WO2022016568A1 - 一种基于飞行器的低空扫描病虫害识别系统及其方法 - Google Patents

一种基于飞行器的低空扫描病虫害识别系统及其方法 Download PDF

Info

Publication number
WO2022016568A1
WO2022016568A1 PCT/CN2020/105071 CN2020105071W WO2022016568A1 WO 2022016568 A1 WO2022016568 A1 WO 2022016568A1 CN 2020105071 W CN2020105071 W CN 2020105071W WO 2022016568 A1 WO2022016568 A1 WO 2022016568A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
capacitor
signal
resistor
same time
Prior art date
Application number
PCT/CN2020/105071
Other languages
English (en)
French (fr)
Inventor
张正强
苗珍
段纳
孟国华
张金慧
管连勇
张建华
Original Assignee
南京科沃云计算信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京科沃云计算信息技术有限公司 filed Critical 南京科沃云计算信息技术有限公司
Publication of WO2022016568A1 publication Critical patent/WO2022016568A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/16Electric signal transmission systems in which transmission is by pulses

Definitions

  • the invention relates to the field of pest identification systems, in particular to an aircraft-based low-altitude scanning pest identification system and a method thereof.
  • the farmland scanning disease and insect pest identification system in the prior art is to conduct surveys in different directions by setting multiple camera sensors outside the farmland, but this cannot completely scan the entire situation of the farmland, and cannot be used for some plants hidden in the survey blind area.
  • Scanning pest and disease identification which has great harm to the plants in the farmland, and the existing technology of scanning pest identification technology is to send the collection to the control terminal for identification, so that it is not possible to make work instructions in time, so that the planting Plants can cause further damage.
  • An aircraft-based low-altitude scanning pest identification system and method thereof are provided to solve the above problems.
  • An aircraft-based low-altitude scanning pest identification system comprising:
  • the acquisition control unit uses the camera components arranged outside the aircraft to collect and identify the images of plant diseases and insect pests in the farmland, and transmit the identification signal at the same time;
  • the wireless communication unit uses the Internet of Things technology to transmit the identification signal collected by the aircraft to the control terminal through wireless technology;
  • the image processing unit uses the receiver arranged on the control terminal to receive the acquisition signal, and to process and decode the acquisition signal;
  • the imaging display unit performs the acquisition signal and output to the display, so as to image the externally scanned image.
  • the acquisition control unit includes: a single-chip microcomputer U1, a capacitor C1, a crystal oscillator X1, a button S1, a capacitor C3, a resistor R1, a camera sensor U2, an inverter U3, a driver chip U5, a capacitor C10, a capacitor C9, an inductor L1, resistor R5, resistor R6, transistor Q2, capacitor C8, capacitor C11, transmitter U6, capacitor C7; wherein, No. 19 of the single-chip microcomputer U1, one end of the capacitor C1 and No. 1 of the crystal oscillator X1 at the same time Pin connection, No. 18 of the single-chip microcomputer U1 is connected to one end of the capacitor C2 and the No.
  • the No. 9 pin of the single-chip microcomputer U1 is connected with one end of the button S1, one end of the capacitor C3 and one end of the resistor R1 at the same time, and the other end of the button S1 is connected with one end of the capacitor C3, The other end of the resistor R1 is grounded, the No. 1 pin of the microcontroller U1 is connected to the No. 2 pin of the inverter U3, and the No. 1 pin of the inverter U3 is connected to the camera sensor U2.
  • the No. 2 pin is connected, the input voltage of the No. 3 pin of the camera sensor U2, the No.
  • the No. 10 pin of the single-chip microcomputer U1 is connected to one end of the capacitor C10, and the capacitor C10
  • the other end of the capacitor C9 is connected to one end of the capacitor C9 and one end of the inductor L1 at the same time, and the other end of the capacitor C9 is connected to one end of the resistor R6 and the base of the transistor Q2 at the same time.
  • the collector is connected to one end of the capacitor C8 and one end of the resistor R5 at the same time, the No.
  • the pulse width control unit includes: resistor R4, diode D4, transistor Q1, capacitor C4, Schott's diode D3, resistor R3, resistor R2, diode D1, diode D2, adjustable resistor RV1, capacitor C5, integrated Circuit U4; wherein, the No. 7 pin of the integrated circuit U4 is simultaneously connected with one end of the resistor R2 and the control end of the adjustable resistor RV1, and the No. 2 pin and the No.
  • 6 pin of the integrated circuit U4 It is connected and simultaneously connected to the cathode of the diode D1, the anode of the diode D2 and one end of the capacitor C5, the anode of the diode D1 is connected to the other end of the resistor R2, and the cathode of the diode D2 is connected to the other end of the resistor R2.
  • One end of the adjustable resistor RV1 is connected, the other end of the adjustable resistor RV1 is connected to one end of the resistor R3, the No. 5 pin of the integrated circuit U4 is connected to one end of the capacitor C6, and the integrated circuit
  • the No. 1 pin of U4 is connected to the other end of the capacitor C6 and the other end of the capacitor C5 and grounded at the same time, the No.
  • the 3 pin of the integrated circuit U4 is connected to the base of the transistor Q1, and the integrated The No. 4 pins and No. 8 pins of the circuit U4 are connected to the other end of the resistor R3 and the negative electrode of the Schott diode D3 at the same time, and one end of the capacitor C4 is simultaneously connected to one end of the resistor R4 and the other end.
  • the cathode of the Schott diode D3 is connected, the other end of the capacitor C4 is connected to the anode of the Schott diode D3 and grounded, the emitter of the transistor Q1 is input with a signal and grounded, and the collector of the transistor Q1 is connected to the ground.
  • the anode of the diode D4 is connected to output a drive signal, and the other end of the resistor R4 is connected to the cathode of the diode D4 to input a voltage and output a drive signal.
  • the model of the microcontroller U1 is AT89C52
  • the model of the driver chip U5 is L298, and the model of the integrated circuit U4 is NE555.
  • the image processing unit receives the identification signal through the receiver, and uses the data storage module to perform I/O detection of the data. When the data meets the storage conditions, the data analysis is performed, and finally the output and storage are performed. I/O output.
