CN108684282B - 一种农业察打一体机系统及喷洒控制方法 - Google Patents

一种农业察打一体机系统及喷洒控制方法 Download PDF

Info

Publication number
CN108684282B
CN108684282B CN201810322070.7A CN201810322070A CN108684282B CN 108684282 B CN108684282 B CN 108684282B CN 201810322070 A CN201810322070 A CN 201810322070A CN 108684282 B CN108684282 B CN 108684282B
Authority
CN
China
Prior art keywords
spraying
data
model
plant
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810322070.7A
Other languages
English (en)
Other versions
CN108684282A (zh
Inventor
孙盈蕊
刘龙
宫华泽
陈祺
田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Maifei Technology Co ltd
Original Assignee
Beijing Maifei Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Maifei Technology Co ltd filed Critical Beijing Maifei Technology Co ltd
Priority to CN201810322070.7A priority Critical patent/CN108684282B/zh
Publication of CN108684282A publication Critical patent/CN108684282A/zh
Application granted granted Critical
Publication of CN108684282B publication Critical patent/CN108684282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/04Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
    • A01C23/047Spraying of liquid fertilisers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/007Metering or regulating systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0003Atomisers or mist blowers
    • A01M7/0014Field atomisers, e.g. orchard atomisers, self-propelled, drawn or tractor-mounted
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/194Terrestrial scenes using hyperspectral data, i.e. more or other wavelengths than RGB
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Environmental Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Insects & Arthropods (AREA)
  • Soil Sciences (AREA)
  • Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Water Supply & Treatment (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Catching Or Destruction (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种农业察打一体机系统及喷洒控制方法,包括无人机机体、监测系统、喷洒系统、飞行控制系统,飞行控制系统包括数据传输接口、处理器和数据接收装置,处理器包括数据预处理模块以及喷洒量计算模块,喷洒量计算模块预置有喷洒量计算模型,喷洒量计算模型的因变量为喷洒量,自变量为喷洒等级,喷洒量计算模块用于根据喷洒等级和喷洒量计算模型计算得到喷洒量,喷洒控制模块用于根据喷洒量控制喷洒系统进行喷洒。本发明将监测系统、飞行控制系统以及喷洒系统集成再同一无人机机体上,可以在监测的同时实时计算出喷洒量,并进行精准的喷洒,可以节约农药或肥料,减少环境污染。

