WO2022017262A1 - 投影画面校正方法、投影显示系统及相关设备 - Google Patents

投影画面校正方法、投影显示系统及相关设备 Download PDF

Info

Publication number
WO2022017262A1
WO2022017262A1 PCT/CN2021/106673 CN2021106673W WO2022017262A1 WO 2022017262 A1 WO2022017262 A1 WO 2022017262A1 CN 2021106673 W CN2021106673 W CN 2021106673W WO 2022017262 A1 WO2022017262 A1 WO 2022017262A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
projection
photoelectric sensor
coordinate
coordinate information
Prior art date
Application number
PCT/CN2021/106673
Other languages
English (en)
French (fr)
Inventor
陈保林
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2022017262A1 publication Critical patent/WO2022017262A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof

Definitions

  • the present invention relates to the technical field of projection, and in particular, to a projection picture correction method, a projection display system and related equipment.
  • the camera set on the projection device or another mobile terminal is used to photograph the current projection picture to be corrected, and the to-be-corrected image information corresponding to the current to-be-corrected projection picture is obtained, and the to-be-corrected image information is compared with the
  • the preset screen plane information is compared to obtain a transformation matrix between the projected image to be corrected and the screen plane, and the projected image to be corrected is adjusted according to the transformation matrix to make the projected image fit the screen plane.
  • the user is required to photograph the projected image to be corrected and obtain the image information to be corrected, which is inconvenient to operate and has poor user experience.
  • the process of comparing the image information to be corrected with the preset screen plane information is complicated.
  • the amount of calculation is large, which limits the automatic correction efficiency of the projection screen, making the correction of the projection screen slow.
  • the purpose of the present invention is to provide a projection picture correction method, a projection display system and related equipment, so as to solve the problems of inconvenient operation and large calculation amount, which lead to slow correction speed.
  • the present invention provides a projection image correction method, which is applied to a projection terminal and includes the following steps:
  • Step S11 the projection terminal projects a scan line to the screen, and sends the projection screen coordinate information of the scan line on the projection screen to the screen;
  • Step S12 the projection terminal receives at least four sets of coordinate correspondence information; wherein, the coordinate correspondence information is when the photoelectric sensor is illuminated by the scanning line, the screen coordinate information of the photoelectric sensor obtained by calculation on the screen and the photoelectric sensor. Correspondence information between the coordinate information of the projection screen of the sensor;
  • Step S13 the projection terminal calculates a transformation matrix between the current projection picture and the screen according to the obtained at least four sets of the coordinate correspondence information
  • Step S14 the projection terminal uses the transformation matrix as an input parameter for the correction of the projection image, so as to realize the adaptation of the boundary of the projection image and the boundary of the screen.
  • the projection terminal projects scan lines to the screen in a frame-by-frame output manner, so as to control the scan lines to scan the entire calibration startup screen, and scan the scan lines of each frame.
  • the projected picture coordinate information of the line is sent to the screen, and the scanning line illuminates each of the photoelectric sensors in sequence during the scanning process.
  • the step S11 includes:
  • the projection terminal projects the first scan line to the screen in a frame-by-frame output manner, so as to control the first scan line to scan the entire calibration startup screen along the first coordinate direction, and convert the first scan line of each frame in real time.
  • a scan line corresponding to the first coordinate information of the first coordinate direction is sent to the screen, and the first scan line is illuminated on each of the photoelectric sensors in sequence during the scanning process; and,
  • the projection terminal projects the second scan line to the screen in a frame-by-frame output manner, so as to control the second scan line to scan the entire calibration startup screen along the second coordinate direction, and real-time convert the first scan line of each frame to the screen.
  • the second coordinate information of the two scan lines corresponding to the second coordinate direction is sent to the screen, and the second scan lines are illuminated on each of the photoelectric sensors in sequence during the scanning process; wherein the second coordinate direction is the same as the The first coordinate direction cross setting;
  • the projection terminal calculates the distance between the current projection image and the screen according to the acquired at least four sets of the first coordinate correspondence information and at least four sets of the second coordinate correspondence information. Transformation matrix.
  • the present invention provides a projection picture correction method, which is applied to a screen and includes the following steps:
  • Step S21 the screen receives the scan line projected by the projection terminal, and receives the projection screen coordinate information of the scan line on the projection screen;
  • Step S22 the screen controls at least four photoelectric sensors to perform brightness detection, and when one of the photoelectric sensors detects that the brightness is significantly increased compared to the ambient light, the screen analyzes and obtains the scan line currently irradiated on the photoelectric sensor. Projection screen coordinate information as the projection screen coordinate information of the photoelectric sensor;
  • Step S23 the screen calculates and obtains the coordinate correspondence information of each photoelectric sensor according to the screen coordinate information of each photoelectric sensor and the projection screen coordinate information of each photoelectric sensor;
  • Step S24 the screen sends the coordinate corresponding information to the projection terminal.
  • step S21 it also includes:
  • the screen receives the projection image projected by the projection terminal, and the screen determines whether all the photoelectric sensors detect that the brightness is significantly increased compared to the ambient light at the same time under the illumination of the projection image, and if so, calibrate the current
  • the described projection picture is the calibration startup picture, and the calibration time is recorded as the calibration startup time;
  • the screen receives the scan lines of each frame in a frame-by-frame manner, and receives the projected picture coordinate information of the scan lines of each frame in real time;
  • the step S22 includes:
  • step S221 the screen controls at least four of the photoelectric sensors to perform brightness detection.
  • the photoelectric sensor detects that the brightness is significantly increased compared to the ambient light, and the screen receives the scan line. to the high-level signal generated by the photoelectric sensor;
  • Step S222 according to the time difference between the time when the photoelectric sensor generates the electrical signal and the time when the calibration is started, and in combination with the projected picture coordinate information of each frame of the scanning line, the screen analyzes and obtains the current irradiated on the photoelectric sensor.
  • the projected screen coordinate information of the scan line is used as the projected screen coordinate information of the photoelectric sensor.
  • the step S221 includes:
  • the screen receives the first high level generated by the photosensor.
  • the screen receives the second high level generated by the photoelectric sensor
  • the step S222 includes:
  • the screen calculates and obtains the first coordinate information of the first scan line irradiated on the photoelectric sensor in the first coordinate direction according to the time difference between the reception time of the first high level and the correction start time to obtain as the first projected picture coordinate information of the photoelectric sensor;
  • the screen calculates and obtains the second coordinate information of the second scanning line irradiated on the photoelectric sensor in the second coordinate direction as the second projection screen coordinate information of the photoelectric sensor.
  • the step S23 includes:
  • the screen calculates and obtains first coordinate correspondence information of each photoelectric sensor according to the first projection screen coordinate information of each photoelectric sensor and the first screen coordinate information of each photoelectric sensor;
  • the screen calculates and obtains the second coordinate corresponding information of each photoelectric sensor according to the second projection screen coordinate information of each photoelectric sensor and the second screen coordinate information of each photoelectric sensor;
  • the screen sends the first coordinate corresponding information and the second coordinate corresponding information to the projection terminal.
  • the present invention provides a projection display system, comprising a projection terminal, a screen communicatively connected to the projection terminal, and at least four photoelectric sensors disposed on the screen;
  • the projection terminal is used for projecting scanning lines to the screen, and sending the projection screen coordinate information of the scanning lines on the projection screen to the screen; for receiving at least four sets of coordinate corresponding information; for obtaining
  • the transformation matrix between the current projection picture and the screen is calculated from the at least four sets of the coordinate correspondence information; the transformation matrix is used as the input parameter for the correction of the projection picture to realize the transformation of the projection picture.
  • the boundaries fit the boundaries of the screen; and/or,
  • the screen is used to receive the scanning line projected by the projection terminal, and receive the projection screen coordinate information of the scanning line on the projection screen; it is used to control at least four of the photoelectric sensors to perform brightness detection, when one of the When the photoelectric sensor detects that the brightness is significantly increased compared to the ambient light, it analyzes and obtains the projection screen coordinate information of the scanning line currently irradiated on the photoelectric sensor as the projection screen coordinate information of the photoelectric sensor; The screen coordinate information of the photoelectric sensor and the projection screen coordinate information of each photoelectric sensor are calculated to obtain the coordinate corresponding information of each photoelectric sensor; the information is used to send the coordinate corresponding information to the projection terminal.
