网元的生命周期管理、网元的部署、网元的故障管理、网元的性能管理、网元的保障、网元的优化功能以及网元意图的翻译等。
下面将结合具体的实施例进行描述。
请参见图6,图6为本申请实施例提供的一种移动性参数配置方法的流程示意图。其中,图6中的移动性参数配置方法流程由第一网络管理设备和第二网络管理设备之间的交互实现。为了便于理解,本实施例所述的第一网络管理设备可以是图5中的跨域管理功能单元(如NMS),第二网络管理设备可以是图5中的域管理功能单元(如EMS)。该方法 可以包括以下步骤:
S601,第一网络管理设备确定移动性优化属性,该移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性。第一网络管理设备作为管理服务消费者,确定移动性优化属性(MRO attributes)。本实施例中,第一网络管理设备除了确定常规的移动性优化属性,还可以针对多链接数据传输场景中的辅小区无线链路失败的情况,以及切换成功的场景中濒临无线链路失败的情况,分别确定对应的移动性优化属性,从而在上述两种场景中实现MRO优化。
需要说明的是,移动性优化属性是针对移动鲁棒性优化(MRO)功能的参数,MRO功能可以在基站、小区、基站CU、基站DU、基站CU上的小区、基站DU上的小区或者子网络管理节点的一个或多个节点上实现,本实施例不作限定,其主要目的是用于终端的移动性优化。
其中,第一网络管理设备确定的移动性优化属性是网络节点的移动性优化属性,网络节点可以是小区、基站、基站CU、基站DU、基站CU上的小区、基站DU上的小区中的一种或多种,本实施例不作限定。
需要说明的是,本申请实施例所述的MRO优化包括SN更换过早、过晚或者乒乓场景导致的辅小区无线链路失败场景下移动性参数(例如小区特定偏执CIO)的优化,以及切换成功场景中的濒临无线链路失败场景下的移动性参数、波束参数(例如波束检测的Qin、Qout)、无线链路监控参数(例如无线链路时间戳T310,T312,无线链路控制RLC重传次数等)、随机接入资源(例如波束的随机接入资源、波束的下行信号强度门限、补充载波的下行信号强度门限等)的优化。
下面对小区级别的优化对应的小区级别的移动性优化属性进行详细的描述。
对于小区级别的移动性优化属性,可以包括第一策略参数、第一目标参数和第一控制参数中的一种或多种。其中,第一策略参数包括针对多链接数据传输场景中的辅小区无线链路失败的情况,以及切换成功的场景中濒临无线链路失败的情况,分别对应的策略。其中,多链接数据传输场景中辅小区无线链路失败的情况可以参考图2b以及对应的描述,切换成功的场景中濒临无线链路失败的情况可以参考图3以及对应的描述,在此不再赘述。
第一策略参数可以包括:小区标识(cell local ID)、切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数中的一种或多种。
小区标识用于指示待配置移动性优化属性的小区。其中,小区标识可以是物理小区标识(physical cell identity,PCI)、全球小区标识(cell global identity,CGI)、小区的名称(cell name)或者小区的标识(cell ID)中的一种或多种,本实施例不作限定。例如,第一策略参数中的小区标识为小区1(PCI 1),那么就意味着,第一网络管理设备确定了小区1的移动性优化属性。
切换触发限定参数包括最大切换触发偏差(maximum deviation handover trigger)、最小切换触发更改时间(minimum time between handover trigger change)、最大SN更换触发偏差(maximum deviation SN change trigger)、最小SN更换触发更改时间(minimum time between SN change trigger change)中的一种或多种,本实施例不作限定。
其中,最大切换触发偏差表示切换触发参数的最大偏差,即表示小区特定偏执(cell  individual offset,CIO)的最大调整值,例如最大调整值是10dB。本小区的CIO取值越大,用户更不容易切换到相邻小区。例如,若需要降低切换过晚,则可以减小本小区的CIO值,减小的程度参考本实施例所述的最大切换触发偏差。
其中,最小切换触发更改时间表示切换触发参数更新的最小时间,即表示CIO调整最小时间。也就是说,最小切换触发更改时间表示两次切换触发参数更新的最小时间间隔,用于控制MRO算法的稳定性和收敛性。
其中,最大SN更换触发偏差表示SN更换的触发参数的最大偏差,即表示SN更换的CIO的最大调整值,例如最大调整值是10dB。例如,若需要降低SN更换过晚,可以对该SN或者SN下的小区的CIO进行调整,减小该SN或者SN下小区的CIO值,减小的程度参考本实施例所述的最大SN更换触发偏差。第一网络管理设备通过确定最大SN更换触发偏差,有利于避免辅节点更换过早(SN change too early)、辅节点更换过晚(SN change too late)、辅节点更换错误(SN change too wrong cell)等情况,从而避免辅节点更换导致的辅小区无线链路问题。
需要说明的是,这里的SN更换就是SN切换,或者说是SN之间的辅小区切换,或者说是辅小区切换,也即UE在辅小区之间进行切换。
其中,最小SN更换触发更改时间表示SN更换触发参数更新的最小时间,即表示SN更换的CIO调整最小时间,也就是说,最小SN更换触发更改时间表示两次SN更换触发参数更新的最小时间间隔。其中,最小SN更换触发更改时间用于控制SN更换的MRO算法的稳定性和收敛性。
切换调整策略参数包括小区个性偏移CIO的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种。小区个性偏移CIO的调整参数包括例如CIO调整范围最大值同频MRO、CIO调整范围最小值同频MRO、CIO调整范围最大值异频MRO和CIO调整范围最小值异频MRO等参数。波束参数包括例如波束检测的Qin的最大值/最小值、Qout的最大值/最小值等参数。无线链路监控参数包括例如无线链路监控时间戳T310的最大值/最小值、T312的最大值/最小值、无线链路控制RLC重传次数的最大值/最小值等参数。随机接入资源参数包括例如波束下行信号强度门限(如RSRP Threshold SSB、RSRP Threshold CSIRS)的最大值/最小值、补充载波的下行信号强度门限(如RSRP Threshold SSB-SUL)等参数。
其中,CIO调整范围最大值同频MRO表示同频MRO优化CIO调整的最大值,CIO调整范围最小值同频MRO表示同频MRO优化CIO调整的最小值。也就是说,CIO调整范围最大值同频MRO和CIO调整范围最小值同频MRO限定了在同频切换时,CIO的调整范围。
例如,第一网络管理设备可以确定同频MRO优化CIO调整的最大值为5dB,同频MRO优化CIO调整的最小值为-5dB。对应的,第一网络设备或第二网络设备在调整CIO时,CIO的调整的范围是-5dB~5dB之间。
其中,CIO调整范围最大值异频MRO表示异频MRO优化CIO调整的最大值,CIO调整范围最小值异频MRO表示异频MRO优化CIO调整的最小值。也就是说,CIO调整范围最大值异频MRO和CIO调整范围最小值异频MRO限定了在异频切换时,CIO的调 整范围。
例如,第一网络管理设备可以确定异频MRO优化CIO调整的最大值为10dB,异频MRO优化CIO调整的最小值为-10dB。对应的,第一网络设备或第二网络设备在调整CIO时,CIO的调整的范围是-10dB~10dB之间。
MRO优化周期表示进行MRO统计和优化的周期。也就是说,MRO优化周期指示第一网络设备或第二网络设备多长时间进行一次MRO统计和优化。
切换优化策略参数包括辅小区无线链路失败对应的优化触发门限、濒临无线链路失败对应的优化触发门限等一种或多种参数。具体的,切换优化策略参数包括异常切换比例门限、切换过早优化比例门限、切换过晚优化比例门限、异常SN更换比例门限、SN更换过早优化比例门限、SN更换过晚优化比例门限、乒乓比例门限、SN更换乒乓比例门限、near-RLF比例门限、波束失败(beam failure)比例门限等一种或多种参数。
其中,异常切换包括切换过早和切换过晚。异常切换比例可以表示为:切换过早次数与切换过晚次数之和,与总切换次数的比值,即异常切换比例=(切换过早次数+切换过晚次数)/总切换次数。异常切换比例门限则限定了异常切换比例的最大值。也就是说,若系统的异常切换比例大于该异常切换比例门限,则触发MRO优化。
其中,切换过早优化比例门限限定了切换过早比例的最大值。也就是说,若系统的切换过早比例大于该切换过早优化比例门限,则触发MRO优化。
其中,切换过晚优化比例门限限定了切换过晚比例的最大值。也就是说,若系统的切换过晚比例大于该切换过晚优化比例门限,则触发MRO优化。
其中,异常SN更换包括SN切换过早和SN切换过晚。那么异常SN更换比例可以表示为:SN切换过早次数与SN切换过晚次数之和,与总的SN切换次数的比值,即异常SN更换比例=(SN切换过早次数+SN切换过晚次数)/总的SN切换次数。异常SN更换比例门限则限定了异常SN更换比例的最大值。也就是说,若系统的异常SN更换比例大于该异常SN更换比例门限,则触发MRO优化。
其中,SN更换过早优化比例门限限定了SN更换过早比例的最大值。也就是说,若系统的SN更换过早比例大于该SN更换过早优化比例门限,则触发MRO优化。
其中,SN更换过晚优化比例门限限定了SN更换过晚比例的最大值。也就是说,若系统的SN更换过晚比例大于该SN更换过晚优化比例门限,则触发MRO优化。
可以理解的是,上述异常SN更换比例门限、SN更换过早优化比例门限、SN更换过晚优化比例门限主要是针对在多链接数据传输的场景中由于SN更改导致辅小区无线链路失败的问题,通过确定上述三类MRO属性,有利于降低SN更改过早、SN更改过晚等导致辅小区无线链路失败的概率。
其中,乒乓比例门限限定了乒乓切换比例的最大值。乒乓切换比例为乒乓切换次数与总切换次数的比值,即乒乓切换比例=乒乓切换次数/总切换次数。也就是说,若系统的乒乓切换比例大于该乒乓比例门限,则触发MRO优化。
其中,SN更换乒乓比例门限限定了SN更换乒乓比例的最大值。SN更换乒乓比例为SN更换乒乓次数与总SN更换次数的比值,即SN更换乒乓切换比例=SN更换乒乓次数/总SN更换次数。也就是说,若系统的SN更换乒乓比例大于该SN更换乒乓比例门限,则 触发MRO优化。