  • the imaging display unit includes at least one display.
  • a method for a low-altitude scanning pest identification system based on an aircraft when the camera sensor U2 collects an external image, the internal identification and matching of the collected signal will be carried out first, and the specific steps are as follows:
  • Step 1 work through one or more camera sensors installed outside the anti-aircraft, so as to detect the plants in the external farmland, and at the same time, the detection signal will be transmitted to the acquisition control unit for identification and matching;
  • Step 2 After the matching and identification of the collected signal with the disease and insect information database and the problem database is completed, a pulse signal will be generated by the single-chip microcomputer U1 of the acquisition control unit, and the pulse signal will be subjected to pulse signal width modulation by the pulse width control unit, so that the Converted into high-frequency signals, while using transmitters for wireless transmission.
  • step 1 when the acquisition signal is input to the acquisition control unit, signal preprocessing needs to be performed, so that it can be obtained:
  • Step 3 Collect signals for input.
  • signal detection is performed.
  • the color of an image is mainly divided into RGB three colors, and other colors are in the ratio of RGB saturation. Therefore, first determine the RGB occupation of the collected image signal, Whether the R component is greater than the G component and the B component, and use the for loop statement and the if comparison statement to extract color features;
  • Step 4 Extract the binary image, so as to facilitate the extraction of information in the image.
  • the binary image can increase the recognition efficiency during recognition, and finally perform mask operation with the original image to mark the pest and disease area; the specific steps are as follows:
  • Step 5 extract the edge of the collected image; by analyzing the matrix of the edge image, keep the corresponding pixel points in the image that are the edge of the object to be measured, and then calculate the partial derivative of the effective pixel in the original image to obtain the effective pixel in the original image. Gradient matrix, and finally analyze this gradient matrix to obtain the matching standard of edge gradient;
  • Step 6 match the disease and insect information database with the image signal. If the match matches, transmit the matching signal to the database for database identification, so as to identify whether the disease and pest cause damage to the plant, and at the same time, the identification signal is transmitted wirelessly through the transmitter. .
  • the identification signal is transmitted to the single-chip microcomputer U1, and at the same time the single-chip microcomputer U1 generates a PWM signal, and at the same time transmits the PWM signal to the pulse width control unit for pulse width modulation, so that the signal conforms to the transmission standard. Wireless communication transmission.
  • the receiver of the control terminal when the receiver of the control terminal receives the signal type, the acquired signal is processed and decoded, and is simultaneously transmitted to the display in the imaging display unit for further imaging and observation.
  • a plurality of camera sensors are installed on the aircraft, and at the same time, the faults of the camera sensors are used to collect the plant conditions in the external farmland.
  • the identification signal will be generated by the single-chip microcomputer to generate an output pulse signal, and the pulse signal width will be modulated by the pulse width control unit, so that the output signal can be transmitted faster.
  • the transmitter is used for wireless transmission, so that the control terminal and the control signal are stored at the same time, and finally the imaging display unit is used to output to the display for imaging observation; thus, the present invention can better observe the real-time situation of the plants in the farmland, and does not When there is a problem that the blind spot cannot be detected, the collected signals are identified and matched in advance, so that the work efficiency can be greatly improved, so that the insect removal instructions can be made better, thereby improving the work efficiency.
  • Fig. 1 is the working schematic diagram of the present invention.
  • FIG. 2 is a circuit diagram of the acquisition control unit of the present invention.
  • FIG. 3 is a circuit diagram of the pulse width control unit of the present invention.
  • FIG. 4 is a schematic diagram of the identification and matching of the collected signals according to the present invention.
  • FIG. 5 is a schematic diagram of the pulse signal width modulation of the present invention.
  • FIG. 6 is a schematic diagram of data storage of the present invention.
  • an aircraft-based low-altitude scanning pest and disease identification system and method thereof include an acquisition control unit, a pulse width control unit, a wireless communication unit, an image processing unit, and an imaging display unit.
  • the acquisition control unit includes: a single-chip microcomputer U1, a capacitor C1, a crystal oscillator X1, a button S1, a capacitor C3, a resistor R1, a camera sensor U2, an inverter U3, a driving chip U5, a capacitor C10, a capacitor C9, Inductor L1, resistor R5, resistor R6, transistor Q2, capacitor C8, capacitor C11, transmitter U6, capacitor C7.
  • No. 19 of the microcontroller U1 is connected to one end of the capacitor C1 and pin No. 1 of the crystal oscillator X1 at the same time, and No. 18 of the microcontroller U1 is connected to the pin of the capacitor C2 at the same time.
  • One end is connected with the No. 2 pin of the crystal oscillator tube X1, the other end of the capacitor C1 is connected and grounded with the other end of the capacitor C2, and the No. 9 pin of the single-chip microcomputer U1 is connected with one end of the button S1 at the same time.
  • One end of the capacitor C3 is connected to one end of the resistor R1, the other end of the button S1 is connected to one end of the capacitor C3, the other end of the resistor R1 is grounded, and the No. 1 pin of the microcontroller U1 Connect with the No. 2 pin of the described inverter U3, the No. 1 pin of the described inverter U3 is connected with the No. 2 pin of the described camera sensor U2, and the No. 3 pin input voltage of the described camera sensor U2