Description

一种农业察打一体机系统及喷洒控制方法
技术领域
本发明涉及农作物植保技术领域,更具体地,涉及一种农业察打一体机系统及喷洒控制方法。
背景技术
当前较为先进的农业植保法主要分两种方式:
第一种是应用最为广泛的人机植保法,首先农基人员要去现场进行实地监测调查,确定农田是否有病虫害,是否缺水或缺肥等状况。然后基于农基人员的指导,无人机植保队再利用无人机进行大面积的施肥或施药。然而多次,大面积的人工实地监测不仅费时费力而且调查覆盖度不高;而且农药、肥料喷洒的量往往是在飞机飞行前就设定好,是一个固定的量,但整个地块作物生长状况不一样,有些地方缺肥或有病虫害,但有些地方却是健康的,如果整个地块都按一个量来喷洒,势必会造成农药和肥料的浪费以及对环境的污染。
第二种是更为先进的无人机监测和无人机植保法,这种方法首先利用无人监测机监测农田生长状况,生成农田生长状况监测数据和监测图,从而精准探测出田块中各个地点的病虫害,含水量以及施肥情况。植保队再根据农田生长状况监测数据针对不同严重程度的地点进行施肥或施药。但是,上述方法需要不同类型的无人机进行非同步作业,造成了时间空间上的信息脱节,很可能在植保无人机作业时害虫的位置已经发生了变化,很大程度上影响了施药的准确性。
因此,亟待提供一种农业察打一体机系统和农业察打一体实时喷洒控制方法,以提升施肥或施药的精准性。
发明内容
有鉴于此,本发明提供了一种农业察打一体机系统和农业察打一体实时喷洒控制方法,解决了现有技术中施肥或施药的精准性降低的技术问题。
为了解决上述技术问题,本发明提出一种农业察打一体机系统及方法。
该农业察打一体机系统,包括:
无人机机体;
监测系统,所述监测系统包括高光谱遥感监测仪,所述高光谱遥感监测仪用于获取农田内植株的高光谱数据,其中,所述高光谱数据包括多个波段的光谱数据;
喷洒系统,所述喷洒系统包括水泵、储液桶和喷头;
飞行控制系统,所述飞行控制系统包括数据传输接口、处理器和数据接收装置,其中:
所述数据传输接口与所述高光谱遥感监测仪和所述处理器分别相连接,用于将所述高光谱数据传输至所述处理器;
所述数据接收装置与所述处理器相连接,用于接收预处理条件信息并输入至所述处理器,其中,所述预处理条件信息包括农田植物品种信息、农田植物种植方式信息、农田植物生育时期信息和/或待喷洒药肥信息;
所述处理器包括:
数据预处理模块,预置有所述预处理条件信息与敏感波段的对应关系,所述数据预处理模块用于从所述多个波段的光谱数据中选择出与接收到所述预处理条件信息相对应的敏感波段的光谱数据,得到预处理后的高光谱数据;
喷洒等级计算模块,预置有神经网络喷洒模型,所述神经网络喷洒模型的输入向量为所述高光谱数据,输出向量为喷洒等级,所述喷洒等级计算模块用于将所述预处理后的高光谱数据输入所述神经网络喷洒模型,以得到所述喷洒等级;
喷洒量计算模块,预置有喷洒量计算模型,所述喷洒量计算模型的因变量为喷洒量,自变量为所述喷洒等级,所述喷洒量计算模块用于根据所述喷洒等级和所述喷洒量计算模型计算得到所述喷洒量,其中,所述喷洒量为单位时间内喷头喷出的农药或肥料液体的体积;
喷洒控制模块,用于根据所述喷洒量控制喷洒系统进行喷洒。
进一步地,所述监测系统还包括:高清成像仪,用于获取样本农田植株的高清图像;
所述高光谱遥感监测仪还用于获取所述样本农田内植株的高光谱数据,得到样本高光谱数据;
所述农业察打一体机系统还包括图像识别模块和模型构建模块,其中:
所述图像识别模块用于采用支持向量机对所述高清图像进行识别,得到植物生长信息,其中,所述植物生长信息包括病斑面积比、枯叶率、植物叶子形状、植物叶子颜色、植物穗子形状、病斑形状、病斑颜色、植物倒伏信息和/或植物纹理分布规律,所述植物生长信息用于确定所述高清图像对应的样本喷洒等级;
所述模型构建模块用于以所述样本高光谱数据为输入,以所述样本喷洒等级为输出,对神经网络模型进行训练,得到所述神经网络喷洒模型。
进一步地,所述神经网络喷洒模型包括作物病虫害模型和作物肥料模型,其中,所述作物病虫害模型的输出向量为农药的喷洒等级,所述作物肥料模型的输出向量为肥料的喷洒等级。
进一步地,所述喷洒量计算模型如下:
Q=Max*Y,其中,当1<=X<=4时,Y=0.25*(X-1),当X=5时,Y=1,其中,Q为所述喷洒量,X为所述喷洒等级,Y为喷洒比率。
进一步地,所述处理器还包括飞行控制模块,其中,所述飞行控制模块用于控制所述无人机机体按照预定高度和预定飞行速度匀速飞行。
进一步地,所述数据传输接口为RS232串口。
进一步地,获取农田内植株的高光谱数据,其中,所述高光谱数据包括多个波段的光谱数据;
接收预处理条件信息,其中,所述预处理条件信息包括农田植物品种信息、农田植物种植方式信息、农田植物生育时期信息和/或待喷洒药肥信息;
根据预置的所述预处理条件信息与敏感波段的对应关系,从所述多个波段的光谱数据中选择出与接收到所述预处理条件信息相对应的敏感波段的光谱数据,得到预处理后的高光谱数据;
将所述预处理后的高光谱数据输入预置的神经网络喷洒模型,以得到喷洒等级,其中,所述神经网络喷洒模型的输入向量为所述高光谱数据,输出向量为所述喷洒等级;
根据所述喷洒等级和喷洒量计算模型计算得到喷洒量,其中,所述喷洒量计算模型的因变量为所述喷洒量,自变量为所述喷洒等级,所述喷洒量为喷洒量为单位时间内喷头喷出的农药或肥料的液体体积;
根据所述喷洒量控制喷洒系统进行喷洒。
进一步地,在获取农田内植株的高光谱数据之前,所述方法还包括:
获取样本农田植株的高清图像;
获取所述样本农田内植株的高光谱数据,得到样本高光谱数据;
采用支持向量机对所述高清图像进行识别,得到植物生长信息,其中,所述植物生长信息包括病斑面积比、枯叶率、植物叶子形状、植物叶子颜色、植物穗子形状、病斑形状、病斑颜色、植物倒伏信息和/或植物纹理分布规律;
根据所述植物生长信息确定所述高清图像对应的样本喷洒等级;
以所述样本高光谱数据为输入,以所述样本喷洒等级为输出,对神经网络模型进行训练,得到所述神经网络喷洒模型。
进一步地,所述喷洒量计算模型如下:
Q=Max*Y,其中,当1<=X<=4时,Y=0.25*(X-1),当X=5时,Y=1,其中,Q为所述喷洒量,X为所述喷洒等级,Y为喷洒比率。
进一步地,所述方法还包括:
在控制喷洒系统进行喷洒时,控制所述无人机机体按照预定高度和预定飞行速度匀速飞行。
与现有技术相比,本发明,实现了如下的有益效果:
一、本发明将监测系统、飞行控制系统以及喷洒系统集成在同一无人机机体上,可以在监测的同时实时计算出农药或农肥等的喷洒量,并进行精准的喷洒,可以节约农药或肥料,减少环境污染;