其中,near-RLF比例门限限定了near-RLF比例的最大值。near-RLF比例为濒临无线链路失败次数与成功切换次数的比值,即near-RLF比例=濒临无线链路失败次数/成功切换次数。也就是说,在切换成功场景中,若near-RLF比例达到该near-RLF比例门限,则触发MRO优化。
其中,波束失败(beam failure)比例门限限定了波束失败比例的最大值。波束失败比例为波束失败次数与成功切换次数的比值,即波束失败比例=波束失败次数/成功切换次数。也就是说,在切换成功场景中,若波束失败比例达到该波束失败比例门限,则触发MRO优化。第一目标参数可以包括小区标识、切换触发最大次数、切换触发优化目标参数等一种或多种参数。其中,该第一目标参数可以理解为MRO期望或需要达到的目标。
小区标识用于指示待配置移动性优化属性的小区。也就是说,该小区标识指示的是期望或需要达到目标的小区。对小区标识具体的描述请参见前文实施例的描述,在此不再赘述。
切换触发最大次数用于限定切换触发参数更改的次数,为了更好的算法收敛性,一个小区切换触发更改次数不能太多,即不能超过该切换触发最大次数。
例如,小区1的乒乓切换比例超过乒乓比例门限的次数较多,每次超过时都将触发MRO优化。但是若切换触发MRO优化的次数过多,可能导致系统增加大量管理开销,故触发MRO优化的次数需要限定为不超过该切换触发最大次数。
切换触发优化目标参数包括异常RLF比例、乒乓切换次数比例、切换过早失败率、切换过晚掉话率、异常SCG失败比例、SN更换过早失败率或SN更换过晚掉话率等参数。
其中,异常RLF包括切换过早导致的RLF和切换过晚导致的RLF。那么异常RLF比例可以表示为:切换过早导致的RLF与切换过晚导致的RLF之和,与总切换次数的比值,即异常RLF比例=(切换过早导致的RLF+切换过晚导致的RLF)/总切换次数。该异常RLF比例为MRO的优化目标,也就是说,通过MRO优化,有利于降低异常RLF比例。
其中,乒乓切换次数比例为乒乓切换次数与总切换次数的比值,即乒乓切换次数比例=乒乓切换次数/总切换次数。该乒乓切换次数比例为MRO的优化目标,也就是说,通过MRO优化,有利于降低乒乓切换次数比例。
其中,切换过早失败率为切换过早次数与总切换次数的比例,即切换过早失败率=切换过早次数/总切换次数。也就是说,该切换过早失败率为MRO的优化目标,也就是说,通过MRO优化,有利于降低切换过早失败率。
其中,切换过晚掉话率为切换过晚次数与总切换次数的比例,即切换过晚掉话率=切换过晚次数/总切换次数。该切换过晚掉话率为MRO的优化目标,也就是说,通过MRO优化,有利于降低切换过晚掉话率。
其中,异常SCG失败包括SN更换过早导致的SCG failure和SN更换过晚导致的SCG failure。那么异常SCG失败比例可以表示为:SN更换过早导致的SCG failure与SN更换过晚导致的SCG failure之和,与总切换次数的比值,即异常SCG失败比例=(SN更换过早导致的SCG failure+SN更换过晚导致的SCG failure)/总切换次数。该异常SCG失败比例为MRO的优化目标,也就是说,通过SN更换的MRO优化,有利于降低异常SCG失败 比例。
其中,SN更换过早失败率为SN更换过早次数与总SN更换次数的比例,即SN更换过早失败率=SN更换过早次数/总SN更换次数。也就是说,该SN更换过早失败率为SN更换的MRO的优化目标,也就是说,通过MRO优化,有利于降低SN更换的过早失败率。
其中,SN更换过晚掉话率SN更换过晚次数与总SN更换次数的比例,即SN更换过晚掉话率=SN更换过晚次数/总SN更换次数。该SN更换过晚掉话率为SN更换的MRO的优化目标,也就是说,通过MRO优化,有利于降低SN更换过晚掉话率。
第一控制参数也称为MRO功能的控制开关,本申请实施例在现有的MRO功能控制开关中新增两类控制开关,包括辅小区无线链路失败的移动性优化功能控制开关和濒临无线链路失败的移动性优化功能控制开关。
其中,辅小区无线链路失败的移动性优化功能控制开关和濒临无线链路失败的移动性优化功能控制开关都可以为布尔(Boolean)数据类型。例如,采用on表示辅小区无线链路失败的移动性优化功能开启,采用off表示辅小区无线链路失败的移动性优化功能关闭。又例如,采用on表示濒临无线链路失败的移动性优化功能开启,采用off表示濒临无线链路失败的移动性优化功能关闭。可选的,该MRO功能的控制开关也可以为枚举(Enumeration)数据类型,例如采用yes或者no,或者还可以采用其它可以表示开关的数据类型,本实施例不作限定。
其中,辅小区无线链路失败的移动性优化功能控制开关也可以称为MR-DC MRO功能开关或者SN Change MRO功能开关,该辅小区无线链路失败的移动性优化功能控制开关用于在出现SN更换失败的问题时,控制基站执行MRO优化。例如,在MR-DC场景中,基站可以检测SN更换过早次数,SN更换过晚次数和总切换次数。若出现SN更换失败的问题,例如SN更换过早次数较多,则MR-DC MRO功能开关控制MRO功能开启。当MR-DC MRO功能开关控制MRO功能处于开启状态并且系统达到MRO触发条件时,触发MRO优化,例如对切换参数进行修改。
其中,濒临无线链路失败的移动性优化功能控制开关也可以称为successful handover optimization功能开关,该successful handover optimization功能开关用于在出现切换成功场景下的濒临无线链路失败的移动性问题时,控制基站执行MRO优化。例如,在切换成功场景中,基站可以检测near-RLF的链路数量。若near-RLF的链路数量较大,则successful handover optimization功能开关控制MRO功能开启,触发MRO优化。
下面对基站级别的优化对应的基站级别的移动性优化属性进行详细的描述。
对于基站级别的移动性优化属性,可以包括第二策略参数、第二目标参数和第二控制参数等。
第二策略参数包括针对多链接数据传输场景中的辅小区无线链路失败的情况,以及切换成功的场景中濒临无线链路失败的情况,分别对应的策略。具体的,第二策略参数可以包括:网络设备标识、异常覆盖策略参数、异常无线链路策略参数等。
网络设备标识可以是基站标识(基站ID),也可以是基站name,用于指示不同的网络设备(如基站等),本实施例不作限定。例如,第二策略参数中的基站标识为基站1(基站ID1),那么就意味着,第一网络管理设备确定了基站1的移动性优化属性。
异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率(Reference Signal Receiving Power,RSRP)门限、相邻小区的参考信号接收功率门限等一种或多种参数,本实施例不作限定。
其中,异常覆盖门限表示在一个MRO优化周期内,服务小区与邻区之间的异常覆盖比例的最大值。若在一种MRO优化周期内,服务小区与邻区之间的异常覆盖比例超过该异常覆盖门限,则不触发MRO。也就是说,由于异常覆盖门限指示的是覆盖性能而非移动性性能,那么即使系统的异常覆盖比例超过该异常覆盖门限,也不会触发移动性性能优化,即不触发MRO优化。
其中,服务小区的参考信号接收功率门限表示当终端设备发生RLF或者切换失败,重建成功后的RLF报告包含的服务小区的RSRP值小于该门限,并且邻区的RSRP也小于该门限,则认为存在异常覆盖。也就是说,该服务小区的参考信号接收功率门限可以指示是否存在异常覆盖。可选的,若该服务小区的参考信号接收功率门限指示存在异常覆盖,并且异常覆盖比例超过异常覆盖门限,则不触发MRO优化。
其中,相邻小区的参考信号接收功率门限表示当终端设备发生RLF或者切换失败,重建成功后的RLF报告包含的服务小区的RSRP值小于该门限,并且邻区的RSRP也小于该门限,则认为存在异常覆盖。也就是说,该相邻小区的参考信号接收功率门限可以指示是否存在异常覆盖。可选的,若该相邻小区的参考信号接收功率门限指示存在异常覆盖,并且异常覆盖比例超过异常覆盖门限,则不触发MRO优化。
异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限、濒临无线链路失败比例门限等一种或多种参数。
其中,异常无线链路失败也称为异常RLF,包括切换过早导致的异常RLF和切换过晚导致的异常RLF。异常RLF比例可以表示为:切换过早导致的异常RLF与切换过晚导致的异常RLF之和,与总切换次数的比值,即异常RLF比例=(切换过早导致的异常RLF次数+切换过晚导致的异常RLF次数)/总切换次数。若系统的异常RLF比例大于该异常RLF比例门限,则触发MRO优化。
其中,网络设备组切换失败也称为异常SCG失败,包括SN更换过早导致的SCG failure和SN更换过晚导致的SCG failure。异常SCG失败比例可以表示为:SN更换过早导致的SCG failure与SN更换过晚导致的SCG failure之和,与总切换次数的比值,即异常SCG失败比例=(SN更换过早导致的SCG failure次数+SN更换过晚导致的SCG failure次数)/总切换次数。若系统的异常SCG失败比例大于该异常SCG失败比例门限,则触发MRO优化。
其中,濒临无线链路失败比例也称为near-RLF比例,可以表示为near-RLF次数与成功切换次数的比值,即near-RLF比例=near-RLF次数/成功切换次数。near-RLF比例门限限定了near-RLF比例的最大值,也就是说,在切换成功场景中,若near-RLF比例达到该near-RLF比例门限,则触发MRO优化。
需要注意的是,第二策略参数还可以包括前文实施例所述的小区级别的移动性优化属性中的第一策略参数。也就是说,该第二策略参数还可以包括小区标识、切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数等一种或多种参数,对各参数的描述请参考前文实施例中的描述,在此不再赘述。
第二目标参数可以包括网络设备标识、异常覆盖比例、切换触发优化目标参数等一种或多种参数。其中,对网络设备标识的描述与第二策略参数中的网络设备标识的描述以及作用相同,在此不再赘述。
异常覆盖比例表示在一个MRO优化周期内,服务小区与邻区之间的异常覆盖比例。例如,服务小区和邻区之间的重叠覆盖区域,与服务小区和邻区共同构成的覆盖区域之和的比值可以反映服务小区与邻区之间的异常覆盖比例。其中,服务小区和邻区之间的重叠覆盖区域可以视为异常覆盖区域。
切换触发优化目标参数包括异常RLF比例、异常SCG失败比例、near-RLF比例等一种或多种参数。其中,异常RLF比例、异常SCG失败比例的描述可以参考前文实施例中第一目标参数中的详细描述,在此不再赘述。