  • the No. 1 pin of the camera sensor U2 is grounded, the No. 21 pin of the single-chip microcomputer U1 is connected to the No. 5 pin of the driving chip U5, and the No. 22 pin of the single-chip microcomputer U1 is connected to the driving chip U5.
  • the No. 1 pin of the camera sensor U2 is grounded, the No. 21 pin of the single-chip microcomputer U1 is connected to the No. 5 pin of the driving chip U5, and the No. 22 pin of the single-chip microcomputer U1 is connected to the driving chip U5.
  • the other end of the inductance L1 is connected to the No. 4 pin of the transmitter U6, and the No. 4 pin of the transmitter U6 is grounded, and the other end of the resistor R5 is connected to the other end of the resistor R6 and the capacitor at the same time.
  • One end of C11 is connected, the other end of the capacitor C11 is grounded, the No. 3 pin of the transmitter U6 is connected to one end of the capacitor C11 and a voltage is input.
  • the pulse width control unit includes: a resistor R4, a diode D4, a transistor Q1, a capacitor C4, a Schott diode D3, a resistor R3, a resistor R2, a diode D1, a diode D2, an adjustable resistor RV1, and a capacitor C5, IC U4.
  • the No. 7 pin of the integrated circuit U4 is connected to one end of the resistor R2 and the control terminal of the adjustable resistor RV1 at the same time
  • the No. 2 pin and the No. 6 pin of the integrated circuit U4 The pin is connected and connected to the cathode of the diode D1, the anode of the diode D2 and one end of the capacitor C5 at the same time
  • the anode of the diode D1 is connected to the other end of the resistor R2
  • the cathode of the diode D2 is connected is connected to one end of the adjustable resistor RV1
  • the other end of the adjustable resistor RV1 is connected to one end of the resistor R3, the No.
  • 5 pin of the integrated circuit U4 is connected to one end of the capacitor C6, and the The No. 1 pin of the integrated circuit U4 is connected and grounded with the other end of the capacitor C6 and the other end of the capacitor C5 at the same time, and the No. 3 pin of the integrated circuit U4 is connected to the base of the transistor Q1, so the The No. 4 pins and No. 8 pins of the integrated circuit U4 are connected to the other end of the resistor R3 and the negative electrode of the Schott diode D3 at the same time, and one end of the capacitor C4 is connected to one end of the resistor R4 at the same time.
  • the other end of the capacitor C4 is connected to the anode of the Schott diode D3 and is grounded, the emitter of the transistor Q1 has an input signal and is grounded, and the collector of the transistor Q1 It is connected to the anode of the diode D4 and outputs a drive signal, and the other end of the resistor R4 is connected to the cathode of the diode D4 to input a voltage and output a drive signal.
  • the identification signal when transmitted to the single-chip microcomputer U1 in the acquisition control unit, it is a program flow chart of setting pulse width modulation; after starting, the system is initialized first, and then the required duty cycle is set, and the The counting method is repeated until the number of counts is greater than or equal to 100, and the desired PWM waveform is output.
  • the receiver when the receiver receives a signal, it will perform data storage; first, perform system initialization, and to receive data, it is necessary to always query the receiving data port, and when a high level is found, it will immediately enter the receiving data state; when a high level appears Then, the query waits until the receiving port shows a low level, and a breakpoint is set at the same time, and the position information is immediately stored and sent to the aircraft through the wireless communication unit.
  • the RGB occupancy of the collected image signal it is first to judge whether the RGB occupancy of the collected image signal, whether the R component is greater than the G component and the B component, and use the for loop statement and the if comparison statement to extract the color features; secondly, extract the binary image, so as to facilitate the extraction
  • the information in the image, the binary image can increase the recognition efficiency during the recognition, and finally perform the mask operation with the original image to mark the pest and disease area; extract the edge of the collected image; by analyzing the matrix of the edge image, retain the image to be tested. The corresponding pixel points on the edge of the object, and then calculate the partial derivative of the effective pixels in the original image to obtain the gradient matrix of the effective pixels in the original image, and finally analyze the gradient matrix to obtain the matching standard of the edge gradient; The signal is matched.
  • the matching signal will be transmitted to the database for database identification, so as to identify whether the pest has caused damage to the plant.
  • the identification signal is transmitted to the pulse width control unit for signal modulation, and the single chip U1 converts the identification signal into pulse.
  • the pulse signal with adjustable width is transmitted to the pulse width control unit through the driver chip U5.
  • the signal is input through the emitter of the transistor Q1. At this time, the conduction of the transistor Q1 is passed through the pins 2 and 6 of the integrated circuit U4.
  • the frequency of the pulse signal is controlled with the resistor R2 and the adjustable resistor RV1, while the diode D1 and the diode D2 are used to stabilize the amplitude, and the modulated signal is output through the resistor R3, and the Schott diode D3 cooperates with the capacitor C4 to absorb the clutter in the circuit. Therefore, the output is carried out through the No. 3 pin of the integrated circuit U4, so that the transistor Q1 is turned on, so that the diode D4 is turned on and output;
  • the pulse signal is input through the filter circuit composed of capacitor C10, capacitor C9 and inductor L1, and the signal lower than the operating frequency is filtered out, and then pre-amplified by transistor Q2 with resistor R5 and resistor R6, and then sent to the capacitor C8 after amplification.
  • the transmitter U6 outputs; when the receiver of the control terminal receives the signal type, it processes and decodes the collected signal, and simultaneously transmits it to the display in the imaging display unit for further imaging and observation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种基于飞行器的低空扫描病虫害识别系统及其方法,涉及病虫害识别系统领域,包括:采集控制单元、脉宽控制单元、无线通信单元、图像处理单元、以及成像显示单元;所述方法利用摄像传感器故障进行采集外部农田内的种植物情况,同时当摄像传感器检测到病害虫时,会将采集信号通过内部的图像识别匹配系统,进行预先匹配和病虫信息的识别,当确认为病害虫信息时,将识别信号通过单片机产生输出脉冲信号,并且通过脉宽控制单元进行脉冲信号宽度调制;所述方法可以更好的进行观察农田内部种植物的实时情况,不会出现盲区检测不到的问题,同时将采集信号进行预先识别和匹配,从而可以大大提高工作效率,从而提高工作效率。