二、本发明采用高光谱遥感监测仪对农作物的高光谱信息进行采集,将采集到的高光谱数据经过数据预处理模块处理后筛选出最能反应作物生长信息的敏感波段的高光谱数据,在保证准确识别的前提下最大程度的减少数据处理量,加快处理速度,提高实时性。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为本发明实施例提供的一种农业察打一体机系统的原理框图;
图2为本发明实施例提供的农业察打一体机系统的处理器的原理框图;
图3为本发明实施例提供的另一种农业察打一体机系统的原理框图;
图4为本发明实施例提供的农业察打一体实时喷洒控制方法流程图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
实施例1
本实施例提供了一种农业察打一体机系统,能够利用无人机对农田中的农作物进行监测,并同时施药或施肥,根据监测系统实时监测到的农田信息,计算出所需的农药或肥料的喷洒量,从而针对性的对农作物进行施药或施肥,使得施肥和施药更实时更精准,减少农药或肥料的浪费,同时减少了环境污染,解放了劳动力,提高了工作效率。图1为本发明实施例1提供的农业察打一体机系统的原理框图,图2为本发明实施例1提供的农业察打一体机系统的处理器的原理框图,如图1和图2,该系统包括:
无人机机体(图中未示出),用于搭载监测系统10以及喷洒系统30,对农田中的农作物进行监测和喷洒肥料/农药。无人机可采用现有技术中的植保无人机,只需将各模块集成到现有的植保无人机上即可,节省成本。
监测系统10,监测系统10包括高光谱遥感监测仪101,高光谱遥感监测仪101集成在无人机机体上,用于获取农田内植株的高光谱数据,其中,高光谱数据包括多个波段的光谱数据;高光谱遥感监测仪101可采用机载高光谱成像仪,例如SOC710GX机载高光谱成像光谱仪,其体积小、重量轻、安装简单、光学性能和稳定性高,光谱范围覆盖400-1000nm,适于无人机和小型飞行器上安装应用。
喷洒系统30,喷洒系统30包括水泵302、储液桶303和喷头301;储液桶303固定设置在无人机机体上,储液桶303用储存农药或肥料。水泵302的进液口伸入储液桶303内,水泵302的出液口连接喷头301,当水泵302工作时可以将储液桶303内的农药或肥料输送到喷头301喷出,达到自动喷洒的效果,可以节省人力,提高工作效率。其中水泵302可以采用DC30系列、DC40系列或DC50系列的水泵,上述系列水泵的尺寸在3CM-5CM之间,重量轻,便于安装。
飞行控制系统20,飞行控制系统20包括数据传输接口203、处理器201和数据接收装置202,其中数据传输接口203为RS232串口,分别与高光谱遥感监测仪101和处理器201相连接,用于将高光谱数据传输至处理器201。
数据接收装置202与处理器201相连接,用于接收预处理条件信息并输入至处理器201,其中,预处理条件信息包括农田植物品种信息、农田植物种植方式信息、农田植物生育时期信息和/或待喷洒药肥信息。数据接收装置202通过有线或无线方式接收外部信息,在无人机作业之前,用户需要根据当前田中农作物的种类以及生长时期,通过数据接收装置202将预处理条件信息输入至处理器201,此外数据接收装置202还设置有硬件或软件形成的模式切换按钮,用于控制喷洒系统30在喷洒农药和喷洒肥料之间切换。
具体的,在一种具体地实施例中,数据接收装置202上设置有人机交互界面,人机交互界面上设置有控制按钮,该控制按钮包括作物品种选择按钮和作物生长时期按钮,作物品种选择按钮可以包括小麦、玉米、水稻、棉花等,用户根据田中待作业的农作物品种,通过作物品种选择按钮进行农作物品种的选择。作物生长时期按钮用于划分农作物所处的不同生长阶段,例如将某种农作物的生长时期按照先后顺序分为第一阶段至第五阶段,即具有五个生长时期按钮,用户根据当前农作物的生长时期选择生长时期按钮。
处理器201包括:
数据预处理模块2011,预置有预处理条件信息与敏感波段的对应关系,由于高光谱遥感监测仪101监测到的高光谱数据具有上千个波段的光谱数据,数据处理量较大,而上千个波段的光谱数据中,依据农作物品种以及生长时期的不同,对应的敏感波段也不同,而对于某确定的农作物品种以及生长时期,敏感波段的光谱数据相对其他波段的光谱数据,的识别度最高,最能体现作物生长状态有效性更好,因此,首先通过实验和经验确定出不同的预处理条件信息与敏感波段的对应关系,在实际监测施药或施肥的过程中,数据预处理模块2011从上千个波段的光谱数据中筛选出与接收到预处理条件信息相对应的若干个敏感波段的光谱数据,得到预处理后的高光谱数据,从而大大地减轻了系统的工作量,提高了光谱数据的处理速度。例如,小麦在处于某一时期时的光谱数据中,最能体现小麦生长状态的光谱数据是第m和第n个波段的光谱数据,用户在控制按钮上输入小麦以及第几阶段时,数据接收装置202将小麦以及其生长时期的信息输入处理器201,数据预处理模块2011在接收到高光谱遥感监测仪101采集到的高光谱遥感数据后,从其中筛选出小麦在第m和第n个波段对应的高光谱数据,在保证对作物的生长状态能够准确识别的前提下,最大程度的降低处理器201的工作量,加快数据处理速度。
喷洒等级计算模块2012,预置有神经网络喷洒模型,神经网络喷洒模型包括作物病虫害模型和作物肥料模型,其中,作物病虫害模型的输入向量为高光谱数据,输出向量为农药的喷洒等级;作物肥料模型的输入向量为高光谱数据,输出向量为肥料的喷洒等级。
当数据预处理模块2011将预处理后的高光谱数据输入到喷洒等级计算模块2012后,神经网络喷洒模型得出相应的喷洒等级。例如,将作物的病虫害程度分为一到五,共五个等级,每个等级分别对应一个喷洒等级,并且每个等级由低到高所对应的喷洒量逐级增,当预处理后的光谱数据输入神经网络模型后,神经网络模型识别到当前作物的病虫害程度严重,输出喷洒等级为五极,即表示当前作物需要喷洒的药量为最大药量。
喷洒量计算模块2013,预置有喷洒量计算模型,喷洒量计算模型的因变量为喷洒量,自变量为喷洒等级,喷洒量计算模块2013用于根据喷洒等级和喷洒量计算模型计算得到所述喷洒量,其中,喷洒量为单位时间内喷头301喷出的农药或肥料的体积,具体可以通过控制水泵302的功率控制喷洒量,即控制水泵302工作的电压即可;也可以通过控制水泵302的工作时间控制喷洒量。
具体的,喷洒量计算模型如下:
Q=Max*Y,其中,当1<=X<=4时,Y=0.25*(X-1),当X=5时,Y=1,其中,Q为所述喷洒量,X为所述喷洒等级,Y为喷洒比率。