其中,near-RLF比例可以表示为near-RLF次数与成功切换次数的比值,即near-RLF比例=near-RLF次数/成功切换次数。该near-RLF比例为MRO的优化目标,也就是说,通过MRO优化,有利于降低near-RLF比例。
第二控制参数也称为MRO功能的控制开关,本申请实施例在现有的MRO功能控制开关中新增两类控制开关,包括辅小区无线链路失败的移动性优化功能控制开关和濒临无线链路失败的移动性优化功能控制开关。对上述两类开关的具体描述可以参考第一控制参数中的详细描述,在此不再赘述。
可选的,本实施例所述的MRO优化还可以是子网级别的优化。子网级别的优化对应的子网级别的移动性优化属性与基站级别的移动性优化属性相同,具体的描述可以参考基站级别的移动性优化属性的描述,在此不再赘述。
S602,第一网络管理设备向第二网络管理设备发送移动性优化属性;对应的,第二网络管理设备接收第一网络管理设备发送的移动性优化属性。
第一网络管理设备确定移动性优化属性后,可以将该移动性优化属性发送给第二网络管理设备。例如,第一网络管理设备通过北向接口向第二网络管理设备发送网络节点信息,该网络节点信息中包括该移动性优化属性。所述网络节点可以是网络功能节点,如基站、小区、基站CU或、基站DU、基站CU小区或者基站DU小区等。
可选的,第一网络管理设备发送小区标识信息、基站标识信息、切片标识信息的一种或多种给第二网络管理设备。
可选的,第二网络管理设备接收第一网络管理设备发送的对象创建通知中携带网络节点的移动性优化属性,第二网络管理设备根据接收到的对象创建通知创建所述网络节点实例的管理对象。其中,上述网络节点可以是网络功能节点,如基站、小区、基站CU、基站DU、基站CU小区或者基站DU小区等,第二网络管理设备在网络节点的管理对象中配置移动性优化属性。
其中,对象创建通知用于使第一网络管理设备创建相应的管理对象,并为这些管理对象进行相应的配置。可选的,对象创建通知中还包括基站标识、小区标识、或切片标识中的一种或多种,分别用于指示移动性优化属性是基站的、小区的还是切片级别的。
例如,管理服务消费者向管理服务生产者发送create MOI操作,所述操作中携带了移动性优化功能的相关属性。在操作创建后,管理服务消费者可以向管理服务生产者发送get  MOI Attributes操作来主动获取某个对象的配置参数。或者,管理服务消费者还可以向管理服务生产者发送modify MOI Attributes操作来修改某个对象的参数。或者,管理服务消费者还可以向管理服务生产者发送delete MOI Attributes操作来删除某个对象。其中,上述操作可以沿用现有的操作消息,或者,也可以使用新定义的操作消息,本实施例不作限定。
可选的,第二网络管理设备接收第一网络管理设备发送的对象创建通知中的移动性优化属性之后,第二网络管理设备还可以向第二网络设备发送该移动性优化属性,以使第二网络设备在辅小区无线链路失败和/或濒临无线链路失败的情况下,根据该移动性优化属性调整终端设备从第一网络设备切换至所述第二网络设备过程中的切换参数。
其中,第二网络管理设备向第二网络设备发送该移动性优化属性可以通过第二网络管理设备和第二网络设备之间的私有接口等实现。
例如,管理服务消费者确定移动性优化属性,通过管理服务生产者向所管理的基站1和基站2下发该移动性优化属性。基站1和基站2根据接收到的该移动性优化属性进行相应的参数配置。若终端设备从基站1切换至基站2的过程中切换成功,但是near-RLF比例超过了该移动性优化属性中的near-RLF比例门限,那么基站2触发MRO优化,对移动性参数、波束参数等进行优化。
可选的,本实施例中第一网络管理设备与第二网络管理设备之间的交互还可以包括以下步骤:
S603,第一网络管理设备接收第二网络管理设备发送的响应消息;对应的,第二网络管理设备向第一网络管理设备发送响应消息。
具体的,第二网络管理设备可以根据移动性优化属性执行相应的配置,配置后,第二网络管理设备向第一网络管理设备发送响应消息。
可选的,响应消息可以为现有的Create MOI response操作消息,或者为新定义的操作消息,本实施例不作限定。
可选的,响应消息中可以携带管理对象的标识和/或第二网络管理设备的标识。例如,携带区别名称(distinguish name,DN)。其中,管理对象的标识可以是由第一网络管理设备创建在Create MOI request中发送给第二网络管理设备。
可选的,响应消息还可以包括配置成功的消息、配置失败的消息或者无法配置的信息中的一种或多种,本实施例不作限定。对应的,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置。例如,第二网络管理设备移动性优化属性配置成功,那么第二网络管理设备向第一网络管理设备发送的响应消息为配置成功的消息。
可选的,响应消息中还可以携带配置失败或者无法配置的原因。例如,第二网络管理设备向第一网络管理设备发送的响应消息为配置失败的消息,且该响应消息中还包括配置失败的原因。
本申请实施例提供一种移动性参数配置方法,该方法可以由第一网络管理设备和第二网络管理设备之间交互执行。其中,第一网络管理设备可以向第二网络管理设备发送移动性优化属性,该移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性。也就是说,该方法实现了在多链接数据传输场景下以及切换成功场景下的移动性参数优化的管理,保证了在该两种场景下的移动性性能。
下面对多链接数据传输场景下和切换成功场景下网络管理设备与网络设备之间的性能指标的管理流程进行详细的描述。
请参见图7,图7为本申请实施例提供的一种第一网络管理设备和第二网络管理设备管理移动性优化性能数据的流程示意图。该流程由第一网络管理设备和第二网络管理设备之间的交互实现,包括以下步骤:
S701,第一网络管理设备向第二网络管理设备发送请求消息,该请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示;
第一网络管理设备向第二网络管理设备发送的请求消息可以是数据订阅操作消息,该数据订阅操作消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示(notify)。
其中,数据订阅操作消息中可以携带网络节点的信息。网络节点的信息可以是基站、小区、基站CU或、基站DU、基站CU小区或者基站DU小区等各类网络节点的信息。该数据订阅操作消息用于请求网络节点的移动性优化性能数据和/或网络节点的移动性优化性能数据的指示。
可选的,数据订阅操作消息中还可以携带切片的标识信息,例如NSSAI、S-NSSAI、NSSI等标识信息。该订阅操作用于请求指定切片的移动性优化性能数据和/或指定切片的移动性优化性能数据的指示。
例如,第一网络管理设备向第二网络管理设备发送网络节点的数据订阅操作消息,该数据订阅操作中携带请求网络节点的移动性优化性能数据。其中,网络节点可以是网络功能节点,如基站、小区、基站CU或、基站DU、基站CU小区或者基站DU小区中的一种或多种。
可选的,数据订阅操作消息中还包括性能数据发送的周期、触发门限等。
可选的,所述数据订阅操作消息中指示特定的移动性优化性能数据,例如可以指示多链接数据传输相关的性能数据、切换成功相关的性能数据中的一种或多种,本实施例不作限定。
需要说明的是,数据订阅操作消息可以是用现有的subscribe操作消息,或者,也可以定义新的消息,本实施例不作限定。
S702,第一网络管理设备接收第二网络管理设备发送的反馈信息。
第一网络设备接收的反馈信息可以包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。也就是说,该反馈信息可以仅包括具体的性能数据,也可以仅包括性能数据的指示,还可以包括具体的性能数据和性能数据的指示。
在一种实现方式中,该反馈信息可以包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据。
其中,移动性优化属性所对应的移动性优化性能数据为第二网络管理设备所管理的网元进行切换的性能指标。该移动性优化数据可以包括但不限于:发生切换的总次数、切换失败的总次数、辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、 辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、辅节点乒乓切换的次数、濒临无线链路失败的次数或波束失败的次数等。
其中,发生切换的总次数(number of handover events)为一个MRO优化周期内统计的切换事件的次数,不区分RAT。也就是说,该发生切换的总次数可以是相同制式下切换的切换事件的次数(number of intra-RAT handover events),或者不同制式下切换的切换事件的次数(number of inter-RAT handover events)。
需要说明的是,intra-RAT是指相同制式下的切换,例如LTE和LTE之间,NR和NR之间的切换。inter-RAT是指不同制式下的切换,例如LTE和NR之间,NG-RAN架构下eLTE和NR之间的切换,本实施例不作限定。
其中,切换失败的总次数(number of handover failures)为一个MRO优化周期内统计的切换失败的次数,不区分RAT。也就是说,该切换失败的总次数可以是intra-RAT下切换失败的次数(number of intra-RAT handover failures),或者inter-RAT下切换失败的次数(number of inter-RAT handover failures)。
可选的,切换失败的总次数还可以是inter-RAT下切换过早失败的次数(number of inter-RAT too early handover failures)、或者intra-RAT下切换过晚失败的次数(number of intra-RAT too late handover failures)、或者intra-RAT下切换至错误小区的次数(number of intra-RAT handover failures to wrong cell)、或者inter-RAT下切换过早失败的次数(number of inter-RAT too early handover failures)、或者inter-RAT下切换过晚失败的次数(number of inter-RAT too late handover failures)、或者非必要切换的次数(number of unnecessary handover to another RAT)等。