Description

一种基于飞行器的低空扫描病虫害识别系统及其方法 技术领域
本发明涉及病虫害识别系统领域,尤其是一种基于飞行器的低空扫描病虫害识别系统及其方法。
背景技术
近年来,中国农村的人数越来越少,年轻人的人口流动很大,老年人口比例大,因此人口老龄化的问题很严重。农村的农业领域的机械化水平比较低,无人机到农田里面自动化作业,可以让农户足不出户了解庄稼生长情况。传统人工种植的用工费用极高,植保无人机是高科技应用于农业的典型代表,相较于人工作业或者传统植保机械来说,其效率是地面植保机械的10~20倍,是人工作业的50~100倍。植保无人机虽然在操控上有一定的难度,但在农田适应性上更具有优势,可以通过远距离遥控,实现各类地形农田的喷洒任务。
随着病虫害识别系统技术的发展,国家对农业越来越重视,同时机械加工技术水平不断提高,许多机械化农机应运而生,病虫害识别机械越来越先进;并且随着农村劳动力成本增加,有效的除去病害虫能够节约成本,经济效益可观,近年来都在飞行器扫描病虫害识别。飞行器的低空扫描病虫害识别系统的工作性能的好坏直接影响着排种的工作效率。
现有技术中的农田扫描病虫害识别系统是通过设置在农田外部多个摄像传感器,进行不同方向的勘测,但这样不能完全的扫描到农田的全部情况,对一些隐藏在勘测盲区的种植物无法进行扫描病虫害识别,这对农田里的 种植物有着很大的危害,且现有技术的扫描病虫害识别技术都是通过将采集发送至控制终端进行识别,这样不可以及时做出工作指令,这样对种植物会造成进一步的伤害。
技术问题
提供一种基于飞行器的低空扫描病虫害识别系统及其方法,以解决上述问题。
技术解决方案
一种基于飞行器的低空扫描病虫害识别系统,包括:
采集控制单元,利用设置在飞行器外部的摄像部件进行农田内部种植物的病虫害图像采集并进行识别,同时将识别信号进行传输;
脉宽控制单元,利用 PWM 波进行识别信号输出;
无线通信单元,利用物联网技术,将飞行器采集的识别信号通过无线技术进行传输至控制终端;
图像处理单元,利用设置在控制终端上的接收器,进行接收采集信号,并进行采集信号的处理与解码;
成像显示单元,进行采集信号与显示器进行输出,从而将外部扫描的图像进行成像。
在一个实施例中,采集控制单元包括:单片机U1、电容C1、晶振管X1、按钮S1、电容C3、电阻R1、摄像传感器U2、反相器U3、驱动芯片U5、电容C10、电容C9、电感L1、电阻R5、电阻R6、三极管Q2、电容C8、电容C11、发射器U6、电容C7;其中,所述单片机U1的19号同时与所述电容C1的一端和所述晶振管X1的1号引脚连接,所述单片机U1的18号同时与所述电容C2的一端和所述晶振管X1的2号引脚连接,所述电容C1的另一端和所述电容C2的另一端连接且接地,所述单片机U1的9号引脚同时与所述按钮S1的一端、所述电容C3的一端和所述电阻R1的一端连接,所述按钮S1的另一端与所述电容C3的一端连接,所述电阻R1的另一端接地,所述单片机U1的1号引脚与所述反相器U3的2号引脚连接,所述反相器U3的1号引脚与所述摄像传感器U2的2号引脚连接,所述摄像传感器U2的3号引脚输入电压,所述摄像传感器U2的1号引脚接地,所述单片机U1的21号引脚与所述驱动芯片U5的5号引脚连接,所述单片机U1的22号引脚与所述驱动芯片U5的7号引脚连接,所述单片机U1的23号引脚与所述驱动芯片U5的10号引脚连接,所述单片机U1的24号引脚与所述驱动芯片U5的12号引脚连接,所述单片机U1的25号引脚与所述驱动芯片U5的6号引脚连接,所述单片机U1的26号引脚与所述驱动芯片U5的11号引脚连接,所述驱动芯片U5的9号引脚与4号引脚连接,所述驱动芯片U5的1号引脚、15号引脚、8号引脚连接且接地,所述驱动芯片U5的2号引脚输出,所述驱动芯片U5的3号引脚输出,所述单片机U1的10号引脚与所述电容C10的一端连接,所述电容C10的另一端同时与所述电容C9的一端和所述电感L1的一端连接,所述电容C9的另一端同时与所述电阻R6的一端和所述三极管Q2的基极连接,所述三极管Q2的集电极同时与所述电容C8的一端和所述电阻R5的一端连接,所述发射器U6的2号引脚与所述电容C8的另一端连接,所述发射器U6的6号引脚与所述电容C7的一端连接,所述三极管Q2的发射极同时与所述电感L1的另一端和所述发射器U6的4号引脚连接、且发射器U6的4号引脚接地,所述电阻R5的另一端同时与所述电阻R6的另一端和所述电容C11的一端连接,所述电容C11的另一端接地,所述发射器U6的3号引脚与所述电容C11的一端连接且输入电压。
在一个实施例中,脉宽控制单元包括:电阻R4、二极管D4、三极管Q1、电容C4、肖特二极管D3、电阻R3、电阻R2、二极管D1、二极管D2、可调电阻RV1、电容C5,集成电路U4;其中,所述集成电路U4的7号引脚同时与所述电阻R2的一端和所述可调电阻RV1的控制端连接,所述集成电路U4的2号引脚、6号引脚连接且同时与所述二极管D1的负极、所述二极管D2的正极和所述电容C5的一端连接,所述二极管D1的正极与所述电阻R2的另一端连接,所述二极管D2的负极与所述可调电阻RV1的一端连接,所述可调电阻RV1的另一端与所述电阻R3的一端连接,所述集成电路U4的5号引脚与所述电容C6的一端连接,所述集成电路U4的1号引脚同时与所述电容C6的另一端和所述电容C5的另一端连接且接地,所述集成电路U4的3号引脚与所述三极管Q1的基极连接,所述集成电路U4的4号引脚、8号引脚连接且同时与所述电阻R3的另一端和所述肖特二极管D3的负极连接,所述电容C4的一端同时与所述电阻R4的一端和所述肖特二极管D3的负极连接,所述电容C4的另一端与所述肖特二极管D3的正极连接且接地,所述三极管Q1的发射极输入信号且接地,所述三极管Q1的集电极与所述二极管D4的正极连接且输出驱动信号,所述电阻R4的另一端与所述二极管D4的负极连接且输入电压和输出驱动信号。
