WO2022016567A1 - 一种基于5g传输技术的病虫害图像处理系统及其方法 - Google Patents

一种基于5g传输技术的病虫害图像处理系统及其方法 Download PDF

Info

Publication number
WO2022016567A1
WO2022016567A1 PCT/CN2020/105070 CN2020105070W WO2022016567A1 WO 2022016567 A1 WO2022016567 A1 WO 2022016567A1 CN 2020105070 W CN2020105070 W CN 2020105070W WO 2022016567 A1 WO2022016567 A1 WO 2022016567A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
signal
pin
capacitor
transistor
Prior art date
Application number
PCT/CN2020/105070
Other languages
English (en)
French (fr)
Inventor
张正强
苗珍
段纳
孟国华
张金慧
管连勇
张建华
Original Assignee
南京科沃云计算信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京科沃云计算信息技术有限公司 filed Critical 南京科沃云计算信息技术有限公司
Publication of WO2022016567A1 publication Critical patent/WO2022016567A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes

Definitions

  • the invention relates to the field of pest and disease image processing, and discloses a pest and disease image processing system and method based on 5G transmission technology.
  • sowing The traditional agricultural sowing methods include sowing, on-demand, drill, and precision sowing. Among them, the methods of sowing and on-demand are more popular. In fact, these sowing methods are all extended from the development of human sowing and planting; the earliest production operation method recorded in the book is The laborers took the seeds and threw them on the fields one by one; until now, this method is still used in many areas.
  • 5G wireless mobile communication With the issuance of 5G operating licenses in China, the day when people can enjoy extremely fast wireless mobile communications is coming; the high speed, low latency and large capacity of the fifth-generation wireless communication system are enough to set off a new era in society. information technology revolution.
  • the main feature of 5G wireless mobile communication is that it can realize the connection between objects or machines, that is, the Internet of Everything.
  • 5G transmission technology can not only be experienced in daily life, but also plays a great role in agriculture.
  • 5G technology can greatly improve the efficiency of remote monitoring signal transmission, but the signal transmission frequency of the pest image processing system in the existing technology
  • the standard of 5G transmission cannot be met, so it is necessary to solve how to effectively increase the signal frequency while transmitting the signal at high frequency.
  • due to the fast transmission speed how to stabilize the waveform of the signal so as to reduce the loss is a problem that needs to be solved now. .
  • a disease and insect pest image processing system and method based on 5G transmission technology are provided to solve the above problems.
  • a disease and insect pest image processing system based on 5G transmission technology including:
  • the signal transmitting unit is used to transmit the external farmland disease and insect pest image acquisition signal
  • the signal processing unit is used to process the collected signal before transmission, so that it can be quickly output and processed;
  • the signal receiving unit is used to receive and collect signals and output them
  • the conversion imaging unit is used for conversion of the image signal, and through decoding, it is imaged on the display.
  • the signal processing unit includes:
  • the modulation circuit is used to perform modulation before the transmission of the acquired image signal, so as to convert it into a high-frequency signal with a frequency band suitable for channel transmission;
  • Amplifying circuit used for power amplification before modulated signal transmission
  • the oscillation circuit is used to transform the acquisition before transmission to a certain amplitude and frequency required for the operation, thereby ensuring stable transmission.
  • the modulation circuit includes: a resistor R24, a voltage regulator D2, a resistor R23, an adjustable resistor RV1, a transistor Q3, a transistor Q4, a resistor R22, a resistor R21, a resistor R20, a capacitor C7, a capacitor C8, and an integrated circuit U5 , capacitor C5, resistor R19, capacitor C6; wherein, one end of the resistor R24 inputs a signal, the other end of the resistor R24 is connected to the positive electrode of the voltage regulator tube D2, and the negative electrode of the voltage regulator tube D2 is simultaneously connected to the One end of the resistor R23, the collector and base of the transistor Q3 are connected to the base of the transistor Q4, the emitter of the transistor Q3 is connected to one end of the resistor R22, and the other end of the resistor R23 is connected to the base of the transistor Q4.
  • One end of the adjustable resistor RV1 is connected to the control end, the other end of the adjustable resistor RV1 is grounded, the emitter of the transistor Q4 is connected to one end of the resistor R21, and the collector of the transistor Q4 is connected to the The No. 7 pin of the integrated circuit U5 is connected with one end of the resistance R19, and the No. 4 pin and the No.
  • the amplifying circuit includes: capacitor C1, operational amplifier U1, resistor R1, resistor R5, resistor R3, resistor R2, resistor R4, amplifier U2A, resistor R7, resistor R8, resistor R9, capacitor C2, resistor R6, Resistor R10, capacitor C3, amplifier U3A, and resistor R11; wherein, the No. 3 pin of the operational amplifier U1 is connected to one end of the capacitor C1, the other end of the capacitor C1 inputs a signal, and the 7 of the operational amplifier U1 No. 1 pin and No. 4 pin input working voltage, the No. 1 pin of the operational amplifier U1 is connected to one end of the resistor R1, and the No.
  • the oscillation circuit includes: resistor R13, resistor R14, resistor R12, comparator U4A, resistor R17, transistor Q1, transistor Q2, resistor R18, voltage regulator D1, resistor R15, resistor R16, and capacitor C4; wherein , the No. 3 pin of the comparator U4A is simultaneously connected to one end of the resistor R13, one end of the resistor R12 and one end of the resistor R14, the other end of the resistor R14 is grounded, and the The No. 4 pin is grounded, and the No.