  • the present invention provides a projection display system, which includes a processor and a memory, wherein the memory stores a control program for execution by the processor, wherein, when the control program is executed by the processor, the control program of the present invention is implemented
  • the present invention provides a computer-readable storage medium, which stores a computer program; when the computer program is executed by a processor, the steps of the method for correcting a projection image applied to a projection terminal according to the present invention are implemented, and/or the present invention is implemented.
  • the invention discloses the steps of the projection picture correction method applied to the screen.
  • a projection terminal is used to project a scanning line to the screen, and the projection picture coordinate information of the scanning line on the projection picture is sent to the screen, and the screen controls at least four photoelectric sensors. Perform brightness detection.
  • the screen analyzes and obtains the projection screen coordinate information of the photoelectric sensor.
  • the coordinate correspondence information of the photoelectric sensor is sent to the projection terminal, and the projection terminal calculates the transformation matrix between the current projection image and the screen according to the coordinate correspondence information, and uses the transformation matrix as the input parameter for the correction of the projection image to realize the boundary of the projection image.
  • the above method directly irradiates each photoelectric sensor through the scanning line in turn, so as to obtain the projection screen coordinate information of each photoelectric sensor, and then according to the preset screen coordinate information and projection screen coordinate information.
  • the coordinate correspondence information is obtained from the transformation relationship, and the transformation matrix is obtained by calculating the coordinate correspondence information.
  • FIG. 1 is a schematic flowchart of a projection image correction method applied to a projection terminal according to the present invention
  • FIG. 2 is a schematic flowchart of a projection image correction method applied to a screen according to the present invention
  • Fig. 3 is the specific flow chart of step S22 in Fig. 2;
  • FIG. 4 is a schematic structural diagram of the projection display system of the present invention.
  • FIG. 5 is a schematic diagram of the projection terminal of the present invention projecting a projection image to a screen
  • FIG. 6 is a schematic diagram of scanning the calibration startup screen by the projection terminal of the present invention.
  • the present invention also provides a projection image correction method applied to a projection terminal.
  • the method is applied to a projection terminal of a projection display system.
  • the method includes at least the following steps:
  • Step S11 the projection terminal projects a scan line to the screen, and sends the projection screen coordinate information of the scan line on the projection screen to the screen in real time;
  • Step S12 the projection terminal receives at least four sets of coordinate correspondence information; wherein, the coordinate correspondence information is when the photoelectric sensor is illuminated by the scanning line, the screen coordinate information of the photoelectric sensor obtained by calculation on the screen and the photoelectric sensor. Correspondence information between the coordinate information of the projection screen of the sensor;
  • Step S13 the projection terminal calculates a transformation matrix between the boundary of the current projection screen and the boundary of the screen according to the obtained at least four sets of the coordinate correspondence information;
  • Step S14 the projection terminal uses the transformation matrix as an input parameter for the correction of the projection picture, so as to realize that the boundary of the projection picture is adapted to the boundary of the screen, that is, the projection picture is projected in a suitable form on the screen. on the screen.
  • the present invention also provides a projection image correction method applied to a screen of a projection display system, the method includes at least the following steps:
  • Step S21 the screen receives the scan line projected by the projection terminal, and receives the projection screen coordinate information of the scan line on the projection screen;
  • Step S22 the screen controls at least four photoelectric sensors to perform brightness detection, and when one of the photoelectric sensors detects that the brightness is significantly increased compared to the ambient light, the screen analyzes and obtains the scan line currently irradiated on the photoelectric sensor. Projection screen coordinate information as the projection screen coordinate information of the photoelectric sensor;
  • Step S23 the screen calculates and obtains the coordinate correspondence information of each photoelectric sensor according to the screen coordinate information of each photoelectric sensor and the projection screen coordinate information of each photoelectric sensor;
  • Step S24 the screen sends the coordinate corresponding information to the projection terminal.
  • step S22 includes:
  • step S221 the screen controls at least four of the photoelectric sensors to perform brightness detection.
  • the photoelectric sensor detects that the brightness is significantly increased compared to the ambient light, and the screen receives the scan line. to the high-level signal generated by the photoelectric sensor;
  • Step S222 according to the time difference between the time when the photoelectric sensor generates the electrical signal and the time when the calibration is started, and in combination with the projected picture coordinate information of each frame of the scanning line, the screen analyzes and obtains the current irradiated on the photoelectric sensor.
  • the projected screen coordinate information of the scan line is used as the projected screen coordinate information of the photoelectric sensor.
  • the present invention further provides a projection display system 100 , which includes a projection terminal 1 , a screen 2 communicatively connected to the projection terminal 1 , and at least four photoelectric sensors 3 disposed on the screen.
  • the projection terminal 1 includes a projector 11 , a controller 12 and a communication module 13 .
  • the projector 11 is a conventional projector, and the projector 11 can project a specific sequence of picture frames to the screen 2 under the control of software;
  • the projector 11 is provided with a geometric correction unit, the geometric correction
  • the unit can be implemented on the projector 11 by a dedicated ASIC or FPGA, which takes the conversion matrix between the screen and the image to be corrected projected by the projector 11 as input, and controls the projected image to perform "inverse deformation", Combined with controlling the zoom of the lens to adjust the boundary of the projection picture to fit the boundary of the screen 2, that is, after the adjustment, the projection picture is evenly illuminated on the screen;
  • the controller 12 may be the
  • the MCU/CPU can also be other control units, which can be specifically selected according to the needs of practical applications.
  • the screen 2 includes a screen body 21 for the projection, a controller 22 and a communication module 23 .
  • the screen main body 21 is used as a projection reference plane, and the projection images and scanning lines projected by the projection terminal 1 are projected on the screen main body 21 .
  • the controller 22 is used to control the photoelectric sensor 3 to sense the illuminance and detect the electrical signal output by the photoelectric sensor 3 .
  • the communication module 23 can be directly integrated inside the controller 22 , or can be externally connected to embedded components of the controller 22 ; the communication module 23 of the screen 2 can be connected to the communication module of the projection terminal 1 . 13 Communication connections.
  • the communication channel between the two is any one of a wireless channel, an infrared channel, and a wired channel; the wireless channel is preferably any one of electromagnetic waves, Wifi, and Bluetooth.
  • the photoelectric sensor 3 is used to detect the change of brightness, and its detection window can be made smaller by special design, so as to ensure the accuracy of line detection.
  • the photoelectric sensor 3 is controlled by the controller 22 on the screen 2, and senses the illuminance at a specific position of the screen 2. When light shines on the photoelectric sensor 3, the photoelectric sensor 3 detects the brightness phase. Compared with the ambient light, it is significantly increased, and the light signal is converted into an electrical signal and transmitted to the screen 2.
  • the number of the photoelectric sensors 3 is not limited, which can be set according to actual needs. In order to improve the accuracy of automatic adjustment, more photoelectric sensors can be set; for example, in this embodiment, , the photoelectric sensor 3 includes four, and the four photoelectric sensors 3 are installed on the screen main body 21, and the installation position of each photoelectric sensor 3 on the screen 2 determines the coordinates of the photoelectric sensor 3, That is, the screen coordinate information of each of the photoelectric sensors 3 on the screen main body 21 is preset.
  • the projection terminal 1 is used to project a scan line to the screen 2, and send the projection screen coordinate information of the scan line on the projection screen to the screen 2, for receiving at least four sets of coordinate corresponding information, using
  • the transformation matrix between the current projection picture and the screen is calculated according to the obtained at least four sets of the coordinate correspondence information, and the transformation matrix is used as the input parameter for the correction of the projection picture to realize the
  • the boundary of the projection picture is adapted to the boundary of the screen, that is, the projection picture is projected on the screen in a suitable form.
  • the screen 2 is used to receive the scanning line projected by the projection terminal 1, and receive the projection screen coordinate information of the scanning line on the projection screen; it is used to control at least four of the photoelectric sensors 3 to perform brightness detection , when one of the photoelectric sensors 3 detects that the brightness is significantly increased compared to the ambient light, analytically obtains the projection screen coordinate information of the scanning line currently irradiated on the photoelectric sensor 3 as the projection screen coordinate information of the photoelectric sensor 3; It is used to calculate and obtain the coordinate corresponding information of each photoelectric sensor 3 according to the screen coordinate information of each photoelectric sensor 3 and the projected screen coordinate information of each photoelectric sensor 3 respectively; used to send the coordinate corresponding information to the projection terminal 2 .
  • the projector 11 of the projection terminal 1 projects a projection image to the screen main body 21 of the screen 2 , and receives the projection image projected by the projection terminal 1 through the screen 2 .