在一个实施例中,单片机U1的型号为AT89C52,驱动芯片U5的型号为L298,集成电路U4的型号为NE555。
在一个实施例中,所述图像处理单元通过接收器接收识别信号,通过会利用数据存储模块进行数据的I/O检测,当数据符合存储条件时,进行数据分析,最后进行输出存储,同时进行I/O输出。
在一个实施例中,所述成像显示单元包括至少一个显示器。
一种基于飞行器的低空扫描病虫害识别系统的方法,当摄像传感器U2进行采集外部图像时,内部会先进行采集信号的识别与匹配,具体步骤如下:
步骤1、首先通过设置在反飞行器外部的一个或者多个摄像传感器进行工作,从而进行外部农田里的种植物的检测,同时检测信号会进行传输至采集控制单元进行识别匹配;
步骤2、当采集信号与病虫信息库和问题数据库进行匹配识别完成后,会通过采集控制单元的单片机U1产生脉冲信号,同时脉冲信号通过脉宽控制单元进行脉冲信号宽度调制,从而将信号的变换成高频信号,同时利用发射器进行无线传输。
在一个实施例中,根据步骤1指出,当采集信号输入采集控制单元,需要进行信号的预处理,从而可以得出:
步骤3、采集信号进行输入,首先进行信号的检测,一个图像的颜色主要分为RGB三种颜色,其他颜色都是在RGB的饱和度的比例,所以首先进行判断采集图像信号的RGB占有量, R分量是否大于G分量和B分量,同时采用 for 循环语句和 if 比较语句,提取颜色特征;
步骤4、提取二值图像,从而方便提取图像中的信息,二值图像在进行识别时可以增加识别效率,最后和原图进行掩码运算,标出病虫害区域;具体步骤如下:
步骤5、首先,提取采集图像边缘;通过分析此边缘图像的矩阵,保留图像中为待测对象边缘的对应像素点,然后,对原图中有效像素计算偏导数,得到原图中有效像素的梯度矩阵,最后分析此梯度矩阵得到边缘梯度的匹配标准;
步骤6、其次将病虫信息库进行与图像信号进行匹配,如果匹配符合将匹配信号传输至数据库进行数据库识别,从而识别此病害虫是否造成对种植物的伤害,同时识别信号通过发射器进行无线传输。
在一个实施例中,识别信号通过传输至单片机U1,同时单片机U1产生PWM信号,同时将PWM信号传输至脉宽控制单元进行脉冲信号的宽度调制,从而使信号符合传输标准,同时利用发射器进行无线通信传输。
在一个实施例中,当控制终端的接收器接收到信号式,进行采集信号的处理与解码,同时传输至成像显示单元中的显示器进行进一步的成像和观察。
有益效果
本发明通过在飞行器上设置多个摄像传感器,同时利用摄像传感器故障进行采集外部农田内的种植物情况,同时当摄像传感器检测到病害虫是,会将采集信号通过内部的图像识别匹配系统,进行预先匹配和病虫信息的识别,当确认为病害虫信息时,将识别信号通过单片机进行产生输出脉冲信号,并且通过脉宽控制单元进行脉冲信号宽度调制,从而输出的信号可以更快的进行传输,同时利用发射器进行无线传输,从而将控制终端,同时控制信号进行存储,最后利用成像显示单元进行输出至显示器进行成像观察;从而本发明可以更好的进行观察农田内部种植物的实时情况,不会出现盲区检测不到的问题,同时将采集信号进行预先识别和匹配,从而可以大大提高工作效率,从而可以更好的进行做出除虫指令,从而提高工作效率。
附图说明
图1是本发明的工作示意图。
图2是本发明的采集控制单元电路图。
图3是本发明的脉宽控制单元电路图。
图4是本发明的采集信号识别匹配示意图。
图5是本发明的脉冲信号宽度调制示意图。
图6是本发明的数据存储示意图。
本发明的实施方式
如图1所示,在该实施例中,一种基于飞行器的低空扫描病虫害识别系统及其方法,包括:采集控制单元、脉宽控制单元、无线通信单元、图像处理单元、以及成像显示单元。
在进一步的实施例中,采集控制单元包括:单片机U1、电容C1、晶振管X1、按钮S1、电容C3、电阻R1、摄像传感器U2、反相器U3、驱动芯片U5、电容C10、电容C9、电感L1、电阻R5、电阻R6、三极管Q2、电容C8、电容C11、发射器U6、电容C7。
在更进一步的实施例中,所述单片机U1的19号同时与所述电容C1的一端和所述晶振管X1的1号引脚连接,所述单片机U1的18号同时与所述电容C2的一端和所述晶振管X1的2号引脚连接,所述电容C1的另一端和所述电容C2的另一端连接且接地,所述单片机U1的9号引脚同时与所述按钮S1的一端、所述电容C3的一端和所述电阻R1的一端连接,所述按钮S1的另一端与所述电容C3的一端连接,所述电阻R1的另一端接地,所述单片机U1的1号引脚与所述反相器U3的2号引脚连接,所述反相器U3的1号引脚与所述摄像传感器U2的2号引脚连接,所述摄像传感器U2的3号引脚输入电压,所述摄像传感器U2的1号引脚接地,所述单片机U1的21号引脚与所述驱动芯片U5的5号引脚连接,所述单片机U1的22号引脚与所述驱动芯片U5的7号引脚连接,所述单片机U1的