  • the 2 pin of the comparator U4A is simultaneously connected to one end of the resistor R15, one end of the resistor R16 and one end of the capacitor C4, and the other end of the capacitor C4 is grounded, so the The No. 1 pin of the comparator U4A is connected with the other end of the resistor R12, the other end of the resistor R15 and the positive electrode of the voltage regulator D1 at the same time and output, and the No. 8 pin of the comparator U4A is simultaneously Connect to the other end of the resistor R13, one end of the resistor R17 and the emitter of the transistor Q2, the other end of the resistor R13 inputs a signal, and the base of the transistor Q1 is connected to the voltage regulator D1.
  • the negative electrode is connected, the collector of the transistor Q1 is connected to one end of the resistor R18, and the other end of the resistor R18 is connected to the other end of the resistor R17 and the base of the transistor Q2 at the same time.
  • the emitter is grounded, and the collector of the transistor Q2 is connected to the other end of the resistor R16.
  • the type of integrated circuit U5 is NE555.
  • Step 1 the sensor collects the internal conditions of the farmland, and the collection is quickly transmitted through the 5G transmission technology.
  • the Internet of Things technology is used to realize the real-time imaging of the images of pests and diseases, so as to facilitate the long-distance observation of the staff;
  • Step 2 Before the signal is transmitted, it is necessary to process the signal first, so as to meet the standard of 5G transmission.
  • the signal is converted into a suitable high-frequency signal, and the amplitude of the signal is changed by the oscillating circuit. And the frequency is converted into the working transmission range, and finally the power amplification and shaping output of the signal is performed by the amplifier circuit.
  • step 2 further obtain according to step 2:
  • Step 3 The signal is input through the resistor R24 in the modulation circuit, and the positive pin of the zener tube D2 is energized and turned on, so that the output value of the signal through the negative electrode of the zener tube D2 is determined by the transistor Q3, the transistor Q4, the resistor R22 and the resistor R21.
  • the current mirror circuit composed of the current value is controlled by the adjustable resistor RV1 to control the resistance value of the resistor R23, so as to control the current value.
  • the collector of the transistor Q4 inputs the signal to the No. 7 pin of the integrated circuit U5, and passes through the integrated circuit U5. Cooperate with capacitor C5 and capacitor C6 for internal modulation, and finally output the modulation signal through pin 3 of integrated circuit U5;
  • Step 4 In the oscillating circuit of the modulated signal output value, the signal is input through the other end of the resistor R13, and the signal is controlled by the frequency control circuit composed of the input transistor Q2, the transistor Q1 and the resistor R17 and the resistor R18, and the comparator U4A controls the frequency.
  • the Zener tube D1 if the signal frequency meets the transmission conditions, the Zener tube D1 is turned off, and the signals are output. On the contrary, if the signal does not meet the transmission conditions, the Zener tube D1 is turned on, and then sent to the frequency control circuit for control.
  • the reference frequency value is controlled by the resistor R12, the resistor R13, and the resistor R14 to control the frequency range;
  • Step 5 The signal is finally input into the operational amplifier U1 through the capacitor C1 for calculation, and is output to the secondary amplifier circuit through the No. 6 pin of the operational amplifier U1; the secondary amplifier circuit consists of resistor R2, resistor R3, resistor R4, resistor R5, Resistor R7 is composed of amplifier U2A. Resistor R4 and resistor R5 input bias static operating point, and amplify the signal input from operational amplifier U1. The amplification factor depends on the ratio of R2 and R7; Amplify and output, and output to the shaping circuit.
  • the shaping circuit consists of resistor R9, resistor R10, resistor R11, capacitor C3 and amplifier U3A, and the output amplified signal is shaped into a square wave signal of equal amplitude for output.
  • the maximum value of the reference frequency is represented by Vmax
  • the minimum value is represented by Vmin
  • V is the basic value.
  • R1 represents the resistance value of the resistor R14
  • R2 represents the resistance value of the resistor R13
  • R3 represents the resistance value of the resistor R12
  • Vmin V ⁇ [(R1 ⁇ R3)/(R1+R3)]/[R2+(R1 ⁇ R3)/(R1+R3)]
  • the present invention transmits disease and insect pest image monitoring signals by using 5G transmission technology, and uses a modulation circuit to modulate the acquisition image signal before transmission, so as to convert it into a high-frequency signal with a frequency band suitable for channel transmission; Power amplification before modulation signal transmission; finally, through the oscillation circuit, the acquisition before transmission is converted to a certain amplitude and frequency required for work, so as to ensure stable transmission; at the same time, the oscillation circuit can be used according to different occasions, and the size of the collection amount.
  • the size of the processing signal frequency can be controlled, so that the present invention can make the transmission rate of the signal conform to the 5G transmission rate, and at the same time when multi-signal transmission is performed, the transmission frequency can be controlled, thereby effectively reducing the transmission loss. It ensures that the waveform of the transmitted signal is stable, thereby improving the transmission efficiency.
  • Fig. 1 is the working flow chart of the present invention.
  • FIG. 2 is a circuit diagram of a signal processing unit of the present invention.
  • Fig. 3 is a modulation circuit diagram of the present invention.
  • FIG. 4 is an oscillator circuit diagram of the present invention.
  • FIG. 5 is an amplifying circuit diagram of the present invention.
