WO2022017215A1 - 一种靠太阳能发电的电动汽车充电系统 - Google Patents

一种靠太阳能发电的电动汽车充电系统 Download PDF

Info

Publication number
WO2022017215A1
WO2022017215A1 PCT/CN2021/105750 CN2021105750W WO2022017215A1 WO 2022017215 A1 WO2022017215 A1 WO 2022017215A1 CN 2021105750 W CN2021105750 W CN 2021105750W WO 2022017215 A1 WO2022017215 A1 WO 2022017215A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
electric vehicle
controller
intelligent
Prior art date
Application number
PCT/CN2021/105750
Other languages
English (en)
French (fr)
Inventor
林浩生
Original Assignee
林浩生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021419618.9U external-priority patent/CN213383889U/zh
Application filed by 林浩生 filed Critical 林浩生
Publication of WO2022017215A1 publication Critical patent/WO2022017215A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention belongs to the technical field of charging of electric vehicles or hybrid electric vehicles, and more particularly, relates to a charging system and a control method that rely on solar energy to generate electricity and efficiently and practically assist the charging of electric vehicles;
  • the sampled solar panels are flat solar panels, and the flat solar panels cannot match the curved surface of the roof. After installing solar panels, the structure and appearance of the vehicle will be different. some changes,
  • the purpose of the present invention is to solve the above problems and solve the above technical problems, with a complete and practical design, the existing problems and shortcomings are solved and integrated, so that the system can not only charge the power battery, but also realize the limited area car body.
  • it solves the basic charging needs of the public, and adds a charging control module to make solar charging safer; at the same time, it does not affect the appearance and shape of the body, and does not affect normal driving;
  • An electric vehicle charging system powered by solar energy comprising a roof capable of generating electricity, an intelligent voltage conversion and a control module,
  • the outer layer of the roof capable of generating electricity is a layer of solar chips, the chips receive light energy and generate electricity, and the output voltage obtained from the roof power generation capable of generating electricity is connected to an intelligent voltage conversion and control module, and the intelligent voltage conversion and control The voltage output end of the module is connected with the charging port of the electric vehicle or with the power battery of the electric vehicle.
  • the intelligent voltage conversion and control module is used to control the solar panel to generate the voltage of the maximum conversion rate and the maximum charging power under different light intensities in different time periods. Charge the electric vehicle power battery and monitor the battery voltage;
  • the intelligent voltage conversion and control module includes a MCU intelligent calculation controller, a current sensor, a voltage value detection circuit, a voltage converter, a charging controller and a low-voltage 12v battery, and the current sensor and the voltage value detection circuit detect the charging current respectively. and voltage, and is connected with the MCU intelligent computing controller, the MCU intelligent computing controller is connected with the voltage converter, the output of the voltage converter is connected with the charging controller, and the MCU intelligent computing controller is set under the same light intensity for a certain period of time, Control the voltage converter to convert into different voltages, calculate and memorize different charging power and parameters according to the returned voltage and current, select the parameter corresponding to the maximum power to control the output voltage of the voltage converter, and charge the electric vehicle through the charging controller .
  • the voltage converter is a DC/DC voltage converter or a DC/AC voltage converter, which is controlled by the MCU intelligent calculation controller and can output a continuously adjustable voltage.
  • the low-voltage 12v battery is respectively connected with the MCU intelligent calculation controller, the current sensor, the voltage value detection circuit, the voltage converter, and the charging controller, and respectively provides the power required for operation.
  • the charging controller is a charging controller that includes handshake communication and control functions according to the interface standard of the original vehicle charging socket.
  • the input terminal of the charging controller is connected to the output terminal of the voltage converter, and the output terminal of the charging controller is connected to the original DC of the electric vehicle.
  • the charging port is connected to the positive and negative poles of the power battery, or connected to the AC charging port of the electric vehicle to charge the electric vehicle; the charging controller is also connected to the MCU intelligent computing controller, which controls the charging control the charger to start or stop charging.
  • the vehicle roof 1 capable of generating electricity is further divided into a plurality of areas according to requirements, mainly including the front cover surface, the vehicle roof surface and the vehicle rear cover surface.
  • the voltage output terminal of each surface area is connected with a diode in series to prevent the current from flowing backwards.
  • the invention embeds the solar wafer with the power generation function of the solar panel into the surface of the top of the vehicle through a certain customized process, so that the top surface of the vehicle has the function of absorbing light and generating electricity.
  • the original appearance shape and aesthetics of the vehicle are improved, and the wind resistance coefficient is greatly reduced;
  • the maximum power parameters can be calculated under different light intensities, so that the solar panels can be calculated.