23号引脚与所述驱动芯片U5的10号引脚连接,所述单片机U1的24号引脚与所述驱动芯片U5的12号引脚连接,所述单片机U1的25号引脚与所述驱动芯片U5的6号引脚连接,所述单片机U1的26号引脚与所述驱动芯片U5的11号引脚连接,所述驱动芯片U5的9号引脚与4号引脚连接,所述驱动芯片U5的1号引脚、15号引脚、8号引脚连接且接地,所述驱动芯片U5的2号引脚输出,所述驱动芯片U5的3号引脚输出,所述单片机U1的10号引脚与所述电容C10的一端连接,所述电容C10的另一端同时与所述电容C9的一端和所述电感L1的一端连接,所述电容C9的另一端同时与所述电阻R6的一端和所述三极管Q2的基极连接,所述三极管Q2的集电极同时与所述电容C8的一端和所述电阻R5的一端连接,所述发射器U6的2号引脚与所述电容C8的另一端连接,所述发射器U6的6号引脚与所述电容C7的一端连接,所述三极管Q2的发射极同时与所述电感L1的另一端和所述发射器U6的4号引脚连接、且发射器U6的4号引脚接地,所述电阻R5的另一端同时与所述电阻R6的另一端和所述电容C11的一端连接,所述电容C11的另一端接地,所述发射器U6的3号引脚与所述电容C11的一端连接且输入电压。
在进一步的实施例中,脉宽控制单元包括:电阻R4、二极管D4、三极管Q1、电容C4、肖特二极管D3、电阻R3、电阻R2、二极管D1、二极管D2、可调电阻RV1、电容C5,集成电路U4。
在进一步的实施例中,所述集成电路U4的7号引脚同时与所述电阻R2的一端和所述可调电阻RV1的控制端连接,所述集成电路U4的2号引脚、6号引脚连接且同时与所述二极管D1的负极、所述二极管D2的正极和所述电容C5的一端连接,所述二极管D1的正极与所述电阻R2的另一端连接,所述二极管D2的负极与所述可调电阻RV1的一端连接,所述可调电阻RV1的另一端与所述电阻R3的一端连接,所述集成电路U4的5号引脚与所述电容C6的一端连接,所述集成电路U4的1号引脚同时与所述电容C6的另一端和所述电容C5的另一端连接且接地,所述集成电路U4的3号引脚与所述三极管Q1的基极连接,所述集成电路U4的4号引脚、8号引脚连接且同时与所述电阻R3的另一端和所述肖特二极管D3的负极连接,所述电容C4的一端同时与所述电阻R4的一端和所述肖特二极管D3的负极连接,所述电容C4的另一端与所述肖特二极管D3的正极连接且接地,所述三极管Q1的发射极输入信号且接地,所述三极管Q1的集电极与所述二极管D4的正极连接且输出驱动信号,所述电阻R4的另一端与所述二极管D4的负极连接且输入电压和输出驱动信号。
在进一步的实施例中,当识别信号传输至采集控制单元中的单片机U1时,是设定脉冲宽度调制的程序流程图;开始后,先进行系统初始化,然后设定需要的占空比,通过计数的方法一直重复,直到计数次数大于或者等于 100 的时候,输出需要的PWM波形。
在进一步的实施例中,当接收器接收到信号时,会进行数据存储;首先进行系统初始化,接受数据需要一直查询接收数据端口,发现高电平时,即刻进入接收数据状态;当出现高电平后,查询等待直到接收端口出现低电平,同时设置一个断点,立刻把位置信息存储起来,通过无线通信单元发送至飞行器。
工作原理:当飞行器进行工作,设置在外部的摄像传感器U2进行工作,通过进行摄像工作,采集信号通过反相器U3输入单片机U1,才是电容C1、电容C2配合晶振管X1和单片机U1组成时钟电路;按钮S1配合电容C3、电阻R1与单片机U1组成复位电路,此时采集信号进行输入,首先进行信号的检测,一个图像的颜色主要分为RGB三种颜色,其他颜色都是在RGB的饱和度的比例,所以首先进行判断采集图像信号的RGB占有量, R分量是否大于G分量和B分量,同时采用 for 循环语句和 if 比较语句,提取颜色特征;其次进行提取二值图像,从而方便提取图像中的信息,二值图像在进行识别时可以增加识别效率,最后和原图进行掩码运算,标出病虫害区域;提取采集图像边缘;通过分析此边缘图像的矩阵,保留图像中为待测对象边缘的对应像素点,然后,对原图中有效像素计算偏导数,得到原图中有效像素的梯度矩阵,最后分析此梯度矩阵得到边缘梯度的匹配标准;其次将病虫信息库进行与图像信号进行匹配,如果匹配符合将匹配信号传输至数据库进行数据库识别,从而识别此病害虫是否造成对种植物的伤害,同时识别信号传输至脉宽控制单元进行信号调制,单片机U1将识别信号转换为脉宽可调的脉冲信号、且通过驱动芯片U5传送至脉宽控制单元,信号通过三极管Q1的发射极输入,此时三极管Q1的导通,通过集成电路U4的2号引脚和6号引脚进行配合电阻R2和可调电阻RV1进行控制脉冲信号的频率,同时二极管D1和二极管D2进行稳定振幅,且调制完成的信号通过电阻R3输出肖特二极管D3配合电容C4进行吸收电路中的杂波,从而通过集成电路U4的3号引脚进行输出,从而三极管Q1的进行导通,从而二极管D4进行导通输出;
脉冲信号通过电容C10、电容C9、电感L1组成的滤波电路输入,将低于工作频率的信号滤除,然后在经三极管Q2配合电阻R5和电阻R6进行前置放大,放大后由电容C8送至发射器U6进行输出;当控制终端的接收器接收到信号式,进行采集信号的处理与解码,同时传输至成像显示单元中的显示器进行进一步的成像和观察。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (10)