  • a disease and insect pest image processing system and method based on 5G transmission technology includes: a signal transmitting unit, a signal receiving unit, a signal processing unit, and a conversion imaging unit; wherein the signal The processing unit includes: a modulation circuit, an oscillation circuit, and an amplifying circuit.
  • the modulation circuit includes: a resistor R24, a voltage regulator D2, a resistor R23, an adjustable resistor RV1, a transistor Q3, a transistor Q4, a resistor R22, a resistor R21, a resistor R20, a capacitor C7, a capacitor C8, an integrated circuit U5, capacitor C5, resistor R19, capacitor C6.
  • a signal is input to one end of the resistor R24, the other end of the resistor R24 is connected to the positive electrode of the voltage regulator tube D2, and the negative electrode of the voltage regulator tube D2 is simultaneously connected to the negative electrode of the resistor R23.
  • the No. 7 pin is connected to one end of the resistor R19, the No. 4 pin and the No.
  • the No. 6 pin of the integrated circuit U5 is connected to the other end of the resistor R19, and at the same time is connected to one end of the capacitor C6 and the integrated circuit U5.
  • the No. 2 pin is connected, the No.
  • the amplifying circuit includes: capacitor C1, operational amplifier U1, resistor R1, resistor R5, resistor R3, resistor R2, resistor R4, amplifier U2A, resistor R7, resistor R8, resistor R9, capacitor C2, resistor R6 , Resistor R10, Capacitor C3, Amplifier U3A, Resistor R11.
  • the No. 3 pin of the operational amplifier U1 is connected to one end of the capacitor C1, the other end of the capacitor C1 inputs a signal, the No. 7 pin and the No. 4 pin of the operational amplifier U1
  • the pin inputs the working voltage
  • the No. 1 pin of the operational amplifier U1 is connected to one end of the resistor R1
  • the No. 5 pin of the operational amplifier U1 is connected to the other end of the resistor R1
  • the operational amplifier U1 The No. 6 pin is connected to the No. 2 pin, and at the same time is connected to one end of the resistor R3 and the No. 3 pin of the amplifier U2A
  • the No. 2 of the amplifier U2A is simultaneously connected to one end of the resistor R2 and the No. 3 pin.
  • One end of the resistor R7 is connected, the other end of the resistor R2 is connected to one end of the resistor R3, one end of the resistor R4 and one end of the resistor R5 at the same time, and the No. 4 pin of the amplifier U2A is simultaneously connected to the one end of the resistor R5.
  • the other end of the resistor R4 is connected to one end of the resistor R6, and the No. 11 pin of the amplifier U2A is connected to the other end of the resistor R5, one end of the resistor R8 and one end of the capacitor C2 at the same time.
  • the No. 1 pin of the amplifier U2A is simultaneously connected to the other end of the resistor R7 and one end of the resistor R9, and the No.
  • the oscillation circuit includes: resistor R13, resistor R14, resistor R12, comparator U4A, resistor R17, transistor Q1, transistor Q2, resistor R18, voltage regulator D1, resistor R15, resistor R16, and capacitor C4.
  • the No. 3 pin of the comparator U4A is simultaneously connected to one end of the resistor R13, one end of the resistor R12 and one end of the resistor R14, and the other end of the resistor R14 is grounded , the No. 4 pin of the comparator U4A is grounded, and the No. 2 pin of the comparator U4A is connected to one end of the resistor R15, one end of the resistor R16 and one end of the capacitor C4 at the same time. The other end of C4 is grounded, the No. 1 pin of the comparator U4A is simultaneously connected to the other end of the resistor R12, the other end of the resistor R15 and the positive electrode of the voltage regulator D1 and outputs, the comparator Pin No.
  • the signal is input through the other end of the resistor R13, and at the same time the signal is controlled by the frequency control circuit composed of the input transistor Q2, the transistor Q1 and the resistor R17 and the resistor R18, and the comparator U4A compares with the reference value. For comparison, if the signal frequency meets the transmission conditions, the voltage regulator tube D1 is turned off, and the signals are output. On the contrary, if the signal does not meet the transmission conditions, the voltage regulator tube D1 is turned on, and then sent to the frequency control circuit for control, while the reference frequency The value is controlled by the resistor R12, the resistor R13, and the resistor R14 to control the frequency range;
  • the signal is finally input into the operational amplifier U1 through the capacitor C1 for calculation, and is output to the secondary amplifier circuit through the No. 6 pin of the operational amplifier U1;
  • the secondary amplifier circuit is composed of resistor R2, resistor R3, resistor R4, resistor R5, resistor R7
  • It is composed of amplifier U2A, resistor R4 and resistor R5 input bias static operating point, amplify the signal input from operational amplifier U1, the amplification factor depends on the ratio of R2 and R7; finally through the amplifier U2A pin 1 to amplify the output , and output to the shaping circuit.
  • the shaping circuit consists of resistor R9, resistor R10, resistor R11, capacitor C3 and amplifier U3A, and the output amplified signal is shaped into a square wave signal of equal amplitude for output.
  • the signal transmission unit is used for signal transmission, and 5G is used for transmission at the same time.
  • the remote control terminal is equipped with a receiver for reception, and the signal reception unit is used for reception and transmission to the conversion imaging unit for signal conversion and demodulation, and imaging calculation. , so as to perform imaging display through the display, so as to realize fast remote inspection and monitoring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及病虫害图像处理领域,公开了一种基于5G传输技术的病虫害图像处理系统及其方法,包括:信号发射单元、信号接收单元、信号处理单元、以及转换成像单元;其中所述信号处理单元包括:调制电路、振荡电路、以及放大电路;本发明通过利用5G传输技术进行传输病虫害图像监测信号,通过在进行传输前,利用调制电路进行采集图信号的发射前的调制,从而变换成频带适合信道传输的高频信号;其次利用放大电路进行调制信号发射前的功率放大;最后通过振荡电路,把发射前的采集变换到工作所需的一定振幅和一定频率,从而保证传输稳定;从而可以有效减少传输的损耗,同时可以有效的保证传输信号的波形稳定,从而提高传输效率。