为了体现配置了本申请实施例所述的MRO优化属性后的网元进行切换的性能指标,下面将介绍多链接数据传输场景的移动性优化性能数据和切换成功场景的移动性优化性能数据,具体可以包括:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数等。
其中,辅节点切换的总次数(number of SN change events)为一个MRO优化周期内统计的SN切换事件的次数。可选的,辅节点切换的总次数可以是inter-RAT下辅节点切换的总次数(number of inter-RAT SN change events),或者是intra-RAT下辅节点切换的总次数(number of intra-RAT SN change events)。
其中,辅节点切换失败的总次数(number of SN change failures)为一个MRO优化周期内统计的SN切换失败的次数。可选的,辅节点切换失败的总次数可以是inter-RAT下辅节点切换的总次数(number of inter-RAT SN change failures),或者是intra-RAT下辅节点切换的总次数(number of intra-RAT SN change failures)。
其中,产生乒乓效应的次数(number of handover ping pong)为一个MRO优化周期内统计的发生乒乓切换的次数。可选的,产生乒乓效应的次数可以是inter-RAT下乒乓切换的次数(number of inter-RAT handover ping pong),或者intra-RAT下乒乓切换的次数(number of intra-RAT handover ping pong)。
其中,辅节点更新过早的次数(number of SN too early HO failures)为一个MRO优化 周期内统计的SN更新过早导致的切换失败的次数。可选的,辅节点更新过早的次数可以是inter-RAT下辅节点更新过早导致的切换失败的次数(number of inter-RAT SN too early HO failures),或者intra-RAT下辅节点更新过早导致的切换失败的次数(number of intra-RAT SN too early HO failures)。
其中,辅节点更新过晚的次数(number of SN too late HO failures)为一个MRO优化周期内统计的SN更新过晚导致的切换失败的次数。可选的,辅节点更新过晚的次数可以是inter-RAT下辅节点更新过晚导致的切换失败的次数(number of inter-RAT SN too late HO failures),或者intra-RAT下辅节点更新过晚导致的切换失败的次数(number of intra-RAT SN too late HO failures)。
其中,辅节点切换到错误小区的次数(number of SN to wrong cell)为一个MRO优化周期内统计的SN切换到错误小区的次数。可选的,辅节点切换到错误小区的次数可以是inter-RAT下辅节点切换到错误小区的次数(number of inter-RAT SN to wrong cell),或者intra-RAT下辅节点切换到错误小区的次数(number of intra-RAT SN to wrong cell)。
其中,辅节点乒乓切换的次数(number of SN change ping pong)为一个MRO优化周期内统计的SN更换乒乓的次数。可选的,辅节点乒乓切换的次数可以是inter-RAT下辅基站更换乒乓的次数(number of inter-RAT SN change ping pong),或者intra-RAT下辅节点更换乒乓的次数(number of intra-RAT SN change ping pong)。
其中,濒临无线链路失败的次数(number of near-RLF)为一个MRO优化周期内统计的near-RLF的次数。可选的,濒临无线链路失败的次数可以是inter-RAT下濒临无线链路失败的次数(number of inter-RAT near-RLF),或者intra-RAT下濒临无线链路失败的次数(number of intra-RAT near-RLF)。
其中,波束失败的次数(number of Beam Failure)为一个MRO优化周期内统计的波束失败的次数。
在一种实现方式中,该反馈信息可以不包括上述性能数据,而仅包括移动性优化属性所对应的移动性优化性能数据的指示(如notify ready)。例如,反馈信息中包括notify ready,该notify ready可以指示请求消息所请求的性能数据。
下面通过两个示例来描述两种管理MRO性能指标的流程。其中,一种是通过第一网络管理设备触发订阅来获取移动性优化性能数据,第二网络管理设备采用文件形式(file-based)上报。另一种是通过第二网络管理设备触发测量任务并上报移动性优化性能数据,第二网络管理设备采用数据流形式(stream-based)上报。
在一种示例中,请参见图8,图8为本申请实施例提供的一种第一网络管理设备和第二网络管理设备管理MRO性能指标的流程示意图。该流程由第一网络管理设备和第二网络管理设备之间的交互实现,包括以下步骤:
S801,第一网络管理设备向第二网络管理设备发送订阅操作;
S802,第二网络管理设备向第一网络管理设备发送指示消息,该指示消息用于指示文件数据准备就绪;
S803,第一网络管理设备向第二网络管理设备发送请求消息,该请求消息用于请求获取可用文件数据。
其中,第一网络管理设备向第二网络管理设备发送的订阅操作用于订阅第二网络管理设备的MRO性能指标。例如,第一网络管理设备通过该订阅操作,可以获取特定的MRO性能指标。
其中,订阅操作中可以携带网络节点的信息。网络节点的信息可以是基站、小区、基站CU、基站DU、基站CU小区或者基站DU小区的信息。该订阅操作用于请求发送网络节点的移动性优化性能数据和/或网络节点的移动性优化性能数据的指示。
可选的,订阅操作中还可以携带切片的标识信息,例如NSSAI、S-NSSAI、NSSI等标识信息。该订阅操作用于指示请求指定切片的移动性优化性能数据和/或指定切片的移动性优化性能数据的指示。
例如,第一网络管理设备向第二网络管理设备发送网络节点的订阅操作,该订阅操作中携带网络节点的移动性优化性能数据。网络节点可以是网络功能节点,如基站、小区、基站CU、基站DU、基站CU小区或者基站DU小区中的一种或多种。
可选的,订阅操作中还包括性能数据发送的周期、触发门限等。
可选的,该订阅操作中可以携带特定的MRO性能指标的指示。例如,第一网络管理设备向第二网络管理设备发送的订阅操作中携带第一指示和/或第二指示。其中,第一指示用于指示多链接数据传输相关的性能指标(如SN change相关的性能指标),第二指示用于指示切换成功相关的性能指标(如near-RLF相关的性能指标)。
可选的,该订阅操作可以使用现有的subscribe操作消息,也可以定义新的消息,本实施例不作限定。
第二网络管理设备接收到第一网络管理设备发送的订阅操作后,可以采集相关的移动性优化性能数据,并将相关的移动性优化性能数据记录在文件(files)中。第二网络管理设备可以向第一网络管理设备发送指示消息,该指示消息用于指示文件数据准备就绪(file ready)。例如,第二网络管理设备发送的指示消息可以使用现有的Notify Ready操作消息,也可以定义新的消息,本实施例不作限定。
可选的,该指示消息(file ready操作)中可以携带特定的MRO性能指标ready的指示。例如,第二网络管理设备向第一网络管理设备发送的指示消息中携带第一ready指示和/或第二ready指示。其中,第一ready指示用于指示多链接数据传输相关的性能指标(如SN change相关的性能指标)包含在文件中,第二ready指示用于指示切换成功相关的性能指标(如near-RLF相关的性能指标)包含在文件中。
第一网络管理设备接收到指示信息后,可以向第二网络管理设备发送请求消息,该请求消息用于请求获取可用文件数据(available files)。其中,该请求消息可以使用现有的list Available Files操作消息,也可以定义新的消息,本实施例不作限定。
在一种示例中,请参见图9,图9为本申请实施例提供的另一种第一网络管理设备和第二网络管理设备管理MRO性能指标的流程示意图。该流程由第一网络管理设备和第二网络管理设备之间的交互实现,包括以下步骤:
S901,第一网络管理设备向第二网络管理设备发送创建测量任务操作;
S902,第二网络管理设备向第一网络管理设备发送数据流连接建立操作;
S903,第二网络管理设备向第一网络管理设备发送数据流。
其中,测量任务用于为具有不同粒度周期的相同实例收集相同的测量类型。随后,第一网络管理设备可以发送测量工作列表给第二网络管理设备,以使第二网络管理设备建立相应的测量任务数据流。
可选的,创建测量任务操作中可以携带网络节点的信息。网络节点的信息可以是基站、小区、基站CU或、基站DU、基站CU小区或者基站DU小区的信息。该创建测量任务操作用于请求创建网络节点的移动性优化性能数据的测量连接。
可选的,创建测量任务操作中还可以携带切片的标识信息,例如NSSAI、S-NSSAI、NSSI等标识信息。创建测量任务操作用于请求创建指定切片的移动性优化性能数据的测量连接。
例如,第一网络管理设备向第二网络管理设备发送网络节点的创建测量任务操作,该创建测量任务操作中携带网络节点的移动性优化性能数据。网络节点可以是网络功能节点,如基站、小区、基站CU或、基站DU、基站CU小区或者基站DU小区等的一种或多种。
可选的,创建测量任务操作中还包括性能数据发送的周期、触发门限等。
其中,测量任务操作可以使用现有的create measurement job操作消息。测量任务列表可以使用现有的list measurement jobs操作消息,或者使用现有的create MOI操作消息,或者使用其他新定义的消息,本实施例不作限定。
其中,数据流连接建立操作用于建立第一网络管理设备和第二网络管理设备之间的数据流。
可选的,数据流连接建立操作中可以携带流信息列表,其中,流信息列表中包括流标识、测量管理对象DN信息等。
可选的,该数据流连接建立操作可以使用现有的establish streaming connection操作消息,或者定义新的操作消息,本实施例不作限定。