  1. 一种基于飞行器的低空扫描病虫害识别系统,其特征在于,包括:
    采集控制单元,利用设置在飞行器外部的摄像部件进行农田内部种植物的病虫害图像采集并进行识别,同时将识别信号进行传输;
    脉宽控制单元,利用 PWM 波进行识别信号输出;
    无线通信单元,利用物联网技术,将飞行器采集的识别信号通过无线技术进行传输至控制终端;
    图像处理单元,利用设置在控制终端上的接收器,进行接收采集信号,并进行采集信号的处理与解码;
    成像显示单元,进行采集信号与显示器进行输出,从而将外部扫描的图像进行成像。
  2. 根据权利要求1所述的一种基于飞行器的低空扫描病虫害识别系统,其特征在于,所述采集控制单元包括:单片机U1、电容C1、晶振管X1、按钮S1、电容C3、电阻R1、摄像传感器U2、反相器U3、驱动芯片U5、电容C10、电容C9、电感L1、电阻R5、电阻R6、三极管Q2、电容C8、电容C11、发射器U6、电容C7;其中,所述单片机U1的19号同时与所述电容C1的一端和所述晶振管X1的1号引脚连接,所述单片机U1的18号同时与所述电容C2的一端和所述晶振管X1的2号引脚连接,所述电容C1的另一端和所述电容C2的另一端连接且接地,所述单片机U1的9号引脚同时与所述按钮S1的一端、所述电容C3的一端和所述电阻R1的一端连接,所述按钮S1的另一端与所述电容C3的一端连接,所述电阻R1的另一端接地,所述单片机U1的1号引脚与所述反相器U3的2号引脚连接,所述反相器U3的1号引脚与所述摄像传感器U2的2号引脚连接,所述摄像传感器U2的3号引脚输入电压,所述摄像传感器U2的1号引脚接地,所述单片机U1的21号引脚与所述驱动芯片U5的5号引脚连接,所述单片机U1的22号引脚与所述驱动芯片U5的7号引脚连接,所述单片机U1的23号引脚与所述驱动芯片U5的10号引脚连接,所述单片机U1的24号引脚与所述驱动芯片U5的12号引脚连接,所述单片机U1的25号引脚与所述驱动芯片U5的6号引脚连接,所述单片机U1的26号引脚与所述驱动芯片U5的11号引脚连接,所述驱动芯片U5的9号引脚与4号引脚连接,所述驱动芯片U5的1号引脚、15号引脚、8号引脚连接且接地,所述驱动芯片U5的2号引脚输出,所述驱动芯片U5的3号引脚输出,所述单片机U1的10号引脚与所述电容C10的一端连接,所述电容C10的另一端同时与所述电容C9的一端和所述电感L1的一端连接,所述电容C9的另一端同时与所述电阻R6的一端和所述三极管Q2的基极连接,所述三极管Q2的集电极同时与所述电容C8的一端和所述电阻R5的一端连接,所述发射器U6的2号引脚与所述电容C8的另一端连接,所述发射器U6的6号引脚与所述电容C7的一端连接,所述三极管Q2的发射极同时与所述电感L1的另一端和所述发射器U6的4号引脚连接、且发射器U6的4号引脚接地,所述电阻R5的另一端同时与所述电阻R6的另一端和所述电容C11的一端连接,所述电容C11的另一端接地,所述发射器U6的3号引脚与所述电容C11的一端连接且输入电压。
  3. 根据权利要求1所述的一种基于飞行器的低空扫描病虫害识别系统,其特征在于,所述脉宽控制单元包括:电阻R4、二极管D4、三极管Q1、电容C4、肖特二极管D3、电阻R3、电阻R2、二极管D1、二极管D2、可调电阻RV1、电容C5,集成电路U4;其中,所述集成电路U4的7号引脚同时与所述电阻R2的一端和所述可调电阻RV1的控制端连接,所述集成电路U4的2号引脚、6号引脚连接且同时与所述二极管D1的负极、所述二极管D2的正极和所述电容C5的一端连接,所述二极管D1的正极与所述电阻R2的另一端连接,所述二极管D2的负极与所述可调电阻RV1的一端连接,所述可调电阻RV1的另一端与所述电阻R3的一端连接,所述集成电路U4的5号引脚与所述电容C6的一端连接,所述集成电路U4的1号引脚同时与所述电容C6的另一端和所述电容C5的另一端连接且接地,所述集成电路U4的3号引脚与所述三极管Q1的基极连接,所述集成电路U4的4号引脚、8号引脚连接且同时与所述电阻R3的另一端和所述肖特二极管D3的负极连接,所述电容C4的一端同时与所述电阻R4的一端和所述肖特二极管D3的负极连接,所述电容C4的另一端与所述肖特二极管D3的正极连接且接地,所述三极管Q1的发射极输入信号且接地,所述三极管Q1的集电极与所述二极管D4的正极连接且输出驱动信号,所述电阻R4的另一端与所述二极管D4的负极连接且输入电压和输出驱动信号。
  4. 根据权利要求1所述的一种基于飞行器的低空扫描病虫害识别系统,其特征在于,单片机U1的型号为AT89C52,驱动芯片U5的型号为L298,集成电路U4的型号为NE555。
  5. 根据权利要求1所述的一种基于飞行器的低空扫描病虫害识别系统,其特征在于,所述图像处理单元通过接收器接收识别信号,通过会利用数据存储模块进行数据的I/O检测,当数据符合存储条件时,进行数据分析,最后进行输出存储,同时进行I/O输出。
  6. 根据权利要求1所述的一种基于飞行器的低空扫描病虫害识别系统,其特征在于,所述成像显示单元包括至少一个显示器。
  7. 一种权利要求2至6任一项所述的基于飞行器的低空扫描病虫害识别系统的方法,其特征在于,当摄像传感器U2进行采集外部图像时,内部会先进行采集信号的识别与匹配,具体步骤如下:
    步骤1、首先通过设置在反飞行器外部的一个或者多个摄像传感器进行工作,从而进行外部农田里的种植物的检测,同时检测信号会进行传输至采集控制单元进行识别匹配;
    步骤2、当采集信号与病虫信息库和问题数据库进行匹配识别完成后,会通过采集控制单元的单片机U1产生脉冲信号,同时脉冲信号通过脉宽控制单元进行脉冲信号宽度调制,从而将信号的变换成高频信号,同时利用发射器进行无线传输。
  8. 根据权利要求7所述的一种基于飞行器的低空扫描病虫害识别系统的方法,其特征在于,根据步骤1指出,当采集信号输入采集控制单元,需要进行信号的预处理,从而可以得出:
    步骤3、采集信号进行输入,首先进行信号的检测,一个图像的颜色主要分为RGB三种颜色,其他颜色都是在RGB的饱和度的比例,所以首先进行判断采集图像信号的RGB占有量, R分量是否大于G分量和B分量,同时采用 for 循环语句和 if 比较语句,提取颜色特征;
    步骤4、提取二值图像,从而方便提取图像中的信息,二值图像在进行识别时可以增加识别效率,最后和原图进行掩码运算,标出病虫害区域;具体步骤如下:
    步骤5、首先,提取采集图像边缘;通过分析此边缘图像的矩阵,保留图像中为待测对象边缘的对应像素点,然后,对原图中有效像素计算偏导数,得到原图中有效像素的梯度矩阵,最后分析此梯度矩阵得到边缘梯度的匹配标准;
    步骤6、其次将病虫信息库进行与图像信号进行匹配,如果匹配符合将匹配信号传输至数据库进行数据库识别,从而识别此病害虫是否造成对种植物的伤害,同时识别信号通过发射器进行无线传输。
  9. 根据权利要求8所述的一种基于飞行器的低空扫描病虫害识别系统的方法,其特征在于,识别信号通过传输至单片机U1,同时单片机U1产生PWM信号,同时将PWM信号传输至脉宽控制单元进行脉冲信号的宽度调制,从而使信号符合传输标准,同时利用发射器进行无线通信传输。
  10. 根据权利要求9所述的一种基于飞行器的低空扫描病虫害识别系统的方法,其特征在于,当控制终端的接收器接收到信号式,进行采集信号的处理与解码,同时传输至成像显示单元中的显示器进行进一步的成像和观察。
PCT/CN2020/105071 2020-07-22 2020-07-28 一种基于飞行器的低空扫描病虫害识别系统及其方法 WO2022016568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010711249.9A CN111866462B (zh) 2020-07-22 2020-07-22 一种基于飞行器的低空扫描病虫害识别系统及其方法
CN202010711249.9 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022016568A1 true WO2022016568A1 (zh) 2022-01-27