Description

一种基于5G传输技术的病虫害图像处理系统及其方法 技术领域
本发明涉及病虫害图像处理领域,公开了一种基于5G传输技术的病虫害图像处理系统及其方法。
背景技术
基于我国悠久的历史,和广袤的土地,我国一直是一个农业大国。传统的农业播种方式有撒播、点播、条播、精播;其中撒播和点播的方式比较大众,其实这些播种方式,都是由人类撒播种植发展延伸而来;记录在册中最早的生产作业方式,就是劳动者拿着种子,一把一把的抛撒在田地上;直到现在,这种方式还在很多地区应用着。
随着中国5G运营牌照的发放,人们能够享受到极速无线移动通信的日子即将到来;第五代无线通信系统具有的高速率、低延时和大容量三个特性,足以在社会掀起一场新的信息科技革命。5G无线移动通信的主要特色在于能够实现物或者机器间的连接,即万物互联。
5G传输技术不仅仅在日常生活中可以体验到,在农业中也有着很大的作用,5G技术可以把远程监控信号传输的效率大大提升,但现有技术中的病虫害图像处理系统的信号传输频率无法满足5G传输的标准,所以需要解除如何让信号采用高频传输的同时可以有效的增大信号频率,同时由于传输速度快,如何使信号的波形稳定从而可以减小损耗是现在需要解决的问题。
技术问题
提供一种基于5G传输技术的病虫害图像处理系统及其方法,以解决上述问题。
技术解决方案
技术方案:一种基于5G传输技术的病虫害图像处理系统, 包括:
信号发射单元,用于进行外部农田病虫害图像采集信号的发射;
信号处理单元,用于进行采集信号发射前的处理,使之可以快速输出并进行信号处理;
信号接收单元,用于进行接收采集信号,并进行输出;
转换成像单元,用于图像信号的转换,并通过解码从而在显示器上成像。
在一个实施例中,信号处理单元包括:
调制电路,用于进行采集图信号的发射前的调制,从而变换成频带适合信道传输的高频信号;
放大电路,用于进行调制信号发射前的功率放大;
振荡电路,用于把发射前的采集变换到工作所需的一定振幅和一定频率,从而保证传输稳定。
在一个实施例中,调制电路包括:电阻R24、稳压管D2、电阻R23、可调电阻RV1、三极管Q3、三极管Q4、电阻R22、电阻R21、电阻R20、电容C7、电容C8、集成电路U5、电容C5、电阻R19、电容C6;其中,所述电阻R24的一端输入信号,所述电阻R24的另一端与所述稳压管D2的正极连接,所述稳压管D2的负极同时与所述电阻R23的一端、所述三极管Q3的集电极、基极和所述三极管Q4的基极连接,所述三极管Q3的发射极与所述电阻R22的一端连接,所述电阻R23的另一端与所述可调电阻RV1的一端、控制端连接,所述可调电阻RV1的另一端接地,所述三极管Q4的发射极与所述电阻R21的一端连接,所述三极管Q4的集电极同时与所述集成电路U5的7号引脚和所述电阻R19的一端连接,所述集成电路U5的4号引脚、8号引脚同时与所述电阻R20的一端和所述电容C7的一端连接,所述电容C7的另一端与所述电容C8的一端连接且接地,所述电容C8的一端输入电压,所述电阻R21的另一端同时与所述电阻R22的另一端、所述电阻R20的另一端和所述电容C8的另一端连接、且电容C8的另一端输入电压,所述集成电路U5的6号引脚与所述电阻R19的另一端连接、且同时与所述电容C6的一端和集成电路U5的2号引脚连接,所述集成电路U5的5号引脚与所述电容C5的一端连接,所述集成电路U5的1号引脚同时与所述电容C5的另一端和所述电容C6的另一端连接且接地,所述集成电路U5的3号引脚输出。
在一个实施例中,放大电路包括:电容C1、运算放大器U1、电阻R1、电阻R5、电阻R3、电阻R2、电阻R4、放大器U2A、电阻R7、电阻R8、电阻R9、电容C2、电阻R6、电阻R10、电容C3、放大器U3A、电阻R11;其中,所述运算放大器U1的3号引脚与所述电容C1的一端连接,所述电容C1的另一端输入信号,所述运算放大器U1的7号引脚、4号引脚输入工作电压,所述运算放大器U1的1号引脚与所述电阻R1的一端连接,所述运算放大器U1的5号引脚与所述电阻R1的另一端连接,所述运算放大器U1的6号引脚与2号引脚连接、且同时与所述电阻R3的一端和所述放大器U2A的3号引脚连接,所述放大器U2A的2号同时与所述电阻R2的一端和所述电阻R7的一端连接,所述电阻R2的另一端同时与所述电阻R3的一端、所述电阻R4的一端和所述电阻R5的一端连接,所述放大器U2A的4号引脚同时与所述电阻R4的另一端和所述电阻R6的一端连接,所述放大器U2A的11号引脚同时与所述电阻R5的另一端、所述电阻R8的一端和所述电容C2的一端连接,所述放大器U2A的1号引脚同时与所述电阻R7的另一端和所述电阻R9的一端连接,所述放大器U3A的2号引脚同时与所述电阻R6的另一端、所述电阻R8的另一端和所述电容C2的另一端连接,所述放大器U3A的3号引脚同时与所述电阻R9的另一端和所述电阻R10的一端连接,所述电容C3的一端与所述电阻10的另一端连接,所述放大器U3A的1号引脚同时与所述电容C3的另一端和所述电阻R11的一端连接,所述电阻R11的另一端输出。