例如,当无人机飞至某一区域时,高光谱遥感监测仪101采集到该区域的高光谱信息数据,处理器201接收到高光谱信息数据后识别该区域的喷洒等级为3,(即X=3时),通过药量转化公式得出Y=0.25*2=0.5,Q=Max*0.5=0.5Max,即该区域实际投加药量为最大药量的一半;当无人机飞至下一区域,并监测到下一区域的喷洒等级为5(即X=5时),通过药量转化公式得出Q=Max,即该区域实际需要投加的药量为最大药量Max,从而实现对不同区域的农作物根据其病害等级针对性施药的效果,减少了农药的浪费。
飞行控制模块,飞行控制模块用于控制所述无人机机体按照预定高度和预定飞行速度匀速飞行。
喷洒控制模块2014,为喷洒系统30的控制终端,用于根据喷洒量控制喷洒系统30进行喷洒。
该系统将高光谱遥感监测与药量计算以及喷洒集成在同一无人机机体上,通过高光谱数据来确定喷洒量,相比直接通过机器视觉图片来确定喷洒量,数据处理量小,实时性高,利于实现边飞边看,边看边作业的效果,能够根据实时监测到的农作物生长情况实时施药或施肥,提高施药或施肥的精准性,减少了人力成本,提高了工作效率,同时,在确定喷洒等级时,对高光谱数据进行了敏感波段的筛选,进一步减小数据处理量,提升实时性。
实施例2
本实施例在实施例1的基础上,提供了一种优选的农业察打一体机系统,相关之处可参考上述实施例1的描述,具体地,图3为本发明实施例提供的另一种农业察打一体机系统的原理框图,如图1、图2和图3所示,该系统包括:
无人机机体(图中未示出),用于搭载监测系统10以及喷洒系统30,对农田中的农作物进行监测和喷洒肥料/农药。无人机可采用现有技术中的植保无人机,只需将各模块集成到现有的植保无人机上即可,节省成本。
监测系统10,监测系统10包括高光谱遥感监测仪101,高光谱遥感监测仪101集成在无人机机体上,用于获取农田内植株的高光谱数据,其中,高光谱数据包括多个波段的光谱数据。监测系统10还包括高清成像仪102,用于获取样本农田植株的高清图像,每帧高清图像表征预定单位面积内农田植株的生长情况。
图像识别模块40,图像识别模块40采用支持向量机对高清图像进行识别,得到植物生长信息,其中,植物生长信息包括病斑面积比、枯叶率、植物叶子形状、植物叶子颜色、植物穗子形状、病斑形状、病斑颜色、植物倒伏信息和/或植物纹理分布规律,其中,病斑面积比指的是高清图像表征的单位面积内病斑所占的比例,枯叶率指的是高清图像表征的单位面积内枯叶所占的比例。支持向量机(SVM)算法可以自动检测图像中作物的病斑面积比、枯叶率、叶子穗子形状等植物生长信息,在确定植物生长信息后,根据经验确定出所述高清图像对应的样本喷洒等级。
模型构建模块50,模型构建模块50用于以样本高光谱数据为输入,以样本喷洒等级为输出,对神经网络模型进行训练,得到神经网络喷洒模型。具体的,在构建神经网络模型的训练样本时,无人机通过高光谱遥感监测仪101和高清成像仪102同时对样本农田内的农作物的生长情况进行监测,获得的大量的高光谱数据作为样本高光谱数据,同时,获得的大量的与样本高光谱数据相对应的高清图像。
图像识别模块40对高清图像进行识别,识别到作物的生长信息后,根据以往的大量病虫害实验得出的大数据以及农学专家鉴定,基于每张高清图像所反应的作物的生长信息,得出每张高清图像所对应的喷洒等级,其中,喷洒等级包括农药喷洒等级以及肥料喷洒等级,本实施例中将喷洒等级划分为五个等级(1-5等级越高所需的药量或肥量越高),在得到高清图像与喷洒等级的对应关系后,以与高清图像所对应的样本高光谱数据作为训练集中的输入向量,以喷洒等级作为训练集中的输出向量,对神经网络模型进行样本训练,构建出神经网络喷洒模型。在实际作业时,无需高清成像仪102工作,只需采集高光谱数据,即可通过神经网络喷洒模型准确、快速的计算出喷洒等级。
飞行控制系统20,飞行控制系统20包括数据传输接口203、处理器201和数据接收装置202,其中数据传输接口203可以为S232串口,分别与高光谱遥感监测仪101和处理器201相连接,用于将高光谱数据传输至处理器201,数据传输稳定性好且速度快。
数据接收装置202与处理器201相连接,用于接收预处理条件信息并输入至处理器201,其中,预处理条件信息包括农田植物品种信息、农田植物种植方式信息、农田植物生育时期信息和/或待喷洒药肥信息。
处理器201包括:
数据预处理模块2011,预置有预处理条件信息与敏感波段的对应关系,由于高光谱遥感监测仪101监测到的高光谱数据具有上千个波段的光谱数据,数据处理量较大,而上千个波段的光谱数据中,依据农作物品种以及生长时期的不同,对应的敏感波段也不同,而对于某确定的农作物品种以及生长时期,敏感波段的光谱数据相对其他波段的光谱数据的识别度最高,最能体现作物生长状态,有效性更好,因此,首先通过实验和经验确定出不同的预处理条件信息与敏感波段的对应关系,在实际监测施药或施肥的过程中,数据预处理模块2011从上千个波段的光谱数据中筛选出与接收到预处理条件信息相对应的若干个敏感波段的光谱数据,得到预处理后的高光谱数据,从而大大地减轻了系统的工作量,提高了光谱数据的处理速度。例如,小麦在处于某一时期时的光谱数据中,最能体现小麦生长状态的光谱数据是第m和第n个波段的光谱数据,用户在控制按钮上输入小麦以及第几阶段时,数据接收装置202将小麦以及其生长时期的信息输入处理器201,数据预处理模块2011在接收到高光谱遥感监测仪101采集到的高光谱遥感数据后从其中筛选出小麦在第m和第n个波段对应的高光谱数据,在保证对作物的生长状态能够准确识别的前提下,最大程度的降低处理器201的工作量,加快数据处理速度。
喷洒等级计算模块2012,预置有神经网络喷洒模型,神经网络喷洒模型包括作物病虫害模型和作物肥料模型,其中,作物病虫害模型的输入向量为高光谱数据,输出向量为农药的喷洒等级;作物肥料模型的输入向量为高光谱数据,输出向量为肥料的喷洒等级。当数据预处理模块2011将预处理后的高光谱数据输入到喷洒等级计算模块2012后,神经网络喷洒模型可以得出相应的喷洒等级。
喷洒量计算模块2013,预置有喷洒量计算模型,喷洒量计算模型的因变量为喷洒量,自变量为喷洒等级,喷洒量计算模块2013用于根据喷洒等级和喷洒量计算模型计算得到所述喷洒量,其中,喷洒量为单位时间内喷头301喷出的液体量,具体可以通过控制水泵302的功率控制喷洒量,即控制水泵302工作的电压即可;也可以通过控制水泵302的工作时间控制喷洒量。
喷洒系统30,喷洒系统30包括水泵302、储液桶303和喷头301;储液桶303固定设置在无人机机体上,储液桶303用储存农药或肥料,并且储液桶303每次只能储存农药和肥料中的一种。水泵302的进液口伸入药桶内,水泵302的出液口连接喷头301,当水泵302工作时可以将储液桶303内的农药或肥料输送到喷头301喷出,达到自动喷洒的效果,可以节省人力,提高工作效率。