  • the charging controller including the handshake signal communication protocol function in the intelligent voltage conversion and control module, the electric energy can be charged to the electric vehicle in reality. In the case of large changes, and in the case of large changes in the voltage of electric vehicles, ensure charging safety;
  • the solar charging system of the present invention can achieve the maximum conversion rate and maximum charging power, meet the practical requirements and practical level of daily charging, and can charge vehicles in actual production and application, and at the same time achieve intelligent monitoring and safe use.
  • FIG. 1 is a schematic structural diagram of a first embodiment of the present invention.
  • FIG. 2 is a schematic topology diagram of the principle of the first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of the second embodiment of the present invention.
  • FIG. 4 is a schematic topological schematic diagram of the second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a third embodiment of the present invention.
  • FIG. 6 is a schematic topological schematic diagram of the third embodiment of the present invention.
  • FIG. 7 , 8 and 9 are schematic diagrams of the structure of the power battery connected and charged by the output end of the charging controller of the present invention.
  • FIG. 10 is a schematic diagram of the surface area of the vehicle capable of generating electricity after the roof capable of generating electricity in the present invention is further increased by the top surface of the hood capable of generating electricity.
  • a solar-powered electric vehicle charging system which includes a vehicle roof 1 capable of generating electricity, an intelligent voltage conversion and control module 2, and the
  • the outer layer of the roof 1 is a layer of solar chips, the chips receive light energy and generate electricity, and the output voltage obtained from the power generation of the roof 1 capable of generating electricity is connected to an intelligent voltage conversion and control module 2.
  • the intelligent voltage conversion and control module 2 The voltage output terminal of the solar panel is connected to the DC charging port of the electric vehicle, and the intelligent voltage conversion and control module 2 is used to control the solar panel to generate the voltage of the maximum conversion rate and the maximum charging power under different light intensities in different time periods to charge the electric vehicle power battery , and monitor the battery voltage;
  • the present invention controls the power generation state of the active solar panel through the intelligent voltage conversion and control module 2, and can control the solar panel to generate the voltage of the maximum conversion rate and the maximum charging power to the electric vehicle power battery in real time under different light intensities in different time periods.
  • the intelligent voltage conversion and control module is installed under the roof or under the front cover of the vehicle.
  • the invention comprehensively improves the charging power and practicability from three aspects: maintaining the beautiful shape of the vehicle, controlling the excitation of the maximum conversion rate and the maximum power generation power of the solar panel, and realizing the connection and charging with the vehicle.
  • the present invention proposes an electric vehicle charging system relying on solar power to generate electricity.
  • the outer layer of the roof 1 capable of generating electricity contains a layer of solar chips, and the chips receive light energy and generate electricity.
  • the vehicle roof 1 capable of generating electricity may further include a top surface 11 of a front cover capable of generating electricity, a top surface 12 of a rear cover capable of generating electricity, and the outer layer of each surface area contains a layer of solar chips , the chip receives light energy and generates electricity, and the voltage output terminal is connected with a diode in series to prevent the current from flowing backward, and is connected in parallel with the roof voltage output terminal.
  • the main areas can be selected and combined according to the actual conditions and needs of the vehicle body. If the light area of the front cover is small, the surface area of the front cover is reduced; Cover surface area; for some models, the rear windshield can be omitted, and the surface of the roof 1 capable of generating electricity and the top surface 12 of the rear cover capable of generating electricity are connected into one piece and integrated.
  • the roof surface that can generate electricity is adopted, and the original appearance and shape of the vehicle are completely maintained whether the vehicle is in use or not, and the appearance is kept beautiful, and it can continuously receive light and generate electricity without affecting the use.
  • the intelligent voltage conversion and control module 2 includes an MCU intelligent calculation controller 21, a current sensor 22, a voltage value detection The circuit 23, the voltage converter 24, the charging controller 25 and the low-voltage 12v battery 26, the current sensor 22 and the voltage value detection circuit 23 respectively detect the charging current and voltage, and are connected with the MCU intelligent calculation controller 21, the MCU intelligent calculation The controller 21 is connected with the voltage converter 24, and the output of the voltage converter 24 is linked with the charging controller 25; the MCU intelligent calculation control device 21 sets a certain period of time under the same light intensity, and controls the voltage converter to convert to generate different voltages.
  • the intelligent voltage conversion and control module 2 can control the internal voltage converter in real time under approximately the same care intensity within a certain period of time, calculate and memorize the actual charging power obtained by different parameters, and find the corresponding maximum power. parameter, control the voltage converter to convert and output the voltage corresponding to the maximum charging power, so as to excite and control the solar panel to be in the maximum power output state.