在一个实施例中,振荡电路包括:电阻R13、电阻R14、电阻R12、比较器U4A、电阻R17、三极管Q1、三极管Q2、电阻R18、稳压管D1、电阻R15、电阻R16、电容C4;其中,所述比较器U4A的3号引脚同时与所述电阻R13的一端、所述电阻R12的一端和所述电阻R14的一端连接,所述电阻R14的另一端接地,所述比较器U4A的4号引脚接地,所述比较器U4A的2号引脚同时与所述电阻R15的一端、所述电阻R16的一端和所述电容C4的一端连接,所述电容C4的另一端接地,所述比较器U4A的1号引脚同时与所述电阻R12的另一端、所述电阻R15的另一端和所述稳压管D1的正极连接且输出,所述比较器U4A的8号引脚同时与所述电阻R13的另一端、所述电阻R17的一端和所述三极管Q2的发射极连接,所述电阻R13的另一端输入信号,所述三极管Q1的基极与所述稳压管D1的负极连接,所述三极管Q1的集电极与所述电阻R18的一端连接,所述电阻R18的另一端同时与所述电阻R17的另一端和所述三极管Q2的基极连接,所述三极管Q1的发射极接地,所述三极管Q2的集电极与所述电阻R16的另一端连接。
在一个实施例中,集成电路U5的型号为NE555。
一种基于5G传输技术的病虫害图像处理系统的方法,利用设置在农田外部的传感器进行农田内部病害虫的检测和图像采集,同时将采集信号进行发射,具体步骤如下:
步骤1、首先传感器进行采集农田的内部情况,并将采集喜欢通过5G传输技术进行快速传输,最后通过物联网技术,实现病虫害图像的实时成像,从而方便工作人员进行远距离观察;
步骤2、在信号进行发射前,需要先进行信号的处理,从而达到5G传输的标准,通过先进行信号的调制,进行将信号变换成适合的高频信号,同时利用振荡电路进行将信号的振幅和频率变换到工作传输范围内,最后利用放大电路进行信号的功率放大和整形输出。
在一个实施例中,根据步骤2进一步得到:
步骤3、信号通过调制电路中的电阻R24进行输入,通过稳压管D2的正极引脚得电导通,从而信号通过稳压管D2的负极输出值由三极管Q3、三极管Q4、电阻R22和电阻R21组成的电流镜像电路,电流值由可调电阻RV1控制电阻R23电阻值,从而进行控制电流值,同时三极管Q4的集电极通过将信号输入到集成电路U5的7号引脚,同时经过集成电路U5配合电容C5和电容C6进行内部的调制,最后通过集成电路U5的3号引脚进行输出调制信号;
步骤4、调制信号输出值振荡电路中,信号通过电阻R13的另一端输入,同时信号通过输入三极管Q2、三极管Q1配合电阻R17与电阻R18组成的频率控制电路进行频率的控制,同时比较器U4A进行与参考值进行比较,如果信号频率符合传输条件,则稳压管D1截止,信号之间输出,反之,信号不符合传输条件,则稳压管D1导通,则传送至频率控制电路进行控制,同时参考频率 值由电阻R12、电阻R13、电阻R14进行控制频率的范围;
步骤5、信号最终通过电容C1输入运算放大器U1中进行计算,同时通过运算放大器U1的6号引脚输出至二次放大电路;二次放大电路由电阻R2、电阻R3、电阻R4、电阻R5、电阻R7配合放大器U2A组成,电阻R4和电阻R5输入偏置静态工作点,对运算放大器U1输入过来的信号进行放大,其放大倍数取决于R2和R7的比值;最后通过放大器U2A的1号引脚进行放大输出、且输出至整形电路中,整形电路中由电阻R9、电阻R10、电阻R11、电容C3和放大器U3A组成,将输出的放大信号整形为等幅方波信号进行输出。
在一个实施例中,在振荡电路中,参考频率的最大值用Vmax表示,最小值用Vmin表示,V表示基本值,通过设定电阻R12、电阻R13、电阻R14的阻值可以得出式1:     Vmax=V×R1/[R1+(R2+R3)/(R2×R3)]
式中,R1表示电阻R14的阻值,R2表示电阻R13的阻值,R3表示电阻R12的阻值;则根据式1可以得出式2:
Vmin=V×[(R1×R3)/(R1+R3)]/[R2+(R1×R3)/(R1+R3)]
从而可以得出频率的工作的阈值。
有益效果
本发明通过利用5G传输技术进行传输病虫害图像监测信号,通过在进行传输前,利用调制电路进行采集图信号的发射前的调制,从而变换成频带适合信道传输的高频信号;其次利用放大电路进行调制信号发射前的功率放大;最后通过振荡电路,把发射前的采集变换到工作所需的一定振幅和一定频率,从而保证传输稳定;同时振荡电路中可以根据场合的不同,和采集量的大小,可以进行控制处理信号频率的大小,从而本发明可以使信号的传输速率可以符合5G传输速率,同时在进行多信号传输时,可以进行控制传输频率,从而可以有效减少传输的损耗,同时可以有效的保证传输信号的波形稳定,从而提高传输效率。
附图说明
图1是本发明的工作流程图。
图2是本发明的信号处理单元电路图。
图3是本发明的调制电路图。
图4是本发明的振荡电路图。
图5是本发明的放大电路图。
本发明的实施方式
如图1所示,在该实施例中,一种基于5G传输技术的病虫害图像处理系统及其方法,包括:信号发射单元、信号接收单元、信号处理单元、以及转换成像单元;其中所述信号处理单元包括:调制电路、振荡电路、以及放大电路。
在进一步的实施例中,调制电路包括:电阻R24、稳压管D2、电阻R23、可调电阻RV1、三极管Q3、三极管Q4、电阻R22、电阻R21、电阻R20、电容C7、电容C8、集成电路U5、电容C5、电阻R19、电容C6。