可选的,该数据流连接建立操作中可以携带特定的MRO性能指标的指示。例如,第一网络管理设备向第二网络管理设备发送的数据流连接建立操作中携带第一指示和第二指示。其中,第一指示用于指示多链接数据传输相关的性能指标(如SN change相关的性能指标),第二指示用于指示切换成功相关的性能指标(如near-RLF相关的性能指标)。
本申请实施例提供了多链接数据传输场景下和切换成功场景下网络管理设备与网络设备之间的性能指标的管理流程,解决了在多链接数据传输场景和切换成功场景下的移动性优化性能数据的管理。该管理流程有利于使第一网络管理设备根据移动性优化性能数据对移动性优化属性进行调整,从而有利于降低用户在切换过程中的切换失败率。
以下结合图10至图13详细说明本申请实施例的相关设备。
本申请实施例提供一种第一网络管理设备,如图10所示,该第一网络管理设备1000可用于实现本申请实施例中的移动性参数配置方法。该第一网络管理设备1000可以包括:
处理单元1001,用于确定移动性优化属性,移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性;
收发单元1002,用于向第二网络管理设备发送该移动性优化属性。
具体实现方式,请参考图6实施例中的S601和S602中的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一策略参数,该第一策略参数包括以下一 种或多种:切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数。
其中,切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔。切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种。切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
具体实现方式,请参考图6实施例中对第一策略参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一目标参数,该第一目标参数包括以下一种或多种:小区标识、切换触发最大次数或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
具体实现方式,请参考图6实施例中对第一目标参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一控制参数,该第一控制参数包括辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
具体实现方式,请参考图6实施例中对第一控制参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第二策略参数,该第二策略参数包括以下一种或多种:网络设备标识、异常覆盖策略参数、或异常无线链路策略参数。其中,异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种。异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
具体实现方式,请参考图6实施例中对第二策略参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第二目标参数,该第二目标参数包括以下一种或多种:网络设备标识、异常覆盖比例、或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
具体实现方式,请参考图6实施例中对第二目标参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一策略参数、第一目标参数、第一控制参数、第二策略参数或第二目标参数中的一种或多种。
具体实现方式,请参考图6实施例中对第一策略参数、第一目标参数、第一控制参数、第二策略参数、第二目标参数的详细描述,在此不再赘述。
在一种实现方式中,收发单元1002还用于接收第二网络管理设备发送的响应消息,该响应消息指示第二网络管理设备的配置状态。其中,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置等。
具体实现方式,请参考图6实施例中S603中的详细描述,在此不再赘述。
在一种实现方式中,收发单元1002还用于向第二网络管理设备发送请求消息,该请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示。收发单元1002还用于接收第二网络管理设备发送的反馈信息,反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优 化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
具体实现方式,请参考图7实施例中S701和S702中的详细描述,在此不再赘述。
在一种实现方式中,移动性优化性能数据包括以下一种或多种:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数或濒临无线链路失败的次数。
具体实现方式,请参考图7实施例中对辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数或濒临无线链路失败的次数的详细描述,在此不再赘述。
在一种实现方式中,收发单元1002还用于:
向第二网络管理设备发送订阅操作;
接收第二网络管理设备发送的指示消息,该指示消息用于指示文件数据准备就绪;
向第二网络管理设备发送请求消息,该请求消息用于请求获取可用文件数据。
具体实现方式,请参考图8实施例中S801至S803中的详细描述,在此不再赘述。
在一种实现方式中,收发单元1002还用于:
向第二网络管理设备发送创建测量任务操作;
接收第二网络管理设备发送的数据流连接建立操作;
接收第二网络管理设备发送的数据流。
具体实现方式,请参考图9实施例中S901至S903中的详细描述,在此不再赘述。
在一种实现方式中,图10中的各个单元所实现的相关功能可以通过收发器和处理器来实现。请参见图11,图11是本申请实施例提供的一种第一网络管理设备的结构示意图,该第一网络管理设备可以为具有执行本申请实施例所述的移动性参数配置功能的设备(例如芯片)。该第一网络管理设备1100可以包括收发器1101、至少一个处理器1102和存储器1103。其中,收发器1101、处理器1102和存储器1103可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。本实施例中采用总线连接的方式作为一种示例,如图11所示。
其中,收发器1101可以用于发送或者接收数据。可以理解的是,收发器1101是统称,可以包括接收器和发送器。例如,发送器用于向第二网络管理设备发送所述移动性优化属性。
其中,处理器1102可以用于对数据进行处理。例如,处理器1102可以调用存储器1103中存储的程序代码,确定移动性优化属性。处理器1102可以包括一个或多个处理器,例如该处理器1102可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器1102是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
其中,存储器1103用于存储程序代码等。存储器1103可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM)。存储器1103也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)。 存储器1103还可以包括上述种类的存储器的组合。
上述收发器1101和处理器1102可以用于实现本申请实施例中的移动性参数配置方法,其中,具体实现方式如下:
确定移动性优化属性,移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性;
向第二网络管理设备发送该移动性优化属性。
具体实现方式,请参考图6实施例中的S601和S602中的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一策略参数,该第一策略参数包括以下一种或多种:切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数。
其中,切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔。切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种。切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
具体实现方式,请参考图6实施例中对第一策略参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一目标参数,该第一目标参数包括以下一种或多种:小区标识、切换触发最大次数或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
具体实现方式,请参考图6实施例中对第一目标参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一控制参数,该第一控制参数包括辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
具体实现方式,请参考图6实施例中对第一控制参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第二策略参数,该第二策略参数包括以下一种或多种:网络设备标识、异常覆盖策略参数、或异常无线链路策略参数。其中,异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种。异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
具体实现方式,请参考图6实施例中对第二策略参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第二目标参数,该第二目标参数包括以下一种或多种:网络设备标识、异常覆盖比例、或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
