WO2022016463A1 - Fin field effect transistor and preparation method - Google Patents

Fin field effect transistor and preparation method Download PDF

Info

Publication number
WO2022016463A1
WO2022016463A1 PCT/CN2020/103855 CN2020103855W WO2022016463A1 WO 2022016463 A1 WO2022016463 A1 WO 2022016463A1 CN 2020103855 W CN2020103855 W CN 2020103855W WO 2022016463 A1 WO2022016463 A1 WO 2022016463A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
field effect
effect transistor
semiconductor
channel region
Prior art date
Application number
PCT/CN2020/103855
Other languages
French (fr)
Chinese (zh)
Inventor
许俊豪
贝尼斯坦特·弗朗西斯·莱昂内尔
侯朝昭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080101476.8A priority Critical patent/CN115699270A/en
Priority to PCT/CN2020/103855 priority patent/WO2022016463A1/en
Publication of WO2022016463A1 publication Critical patent/WO2022016463A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Abstract

Embodiments of the present application provide a fin field effect transistor and a preparation method, the fin field effect transistor comprising: a substrate, and an active region and a channel region which are formed on the substrate; and a fin formed on the substrate and passing through the active region and the channel region. The width of the fin in the channel region is less than the width of the fin in the active region. Adoption of the fin field effect transistor structure provided in the present application can improve the reliability of the fin field effect transistor while ensuring the switching speed.

Description

鳍式场效应晶体管和制备方法Fin-type field effect transistor and fabrication method 技术领域technical field
本申请实施例涉及半导体器件技术领域,尤其涉及一种鳍式晶体管的结构和制备方法。The embodiments of the present application relate to the technical field of semiconductor devices, and in particular, to a structure and a manufacturing method of a fin transistor.
背景技术Background technique
随着电子设备向着低功耗、高运行速率的方向发展,对电子设备的基石—场效应晶体管的要求越来越高。场效应晶体管开始逐渐从平面场效应晶体管向三维场效应晶体管过渡。其中,作为三维场效应晶体管的代表鳍式场效应晶体管(FinFET,Fin Field-Effect Transistor)越来越得到关注。FinFET采用多栅结构,可以提高栅控能力,抑制短沟道效应。With the development of electronic devices toward the direction of low power consumption and high operating speed, the requirements for the cornerstone of electronic devices - field effect transistors are getting higher and higher. Field effect transistors began to gradually transition from planar field effect transistors to three-dimensional field effect transistors. Among them, Fin Field-Effect Transistor (FinFET, Fin Field-Effect Transistor), which is a representative of three-dimensional field effect transistors, has attracted more and more attention. FinFET adopts a multi-gate structure, which can improve the gate control ability and suppress the short-channel effect.
当前FinFET结构中,为了稳定FinFET的性能,需要使得FinFET导电沟道的长度(也即栅极长度)与鳍片的宽度之间的比值不低于某一临界值(例如2.5)。通常导电沟道的长度与场效应晶体管的开关速度具有反相关性,为了进一步提高FinFET的开关速度,通常会降低导电沟道的长度,这样一来,FinFET中鳍片的厚度需要进一步减薄。过薄的鳍片将会导致源/漏端的扩展电阻增大、源/漏端的有效应力降低等问题,此外,过薄的鳍片在生产过程中容易断裂,降低FinFET的生产良率。由此,如何在保证开关速度的情况下提高FinFET的可靠性成为需要解决的问题。In the current FinFET structure, in order to stabilize the performance of the FinFET, the ratio between the length of the conductive channel of the FinFET (ie the gate length) and the width of the fin needs to be not lower than a certain critical value (eg 2.5). Usually, the length of the conductive channel is inversely correlated with the switching speed of the field effect transistor. In order to further improve the switching speed of FinFET, the length of the conductive channel is usually reduced. In this way, the thickness of the fin in the FinFET needs to be further thinned. Too thin fins will lead to problems such as increased source/drain expansion resistance and reduced source/drain effective stress. In addition, too thin fins are prone to breakage during production, reducing the production yield of FinFETs. Therefore, how to improve the reliability of the FinFET while ensuring the switching speed has become a problem to be solved.
发明内容SUMMARY OF THE INVENTION
本申请提供的鳍式场效应晶体管和制备方法,可以在保证开关速度的情况下提高短沟道鳍式场效应晶体管的可靠性。The fin field effect transistor and the preparation method provided by the present application can improve the reliability of the short channel fin field effect transistor while ensuring the switching speed.
为达到上述目的,本申请采用如下技术方案:To achieve the above object, the application adopts the following technical solutions:
第一方面,本申请实施例提供一种鳍式场效应晶体管,该鳍式场效应晶体管包括:衬底,所述衬底上形成有有源区和沟道区;鳍片,形成于所述衬底上,并贯穿所述有源区和所述沟道区;其中,所述鳍片处于所述沟道区的部分的宽度,小于所述鳍片处于所述有源区的部分的宽度。In a first aspect, embodiments of the present application provide a fin field effect transistor, the fin field effect transistor comprising: a substrate on which an active region and a channel region are formed; a fin formed on the on the substrate, and runs through the active region and the channel region; wherein, the width of the portion of the fin located in the channel region is smaller than the width of the portion of the fin located in the active region .
本实施例通过将鳍片的不同部分设置不同的宽度,也即将鳍片位于沟道区的宽度减薄,保持鳍片有源区的宽度不变,可以在短沟道FinFET结构中,使得导电沟道与位于导电沟道区的鳍片部分之间的比例不低于某一临界值,而位于有源区的鳍片部分的宽度可以不受上述比例的影响;此外,还可以保持有源区的鳍片部分的硬度、降低扩展电阻,从而提高FinFET的可靠性。In this embodiment, by setting different widths of different parts of the fins, that is, reducing the width of the fins in the channel region, and keeping the width of the active regions of the fins unchanged, the short-channel FinFET structure can make conductive The ratio between the channel and the portion of the fin located in the conductive channel region is not lower than a certain critical value, and the width of the portion of the fin located in the active region can not be affected by the above ratio; in addition, the active region can also be maintained. The hardness of the fin portion of the region reduces the spreading resistance, thereby improving the reliability of the FinFET.
基于第一方面,在一种可能的实现方式中,所述鳍片处于所述沟道区的部分的宽度与所述鳍片处于所述有源区的部分的宽度之比为2:3。Based on the first aspect, in a possible implementation manner, the ratio of the width of the portion of the fin located in the channel region to the width of the portion of the fin located in the active region is 2:3.
具体实现中,通常短沟道器件的沟道区长度为10nm-14nm,位于有源区的鳍片的宽度通常为7nm。为了稳定FinFET的性能,通常需要将沟道区长度于鳍片位于沟道区的部分的宽度之间的比值设置为2.5:1。为了满足该条件,并且满足10nm-14nm范围内的沟道长度,并且便于工艺生产,可以将鳍片处于所述沟道区的部分的宽度与所述鳍片处于所述有源区的部分的宽度之比为2:3。In a specific implementation, the length of the channel region of the short-channel device is usually 10 nm-14 nm, and the width of the fin located in the active region is usually 7 nm. In order to stabilize the performance of the FinFET, it is usually necessary to set the ratio of the length of the channel region to the width of the portion of the fin located in the channel region to be 2.5:1. In order to satisfy this condition, satisfy the channel length in the range of 10nm-14nm, and facilitate process production, the width of the part of the fin in the channel region and the width of the part of the fin in the active region can be The width ratio is 2:3.
基于第一方面,在一种可能的实现方式中,鳍片处于所述沟道区的部分的宽度为4nm,鳍片处于所述有源区的部分的宽度为7nm。Based on the first aspect, in a possible implementation manner, the width of the portion of the fin located in the channel region is 4 nm, and the width of the portion of the fin located in the active region is 7 nm.
基于第一方面,在一种可能的实现方式中,所述鳍式场效应晶体管还包括多个侧墙结构;所述多个侧墙结构中的每个侧墙结构形成于所述有源区和所述沟道区之间;其中,沿所述鳍片的宽度的方向,所述多个侧墙结构中的每个侧墙结构横跨在所述鳍片上。Based on the first aspect, in a possible implementation manner, the fin field effect transistor further includes a plurality of spacer structures; each spacer structure in the plurality of spacer structures is formed in the active region and between the channel region; wherein, along the width direction of the fin, each sidewall structure of the plurality of sidewall structures spans the fin.
基于第一方面,在一种可能的实现方式中,所述多个侧墙结构中的每个侧墙结构包括多层;其中靠近所述沟道区的一侧为氧化硅层,远离所述沟道区的一侧为氮化硅层。Based on the first aspect, in a possible implementation manner, each of the spacer structures in the plurality of spacer structures includes multiple layers; wherein a side close to the channel region is a silicon oxide layer, and a side away from the spacer structure is a silicon oxide layer. One side of the channel region is a silicon nitride layer.
基于第一方面,在一种可能的实现方式中,所述鳍式场效应晶体管包括多个所述鳍片;多个所述鳍片沿所述鳍片的宽度方向依次间隔排布。Based on the first aspect, in a possible implementation manner, the fin field effect transistor includes a plurality of the fins; and the plurality of the fins are arranged in sequence along the width direction of the fins at intervals.
基于第一方面,在一种可能的实现方式中,所述有源区包括半导体结构;所述半导体解结构形成于所述鳍片上、远离所述衬底一侧。Based on the first aspect, in a possible implementation manner, the active region includes a semiconductor structure; and the semiconductor destructure is formed on the fin on a side away from the substrate.
基于第一方面,在一种可能的实现方式中,沿所述鳍片的宽度方向依次间隔排布多个半导体结构;所述多个半导体结构中的每个半导体结构的外表面包裹有金属材料。Based on the first aspect, in a possible implementation manner, a plurality of semiconductor structures are sequentially and spaced apart along the width direction of the fin; the outer surface of each semiconductor structure in the plurality of semiconductor structures is wrapped with a metal material .
通常,在半导体结构远离衬底的一侧沉积有接触金属,该接触金属用于在封装时引出源漏极。通过在半导体结构的外表面包裹金属材料,可以减小半导体结构与接触金属之间的接触电阻,从而可以提高FinFET的驱动电流。Typically, a contact metal is deposited on the side of the semiconductor structure away from the substrate, and the contact metal is used to lead out the source and drain during packaging. By wrapping the metal material on the outer surface of the semiconductor structure, the contact resistance between the semiconductor structure and the contact metal can be reduced, so that the driving current of the FinFET can be improved.
基于第一方面,在一种可能的实现方式中,所述多个半导体结构中的每两个半导体结构之间设置有绝缘结构。Based on the first aspect, in a possible implementation manner, an insulating structure is provided between every two semiconductor structures in the plurality of semiconductor structures.
基于第一方面,在一种可能的实现方式中,所述沟道区包括栅极结构;所述栅极结构覆盖所述鳍片处于所述沟道区的部分。Based on the first aspect, in a possible implementation manner, the channel region includes a gate structure; the gate structure covers a portion of the fin in the channel region.
基于第一方面,在一种可能的实现方式中,所述栅极结构包括栅极介电层和栅极金属层;其中,所述栅极介电层为高介电常数介电层。Based on the first aspect, in a possible implementation manner, the gate structure includes a gate dielectric layer and a gate metal layer; wherein, the gate dielectric layer is a high dielectric constant dielectric layer.
第二方面,本申请实施例提供一种电子设备,该电子设备包括如第一方面所述的鳍式场效应晶体管。In a second aspect, an embodiment of the present application provides an electronic device including the fin field effect transistor described in the first aspect.
具体的,电子设备可以为未经封装的裸芯片。Specifically, the electronic device may be an unpackaged bare chip.
电子设备还可以为电子器件,本申请实施例所示的FinFET可以被封装于管壳内。该管壳可以包括但不限于塑封管壳、金属管壳(例如金壳、镍壳)等,在管壳的外表面引出FinFET的源极、漏极和栅极。The electronic device may also be an electronic device, and the FinFET shown in the embodiments of the present application may be packaged in a tube case. The package may include, but is not limited to, a plastic package, a metal package (eg, a gold shell, a nickel shell), etc., and the source, drain and gate of the FinFET are drawn out from the outer surface of the package.
此外,电子设备也可以为集成电路产品(例如系统级芯片),其中,该集成电路产品中除了包括本申请实施例所述的FinFET外,还可以包括其他集成电路,从而使得本申请实施例所示的FinFET与其他集成电路之间相互配合,以实现各种电路功能。In addition, the electronic device may also be an integrated circuit product (such as a system-on-chip), wherein, in addition to the FinFET described in the embodiments of the present application, the integrated circuit product may also include other integrated circuits, so that the The shown FinFET cooperates with other integrated circuits to realize various circuit functions.
第三方面,本申请实施例提供一种鳍式场效应晶体管的制备方法,该制备方法包 括:提供一衬底,在所述衬底上形成鳍片;在所述衬底上形成有源区和沟道区,所述鳍片贯穿所述有源区和所述沟道区;刻蚀所述鳍片位于所述沟道区的部分,以使所述鳍片位于所述沟道区的部分的宽度小于位于所述有源区的部分的宽度。In a third aspect, an embodiment of the present application provides a method for fabricating a fin field effect transistor, the fabrication method comprising: providing a substrate, forming a fin on the substrate; forming an active region on the substrate and the channel region, the fin penetrates the active region and the channel region; the part of the fin located in the channel region is etched, so that the fin is located in the channel region The width of the portion is smaller than the width of the portion located in the active region.
基于第三方面,在一种可能的实现方式中,所述在所述衬底上形成有源区和沟道区,包括:在所述衬底和所述鳍片上沉积第一绝缘材料,刻蚀所述第一绝缘材料,以形成相互分离的多个侧墙结构,所述多个侧墙结构中的每个侧墙结构沿所述鳍片的宽度方向横跨在所述鳍片上,以将所述鳍片分隔成多个部分;在所述鳍片多个部分中不相邻的至少两部分之上分别生长半导体材料以形成有源区;所述鳍片中未生长半导体结构的部分形成沟道区。Based on the third aspect, in a possible implementation manner, the forming the active region and the channel region on the substrate includes: depositing a first insulating material on the substrate and the fin, and etching etching the first insulating material to form a plurality of spacer structures separated from each other, each of the spacer structures in the plurality of spacer structures spans the fins along the width direction of the fins, to dividing the fin into a plurality of parts; growing semiconductor material on at least two non-adjacent parts of the plurality of parts of the fin respectively to form an active region; part of the fin where the semiconductor structure is not grown A channel region is formed.
基于第三方面,在一种可能的实现方式中,所述在所述鳍片多个部分中不相邻的至少两部分之上分别生长半导体材料以形成有源区,包括:在所述鳍片多个部分中不相邻的至少两部分的侧壁包裹第二绝缘材料;对所述鳍片中包裹所述第二绝缘材料的部分进行刻蚀,以降低所述鳍片中包裹所述第二绝缘材料的部分沿所述衬底厚度方向的高度;在所述第二绝缘材料所限定的空间区域内、所述鳍片中包裹所述第二绝缘材料的部分之上生长半导体结构,以形成有源区。Based on the third aspect, in a possible implementation manner, the step of growing a semiconductor material on at least two non-adjacent portions of the plurality of portions of the fin to form an active region includes: on the fin The sidewalls of at least two non-adjacent portions of the fins are wrapped with a second insulating material; and the portion of the fins wrapped with the second insulating material is etched to reduce the wrapping of the fins with the second insulating material. The height of the portion of the second insulating material along the thickness direction of the substrate; the semiconductor structure is grown in the space region defined by the second insulating material and on the portion of the fin that wraps the second insulating material, to form an active region.
基于第三方面,在一种可能的实现方式中,所述方法还包括:刻蚀所述第二绝缘材料以暴露出所述半导体结构的外表面;在所述半导体结构外表面包裹金属材料。Based on the third aspect, in a possible implementation manner, the method further includes: etching the second insulating material to expose the outer surface of the semiconductor structure; and wrapping a metal material on the outer surface of the semiconductor structure.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments of the present application. Obviously, the drawings in the following description are only some embodiments of the present application. , for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative labor.
图1是本申请实施例提供的鳍式场效应晶体管中鳍片的结构示意图;1 is a schematic structural diagram of a fin in a fin field effect transistor provided by an embodiment of the present application;
图2A是本申请实施例提供的如图1所示的鳍式场效应晶体管沿AA’的剖视图;2A is a cross-sectional view along AA' of the fin field effect transistor shown in FIG. 1 provided by an embodiment of the present application;
图2B是本申请实施例提供的如图1所示的鳍式场效应晶体管沿BB’的剖视图;2B is a cross-sectional view of the fin field effect transistor shown in FIG. 1 along BB' provided by an embodiment of the present application;
图3A是传统技术中鳍式场效应晶体管的一个结构示意图;3A is a schematic structural diagram of a fin field effect transistor in a conventional technology;
图3B是沿图3A所示的鳍式场效应晶体管沿CC’和DD’的剖视图;Figure 3B is a cross-sectional view along CC' and DD' of the fin field effect transistor shown in Figure 3A;
图4是本申请实施例提供的鳍式场效应晶体管中所沉积的半导体结构的一个结构示意图;4 is a schematic structural diagram of a semiconductor structure deposited in a fin field effect transistor provided by an embodiment of the present application;
图5是本申请实施例提供的鳍式场效应晶体管的整体结构示意图;5 is a schematic diagram of an overall structure of a fin field effect transistor provided by an embodiment of the present application;
图6是本申请实施例提供的鳍式场效应晶体管中所沉积的半导体结构的又一个结构示意图;6 is another structural schematic diagram of the semiconductor structure deposited in the fin field effect transistor provided by the embodiment of the present application;
图7是本申请实施例提供的如图6所示的鳍式场效应晶体管沿EE’的结构示意图;7 is a schematic structural diagram of the fin field effect transistor shown in FIG. 6 along EE' provided by an embodiment of the present application;
图8是本申请实施例提供的鳍式场效应晶体管的又一个整体结构示意图;FIG. 8 is another schematic diagram of the overall structure of the fin field effect transistor provided by the embodiment of the present application;
图9是本申请实施例提供的如图5所示的鳍式场效应晶体管的制备方法流程图;9 is a flowchart of a method for fabricating the fin field effect transistor shown in FIG. 5 provided by an embodiment of the present application;
图10A-图10E是如图5所示的鳍式场效应晶体管制备过程中的各结构示意图;10A-FIG. 10E are schematic diagrams of each structure in the preparation process of the fin field effect transistor shown in FIG. 5;
图11是本申请实施例提供的如图8所示的鳍式场效应晶体管的制备方法流程图;11 is a flowchart of a method for fabricating the fin field effect transistor shown in FIG. 8 provided by an embodiment of the present application;
图12A-图12E是如图8所示的鳍式场效应晶体管制备过程中的各结构示意图。FIGS. 12A-12E are schematic diagrams of each structure during the fabrication process of the fin field effect transistor shown in FIG. 8 .
具体实施方式detailed description
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
本文所提及的"第一"、"第二"以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,"一个"或者"一"等类似词语也不表示数量限制,而是表示存在至少一个。References herein to "first," "second," and similar terms do not denote any order, quantity, or importance, but are merely used to distinguish the various components. Likewise, words such as "a" or "an" do not denote a quantitative limitation, but rather denote the presence of at least one.
在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个鳍片是指两个或两个以上的鳍片。In the embodiments of the present application, words such as "exemplary" or "for example" are used to indicate an example, illustration or illustration. Any embodiments or designs described in the embodiments of the present application as "exemplary" or "such as" should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as "exemplary" or "such as" is intended to present the related concepts in a specific manner. In the description of the embodiments of the present application, unless otherwise specified, the meaning of "plurality" refers to two or more. For example, a plurality of fins refers to two or more fins.
请参考图1,图1示出了本申请实施例提供的鳍式场效应晶体管的结构示意图。Please refer to FIG. 1 , which is a schematic structural diagram of a fin field effect transistor provided by an embodiment of the present application.
在图1中,FinFET100包括衬底10和鳍片11。In FIG. 1 , FinFET 100 includes substrate 10 and fins 11 .
鳍片11和衬底10具有相同的材料。具体工艺中,可以对衬底进行蚀刻以形成鳍片11。衬底10和鳍片11通常采用的半导体材料,具体可以包括但不限于:硅(Si)、氮化镓(GaN)、砷化镓(GaAs)、氮化铝(AlN)、碳化硅(SiC)、磷化铟(InP)、硒化锌(ZnSe)或其他VI族、III-V族或II-VI族半导体材料。The fins 11 and the substrate 10 are of the same material. In a specific process, the substrate may be etched to form the fins 11 . The semiconductor materials commonly used for the substrate 10 and the fins 11 may specifically include but are not limited to: silicon (Si), gallium nitride (GaN), gallium arsenide (GaAs), aluminum nitride (AlN), silicon carbide (SiC) ), indium phosphide (InP), zinc selenide (ZnSe), or other Group VI, III-V or II-VI semiconductor materials.
在如图1所示的FinFET100中,可以包括一个或多个鳍片11。鳍片11沿图1所示的第一方向X延伸,因此,第一方向X也可以被视为鳍片11的长度方向,而与第一方向X垂直的第二方向Y则可以被视为鳍片11的宽度方向。当FinFET包括多个鳍片时,该多个鳍片沿图1所示的第二方向Y依次排布。图中示意性的示出了FinFET包括三个鳍片11的情形。该多个鳍片由靠近衬底10的一侧向远离衬底10的一侧凸起。可以理解的是,本申请实施例对鳍片的数目不做限定,其可以包括更多或更少的鳍片。In the FinFET 100 as shown in FIG. 1 , one or more fins 11 may be included. The fins 11 extend along the first direction X shown in FIG. 1 , therefore, the first direction X can also be regarded as the length direction of the fins 11 , and the second direction Y perpendicular to the first direction X can be regarded as the width direction of the fins 11 . When the FinFET includes a plurality of fins, the plurality of fins are sequentially arranged along the second direction Y shown in FIG. 1 . The figure schematically shows a situation where the FinFET includes three fins 11 . The plurality of fins protrude from a side close to the substrate 10 to a side away from the substrate 10 . It can be understood that, the embodiment of the present application does not limit the number of fins, which may include more or less fins.
在图1中,沿第一方向X,FinFET100被多个侧墙结构13分割成多个区域,该多个区域包括第一有源区A1、第二有源区A2,以及在第一有源区A1、第二有源区A2之间的沟道区C。第一有源区A1和第二有源区A2可以分别为形成源极或漏极的区域。沟道区C则用于形成栅极。同样的,鳍片11也被侧墙13分割成多个部分,其中包括处于所述第一有源区A1和第二有源区A2的第一部分110,以及处于沟道区C的第二部分111。第二部分111处于FinFET100的沟道区C。In FIG. 1, along the first direction X, the FinFET 100 is divided into a plurality of regions by a plurality of spacer structures 13, and the plurality of regions include a first active region A1, a second active region A2, and the first active region The channel region C between the region A1 and the second active region A2. The first active region A1 and the second active region A2 may be regions where a source electrode or a drain electrode is formed, respectively. The channel region C is used to form the gate. Similarly, the fin 11 is also divided into a plurality of parts by the spacers 13 , including the first part 110 in the first active region A1 and the second active region A2 , and the second part in the channel region C 111. The second portion 111 is in the channel region C of the FinFET 100 .
本实施例中,第一有源区A1和第二有源区A2可以理解为在衬底10上、形成如图4所示的半导体结构14的区域,该半导体结构14中具有掺杂物,以形成源极或漏极;此外,第一有源区A1和第二有源区A2内通常还形成有诸如图5所示的接触金属16,该接触金属16用于引出源极或漏极。其中,半导体结构14和接触金属16的材料、形状等可以参考下文中的具体描述。In this embodiment, the first active region A1 and the second active region A2 may be understood as regions on the substrate 10 where the semiconductor structure 14 shown in FIG. 4 is formed, and the semiconductor structure 14 has dopants, In addition, the first active region A1 and the second active region A2 are usually formed with contact metal 16 such as shown in FIG. 5 , and the contact metal 16 is used to lead out the source or drain . The materials, shapes, etc. of the semiconductor structure 14 and the contact metal 16 may refer to the specific description below.
需要说明的是,具体工艺中,侧墙结构13是通过在鳍片11和绝缘层12之上直接沉积上述绝缘材料形成的。横跨在鳍片11上的侧墙结构13将其所横跨的鳍片部分包裹起来,从外部看来,多个侧墙结构13将鳍片分隔成位于第一有源区A1和第二有源区A2的第一部分110,以及位于沟道区C的第二部分111。其中,侧墙结构13的材料等可以参考下文中的具体描述。It should be noted that, in the specific process, the spacer structure 13 is formed by directly depositing the above-mentioned insulating material on the fins 11 and the insulating layer 12 . The sidewall structure 13 spanning the fins 11 wraps the part of the fins it spans. From the outside, a plurality of sidewall structures 13 separate the fins into the first active area A1 and the second active area A1. The first portion 110 of the active region A2, and the second portion 111 of the channel region C. Wherein, for the materials of the side wall structure 13, reference may be made to the specific description below.
在本发明实施例中,鳍片11的第一部分110的宽度与第二部分111的宽度不同。其中,鳍片11的第二部分111的宽度小于第一部分110的宽度。如图2A和图2B所示,图2A是沿图1所示的AA’截取的FinFET100的剖视图、图2B是沿图1所示的BB’截取的FinFET100的剖视图。从图2A和图2B中可以看出,鳍片11第二部分111的宽度小于第一部分110的宽度。In the embodiment of the present invention, the width of the first portion 110 of the fin 11 is different from the width of the second portion 111 . Wherein, the width of the second portion 111 of the fin 11 is smaller than the width of the first portion 110 . As shown in FIGS. 2A and 2B , FIG. 2A is a cross-sectional view of the FinFET 100 taken along AA' shown in FIG. 1 , and FIG. 2B is a cross-sectional view of the FinFET 100 taken along BB' shown in FIG. 1 . As can be seen from FIGS. 2A and 2B , the width of the second portion 111 of the fin 11 is smaller than the width of the first portion 110 .
需要说明的是,在实际产品中,鳍片11的各第一部分110分别生长有形成源极和漏极的半导体结构(如图4所示的半导体结构14),为了对鳍片的宽度进行更好的说明,在图1中未示出鳍片上生长的半导体结构。It should be noted that, in an actual product, each first portion 110 of the fin 11 is grown with a semiconductor structure forming a source electrode and a drain electrode (the semiconductor structure 14 shown in FIG. 4 ). In order to increase the width of the fin 11 For good illustration, the semiconductor structure grown on the fin is not shown in FIG. 1 .
通常,为了降低FinFET的开关速度,也即降低FinFET的阈值电压,需要缩短导电沟道的长度,也即缩短第一有源区A1和第二有源区A2之间的距离,或者说,缩短沟道区C在第一方向X上的长度。此外,为了提高FinFET的性能,需要使得处于沟道区C中的鳍片的第二部分111的长度和宽度之间的比值不低于某一临界值。这样一来,当缩短导电沟道时,需要减小鳍片11的宽度。传统FinFET结构中,沿第二方向Y,通常将鳍片11的各个部分均设置相同的宽度。如图3A所示,图3A示意性的示出了传统FinFET结构中鳍片结构的示意图,图3B是沿图3A所示的CC’和DD’截取的FinFET的剖视图。在具体工艺实践中,通常需要在鳍片11的第一部分110生长半导体结构,并通过掺入磷离子或者硼离子,以形成源极和漏极。过薄的鳍片通常带来较多问题,例如导致第一有源区A1和第二有源区A2的扩展电阻增大、导致FinFET的变化差异增大、第一有源区A1和第二有源区A2的应力降低等问题。此外,在工艺生产过程中,鳍片11沿第三方向Z的高度不断增加,这就使得鳍片11沿第三方向Z的高度与沿第二方向Y的宽度之间的比例越来越大,导致FinFET生产过程中,鳍片11非常容易碎裂,严重降低FinFET的生产良率。Generally, in order to reduce the switching speed of the FinFET, that is, the threshold voltage of the FinFET, it is necessary to shorten the length of the conductive channel, that is, to shorten the distance between the first active region A1 and the second active region A2, or to shorten the The length of the channel region C in the first direction X. In addition, in order to improve the performance of the FinFET, it is necessary to make the ratio between the length and the width of the second portion 111 of the fin in the channel region C not lower than a certain critical value. As such, when the conductive channel is shortened, the width of the fin 11 needs to be reduced. In the conventional FinFET structure, along the second direction Y, each part of the fin 11 is generally set to have the same width. As shown in FIG. 3A, FIG. 3A schematically shows a schematic diagram of a fin structure in a conventional FinFET structure, and FIG. 3B is a cross-sectional view of the FinFET taken along CC' and DD' shown in FIG. 3A. In a specific process practice, it is usually necessary to grow a semiconductor structure on the first part 110 of the fin 11, and to form a source electrode and a drain electrode by doping phosphorus ions or boron ions. Fins that are too thin usually bring more problems, such as increasing the spread resistance of the first active area A1 and the second active area A2, causing the variation difference of the FinFET to increase, the first active area A1 and the second active area A2. Problems such as stress reduction in the active region A2. In addition, during the production process, the height of the fins 11 along the third direction Z increases continuously, which makes the ratio between the height of the fins 11 along the third direction Z and the width along the second direction Y become larger and larger. , resulting in the fin 11 being easily broken during the production process of the FinFET, which seriously reduces the production yield of the FinFET.
本实施例通过将鳍片11的不同部分设置不同的宽度,通过将鳍片11中位于导电沟道区C的第二部分111的宽度减薄,保持鳍片11中位于第一有源区A1和第二有源区A2的第一部分110的宽度不变,可以在短沟道FinFET结构中,使得导电沟道的长度与位于导电沟道区的鳍片部分的宽度的比例不低于某一临界值;同时,处于第一有源区A1和第二有源区A2的鳍片部分则能维持足够的宽度,从而保持第一有源区A1和第二有源区A2的鳍片11部分的强度、降低扩展电阻,提高FinFET的可靠性。In this embodiment, by setting different widths of different parts of the fins 11, and by reducing the width of the second parts 111 of the fins 11 located in the conductive channel region C, the first active region A1 of the fins 11 is kept in the first active region A1. and the width of the first portion 110 of the second active region A2 remains unchanged, so that in the short-channel FinFET structure, the ratio of the length of the conductive channel to the width of the fin portion located in the conductive channel region is not lower than a certain At the same time, the fin parts in the first active area A1 and the second active area A2 can maintain sufficient width, so as to maintain the fin 11 part of the first active area A1 and the second active area A2 strength, reduce the expansion resistance, and improve the reliability of the FinFET.
在本实施例一种可能的实现方式中,当沟道区C沿第一方向X的长度为10nm时,为了保证沟道区C的长度与鳍片11第二部分111的宽度之比近似为2.5:1,此时可以将鳍片11第二部分111的宽度设置为4nm;当鳍片11第一部分110的宽度为7nm时,此时沿第二方向Y,鳍片11第二部分111的宽度和第一部分110的宽度之间的比例可以为4:7。当沟道区C沿第一方向X的长度为14nm时,为了保证沟道区C的长度与鳍片11 第二部分111的宽度之比近似为2.5:1,此时可以将鳍片11第二部分111的宽度设置为5nm;当鳍片11第一部分110的宽度为7nm时,此时沿第二方向Y,鳍片11第二部分111的宽度和第一部分110的宽度之间的比例可以为5:7。在实际产品中,鳍片11第一部分110的宽度通常为7nm。为了满足10nm-14nm范围内的沟道区C的长度,以及对鳍片11刻蚀过程中准确的控制,对于沟道区C的长度在10nm-14nm范围内、且鳍片11沿第一部分110的宽度为7nm时,此时可以将鳍片11第二部分111的宽度和第一部分110的宽度之间的比例设置为2:3。此外,鳍片11第二部分111的宽度和第一部分110的宽度之间的比例还可以为4:7,鳍片11第二部分111的宽度和第一部分110的宽度之间的比例还可以为5:7等。需要说明的是,鳍片11的第一部分和第二部分的宽度可以根据导电沟道区的宽度确定,在此不做具体限定。在其他一些场景中,例如,当沟道区C的长度为10nm、鳍片11第一部分110的宽度为5nm时,鳍片11第二部分111的宽度和第一部分110的宽度之间的比例还可以为4:5。In a possible implementation of this embodiment, when the length of the channel region C along the first direction X is 10 nm, in order to ensure that the ratio of the length of the channel region C to the width of the second portion 111 of the fin 11 is approximately 2.5:1, at this time, the width of the second part 111 of the fin 11 can be set to 4 nm; when the width of the first part 110 of the fin 11 is 7 nm, along the second direction Y, the width of the second part 111 of the fin 11 is 7 nm. The ratio between the width and the width of the first portion 110 may be 4:7. When the length of the channel region C along the first direction X is 14 nm, in order to ensure that the ratio of the length of the channel region C to the width of the second portion 111 of the fin 11 is approximately 2.5:1, the The width of the second part 111 is set to 5 nm; when the width of the first part 110 of the fin 11 is 7 nm, along the second direction Y, the ratio between the width of the second part 111 of the fin 11 and the width of the first part 110 can be 5:7. In an actual product, the width of the first portion 110 of the fin 11 is usually 7 nm. In order to satisfy the length of the channel region C in the range of 10nm-14nm, and to accurately control the etching process of the fins 11, the length of the channel region C is in the range of 10nm-14nm, and the fins 11 along the first part 110 When the width of the fin 11 is 7 nm, the ratio between the width of the second portion 111 of the fin 11 and the width of the first portion 110 can be set to 2:3. In addition, the ratio between the width of the second part 111 of the fin 11 and the width of the first part 110 may also be 4:7, and the ratio between the width of the second part 111 of the fin 11 and the width of the first part 110 may also be 5:7 etc. It should be noted that the widths of the first portion and the second portion of the fin 11 may be determined according to the width of the conductive channel region, which is not specifically limited herein. In some other scenarios, for example, when the length of the channel region C is 10 nm and the width of the first part 110 of the fin 11 is 5 nm, the ratio between the width of the second part 111 of the fin 11 and the width of the first part 110 is also Can be 4:5.
继续参考图1,在图1所示的FinFET100中,还包括绝缘层12,该绝缘层12的材料包括但不限于:氧化硅、蓝宝石或者他们的组合的任何材料。绝缘层12沿第三方向Z的厚度小于或等于鳍片11由衬底10凸起的高度。绝缘层12将多个鳍片之间隔离开。Continuing to refer to FIG. 1 , the FinFET 100 shown in FIG. 1 further includes an insulating layer 12 , and the material of the insulating layer 12 includes but is not limited to: silicon oxide, sapphire, or any material of their combination. The thickness of the insulating layer 12 along the third direction Z is less than or equal to the height of the fins 11 protruding from the substrate 10 . The insulating layer 12 isolates the plurality of fins.
此外,在图1中,FinFET100中的侧墙结构13沉积于上述绝缘层12和鳍片11之上,该侧墙结构13沿第二方向Y横跨鳍片11。从图1中可以看出,在第三方向Z上,侧墙结构13的高度大于各鳍片11凸起的高度。其中,形成侧墙结构13的材料可以包括但不限于:氧化硅、氮化硅、碳化硅、氮氧化硅或其任意组合的材料。此外,该侧墙结构13例如还可以为多层材料形成的结构。例如靠近沟道区的一侧为氧化硅层,远离沟道区一侧为氮化硅层。In addition, in FIG. 1 , the spacer structure 13 in the FinFET 100 is deposited on the above-mentioned insulating layer 12 and the fins 11 , and the spacer structure 13 spans the fins 11 along the second direction Y. As shown in FIG. As can be seen from FIG. 1 , in the third direction Z, the height of the sidewall structures 13 is greater than the height of the protrusions of the fins 11 . The material for forming the spacer structure 13 may include, but is not limited to, silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, or any combination thereof. In addition, the sidewall structure 13 may be, for example, a structure formed of multiple layers of materials. For example, the side close to the channel region is a silicon oxide layer, and the side away from the channel region is a silicon nitride layer.
在本实施例中,FinFET100还包括栅极结构15,该栅极结构15形成于第一有源区A1和第二有源区A2之间的沟道区C,如图4所示。栅极结构15包裹位于沟道区的鳍片11的第二部分。这里的包裹意思是鳍片沿第一方向X延伸的各个面中,除了与衬底接触的面外,其余各个面均被栅极材料覆盖。从而,使得FinFET形成多栅结构。这里的多栅结构是指,在每两个鳍片11之间形成一个栅结构。具体的,栅极结构15可以包括栅极介电层和栅极金属层。其中,栅极介电层沉积于导电沟道区的绝缘层12以及鳍片11上。该栅极介电层可以为高介电常数(HK,High-K)介电层,其具体材料可以包括但不限于:氧化镧(LaO)、氧化铝(ALO)、氧化锆(ZrO)、氧化钛(TiO)、氧化硅(SiO)等材料。栅极金属层沉积于栅极介电层之上,栅极金属层可以包括形成N型场效应晶体管的N栅金属层,或者包括形成P型场效应晶体管的P栅金属层。其中,N栅金属层的材料可以包括但不限于:钛(Ti)、银(Ag)、铝(Al)、钛铝氮(TiAlN)、钽碳氮(TaCN)、钽硅氮(TaSiN)、锰(Mn)等;P栅金属层的材料可以包括但不限于:钛氮(TiN)、钽氮(TaN)、钌(Ru)、钼(Mo)、铝(Al)、氮化钨(WN)等。栅极金属层的顶面与侧墙结构13顶面平齐,如图5所示。In this embodiment, the FinFET 100 further includes a gate structure 15 , and the gate structure 15 is formed in the channel region C between the first active region A1 and the second active region A2 , as shown in FIG. 4 . The gate structure 15 wraps the second portion of the fin 11 in the channel region. The wrapping here means that among the surfaces of the fin extending along the first direction X, except the surface contacting the substrate, the other surfaces are covered by the gate material. Thus, the FinFET is made to form a multi-gate structure. The multi-gate structure here means that one gate structure is formed between every two fins 11 . Specifically, the gate structure 15 may include a gate dielectric layer and a gate metal layer. The gate dielectric layer is deposited on the insulating layer 12 and the fins 11 in the conductive channel region. The gate dielectric layer can be a high dielectric constant (HK, High-K) dielectric layer, and its specific materials can include but are not limited to: lanthanum oxide (LaO), aluminum oxide (ALO), zirconium oxide (ZrO), Titanium oxide (TiO), silicon oxide (SiO) and other materials. A gate metal layer is deposited over the gate dielectric layer, and the gate metal layer may include an N-gate metal layer forming an N-type field effect transistor, or a P-gate metal layer forming a P-type field effect transistor. Wherein, the material of the N gate metal layer may include but not limited to: titanium (Ti), silver (Ag), aluminum (Al), titanium aluminum nitride (TiAlN), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN), Manganese (Mn), etc.; the material of the P gate metal layer may include, but is not limited to: Titanium Nitride (TiN), Tantalum Nitride (TaN), Ruthenium (Ru), Molybdenum (Mo), Aluminum (Al), Tungsten Nitride (WN) )Wait. The top surface of the gate metal layer is flush with the top surface of the spacer structure 13 , as shown in FIG. 5 .
在本实施例中,源极和漏极可以是在鳍片11的第一部分110外延生长半导体材料形成的。该半导体材料例如可以为诸如锗(Ge)或硅(Si)的单元素半导体材料,也可以为锗和硅的混合半导体材料,也可以为砷化镓(GaAs)、砷化镓铝(AlGaAs)的化合物半导体 材料,也可以为诸如硅锗(SiGe)、磷砷化镓(GaAsP)的半导体合金。在进行外延生长半导体材料时,可以采用原位掺杂的方式形成源极和漏极。例如,可以原位掺杂硼离子以形成P型FinFET,或者原位掺杂磷离子或砷离子,以形成N型FinFET。其中,在鳍片11的第一部分110生长的半导体材料所形成的半导体结构14如图4所示。需要说明的是,图4仅示意出了在第一有源区A1形成的半导体结构14,在第二有源区A2形成的半导体结构可以与图4所示的第一有源区A1形成的半导体结构的形状和材料相同,图4中未示出。In this embodiment, the source electrode and the drain electrode may be formed by epitaxially growing a semiconductor material on the first portion 110 of the fin 11 . The semiconductor material may be, for example, a single-element semiconductor material such as germanium (Ge) or silicon (Si), a mixed semiconductor material of germanium and silicon, or gallium arsenide (GaAs), gallium aluminum arsenide (AlGaAs) The compound semiconductor material can also be a semiconductor alloy such as silicon germanium (SiGe) and gallium arsenide phosphide (GaAsP). During epitaxial growth of semiconductor materials, the source and drain electrodes can be formed by in-situ doping. For example, boron ions can be doped in situ to form P-type FinFETs, or phosphorus or arsenic ions can be doped in situ to form N-type FinFETs. The semiconductor structure 14 formed by the semiconductor material grown on the first portion 110 of the fin 11 is shown in FIG. 4 . It should be noted that FIG. 4 only illustrates the semiconductor structure 14 formed in the first active area A1, and the semiconductor structure formed in the second active area A2 may be the same as the semiconductor structure formed in the first active area A1 shown in FIG. 4 . The shape and material of the semiconductor structure are the same and are not shown in FIG. 4 .
此外,FinFET100还包括第一绝缘结构17,该第一绝缘结构17沉积于外延生长的半导体结构14的周围,以对半导体结构14进行保护。该第一绝缘结构17的材料可以包括但不限于:氧化硅、氮化硅、氮氧化硅等,其中,沿第三方向Z,第一绝缘结构17的底面与绝缘层12接触,顶面与栅极结构15平齐,如图5所示。In addition, the FinFET 100 further includes a first insulating structure 17 deposited around the epitaxially grown semiconductor structure 14 to protect the semiconductor structure 14 . The material of the first insulating structure 17 may include, but is not limited to, silicon oxide, silicon nitride, silicon oxynitride, etc., wherein, along the third direction Z, the bottom surface of the first insulating structure 17 is in contact with the insulating layer 12, and the top surface is in contact with the insulating layer 12. The gate structure 15 is flush, as shown in FIG. 5 .
进一步的,FinFET100还包括接触金属16,该接触金属16沉积于外延生长的半导体结构14之上。该接触金属16用于引出源极和漏极。该接触金属的材料例如可以包括但不限于:金属铜、镍、铝或者其任意组合形成的合金等。如图5所示,接触金属16的底部与半导体结构14接触(例如包裹半导体结构14的顶面),接触金属16的顶面与栅极结构15以及第二绝缘层17平齐。Further, FinFET 100 also includes contact metal 16 deposited over epitaxially grown semiconductor structure 14 . The contact metal 16 is used to extract the source and drain electrodes. The material contacting the metal may include, but is not limited to, metal copper, nickel, aluminum or an alloy formed by any combination thereof, for example. As shown in FIG. 5 , the bottom of the contact metal 16 is in contact with the semiconductor structure 14 (eg, wraps the top surface of the semiconductor structure 14 ), and the top surface of the contact metal 16 is flush with the gate structure 15 and the second insulating layer 17 .
在图4和图5所示的FinFET结构中,外延生长出的半导体结构14为不规则几何体,例如图4所示的多边体,或者为棱柱体。此外,所生长出的半导体结构14均连在一起。In the FinFET structures shown in FIGS. 4 and 5 , the epitaxially grown semiconductor structure 14 is an irregular geometry, such as a polygon as shown in FIG. 4 , or a prism. In addition, the grown semiconductor structures 14 are all connected together.
请继续参考图6-图8,其示出了本申请实施例提供的又一种FinFET的结构示意图。在如图6-图8所示的FinFET结构中,可以包括多个相互绝缘的半导体结构14,其中每一个半导体结构为规则的几何体,例如为图6所示的长方体,在其他一些实现方式中,还可以为立方体等。此时,该半导体结构14可以是利用绝缘层对半导体生长的位置和形状进行限定所形成的。Please continue to refer to FIG. 6 to FIG. 8 , which are schematic structural diagrams of still another FinFET provided by an embodiment of the present application. In the FinFET structure shown in FIGS. 6-8 , a plurality of mutually insulated semiconductor structures 14 may be included, wherein each semiconductor structure is a regular geometric body, such as a rectangular parallelepiped shown in FIG. 6 , and in some other implementations , can also be a cube, etc. At this time, the semiconductor structure 14 may be formed by using an insulating layer to define the position and shape of semiconductor growth.
此外,在如图6所示的FinFET结构中,各独立的半导体结构14的表面还分别被金属材料141包裹。包裹各独立的半导体结构14的金属材料例如可以包括但不限于:铜、镍、铝或者其任意组合形成的合金等。这里包裹的意思是:各个独立的半导体结构除了与绝缘层12接触的一面、与侧墙结构13接触的一面、以及与侧墙结构13接触的一面相对的面外,其余各面均被金属材料包裹。如图7所示,图7为图6所示的FinFET沿EE’的剖视图。通过在半导体结构14的外表面包裹金属材料,可以降低半导体结构14与如图8所示的接触金属16之间的接触电阻,从而可以提高FinFET的驱动电流。In addition, in the FinFET structure shown in FIG. 6 , the surfaces of the individual semiconductor structures 14 are also wrapped with metal materials 141 respectively. For example, the metal material wrapping each independent semiconductor structure 14 may include, but not limited to, copper, nickel, aluminum or an alloy formed by any combination thereof, and the like. The meaning of wrapping here is that, except for the side in contact with the insulating layer 12 , the side in contact with the sidewall structure 13 , and the side opposite to the side in contact with the sidewall structure 13 , the other sides of each independent semiconductor structure are covered with metal materials. pack. As shown in FIG. 7, FIG. 7 is a cross-sectional view of the FinFET shown in FIG. 6 along EE'. By wrapping the metal material on the outer surface of the semiconductor structure 14, the contact resistance between the semiconductor structure 14 and the contact metal 16 as shown in FIG. 8 can be reduced, so that the driving current of the FinFET can be increased.
进一步的,在如图8所示的FinFET结构中,沿第二方向Y,每两个半导体结构14之间还填充有第二绝缘结构18。各第二绝缘结构18沉积于绝缘层12上。所形成的各第二绝缘结构18中,沿第三方向Z,其低面与绝缘层12接触,顶面可以与半导体结构14的顶面平齐,如图8所示。需要说明的是,由于在形成如图8所示的第二绝缘结构18的过程中,是将绝缘材料直接沉积在半导体结构14和绝缘层12之上,然后对半导体结构14顶部的绝缘材料刻蚀形成的,此时,沿第二方向Y,在第一绝缘结构17和半导体结构16之间的缝隙中同样填充有上述第二绝缘结构18。在其他一种可能的实现方式中,当沿第二方向Y,在第一绝缘结构17和半导体结构14之间不存在缝隙时,第一绝缘结构17 和半导体结构16之间可以不设置第二绝缘结构18。Further, in the FinFET structure shown in FIG. 8 , along the second direction Y, a second insulating structure 18 is also filled between every two semiconductor structures 14 . Each second insulating structure 18 is deposited on the insulating layer 12 . In each of the formed second insulating structures 18 , along the third direction Z, the lower surface thereof is in contact with the insulating layer 12 , and the top surface may be flush with the top surface of the semiconductor structure 14 , as shown in FIG. 8 . It should be noted that, in the process of forming the second insulating structure 18 as shown in FIG. 8 , the insulating material is directly deposited on the semiconductor structure 14 and the insulating layer 12 , and then the insulating material on the top of the semiconductor structure 14 is etched. At this time, along the second direction Y, the gap between the first insulating structure 17 and the semiconductor structure 16 is also filled with the above-mentioned second insulating structure 18 . In another possible implementation manner, when there is no gap between the first insulating structure 17 and the semiconductor structure 14 along the second direction Y, the second insulating structure 17 and the semiconductor structure 16 may not be provided between the first insulating structure 17 and the semiconductor structure 16 . Insulating structure 18 .
请继续参考图8,在图8所示的FinFET中,还包括衬底10、鳍片11、侧墙结构13、绝缘层12、栅极结构14、接触金属16以及第一绝缘结构17。其中,衬底10、鳍片11、侧墙结构13、绝缘层12、栅极结构14、接触金属16以及第一绝缘结构17的结构和材料与图1、图4和图5所示的FinFET的结构和材料相同,具体可以参考图1、图4和图5所示的FinFET结构的相关描述,在此不再赘述。Please continue to refer to FIG. 8 . The FinFET shown in FIG. 8 further includes a substrate 10 , a fin 11 , a spacer structure 13 , an insulating layer 12 , a gate structure 14 , a contact metal 16 and a first insulating structure 17 . The structures and materials of the substrate 10 , the fins 11 , the spacer structure 13 , the insulating layer 12 , the gate structure 14 , the contact metal 16 and the first insulating structure 17 are the same as those of the FinFET shown in FIG. 1 , FIG. 4 and FIG. 5 . The structure and materials are the same. For details, refer to the related descriptions of the FinFET structures shown in FIG. 1 , FIG. 4 and FIG. 5 , which will not be repeated here.
本申请实施例还包括一种电子设备,该电子设备包括如上所述的各实施例所示的FinFET。具体的,该电子设备可以为未经封装的裸芯片,还可以为电子器件,本申申请实施例所示的FinFET可以被封装于管壳内。该管壳可以包括但不限于塑封管壳、金属管壳(例如金壳、镍壳)等,在管壳的外表面引出FinFET的源极、漏极和栅极。此外,电子设备也可以为集成电路产品(例如系统级芯片),其中,该集成电路产品中除了包括本申请实施例所述的FinFET外,还可以包括其他集成电路,从而使得本申请实施例所示的FinFET与其他集成电路之间相互配合,以实现各种电路功能。The embodiments of the present application also include an electronic device, which includes the FinFET shown in the above-mentioned embodiments. Specifically, the electronic device may be an unpackaged bare chip or an electronic device, and the FinFET shown in the embodiments of the present application may be packaged in a tube case. The package may include, but is not limited to, a plastic package, a metal package (eg, a gold shell, a nickel shell), etc., and the source, drain and gate of the FinFET are drawn out from the outer surface of the package. In addition, the electronic device may also be an integrated circuit product (such as a system-on-chip), wherein, in addition to the FinFET described in the embodiments of the present application, the integrated circuit product may also include other integrated circuits, so that the The shown FinFET cooperates with other integrated circuits to realize various circuit functions.
基于如上所述的各FinFET的结构,本申请实施例还提供一种制作FinFET的方法,该FinFET的制作方法所制作出的FinFET的结构如图5所示。该制作FinFET的工艺流程可以参考图9所示的流程900。该工艺流程900包括如下步骤:Based on the above structures of each FinFET, an embodiment of the present application further provides a method for fabricating a FinFET, and the structure of a FinFET fabricated by the method for fabricating a FinFET is shown in FIG. 5 . For the process flow of manufacturing the FinFET, reference may be made to the flow 900 shown in FIG. 9 . The process flow 900 includes the following steps:
步骤901,提供一衬底,在衬底上形成鳍片结构。In step 901, a substrate is provided, and a fin structure is formed on the substrate.
该衬底可以为半导体材料,该半导体材料具体可以包括但不限于:硅(Si)、氮化镓(GaN)、砷化镓(GaAs)、氮化铝(AlN)、碳化硅(SiC)、磷化铟(InP)、硒化锌(ZnSe)或其他VI族、III-V族或II-VI族半导体材料。The substrate may be a semiconductor material, and the semiconductor material may specifically include but not be limited to: silicon (Si), gallium nitride (GaN), gallium arsenide (GaAs), aluminum nitride (AlN), silicon carbide (SiC), Indium Phosphide (InP), Zinc Selenide (ZnSe) or other Group VI, III-V or II-VI semiconductor materials.
具体工艺中,可以在衬底10上形成图案化的掩膜层,以该图案化的掩膜层作为掩膜,对衬底10进行刻蚀,未被刻蚀的部分形成多个鳍片11,刻蚀的部分形成多个沟槽。具体的,每两个鳍片11之间形成有一个沟槽。如图10A所示。具体可以采用干刻或湿刻等各种刻蚀方法对上述衬底10进行刻蚀以形成多个鳍片11和沟槽。In a specific process, a patterned mask layer may be formed on the substrate 10, the substrate 10 is etched by using the patterned mask layer as a mask, and the unetched portion forms a plurality of fins 11 , the etched part forms a plurality of trenches. Specifically, a groove is formed between every two fins 11 . As shown in Figure 10A. Specifically, various etching methods such as dry etching or wet etching can be used to etch the above-mentioned substrate 10 to form a plurality of fins 11 and trenches.
然后,在每两个鳍片11之间的沟槽中沉积绝缘材料,形成绝缘层12,从而使得每两个鳍片11之间互相绝缘。如图10B所示。Then, an insulating material is deposited in the trench between every two fins 11 to form an insulating layer 12 , so that every two fins 11 are insulated from each other. As shown in Figure 10B.
步骤902,在鳍片和绝缘层上形成伪栅结构和侧墙结构。 Step 902, forming a dummy gate structure and a spacer structure on the fin and the insulating layer.
具体的,可以在鳍片11的中部沉积多晶硅等半导体材料,以形成伪栅结构151。需要说明的是,由于后续需要对该多晶硅材料进行刻蚀后沉积金属栅,这里将沉积的多晶硅材料形成的栅极称为伪栅。Specifically, a semiconductor material such as polysilicon may be deposited in the middle of the fin 11 to form the dummy gate structure 151 . It should be noted that, since the polysilicon material needs to be etched later to deposit a metal gate, the gate formed by the deposited polysilicon material is referred to as a dummy gate here.
然后,在伪栅结构151的侧壁形成侧墙结构13。该侧墙结构13的材料可以包括但不限于:氮化硅、碳化硅、氮氧化硅等。其中,该侧墙结构13可以通过电介质沉积和刻蚀工艺来完成。该侧墙结构13可以包括横跨多个鳍片的两部分,其中一部分用来阻隔形成源极的第一有源区A1和伪栅结构151、另外一部分用来阻隔形成漏极的第二有源区A2和伪栅结构151。此时,鳍片11的第二部分111被伪栅结构包裹起来,鳍片11的第一部分110暴露在外面。如图10C所示。Then, the spacer structures 13 are formed on the sidewalls of the dummy gate structures 151 . The material of the spacer structure 13 may include, but is not limited to, silicon nitride, silicon carbide, silicon oxynitride, and the like. Wherein, the spacer structure 13 can be completed by dielectric deposition and etching processes. The spacer structure 13 may include two parts spanning a plurality of fins, one part is used to block the first active region A1 and the dummy gate structure 151 forming the source electrode, and the other part is used to block the second part forming the drain electrode The source region A2 and the dummy gate structure 151 . At this time, the second part 111 of the fin 11 is wrapped by the dummy gate structure, and the first part 110 of the fin 11 is exposed to the outside. As shown in Figure 10C.
步骤903,在鳍片暴露出的部分生长半导体结构。 Step 903, growing a semiconductor structure on the exposed portion of the fin.
在鳍片暴露出来的第一部分110形成半导体结构14,所形成的半导体结构如图4所 示。The semiconductor structure 14 is formed on the exposed first portion 110 of the fin, and the formed semiconductor structure is shown in FIG. 4 .
具体的,可以首先对鳍片暴露出来的第一部分110进行回刻,以降低鳍片的第一部分110沿第三方向Z的高度。Specifically, the exposed first portion 110 of the fin may be etched back first, so as to reduce the height of the first portion 110 of the fin along the third direction Z. As shown in FIG.
然后,采用生长工艺在鳍片结构暴露出来的部分生长半导体材料,以形成半导体结构14。该半导体材料例如可以为诸如锗(Ge)或硅(Si)的单元素半导体材料,也可以为砷化镓(GaAs)、砷化镓铝(AlGaAs)的化合物半导体材料,也可以为诸如硅锗(SiGe)、磷砷化镓(GaAsP)的半导体合金。Then, semiconductor material is grown on the exposed portion of the fin structure by a growth process to form the semiconductor structure 14 . The semiconductor material can be, for example, a single-element semiconductor material such as germanium (Ge) or silicon (Si), a compound semiconductor material such as gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), or a silicon germanium material (SiGe), gallium arsenide phosphide (GaAsP) semiconductor alloy.
一种可能的实现方式中,可以采用原位掺杂的方法生长半导体材料,然后对半导体材料进行高温退火,以形成半导体结构14。In a possible implementation manner, the semiconductor material may be grown by in-situ doping, and then the semiconductor material may be annealed at high temperature to form the semiconductor structure 14 .
另外一种可能的实现方式中,可以采用非掺杂的方式首先生长半导体材料,然后采用离子注入的方法将离子注入半导体材料中,半导体材料掺杂有离子后,对半导体材料进行高温退火,以形成半导体结构14。In another possible implementation, the semiconductor material can be grown first in a non-doped manner, and then ions are implanted into the semiconductor material by ion implantation. A semiconductor structure 14 is formed.
当所形成的FinFET器件为P型,则上述掺杂的离子可以为硼离子等三价离子;当所形成的FinFET器件为N型,则上述掺杂的离子可以为磷离子等五价离子。When the formed FinFET device is P-type, the doped ions can be trivalent ions such as boron ions; when the formed FinFET device is N-type, the doped ions can be pentavalent ions such as phosphorus ions.
步骤904,在第一有源区和第二有源区分别沉积绝缘材料,以形成绝缘结构。In step 904, insulating materials are deposited on the first active region and the second active region, respectively, to form an insulating structure.
具体的,该绝缘材料可以包括但不限于:氧化硅或者氮氧化物等材料。可以通过诸如化学汽相沉积(CVD)、物理汽相沉积(PVD)、原子层沉积(ALD)等技术沉积绝缘材料。Specifically, the insulating material may include, but is not limited to, materials such as silicon oxide or oxynitride. The insulating material may be deposited by techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and the like.
然后,可以通过化学机械抛光(CMP)工艺去除多余的绝缘材料,以形成绝缘结构17。该绝缘结构17与伪栅结构151远离衬底的一面平齐,如图10D所示。Then, excess insulating material may be removed by a chemical mechanical polishing (CMP) process to form insulating structures 17 . The insulating structure 17 is flush with the side of the dummy gate structure 151 away from the substrate, as shown in FIG. 10D .
步骤905,刻蚀伪栅结构,以暴露出位于沟道区的鳍片部分。In step 905, the dummy gate structure is etched to expose the portion of the fin located in the channel region.
在第一绝缘结构17和伪栅结构151上形成图案化的掩膜层,对图10D所示的伪栅结构151进行刻蚀,从而暴露出位于沟道区的鳍片的第二部分111。此外,对伪栅结构151刻蚀后,底部绝缘层12暴露出来。A patterned mask layer is formed on the first insulating structure 17 and the dummy gate structure 151, and the dummy gate structure 151 shown in FIG. 10D is etched, thereby exposing the second portion 111 of the fin located in the channel region. In addition, after the dummy gate structure 151 is etched, the bottom insulating layer 12 is exposed.
步骤906,刻蚀暴露出的鳍片结构,以使位于沟道区的鳍片部分的宽度减小。In step 906, the exposed fin structure is etched to reduce the width of the fin portion located in the channel region.
具体工艺中,可以在暴露出的鳍片的第二部分111上形成图案化的掩膜层,采用干刻、湿等方法对鳍片进行刻蚀。鳍片的第二部分111刻蚀后的结构如图10E所示。In a specific process, a patterned mask layer may be formed on the exposed second portion 111 of the fin, and the fin may be etched by dry etching, wet etching, or the like. The etched structure of the second portion 111 of the fin is shown in FIG. 10E .
由于本实施例中,对鳍片11并不是完全刻蚀,其刻蚀的目的是减小鳍片11沿第二方向Y的宽度。由此,一种优选的实现方式中,采用原子层刻蚀(ALE)方法对鳍片结构进行刻蚀。这样一来,可以精确控制鳍片11的刻蚀量,从而可以在减少鳍片11沿第二方向y的宽度的同时,还可以减少鳍片沿第三方向Z的刻蚀量。In this embodiment, the fins 11 are not completely etched, and the purpose of the etching is to reduce the width of the fins 11 along the second direction Y. Therefore, in a preferred implementation manner, an atomic layer etching (ALE) method is used to etch the fin structure. In this way, the etching amount of the fins 11 can be precisely controlled, so that while the width of the fins 11 in the second direction y can be reduced, the etching amount of the fins in the third direction Z can also be reduced.
本实施例中,可以刻蚀掉1/3左右鳍片材料。例如,当步骤901所形成的鳍片11沿第二方向Y的宽度为7nm时,本步骤可以刻蚀2nm~3nm,使得鳍片11沿第二方向Y的宽度在4nm~5nm左右。In this embodiment, about 1/3 of the fin material can be etched away. For example, when the width of the fin 11 formed in step 901 along the second direction Y is 7 nm, this step can be etched by 2 nm to 3 nm, so that the width of the fin 11 along the second direction Y is about 4 nm to 5 nm.
步骤907,在沟道区形成栅极结构。 Step 907, forming a gate structure in the channel region.
具体工艺中,可以首先在沟道区沉积HK介电层。HK介电层的具体材料可以包括但不限于:Lao、ALO、ZrO、TiO、SiO等材料。In a specific process, an HK dielectric layer may be deposited in the channel region first. Specific materials of the HK dielectric layer may include, but are not limited to, Lao, ALO, ZrO, TiO, SiO and other materials.
然后,采用PVD、CVD等方法在HK介电层上沉积金属,然后采用CMP工艺去除 多余的金属材料,以使得金属与侧墙结构13远离衬底的一面平齐,从而形成栅极结构15,如图10E所示。该金属材料可以包括形成N型场效应晶体管的N栅金属材料,或者包括形成P型场效应晶体管的P栅金属材料。其中,N栅金属材料可以包括但不限于:Ti、Ag、Al、TiAlN、TaCN、TaSiN、Mn等;P栅金属材料可以包括但不限于:TiN、TaN、Ru、Mo、Al、WN等。Then, metal is deposited on the HK dielectric layer by methods such as PVD and CVD, and then the excess metal material is removed by a CMP process, so that the metal is flush with the side of the sidewall structure 13 away from the substrate, thereby forming the gate structure 15, As shown in Figure 10E. The metal material may include an N-gate metal material forming an N-type field effect transistor, or a P-gate metal material forming a P-type field effect transistor. Wherein, the N gate metal material may include but not limited to: Ti, Ag, Al, TiAlN, TaCN, TaSiN, Mn, etc.; the P gate metal material may include but not limited to: TiN, TaN, Ru, Mo, Al, WN, etc.
步骤908,刻蚀绝缘结构,沉积金属材料,形成接触金属以引出源极和漏极。In step 908, the insulating structure is etched, metal material is deposited, and contact metal is formed to lead out the source electrode and the drain electrode.
刻蚀半导体结构14之上的绝缘结构17,以暴露出半导体结构14远离基板的上表面。The insulating structure 17 over the semiconductor structure 14 is etched to expose the upper surface of the semiconductor structure 14 away from the substrate.
然后,在暴露出的半导体结构14上沉积金属材料,采用CMP工艺去除多余的金属材料,形成接触金属16。该接触金属16与半导体结构14不相接触的一面可以与侧墙结构13平齐。最终形成如图5所示的FinFET结构。Then, a metal material is deposited on the exposed semiconductor structure 14 , and the excess metal material is removed by a CMP process to form a contact metal 16 . The side of the contact metal 16 that is not in contact with the semiconductor structure 14 may be flush with the spacer structure 13 . Finally, the FinFET structure shown in FIG. 5 is formed.
本实施例在刻蚀伪栅结构暴露出鳍片结构后,对鳍片进行刻蚀以减小鳍片宽度。从上述工艺步骤中可以看出,鳍片减薄的步骤是在形成源极和漏极之后,在鳍片减薄的过程中,只是减薄位于导电区的鳍片,位于第一有源区和第二有源区的鳍片并未变薄,且在工艺生产过程中一直维持原来的厚度不变,从而保障了位于第一有源区和第二有源区的鳍片的应力。此外,在工艺生产过程中,还可以提高生产良率。从而有利于提高FinFET的可靠性。In this embodiment, after the dummy gate structure is etched to expose the fin structure, the fin is etched to reduce the width of the fin. It can be seen from the above process steps that the step of thinning the fin is after forming the source electrode and the drain electrode. The fins in the first active region and the second active region are not thinned, and the original thickness remains unchanged during the production process, thereby ensuring the stress of the fins in the first active region and the second active region. In addition, during the production process, the production yield can also be improved. Thus, it is beneficial to improve the reliability of the FinFET.
请继续参看图11,其示出了本申请实施例提供的另外一种制作FinFET的方法,该FinFET的制作方法所制作出的FinFET的结构如图8所示。该制作FinFET的工艺流程可以参考图11所示的流程1100。该工艺流程包括如下步骤:Please continue to refer to FIG. 11 , which shows another method for fabricating a FinFET provided by an embodiment of the present application. The structure of the FinFET fabricated by the FinFET fabricating method is shown in FIG. 8 . For the process flow of manufacturing the FinFET, reference may be made to the flow 1100 shown in FIG. 11 . The technological process includes the following steps:
步骤1101,提供一衬底,在衬底上形成鳍片结构。In step 1101, a substrate is provided, and a fin structure is formed on the substrate.
步骤1102,在鳍片和绝缘层上形成伪栅结构和侧墙结构。 Step 1102, forming a dummy gate structure and a spacer structure on the fin and the insulating layer.
步骤1101和步骤1102的具体工艺以及上述两步骤完成后的结构与步骤901和步骤902所示的具体实现相同,可以参考图9所示的步骤901和步骤902的具体实现,在此不在赘述。The specific process of step 1101 and step 1102 and the structure after the above two steps are completed are the same as the specific implementation shown in step 901 and step 902, you can refer to the specific implementation of step 901 and step 902 shown in FIG. 9, and will not be repeated here.
步骤1103,在暴露出的鳍片两侧壁包裹绝缘材料。 Step 1103, wrapping insulating material on both side walls of the exposed fins.
具体的,可以分别在第一有源区A1和第二有源区A2沉积绝缘材料。Specifically, insulating materials may be deposited on the first active region A1 and the second active region A2, respectively.
然后对所沉积的绝缘材料进行刻蚀,从而使得各鳍片暴露出来的第一部分110的两侧壁包裹绝缘材料142。Then, the deposited insulating material is etched, so that the two sidewalls of the exposed first portion 110 of each fin are wrapped with the insulating material 142 .
需要说明的是,由于绝缘材料沉积在第一有源区A1和第二有源区A2时,分别与侧墙结构13接触,为了减少工艺步骤,与侧墙结构13接触部分的绝缘材料可以不进行刻蚀,也即在侧墙结构13的侧壁进一步又附着一层侧壁,如图12A所示。可以理解的是,侧墙结构13所附着的侧壁的材料与鳍片包裹的绝缘材料142相同。It should be noted that, when the insulating material is deposited on the first active region A1 and the second active region A2, it is in contact with the spacer structure 13 respectively. In order to reduce the number of process steps, the insulating material in the contact portion with the spacer structure 13 may not be used. Etching is performed, that is, a layer of sidewall is further attached to the sidewall of the sidewall structure 13 , as shown in FIG. 12A . It can be understood that the material of the sidewall to which the sidewall structure 13 is attached is the same as the insulating material 142 wrapped by the fins.
具体实践中,所沉积的绝缘材料可以包括但不限于:氧化硅或者氮氧化物等材料。此外,步骤1103中所沉积的绝缘材料可以与形成侧墙结构13采用相同的材料。In specific practice, the deposited insulating material may include, but is not limited to, silicon oxide or oxynitride and other materials. In addition, the insulating material deposited in step 1103 may be the same material as that for forming the spacer structure 13 .
步骤1104,对暴露出的鳍片进行回刻,在刻蚀后的鳍片上生长半导结构。 Step 1104 , etch back the exposed fins, and grow a semiconductor structure on the etched fins.
具体的,可以首先对鳍片11暴露出来的第一分110和第一部分110进行回刻,以降低鳍片的第一部分110沿第三方向Z的高度。其中,刻蚀后的第一部分110沿第三方向Z的高度不低于绝缘层12的上表面。绝缘层12的上表面为绝缘层沿第三方向Z远离衬 底10的一面。Specifically, the first part 110 and the first part 110 exposed by the fin 11 may be etched back first, so as to reduce the height of the first part 110 of the fin 110 along the third direction Z. The height of the etched first portion 110 along the third direction Z is not lower than the upper surface of the insulating layer 12 . The upper surface of the insulating layer 12 is the side of the insulating layer away from the substrate 10 along the third direction Z.
实践中,可以将鳍片暴露出来的第一部分110的上表面刻蚀至与绝缘层12平齐。In practice, the upper surface of the exposed first portion 110 of the fin can be etched to be flush with the insulating layer 12 .
然后,将半导体材料限制在绝缘材料142内进行生长,从而可以使得所形成的半导体结构为多个规则的几何体结构。此外,所形成的多个半导体结构14之间互相绝缘,如图12B所示。Then, the semiconductor material is confined within the insulating material 142 for growth, so that the formed semiconductor structure can be a plurality of regular geometric structures. In addition, the formed semiconductor structures 14 are insulated from each other, as shown in FIG. 12B .
其中,生长半导体材料的具体工艺参考步骤903,在此不再赘述。The specific process of growing the semiconductor material refers to step 903, which will not be repeated here.
步骤1105,在第一有源区和第二有源区分别沉积绝缘材料,以形成第一绝缘结构。 Step 1105 , depositing insulating materials on the first active region and the second active region, respectively, to form a first insulating structure.
步骤1106,刻蚀伪栅结构,以暴露出位于沟道区的鳍片部分。In step 1106, the dummy gate structure is etched to expose the portion of the fin located in the channel region.
步骤1107,刻蚀暴露出的鳍片,以使位于沟道区的鳍片部分的宽度减小。In step 1107, the exposed fins are etched to reduce the width of the fin portions located in the channel region.
步骤1108,在沟道区形成栅极结构。Step 1108, forming a gate structure in the channel region.
步骤5-步骤8的具体工艺以及上述两步骤完成后的结构与步骤904-步骤907所示的具体实现相同,可以参考图9所示的步骤904-步骤907的具体实现,在此不在赘述。步骤1108结束后的结构如图12C所示。The specific process of step 5-step 8 and the structure after the above two steps are completed are the same as the specific implementation shown in step 904-step 907, please refer to the specific implementation of step 904-step 907 shown in FIG. The structure after the end of step 1108 is shown in FIG. 12C .
步骤1109,刻蚀第一绝缘结构和限制各半导体结构生长位置的绝缘材料,以暴露出各半导体结构的外表面。 Step 1109 , etching the first insulating structure and the insulating material limiting the growth position of each semiconductor structure to expose the outer surface of each semiconductor structure.
该步骤结束后的结构如图12D所示。The structure after this step is completed is shown in Figure 12D.
步骤1110,在半导体结构的外表面包裹金属材料。 Step 1110, wrapping a metal material on the outer surface of the semiconductor structure.
所包裹的金属材料可以包括但不限于:铜、镍、铝或者其任意组合形成的合金等。The wrapped metal material may include, but is not limited to, copper, nickel, aluminum or alloys formed by any combination thereof, and the like.
具体工艺中,可以分别在第一有源区A1和第二有源区A2的绝缘层12上沉积金属材料,所沉积的金属材料覆盖各半导体结构14。然后,对金属材料进行刻蚀,仅保留包裹半导体结构14的外表面的部分,其余部分均被刻蚀掉。金属材料刻蚀后,会暴露出每两个半导体结构14之间的绝缘层12。步骤1110后的结构如图12E所示。In a specific process, metal materials may be deposited on the insulating layers 12 of the first active region A1 and the second active region A2 respectively, and the deposited metal materials cover the semiconductor structures 14 . Then, the metal material is etched, and only the part wrapping the outer surface of the semiconductor structure 14 remains, and the rest is etched away. After the metal material is etched, the insulating layer 12 between each two semiconductor structures 14 is exposed. The structure after step 1110 is shown in FIG. 12E .
步骤1111,在每两个半导体结构之间形成第二绝缘结构。 Step 1111, forming a second insulating structure between every two semiconductor structures.
具体的,步骤1110后,可以进一步在第一有源区A1和第二有源区A2分别沉积绝缘材料。然后,对所沉积的绝缘材料进行刻蚀,以暴露出各半导体结构14的顶表面,如图6所示。此时,每两个半导体结构之间形成有第二绝缘结构18。其中,位于每两个半导体结构14之间的第二绝缘结构18的底表面与绝缘层12接触,顶表面可以与半导体结构14的顶表面平齐。Specifically, after step 1110, insulating materials may be further deposited on the first active area A1 and the second active area A2, respectively. The deposited insulating material is then etched to expose the top surface of each semiconductor structure 14 , as shown in FIG. 6 . At this time, a second insulating structure 18 is formed between every two semiconductor structures. Wherein, the bottom surface of the second insulating structure 18 located between every two semiconductor structures 14 is in contact with the insulating layer 12 , and the top surface may be flush with the top surface of the semiconductor structure 14 .
需要说明的是,在形成如图6所示的第二绝缘结构18的过程中,是将绝缘材料直接沉积在半导体结构14和绝缘层12之上,然后对半导体结构14顶部的绝缘材料刻蚀形成的,此时,沿第二方向Y,在第一绝缘结构17和半导体结构16之间的缝隙中同样填充有上述第二绝缘结构18。在其他一种可能的实现方式中,当沿第二方向Y,在第一绝缘结构17和半导体结构16之间不存在缝隙时,第一绝缘结构17和半导体结构16之间可以不设置第二绝缘结构18。It should be noted that, in the process of forming the second insulating structure 18 as shown in FIG. 6 , the insulating material is directly deposited on the semiconductor structure 14 and the insulating layer 12 , and then the insulating material on the top of the semiconductor structure 14 is etched At this time, along the second direction Y, the gap between the first insulating structure 17 and the semiconductor structure 16 is also filled with the above-mentioned second insulating structure 18 . In another possible implementation manner, when there is no gap between the first insulating structure 17 and the semiconductor structure 16 along the second direction Y, the second insulating structure 17 and the semiconductor structure 16 may not be provided with a second gap. Insulating structure 18 .
步骤1112,在半导体结构的顶面和第二绝缘结构的顶面沉积金属材料,形成接触金属以引出源极和漏极。Step 1112, depositing a metal material on the top surface of the semiconductor structure and the top surface of the second insulating structure to form a contact metal to lead out the source electrode and the drain electrode.
具体的,在暴露出的半导体结构14上沉积金属材料,采用CMP工艺去除多余的金属材料,形成接触金属16。该接触金属16与半导体结构14不相接触的一面可以与侧墙 结构13平齐。最终形成如图8所示的FinFET结构。所沉积的金属材料可以包括但不限于:铜、镍、铝或者其任意组合形成的合金等。Specifically, a metal material is deposited on the exposed semiconductor structure 14 , and the excess metal material is removed by a CMP process to form the contact metal 16 . The side of the contact metal 16 which is not in contact with the semiconductor structure 14 may be flush with the spacer structure 13 . Finally, the FinFET structure shown in FIG. 8 is formed. The deposited metal material may include, but is not limited to, copper, nickel, aluminum, or alloys formed by any combination thereof, and the like.
从图11所示的工艺流程中可以看出,与图9所示的工艺流程不同的是,图11所示的工艺流程中,在生长半导体结构时,将半导体材料限制在绝缘材料形成的封闭空间中,可以使得半导体结构具有规则的结构,此外,在半导体结构的外表面还包裹有金属材料,这样一来,可以降低晶体管的接触电阻,提高晶体管的驱动电流。It can be seen from the process flow shown in FIG. 11 that, different from the process flow shown in FIG. 9 , in the process flow shown in FIG. 11 , when growing the semiconductor structure, the semiconductor material is limited to the sealing surface formed by the insulating material. In the space, the semiconductor structure can be made to have a regular structure. In addition, the outer surface of the semiconductor structure is also wrapped with a metal material, so that the contact resistance of the transistor can be reduced and the driving current of the transistor can be improved.
此外,本申请实施例还提供一种半导体晶圆的制备方法。该晶圆用于形成第一鳍式场效应晶体管和第二鳍式场效应晶体管。In addition, the embodiments of the present application also provide a method for preparing a semiconductor wafer. The wafer is used to form a first fin field effect transistor and a second fin field effect transistor.
其中,第一鳍式场效应晶体管可以为如图5所示的鳍式场效应晶体管或者为如图8所示的鳍式场效应晶体管。该第一鳍式场效应晶体管中位于沟道区的鳍片部分的宽度低于位于第一有源区和第二有源区的鳍片部分的宽度。第二鳍式场效应晶体管中,鳍片各个部分的宽度均相同。具体工艺中,可以对晶圆上部分沟道区的鳍片进行刻蚀,待该步骤完成后,对晶圆上所有沟道区沉积栅极结构。从而,晶圆上可以形成第一鳍式场效应晶体管和第二鳍式场效应晶体管。The first fin field effect transistor may be the fin field effect transistor shown in FIG. 5 or the fin field effect transistor shown in FIG. 8 . The width of the fin portion located in the channel region of the first fin field effect transistor is lower than the width of the fin portion located in the first active region and the second active region. In the second fin field effect transistor, the widths of each part of the fin are the same. In a specific process, part of the fins in the channel region on the wafer may be etched, and after this step is completed, gate structures are deposited on all the channel regions on the wafer. Thus, the first fin field effect transistor and the second fin field effect transistor can be formed on the wafer.
这样一来,可以在同一晶圆上制作出两种不同类型的FinFET,以满足不同阈值电压需求和漏电流需求的电子设备。In this way, two different types of FinFETs can be fabricated on the same wafer for electronic devices with different threshold voltage requirements and leakage current requirements.
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present application. Scope.

Claims (12)

  1. 一种鳍式场效应晶体管,其特征在于,包括:A fin field effect transistor, characterized in that it comprises:
    衬底,所述衬底上形成有有源区和沟道区;a substrate, on which an active region and a channel region are formed;
    鳍片,形成于所述衬底上,并贯穿所述有源区和所述沟道区;a fin, formed on the substrate and passing through the active region and the channel region;
    其中,in,
    所述鳍片处于所述沟道区的部分的宽度,小于所述鳍片处于所述有源区的部分的宽度。The width of the portion of the fin located in the channel region is smaller than the width of the portion of the fin located in the active region.
  2. 根据权利要求1所述的鳍式场效应晶体管,其特征在于,所述鳍式场效应晶体管还包括多个侧墙结构;The fin field effect transistor according to claim 1, wherein the fin field effect transistor further comprises a plurality of spacer structures;
    所述多个侧墙结构中的每个侧墙结构形成于所述有源区和所述沟道区之间;其中,Each spacer structure in the plurality of spacer structures is formed between the active region and the channel region; wherein,
    沿所述鳍片的宽度的方向,所述多个侧墙结构中的每个侧墙结构横跨在所述鳍片上。In the direction of the width of the fins, each sidewall structure of the plurality of sidewall structures spans the fins.
  3. 根据权利要求1或2所述的鳍式场效应晶体管,其特征在于,所述鳍式场效应晶体管包括多个所述鳍片;The fin field effect transistor according to claim 1 or 2, wherein the fin field effect transistor comprises a plurality of the fins;
    所述多个所述鳍片沿所述鳍片的宽度方向依次间隔排布。The plurality of the fins are sequentially and spaced apart along the width direction of the fins.
  4. 根据权利要求1-3任一项所述的鳍式场效应晶体管,其特征在于,所述有源区包括半导体结构;The fin field effect transistor according to any one of claims 1-3, wherein the active region comprises a semiconductor structure;
    所述半导体结构形成于所述鳍片上、远离所述衬底一侧。The semiconductor structure is formed on the fin away from the substrate.
  5. 根据权利要求4所示的鳍式场效应晶体管,其特征在于,所述有源区包括多个半导体结构,所述多个半导体结构沿所述鳍片的宽度方向依次间隔排布;The fin field effect transistor according to claim 4, wherein the active region comprises a plurality of semiconductor structures, and the plurality of semiconductor structures are sequentially spaced along the width direction of the fin;
    所述多个半导体结构中的每个半导体结构的外表面包裹有金属材料。The outer surface of each semiconductor structure of the plurality of semiconductor structures is wrapped with a metal material.
  6. 根据权利要求5所述的鳍式场效应晶体管,其特征在于,所述多个半导体结构中的每两个半导体结构之间设置有绝缘结构。The fin field effect transistor according to claim 5, wherein an insulating structure is disposed between every two semiconductor structures in the plurality of semiconductor structures.
  7. 根据权利要求1-6任一项所述的鳍式场效应晶体管,其特征在于,所述沟道区包括栅极结构;The fin field effect transistor according to any one of claims 1-6, wherein the channel region comprises a gate structure;
    所述栅极结构覆盖所述鳍片处于所述沟道区的部分。The gate structure covers the portion of the fin in the channel region.
  8. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-7任一项所述的鳍式场效应晶体管。An electronic device, characterized in that, the electronic device comprises the fin field effect transistor according to any one of claims 1-7.
  9. 一种鳍式场效应晶体管的制备方法,其特征在于,所述方法包括:A preparation method of a fin field effect transistor, characterized in that the method comprises:
    提供一衬底,在所述衬底上形成鳍片;providing a substrate on which fins are formed;
    在所述衬底上形成有源区和沟道区,所述鳍片贯穿所述有源区和所述沟道区;forming an active region and a channel region on the substrate, the fin penetrating the active region and the channel region;
    刻蚀所述鳍片位于所述沟道区的部分,以使所述鳍片位于所述沟道区的部分的宽度小于位于所述有源区的部分的宽度。The part of the fin located in the channel region is etched, so that the width of the part of the fin located in the channel region is smaller than the width of the part located in the active region.
  10. 根据权利要求9所述的制备方法,其特征在于,所述在所述衬底上形成有源区和沟道区,包括:The preparation method according to claim 9, wherein the forming an active region and a channel region on the substrate comprises:
    在所述衬底和所述鳍片上沉积第一绝缘材料,刻蚀所述第一绝缘材料,以形成相互分离的多个侧墙结构,所述多个侧墙结构中的每个侧墙结构沿所述鳍片的宽度方向横跨在所述鳍片上,以将所述鳍片分隔成多个部分;depositing a first insulating material on the substrate and the fin, and etching the first insulating material to form a plurality of spacer structures separated from each other, each of the plurality of spacer structures straddling the fin along the width direction of the fin to divide the fin into a plurality of parts;
    在所述鳍片多个部分中不相邻的至少两部分之上分别生长半导体材料以形成有源区;separately growing semiconductor material over at least two non-adjacent portions of the plurality of portions of the fin to form active regions;
    所述鳍片中未生长半导体结构的部分形成沟道区。The portion of the fin where the semiconductor structure is not grown forms a channel region.
  11. 根据权利要求10所述的制备方法,其特征在于,所述在所述鳍片多个部分中不相邻的至少两部分之上分别生长半导体材料以形成有源区,包括:The preparation method according to claim 10, wherein the step of growing a semiconductor material on at least two non-adjacent portions of the plurality of portions of the fin to form an active region comprises:
    在所述鳍片多个部分中不相邻的至少两部分的侧壁包裹第二绝缘材料;wrapping a second insulating material on the sidewalls of at least two non-adjacent portions of the fin portion;
    对所述鳍片中包裹所述第二绝缘材料的部分进行刻蚀,以降低所述鳍片中包裹所述第二绝缘材料的部分沿所述衬底厚度方向的高度;etching the portion of the fin that wraps the second insulating material to reduce the height of the portion of the fin that wraps the second insulating material along the thickness direction of the substrate;
    在所述第二绝缘材料所限定的空间区域内、所述鳍片中包裹所述第二绝缘材料的部分之上生长半导体结构,以形成有源区。A semiconductor structure is grown within the space region defined by the second insulating material, on the portion of the fin that wraps the second insulating material, to form an active region.
  12. 根据权利要求11所述的制备方法,其特征在于,所述方法还包括:The preparation method according to claim 11, wherein the method further comprises:
    刻蚀所述第二绝缘材料以暴露出所述半导体结构的外表面;etching the second insulating material to expose the outer surface of the semiconductor structure;
    在所述半导体结构的外表面包裹金属材料。A metal material is wrapped around the outer surface of the semiconductor structure.
PCT/CN2020/103855 2020-07-23 2020-07-23 Fin field effect transistor and preparation method WO2022016463A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080101476.8A CN115699270A (en) 2020-07-23 2020-07-23 Fin field effect transistor and preparation method
PCT/CN2020/103855 WO2022016463A1 (en) 2020-07-23 2020-07-23 Fin field effect transistor and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103855 WO2022016463A1 (en) 2020-07-23 2020-07-23 Fin field effect transistor and preparation method

Publications (1)

Publication Number Publication Date
WO2022016463A1 true WO2022016463A1 (en) 2022-01-27

Family

ID=79729949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103855 WO2022016463A1 (en) 2020-07-23 2020-07-23 Fin field effect transistor and preparation method

Country Status (2)

Country Link
CN (1) CN115699270A (en)
WO (1) WO2022016463A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105867A1 (en) * 2011-10-31 2013-05-02 Chih-Jung Wang Method of fabricating field effect transistor with fin structure and field effect transistor with fin structure fabricated therefrom
CN104576385A (en) * 2013-10-14 2015-04-29 中国科学院微电子研究所 FinFET structure and manufacturing method thereof
CN104701171A (en) * 2013-12-05 2015-06-10 中芯国际集成电路制造(上海)有限公司 Fin field-effect transistor and forming method thereof
CN107123598A (en) * 2016-02-25 2017-09-01 台湾积体电路制造股份有限公司 Fin formula field effect transistor and its manufacture method
US20170278965A1 (en) * 2016-03-24 2017-09-28 Globalfoundries Inc. Methods for fin thinning providing improved sce and s/d epi growth
CN109755320A (en) * 2017-11-08 2019-05-14 台湾积体电路制造股份有限公司 Semiconductor devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105867A1 (en) * 2011-10-31 2013-05-02 Chih-Jung Wang Method of fabricating field effect transistor with fin structure and field effect transistor with fin structure fabricated therefrom
CN104576385A (en) * 2013-10-14 2015-04-29 中国科学院微电子研究所 FinFET structure and manufacturing method thereof
CN104701171A (en) * 2013-12-05 2015-06-10 中芯国际集成电路制造(上海)有限公司 Fin field-effect transistor and forming method thereof
CN107123598A (en) * 2016-02-25 2017-09-01 台湾积体电路制造股份有限公司 Fin formula field effect transistor and its manufacture method
US20170278965A1 (en) * 2016-03-24 2017-09-28 Globalfoundries Inc. Methods for fin thinning providing improved sce and s/d epi growth
CN109755320A (en) * 2017-11-08 2019-05-14 台湾积体电路制造股份有限公司 Semiconductor devices

Also Published As

Publication number Publication date
CN115699270A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
US11309421B2 (en) Semiconductor devices
US10403739B2 (en) Method for fabricating semiconductor device
TWI496291B (en) Semiconductor devices and methods of forming the same
US9991366B2 (en) Anchored stress-generating active semiconductor regions for semiconductor-on-insulator FinFET
KR102030724B1 (en) Semiconductor device and method
US11728400B2 (en) Semiconductor structure
US11171220B2 (en) Structure and method for high-K metal gate
TW201929147A (en) Source/drain contacts for non-planar transistors
US11557652B2 (en) Metal source/drain-based MOSFET and method for fabricating the same
US9595597B1 (en) Semiconductor device including dual spacer and uniform epitaxial buffer interface of embedded SiGe source/drain
TWI525713B (en) Non-planar transistor fin fabrication
US20220216348A1 (en) Semiconductor devices
TW202015132A (en) Semiconductor device and fabricating the same
TW201834078A (en) Semiconductor device and manufacturing method thereof
TW202125824A (en) Semiconductor device structure
KR20190132171A (en) Non-conformal oxide liner and manufacturing methods thereof
CN112530942A (en) Semiconductor device and method of forming the same
WO2018136261A1 (en) Self-aligned epi contact flow
WO2022016463A1 (en) Fin field effect transistor and preparation method
WO2022082551A1 (en) Gate-all-around nanosheet field-effect transistor and production method therefor
US10121868B1 (en) Methods of forming epi semiconductor material on a thinned fin in the source/drain regions of a FinFET device
US11101361B1 (en) Gate-all-around (GAA) transistor and method of fabricating the same
JP2019062051A (en) Nitride semiconductor device and manufacturing method thereof
US10290738B2 (en) Methods of forming epi semiconductor material on a recessed fin in the source/drain regions of a FinFET device
TW202410151A (en) Semiconductor structure, semiconductor device, and method for fabricating the semiconductor structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946411

Country of ref document: EP

Kind code of ref document: A1