Family

ID=72949195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105071 WO2022016568A1 (zh) 2020-07-22 2020-07-28 一种基于飞行器的低空扫描病虫害识别系统及其方法

Country Status (2)

Country Link
CN (1) CN111866462B (zh)
WO (1) WO2022016568A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915462A (zh) * 2017-02-14 2017-07-04 福建兴宇信息科技有限公司 基于多源影像信息的林业病虫害智能识别系统
CN106951447A (zh) * 2017-02-18 2017-07-14 赣南师范大学 一种智慧农业病虫害远程自动诊断系统
CN108279678A (zh) * 2018-02-24 2018-07-13 浙江大学 一种用于检测植株生长状况的田间自动行走装置及其行走控制方法
CN108622412A (zh) * 2018-05-08 2018-10-09 苏州农业职业技术学院 一种植保无人机系统
CN109387516A (zh) * 2018-11-19 2019-02-26 宁夏农林科学院农业经济与信息技术研究所(宁夏农业科技图书馆) 枸杞种植田间虫害自动监测预警站
US20190220964A1 (en) * 2018-01-15 2019-07-18 The Boeing Company System and method for monitoring crops

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8855374B2 (en) * 2011-07-05 2014-10-07 Bernard Fryshman Insect image recognition and instant active response
CN104330410B (zh) * 2014-11-04 2015-11-25 南通宏大机电制造有限公司 位于无人机上的作物病虫害检测系统
CN108462855A (zh) * 2017-12-08 2018-08-28 四川瑞进特科技有限公司 一种可实时观测杀虫状况的杀虫灯远程视频监测系统
CN108298079A (zh) * 2017-12-15 2018-07-20 成都优力德新能源有限公司 一种带彩色水稻虫害图像识别仪消灭稻飞虱的无人机
CN109245638A (zh) * 2018-10-11 2019-01-18 上海四横电机制造有限公司 一种多路步进电机驱动电路
CN109406517A (zh) * 2018-11-09 2019-03-01 江苏穿越金点信息科技股份有限公司 一种农业大棚的病虫害诊断系统
CN110663657A (zh) * 2019-10-29 2020-01-10 河南汇纳科技有限公司 一种基于物联网的农作物害虫智能监测预警系统
CN210518328U (zh) * 2019-11-18 2020-05-12 江苏久高电子科技有限公司 一种用于卫星通信的频率电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915462A (zh) * 2017-02-14 2017-07-04 福建兴宇信息科技有限公司 基于多源影像信息的林业病虫害智能识别系统
CN106951447A (zh) * 2017-02-18 2017-07-14 赣南师范大学 一种智慧农业病虫害远程自动诊断系统
US20190220964A1 (en) * 2018-01-15 2019-07-18 The Boeing Company System and method for monitoring crops
CN108279678A (zh) * 2018-02-24 2018-07-13 浙江大学 一种用于检测植株生长状况的田间自动行走装置及其行走控制方法
CN108622412A (zh) * 2018-05-08 2018-10-09 苏州农业职业技术学院 一种植保无人机系统
CN109387516A (zh) * 2018-11-19 2019-02-26 宁夏农林科学院农业经济与信息技术研究所(宁夏农业科技图书馆) 枸杞种植田间虫害自动监测预警站

Also Published As

Publication number Publication date
CN111866462A (zh) 2020-10-30
CN111866462B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN108693119B (zh) 基于无人机高光谱遥感的病虫害智能察打系统
CN108684282B (zh) 一种农业察打一体机系统及喷洒控制方法
CN104035412A (zh) 一种基于无人机的农作物病虫害监测系统和方法
CN110110595A (zh) 一种基于卫星遥感影像的农田画像及药肥大数据分析方法
CN104778686B (zh) 一种基于病斑监测的组培预警方法
CN107807125A (zh) 基于无人机载多光谱传感器的植物信息计算系统及方法
CN104764533A (zh) 基于无人机图像采集和红外热像仪的智能农业系统
CN110163138A (zh) 一种基于无人机多光谱遥感图像的小麦分蘖密度测算方法
CN103336966A (zh) 一种应用于农业智能机械的杂草图像辨识方法
CN112166911B (zh) 一种快速病虫害精准检测施药系统和方法
CN109832246A (zh) 一种基于北斗导航的植保无人机数据综合采集系统
CN111045467B (zh) 一种基于物联网的智能农业机械控制方法
CN107347849B (zh) 一种基于高光谱实时探测技术的智能喷洒系统
CN110187653A (zh) 一种基于LoRa分层传输的农作物病虫害监测系统及操作方法
CN115661647A (zh) 一种树木栽种生长状况的定时巡检方法
CN216351838U (zh) 一种农作物监测系统
CN110602179A (zh) 一种基于NB-IoT的农业数据采集系统
CN107678372A (zh) 基于物联网农业病虫害智能监控的自动喷药机
WO2022016568A1 (zh) 一种基于飞行器的低空扫描病虫害识别系统及其方法
US20170249733A1 (en) System and method for efficient identification of developmental anomalies
CN113377062A (zh) 一种具有病虫害和旱情监控的多功能预警系统
CN208095182U (zh) 一种农业察打一体机系统
CN116616267A (zh) 一种农作物病虫害防治的装置和方法
CN216596050U (zh) 大棚设施农作物生长环境因子监控系统
CN115753631A (zh) 一种基于遥感技术的病虫害监测报警系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-03-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20946269

Country of ref document: EP

Kind code of ref document: A1