  • the intelligent voltage conversion and control module 2 includes a 12v starting battery 26, and the low-voltage 12v battery 26 provides the power required for operation.
  • the voltage converter 24 is a DC/DC voltage converter 240, which is controlled by the MCU intelligent computing controller 21 and can output continuous Voltage converter for voltage regulation.
  • the charging controller 25 is a charging controller 25 that includes communication handshake and control functions according to the interface standard of the original vehicle charging socket.
  • the charging controller 25 is connected to the voltage converter, and the voltage output terminal b of the charging controller 25 is used as a smart voltage.
  • the voltage output terminal b of the conversion and control module 2 is connected to the original DC charging port 51 of the electric vehicle to charge the electric vehicle.
  • the voltage converter adopts a controlled and adjustable DC/DC voltage converter 240 inside, and the charging controller includes handshake communication and Control function, the voltage output by the voltage converter enters the charging controller, and the output terminal b of the charging controller is connected with the DC charging port 51 of the electric vehicle.
  • the output terminal b is connected to the rear end of the charging socket; in actual production applications, or further as shown in Figure 9, in the early stage of vehicle design , the charging socket is derived into a sub-charging access port built in the in-vehicle charging control circuit, and the output terminal b is connected to the sub-charging access port, so as to be connected to the in-vehicle DC charging control circuit module 52 and integrated into one; the above methods It can be realized that the output voltage of the charging controller 25 can be used to charge the electric vehicle power battery through the in-vehicle charging control circuit.
  • the electricity generated by the light source can be connected to the charging port of the electric vehicle through the charging controller 25 of the intelligent voltage conversion and control module 2 to charge the electric vehicle, and monitor the charging process of the battery to prevent overvoltage charging;
  • the output terminal b of the charging controller 25 can be further connected to the in-vehicle charging control circuit, and the design is integrated by reserving ports to unify the handshake control method and communication protocol.
  • the charging controller 25 is also connected with the MCU intelligent computing controller 21, and is controlled by mutual communication, and also includes the function of preventing voltage overshoot;
  • the charging controller detects artificial charging or when it detects that the protective cover of the charging port is artificially opened, it sends notification information to the MCU intelligent computing controller 21, and the MCU intelligent computing controller 21 sends an instruction to control the voltage converter to stop inverting the output voltage. , and control the charging controller 25 to release the circuit connection with the charging port to prevent charging conflicts; when fully charged, the charging controller 25 will notify the MCU intelligent computing controller 21 to stop solar power generation and charging.
  • the connection with the internal circuit at the rear end of the charging port is restored, and the solar charging mode is restored.
  • the maximum power and voltage output can be connected to the electric vehicle in practical application for charging, and the charging power can also be practical, have a protection function, and be feasible.
  • the difference from the first embodiment is that the voltage output terminal of the intelligent voltage conversion and control module 2 is connected to the power battery of the electric vehicle. Positive and negative poles are connected; in actual production and application, the principle structure of the embodiment shown in FIG.
  • the charging controller 25 includes a switch control function, the voltage output of the voltage converter 240 enters the charging controller 25, and the charging controller 25
  • the positive and negative poles of the output end b of the power battery are directly connected to the positive and negative poles of the power battery; in the third embodiment of the present invention, as shown in Figures 5 and 6, it is different from the first embodiment in that the intelligent voltage conversion and control module 2
  • the voltage output terminal of the electric vehicle is connected to the AC charging port of the electric vehicle.
  • the DC/AC voltage converter 241 is used inside the voltage converter, and the output voltage enters the charging control.
  • the device 25, the charging controller 25 includes handshake communication and control functions according to the original vehicle AC charging interface standard, and the output end b of the charging controller is connected with the AC charging port 24 of the electric vehicle, that is, the AC slow charging port. 7.
  • the structure shown in FIG. 8, or further, as shown in FIG. 9, connect the output terminal b to the AC charging control circuit module 55 in the vehicle, and integrate it into one;
  • the protocol standard and the handshake control circuit are customized and matched.
  • the electric vehicle described in the present invention includes a pure electric electric vehicle, and also includes a gasoline-electric hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供了一种靠太阳能发电的电动汽车充电系统,包括受光照能发电的车顶、智能电压转化及控制模块,所述能发电的车顶的电压输出与智能电压转化及控制模块连接,所述智能电压转化及控制模块的输出电压给电动汽车动力电池充电,所述智能电压转化及控制模块控制能发电的车顶在不同时间不同光照强度下都以最大转化率输出最大功率,并实现跟车内充电控制电路对接,给动力电池充电。本发明实现选择控制最大转化率和最大功率给动力电池充电,让充电量达到实用水平,同时对充电监控保护,并具备美观、安全性,让太阳能充电应用在电动汽车中,具备普及推广价值。