具体实现方式,请参考图6实施例中对第二目标参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一策略参数、第一目标参数、第一控制参数、第二策略参数或第二目标参数中的一种或多种。
具体实现方式,请参考图6实施例中对第一策略参数、第一目标参数、第一控制参数、第二策略参数、第二目标参数的详细描述,在此不再赘述。
在一种实现方式中,收发器1101还用于接收第二网络管理设备发送的响应消息,该响应消息指示第二网络管理设备的配置状态。其中,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置等。
具体实现方式,请参考图6实施例中S603中的详细描述,在此不再赘述。
在一种实现方式中,收发器1101还用于向第二网络管理设备发送请求消息,该请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示。收发器1101还用于接收第二网络管理设备发送的反馈信息,反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
具体实现方式,请参考图7实施例中S701和S702中的详细描述,在此不再赘述。
在一种实现方式中,移动性优化性能数据包括以下一种或多种:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数或濒临无线链路失败的次数。
具体实现方式,请参考图7实施例中对辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数或濒临无线链路失败的次数的详细描述,在此不再赘述。
在一种实现方式中,收发器1101还用于:
向第二网络管理设备发送订阅操作;
接收第二网络管理设备发送的指示消息,该指示消息用于指示文件数据准备就绪;
向第二网络管理设备发送请求消息,该请求消息用于请求获取可用文件数据。
具体实现方式,请参考图8实施例中S801至S803中的详细描述,在此不再赘述。
在一种实现方式中,收发器1101还用于:
向第二网络管理设备发送创建测量任务操作;
接收第二网络管理设备发送的数据流连接建立操作;
接收第二网络管理设备发送的数据流。
具体实现方式,请参考图9实施例中S901至S903中的详细描述,在此不再赘述。
本申请实施例提供一种第二网络管理设备,如图12所示,该第二网络管理设备1200可用于实现本申请实施例中的移动性参数配置方法。该第二网络管理设备1200可以包括:
收发单元1201,用于接收第一网络管理设备发送的移动性优化属性,该移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性;收发单元1201还用于向第二网络设备发送该移动性优化属性,以使第二网络设备在辅小区无线链路失败和/或濒临无线链路失败的情况下,根据该移动性优化属性调整终端设备从第一网络设备切换至第二网络设备过程中的切换参数。
具体实现方式,请参考图6实施例中的S601和S602中的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一策略参数,该第一策略参数包括以下一种或多种:切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数。
其中,切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发 时间间隔。切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种。切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
具体实现方式,请参考图6实施例中对第一策略参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一目标参数,该第一目标参数包括以下一种或多种:小区标识、切换触发最大次数或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
具体实现方式,请参考图6实施例中对第一目标参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一控制参数,该第一控制参数包括辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
具体实现方式,请参考图6实施例中对第一控制参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第二策略参数,该第二策略参数包括以下一种或多种:网络设备标识、异常覆盖策略参数、或异常无线链路策略参数。其中,异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种。异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
具体实现方式,请参考图6实施例中对第二策略参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第二目标参数,该第二目标参数包括以下一种或多种:网络设备标识、异常覆盖比例、或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
具体实现方式,请参考图6实施例中对第二目标参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一策略参数、第一目标参数、第一控制参数、第二策略参数或第二目标参数中的一种或多种。
具体实现方式,请参考图6实施例中对第一策略参数、第一目标参数、第一控制参数、第二策略参数、第二目标参数的详细描述,在此不再赘述。
在一种实现方式中,收发单元1201还用于向第一网络管理设备发送响应消息,该响应消息指示第二网络管理设备的配置状态。其中,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置等。
具体实现方式,请参考图6实施例中S603中的详细描述,在此不再赘述。
在一种实现方式中,收发单元1201还用于接收第一网络管理设备发送的请求消息,请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示。收发单元1201还用于向第一网络管理设备发送反馈信息,该反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
具体实现方式,请参考图7实施例中S701和S702中的详细描述,在此不再赘述。
在一种实现方式中,移动性优化性能数据包括以下一种或多种:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数。
具体实现方式,请参考图7实施例中对辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数或濒临无线链路失败的次数的详细描述,在此不再赘述。
在一种实现方式中,收发单元1201还用于接收第一网络管理设备发送的订阅操作。处理单元1202确定文件数据准备就绪。收发单元1201还用于向第一网络管理设备发送指示消息,该指示消息用于指示文件数据准备就绪;收发单元1201还用于接收第一网络管理设备发送的请求消息,该请求消息用于请求获取可用文件数据。
具体实现方式,请参考图8实施例中S801至S803中的详细描述,在此不再赘述。
在一种实现方式中,收发单元1201还用于:
接收第一网络管理设备发送的创建测量任务操作;
向第一网络管理设备发送数据流连接建立操作;
向第一网络管理设备发送数据流。
具体实现方式,请参考图9实施例中S901至S903中的详细描述,在此不再赘述。
在一种实现方式中,图12中的各个单元所实现的相关功能可以通过收发器和处理器来实现。请参见图13,图13是本申请实施例提供的一种第二网络管理设备的结构示意图,该第二网络管理设备可以为具有执行本申请实施例所述的移动性参数配置功能的设备(例如芯片)。该第二网络管理设备1300可以包括收发器1301、至少一个处理器1302和存储器1303。其中,收发器1301、处理器1302和存储器1303可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。本实施例中采用总线连接的方式作为一种示例,如图13所示。
其中,收发器1301可以用于发送或者接收数据。可以理解的是,收发器1301是统称,可以包括接收器和发送器。例如,接收器用于接收第一网络管理设备发送的移动性优化属性。
其中,处理器1302可以用于对数据进行处理。处理器1302可以包括一个或多个处理器,例如该处理器1302可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器1302是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
其中,存储器1303用于存储程序代码等。存储器1303可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM)。存储器1303也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)。存储器1303还可以包括上述种类的存储器的组合。
上述收发器1301可以用于实现本申请实施例中的移动性参数配置方法,其中,具体实现方式如下:
接收第一网络管理设备发送的移动性优化属性,该移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性;
向第二网络设备发送该移动性优化属性,以使第二网络设备在辅小区无线链路失败和/或濒临无线链路失败的情况下,根据该移动性优化属性调整终端设备从第一网络设备切换至第二网络设备过程中的切换参数。
具体实现方式,请参考图6实施例中的S601和S602中的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一策略参数,该第一策略参数包括以下一种或多种:切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数。
其中,切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔。切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种。切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