采用该实施例提供的农业察打一体机系统,在建立神经网络喷洒模型时,基于高清图像反应的作物生长信息划分喷洒等级,神经网络喷洒模型一方面直接建立起高光谱数据与喷洒等级的关系,保证对喷洒量进行计算的速度满足边飞边作业的要求,另一方面,神经网络喷洒模型实质上反应的是高光谱数据与高清图像的关系,使得确定出的喷洒等级的准确性更高。
实施例3
本实施例提出了一种农业察打一体实时喷洒控制方法,实现植保无人机对作物生长信息的监测与喷洒作业同步进行的效果,具体的,图4为本发明实施例提供的农业察打一体实时喷洒控制方法流程图,如图4所示(可同时参照图1至图3),该实施例提供的农业察打一体实时喷洒控制方法包括以下步骤:
S101:获取样本农田植株的高清图像;
具体的,采用高清成像仪102对农田植株的图像进行采集,高清成像仪102固定设置在无人机机体上。
S102:获取所述样本农田内植株的高光谱数据,得到样本高光谱数据;
具体的,在采用高清成像仪102进行图像采集的同时,采用高光谱遥感监测仪101获得农田内植株的高光谱数据,高光谱遥感监测仪101可采用机载高光谱成像仪,例如SOC710GX机载高光谱成像光谱仪,其体积小、重量轻、安装简单、光学性能和稳定性高,光谱范围覆盖400-1000nm,适于无人机和小型飞行器上安装应用。
S103:采用支持向量机对所述高清图像进行识别,得到植物生长信息;
其中,所述植物生长信息包括病斑面积比、枯叶率、植物叶子形状、植物叶子颜色、植物穗子形状、病斑形状、病斑颜色、植物倒伏信息和/或植物纹理分布规律。
S104:根据所述植物生长信息确定所述高清图像对应的样本喷洒等级;
具体的,根据以往的大量病虫害实验得出的遥感大数据以及农学专家的鉴定,根据植物生长信息得出高清图像所对应的样本喷洒等级。其中喷洒等级包括农药喷洒等级以及肥料喷洒等级,本实施例中将喷洒等级划分为五个等级(1-5等级越高所需的药量或肥量越高)。
S105:以所述样本高光谱数据为输入,以所述样本喷洒等级为输出,对神经网络模型进行训练,得到所述神经网络喷洒模型;
在得到高清图像与喷洒等级的对应关系后,以与高清图像所对应的样本高光谱数据作为训练集中的输入向量,以喷洒等级作为训练集中的输出向量,对神经网络模型进行样本训练,从而提高处理器201的识别速度以及计算速度,保证无人机在飞行的同时可以迅速将喷洒等级计算出来,实现监测与喷洒同时进行。
S106:获取农田内植株的高光谱数据;
其中,所述高光谱数据包括多个波段的光谱数据,可选地,包括1024个波段的光谱数据。
S107:接收预处理条件信息;
其中,所述预处理条件信息包括农田植物品种信息、农田植物种植方式信息、农田植物生育时期信息和/或待喷洒药肥信息,在该步骤中,数据接收装置202通过有线或无线方式接收外部信息,在无人机作业之前,用户需要根据当前田中农作物的种类以及生长时期,通过数据接收装置202将预处理条件信息输入至处理器201。
此外数据接收装置202还还设置有硬件或软件形成的模式切换按钮,用于控制喷洒系统30在喷洒农药和喷洒肥料之间切换。
具体的,在一种具体地实施例中,数据接收装置202上设置有人机交互界面,人机交互界面上设置有控制按钮,该控制按钮包括作物品种选择按钮和作物生长时期按钮,作物品种选择按钮可以包括小麦、玉米、水稻、棉花等,用户根据田中带作业的农作物品种选择相对应的作物选择按钮。作物生长时期按钮用于划分农作物所处的不同生长阶段,例如将某种农作物的生长时期按照先后顺序分为第一阶段至第五阶段,即具有五个生长时期按钮,用户根据当前农作物的生长时期选择作物生长时期按钮。
S108:根据预置的所述预处理条件信息与敏感波段的对应关系,从所述多个波段的光谱数据中选择出与接收到所述预处理条件信息相对应的敏感波段的光谱数据,得到预处理后的高光谱数据;
由于高光谱遥感监测仪101监测到的高光谱数据具有上千个波段的光谱数据,数据处理量较大,而上千个波段的光谱数据中,依据农作物品种以及生长时期的不同,对应的敏感波段也不同,而对于某确定的农作物品种以及生长时期,敏感波段的光谱数据相对其他波段的光谱数据的识别度最高,最能体现作物生长状态有效性更好,因此,首先通过实验和经验确定出不同的预处理条件信息与敏感波段的对应关系,在实际监测施药或施肥的过程中,数据预处理模块2011从上千个波段的光谱数据中筛选出与接收到预处理条件信息相对应的若干个敏感波段的光谱数据,得到预处理后的高光谱数据,从而大大地减轻了系统的工作量,提高了光谱数据的处理速度。
S109:将所述预处理后的高光谱数据输入预置的神经网络喷洒模型,以得到喷洒等级;
其中,所述神经网络喷洒模型的输入向量为所述高光谱数据,输出向量为所述喷洒等级,其中,神经网络喷洒模型包括作物病虫害模型和作物肥料模型,作物病虫害模型的输入向量高光谱数据,输出向量为农药的喷洒等级;作物肥料模型的输入向量高光谱数据,输出向量为肥料的喷洒等级。在得到作物的生长信息与喷洒等级的对应关系后,以作物的生长信息与喷洒等级的对应关系作为训练集,以样本高光谱数据为输入,喷洒等级为输出进行大量的样本训练,从而提高处理器201的识别速度以及计算速度。在神经网络喷洒模型构建完毕后,无人机即可进行植保作业,作业时无需高清成像仪102工作,只需采集高光谱数据即可准确、快速的计算出喷洒等级。
S110:根据所述喷洒等级和喷洒量计算模型计算得到喷洒量;
其中,所述喷洒量计算模型的因变量为所述喷洒量,自变量为所述喷洒等级,所述喷洒量为单位时间内喷头301喷出的农药或肥料的体积;具体的,喷洒量计算模型如下:
Q=Max*Y,其中,当1<=X<=4时,Y=0.25*(X-1),当X=5时,Y=1,其中,Q为所述喷洒量,X为所述喷洒等级,Y为喷洒比率。
S111:根据所述喷洒量控制喷洒系统30进行喷洒。
具体可以通过控制水泵302的功率控制喷洒量,即控制水泵302工作的电压即可;也可以通过控制水泵302的工作时间控制喷洒量。
该方法采用大量的样本高光谱数据结合高清图像与喷洒等级的对应关系进行神经网络训练,得到神经网络喷洒模型,可以提高飞行控制系统对高光谱数据的处理速度和准确度,在神经网络喷洒模型构建完毕后无需使用高清成像仪,直接采用高光谱遥感监测仪采集农田植株的高光谱数据,对采集到的高光谱数据进行预处理后输入神经网络喷洒模型可以直接得出喷洒等级,从而控制喷洒系统进行精准的喷洒,区别于现有技术中的对高清图像进行分析并计算病害程度的方法,本发明提供的方法大大降低了数据处理量,提高了处理速度以及精确度,可以保证无人机在飞行监测的同时实时计算出喷洒等级并进行同步喷洒。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