在更进一步的实施例中,所述电阻R24的一端输入信号,所述电阻R24的另一端与所述稳压管D2的正极连接,所述稳压管D2的负极同时与所述电阻R23的一端、所述三极管Q3的集电极、基极和所述三极管Q4的基极连接,所述三极管Q3的发射极与所述电阻R22的一端连接,所述电阻R23的另一端与所述可调电阻RV1的一端、控制端连接,所述可调电阻RV1的另一端接地,所述三极管Q4的发射极与所述电阻R21的一端连接,所述三极管Q4的集电极同时与所述集成电路U5的7号引脚和所述电阻R19的一端连接,所述集成电路U5的4号引脚、8号引脚同时与所述电阻R20的一端和所述电容C7的一端连接,所述电容C7的另一端与所述电容C8的一端连接且接地,所述电容C8的一端输入电压,所述电阻R21的另一端同时与所述电阻R22的另一端、所述电阻R20的另一端和所述电容C8的另一端连接、且电容C8的另一端输入电压,所述集成电路U5的6号引脚与所述电阻R19的另一端连接、且同时与所述电容C6的一端和集成电路U5的2号引脚连接,所述集成电路U5的5号引脚与所述电容C5的一端连接,所述集成电路U5的1号引脚同时与所述电容C5的另一端和所述电容C6的另一端连接且接地,所述集成电路U5的3号引脚输出。
在进一步的实施例中,放大电路包括:电容C1、运算放大器U1、电阻R1、电阻R5、电阻R3、电阻R2、电阻R4、放大器U2A、电阻R7、电阻R8、电阻R9、电容C2、电阻R6、电阻R10、电容C3、放大器U3A、电阻R11。
在更进一步的实施例中,所述运算放大器U1的3号引脚与所述电容C1的一端连接,所述电容C1的另一端输入信号,所述运算放大器U1的7号引脚、4号引脚输入工作电压,所述运算放大器U1的1号引脚与所述电阻R1的一端连接,所述运算放大器U1的5号引脚与所述电阻R1的另一端连接,所述运算放大器U1的6号引脚与2号引脚连接、且同时与所述电阻R3的一端和所述放大器U2A的3号引脚连接,所述放大器U2A的2号同时与所述电阻R2的一端和所述电阻R7的一端连接,所述电阻R2的另一端同时与所述电阻R3的一端、所述电阻R4的一端和所述电阻R5的一端连接,所述放大器U2A的4号引脚同时与所述电阻R4的另一端和所述电阻R6的一端连接,所述放大器U2A的11号引脚同时与所述电阻R5的另一端、所述电阻R8的一端和所述电容C2的一端连接,所述放大器U2A的1号引脚同时与所述电阻R7的另一端和所述电阻R9的一端连接,所述放大器U3A的2号引脚同时与所述电阻R6的另一端、所述电阻R8的另一端和所述电容C2的另一端连接,所述放大器U3A的3号引脚同时与所述电阻R9的另一端和所述电阻R10的一端连接,所述电容C3的一端与所述电阻10的另一端连接,所述放大器U3A的1号引脚同时与所述电容C3的另一端和所述电阻R11的一端连接,所述电阻R11的另一端输出。
在进一步的实施例中,振荡电路包括:电阻R13、电阻R14、电阻R12、比较器U4A、电阻R17、三极管Q1、三极管Q2、电阻R18、稳压管D1、电阻R15、电阻R16、电容C4。
在更进一步的实施例中,所述比较器U4A的3号引脚同时与所述电阻R13的一端、所述电阻R12的一端和所述电阻R14的一端连接,所述电阻R14的另一端接地,所述比较器U4A的4号引脚接地,所述比较器U4A的2号引脚同时与所述电阻R15的一端、所述电阻R16的一端和所述电容C4的一端连接,所述电容C4的另一端接地,所述比较器U4A的1号引脚同时与所述电阻R12的另一端、所述电阻R15的另一端和所述稳压管D1的正极连接且输出,所述比较器U4A的8号引脚同时与所述电阻R13的另一端、所述电阻R17的一端和所述三极管Q2的发射极连接,所述电阻R13的另一端输入信号,所述三极管Q1的基极与所述稳压管D1的负极连接,所述三极管Q1的集电极与所述电阻R18的一端连接,所述电阻R18的另一端同时与所述电阻R17的另一端和所述三极管Q2的基极连接,所述三极管Q1的发射极接地,所述三极管Q2的集电极与所述电阻R16的另一端连接。
工作原理:利用设置在农田外部的传感器进行农田内部病害虫的检测和图像采集,同时将采集信号传输至信号处理单元进行处理,通过输入调制电路进行信号调制,信号通过调制电路中的电阻R24进行输入,通过稳压管D2的正极引脚得电导通,从而信号通过稳压管D2的负极输出值由三极管Q3、三极管Q4、电阻R22和电阻R21组成的电流镜像电路,电流值由可调电阻RV1控制电阻R23电阻值,从而进行控制电流值,同时三极管Q4的集电极通过将信号输入到集成电路U5的7号引脚,同时经过集成电路U5配合电容C5和电容C6进行内部的调制,最后通过集成电路U5的3号引脚进行输出调制信号;
调制信号输出值振荡电路中,信号通过电阻R13的另一端输入,同时信号通过输入三极管Q2、三极管Q1配合电阻R17与电阻R18组成的频率控制电路进行频率的控制,同时比较器U4A进行与参考值进行比较,如果信号频率符合传输条件,则稳压管D1截止,信号之间输出,反之,信号不符合传输条件,则稳压管D1导通,则传送至频率控制电路进行控制,同时参考频率 值由电阻R12、电阻R13、电阻R14进行控制频率的范围;
信号最终通过电容C1输入运算放大器U1中进行计算,同时通过运算放大器U1的6号引脚输出至二次放大电路;二次放大电路由电阻R2、电阻R3、电阻R4、电阻R5、电阻R7配合放大器U2A组成,电阻R4和电阻R5输入偏置静态工作点,对运算放大器U1输入过来的信号进行放大,其放大倍数取决于R2和R7的比值;最后通过放大器U2A的1号引脚进行放大输出、且输出至整形电路中,整形电路中由电阻R9、电阻R10、电阻R11、电容C3和放大器U3A组成,将输出的放大信号整形为等幅方波信号进行输出
其次利用信号发射单元进行信号发射,同时采用5G进行传输,同时远处的控制终端设有接收器进行接收,利用信号接收单元进行接收同时传输至转换成像单元,进行信号转换解调,以及成像计算,从而通过显示器进行成像显示,从而实现快速的远程检监测。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (9)

  1. 一种基于5G传输技术的病虫害图像处理系统,其特征在于,包括:
    信号发射单元,用于进行外部农田病虫害图像采集信号的发射;
    信号处理单元,用于进行采集信号发射前的处理,使之可以快速输出并进行信号处理;
    信号接收单元,用于进行接收采集信号,并进行输出;
    转换成像单元,用于图像信号的转换,并通过解码从而在显示器上成像。
  2. 根据权利要求1所述的一种基于5G传输技术的病虫害图像处理系统,其特征在于,所述信号处理单元包括:
    调制电路,用于进行采集图信号的发射前的调制,从而变换成频带适合信道传输的高频信号;
    放大电路,用于进行调制信号发射前的功率放大;
    振荡电路,用于把发射前的采集变换到工作所需的一定振幅和一定频率,从而保证传输稳定。
  3. 根据权利要求2所述的一种基于5G传输技术的病虫害图像处理系统,其特征在于,所述调制电路包括:电阻R24、稳压管D2、电阻R23、可调电阻RV1、三极管Q3、三极管Q4、电阻R22、电阻R21、电阻R20、电容C7、电容C8、集成电路U5、电容C5、电阻R19、电容C6;其中,所述电阻R24的一端输入信号,所述电阻R24的另一端与所述稳压管D2的正极连接,所述稳压管D2的负极同时与所述电阻R23的一端、所述三极管Q3的集电极、基极和所述三极管Q4的基极连接,所述三极管Q3的发射极与所述电阻R22的一端连接,所述电阻R23的另一端与所述可调电阻RV1的一端、控制端连接,所述可调电阻RV1的另一端接地,所述三极管Q4的发射极与所述电阻R21的一端连接,所述三极管Q4的集电极同时与所述集成电路U5的7号引脚和所述电阻R19的一端连接,所述集成电路U5的4号引脚、8号引脚同时与所述电阻R20的一端和所述电容C7的一端连接,所述电容C7的另一端与所述电容C8的一端连接且接地,所述电容C8的一端输入电压,所述电阻R21的另一端同时与所述电阻R22的另一端、所述电阻R20的另一端和所述电容C8的另一端连接、且电容C8的另一端输入电压,所述集成电路U5的6号引脚与所述电阻R19的另一端连接、且同时与所述电容C6的一端和集成电路U5的2号引脚连接,所述集成电路U5的5号引脚与所述电容C5的一端连接,所述集成电路U5的1号引脚同时与所述电容C5的另一端和所述电容C6的另一端连接且接地,所述集成电路U5的3号引脚输出。
  4. 根据权利要求2所述的一种基于5G传输技术的病虫害图像处理系统,其特征在于,所述放大电路包括:电容C1、运算放大器U1、电阻R1、电阻R5、电阻R3、电阻R2、电阻R4、放大器U2A、电阻R7、电阻R8、电阻R9、电容C2、电阻R6、电阻R10、电容C3、放大器U3A、电阻R11;其中,所述运算放大器U1的3号引脚与所述电容C1的一端连接,所述电容C1的另一端输入信号,所述运算放大器U1的7号引脚、4号引脚输入工作电压,所述运算放大器U1的1号引脚与所述电阻R1的一端连接,所述运算放大器U1的5号引脚与所述电阻R1的另一端连接,所述运算放大器U1的6号引脚与2号引脚连接、且同时与所述电阻R3的一端和所述放大器U2A的3号引脚连接,所述放大器U2A的2号同时与所述电阻R2的一端和所述电阻R7的一端连接,所述电阻R2的另一端同时与所述电阻R3的一端、所述电阻R4的一端和所述电阻R5的一端连接,所述放大器U2A的4号引脚同时与所述电阻R4的另一端和所述电阻R6的一端连接,所述放大器U2A的11号引脚同时与所述电阻R5的另一端、所述电阻R8的一端和所述电容C2的一端连接,所述放大器U2A的1号引脚同时与所述电阻R7的另一端和所述电阻R9的一端连接,所述放大器U3A的2号引脚同时与所述电阻R6的另一端、所述电阻R8的另一端和所述电容C2的另一端连接,所述放大器U3A的3号引脚同时与所述电阻R9的另一端和所述电阻R10的一端连接,所述电容C3的一端与所述电阻10的另一端连接,所述放大器U3A的1号引脚同时与所述电容C3的另一端和所述电阻R11的一端连接,所述电阻R11的另一端输出。
  5. 根据权利要求2所述的一种基于5G传输技术的病虫害图像处理系统,其特征在于,所述振荡电路包括:电阻R13、电阻R14、电阻R12、比较器U4A、电阻R17、三极管Q1、三极管Q2、电阻R18、稳压管D1、电阻R15、电阻R16、电容C4;其中,所述比较器U4A的3号引脚同时与所述电阻R13的一端、所述电阻R12的一端和所述电阻R14的一端连接,所述电阻R14的另一端接地,所述比较器U4A的4号引脚接地,所述比较器U4A的2号引脚同时与所述电阻R15的一端、所述电阻R16的一端和所述电容C4的一端连接,所述电容C4的另一端接地,所述比较器U4A的1号引脚同时与所述电阻R12的另一端、所述电阻R15的另一端和所述稳压管D1的正极连接且输出,所述比较器U4A的8号引脚同时与所述电阻R13的另一端、所述电阻R17的一端和所述三极管Q2的发射极连接,所述电阻R13的另一端输入信号,所述三极管Q1的基极与所述稳压管D1的负极连接,所述三极管Q1的集电极与所述电阻R18的一端连接,所述电阻R18的另一端同时与所述电阻R17的另一端和所述三极管Q2的基极连接,所述三极管Q1的发射极接地,所述三极管Q2的集电极与所述电阻R16的另一端连接。
  6. 根据权利要求3所述的一种基于5G传输技术的病虫害图像处理系统,其特征在于,所述集成电路U5的型号为NE555。
  7. 一种权利要求3至5任一项所述的基于5G传输技术的病虫害图像处理系统的方法,其特征在于,利用设置在农田外部的传感器进行农田内部病害虫的检测和图像采集,同时将采集信号进行发射,具体步骤如下:
    步骤1、首先传感器进行采集农田的内部情况,并将采集喜欢通过5G传输技术进行快速传输,最后通过物联网技术,实现病虫害图像的实时成像,从而方便工作人员进行远距离观察;
    步骤2、在信号进行发射前,需要先进行信号的处理,从而达到5G传输的标准,通过先进行信号的调制,进行将信号变换成适合的高频信号,同时利用振荡电路进行将信号的振幅和频率变换到工作传输范围内,最后利用放大电路进行信号的功率放大和整形输出。
  8. 根据权利要求7所述的一种基于5G传输技术的病虫害图像处理系统的方法,其特征在于,根据步骤2进一步得到:
    步骤3、信号通过调制电路中的电阻R24进行输入,通过稳压管D2的正极引脚得电导通,从而信号通过稳压管D2的负极输出值由三极管Q3、三极管Q4、电阻R22和电阻R21组成的电流镜像电路,电流值由可调电阻RV1控制电阻R23电阻值,从而进行控制电流值,同时三极管Q4的集电极通过将信号输入到集成电路U5的7号引脚,同时经过集成电路U5配合电容C5和电容C6进行内部的调制,最后通过集成电路U5的3号引脚进行输出调制信号;
    步骤4、调制信号输出值振荡电路中,信号通过电阻R13的另一端输入,同时信号通过输入三极管Q2、三极管Q1配合电阻R17与电阻R18组成的频率控制电路进行频率的控制,同时比较器U4A进行与参考值进行比较,如果信号频率符合传输条件,则稳压管D1截止,信号之间输出,反之,信号不符合传输条件,则稳压管D1导通,则传送至频率控制电路进行控制,同时参考频率 值由电阻R12、电阻R13、电阻R14进行控制频率的范围;
    步骤5、信号最终通过电容C1输入运算放大器U1中进行计算,同时通过运算放大器U1的6号引脚输出至二次放大电路;二次放大电路由电阻R2、电阻R3、电阻R4、电阻R5、电阻R7配合放大器U2A组成,电阻R4和电阻R5输入偏置静态工作点,对运算放大器U1输入过来的信号进行放大,其放大倍数取决于R2和R7的比值;最后通过放大器U2A的1号引脚进行放大输出、且输出至整形电路中,整形电路中由电阻R9、电阻R10、电阻R11、电容C3和放大器U3A组成,将输出的放大信号整形为等幅方波信号进行输出。
  9. 根据权利要求8所述的一种基于5G传输技术的病虫害图像处理系统的方法,其特征在于,在振荡电路中,参考频率的最大值用Vmax表示,最小值用Vmin表示,V表示基本值,通过设定电阻R12、电阻R13、电阻R14的阻值可以得出式1:               Vmax=V×R1/[R1+(R2+R3)/(R2×R3)]
    式中,R1表示电阻R14的阻值,R2表示电阻R13的阻值,R3表示电阻R12的阻值;则根据式1可以得出式2:
    Vmin=V×[(R1×R3)/(R1+R3)]/[R2+(R1×R3)/(R1+R3)]
    从而可以得出频率的工作的阈值。
PCT/CN2020/105070 2020-07-22 2020-07-28 一种基于5g传输技术的病虫害图像处理系统及其方法 WO2022016567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010713075.XA CN111918031B (zh) 2020-07-22 2020-07-22 一种基于5g传输技术的病虫害图像处理系统及其方法
CN202010713075.X 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022016567A1 true WO2022016567A1 (zh) 2022-01-27

Family

ID=73281315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105070 WO2022016567A1 (zh) 2020-07-22 2020-07-28 一种基于5g传输技术的病虫害图像处理系统及其方法

Country Status (2)

Country Link
CN (1) CN111918031B (zh)
WO (1) WO2022016567A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400625A (zh) * 2022-02-28 2022-04-26 滨州市通联电器有限公司 一种配电箱的检测与联动控制装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023951A1 (de) * 1992-05-12 1993-11-25 Nokia (Deutschland) Gmbh Übertragungsanordnung für die übertragung eines auf eine trägerschwingung aufmodulierten nutzsignales
JPH11234147A (ja) * 1998-02-10 1999-08-27 Sony Corp 送信装置
CN101902618A (zh) * 2010-06-11 2010-12-01 北京农业信息技术研究中心 作物病虫害信息诊断系统及方法
CN102300079A (zh) * 2011-07-01 2011-12-28 全国农业技术推广服务中心 农业病虫害视频监控系统及其方法
CN103297084A (zh) * 2013-05-21 2013-09-11 环境保护部卫星环境应用中心 轻型环保无人机数据传输系统及其数据传输方法
CN107592131A (zh) * 2017-08-31 2018-01-16 广东欧珀移动通信有限公司 功率放大电路、射频电路及电子设备
CN108540227A (zh) * 2017-12-29 2018-09-14 井冈山大学 一种电子通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174320A (ja) * 2001-12-05 2003-06-20 Rohm Co Ltd 電圧制御発振器並びにこれを用いた受信装置及び送信装置
US6906658B2 (en) * 2003-08-28 2005-06-14 Texas Instruments Incorporated Reducing droop in a reference signal provided to ADCs
CN202197366U (zh) * 2011-07-01 2012-04-18 全国农业技术推广服务中心 农业病虫害视频监控系统
CN105323422A (zh) * 2015-11-27 2016-02-10 成都思博特科技有限公司 一种基于耦合电路的高清图像处理系统
CN205545619U (zh) * 2016-03-03 2016-08-31 重庆航天职业技术学院 一种高性能多路复用图像数据采集系统
CN106231264A (zh) * 2016-08-10 2016-12-14 哈尔滨理工大学 一种农田图像采集系统
CN106533215B (zh) * 2016-12-23 2023-08-08 广州创睿特光电技术股份有限公司 一种监控设备供电稳压电源装置
CN106951447A (zh) * 2017-02-18 2017-07-14 赣南师范大学 一种智慧农业病虫害远程自动诊断系统
KR101729061B1 (ko) * 2017-03-24 2017-04-21 주식회사 케이피엔 곤충들로 인한 문제점을 감소시킨 cctv 시스템
CN110415235A (zh) * 2018-10-09 2019-11-05 中国农业科学院茶叶研究所 一种茶小绿叶蝉图像采集系统及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023951A1 (de) * 1992-05-12 1993-11-25 Nokia (Deutschland) Gmbh Übertragungsanordnung für die übertragung eines auf eine trägerschwingung aufmodulierten nutzsignales
JPH11234147A (ja) * 1998-02-10 1999-08-27 Sony Corp 送信装置
CN101902618A (zh) * 2010-06-11 2010-12-01 北京农业信息技术研究中心 作物病虫害信息诊断系统及方法
CN102300079A (zh) * 2011-07-01 2011-12-28 全国农业技术推广服务中心 农业病虫害视频监控系统及其方法
CN103297084A (zh) * 2013-05-21 2013-09-11 环境保护部卫星环境应用中心 轻型环保无人机数据传输系统及其数据传输方法
CN107592131A (zh) * 2017-08-31 2018-01-16 广东欧珀移动通信有限公司 功率放大电路、射频电路及电子设备
CN108540227A (zh) * 2017-12-29 2018-09-14 井冈山大学 一种电子通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400625A (zh) * 2022-02-28 2022-04-26 滨州市通联电器有限公司 一种配电箱的检测与联动控制装置
CN114400625B (zh) * 2022-02-28 2023-09-22 滨州市通联电器有限公司 一种配电箱的检测与联动控制装置

Also Published As

Publication number Publication date
CN111918031B (zh) 2022-07-01
CN111918031A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN101278838B (zh) 多通道呼吸生理信号无线监测方法
CN110324431A (zh) 一种基于云计算的用户数据管理系统
WO2022016567A1 (zh) 一种基于5g传输技术的病虫害图像处理系统及其方法
CN108572579A (zh) 基于物联网的农业大棚数据处理分析系统
CN105699621A (zh) 一种基于网络的土壤检测系统
CN110602179A (zh) 一种基于NB-IoT的农业数据采集系统
CN109380097A (zh) 一种基于物联网的农业灌溉系统
CN110261325A (zh) 一种基于传感网络的农产品质量监测系统
CN100454986C (zh) 一种音视频无线发射装置
CN210691090U (zh) 一种温室大棚监控系统
CN103873563A (zh) 一种具有网络接口电路的农业环境信息采集控制装置
CN103926856A (zh) 一种农业环境信息采集控制装置
CN106856040A (zh) 基于无线传感器的智能监控系统
CN2116466U (zh) 无线多功能听诊器
CN205983173U (zh) 一种农业环境信息采集与监控网络终端
CN109452145A (zh) 一种物联网数据应用下的农业灌溉系统
CN207638641U (zh) 一种低干扰的门禁电子狗用检波系统
CN108019199B (zh) 一种用于阵列感应的发射电路
CN208521145U (zh) 基于物联网的农业大棚数据处理分析系统
CN103872892A (zh) 一种农业环境信息采集控制装置用电源电路
CN203838504U (zh) 具有风速传感器接口电路的农业环境信息采集控制装置
CN103926886A (zh) 具有蒸发量传感器接口电路的农业环境信息采集控制装置
CN203838505U (zh) 具有蒸发量传感器接口电路的农业环境信息采集控制装置
CN209949061U (zh) 一种500mhz~6000mhz超宽带功率放大器
CN203840198U (zh) 一种农业环境信息采集控制装置用电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945733

Country of ref document: EP

Kind code of ref document: A1