  • the controller 22 of the screen 2 determines whether the four photoelectric sensors 3 detect that the brightness is significantly increased compared to the ambient light at the same time under the illumination of the projection image, and if so, then demarcate the current projection image as the calibration startup image H 0 , and record the calibration time as the calibration start time T 0 .
  • the projection image needs to cover all the photoelectric sensors 3 on the screen 21, and the projection image can be demarcated as the calibration start-up image H 0 . Therefore, in this embodiment, the projection image needs to be Four of the photosensors 3 are covered.
  • the projector 11 projects a scan line to the screen main body 21, and sends the projection screen coordinate information of the scan line on the projection screen to the screen; specifically, the projector 11 Projecting scan lines to the screen main body 21 in a frame-by-frame output manner to control the scan lines to scan the entire calibration startup screen H 0 , the communication module 13 of the projection terminal 1 converts the scan lines of each frame into The coordinate information of the projected image is sent to the screen 2 , and the scanning line illuminates each of the photoelectric sensors 3 in sequence during the scanning process.
  • the screen main body 21 receives the scan line projected by the projector 11, and the communication module 23 of the screen 2 receives the projected picture coordinate information of the scan line on the projection picture;
  • the receiving method receives the scan lines of each frame, and the communication module 23 receives the projection screen coordinate information of the scan lines of each frame.
  • the screen 2 receives, through the communication module 23 , the coordinate information of the scan lines of each frame corresponding to the calibration startup screen H 0 , and receives the high level generated by each of the photoelectric sensors 3 through the controller 22 .
  • the projector 11 projects a first scan line P x to the screen main body 21 in a frame-by-frame output manner, so as to control the first scan line P x to scan the entire
  • the communication module 13 sends the first coordinate information corresponding to the first coordinate direction of the first scan line P x of each frame to the communication module 23 .
  • the first The scanning lines P x are sequentially irradiated on each of the photosensors 3 .
  • the projector 11 projects the second scan line P y to the screen 2 in a frame-by-frame output manner, so as to control the second scan line P y along the second coordinate direction (ie Y-axis direction) scans the entire calibration startup screen H 0 , the communication module 11 sends the second coordinate information corresponding to the second coordinate direction of the second scan line P y of each frame to the communication module 23 , during the scanning process, the second scanning line P y is irradiated on each of the photoelectric sensors in sequence; wherein, the second coordinate direction (Y-axis direction) and the first coordinate direction (X-axis direction) are arranged to intersect.
  • the controller 22 of the screen 2 controls the four photoelectric sensors 3 to perform brightness detection.
  • the controller 22 analyzes and obtains The projection screen coordinate information of the scanning line currently irradiated on the photoelectric sensor 3 is used as the projection screen coordinate information of the photoelectric sensor 3 .
  • the controller 22 controls the four photoelectric sensors 3 to perform brightness detection.
  • the photoelectric sensor 3 detects that the brightness is significantly increased compared with the ambient light and generates a High-level signal
  • the controller 22 receives the high-level signal generated by the photoelectric sensor 3 .
  • the controller 22 analyzes the time difference between the time when the photoelectric sensor 3 generates the electrical signal and the calibration start time T 0 , and combines the projection screen coordinate information of the scanning lines in each frame to analyze and obtain the photoelectric sensor irradiated in the current year.
  • the projected screen coordinate information of the scanning line on 3 is used as the projected screen coordinate information of the photoelectric sensor.
  • the controller 22 when one of the photosensor 3 receives a first scan line P x, the controller 22 receives the high level of the first photo sensor 3 generated by the controller 22 The time difference between the reception time of the first high level and the correction start time T 0 is calculated to obtain the first scan line P x currently irradiated on the photoelectric sensor 3 in the first coordinate direction (X The first coordinate information on the axis direction) is used as the coordinate information of the first projection screen of the photoelectric sensor 3; when one of the photoelectric sensors 3 receives the second scan line Py , the controller 22 receives the photoelectric sensor 3 The second high level is generated, the controller 22 calculates and obtains the first light currently irradiated on the photoelectric sensor 3 according to the time difference between the receiving time of the second high level and the calibration start time T 0 .
  • the second coordinate information of the two scanning lines P y in the second coordinate direction (Y-axis direction) is used as the second projection screen coordinate information of the photoelectric sensor 3 .
  • the controller 22 of the screen 2 calculates and obtains the coordinate correspondence information of each of the photoelectric sensors 3 according to the screen coordinate information of each of the photoelectric sensors 3 and the projected screen coordinate information of each of the photoelectric sensors 3;
  • the communication module 23 of the screen 2 sends the coordinate correspondence information to the projection terminal 1, and the communication module 13 of the projection terminal 1 receives four sets of the coordinate correspondence information.
  • the controller 22 calculates and obtains the coordinate information of each photoelectric sensor 3 according to the corresponding relationship between the first projection screen coordinate information of each photoelectric sensor 3 and the first screen coordinate information of each photoelectric sensor 3 .
  • First coordinate corresponding information the controller 22 calculates and obtains each photoelectric sensor according to the corresponding relationship between the second projection screen coordinate information of each photoelectric sensor 3 and the second screen coordinate information of each photoelectric sensor 3
  • the second coordinate of the sensor 3 corresponds to the information.
  • the communication module 23 sends the four sets of first coordinate correspondence information and the four sets of second coordinate correspondence information of the four photoelectric sensors 3 to the projection terminal 1; the communication module 13 of the projection terminal 1 receives the above four sets of information.
  • One group of first coordinate correspondence information and four groups of second coordinate correspondence information are examples of first coordinate correspondence information and four groups of second coordinate correspondence information.
  • the controller 12 of the projection terminal 1 calculates the transformation matrix between the current projection image and the screen according to the obtained four sets of the coordinate correspondence information.
  • the controller 12 calculates a transformation matrix between the current projection image and the screen according to the acquired four sets of the first coordinate correspondence information and the four sets of the second coordinate correspondence information.
  • the projection terminal 1 uses the transformation matrix as an input parameter for the correction of the projection image.
  • the geometric correction unit of the projector 11 controls the projection image to perform “inversion” according to the transformation matrix. “Shape”, and control the zoom of the lens to achieve the adaptation of the boundary of the projection image to the boundary of the screen 2 , that is, after adjustment, the projection image is irradiated on the screen main body 21 flush.
  • the present invention provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, implements the steps of the projection image correction method applied to a projection terminal according to the present invention.
  • the present invention provides a projection display system, comprising a projection terminal, a screen communicatively connected to the projection terminal, and at least four photoelectric sensors disposed on the screen;
  • the present invention provides a projection display system, which includes a processor and a memory, wherein the memory stores a control program for execution by the processor, wherein, when the control program is executed by the processor, the control program of the present invention is implemented.
  • the present invention provides a computer-readable storage medium, which stores a computer program; when the computer program is executed by a processor, the steps of the method for correcting a projection image applied to a projection terminal according to the present invention are implemented, and/or the present invention is implemented.
  • the invention discloses the steps of the projection picture correction method applied to the screen.
  • a projection terminal is used to project a scanning line to the screen, and the projection picture coordinate information of the scanning line on the projection picture is sent to the screen, and the screen controls at least four photoelectric sensors. Perform brightness detection.
  • the screen analyzes and obtains the projection screen coordinate information of the photoelectric sensor.
  • the coordinate correspondence information of the photoelectric sensor is sent to the projection terminal, and the projection terminal calculates the transformation matrix between the current projection picture and the screen according to the coordinate correspondence information, and uses the transformation matrix as the input parameter for the correction of the projection picture to realize the boundary of the projection picture.
  • the above method directly irradiates each photoelectric sensor through the scanning line in turn, so that the coordinate information of the projection screen of each photoelectric sensor can be obtained.
  • This method no longer requires the projector to send the coordinate information to the screen through communication, It makes the way for the screen to obtain the coordinate information easier and faster, and then obtains the coordinate correspondence information according to the conversion relationship between the preset screen coordinate information and the projection screen coordinate information, and calculates and obtains the transformation matrix according to the coordinate correspondence information, without the need for additional Obtaining the image information of the current projection screen simplifies the operation process. It only needs to scan in sequence, and the projector does not need to process and calculate the data, which simplifies the calculation process, improves the efficiency of automatic correction of the projection screen, and effectively improves the user experience. experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Projection Apparatus (AREA)