Description

一种靠太阳能发电的电动汽车充电系统 技术领域
本发明属于电动汽车或混动电动汽车的充电技术领域,更具体地说,涉及一种靠太阳能发电并高效实用地辅助给电动汽车充电的充电系统和控制方法;
背景技术
随着社会环保意识的增强,和电动汽车的某些明显优势,电动汽车的使用数量快速增加,但电动汽车的充电问题也受到很大重视,电动汽车的充电相对较为麻烦,很多充电问题也未能完全解决,特别是很多家庭的车库停车位并未能安装充电桩,充电电流较大,负荷较大,某些地方的充电站数量很少,每天都得给电动汽车插电和充电,使用起来相对较为麻烦,这一直困扰消费者和用车方便,制约了电动汽车的推广和普及;
另外以往的太阳能系统,存在欠缺,缺乏实用性,并不能在实际生活消费中得到推广和认可,具体如下:
1.现有的太阳能充电系统中,所采样太阳能板为平面太阳能板,平面太阳能板跟车顶的曲面表面并不能吻合,加装太阳能板后,会引起车辆的结构和外观形状带来一些不同程度上一些改变,
2.在其它部分太阳能系统设计中,没有针对太阳能板的发电特性,缺乏电压转化、最大功率计算控制,没能有效控制太阳能板处于最大功率发电状态,导致转化效率和发电量严重降低,发电功率大幅降低,发电效果微弱,此点问题很严重,为致使充电量达不到实际应用要求的关键缺点;
3.太阳能板所发的电或经过转化后的电压在不能直接就给动力电池充电情况下,在以往的太阳能充电方案中,缺乏衔接通信对接、控制功能,且不能给现实中的车辆对接充电,未能解决太阳能充电的实用问题,没能应用到实际的充电中;
4.另电动汽车的充电要求和安全级别都很高,在外电动汽车的安全性极高的电池应用中,以往的太阳能充电方案中,缺乏独立的电压检测和监控供暖,容易过充损坏电池,或引起电池的安全问题;
因此以上问题缺点改进和改进后的完整性结合必不可少;设计一种结构完整的,能够达到日常实际应用的水平,安全的,充电方便的太阳能充电装置,在与原车的现有的靠充电桩充电的方式互相结合时,将会大大节省充电站充电的次数,减少国家充电的所负担的电量,让用车更加省钱,改变能源结构,让市电的用电量减少,更加环保,成为急需解决的技术问题。
发明内容
本发明目的是为了解决以上难题,和解决以上技术问题,以完整的和实用的设计,将存在的问题缺点加以解决和完整性结合,使得本系统不但能给动力电池充电,而且实现有限面积车身时加大发电量,使发电量达到日常实用水平;在发电量满足要求后,还需将发电的太阳能板智能计算控制以最大功率最大转化率地充电量给电池充电,让充电量也达到日常实用的水平,解决大众基础的充电需求,并且增加充电控制模块,让太阳能充电更加的安全;同时不影响车身美观和形状,且不影响正常行驶;
为了解决以上技术背景所存在的问题,实现本系统发明,本发明的技术方案如下:
一种靠太阳能发电的电动汽车充电系统,其包括能发电的车顶、智能电压转化及控制模块,
所述能发电的车顶外层为一层太阳能晶片,晶片接收光能并发电,所述能发电的车顶发电所得的输出电压与智能电压转化及控制模块连接,所述智能电压转化及控制模块的电压输出端与电动汽车的充电口连接或与电动汽车动力电池连接,所述智能电压转化及控制模块用于不同时间段不同光照强度下控制太阳能板产生最大转化率和最大充电功率的电压给电动汽车动力电池充电,并监控电池电压;
所述智能电压转化及控制模块含有MCU智能计算控制器、电流感应器、电压值检测电路、电压变换器、充电控制器和低压12v蓄电池,所述电流感应器和电压值检测电路分别检测充电电流和电压,并与MCU智能计算控制器连接,MCU智能计算控制器与电压变换器连接,电压变换器输出与充电控制器链接,所述MCU智能计算控制器设定一定时间段同一光照强度下,控制电压变换器转化产生不同电压,根据回传的电压和电流,计算并记忆不同充电功率和参数,选择以最大功率所对应的参数控制电压变换器输出电压,并经过充电控制器给电动汽车充电。
所述电压变换器为DC/DC电压变换器或DC/AC电压变换器,受MCU智能计算控制器控制并可输出连续调的电压。
所述低压的12v蓄电池分别与MCU智能计算控制器、电流感应器、电压值检测电路、电压变换器、充电控制器连接,分别提供工作所需电源。
所述充电控制器为一种按原车充电插口的接口标准包含握手通信及控制功能的充电控制器,充电控制器输入端与电压变换器输出端连接,充电控制器输出端与电动汽车原直流充电口连接,或与动力电池的正负极连接,或与电动汽车交流充电口连接,给电动汽车充电;所述充电控制器还与MCU智能计算控制器连接,MCU智能计算控制器控制充电控制器开启或停止充电。
所述能发电的车顶1按需求进一步划分为多个区,主要为车前盖表面、车顶表面和车后盖表面,每个表面区域所得电压输出端串接有二极管,防止电流倒流。
与已有技术相比,本发明的有益效果是:
本发明将太阳能板的发电功能的太阳能晶片通过某种定制工艺,嵌入到车辆顶部的表面,让车辆顶部表面具备吸收光线和发电功能,通过全新的方法,在用车或费用车时,完全保持了车辆原有的外观形状和 美观程度,并且很大程度上减少风阻系数;
另一方面,更为主要地,针对太阳能板有最大转化率的特点,通过增加智能电压转化及控制模块,通过MCU计算,选择控制不同光照强度下,都能计算出最大功率参数,让太阳能板输出最大功率,得到最大转化率和发电总量,并通过充电控制器,能让转化所得最大的发电功率实时给电动汽车充电;
通过智能电压转化及控制模块中的包含握手信号通信协议功能的充电控制器,得以将电能给现实中的电动汽车充电,同时通过智能电压转化及控制模块,实时监控充电电压,在太阳能板发电电压大幅变动情况下,和电动汽车电压大幅变化情况下,确保充电安全;
综合以上效果,让本发明的太阳能充电系统达到最大转化率和最大充电功率,达到日常充电实用要求和实用水平,并且能将给实际生产和应用中的车辆充电,同时达到智能监控,安全使用。
附图说明
附图1是本发明的第一种实施例结构示意图。
附图2是本发明的第一种实施例原理拓扑示意图。
附图3是本发明的第二种实施例结构示意图。
附图4是本发明的第二种实施例原理拓扑示意图。
附图5是本发明的第三种实施例结构示意图。
附图6是本发明的第三种实施例原理拓扑示意图。
图7、8和图9是本发明的充电控制器输出端给动力电池衔接充电的结构示意图。
图10是本发明中能发电的车顶进一步增加能发电的车前盖顶部表面后的车辆能发电的表面区域示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。
如图1、2、7所示,提出本发明第一种实施例的靠太阳能发电的电动汽车充电系统,其包括能发电的车顶1、智能电压转化及控制模块2,所述能发电的车顶1外层为一层太阳能晶片,晶片接收光能并发电,所述能发电的车顶1的发电所得输出电压与智能电压转化及控制模块2连接,所述智能电压转化及控制模块2的电压输出端与电动汽车的直流充电口连接,所述智能电压转化及控制模块2用于不同时间段不同光照强度下控制太阳能板产生最大转化率和最大充电功率的电压给电动汽车动力电池充电,并监控电池电压;
采用上述结构后,本发明通过智能电压转化及控制模块2控制活动太阳能板的发电状态,能够实时不同时间段不同光照强度下控制太阳能板产生最大转化率和最大充电功率的电压给电动汽车动力电池53充电,激发控制增大面积后的太阳能板发出最大化的电能,让实时处于最大功率输出状态;并通过内部充电控制器,对实际生活应用中的电动汽车,现实对高压动力电池充电;在实际生产中,所述的智能电压转化及控制模块 安装在车顶下方或者车辆车前盖下方。
本发明从保持车辆形状美观,从控制激发太阳能板最大转化率、最大发电功率,从实现与车辆衔接充电三个方面,综合实现提高了充电功率和实用性应用性。
下面对本发明各结构部分,结合第一实施例和所对应示图,进行详细说明,具体如下:
如图1所示,本发明提出的一种靠太阳能发电的电动汽车充电系统,其所述能发电的车顶1外层含有一层太阳能晶片,晶片接收光能并发电。在实际生产中,根据实际需求,所述能发电的车顶1可进一步包含能发电的车前盖顶部表面11、能发电的车后盖顶部表面12,各表面区域外层含有一层太阳能晶片,晶片接收光能并发电,所得电压输出端串接有二极管防止电流倒流,并与车顶电压输出端并联。在实际生产中,可以根据车身实际情况和需求,选择主要区域和进行组合,如果车前盖光照面积较小,则减少车前盖表面区域;如果车后盖光照面积较小,则减少车后盖表面区域;对于某些车型,可省掉车后挡风玻璃,将能发电的车顶1表面和能发电的车后盖顶部表面12连接成一片,结合成一体。
采用以上结构后,采用能发电的车顶表面,无论在用车和不用车的时候,完全保持车辆原来的外观形状,保持美观,并持续的接收光照和发电,不影响使用。
如图2所示的括扑图中,所述的靠太阳能发电的电动汽车充电系统,其中,所述智能电压转化及控制模块2含有MCU智能计算控制器21、电流感应器22、电压值检测电路23、电压变换器24、充电控制器25和低压12v蓄电池26,所述电流感应器22和电压值检测电路23分别检测充电电流和电压,并与MCU智能计算控制器21连接,MCU智能计算控制器21与电压变换器24连接,电压变换器24输出与充电控制器25链接;所述MCU智能计算控制装置21设定一定时间段同一光照强度下,控制电压变换器转化产生不同电压,通过电流感应器和电压检测电路,检测不同充电电流和充电电压,计算并记忆不同充电功率,计算公式:功率P=Ui*I,选择以最大功率所对应的电压转换参数控制电压变压器输出充电电压经过充电控制器25给汽车动力电池53充电,并实时控制每个时间段得到最大转化率和同一光照强度下最大充电功率。根据太阳能板的特性,在固定面积,固定光照强度下,其输出的功率也会受到负载大幅变化,并不是输出固定的功率,所以,通过智能控制电压转化,通过智能计算,寻找出最大功率点,让不同光照下在扩展太阳能接收面积基础上,控制实时按最大功率输出,成为充电达到实用水平的主要因素。