具体实现方式,请参考图6实施例中对第一策略参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一目标参数,该第一目标参数包括以下一种或多种:小区标识、切换触发最大次数或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
具体实现方式,请参考图6实施例中对第一目标参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一控制参数,该第一控制参数包括辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
具体实现方式,请参考图6实施例中对第一控制参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第二策略参数,该第二策略参数包括以下一种或多种:网络设备标识、异常覆盖策略参数、或异常无线链路策略参数。其中,异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种。异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
具体实现方式,请参考图6实施例中对第二策略参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第二目标参数,该第二目标参数包括以下一种或多种:网络设备标识、异常覆盖比例、或切换触发优化目标参数。其中,切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
具体实现方式,请参考图6实施例中对第二目标参数的详细描述,在此不再赘述。
在一种实现方式中,移动性优化属性包括第一策略参数、第一目标参数、第一控制参数、第二策略参数或第二目标参数中的一种或多种。
具体实现方式,请参考图6实施例中对第一策略参数、第一目标参数、第一控制参数、第二策略参数、第二目标参数的详细描述,在此不再赘述。
在一种实现方式中,收发器1301还用于向第一网络管理设备发送响应消息,该响应消 息指示第二网络管理设备的配置状态。其中,第二网络管理设备的配置状态包括配置成功、配置失败或无法配置等。
具体实现方式,请参考图6实施例中S603中的详细描述,在此不再赘述。
在一种实现方式中,收发器1301还用于接收第一网络管理设备发送的请求消息,请求消息用于请求移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示。收发器1301还用于向第一网络管理设备发送反馈信息,该反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
具体实现方式,请参考图7实施例中S701和S702中的详细描述,在此不再赘述。
在一种实现方式中,移动性优化性能数据包括以下一种或多种:辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数。
具体实现方式,请参考图7实施例中对辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数或濒临无线链路失败的次数的详细描述,在此不再赘述。
在一种实现方式中,收发器1301还用于接收第一网络管理设备发送的订阅操作。处理器1302确定文件数据准备就绪。收发器1301还用于向第一网络管理设备发送指示消息,该指示消息用于指示文件数据准备就绪;收发器1301还用于接收第一网络管理设备发送的请求消息,该请求消息用于请求获取可用文件数据。
具体实现方式,请参考图8实施例中S801至S803中的详细描述,在此不再赘述。
在一种实现方式中,收发器1301还用于:
接收第一网络管理设备发送的创建测量任务操作;
向第一网络管理设备发送数据流连接建立操作;
向第一网络管理设备发送数据流。
具体实现方式,请参考图9实施例中S901至S903中的详细描述,在此不再赘述。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有程序或指令,当所述程序或指令在计算机上运行时,使得计算机执行本申请实施例中的移动性参数设置方法。
本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行本申请实施例中的移动性参数设置方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例提供一种通信系统,包括本申请实施例的第一网络管理设备及第二网络管理设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种移动性参数配置方法,其特征在于,包括:
    第一网络管理设备确定移动性优化属性,所述移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性;
    第一网络管理设备向第二网络管理设备发送所述移动性优化属性。
  2. 根据权利要求1所述的方法,其特征在于,所述移动性优化属性包括第一策略参数;所述第一策略参数包括以下一种或多种:
    切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数;其中,
    所述切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔;
    所述切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种;
    所述切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
  3. 根据权利要求1所述的方法,其特征在于,所述移动性优化属性包括第一目标参数;所述第一目标参数包括以下一种或多种:
    小区标识、切换触发最大次数或切换触发优化目标参数;其中,
    所述切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
  4. 根据权利要求1所述的方法,其特征在于,所述移动性优化属性包括第一控制参数;所述第一控制参数包括:辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
  5. 根据权利要求1所述的方法,其特征在于,所述移动性优化属性包括第二策略参数;所述第二策略参数包括以下一种或多种:
    网络设备标识、异常覆盖策略参数、或异常无线链路策略参数;其中,
    所述异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种;
    所述异常无线链路策略参数包括异常无线链路失败比例门限、网络设备组切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
  6. 根据权利要求1所述的方法,其特征在于,所述移动性优化属性包括第二目标参数;所述第二目标参数包括以下一种或多种:
    网络设备标识、异常覆盖比例、或切换触发优化目标参数;其中,所述切换触发优化目标参数包括辅小区无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网络管理设备接收所述第二网络管理设备发送的响应消息,所述响应消息指示所述第二网络管理设备的配置状态。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络管理设备向第二网络管理设备发送请求消息,所述请求消息用于请求所述移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示;
    所述第一网络管理设备接收所述第二网络管理设备发送的反馈信息,所述反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,所述移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
  9. 根据权利要求8所述的方法,其特征在于,所述移动性优化性能数据包括以下一种或多种:
    辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数。
  10. 一种移动性参数配置方法,其特征在于,包括:
    第二网络管理设备接收第一网络管理设备发送的移动性优化属性,所述移动性优化属性用于指示辅小区无线链路失败和/或濒临无线链路失败的情况下配置的属性;
    第二网络管理设备向第二网络设备发送所述移动性优化属性,以使所述第二网络设备在辅小区无线链路失败和/或濒临无线链路失败的情况下,根据所述移动性优化属性调整终端设备从第一网络设备切换至所述第二网络设备过程中的切换参数。
  11. 根据权利要求10所述的方法,其特征在于,所述移动性优化属性包括第一策略参数;所述第一策略参数包括以下一种或多种:
    切换触发限定参数、切换调整策略参数、优化周期或切换优化策略参数;其中,
    所述切换触发限定参数包括辅小区切换时的最大切换触发偏差值和/或最小切换触发时间间隔;
    所述切换调整策略参数包括小区个性偏移的调整参数、波束参数、无线链路监控参数、随机接入资源参数中的一种或多种;
    所述切换优化策略参数包括辅小区无线链路失败对应的优化触发门限,和/或,濒临无线链路失败对应的优化触发门限。
  12. 根据权利要求10所述的方法,其特征在于,所述移动性优化属性包括第一目标参数;所述第一目标参数包括以下一种或多种:
    小区标识、切换触发最大次数或切换触发优化目标参数;其中,
    所述切换触发优化目标参数包括辅小区无线链路失败比例、濒临无线链路失败的比例、乒乓切换次数比例、切换过早失败率或切换过晚掉话率中的一种或多种。
  13. 根据权利要求10所述的方法,其特征在于,所述移动性优化属性包括第一控制参数;所述第一控制参数包括:辅小区无线链路失败的移动性优化功能控制参数和/或濒临无线链路失败的移动性优化功能控制参数。
  14. 根据权利要求10所述的方法,其特征在于,所述移动性优化属性包括第二策略参数;所述第二策略参数包括以下一种或多种:
    网络设备标识、异常覆盖策略参数、或异常无线链路策略参数;其中,
    所述异常覆盖策略参数包括异常覆盖门限、服务小区的参考信号接收功率门限或相邻小区的参考信号接收功率门限中的一种或多种;