Abstract

本发明提供了一种投影画面校正方法,通过投影终端向屏幕投射扫描线,并将扫描线在投影画面上的投影画面坐标信息发送至所述屏幕,屏幕控制至少四个光电传感器进行亮度检测,当各光电传感器被扫描线照射时,屏幕解析获得各光电传感器的投影画面坐标信息,屏幕根据各光电传感器的屏幕坐标信息和投影画面坐标信息,计算获得各光电传感器的坐标对应信息并发送至投影终端,通过投影终端根据坐标对应信息计算出当前的投影画面与屏幕之间的变换矩阵,并将变换矩阵作为投影画面校正的输入参数,实现投影画面的边界与屏幕的边界适配。与相关技术相比,本发明的投影画面校正方法操作简单、运算过程简单、投影画面的自动校正效率高。

Description

投影画面校正方法、投影显示系统及相关设备 【技术领域】
本发明涉及投影技术领域,尤其涉及一种投影画面校正方法、投影显示系统及其相关设备。
【背景技术】
在实际生活中,投影设备的应用越来越广泛。为了保证良好的投影和观看效果,需要对投影设备的投影画面进行校正。
相关技术中,通过设置在投影设备上的摄像头或者通过另外的移动终端对当前的待校正投影画面进行拍摄,并获取与当前的待校正投影画面对应的待校正图像信息,将待校正图像信息与预设的屏幕平面信息进行比对运算以获得待校正投影画面与屏幕平面之间的变换矩阵,根据变换矩阵调整待校正投影画面以使投影画面与屏幕平面适配。
然而,相关技术中,需用户先拍摄待校正投影画面并获取待校正图像信息,操作不便,用户体验差,同时,由于将待校正图像信息与预设的屏幕平面信息进行比对运算的过程复杂、运算量大,限制了投影画面的自动校正效率,使得投影画面校正慢。
因此,实有必要提供一种新的投影画面校正方法、投影显示系统及其相关设备解决上述技术问题。
【发明内容】
本发明的目的在于提供一种投影画面校正方法、投影显示系统及其相关设备,以解决操作不便、运算量大而导致校正速度慢的问题。
为达到上述目的,本发明提供一种投影画面校正方法,该方法应用于投影终端,其包括以下步骤:
步骤S11,所述投影终端向屏幕投射扫描线,并将所述扫描线在投影画面上的投影画面坐标信息发送至所述屏幕;
步骤S12,所述投影终端接收至少四组坐标对应信息;其中,所述坐标对应信息为光电传感器被所述扫描线照射时,由所述屏幕计算获得的该光电传感器的屏幕坐标信息与该光电传感器的投影画面坐标信息之间的对应关系信息;
步骤S13,所述投影终端根据获取的至少四组所述坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵;
步骤S14,所述投影终端将所述变换矩阵作为所述投影画面校正的输入参数,实现所述投影画面的边界与所述屏幕的边界适配。
优选的,在所述步骤S11中,所述投影终端以逐帧输出的方式向所述屏幕投射扫描线,以控制所述扫描线扫描整个所述校正启动画面,并将各帧的所述扫描线的投影画面坐标信息发送至所述屏幕,扫描过程中所述扫描线依次照射各所述光电传感器。
优选的,所述步骤S11包括:
所述投影终端以逐帧输出的方式向所述屏幕投射第一扫描线,以控制所述第一扫描线沿第一坐标方向扫描整个所述校正启动画面,并实时将各帧的所述第一扫描线对应所述第一坐标方向的第一坐标信息发送至所述屏幕,扫描过程中所述第一扫描线依次照射在各所述光电传感器上;和,
所述投影终端以逐帧输出的方式向所述屏幕投射第二扫描线,以控制所述第二扫描线沿第二坐标方向扫描整个所述校正启动画面,并实时将各帧的所述第二扫描线对应所述第二坐标方向的第二坐标信息发送至所述屏幕,扫描过程中所述第二扫描线依次照射在各所述光电传感器上;其中,所述第二坐标方向与所述第一坐标方向交叉设置;
在所述步骤S13中,所述投影终端根据获取的至少四组所述第一坐标对应信息和至少四组所述第二坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵。
本发明提供一种投影画面校正方法,该方法应用于屏幕,其包括以下步骤:
步骤S21,所述屏幕接收投影终端投射的扫描线,并接收所述扫描线 在投影画面上的投影画面坐标信息;
步骤S22,所述屏幕控制至少四个光电传感器进行亮度检测,当其中一个所述光电传感器检测到亮度相比环境光明显增加时,所述屏幕解析获得当前照射在该光电传感器上的扫描线的投影画面坐标信息以作为该光电传感器的投影画面坐标信息;
步骤S23,所述屏幕分别根据各所述光电传感器的屏幕坐标信息与各所述光电传感器的投影画面坐标信息,计算获得各所述光电传感器的坐标对应信息;
步骤S24,所述屏幕将所述坐标对应信息发送至所述投影终端。
优选的,在所述步骤S21前还包括:
所述屏幕接收所述投影终端投射的投影画面,所述屏幕判断所有的所述光电传感器在所述投影画面的照射下是否在同一时间检测到亮度相比环境光明显增加,若是,则标定当前的所述投影画面为校正启动画面,并记录标定时间作为校正启动时间;
在所述步骤S21中,所述屏幕以逐帧接收的方式接收各帧所述扫描线,并实时接收各帧的所述扫描线的投影画面坐标信息;
所述步骤S22包括:
步骤S221,所述屏幕控制至少四个所述光电传感器进行亮度检测,当其中一个所述光电传感器接收到所述扫描线时,该光电传感器检测到亮度相比环境光明显增加,所述屏幕接收到该光电传感器产生的高电平信号;
步骤S222,所述屏幕根据该光电传感器产生电信号的时间和所述校正启动时间之间的时间差,并结合各帧所述扫描线的投影画面坐标信息,解析获得当前照射在该光电传感器上的扫描线的投影画面坐标信息以作为该所述光电传感器的投影画面坐标信息。
优选的,所述步骤S221包括:
当所述光电传感器接收到第一扫描线时,所述屏幕接收到该光电传感器产生的第一高电平;和,
当所述光电传感器接收到第二扫描线时,所述屏幕接收到该光电传感 器产生的第二高电平;
所述步骤S222包括:
所述屏幕根据所述第一高电平的接收时间和所述校正启动时间之间的时间差,推算获得照射在该光电传感器上的第一扫描线在第一坐标方向上的第一坐标信息以作为该光电传感器的第一投影画面坐标信息;和,
所述屏幕根据所述第二高电平的接收时间和所述校正启动时间之间的时间差,推算获得照射在该光电传感器的所述第二扫描线在第二坐标方向上的第二坐标信息以作为该光电传感器的第二投影画面坐标信息。
优选的,所述步骤S23包括:
所述屏幕根据各所述光电传感器的第一投影画面坐标信息与各所述光电传感器的第一屏幕坐标信息,计算获得各所述光电传感器的第一坐标对应信息;和,
所述屏幕根据各所述光电传感器的第二投影画面坐标信息与各所述光电传感器的第二屏幕坐标信息,计算获得各所述光电传感器的第二坐标对应信息;
在所述步骤S24中,所述屏幕将所述第一坐标对应信息和所述第二坐标对应信息发送至所述投影终端。
本发明提供一种投影显示系统,其包括投影终端、与所述投影终端通信连接的屏幕以及至少四个设置于所述屏幕的光电传感器;
所述投影终端,用于向所述屏幕投射扫描线,并将所述扫描线在投影画面上的投影画面坐标信息发送至所述屏幕;用于接收至少四组坐标对应信息;用于根据获取的至少四组所述坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵;用于将所述变换矩阵作为所述投影画面校正的输入参数,实现所述投影画面的边界与所述屏幕的边界适配;和/或,
所述屏幕,用于接收发所述投影终端投射的扫描线,并接收所述扫描线在投影画面上的投影画面坐标信息;用于控制至少四个所述光电传感器进行亮度检测,当其中一个所述光电传感器检测到亮度相比环境光明显增 加时,则解析获得当前照射在该光电传感器上的扫描线的投影画面坐标信息以作为该光电传感器的投影画面坐标信息;用于分别根据各所述光电传感器的屏幕坐标信息与各所述光电传感器的投影画面坐标信息,计算获得各所述光电传感器的坐标对应信息;用于将所述坐标对应信息发送至所述投影终端。