采用以上结构后,所述智能电压转化及控制模块2能够在一定时间内大概相同关照强度下,实时控制内部的电压变换器,经过计算记忆不同参数所得实际充电功率,寻找选择最大功率所对应的参数,控制电压变换器转化输出最大充电功率所对应的电压,从而激发控制太阳能板处于最大发电功率输出状态。实际生产过程中,智能电压转化及控制模块2包含12v启动蓄电池26,由低压的12v的蓄电池26提供工作所需电源。
如图2所示,所述的靠太阳能发电的电动汽车充电系统,其中,所述电压变换器24为DC/DC电压变换器240,为一种受MCU智能计算控制器21控制并可输出连续调电压的电压变换器。所述充电控制器25为一种按原车充电插口的接口标准包含通信握手及控制功能的充电控制器25,充电控制器25与电压变换器连接, 充电控制器25电压输出端b作为智能电压转化及控制模块2的电压输出端b与电动汽车原直流充电口51连接,给电动汽车充电。本发明中,所示第一种实施例原理结构,所述的电压变换器内部采用受控的可调的DC/DC电压变换器240,充电控制器按原车直流充电接口标准包含握手通信及控制功能,电压变换器输出的电压进入充电控制器,充电控制器的输出端b与电动汽车的直流充电口51衔接,衔接方式为:优选地如图7所示,输出端b末端采用插头,与车身充电口采用对插方式,或次选地如图8所示输出端b采用与充电插口后端线路衔接方式;在实际生产应用中,或更进一步如图9所示,在车辆设计初期,就将充电插口衍生出内置于车内充电控制电路中的子充电接入口,将输出端b接入子充电接入口,从而接入车内直流充电控制电路模块52,集成为一体;以上方式均可实现充电控制器25的输出电压通过车内充电控制电路给电动汽车动力电池充电。
采用以上结构后,所光照所发电经过智能电压转化及控制模块2的充电控制器25,得以跟电动汽车的充电口衔接,给电动汽车充电,并监控电池充电过程,防止过电压充电;在实际生产过程中,充电控制器25的输出端b可进一步接入车内充电控制电路中,通过预留端口,统一握手控制方式和通信协议,设计集成为一体。
所述充电控制器25还与MCU智能计算控制器21连接,通过互相通信控制,同时包含防止电压过冲的功能;在实际生产应用中,如充电控制器与充电口后端内部电路衔接,则充电控制器检测到人为充电时或检测到人为揭开充电口保护盖时,向MCU智能计算控制器21发出通知信息,MCU智能计算控制器21则发出指令,控制电压变换器停止逆变出电压,并控制充电控制器25释放与充电口的电路衔接,防止发生充电冲突;当充满电后,充电控制器25会通知MCU智能计算控制器21,让停止太阳能发电和充电。当人为外部充电退出后并满足条件时,恢复与充电口后端的内部电路衔接,恢复太阳能充电模式。
采用以上结构后,具体实现了让最大功率电压输出后得以跟现实应用中的电动车衔接充电,充电功率也能具备实用性,具备保护功能,具备可行性。
以上各结构所述为第一实施例具体实施方式。本发明第二实施例中,如图3结构图和图4原理拓扑图所示,区别于第一实施例,在于所述智能电压转化及控制模块2的电压输出端与电动汽车的动力电池的正负极连接;在实际生产应用中,采用如图2所示实施例原理结构,所述充电控制器25包含开关控制功能,电压变换器240的电压输出进入充电控制器25,充电控制器25的输出端b中的正负极直接与动力电池正负极连接;本发明第三种实施例中,如图5,6,区别于第一实施例,在于所述智能电压转化及控制模块2的电压输出端与电动汽车的交流充电口连接,实际生产应用中,采用如图6所示实施例原理结构,所述的电压变换器内部采用DC/AC电压变换器241,输出电压进入充电控制器25,充电控制器25按原车交流充电接口标准包含握手通信及控制功能,充电控制器输出端b与电动汽车的交流充电口24即交流电慢充充电口衔接,衔接方式为:同样采用图7、图8所示结构,或更进一步如图9所示将输出端b接入车内交流充电控制电路模块55,集成为一体;所述充电控制器和衔接方式具体按不同电动汽车厂家的协议标准和握手控制电路进行订制配套对接。
本发明具体实施方式中,在实际生产应用中,所述能发电的车顶的电压输出端串接有二极管,防止电流倒流。实际生产和应用中,本发明中所述的电动汽车包括纯电的电动汽车,也包括油电混合的混动汽车。
上述仅是本发明的优先选用实施方式,应当指出,对于本技术领域的普通技术员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应该被视为本发明的保护范围。