1.一种农业察打一体机系统,其特征在于,包括:
无人机机体;
监测系统,所述监测系统包括高光谱遥感监测仪,所述高光谱遥感监测仪用于获取农田内植株的高光谱数据,其中,所述高光谱数据包括多个波段的光谱数据;
喷洒系统,所述喷洒系统包括水泵、储液桶和喷头;
飞行控制系统,所述飞行控制系统包括数据传输接口、处理器和数据接收装置,其中:
所述数据传输接口与所述高光谱遥感监测仪和所述处理器分别相连接,用于将所述高光谱数据传输至所述处理器;
所述数据接收装置与所述处理器相连接,用于接收预处理条件信息并输入至所述处理器,其中,所述预处理条件信息包括农田植物品种信息、农田植物种植方式信息、农田植物生育时期信息和待喷洒药肥信息;
所述处理器包括:
数据预处理模块,预置有所述预处理条件信息与敏感波段的对应关系,所述数据预处理模块用于从所述多个波段的光谱数据中选择出与接收到所述预处理条件信息相对应的敏感波段的光谱数据,得到预处理后的高光谱数据;
喷洒等级计算模块,预置有神经网络喷洒模型,所述神经网络喷洒模型的输入向量为所述预处理后的高光谱数据,输出向量为喷洒等级,所述喷洒等级计算模块用于将所述预处理后的高光谱数据输入所述神经网络喷洒模型,以得到所述喷洒等级;
喷洒量计算模块,预置有喷洒量计算模型,所述喷洒量计算模型的因变量为喷洒量,自变量为所述喷洒等级,所述喷洒量计算模块用于根据所述喷洒等级和所述喷洒量计算模型计算得到所述喷洒量,其中,所述喷洒量为单位时间内喷头喷出的液体体积;
喷洒控制模块,用于根据所述喷洒量控制喷洒系统进行喷洒。
2.根据权利要求1所述的农业察打一体机系统,其特征在于,
所述监测系统还包括:高清成像仪,用于获取样本农田植株的高清图像;
所述高光谱遥感监测仪还用于获取所述样本农田内植株的高光谱数据,得到样本高光谱数据;
所述农业察打一体机系统还包括图像识别模块和模型构建模块,其中:
所述图像识别模块用于采用支持向量机对所述高清图像进行识别,得到植物生长信息,其中,所述植物生长信息包括病斑面积比、枯叶率、植物叶子形状、植物叶子颜色、植物穗子形状、病斑形状、病斑颜色、植物倒伏信息和/或植物纹理分布规律,所述植物生长信息用于确定所述高清图像对应的样本喷洒等级;
所述模型构建模块用于以所述样本高光谱数据为输入,以所述样本喷洒等级为输出,对神经网络模型进行训练,得到所述神经网络喷洒模型。
3.根据权利要求1所述的农业察打一体机系统,其特征在于,
所述神经网络喷洒模型包括作物病虫害模型和作物肥料模型,其中,所述作物病虫害模型的输出向量为农药的喷洒等级,所述作物肥料模型的输出向量为肥料的喷洒等级。
4.根据权利要求1所述的农业察打一体机系统,其特征在于,
所述喷洒量计算模型如下:
Q=Max*Y,其中,当1<=X<=4时,Y=0.25*(X-1),当X=5时,Y=1,其中,Q为所述喷洒量,X为所述喷洒等级,Y为喷洒比率。
5.根据权利要求1所述的农业察打一体机系统,其特征在于,
所述处理器还包括飞行控制模块,其中,所述飞行控制模块用于控制所述无人机机体按照预定高度和预定飞行速度匀速飞行。
6.根据权利要求1所述的农业察打一体机系统,其特征在于,
所述数据传输接口为RS232串口。
7.一种农业察打一体实时喷洒控制方法,其特征在于,应用于权利要求1至6任一所述的农业察打一体机系统,
获取农田内植株的高光谱数据,其中,所述高光谱数据包括多个波段的光谱数据;
接收预处理条件信息,其中,所述预处理条件信息包括农田植物品种信息、农田植物种植方式信息、农田植物生育时期信息和待喷洒药肥信息;
根据预置的所述预处理条件信息与敏感波段的对应关系,从所述多个波段的光谱数据中选择出与接收到所述预处理条件信息相对应的敏感波段的光谱数据,得到预处理后的高光谱数据;
将所述预处理后的高光谱数据输入预置的神经网络喷洒模型,以得到喷洒等级,其中,所述神经网络喷洒模型的输入向量为所述预处理后的高光谱数据,输出向量为所述喷洒等级;
根据所述喷洒等级和喷洒量计算模型计算得到喷洒量,其中,所述喷洒量计算模型的因变量为所述喷洒量,自变量为所述喷洒等级,所述喷洒量为单位时间内喷头喷出的液体体积;
根据所述喷洒量控制喷洒系统进行喷洒。
8.根据权利要求7所述的农业察打一体实时喷洒控制方法,其特征在于,在获取农田内植株的高光谱数据之前,所述方法还包括:
获取样本农田植株的高清图像;
获取所述样本农田内植株的高光谱数据,得到样本高光谱数据;
采用支持向量机对所述高清图像进行识别,得到植物生长信息,其中,所述植物生长信息包括病斑面积比、枯叶率、植物叶子形状、植物叶子颜色、植物穗子形状、病斑形状、病斑颜色、植物倒伏信息和/或植物纹理分布规律;
根据所述植物生长信息确定所述高清图像对应的样本喷洒等级;
以所述样本高光谱数据为输入,以所述样本喷洒等级为输出,对神经网络模型进行训练,得到所述神经网络喷洒模型。
9.根据权利要求7所述的农业察打一体实时喷洒控制方法,其特征在于,所述喷洒量计算模型如下:
Q=Max*Y,其中,当1<=X<=4时,Y=0.25*(X-1),当X=5时,Y=1,其中,Q为所述喷洒量,X为所述喷洒等级,Y为喷洒比率。
10.根据权利要求7所述的农业察打一体实时喷洒控制方法,其特征在于,所述方法还包括:
在控制喷洒系统进行喷洒时,控制所述无人机机体按照预定高度和预定飞行速度匀速飞行。
CN201810322070.7A 2018-04-11 2018-04-11 一种农业察打一体机系统及喷洒控制方法 Active CN108684282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810322070.7A CN108684282B (zh) 2018-04-11 2018-04-11 一种农业察打一体机系统及喷洒控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810322070.7A CN108684282B (zh) 2018-04-11 2018-04-11 一种农业察打一体机系统及喷洒控制方法