本发明提供一种投影显示系统,其包括处理器以及存储器,所述存储器中存储有用于所述处理器执行的控制程序,其中,所述控制程序被所述处理器执行时实现本发明所述的应用于投影终端的投影画面校正方法的步骤,和/或,实现本发明所述的应用于屏幕的投影画面校正方法的步骤。
本发明提供一种计算机可读存储介质,其存储有计算机程序;所述计算机程序被处理器执行时实现本发明所述的应用于投影终端的投影画面校正方法的步骤,和/或,实现本发明所述的应用于屏幕的投影画面校正方法的步骤。
与相关技术相比,本发明的投影画面校正方法中,通过投影终端向屏幕投射扫描线,并将扫描线在投影画面上的投影画面坐标信息发送至所述屏幕,屏幕控制至少四个光电传感器进行亮度检测,当其中一个光电传感器检测到亮度相比环境光明显增加时,屏幕解析获得该光电传感器的投影画面坐标信息,屏幕根据各光电传感器的屏幕坐标信息和投影画面坐标信息,计算获得各光电传感器的坐标对应信息并发送至投影终端,通过投影终端根据坐标对应信息计算出当前的投影画面与屏幕之间的变换矩阵,并将变换矩阵作为投影画面校正的输入参数,实现投影画面的边界与屏幕的边界适配;上述方法,直接通过扫描线依次照射在各光电传感器上,便可获取各光电传感器的投影画面坐标信息,然后根据预设的屏幕坐标信息与投影画面坐标信息之间的转换关系获得坐标对应信息,根据坐标对应信息计算获得转换矩阵,无需另外获取当前投影画面的图像信息,简化了操作过程,只需要通过依次扫描即可,投影机中无需对数据进行处理运算,简化了运算过程,提高了投影画面自动校正的效率,有效改善用户体验。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明应用于投影终端的投影画面校正方法的流程示意图;
图2为本发明应用于屏幕的投影画面校正方法的流程示意图;
图3为图2中步骤S22的具体流程示意图;
图4为本发明投影显示系统的结构示意图;
图5为本发明投影终端向屏幕投射投影画面的示意图;
图6为本发明投影终端对校正启动画面进行扫描的示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1所示,本发明还提供一种应用于投影终端的投影画面校正方法,该方法应用于投影显示系统的投影终端,该方法至少包括以下步骤:
步骤S11,所述投影终端向屏幕投射扫描线,并实时将所述扫描线在投影画面上的投影画面坐标信息发送至所述屏幕;
步骤S12,所述投影终端接收至少四组坐标对应信息;其中,所述坐标对应信息为光电传感器被所述扫描线照射时,由所述屏幕计算获得的该光电传感器的屏幕坐标信息与该光电传感器的投影画面坐标信息之间的对应关系信息;
步骤S13,所述投影终端根据获取的至少四组所述坐标对应信息计算出当前的所述投影画面的边界与所述屏幕的边界之间的变换矩阵;
步骤S14,所述投影终端将所述变换矩阵作为所述投影画面校正的输入参数,实现所述投影画面的边界与所述屏幕的边界适配,即使得所述投 影画面以适合的形态投影于所述屏幕上。
请参阅图2所示,本发明还提供一种应用于投影显示系统的屏幕的投影画面校正方法,该方法至少包括以下步骤:
步骤S21,所述屏幕接收投影终端投射的扫描线,并接收所述扫描线在投影画面上的投影画面坐标信息;
步骤S22,所述屏幕控制至少四个光电传感器进行亮度检测,当其中一个所述光电传感器检测到亮度相比环境光明显增加时,所述屏幕解析获得当前照射在该光电传感器上的扫描线的投影画面坐标信息以作为该光电传感器的投影画面坐标信息;
步骤S23,所述屏幕分别根据各所述光电传感器的屏幕坐标信息与各所述光电传感器的投影画面坐标信息,计算获得各所述光电传感器的坐标对应信息;
步骤S24,所述屏幕将所述坐标对应信息发送至所述投影终端。
如图3所示,更具体的,在所述步骤S22中包括:
步骤S221,所述屏幕控制至少四个所述光电传感器进行亮度检测,当其中一个所述光电传感器接收到所述扫描线时,该光电传感器检测到亮度相比环境光明显增加,所述屏幕接收到该光电传感器产生的高电平信号;
步骤S222,所述屏幕根据该光电传感器产生电信号的时间和所述校正启动时间之间的时间差,并结合各帧所述扫描线的投影画面坐标信息,解析获得当前照射在该光电传感器上的扫描线的投影画面坐标信息以作为该所述光电传感器的投影画面坐标信息。
请参阅图4所示,本发明还提供一种投影显示系统100,其包括投影终端1、与所述投影终端1通信连接的屏幕2以及至少四个设置于所述屏幕的光电传感器3。
在本实施方式中,所述投影终端1包括投影机11、控制器12以及通信模块13。
其中,所述投影机11为常规投影机,该投影机11可在软件的控制下向所述屏幕2投射特定序列的画面帧序列;所述投影机11内部设置有几何 校正单元,该几何校正单元在所述投影机11上可用专用ASIC或FPGA实现,它以所述屏幕与所述投影机11投射的待校正画面之间的转换矩阵作为输入,并控制投影画面进行“逆变形”,并结合控制镜头的缩放以调整投影画面的边界与所述屏幕2的边界适配,即通过调整后,投影画面平齐地照射在屏幕上;所述控制器12可以是所述投影机11的MCU/CPU,也可以是其它的控制单元,其可以根据实际应用的需要进行具体的选择。
所述屏幕2包括用于该投影的屏幕主体21、控制器22以及通信模块23。
其中,所述屏幕主体21作为投影基准面,所述投影终端1投射的投影画面和扫描线投射在该屏幕主体21上。
所述控制器22用于控制所述光电传感器3对光照度进行感应,并检测所述光电传感器3输出的电信号。
所述通信模块23可以直接集成于所述控制器22内部,也可以外接于所述控制器22的嵌入式元器件;所述屏幕2的通信模块23可与所述投影终端1中的通信模块13通信连接。两者之间的通信信道为无线信道、红外信道、有线信道中的任意一种;无线信道优选为电磁波、Wifi以及蓝牙中的任意一种。
所述光电传感器3用来检测亮度的变化,可以通过特殊的设计使得其检测窗口较小,以保证线条检测的精度。所述光电传感器3由所述屏幕2上的控制器22控制,对所述屏幕2特定位置的光照度进行感应,当有光线照射在所述光电传感器3上,所述光电传感器3检测到亮度相比环境光明显增加,并将光信号转换成电信号并传递给所述屏幕2。
值得一提的是,所述光电传感器3的数量是不限的,其可以根据实际使用的需要进行设置,为了提高自动调整的精度,可以设置更多的光电传感器;比如,在本实施方式中,所述光电传感器3包括四个,四个所述光电传感器3装设于所述屏幕主体21,各所述光电传感器3在所述屏幕2的装设位置决定了该光电传感器3的坐标,即各个所述光电传感器3在所述屏幕主体21上的屏幕坐标信息是预设的。
当上述的投影显示系统100应用本发明所述的投影画面校正方法时:
所述投影终端1,用于向所述屏幕2投射扫描线,并将所述扫描线在投影画面上的投影画面坐标信息发送至所述屏幕2,用于接收至少四组坐标对应信息,用于根据获取的至少四组所述坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵,用于将所述变换矩阵作为所述投影画面校正的输入参数,实现所述投影画面的边界与所述屏幕的边界适配,即使得所述投影画面以适合的形态投影于所述屏幕上。
所述屏幕2,用于接收发所述投影终端1投射的扫描线,并接收所述扫描线在投影画面上的投影画面坐标信息;用于该控制至少四个所述光电传感器3进行亮度检测,当其中一个所述光电传感器3检测到亮度相比环境光明显增加时,解析获得当前照射在该光电传感器3上的扫描线的投影画面坐标信息以作为该光电传感器3的投影画面坐标信息;用于分别根据各所述光电传感器3的屏幕坐标信息与各所述光电传感器3的投影画面坐标信息,计算获得各所述光电传感器3的坐标对应信息;用于将所述坐标对应信息发送至所述投影终端2。
为了方便理解上述方法,下面将结合图4-6所示的投影显示系统的具体结构,对上述方法展开描述:
第一步,如图5所示,所述投影终端1的投影机11向所述屏幕2的屏幕主体21投射投影画面,通过所述屏幕2接收所述投影终端1投射的投影画面,所述屏幕2的控制器22判断四个光电传感器3在所述投影画面的照射下是否在同一时间检测到亮度相比环境光明显增加,若是,则标定当前的所述投影画面为校正启动画面H 0,并记录标定时间作为校正启动时间T 0
需要说明的是,所述投影画面需覆盖所述屏幕21上的所有光电传感器3,所述投影画面才能被标定为所述校正启动画面H 0,因此,在本实施方式中,该投影画面需覆盖四个所述光电传感器3。
第二步,所述投影机11向所述屏幕主体21投射扫描线,并将所述扫描线在所述投影画面上的投影画面坐标信息发送至所述屏幕;具体的,所 述投影机11以逐帧输出的方式向所述屏幕主体21投射扫描线,以控制所述扫描线扫描整个所述校正启动画面H 0,所述投影终端1的通信模块13将各帧的所述扫描线的投影画面坐标信息发送至所述屏幕2,扫描过程中所述扫描线依次照射各所述光电传感器3。
所述屏幕主体21接收所述投影机11投射的扫描线,并所述屏幕2的通信模块23接收所述扫描线在所述投影画面上的投影画面坐标信息;所述屏幕主体21以逐帧接收的方式接收各帧所述扫描线,所述通信模块23接收各帧的所述扫描线的投影画面坐标信息。
所述屏幕2通过所述通信模块23接收各帧的扫描线对应所述校正启动画面H 0的坐标信息,并通过所述控制器22接收各所述光电传感器3所产生高电平。
在第二步中,更具体的,如图6(a)所示,
所述投影机11以逐帧输出的方式向所述屏幕主体21投射第一扫描线P x,以控制所述第一扫描线P x沿第一坐标方向(即X轴方向)扫描整个所述校正启动画面H 0,所述通信模块13将各帧的所述第一扫描线P x对应所述第一坐标方向的第一坐标信息发送至所述通信模块23,扫描过程中所述第一扫描线P x依次照射在各所述光电传感器3上。
如图6(b)所示,所述投影机11以逐帧输出的方式向所述屏幕2投射第二扫描线P y,以控制所述第二扫描线P y沿第二坐标方向(即Y轴方向)扫描整个所述校正启动画面H 0,所述通信模块11将各帧的所述第二扫描线P y对应所述第二坐标方向的第二坐标信息发送至所述通信模块23,扫描过程中所述第二扫描线P y依次照射在各所述光电传感器上;其中,所述第二坐标方向(Y轴方向)与所述第一坐标方向(X轴方向)交叉设置。
第三步,所述屏幕2的控制器22控制四个所述光电传感器3进行亮度检测,当其中一个所述光电传感器3检测到亮度相比环境光明显增加时,所述控制器22解析获得当前照射在该光电传感器3的扫描线的投影画面坐标信息以作为该光电传感器3的投影画面坐标信息。
具体的,所述控制器22控制四个所述光电传感器3进行亮度检测,当 其中一个光电传感器3接收到所述扫描线时,该光电传感器3检测到亮度相比环境光明显增加并产生一个高电平信号,所述控制器22接收到该光电传感器3产生的高电平信号。
所述控制器22根据该光电传感器3产生电信号的时间和所述校正启动时间T 0之间的时间差,并结合各帧所述扫描线的投影画面坐标信息,解析获得当年照射在该光电传感器3上的扫描线的投影画面坐标信息以作为该光电传感器的投影画面坐标信息。
进一步的,在本实施方式中,当其中一个光电传感器3接收到第一扫描线P x时,所述控制器22接收到该光电传感器3产生的第一高电平,所述控制器22根据所述第一高电平的接收时间和所述校正启动时间T 0之间的时间差,推算获得当前照射在该光电传感器3的所述第一扫描线P x在所述第一坐标方向(X轴方向)上的第一坐标信息以作为该光电传感器3的第一投影画面坐标信息;当其中一个光电传感器3接收到第二扫描线P y时,所述控制器22接收到该光电传感器3产生的第二高电平,所述控制器22根据所述第二高电平的接收时间和所述校正启动时间T 0之间的时间差,推算获得当前照射在该光电传感器3的所述第二扫描线P y在第二坐标方向(Y轴方向)上的第二坐标信息以作为该光电传感器3的第二投影画面坐标信息。
第四步,所述屏幕2的控制器22分别根据各所述光电传感器3的屏幕坐标信息与各所述光电传感器3的投影画面坐标信息,计算获得各所述光电传感器3的坐标对应信息;所述屏幕2的通信模块23将所述坐标对应信息发送至所述投影终端1,所述投影终端1的通信模块13接收四组所述坐标对应信息。
具体的,所述控制器22根据各所述光电传感器3的第一投影画面坐标信息与各所述光电传感器3的第一屏幕坐标信息之间的对应关系,计算获得各所述光电传感器3的第一坐标对应信息;所述控制器22根据各所述光电传感器3的第二投影画面坐标信息与各所述光电传感器3的第二屏幕坐标信息之间的对应关系,计算获得各所述光电传感器3的第二坐标对应信 息。
所述通信模块23将四个所述光电传感器3的四组第一坐标对应信息和四组第二坐标对应信息均发送至所述投影终端1;所述投影终端1的通信模块13接收上述四组第一坐标对应信息和四组第二坐标对应信息。
第五步,所述投影终端1的控制器12根据获取的四组所述坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵。
具体的,所述控制器12根据获取的四组所述第一坐标对应信息和四组所述第二坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵。
第六步,所述投影终端1将所述变换矩阵作为所述投影画面校正的输入参数,具体的,所述投影机11的几何校正单元根据所述变换矩阵控制所述投影画面进行“逆变形”,并结合控制镜头的缩放以实现投影画面的边界与所述屏幕2的边界适配,即通过调整后,所述投影画面平齐地照射在所述屏幕主体21上。
本发明提供一种计算机可读存储介质,其存储有计算机程序,所述计算机程序被处理器执行时实现本发明所述的应用于投影终端的投影画面校正方法的步骤。
本发明提供一种投影显示系统,其包括投影终端、与所述投影终端通信连接的屏幕以及至少四个设置于所述屏幕的光电传感器;
本发明提供一种投影显示系统,其包括处理器以及存储器,所述存储器中存储有用于所述处理器执行的控制程序,其中,所述控制程序被所述处理器执行时实现本发明所述的应用于投影终端的投影画面校正方法的步骤,和/或,实现本发明所述的应用于屏幕的投影画面校正方法的步骤。
本发明提供一种计算机可读存储介质,其存储有计算机程序;所述计算机程序被处理器执行时实现本发明所述的应用于投影终端的投影画面校正方法的步骤,和/或,实现本发明所述的应用于屏幕的投影画面校正方法的步骤。
与相关技术相比,本发明的投影画面校正方法中,通过投影终端向屏 幕投射扫描线,并将扫描线在投影画面上的投影画面坐标信息发送至所述屏幕,屏幕控制至少四个光电传感器进行亮度检测,当其中一个光电传感器检测到亮度相比环境光明显增加时,屏幕解析获得该光电传感器的投影画面坐标信息,屏幕根据各光电传感器的屏幕坐标信息和投影画面坐标信息,计算获得各光电传感器的坐标对应信息并发送至投影终端,通过投影终端根据坐标对应信息计算出当前的投影画面与屏幕之间的变换矩阵,并将变换矩阵作为投影画面校正的输入参数,实现投影画面的边界与屏幕的边界适配;上述方法,直接通过扫描线依次照射在各光电传感器上,便可获取各光电传感器的投影画面坐标信息,该方法不再需要投影机通过通信方式发送坐标信息给屏幕,使得屏幕获取坐标信息的方式更简便、且获取速度更快,然后根据预设的屏幕坐标信息与投影画面坐标信息之间的转换关系获得坐标对应信息,根据坐标对应信息计算获得转换矩阵,无需另外获取当前投影画面的图像信息,简化了操作过程,只需要通过依次扫描即可,而投影机中也无需对数据进行处理运算,简化了运算过程,提高了投影画面自动校正的效率,有效改善用户体验。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种投影画面校正方法,该方法应用于投影终端,其特征在于,所述投影画面校正方法包括以下步骤:
    步骤S11,所述投影终端向屏幕投射扫描线,并将所述扫描线在投影画面上的投影画面坐标信息发送至所述屏幕;
    步骤S12,所述投影终端接收至少四组坐标对应信息;其中,所述坐标对应信息为光电传感器被所述扫描线照射时,由所述屏幕计算获得的该光电传感器的屏幕坐标信息与该光电传感器的投影画面坐标信息之间的对应关系信息;
    步骤S13,所述投影终端根据获取的至少四组所述坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵;
    步骤S14,所述投影终端将所述变换矩阵作为所述投影画面校正的输入参数,实现所述投影画面的边界与所述屏幕的边界适配。
  2. 根据权利要求1所述的投影画面校正方法,其特征在于,在所述步骤S11中,所述投影终端以逐帧输出的方式向所述屏幕投射扫描线,以控制所述扫描线扫描整个所述校正启动画面,并将各帧的所述扫描线的投影画面坐标信息发送至所述屏幕,扫描过程中所述扫描线依次照射各所述光电传感器。
  3. 根据权利要求2所述的投影画面校正方法,其特征在于,所述步骤S11包括:
    所述投影终端以逐帧输出的方式向所述屏幕投射第一扫描线,以控制所述第一扫描线沿第一坐标方向扫描整个所述校正启动画面,并实时将各帧的所述第一扫描线对应所述第一坐标方向的第一坐标信息发送至所述屏幕,扫描过程中所述第一扫描线依次照射在各所述光电传感器上;和,
    所述投影终端以逐帧输出的方式向所述屏幕投射第二扫描线,以控制所述第二扫描线沿第二坐标方向扫描整个所述校正启动画面,并实时将各帧的所述第二扫描线对应所述第二坐标方向的第二坐标信息发送至所述屏 幕,扫描过程中所述第二扫描线依次照射在各所述光电传感器上;其中,所述第二坐标方向与所述第一坐标方向交叉设置;
    在所述步骤S13中,所述投影终端根据获取的至少四组所述第一坐标对应信息和至少四组所述第二坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵。
  4. 一种投影画面校正方法,该方法应用于屏幕,其特征在于,所述投影画面校正方法包括以下步骤:
    步骤S21,所述屏幕接收投影终端投射的扫描线,并接收所述扫描线在投影画面上的投影画面坐标信息;
    步骤S22,所述屏幕控制至少四个光电传感器进行亮度检测,当其中一个所述光电传感器检测到亮度相比环境光明显增加时,所述屏幕解析获得当前照射在该光电传感器上的扫描线的投影画面坐标信息以作为该光电传感器的投影画面坐标信息;
    步骤S23,所述屏幕分别根据各所述光电传感器的屏幕坐标信息与各所述光电传感器的投影画面坐标信息,计算获得各所述光电传感器的坐标对应信息;
    步骤S24,所述屏幕将所述坐标对应信息发送至所述投影终端。
  5. 根据权利要求4所述的投影画面校正方法,其特征在于,在所述步骤S21前还包括:
    所述屏幕接收所述投影终端投射的投影画面,所述屏幕判断所有的所述光电传感器在所述投影画面的照射下是否在同一时间检测到亮度相比环境光明显增加,若是,则标定当前的所述投影画面为校正启动画面,并记录标定时间作为校正启动时间;
    在所述步骤S21中,所述屏幕以逐帧接收的方式接收各帧所述扫描线,并实时接收各帧的所述扫描线的投影画面坐标信息;
    所述步骤S22包括:
    步骤S221,所述屏幕控制至少四个所述光电传感器进行亮度检测,当其中一个所述光电传感器接收到所述扫描线时,该光电传感器检测到亮度 相比环境光明显增加,所述屏幕接收到该光电传感器产生的高电平信号;
    步骤S222,所述屏幕根据该光电传感器产生电信号的时间和所述校正启动时间之间的时间差,并结合各帧所述扫描线的投影画面坐标信息,解析获得当前照射在该光电传感器上的扫描线的投影画面坐标信息以作为该所述光电传感器的投影画面坐标信息。
  6. 根据权利要求5所述的投影画面校正方法,其特征在于,所述步骤S221包括:
    当所述光电传感器接收到第一扫描线时,所述屏幕接收到该光电传感器产生的第一高电平;和,
    当所述光电传感器接收到第二扫描线时,所述屏幕接收到该光电传感器产生的第二高电平;
    所述步骤S222包括:
    所述屏幕根据所述第一高电平的接收时间和所述校正启动时间之间的时间差,推算获得照射在该光电传感器上的第一扫描线在第一坐标方向上的第一坐标信息以作为该光电传感器的第一投影画面坐标信息;和,
    所述屏幕根据所述第二高电平的接收时间和所述校正启动时间之间的时间差,推算获得照射在该光电传感器的所述第二扫描线在第二坐标方向上的第二坐标信息以作为该光电传感器的第二投影画面坐标信息。
  7. 根据权利要求6所述的投影画面校正方法,其特征在于,所述步骤S23包括:
    所述屏幕根据各所述光电传感器的第一投影画面坐标信息与各所述光电传感器的第一屏幕坐标信息,计算获得各所述光电传感器的第一坐标对应信息;和,
    所述屏幕根据各所述光电传感器的第二投影画面坐标信息与各所述光电传感器的第二屏幕坐标信息,计算获得各所述光电传感器的第二坐标对应信息;
    在所述步骤S24中,所述屏幕将所述第一坐标对应信息和所述第二坐标对应信息发送至所述投影终端。
  8. 一种投影显示系统,其包括投影终端、与所述投影终端通信连接的屏幕以及至少四个设置于所述屏幕的光电传感器,其特征在于,
    所述投影终端,用于向所述屏幕投射扫描线,并将所述扫描线在投影画面上的投影画面坐标信息发送至所述屏幕;用于接收至少四组坐标对应信息;用于根据获取的至少四组所述坐标对应信息计算出当前的所述投影画面与所述屏幕之间的变换矩阵;用于将所述变换矩阵作为所述投影画面校正的输入参数,实现所述投影画面的边界与所述屏幕的边界适配;和/或,
    所述屏幕,用于接收发所述投影终端投射的扫描线,并接收所述扫描线在投影画面上的投影画面坐标信息;用于控制至少四个所述光电传感器进行亮度检测,当其中一个所述光电传感器检测到亮度相比环境光明显增加时,则解析获得当前照射在该光电传感器上的扫描线的投影画面坐标信息以作为该光电传感器的投影画面坐标信息;用于分别根据各所述光电传感器的屏幕坐标信息与各所述光电传感器的投影画面坐标信息,计算获得各所述光电传感器的坐标对应信息;用于将所述坐标对应信息发送至所述投影终端。
  9. 一种投影显示系统,其特征在于,所述投影显示系统包括处理器以及存储器,所述存储器中存储有用于所述处理器执行的控制程序,其中,所述控制程序被所述处理器执行时实现如上权利要求1至3任一项所述的应用于投影终端的投影画面校正方法的步骤,和/或,实现如上权利要求4至7中任一项所述的应用于屏幕的投影画面校正方法的步骤。
  10. 一种计算机可读存储介质,其存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上权利要求1至3任一项所述的应用于投影终端的投影画面校正方法的步骤,和/或,实现如上权利要求4至7中任一项所述的应用于屏幕的投影画面校正方法的步骤。
PCT/CN2021/106673 2020-07-20 2021-07-16 投影画面校正方法、投影显示系统及相关设备 WO2022017262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010699831.8A CN113965734A (zh) 2020-07-20 2020-07-20 投影画面校正方法、投影显示系统及相关设备
CN202010699831.8 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022017262A1 true WO2022017262A1 (zh) 2022-01-27