Claims (6)

  1. 一种靠太阳能发电的电动汽车充电系统,其特征在于:包括能发电的车顶(1)、智能电压转化及控制模块(2),
    所述能发电的车顶(1)外层含有一层太阳能晶片,晶片接收光能并发电,所述能发电的车顶(1)的电压输出端与智能电压转化及控制模块(2)连接,所述智能电压转化及控制模块(2)的电压输出端(b)与电动汽车的充电口连接或与电动汽车动力电池连接,所述智能电压转化及控制模块(2)用于不同时间段不同光照强度下控制太阳能板产生最大转化率和最大充电功率,并跟电动汽车对接和控制充电,监控充电过程。
  2. 根据权利要求1所述的一种靠太阳能发电的电动汽车充电系统,特征在于:所述智能电压转化及控制模块(2)含有MCU智能计算控制器(21)、电流感应器(22)、电压值检测电路(23)、电压变换器(24)、充电控制器(25)和低压12v蓄电池(26),所述电流感应器(22)和电压值检测电路(23)分别检测充电电流和电压,并与MCU智能计算控制器(21)连接,MCU智能计算控制器(21)与电压变换器(24)连接,电压变换器(24)输出与充电控制器(25)链接,所述MCU智能计算控制器(21)设定一定时间段同一光照强度下,控制电压变换器(24)转化产生不同电压,根据回传的电压和电流,计算并记忆不同充电功率和参数,选择以最大功率所对应的参数控制电压变换器(24)输出电压,并经过充电控制器(25)给电动汽车充电。
  3. 根据权利要求2所述的靠太阳能发电的电动汽车充电系统,特征在于:所述电压变换器(24)为DC/DC电压变换器(240)或DC/AC电压变换器(241),受MCU智能计算控制器(21)控制并可输出连续调的电压。
  4. 根据权利要求2所述的靠太阳能发电的电动汽车充电系统,特征在于:所述低压的12v蓄电池分别与MCU智能计算控制器(21)、电流感应器(22)、电压值检测电路(23)、电压变换器(24)、充电控制器(25)连接,分别提供工作所需电源。
  5. 根据权利要求2所述的靠太阳能发电的电动汽车充电系统,特征在于:所述充电控制器(25)为一种按原车充电插口的接口标准包含握手通信及控制功能的充电控制器(25),充电控制器(25)输入端与电压变换器(24)输出端连接,充电控制器(25)输出端与电动汽车原直流充电口(51)连接,或与动力电池(53)的正负极连接,或与电动汽车交流充电口(54)连接,给电动汽车充电;所述充电控制器(25)还与MCU智能计算控制器(21)连接,MCU智能计算控制器(21)控制充电控制器(25)开启或停止充电。
  6. 根据权利要求1所述的靠太阳能发电的电动汽车充电系统,特征在于:所述能发电的车顶(1)可进一步包括能发电的车前盖顶部表面(11)、能发电的车后盖顶部表面(12),各表面区发电所得电压输出端各串接有二极管后并联,防止电流倒流,并联所得输出电压与智能电压转化及控制模块(2)输入端连接。
PCT/CN2021/105750 2020-07-19 2021-07-12 一种靠太阳能发电的电动汽车充电系统 WO2022017215A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021419618.9U CN213383889U (zh) 2020-07-19 2020-07-19 一种靠太阳能发电的电动汽车充电系统
CN202010695041 2020-07-19
CN202010695041.2 2020-07-19
CN202021419618.9 2020-07-19