Publications (2)

Publication Number Publication Date
CN108684282A CN108684282A (zh) 2018-10-23
CN108684282B true CN108684282B (zh) 2023-07-07

Family

ID=63845688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810322070.7A Active CN108684282B (zh) 2018-04-11 2018-04-11 一种农业察打一体机系统及喷洒控制方法

Country Status (1)

Country Link
CN (1) CN108684282B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109446987A (zh) * 2018-10-29 2019-03-08 北京麦飞科技有限公司 基于pca和pnn算法检测水稻病虫害等级的方法
CN109711272A (zh) * 2018-12-04 2019-05-03 量子云未来(北京)信息科技有限公司 农作物智能化管理方法、系统、电子设备及存储介质
CN111433701A (zh) * 2018-12-04 2020-07-17 深圳市大疆创新科技有限公司 无人机的喷洒作业方法和装置
CN112105461A (zh) * 2019-11-05 2020-12-18 深圳市大疆创新科技有限公司 一种控制方法、控制设备、可移动平台及控制系统
CN111753615A (zh) * 2019-11-06 2020-10-09 广州极飞科技有限公司 变量喷洒方法及装置、电子设备及存储介质
CN110679259A (zh) * 2019-11-12 2020-01-14 山东交通学院 基于自动驾驶巡检装置的智能水肥一体化系统及方法
CN111008733B (zh) * 2019-11-25 2023-11-28 华南农业大学 一种作物生长管控方法和系统
CN111754186A (zh) * 2019-12-30 2020-10-09 广州极飞科技有限公司 喷洒控制方法、装置及电子设备
CN111279868B (zh) * 2020-04-10 2021-12-14 华南农业大学 一种水稻实时精准喷施方法
CN112136637A (zh) * 2020-09-27 2020-12-29 安阳工学院 自适应棉花落叶剂的喷洒方法
CN112547353A (zh) * 2020-11-24 2021-03-26 张金凤 一种喷洒物质材料的方法和系统
CN112514875A (zh) * 2020-11-24 2021-03-19 张金凤 一种喷洒物质材料的方法和系统
CN112612299B (zh) * 2020-12-01 2023-05-23 北京麦飞科技有限公司 一种微型无人机集群变量植保方法
CN113100207B (zh) * 2021-04-14 2022-11-22 郑州轻工业大学 基于小麦病害信息的精准配方施药机器人系统及施药方法
CN113326841B (zh) * 2021-05-31 2022-06-17 山东深蓝智谱数字科技有限公司 一种基于高光谱的作物虫害监测方法及设备
WO2022257139A1 (zh) * 2021-06-11 2022-12-15 深圳市大疆创新科技有限公司 植物状态确定方法、终端和计算机可读存储介质
CN114792399B (zh) * 2022-06-23 2023-01-06 深圳市海清视讯科技有限公司 植物监测方法、装置及设备
CN115443845B (zh) * 2022-09-29 2023-09-01 贵州师范学院 基于无人机的茶园茶树病变与长势监测方法
CN117441700A (zh) * 2023-12-21 2024-01-26 北京市农林科学院智能装备技术研究中心 自主导航的玻璃温室绿色防控机器人及其喷洒消杀的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621460A (en) * 1994-10-11 1997-04-15 Lockheed Martin Corporation Optical differentiation between plants and background utilizing a single CCD camera
CN1975378A (zh) * 2006-11-24 2007-06-06 浙江大学 基于可见/近红外多光谱成像的灰霉病害早期诊断系统
CN101539531A (zh) * 2009-04-09 2009-09-23 浙江大学 基于多光谱图像处理的水稻稻叶瘟病检测分级方法
CN102346385A (zh) * 2010-07-21 2012-02-08 富士施乐株式会社 光电转换装置、电子照相感光体、处理盒和图像形成设备
CN104266982A (zh) * 2014-09-04 2015-01-07 浙江托普仪器有限公司 一种大面积虫害量化监测系统
CN104408307A (zh) * 2014-11-25 2015-03-11 河南农业大学 田间小麦白粉病发病程度的快速监测方法及其监测模型的构建方法
CN105123164A (zh) * 2015-07-17 2015-12-09 河南科技大学 一种防治榆叶梅生长季节叶片枯黄早落的方法
CN106461461A (zh) * 2014-01-03 2017-02-22 威利食品有限公司 光谱测定系统、方法和应用
CN106564599A (zh) * 2016-11-22 2017-04-19 江苏蒲公英无人机有限公司 一种基于多光谱遥感的无人机植保作业方法
CN107024439A (zh) * 2017-03-23 2017-08-08 西北农林科技大学 一种水稻不同生育期叶绿素含量高光谱估测方法
CN107347849A (zh) * 2017-07-18 2017-11-17 河海大学 一种基于高光谱实时探测技术的智能喷洒系统
CN206664952U (zh) * 2017-04-17 2017-11-24 南通科技职业学院 一种植保无人机系统
CN206776167U (zh) * 2017-04-06 2017-12-22 西北农林科技大学 一种可监测土壤养分并自动补给的花盆
CN107678318A (zh) * 2017-11-10 2018-02-09 昆山阳翎机器人科技有限公司 一种智能喷药机器人