    所述异常无线链路策略参数包括异常无线链路失败比例门限、辅小区切换失败比例门限或濒临无线链路失败比例门限中的一种或多种。
  15. 根据权利要求10所述的方法,其特征在于,所述第二目标参数包括以下一种或多种:
    网络设备标识、异常覆盖比例、或切换触发优化目标参数;其中,所述切换触发优化目标参数包括异常无线链路失败比例、辅小区切换失败比例或濒临无线链路失败比例中的一种或多种。
  16. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二网络管理设备向所述第一网络管理设备发送响应消息,所述响应消息指示所述第二网络管理设备的配置状态。
  17. 根据权利要求10至16任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络管理设备接收所述第一网络管理设备发送的请求消息,所述请求消息用于请求所述移动性优化属性所对应的移动性优化性能数据和/或请求移动性优化属性所对应的移动性优化性能数据的指示;
    所述第二网络管理设备向所述第一网络管理设备发送反馈信息,所述反馈信息包括在辅小区无线链路失败和/或濒临无线链路失败的情况下,所述移动性优化属性所对应的移动性优化性能数据和/或所述移动性优化属性所对应的移动性优化性能数据的指示。
  18. 根据权利要求17所述的方法,其特征在于,所述移动性优化性能数据包括以下一种或多种:
    辅节点切换的总次数、辅节点切换失败的总次数、产生乒乓效应的次数、辅节点更新过早的次数、辅节点更新过晚的次数、辅节点切换到错误小区的次数、或濒临无线链路失败的次数。
  19. 一种第一网络管理设备,其特征在于,包括存储器和处理器;
    所述存储器,用于存储指令;
    所述处理器,用于执行所述指令,使得如权利要求1至9中任一项所述的方法被执行。
  20. 一种第二网络管理设备,其特征在于,包括存储器和处理器;
    所述存储器,用于存储指令;
    所述处理器,用于执行所述指令,使得如权利要求10至18中任一项所述的方法被执行。
  21. 一种通信系统,其特征在于,包括:
    第一网络管理设备,用于执行如权利要求1至9中任一项所述的方法;
    第二网络管理设备,用于执行如权利要求10至18中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,存储程序或指令,当所述程序或指令在计算机上运行时,如权利要求1至9中任一项所述的方法被执行。
  23. 一种计算机可读存储介质,其特征在于,存储程序或指令,当所述程序或指令在计算机上运行时,如权利要求10至18中任一项所述的方法被执行。
  24. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至9中任一项所述的方法。
  25. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求10至18中任一项所述的方法。
PCT/CN2021/107351 2020-07-23 2021-07-20 一种移动性参数配置方法及相关设备 WO2022017377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010716141.9A CN113973316A (zh) 2020-07-23 2020-07-23 一种移动性参数配置方法及相关设备
CN202010716141.9 2020-07-23

Publications (1)

Publication Number Publication Date
WO2022017377A1 true WO2022017377A1 (zh) 2022-01-27

Family

ID=79585304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107351 WO2022017377A1 (zh) 2020-07-23 2021-07-20 一种移动性参数配置方法及相关设备

Country Status (2)

Country Link
CN (1) CN113973316A (zh)
WO (1) WO2022017377A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581682A (zh) * 2014-12-19 2015-04-29 上海华为技术有限公司 移动鲁棒性优化方法和基站设备
US20170265243A1 (en) * 2016-03-10 2017-09-14 Lg Electronics Inc. Method for performing operation related to radio link failure in wireless communication system and appratus for supporting the same
CN107666672A (zh) * 2016-07-26 2018-02-06 中兴通讯股份有限公司 鲁棒性的优化方法、装置及系统
CN111246499A (zh) * 2018-11-29 2020-06-05 华为技术有限公司 传输信息的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581682A (zh) * 2014-12-19 2015-04-29 上海华为技术有限公司 移动鲁棒性优化方法和基站设备
US20170265243A1 (en) * 2016-03-10 2017-09-14 Lg Electronics Inc. Method for performing operation related to radio link failure in wireless communication system and appratus for supporting the same
CN107666672A (zh) * 2016-07-26 2018-02-06 中兴通讯股份有限公司 鲁棒性的优化方法、装置及系统
CN111246499A (zh) * 2018-11-29 2020-06-05 华为技术有限公司 传输信息的方法和装置

Also Published As

Publication number Publication date
CN113973316A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
US11792705B2 (en) Communication method and system in handover carrying NSSAI, and corresponding core network device
KR102022157B1 (ko) 베어러 관리 장치, 방법 및 통신 시스템
JP5878935B2 (ja) 無線アクセス技術間の測定結果を報告するための方法及び装置
US8917702B2 (en) Method and device for data processing in a wireless network
US9225587B2 (en) Mechanism for alarm management of Femto related systems to avoid alarm floods
US20130183970A1 (en) Method of notifying switching information and base station
US20160157252A1 (en) Telecommunications control with service aware optimization in a self-organizing network
AU2019272364C1 (en) Communication method and communications apparatus
US9461734B2 (en) Communication system, base station apparatus, data transmission method and non-transitory computer readable medium storing program
US10021607B2 (en) Measurement configuration processing method and device
WO2011150695A1 (zh) 载波聚合系统中测量任务处理方法及系统
US20140254550A1 (en) Method and apparatus for lte handover reduction
WO2022027659A1 (zh) 一种负载均衡方法、相关设备及系统
US20130324075A1 (en) Data Loading Control
CN114258702A (zh) 基于安全配置来释放用于条件切换的配置
EP2137993B1 (en) Handling of dynamic neighbouring cell relations using a timetolive concept
WO2018137427A1 (zh) 实现测量协调的方法、系统、用户设备和存储介质
WO2022017377A1 (zh) 一种移动性参数配置方法及相关设备
WO2021259225A1 (zh) 无线链路信息获取、分析、指示方法、设备及介质
WO2022022129A1 (zh) 信息传输的方法、装置和系统
GB2532793A (en) Telecommunications control in a self-organizing network
JP2018174597A (ja) ベアラ管理装置、方法及び通信システム
EP4250803A1 (en) Method and system of managing plurality of neighbor cells of a target cell
EP4250640A1 (en) Policy conflict management method, device, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845422

Country of ref document: EP

Kind code of ref document: A1