Family

ID=79459730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106673 WO2022017262A1 (zh) 2020-07-20 2021-07-16 投影画面校正方法、投影显示系统及相关设备

Country Status (2)

Country Link
CN (1) CN113965734A (zh)
WO (1) WO2022017262A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514944A (zh) * 2022-09-21 2022-12-23 南京创斐信息技术有限公司 一种智能家居投影角度校正系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117570853B (zh) * 2024-01-16 2024-04-09 深圳新智联软件有限公司 计算投影界面内四点坐标的方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701603A (zh) * 2003-08-06 2005-11-23 三菱电机株式会社 用于确定具有任意形状的显示面上的各位置与投影仪的输出图像中的各像素之间的对应关系的方法和系统
CN101500172A (zh) * 2009-02-20 2009-08-05 四川华控图形科技有限公司 基于光传感器的投影自动几何校正方法
CN101651808A (zh) * 2009-08-19 2010-02-17 吕雪峰 一种多投影合成的光学投影系统及其投影方法
CN104869336A (zh) * 2013-12-27 2015-08-26 合肥市艾塔器网络科技有限公司 一种自适应投影控制系统及其方法
JP2017121076A (ja) * 2017-03-23 2017-07-06 セイコーエプソン株式会社 補正制御装置、補正方法、及び、プロジェクター
CN109194939A (zh) * 2018-08-29 2019-01-11 明基智能科技(上海)有限公司 画面校正方法及投影机系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701603A (zh) * 2003-08-06 2005-11-23 三菱电机株式会社 用于确定具有任意形状的显示面上的各位置与投影仪的输出图像中的各像素之间的对应关系的方法和系统
CN101500172A (zh) * 2009-02-20 2009-08-05 四川华控图形科技有限公司 基于光传感器的投影自动几何校正方法
CN101651808A (zh) * 2009-08-19 2010-02-17 吕雪峰 一种多投影合成的光学投影系统及其投影方法
CN104869336A (zh) * 2013-12-27 2015-08-26 合肥市艾塔器网络科技有限公司 一种自适应投影控制系统及其方法
JP2017121076A (ja) * 2017-03-23 2017-07-06 セイコーエプソン株式会社 補正制御装置、補正方法、及び、プロジェクター
CN109194939A (zh) * 2018-08-29 2019-01-11 明基智能科技(上海)有限公司 画面校正方法及投影机系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514944A (zh) * 2022-09-21 2022-12-23 南京创斐信息技术有限公司 一种智能家居投影角度校正系统

Also Published As

Publication number Publication date
CN113965734A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2022017262A1 (zh) 投影画面校正方法、投影显示系统及相关设备
US8425047B2 (en) Keystone correction and lens adjustment for projector
US8200075B1 (en) Camera-based mobile communication device and method for controlling flashlight thereof
CN101534395A (zh) 屏幕亮度调节系统和方法
WO2007091340A1 (ja) 画像投影方法及びプロジェクタ
WO2013167056A1 (zh) 一种手机补光灯投影方法及装置
CN104079842B (zh) 相机噪点和帧率的控制方法与装置
US7493035B2 (en) Method for focusing by using a pre-flash
JPH04324767A (ja) 可変シャッタ付テレビカメラ装置
US20050157202A1 (en) Optical mouse and image capture chip thereof
CN101582992B (zh) 闪烁消除系统及消除闪烁的方法
US8670038B2 (en) Projection display device and method of controlling the same
CN106454294A (zh) 投影机画面校正方法及投影机
CN112422934A (zh) 投影装置及其亮度调整方法
JP2006050255A (ja) 大画面表示システムおよびその輝度補正法
JP3882522B2 (ja) カメラ付き携帯端末
CN117097872A (zh) 一种投影设备自动梯形校正系统及方法
JP2011135445A (ja) 画像投射装置
JPH11164194A (ja) 画像処理方法及び画像入力装置
US8532378B2 (en) Imaging device, method of adjusting color shift of display monitor and color shift adjuster of display monitor
JP2010119017A (ja) 前面投影型映像表示装置、投影画像補正方法、及び、投影画像補正プログラム
JP2010130481A (ja) 画像投射装置
CN113055664A (zh) 一种投影图像自动梯形矫正系统以及方法
CN210536821U (zh) 自动梯形校正投影仪
JP2019168545A (ja) 投影制御装置、投影装置、投影制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845700

Country of ref document: EP

Kind code of ref document: A1