Publications (1)

Publication Number Publication Date
WO2022017215A1 true WO2022017215A1 (zh) 2022-01-27

Family

ID=79728501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105750 WO2022017215A1 (zh) 2020-07-19 2021-07-12 一种靠太阳能发电的电动汽车充电系统

Country Status (1)

Country Link
WO (1) WO2022017215A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201511838U (zh) * 2009-06-12 2010-06-23 深圳先进技术研究院 一种太阳能电动车
CN205725117U (zh) * 2016-03-31 2016-11-23 湖北追日电气股份有限公司 一种太阳能光伏发电新能源汽车
KR20170102710A (ko) * 2016-03-02 2017-09-12 김천섭 태양광에너지를 통한 차량용 스마트보조배터리장치
CN206775444U (zh) * 2017-04-13 2017-12-19 武汉东湖学院 一种追踪式的太阳能电动汽车发电装置
CN213383889U (zh) * 2020-07-19 2021-06-08 林浩生 一种靠太阳能发电的电动汽车充电系统
CN213383890U (zh) * 2020-07-19 2021-06-08 林浩生 一种靠太阳能发电的电动汽车充电系统
CN213534455U (zh) * 2020-07-19 2021-06-25 林浩生 一种靠太阳能发电的电动汽车充电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201511838U (zh) * 2009-06-12 2010-06-23 深圳先进技术研究院 一种太阳能电动车
KR20170102710A (ko) * 2016-03-02 2017-09-12 김천섭 태양광에너지를 통한 차량용 스마트보조배터리장치
CN205725117U (zh) * 2016-03-31 2016-11-23 湖北追日电气股份有限公司 一种太阳能光伏发电新能源汽车
CN206775444U (zh) * 2017-04-13 2017-12-19 武汉东湖学院 一种追踪式的太阳能电动汽车发电装置
CN213383889U (zh) * 2020-07-19 2021-06-08 林浩生 一种靠太阳能发电的电动汽车充电系统
CN213383890U (zh) * 2020-07-19 2021-06-08 林浩生 一种靠太阳能发电的电动汽车充电系统
CN213534455U (zh) * 2020-07-19 2021-06-25 林浩生 一种靠太阳能发电的电动汽车充电系统

Similar Documents

Publication Publication Date Title
CN101860270B (zh) 一种充分利用风能和太阳能的接入系统及其实现方法
CN213534455U (zh) 一种靠太阳能发电的电动汽车充电系统
CN213383888U (zh) 一种靠太阳能发电的电动汽车充电系统
CN213383889U (zh) 一种靠太阳能发电的电动汽车充电系统
CN213534454U (zh) 一种靠太阳能发电的电动汽车充电系统
CN101977467A (zh) 太阳能路灯智能控制器
CN104901389A (zh) 一种有效延长光伏发电配套蓄电池寿命的智能控制系统
CN102904302A (zh) 高效率的太阳能充电装置及其充电方法
CN207059794U (zh) 太阳能汽车供电装置及太阳能汽车
CN201878381U (zh) 太阳能路灯智能控制器
CN203522307U (zh) 基于耦合电感逆变器的风光蓄互补发电装置
CN213383890U (zh) 一种靠太阳能发电的电动汽车充电系统
CN208993498U (zh) 电动汽车充电站系统
CN201386975Y (zh) 一种由市电和太阳能向路灯供电且可并网的双回路系统
CN105739591B (zh) 基于直流供电的灯桩一体化功率调节设备和系统
CN205283233U (zh) 一种公路隧道照明系统
WO2022017215A1 (zh) 一种靠太阳能发电的电动汽车充电系统
CN204669047U (zh) 一种有效延长光伏发电配套蓄电池寿命的智能控制系统
CN201656848U (zh) 一种充分利用风能和太阳能的接入系统
CN203596636U (zh) 交直流充电机
WO2022017214A1 (zh) 一种靠太阳能发电的电动汽车充电装置
CN208923901U (zh) 直流化立体车库
WO2022017212A1 (zh) 一种靠太阳能发电的电动汽车充电系统
CN114013289A (zh) 一种靠太阳能发电的电动汽车充电系统
WO2022017210A1 (zh) 一种靠太阳能发电的电动汽车充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21847341

Country of ref document: EP

Kind code of ref document: A1