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919959B2 (en) * 1999-06-30 2005-07-19 Masten Opto-Diagnostics Co. Digital spectral identifier-controller and related methods
WO2009042172A2 (en) * 2007-09-26 2009-04-02 Medtronic, Inc. Frequency selective monitoring of physiological signals
CN102313688B (zh) * 2011-07-25 2013-08-21 北京农业信息技术研究中心 航空施药中药雾分布与飘移趋势遥测系统及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621460A (en) * 1994-10-11 1997-04-15 Lockheed Martin Corporation Optical differentiation between plants and background utilizing a single CCD camera
CN1975378A (zh) * 2006-11-24 2007-06-06 浙江大学 基于可见/近红外多光谱成像的灰霉病害早期诊断系统
CN101539531A (zh) * 2009-04-09 2009-09-23 浙江大学 基于多光谱图像处理的水稻稻叶瘟病检测分级方法
CN102346385A (zh) * 2010-07-21 2012-02-08 富士施乐株式会社 光电转换装置、电子照相感光体、处理盒和图像形成设备
CN106461461A (zh) * 2014-01-03 2017-02-22 威利食品有限公司 光谱测定系统、方法和应用
CN104266982A (zh) * 2014-09-04 2015-01-07 浙江托普仪器有限公司 一种大面积虫害量化监测系统
CN104408307A (zh) * 2014-11-25 2015-03-11 河南农业大学 田间小麦白粉病发病程度的快速监测方法及其监测模型的构建方法
CN105123164A (zh) * 2015-07-17 2015-12-09 河南科技大学 一种防治榆叶梅生长季节叶片枯黄早落的方法
CN106564599A (zh) * 2016-11-22 2017-04-19 江苏蒲公英无人机有限公司 一种基于多光谱遥感的无人机植保作业方法
CN107024439A (zh) * 2017-03-23 2017-08-08 西北农林科技大学 一种水稻不同生育期叶绿素含量高光谱估测方法
CN206776167U (zh) * 2017-04-06 2017-12-22 西北农林科技大学 一种可监测土壤养分并自动补给的花盆
CN206664952U (zh) * 2017-04-17 2017-11-24 南通科技职业学院 一种植保无人机系统
CN107347849A (zh) * 2017-07-18 2017-11-17 河海大学 一种基于高光谱实时探测技术的智能喷洒系统
CN107678318A (zh) * 2017-11-10 2018-02-09 昆山阳翎机器人科技有限公司 一种智能喷药机器人

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
光谱图像技术在精准施药中的应用;祖琴;陈湘萍;邓巍;;农机化研究(03);19-23 *
基于遥感数据的冬小麦农情监测研究进展;刘淑云;谷卫刚;朱建华;;农业网络信息(02);5-9 *
植物源农药10%小檗碱对草莓白粉病的预防和治疗效果;杨晓方;师建华;李映;彭枢才;田平芳;葛喜珍;;安徽农业科学(30);90-92 *

Also Published As

Publication number Publication date
CN108684282A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN108684282B (zh) 一种农业察打一体机系统及喷洒控制方法
CN108693119B (zh) 基于无人机高光谱遥感的病虫害智能察打系统
Talaviya et al. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides
CN111582055B (zh) 一种无人机的航空施药航线生成方法及系统
Tian Development of a sensor-based precision herbicide application system
Arakeri et al. Computer vision based robotic weed control system for precision agriculture
Franco et al. The value of precision for image-based decision support in weed management
CN108045582A (zh) 一种用于检测、防治农作物病害的主副无人机系统
US20040231239A1 (en) Use of within-field-element-size CV for improved nutrient fertilization in crop production
CN105173085A (zh) 无人机变量施药自动控制系统及方法
CN106585992A (zh) 一种无人机智能识别、精确喷洒农药的方法及系统
US20140021267A1 (en) System and method for crop thinning with fertilizer
CN105936337A (zh) 一种农业无人机
Huang et al. Advancing to the next generation of precision agriculture
CN112699729A (zh) 一种无人机察打一体除草方法
CN208095182U (zh) 一种农业察打一体机系统
Chen et al. Determining application volume of unmanned aerial spraying systems for cotton defoliation using remote sensing images
CN112640870B (zh) 一种基于植保无人机的病虫害防治系统及方法
CN115291541A (zh) 一种农作物病虫害监测系统与方法
Patil et al. Review on automatic variable-rate spraying systems based on orchard canopy characterization
CN107765670A (zh) 椰树林农情信息智能检测与处理系统
Sharma et al. Investigations of precision agriculture technologies with application to developing countries
Zhang et al. Sensing technologies and automation for precision agriculture
CN209784195U (zh) 一种农业大棚的病虫害诊断系统
Talaviya et al. Artificial Intelligence in Agriculture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant