WO2022016394A1 - 信息传输方法、装置、通信设备和存储介质 - Google Patents

信息传输方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2022016394A1
WO2022016394A1 PCT/CN2020/103348 CN2020103348W WO2022016394A1 WO 2022016394 A1 WO2022016394 A1 WO 2022016394A1 CN 2020103348 W CN2020103348 W CN 2020103348W WO 2022016394 A1 WO2022016394 A1 WO 2022016394A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
handover
width
response
scanning
Prior art date
Application number
PCT/CN2020/103348
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/013,835 priority Critical patent/US20230327740A1/en
Priority to PCT/CN2020/103348 priority patent/WO2022016394A1/zh
Priority to CN202080001637.6A priority patent/CN114258700B/zh
Publication of WO2022016394A1 publication Critical patent/WO2022016394A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of wireless communication technologies, but is not limited to the field of wireless communication technologies, and in particular, to information transmission methods, apparatuses, communication devices, and storage media.
  • the transmitting and receiving ends support the large number of steerable antenna element, the fifth generation (5G, 5 th Generation) new radio (NR, New Radio) key features.
  • 5G 5 th Generation
  • NR New Radio
  • a large number of antenna elements can be used for beamforming to reduce the width of a single beam and expand the signal coverage distance of a single beam.
  • the 5G system design introduces the concept of multi-beam.
  • millimeter waves have been introduced in 5G NR communication, and the terahertz frequency band will be widely used in the foreseeable 6G communication.
  • embodiments of the present disclosure provide an information transmission method, apparatus, communication device, and storage medium.
  • an information transmission method is provided, wherein, applied to a first communication node, the method includes:
  • a handover request indicating a handover from a first beam to a second beam is sent to the second communication node, wherein the first beam is different from the second beam.
  • the handover request includes a beam change indication for indicating a difference between the first beam and the second beam.
  • the beam change indication is used to indicate that the width of the first beam is greater than the width of the second beam, or the width of the first beam is smaller than the width of the second beam.
  • the beam change indication is used to indicate a difference value between the width of the first beam and the width of the second beam.
  • the handover request includes capability information indicating the capability of the first communication node.
  • the capability information indicating the capability of the first communication node is used to indicate that the first communication node has the capability of ensuring the beam orientation consistency before and after handover, or indicates that the first communication node does not have The ability to ensure the consistency of beam orientations before and after handover.
  • the handover request includes beam scanning request information, which is used to request scanning resources for beam scanning by using the second beam.
  • the method further includes:
  • At least one of the second beams is used to perform beam scanning, and the second beam whose scanning result satisfies the first condition is determined to be used for the first communication node and the second communication node beams for communication.
  • the method further includes:
  • a configuration for transmitting signals on the second beam is determined according to the signal transmission indication information.
  • the sending to the second communication node a handover request requesting to switch from the first beam to the second beam includes at least one of the following:
  • the method further includes:
  • an information transmission method is provided, wherein, applied to a second communication node, the method includes:
  • a handover request sent by a first communication node indicating a handover from a first beam to a second beam is received, wherein the first beam is different from the second beam.
  • the handover request includes a beam change indication for indicating a difference between the first beam and the second beam.
  • the beam change indication is used to indicate that the width of the first beam is greater than the width of the second beam, or the width of the first beam is smaller than the width of the second beam.
  • the beam change indication is used to indicate a difference value between the width of the first beam and the width of the second beam. .
  • the handover request includes capability information indicating the capability of the first communication node.
  • the capability information indicating the capability of the first communication node is used to indicate that the first communication node has the capability of ensuring the beam orientation consistency before and after handover, or indicates that the first communication node does not have The ability to ensure the consistency of beam orientations before and after handover. .
  • the method further includes:
  • the handover request carrying beam scanning request information is received, wherein the beam scanning request information is used to request scanning resources for beam scanning by using the second beam.
  • the method further includes:
  • a handover response carrying resource information indicating the scanning resource is sent.
  • the method further includes:
  • signal transmission indication information is sent, wherein the signal transmission indication information is used to indicate a power configuration for transmitting a signal on the second beam.
  • the method further includes:
  • a handover response indicating that handover to the second beam is permitted is sent.
  • an information transmission apparatus wherein, applied to a first communication node, the apparatus includes: a first sending module, wherein:
  • the first sending module is configured to send a switching request indicating switching from a first beam to a second beam to the second communication node, wherein the first beam is different from the second beam.
  • the handover request includes a beam change indication for indicating a difference between the first beam and the second beam.
  • the beam change indication is used to indicate that the width of the first beam is greater than the width of the second beam, or the width of the first beam is smaller than the width of the second beam.
  • the beam change indication is used to indicate a difference value between the width of the first beam and the width of the second beam.
  • the handover request includes capability information indicating the capability of the first communication node.
  • the capability information indicating the capability of the first communication node is used to indicate that the first communication node has the capability of ensuring the beam orientation consistency before and after handover, or indicates that the first communication node does not have The ability to ensure the consistency of beam orientations before and after handover.
  • the handover request includes beam scanning request information, which is used to request scanning resources for beam scanning by using the second beam.
  • the apparatus further includes:
  • a first receiving module configured to receive a handover response that is sent by the second communication node and carries resource information indicating the scanning resource
  • a first determining module configured to perform beam scanning on the scanning resource by using at least one of the second beams, and determine the second beam whose scanning result satisfies the first condition as being used for the first communication node a beam for communication with the second communication node.
  • the apparatus further includes:
  • a second receiving module configured to receive signal transmission indication information sent by the second communication node in response to the first communication node switching to the second beam
  • the second determining module is configured to determine, according to the signal transmission indication information, a configuration for transmitting signals on the second beam.
  • the first sending module includes at least one of the following:
  • a first sending submodule configured to send the handover request to the second communication node in response to the power of the first communication node being lower than a power threshold
  • a second sending submodule configured to send the handover request to the second communication node in response to the first communication node being located at a predetermined position
  • the third sending submodule is configured to, in response to the first communication node being located at the predetermined position, and the historical beam used by the first communication node at the predetermined position is the second beam, send the second beam to the first communication node.
  • the second communication node sends the handover request.
  • the apparatus further comprises:
  • a third receiving module configured to receive a handover response sent by the second communication node in response to the request information, wherein the handover response is used to indicate that handover to the second beam is permitted;
  • a communication module configured to communicate with the second communication node on the second beam in response to receiving the handover response.
  • an information transmission apparatus wherein, applied to a second communication node, the apparatus includes: a fourth receiving module, wherein,
  • the fourth receiving module is configured to receive a handover request sent by the first communication node to instruct to switch from a first beam to a second beam, where the first beam is different from the second beam.
  • the handover request includes a beam change indication for indicating a difference between the first beam and the second beam.
  • the beam change indication is used to indicate that the width of the first beam is greater than the width of the second beam, or the width of the first beam is smaller than the width of the second beam.
  • the beam change indication is used to indicate a difference value between the width of the first beam and the width of the second beam.
  • the handover request includes capability information indicating the capability of the first communication node.
  • the capability information indicating the capability of the first communication node is used to indicate that the first communication node has the capability of ensuring the beam orientation consistency before and after handover, or indicates that the first communication node does not have The ability to ensure the consistency of beam orientations before and after handover.
  • the apparatus further includes:
  • the fifth receiving module is configured to receive the handover request carrying beam scanning request information, wherein the beam scanning request information is used to request scanning resources for beam scanning using the second beam.
  • the apparatus further includes:
  • the second sending module is configured to, in response to receiving the handover request carrying the beam scanning request information, send a handover response carrying resource information indicating the scanning resource.
  • the apparatus further includes:
  • a third sending module configured to send signal transmission indication information in response to the first communication node switching to the second beam, wherein the signal transmission indication information is used to instruct to send a signal on the second beam power configuration.
  • the apparatus further includes:
  • the fourth sending module is configured to, in response to receiving the request information, send a switching response indicating that switching to the second beam is permitted.
  • a communication device including a processor, a memory, and an executable program stored on the memory and capable of being executed by the processor, wherein the processor executes the executable program.
  • the program executes the executable program.
  • a communication device including a processor, a memory, and an executable program stored on the memory and capable of being executed by the processor, wherein the processor executes the executable program.
  • the program executes the executable program.
  • the first communication node sends a handover request to the second communication node indicating a handover from a first beam to a second beam, wherein the first beam is different from the second beam.
  • the first communication node implements beam switching by sending a switching request.
  • the first communication node can select different beams for communication, and is not limited to using the same type of beams for communication, improving beam selection flexibility.
  • the first communication node can select a beam suitable for the current communication scenario for communication, thereby improving communication efficiency
  • FIG. 1 is a schematic structural diagram of a communication system according to an exemplary embodiment
  • FIG. 2 is a schematic diagram of beamforming according to an exemplary embodiment
  • FIG. 3 is a schematic diagram of another beamforming according to an exemplary embodiment
  • FIG. 4 is a schematic flowchart of an information transmission method according to an exemplary embodiment
  • FIG. 5 is a schematic diagram of beam switching according to an exemplary embodiment
  • FIG. 6 is a schematic diagram of another downlink information transmission shown according to an exemplary embodiment
  • FIG. 7 is a structural block diagram showing the composition of an information transmission apparatus according to an exemplary embodiment
  • FIG. 8 is a structural block diagram showing another information transmission apparatus according to an exemplary embodiment
  • Fig. 9 is a block diagram of an apparatus for information transmission according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 may communicate with one or more core networks via a radio access network (RAN), and the terminal 11 may be an IoT terminal such as a sensor device, a mobile phone (or "cellular" phone) and a
  • RAN radio access network
  • the computer of the IoT terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or a vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless communication device externally connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, a streetlight, a signal light, or other roadside devices with a wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the MTC system may be a network-side device in a wireless communication system.
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the terminals 11 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved data packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rule functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 13 is not limited in this embodiment of the present disclosure.
  • the execution subjects involved in the embodiments of the present disclosure include, but are not limited to, user equipment UE such as a terminal that communicates using a cellular mobile communication technology, and a base station.
  • An application scenario of the embodiments of the present disclosure is that in order to implement beamforming, the UE needs multiple antenna units. As shown in FIG. 2 below, the four antenna units form a beam with a wider width. Turn off some antenna units, as shown in Figure 3, after turning off two antenna units, a wider beam can be obtained. The narrower beam has better directivity and concentrated energy, which can be applied to poor channel conditions and large data transmission.
  • the capabilities of UEs corresponding to beam switching are different.
  • the first type of UE can ensure that the beam pointing after the switch is consistent with that before the switch, that is, the peak gain of the beam before the beam switch and the direction of the beam peak gain after the switch are basically the same, or less than a certain range .
  • the peak gain of the beam before the beam switching and the direction of the beam peak gain after the width switching will exceed a certain range, thereby reducing the signal transmission performance.
  • the present exemplary embodiment provides an information transmission method, which can be applied to the first communication node of wireless communication, and the information transmission method may include:
  • Step 401 Send a handover request to a second communication node indicating handover from a first beam to a second beam, where the first beam is different from the second beam.
  • the first communication node may be a UE such as a terminal that uses a wireless communication technology such as cellular mobile communication technology for communication
  • the second communication node may be a UE or a base station in cellular mobile communication.
  • Both the first communication node and the second communication node may support the use of beamforming to generate beams for communication.
  • the first beam and the second beam may be beams through which the first communication node receives the signal sent by the second communication node.
  • the first beam and the second beam may also be beams through which the first communication node transmits signals.
  • the difference between the first beam and the second beam may be beams with different directivity or different energy concentration, and the like.
  • the number of antenna elements required for the first beam is different from the number of antenna elements required for the second beam; or the width of the first beam is different from the width of the second beam, or the like.
  • the first beam may be the currently used beam, and the second beam may be the target beam for handover.
  • the first beam and the second beam can be used for communication in different scenarios.
  • the first beam is a larger width beam and the second beam is a smaller width beam.
  • the first communication node may determine whether to perform beam switching according to the current communication scenario. For example, when the relative movement speed of the first communication node and the second communication node is very fast, the first communication node may select a beam with a larger width.
  • the first communication node may send a handover request instructing the first communication node to switch from the first beam to the second beam.
  • the second communication node receives the handover request and determines whether to know the transmission of the second beam, or configure the resources of the second beam, or the like.
  • the first communication node implements beam switching by sending a switching request.
  • the first communication node can select different beams for communication, and is not limited to using the same type of beams for communication, improving beam selection flexibility.
  • the first communication node may select a beam suitable for the current communication scenario for communication, thereby improving communication efficiency.
  • the handover request includes a beam change indication for indicating a difference between the first beam and the second beam.
  • the difference between the first beam and the second beam may be the difference in the direction and width of the first beam and the second beam, and the like.
  • the second communication node may determine whether to allow the first communication node to switch from the first beam to the second beam according to the beam change indication. For example, whether it will interfere with the beams of other communication nodes can be determined according to the width of the second beam, and whether to allow the first communication node to switch from the first beam to the second beam.
  • the beam change indication is used to indicate that the width of the first beam is greater than the width of the second beam, or the width of the first beam is smaller than the width of the second beam.
  • the first beam may be the beam shown in FIG. 2
  • the second beam may be the beam shown in FIG. 3 ; or, the first beam may be the beam shown in FIG. 3 , and the second beam may be the beam shown in FIG. 2 .
  • the widths of the first beam and the second beam are different.
  • beams with wider widths use fewer antenna elements, and beams with narrower widths use more antenna elements.
  • Wider beam widths allow the use of fewer antenna elements, resulting in more power savings and better mobile performance due to the wider width.
  • Beams with wider width can use more antenna units, have stronger directivity, more concentrated energy, and stronger anti-interference ability, which can be applied to communication transmission with poor channel conditions.
  • the first communication node may apply to the second communication node for switching to a wider beam. narrow beam.
  • the current beam of the first communication node is a beam with a narrow width
  • the channel condition where the first communication node is located is better.
  • the first communication node can apply to the second communication node for switching to a beam with a wider width.
  • the beam change indication is used to indicate a difference value between the width of the first beam and the width of the second beam.
  • the beam change indication may indicate the change of the second beam relative to the first beam, eg, the beam change indication may indicate that the width of the second beam is larger or smaller relative to the first beam, and the difference value of the change of the second beam relative to the width of the first beam.
  • the difference value may be a specific width difference value, or may be a proportional relationship between the second beam width and the first beam width.
  • the beam change indication may use one bit to indicate whether the second beam increases or decrease relative to the first beam width, and another bit to indicate the ratio of the second beam width to the first beam width. relationship, that is, the width change factor.
  • the beam change indication can explicitly indicate the difference between the beams before and after switching.
  • the handover request includes capability information indicating the capability of the first communication node.
  • the capability of the first communication node may include: the switchable beam width of the first communication node, and the control capability of switching from the first beam to the second beam in the direction of the beam, and the like.
  • the second communication node may determine whether to perform beam switching based on the capabilities of the first communication node.
  • the capability information indicating the capability of the first communication node is used to indicate that the first communication node has the capability of ensuring the beam orientation consistency before and after handover, or indicates that the first communication node does not have The ability to ensure the consistency of beam orientations before and after handover.
  • Different first communication nodes have different beam switching capabilities.
  • the first communication node after the first communication node performs beam switching, it can ensure that the beam pointing after the switching is consistent with the beam pointing before the switching, the peak gain directions before and after the beam switching are basically the same, or the peak gain direction deviation before and after the beam switching is less than or equal to Deviation threshold.
  • the deviation angle of the peak gain direction before and after the beam switching is greater than the deviation threshold.
  • the deviation of the peak gain direction before and after the beam switching is greater than or equal to the deviation threshold, that is, the deviation angle between the peak gain direction of the second beam and the second communication node after the switching is larger, thereby reducing the signal transmission quality.
  • the first communication node requests to use the second beam to perform beam scanning through the beam scanning request information, and determines a second beam that meets the transmission requirements, which can reduce the inconsistency of the beam peak gain directions before and after the switching caused by the switching of the beam type, thereby improving the Signal transmission efficiency.
  • the handover request includes beam scanning request information, which is used to request scanning resources for beam scanning by using the second beam.
  • the first communication node may carry beam scanning request information in the handover request, which is used to request beam management from the second communication node.
  • beam management means that the first communication node uses multiple second beams to scan the reference signal and other signals transmitted by the second communication node, determines a second beam whose signal meets the preset condition, and uses the second beam as the first beam A beam of communication between a communication node and a second communication node.
  • the beam scanning request information may be used to request scanning resources for beam scanning from the second communication node.
  • the scanning resources may include: frequency-sweeping time slot resources and frequency resources, and the like.
  • the second communication node may determine the scanning resource for scanning the second beam if beam switching is allowed.
  • the capability information of the first communication node may be used as beam scanning request information.
  • the capability information sent by the first communication node indicates that the deviation between the peak gain direction of the beam before the first communication node performs the beam switching and the peak gain direction of the beam after the beam switching is less than or equal to the deviation threshold.
  • the second communication node may determine that the first communication node needs to scan the second beam.
  • the method further includes:
  • At least one of the second beams is used to perform beam scanning, and the second beam whose scanning result satisfies the first condition is determined to be used for the first communication node and the second communication node beams for communication.
  • the second communication node may indicate scanning resources used for beam scanning through the resource information carried in the handover response, and the scanning resources may include: time slot resources and frequency resources for frequency scanning, and the like.
  • the first communication node After receiving the handover response, the first communication node determines the scanning resource. And on the scanning resource, use multiple second beams to scan the reference signal and other signals transmitted by the second communication node, determine a second beam whose scanning result satisfies the preset condition, and use the second beam as the first communication node and the second beam.
  • the scanning result may be a signal quality parameter of a signal such as a reference signal transmitted by the second communication node determined by scanning with the second beam, such as Reference Signal Received Power (RSRP, Reference Signal Receiving Power), RSRQ, SINR, etc.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Power
  • the first communication node may use the second beam to scan, determine a second beam with an optimal RSRP, and transmit the information for communication between the first communication node and the second communication node.
  • the first communication node uses the second beam to perform beam scanning to determine a second beam that meets the transmission requirements, which can reduce the inconsistency of beam peak gain directions before and after switching due to beam type switching, thereby improving signal transmission efficiency.
  • the method further includes:
  • a configuration for transmitting signals on the second beam is determined according to the signal transmission indication information.
  • the second communication node may also deliver to the first communication node a configuration for readjusting the corresponding transmission signal according to the second beam, such as signal transmission power configuration, where the transmission power configuration may include : Mobility management measurement interval time configuration, signal transmission power configuration, etc.
  • the first communication node performs data communication on the second beam based on the power configuration. For example, signal measurement is performed according to the measurement interval time configured by the power configuration. In order to meet the power control requirements, thereby saving power.
  • the sending to the second communication node a handover request requesting to switch from the first beam to the second beam includes at least one of the following:
  • the first communication node may apply to the second communication node for switching from the first beam to the second beam due to the need of power saving, for example, when the power is lower than the power threshold.
  • the width of the first beam is smaller than the width of the second beam, therefore, the number of antenna elements used in the first beam is larger, and the power consumption is larger.
  • the first communication node may determine the type of beam to be used according to its location. For example, a beam with a wider width may be used at a position closer to the second communication node, and a beam with a wider width may be used at a position closer to the second communication node. Where the nodes are far away, a narrower beam can be used, which can improve the signal receiving efficiency.
  • the first communication node judges whether it needs to apply to the second communication node for beam switching according to the position, and the terminal position information can be measured according to GPS or other position measurement units.
  • the first communication node may determine the adopted beam according to the historical beam type usage record at the location. For example, when the current beam type of the first communication node is different from the historical beam type of the current position, it may Apply to the second communication node for beam switching.
  • the method further includes:
  • the second communication node may determine whether to allow the first communication node to switch from the first beam to the second beam according to the beam change indication. For example, whether it will interfere with the beams of other communication nodes can be determined according to the width of the second beam, and whether to allow the first communication node to switch from the first beam to the second beam.
  • the second communication node may also determine whether to allow the first communication node to switch from the first beam to the second beam according to its own load; for example, when the load of the second communication node is greater than the load threshold, the first communication node is not allowed to switch from the first beam to the second beam.
  • the second communication node may also determine whether to allow the first communication node to switch from the first beam to the second beam according to the capability of the first communication node; for example, when the beam management capability of the first communication node is weak, that is, the first communication node performs beam switching.
  • the first communication node performs beam switching.
  • the deviation between the peak gain direction of the beam before switching and the peak gain direction of the beam after the beam switching is greater than or equal to the deviation threshold, and the first communication node does not carry the beam scanning request information in the handover request, the first communication node is not allowed to start from the first communication node.
  • One beam switches to the second beam.
  • the second communication node may send a handover response indicating that beam switching is permitted. After receiving the switching response, the first communication node switches from the first beam to the second beam. If no switching response is received indicating that beam switching is permitted, beam switching is not performed.
  • this exemplary embodiment provides an information transmission method, which can be applied to a second communication node of wireless communication.
  • the information transmission method may include:
  • Step 601 Receive a handover request sent by a first communication node to indicate handover from a first beam to a second beam, where the first beam is different from the second beam.
  • the first communication node may be a UE such as a terminal that uses a wireless communication technology such as cellular mobile communication technology for communication
  • the second communication node may be a UE or a base station in cellular mobile communication.
  • Both the first communication node and the second communication node may support the use of beamforming to generate beams for communication.
  • the first beam and the second beam may be beams through which the first communication node receives the signal sent by the second communication node.
  • the first beam and the second beam may also be beams through which the first communication node transmits signals.
  • the difference between the first beam and the second beam may be beams with different directivity or different energy concentration, and the like.
  • the number of antenna elements required for the first beam is different from the number of antenna elements required for the second beam; or the width of the first beam is different from the width of the second beam, or the like.
  • the first beam may be the currently used beam, and the second beam may be the target beam for handover.
  • the first beam and the second beam can be used for communication in different scenarios.
  • the first beam is a larger width beam and the second beam is a smaller width beam.
  • the first communication node may determine whether to perform beam switching according to the current communication scenario. For example, when the relative movement speed of the first communication node and the second communication node is very fast, the first communication node may select a beam with a larger width.
  • the first communication node may send a handover request instructing the first communication node to switch from the first beam to the second beam.
  • the second communication node receives the handover request and determines whether to know the transmission of the second beam, or configure the resources of the second beam, or the like.
  • the first communication node implements beam switching by sending a switching request.
  • the first communication node can select different beams for communication, and is not limited to using the same type of beams for communication, improving beam selection flexibility.
  • the first communication node may select a beam suitable for the current communication scenario for communication, thereby improving communication efficiency.
  • the handover request includes a beam change indication for indicating a difference between the first beam and the second beam.
  • the difference between the first beam and the second beam may be the difference in the direction and width of the first beam and the second beam, and the like.
  • the second communication node may determine whether to allow the first communication node to switch from the first beam to the second beam according to the beam change indication. For example, whether it will interfere with the beams of other communication nodes can be determined according to the width of the second beam, and whether to allow the first communication node to switch from the first beam to the second beam.
  • the beam change indication is used to indicate that the width of the first beam is greater than the width of the second beam, or the width of the first beam is smaller than the width of the second beam.
  • the first beam may be the beam shown in FIG. 2
  • the second beam may be the beam shown in FIG. 3 ; or, the first beam may be the beam shown in FIG. 3 , and the second beam may be the beam shown in FIG. 2 .
  • the widths of the first beam and the second beam are different.
  • beams with wider widths use fewer antenna elements, and beams with narrower widths use more antenna elements.
  • Wider beam widths allow the use of fewer antenna elements, resulting in more power savings and better mobile performance due to the wider width.
  • Beams with wider width can use more antenna units, have stronger directivity, more concentrated energy, and stronger anti-interference ability, which can be applied to communication transmission with poor channel conditions.
  • the first communication node may apply to the second communication node for switching to a wider beam. narrow beam.
  • the current beam of the first communication node is a beam with a narrow width
  • the channel condition where the first communication node is located is better.
  • the first communication node can apply to the second communication node for switching to a beam with a wider width.
  • the beam change indication is used to indicate a difference value between the width of the first beam and the width of the second beam.
  • the beam change indication may indicate the change of the second beam relative to the first beam, eg, the beam change indication may indicate that the width of the second beam is larger or smaller relative to the first beam, and the difference value of the change of the second beam relative to the width of the first beam.
  • the difference value may be a specific width difference value, or may be a proportional relationship between the second beam width and the first beam width.
  • the beam change indication may use one bit to indicate whether the second beam increases or decrease relative to the first beam width, and another bit to indicate the ratio of the second beam width to the first beam width. relationship, that is, the width change factor. In this way, the beam change indication can explicitly indicate the difference between the beams before and after switching.
  • the handover request includes capability information indicating the capabilities of the first communication node.
  • the capabilities of the first communication node may include: a switchable beam width of the first communication node, and a control capability of switching from the first beam to the second beam in the direction of the beam, and the like.
  • the second communication node may determine whether to perform beam switching based on the capabilities of the first communication node.
  • the capability information indicating the capability of the first communication node is used to indicate that the first communication node has the capability of ensuring the beam orientation consistency before and after handover, or indicates that the first communication node does not have The ability to ensure the consistency of beam orientations before and after handover. .
  • first communication nodes have different beam switching capabilities.
  • the first communication node after the first communication node performs beam switching, it can ensure that the beam pointing after the switching is consistent with the beam pointing before the switching, the peak gain directions before and after the beam switching are basically the same, or the peak gain direction deviation before and after the beam switching is less than or equal to Deviation threshold.
  • the deviation angle of the peak gain direction before and after the beam switching is greater than or equal to the deviation threshold. If the deviation of the peak gain direction before and after the beam switching is greater than or equal to the deviation threshold, that is, the deviation angle between the peak gain direction of the second beam and the second communication node after the switching is larger, thereby reducing the signal transmission quality.
  • the first communication node requests to use the second beam to perform beam scanning through the beam scanning request information, and determines a second beam that meets the transmission requirements, which can reduce the inconsistency of the beam peak gain directions before and after the switching caused by the switching of the beam type, thereby improving the Signal transmission efficiency.
  • the method further includes:
  • the handover request carrying beam scanning request information is received, wherein the beam scanning request information is used to request scanning resources for beam scanning by using the second beam.
  • the first communication node may carry beam scanning request information in the handover request, which is used to request beam management from the second communication node.
  • beam management means that the first communication node uses multiple second beams to scan the reference signal and other signals transmitted by the second communication node, determines a second beam whose signal meets the preset condition, and uses the second beam as the first beam A beam of communication between a communication node and a second communication node.
  • the beam scanning request information may be used to request scanning resources for beam scanning from the second communication node.
  • the scanning resources may include: frequency-sweeping time slot resources and frequency resources, and the like.
  • the second communication node may determine the scanning resource for scanning the second beam if beam switching is allowed.
  • the capability information of the first communication node may be used as beam scanning request information.
  • the capability information sent by the first communication node indicates that the deviation between the peak gain direction of the beam before the first communication node performs the beam switching and the peak gain direction of the beam after the beam switching is less than or equal to the deviation threshold.
  • the second communication node may determine that the first communication node needs to scan the second beam.
  • the method further includes:
  • a handover response carrying resource information indicating the scanning resource is sent.
  • the second communication node may indicate scanning resources used for beam scanning through the resource information carried in the handover response, and the scanning resources may include: time slot resources and frequency resources for frequency scanning, and the like.
  • the first communication node After receiving the handover response, the first communication node determines the scanning resource. And on the scanning resource, use multiple second beams to scan the reference signal and other signals transmitted by the second communication node, determine a second beam whose scanning result satisfies the preset condition, and use the second beam as the first communication node and the second beam.
  • the scanning result may be a signal quality parameter of a signal such as a reference signal transmitted by the second communication node determined by scanning using the second beam, such as Reference Signal Receiving Power (RSRP, Reference Signal Receiving Power).
  • RSRP Reference Signal Receiving Power
  • the first communication node may use the second beam to scan, determine a second beam with an optimal RSRP, and transmit the information for communication between the first communication node and the second communication node.
  • the first communication node uses the second beam to perform beam scanning to determine a second beam that meets the transmission requirements, which can reduce the inconsistency of beam peak gain directions before and after switching due to beam type switching, thereby improving signal transmission efficiency.
  • the method further includes:
  • signal transmission indication information is sent, wherein the signal transmission indication information is used to indicate a power configuration for transmitting a signal on the second beam.
  • the second communication node may also deliver to the first communication node a configuration for readjusting the corresponding transmission signal according to the second beam, such as signal transmission power configuration, where the transmission power configuration may include : Mobility management measurement interval time configuration, signal transmission power configuration, etc.
  • the first communication node performs data communication on the second beam based on the power configuration. For example, signal measurement is performed according to the measurement interval time configured by the power configuration. In order to meet the power control requirements, thereby saving power.
  • the method further includes:
  • a handover response indicating that handover to the second beam is permitted is sent.
  • the second communication node may determine whether to allow the first communication node to switch from the first beam to the second beam according to the beam change indication. For example, whether it will interfere with the beams of other communication nodes can be determined according to the width of the second beam, and whether to allow the first communication node to switch from the first beam to the second beam.
  • the second communication node may also determine whether to allow the first communication node to switch from the first beam to the second beam according to its own load; for example, when the load of the second communication node is greater than the load threshold, the first communication node is not allowed to switch from the first beam to the second beam.
  • the second communication node may also determine whether to allow the first communication node to switch from the first beam to the second beam according to the capability of the first communication node; for example, when the beam management capability of the first communication node is weak, that is, the first communication node performs beam switching.
  • the first communication node performs beam switching.
  • the deviation between the peak gain direction of the beam before switching and the peak gain direction of the beam after the beam switching is greater than or equal to the deviation threshold, and the first communication node does not carry the beam scanning request information in the handover request, the first communication node is not allowed to start from the first communication node.
  • One beam switches to the second beam.
  • the second communication node may send a handover response indicating that beam switching is permitted. After receiving the switching response, the first communication node switches from the first beam to the second beam. If no switching response is received indicating that beam switching is permitted, beam switching is not performed.
  • the terminal sends a request to the base station to switch the beam bandwidth, where the beam bandwidth refers to the beam width, and the base station determines whether to respond to the request according to the capability reported by the terminal and the current network conditions.
  • the terminal sends a request for switching the beam bandwidth to the base station, and the request information further includes information on whether to perform beam management again.
  • the terminal determines whether to perform beam management according to the beam bandwidth switching capability of the terminal.
  • the beam bandwidth switching capability refers to whether the terminal has the ability to ensure that the beam orientation after switching is consistent with that before switching, that is, the peak gain directions before and after the beam bandwidth switching are basically the same, or the peak gain less than a certain range.
  • the request information also includes switching target beam bandwidth information.
  • the channel conditions where the terminal is located are good. For example, when the downlink of the base station estimates that the path loss is low, or the signal-to-noise ratio is greater than a certain value, and the transmitted traffic volume is judged to be small, the terminal can apply to the base station for wide-beam switching.
  • the specific steps are as follows:
  • the terminal sends a request for switching the beam bandwidth to the base station, and the base station determines whether to respond to the request according to the capability of the terminal and the current network situation.
  • the terminal sends a request for switching the wide beam bandwidth to the base station, and the request information also includes information on whether beam management needs to be done again.
  • the terminal determines whether to perform beam management according to the beam bandwidth switching capability of the terminal.
  • the beam bandwidth refers to the beam width.
  • the beam bandwidth switching capability refers to whether the terminal has the ability to ensure that the beam orientation after switching is consistent with that before switching, that is, the peak gain directions before and after the beam bandwidth switching are basically the same, or the peak gain is smaller than a certain range.
  • the request information also includes switching target beam bandwidth information.
  • the beam width information can use one bit to indicate whether the target beam is increased or decreased relative to the current beam width, and another bit to indicate the proportional relationship between the target beam width and the current beam width, that is, the width change factor.
  • the difference between the current beam and the target beam may be that the width is different.
  • the base station determines to respond to the request, and sends a handover response to the terminal on the current beam. If it is determined according to the request information that the terminal needs to perform beam management again, the handover response also includes resource information used by the terminal for beam management. The base station keeps the current beam unchanged.
  • the resource information for beam management includes time slot resources and frequency resources used by the terminal for frequency sweeping.
  • the terminal receives the handover response from the base station and performs response processing, such as turning off some antenna units and switching to the corresponding target beam. If the terminal also needs to do beam management, it scans the target beam on the downlink beam of the current base station according to the resource information sent by the base station, and determines the optimal beam according to the scanning result.
  • the base station after the base station completes the handover of the terminal, the base station also needs to deliver to the terminal corresponding configuration parameters that are re-adjusted according to the new beam, such as the measurement interval time of mobility management.
  • the terminal's current beam is the widest beam that is not supported by the terminal, and the current beam condition is poor in channel conditions, and there is a large amount of service data to be transmitted, the terminal can apply to the base station for narrow beam switching.
  • the specific steps are as follows:
  • the terminal sends a request for switching the beam bandwidth to the base station, and the base station determines whether to respond to the request according to the capabilities of the terminal and current network conditions.
  • the terminal sends a request for switching the beam bandwidth to the base station, and the request information also includes information on whether beam management needs to be done again.
  • the terminal determines whether to perform beam management according to the beam bandwidth switching capability of the terminal.
  • the beam bandwidth switching capability refers to whether the terminal has the ability to ensure that the beam orientation after switching is consistent with that before switching, that is, the peak gain directions before and after the beam bandwidth switching are basically the same, or the peak gain is smaller than a certain range.
  • the request information also includes switching target beam bandwidth information.
  • the beam width information can use one bit to indicate whether the target beam is increased or decreased relative to the current beam width, and another bit to indicate the proportional relationship between the target beam width and the current beam width, that is, the width change factor.
  • the difference between the current beam and the target beam may be that the width is different.
  • the base station determines to respond to the request, and sends a handover response to the terminal in the current beam. If it is determined according to the request information that the terminal needs to perform beam management again, the handover response also includes the resource information used by the terminal for beam management, and the base station keeps the current beam. constant.
  • the terminal receives the handover response from the base station and processes the response. If the terminal needs to do beam management, it scans the current base station beam with the target beam according to the resource information sent by the base station, and determines the optimal beam according to the scanning result.
  • the base station after the base station completes the handover of the terminal, the base station also needs to deliver to the terminal corresponding configuration parameters that are re-adjusted according to the new beam, such as the measurement interval time of mobility management.
  • the terminal applies to the base station for wide beam switching.
  • the terminal determines whether it needs to apply to the base station for beam switching according to the location information, and the terminal location information is measured according to GPS or other location measurement units.
  • the current beam of the terminal when it is not the same as the historical beam corresponding to the measured location information, it may apply to the base station for beam switching.
  • the difference between the current beam and the historical beam may be that the width is different.
  • FIG. 7 is a schematic diagram of the composition and structure of the information transmission apparatus 100 provided by the embodiment of the present invention; as shown in FIG. 7 , the apparatus 100 includes : the apparatus includes: a first sending module 110, wherein,
  • the first sending module 110 is configured to send a switching request indicating switching from a first beam to a second beam to the second communication node, where the first beam is different from the second beam.
  • the handover request includes a beam change indication for indicating a difference between the first beam and the second beam.
  • the beam change indication is used to indicate that the width of the first beam is greater than the width of the second beam, or the width of the first beam is smaller than the width of the second beam.
  • the beam change indication is used to indicate a difference value between the width of the first beam and the width of the second beam.
  • the handover request includes capability information indicating the capability of the first communication node.
  • the capability information indicating the capability of the first communication node is used to indicate that the first communication node has the capability of ensuring the beam orientation consistency before and after handover, or indicates that the first communication node does not have The ability to ensure the consistency of beam orientations before and after handover.
  • the handover request includes beam scanning request information, which is used to request scanning resources for beam scanning by using the second beam.
  • the apparatus 100 further includes:
  • the first receiving module 120 is configured to receive a handover response that is sent by the second communication node and carries resource information indicating the scanning resource;
  • the first determining module 130 is configured to use at least one of the second beams to perform beam scanning on the scanning resources, and determine the second beam whose scanning result satisfies the first condition as being used for the first communication A beam for communication between the node and the second communication node.
  • the apparatus 100 further includes:
  • a second receiving module 140 configured to receive signal transmission indication information sent by the second communication node in response to the first communication node switching to the second beam;
  • the second determining module 150 is configured to determine, according to the signal transmission indication information, a configuration for transmitting signals on the second beam.
  • the first sending module 110 includes at least one of the following:
  • the first sending sub-module 111 is configured to send the handover request to the second communication node in response to the electric power of the first communication node being lower than the electric power threshold;
  • a second sending submodule 112 configured to send the handover request to the second communication node in response to the first communication node being located at a predetermined position
  • the third sending sub-module 113 is configured to, in response to that the first communication node is located at the predetermined position, and the historical beam used by the first communication node at the predetermined position is the second beam, send a message to the The second communication node sends the handover request.
  • the apparatus 100 further includes:
  • the third receiving module 160 is configured to receive a handover response sent by the second communication node in response to the request information, wherein the handover response is used to indicate that handover to the second beam is permitted;
  • the communication module 170 is configured to communicate with the second communication node on the second beam in response to receiving the handover response.
  • FIG. 8 is a schematic structural diagram of the composition of the information transmission apparatus 200 provided by the embodiment of the present invention; as shown in FIG. 8 , the apparatus 200 includes : the apparatus includes: a fourth receiving module 210, wherein:
  • the fourth receiving module 210 is configured to receive a handover request sent by a first communication node to indicate a handover from a first beam to a second beam, where the first beam is different from the second beam.
  • the handover request includes a beam change indication for indicating a difference between the first beam and the second beam.
  • the beam change indication is used to indicate that the width of the first beam is greater than the width of the second beam, or the width of the first beam is smaller than the width of the second beam.
  • the beam change indication is used to indicate a difference value between the width of the first beam and the width of the second beam.
  • the handover request includes capability information indicating the capability of the first communication node.
  • the capability information indicating the capability of the first communication node is used to indicate that the first communication node has the capability of ensuring the beam orientation consistency before and after handover, or indicates that the first communication node does not have the capability The ability to ensure the consistency of beam orientations before and after handover.
  • the apparatus 200 further includes:
  • the fifth receiving module 220 is configured to receive the handover request carrying beam scanning request information, wherein the beam scanning request information is used to request scanning resources for beam scanning using the second beam.
  • the apparatus 200 further includes:
  • the second sending module 230 is configured to, in response to receiving the handover request carrying the beam scanning request information, send a handover response carrying resource information indicating the scanning resource.
  • the apparatus 200 further includes:
  • the third sending module 240 is configured to send signal transmission indication information in response to the first communication node switching to the second beam, wherein the signal transmission indication information is used to instruct the transmission on the second beam Power configuration of the signal.
  • the apparatus 200 further includes:
  • the fourth sending module 250 is configured to, in response to receiving the request information, send a switching response indicating that switching to the second beam is allowed.
  • the first sending module 110, the first receiving module 120, the first determining module 130, the second receiving module 140, the second determining module 150, the third receiving module 160, the communication module 170, the fourth receiving module The module 210, the fifth receiving module 220, the second sending module 230, the third sending module 240, the fourth sending module 250, etc.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP Baseband Processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • MCU Micro Controller Unit
  • microprocessor Microprocessor
  • FIG. 9 is a block diagram of an information transmission apparatus 3000 according to an exemplary embodiment.
  • apparatus 3000 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • an apparatus 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operation of the device 3000, such as operations associated with display, telephone calls, information transfer, camera operations, and recording operations.
  • the processing component 3002 can include one or more processors 3020 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components.
  • processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002.
  • Memory 3004 is configured to store various types of data to support operation at device 3000 . Examples of such data include instructions for any application or method operating on the device 3000, contact data, phonebook data, messages, pictures, videos, and the like. Memory 3004 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 3006 provides power to various components of device 3000.
  • Power supply components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 3000.
  • Multimedia component 3008 includes a screen that provides an output interface between device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 3008 includes a front-facing camera and/or a rear-facing camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 3010 is configured to output and/or input audio signals.
  • audio component 3010 includes a microphone (MIC) that is configured to receive external audio signals when device 3000 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 3004 or transmitted via communication component 3016.
  • the audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 3014 includes one or more sensors for providing status assessment of various aspects of device 3000 .
  • the sensor component 3014 can detect the on/off state of the device 3000, the relative positioning of components, such as the display and keypad of the device 3000, the sensor component 3014 can also detect a change in the position of the device 3000 or a component of the device 3000, the user The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000 and the temperature change of the device 3000.
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 3016 is configured to facilitate wired or wireless communication between apparatus 3000 and other devices.
  • the apparatus 3000 may access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 3000 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 3004 including instructions, which are executable by the processor 3020 of the apparatus 3000 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例是关于信息传输方法、装置、通信设备和存储介质。第一通信节点向第二通信节点发送指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。

Description

信息传输方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及信息传输方法、装置、通信设备和存储介质。
背景技术
在发射端和接收端支持数量众多、方向可控的天线单元,是第五代(5G,5 th Generation)新无线(NR,New Radio)的关键特性。在高频段,大数量的天线单元能被用于波束赋形,以减小单个波束的宽度来扩大单个波束的信号覆盖距离。同时为了增加信号覆盖角度,如信号覆盖整个小区,5G系统设计引入了多波束的概念。
同时,在5G NR通信中已经引入了毫米波,而可预见的6G通信中太赫兹频段将会得到广泛应用。
发明内容
有鉴于此,本公开实施例提供了一种信息传输方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种信息传输方法,其中,应用于第一通信节点,所述方法包括:
向第二通信节点发送指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
在一个实施例中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度 大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
在一个实施例中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
在一个实施例中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
在一个实施例中,所述切换请求包括:波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
在一个实施例中,所述方法还包括:
接收所述第二通信节点发送的携带有指示所述扫描资源的资源信息的切换响应;
在所述扫描资源上,采用至少一个所述第二波束进行波束扫描,将扫描结果满足第一条件的所述第二波束,确定为用于所述第一通信节点和所述第二通信节点之间通信的波束。
在一个实施例中,所述方法还包括:
接收所述第二通信节点响应于所述第一通信节点切换到所述第二波束,发送的信号传输指示信息;
根据所述信号传输指示信息,确定在所述第二波束上传输信号的配置。
在一个实施例中,所述向第二通信节点发送请求从第一波束切换到第二波束的切换请求,包括以下至少之一:
响应于所述第一通信节点的电量低于电量阈值,向所述第二通信节点发送所述切换请求;
响应于所述第一通信节点的位于预定位置,向所述第二通信节点发送所述切换请求;
响应于所述第一通信节点的位于所述预定位置,并且所述第一通信节点在所述预定位置采用的历史波束为所述第二波束,向所述第二通信节点发送所述切换请求。
在一个实施例中,所述方法还包括:
接收所述第二通信节点响应于所述请求信息发送的切换响应,其中,所述切换响应,用于指示允许切换到所述第二波束;
响应于接收到所述切换响应,在所述第二波束上与所述第二通信节点进行通信。
根据本公开实施例的第二方面,提供一种信息传输方法,其中,应用于第二通信节点,所述方法包括:
接收第一通信节点发送的指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
在一个实施例中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。。
在一个实施例中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
在一个实施例中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指 示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。。
在一个实施例中,所述方法还包括:
接收携带有波束扫描请求信息的所述切换请求,其中,所述波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
在一个实施例中,所述方法还包括:
响应于接收到携带有所述波束扫描请求信息的所述切换请求,发送携带有指示所述扫描资源的资源信息的切换响应。
在一个实施例中,所述方法还包括:
响应于所述第一通信节点切换到所述第二波束,发送信号传输指示信息,其中,所述信号传输指示信息,用于指示在所述第二波束上发送信号的功率配置。
在一个实施例中,所述方法还包括:
响应于接收到所述请求信息,发送指示允许切换到所述第二波束的切换响应。
根据本公开实施例的第三方面,提供一种信息传输装置,其中,应用于第一通信节点,所述装置包括:第一发送模块,其中,
所述第一发送模块,配置为向第二通信节点发送指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
在一个实施例中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
在一个实施例中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
在一个实施例中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
在一个实施例中,所述切换请求包括:波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
在一个实施例中,所述装置还包括:
第一接收模块,配置为接收所述第二通信节点发送的携带有指示所述扫描资源的资源信息的切换响应;
第一确定模块,配置为在所述扫描资源上,采用至少一个所述第二波束进行波束扫描,将扫描结果满足第一条件的所述第二波束,确定为用于所述第一通信节点和所述第二通信节点之间通信的波束。
在一个实施例中,所述装置还包括:
第二接收模块,配置为接收所述第二通信节点响应于所述第一通信节点切换到所述第二波束,发送的信号传输指示信息;
第二确定模块,配置为根据所述信号传输指示信息,确定在所述第二波束上传输信号的配置。
在一个实施例中,所述第一发送模块,包括以下至少之一:
第一发送子模块,配置为响应于所述第一通信节点的电量低于电量阈值,向所述第二通信节点发送所述切换请求;
第二发送子模块,配置为响应于所述第一通信节点的位于预定位置,向所述第二通信节点发送所述切换请求;
第三发送子模块,配置为响应于所述第一通信节点的位于所述预定位置,并且所述第一通信节点在所述预定位置采用的历史波束为所述第二波 束,向所述第二通信节点发送所述切换请求。
在一个实施例中,所述装置还包括:
第三接收模块,配置为接收所述第二通信节点响应于所述请求信息发送的切换响应,其中,所述切换响应,用于指示允许切换到所述第二波束;
通信模块,配置为响应于接收到所述切换响应,在所述第二波束上与所述第二通信节点进行通信。
根据本公开实施例的第四方面,提供一种信息传输装置,其中,应用于第二通信节点,所述装置包括:第四接收模块,其中,
所述第四接收模块,配置接收第一通信节点发送的指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
在一个实施例中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
在一个实施例中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
在一个实施例中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
在一个实施例中,所述装置还包括:
第五接收模块,配置为接收携带有波束扫描请求信息的所述切换请求,其中,所述波束扫描请求信息,用于请求采用所述第二波束进行波束扫描 的扫描资源。
在一个实施例中,所述装置还包括:
第二发送模块,配置为响应于接收到携带有所述波束扫描请求信息的所述切换请求,发送携带有指示所述扫描资源的资源信息的切换响应。
在一个实施例中,所述装置还包括:
第三发送模块,配置为响应于所述第一通信节点切换到所述第二波束,发送信号传输指示信息,其中,所述信号传输指示信息,用于指示在所述第二波束上发送信号的功率配置。
在一个实施例中,所述装置还包括:
第四发送模块,配置为响应于接收到所述请求信息,发送指示允许切换到所述第二波束的切换响应。
根据本公开实施例的第五方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面或第二方面所述信息传输方法的步骤。
根据本公开实施例的第六方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面或第二方面所述信息传输方法的步骤。
本公开实施例提供的信息传输方法、装置、通信设备和存储介质。第一通信节点向第二通信节点发送指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。如此,第一通信节点通过发送切换请求实现波束的切换,一方面,第一通信节点可以选择不同的波束进行通信,不限于采用同一类波束进行通信,提高波束选择灵活性。另一方面,第一通信节点可以选择适合当前通信场景的波束进行通信,进而提高 通信效率
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种通信系统的结构示意图;
图2是根据一示例性实施例示出的一种波束成形示意图;
图3是根据一示例性实施例示出的另一种波束成形示意图;
图4是根据一示例性实施例示出的一种信息传输方法的流程示意图;
图5是根据一示例性实施例示出的一种波束切换示意图;
图6是根据一示例性实施例示出的另一种下行信息传输示意图;
图7是根据一示例性实施例示出的一种信息传输装置组成结构框图;
图8是根据一示例性实施例示出的另一种信息传输装置组成结构框图;
图9是根据一示例性实施例示出的一种用于信息传输的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清 楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统 可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13 可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:采用蜂窝移动通信技术进行通信的终端等用户设备UE,以及基站等。
本公开实施例的一种应用场景为,UE为了实现波束成型,需要多个天线单元,如下图2所示,四个天线单元形成的宽度较宽的波束。关闭部分天线单元,如图3所述,关闭两个天线单元后可以得到宽度较宽的波束。宽度较窄的波束的指向性较好,能量集中,可以适用于信道条件差,大数据量传输。
当UE用户的信道条件比较好,而且没有大量的数据需要传输时,此时宽度较窄的波束是没有必要。如果切换成宽度较宽的波束,不仅由于使用较少的天线单元会更省电,而且由于宽度变宽,移动性能会变得更好。因此能够关闭部分天线单元对终端来说是非常有益的。
UE对应波束切换的能力不同。第一种UE在波束切换后能够保证切换后的波束指向与切换前保证一致性,即波束切换前波束的峰值增益(peak gain)和切换后波束峰值增益的方向基本一致,或者小于某一个范围。第二种UE波束切换前波束的峰值增益和宽度切换后波束峰值增益的方向会超出某一范围,从而降低信号传输性能。
如图4所示,本示例性实施例提供一种信息传输方法,可以应用于无 线通信的第一通信节点中,信息传输方法可以包括:
步骤401:向第二通信节点发送指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
这里,第一通信节点可以是采用蜂窝移动通信技术等无线通信技术进行通信终端等UE,第二通信节点可以是UE也可以是蜂窝移动通信中的基站等。
第一通信节点和第二通信节点均可以支持采用波束赋形产生波束进行通信。
这里,第一波束和第二波束可以是第一通信节点接收第二通信节点发送的信号的波束。第一波束和第二波束也可以是第一通信节点发送信号的波束。第一波束不同于第二波束可以是具有不同指向性或不同能量集中度的波束等。示例性的,第一波束所需的天线单元数量不同于第二波束所需的天线单元数量;或者第一波束的宽度不同于第二波束的宽度等。第一波束可以先当前采用的波束,第二波束可以是切换的目标波束。
第一波束和第二波束可以用于不同场景的通信。例如,第一波束是宽度较大的波束,第二波束是宽度较小的波束。
第一通信节点可以根据当前通信场景确定是否要进行波束切换。例如,第一通信节点和第二通信节点相对运动速度交快时,第一通信节点可以选择宽度较大的波束。
第一通信节点可以发送切换请求,指示第一通信节点从第一波束切换到第二波束。
第二通信节点接收到切换请求确定是否知识第二波束的传输,或者,配置第二波束资源等。
如此,第一通信节点通过发送切换请求实现波束的切换,一方面,第一通信节点可以选择不同的波束进行通信,不限于采用同一类波束进行通 信,提高波束选择灵活性。另一方面,第一通信节点可以选择适合当前通信场景的波束进行通信,进而提高通信效率。
在一个实施例中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
这里,第一波束与第二波束的差异可以是第一波束与第二波束指向以及宽度的差异等。
第二通信节点可以根据波束变化指示确定是否允许第一通信节点从第一波束切换到第二波束。例如,可以根据第二波束的宽度等确定是否会与其他通信节点的波束产生干扰,确定是否允许第一通信节点从第一波束切换到第二波束。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
第一波束可以是图2所示的波束,第二波束可以是图3所示的波束;或者,第一波束可以是图3所示的波束,第二波束可以是图2所示的波束。第一波束和第二波束的宽度不同。
这里,宽度较宽的波束采用的天线单元数较少,宽度较窄大的波束采用的天线单元数较多。
宽度较宽的波束,可以使用较少数量的天线单元,从而更省电,而且由于宽度变宽,移动性能会变得更好。
宽度较宽的波束,可以使用较多数量的天线单元,指向性更强,能量更集中,抗干扰能力更强,可以适用于信道条件差的通信传输。
示例性的,第一通信节点当前波束为宽度较宽的波束,并且当前波束条件下信道条件较差,且有大量业务数据需要传输,第一通信节点可向第二通信节点申请切换到宽度较窄的波束。
另一个示例中,第一通信节点当前波束为宽度较窄的波束,第一通信节点所处信道条件较好,比如通过第二通信节点下行链路估计出路径损耗较低,或者信噪比大于某一值时,且判断传输的业务量较小时,第一通信节点可向第二通信节点申请切换到宽度较宽的波束。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
波束变化指示可以指示第二波束相对第一波束的变化,例如,波束变化指示可以指示第二波束相对第一波束宽度变大或变小,以及第二波束相对第一波束宽度变化的差异值。
这里,差异值可以是具体的宽度差异值,也可以是第二波束宽度与第一波束宽度的比例关系。
示例性的,如表1所示,波束变化指示可以通过一个比特为指示第二波束相对第一波束宽度增大还是减小,通过另一个比特为指示第二波束宽度与第一波束宽度的比例关系,即宽度变化因子。
表1
Figure PCTCN2020103348-appb-000001
如此,通过波束变化指示可以显性地指示切换前后波束的差异。
在一个实施例中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
第一通信节点能力可以包括:第一通信节点可切换的波束宽度,以及 从第一波束切换到第二波束在波束指向上的控制能力等。第二通信节点可以基于第一通信节点能力判断是否运行波束切换。
在一个实施例中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
不同第一通信节点具有不同的波束切换能力。一个实施例中,第一通信节点进行波束切换后可以确保切换后的波束指向与切换前的波束指向保证一致性,波束切换前后峰值增益方向基本一致,或者波束切换前后峰值增益方向偏差小于或等于偏差阈值。如图5所示,另一个实施例中,第一通信节点进行波束切换后,波束切换前后的峰值增益方向偏差角度大于偏差阈值。
如果波束切换前后的峰值增益方向偏差大于或等于偏差阈值,即切换后第二波束峰值增益方向与第二通信节点的偏差角度较大,从而降低信号传输质量。
如此,第一通信节点通过波束扫描请求信息请求采用第二波束进行波束扫描,确定满足传输需求的一个第二波束,可以减少由于波束类型切换产生的切换前后波束峰值增益方向不一致的情况,进而提高信号传输效率。
在一个实施例中,所述切换请求包括:波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
第一通信节点可以在切换请求中携带波束扫描请求信息,用于向第二通信节点请求进行波束管理。这里,波束管理是指第一通信节点采用多个第二波束对第二通信节点发射的参考信号等信号进行扫描,确定信号满足预设条件的一个第二波束,将该第二波束作为第一通信节点和第二通信节点之间通信的波束。
波束扫描请求信息可以用于向第二通信节点请求进行波束扫描的扫描 资源。这里,扫描资源可以包括:扫频的时隙资源和频率资源等。
第二通信节点接收到切换请求后,如果允许进行波束切换,则可以确定用于第二波束扫描的扫描资源。
第一通信节点的能力信息可以作为一种波束扫描请求信息。例如,第一通信节点发送的能力信息指示第一通信节点进行波束切换前波束的峰值增益方向与进行波束切换后波束的峰值增益方向的偏差小于或等于偏差阈值。第二通信节点接收到波束扫描请求信息后可以确定第一通信节点需要进行第二波束的扫描。
通波束扫描可以确定出信号质量最优的第二波束用于第一通信节点和第二通信节点的通信,提高通信质量。
在一个实施例中,所述方法还包括:
接收所述第二通信节点发送的携带有指示所述扫描资源的资源信息的切换响应;
在所述扫描资源上,采用至少一个所述第二波束进行波束扫描,将扫描结果满足第一条件的所述第二波束,确定为用于所述第一通信节点和所述第二通信节点之间通信的波束。
这里,第二通信节点可以通过切换响应中携带的资源信息指示用于波束扫描的扫描资源,扫描资源可以包括:扫频的时隙资源和频率资源等。
第一通信节点接收到切换响应后,确定出扫描资源。并在扫描资源上,采用多个第二波束对第二通信节点发射的参考信号等信号进行扫描,确定扫描结果满足预设条件的一个第二波束,将该第二波束作为第一通信节点和第二通信节点之间通信的波束。这里,扫描结果,可以是采用第二波束进行扫描确定的第二通信节点发射的参考信号等信号的信号质量参数,如参考信号接收功率(RSRP,Reference Signal Receiving Power)、RSRQ、SINR等。
示例性的,第一通信节点可以采用第二波束进行扫描,确定RSRP最优的一个第二波束,将该信息传输用于第一通信节点和第二通信节点之间的通信。
如此,第一通信节点采用第二波束进行波束扫描,确定满足传输需求的一个第二波束,可以减少由于波束类型切换产生的切换前后波束峰值增益方向不一致的情况,进而提高信号传输效率。
在一个实施例中,所述方法还包括:
接收所述第二通信节点响应于所述第一通信节点切换到所述第二波束,发送的信号传输指示信息;
根据所述信号传输指示信息,确定在所述第二波束上传输信号的配置。
第二通信节点在第一通信节点完成切换波束后,还可以向第一通信节点下发根据第二波束重新调整相应的传输信号的配置,如信号传输功率配置等,这里,传输功率配置可以包括:移动性管理的测量间隔时间配置、信号发射功率配置等。
第一通信节点基于功率配置,在第二波束上进行数据通信。例如,根据功率配置所配置的测量间隔时间进行信号测量等。从而满足功率控制需求,进而节省电量。
在一个实施例中,所述向第二通信节点发送请求从第一波束切换到第二波束的切换请求,包括以下至少之一:
响应于所述第一通信节点的电量低于电量阈值,向所述第二通信节点发送所述切换请求;
响应于所述第一通信节点的位于预定位置,向所述第二通信节点发送所述切换请求;
响应于所述第一通信节点的位于所述预定位置,并且所述第一通信节点在所述预定位置采用的历史波束为所述第二波束,向所述第二通信节点 发送所述切换请求。
示例性的,第一通信节点由于省电的需要,例如电量低于电量阈值时,第一通信节点可以向第二通信节点申请从第一波束切换到第二波束。这里,第一波束的宽度小于第二波束的宽度,因此,第一波束采用的天线单元数量较多,消耗电量更多。
在另一个实施例中,第一通信节点可以根据所处位置确定需要采用的波束类型,例如,在离第二通信节点距离较近的位置,可以采用宽度较宽的波束,在离第二通信节点距离较远的位置,可以采用宽度较窄的波束,如此,可以提高信号接收效率。第一通信节点根据位置来判断是否需要向第二通信节点申请波束切换,终端位置信息可以根据GPS或者其它位置测量单元测得。
在另一个实施例中,第一通信节点可以根据在所处位置的波束类型历史使用记录确定采用的波束,例如,当第一通信节点当前波束类型与当前位的历史波束类型不相同时,可向第二通信节点申请波束切换。
在一个实施例中,所述方法还包括:
接收所述第二通信节点响应于所述请求信息发送的切换响应,其中,所述切换响应,用于指示允许切换到所述第二波束;
响应于接收到所述切换响应,在所述第二波束上与所述第二通信节点进行通信。
第二通信节点可以根据波束变化指示确定是否允许第一通信节点从第一波束切换到第二波束。例如,可以根据第二波束的宽度等确定是否会与其他通信节点的波束产生干扰,确定是否允许第一通信节点从第一波束切换到第二波束。第二通信节点也可以根据自身负载情况确定是否允许第一通信节点从第一波束切换到第二波束;例如第二通信节点的负载大于负载阈值时,不允许第一通信节点从第一波束切换到第二波束。第二通信节点 还可以根据第一通信节点的能力确定是否允许第一通信节点从第一波束切换到第二波束;例如,当第一通信节点波束管理能力较弱,即第一通信节点进行波束切换前波束的峰值增益方向与进行波束切换后波束的峰值增益方向的偏差大于或等于偏差阈值,并且第一通信节点未在切换请求中携带波束扫描请求信息时,不允许第一通信节点从第一波束切换到第二波束。
第二通信节点可以发送指示允许进行波束切换的切换响应。第一通信节点接收到切换响应后,从第一波束切换到第二波束。如果没有接收到指示允许进行波束切换的切换响应,则不进行波束切换。
如图6所示,本示例性实施例提供一种信息传输方法,可以应用于无线通信的第二通信节点中,信息传输方法可以包括:
步骤601:接收第一通信节点发送的指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
这里,第一通信节点可以是采用蜂窝移动通信技术等无线通信技术进行通信终端等UE,第二通信节点可以是UE也可以是蜂窝移动通信中的基站等。
第一通信节点和第二通信节点均可以支持采用波束赋形产生波束进行通信。
这里,第一波束和第二波束可以是第一通信节点接收第二通信节点发送的信号的波束。第一波束和第二波束也可以是第一通信节点发送信号的波束。第一波束不同于第二波束可以是具有不同指向性或不同能量集中度的波束等。示例性的,第一波束所需的天线单元数量不同于第二波束所需的天线单元数量;或者第一波束的宽度不同于第二波束的宽度等。第一波束可以先当前采用的波束,第二波束可以是切换的目标波束。
第一波束和第二波束可以用于不同场景的通信。例如,第一波束是宽度较大的波束,第二波束是宽度较小的波束。
第一通信节点可以根据当前通信场景确定是否要进行波束切换。例如,第一通信节点和第二通信节点相对运动速度交快时,第一通信节点可以选择宽度较大的波束。
第一通信节点可以发送切换请求,指示第一通信节点从第一波束切换到第二波束。
第二通信节点接收到切换请求确定是否知识第二波束的传输,或者,配置第二波束资源等。
如此,第一通信节点通过发送切换请求实现波束的切换,一方面,第一通信节点可以选择不同的波束进行通信,不限于采用同一类波束进行通信,提高波束选择灵活性。另一方面,第一通信节点可以选择适合当前通信场景的波束进行通信,进而提高通信效率。
在一个实施例中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
这里,第一波束与第二波束的差异可以是第一波束与第二波束指向以及宽度的差异等。
第二通信节点可以根据波束变化指示确定是否允许第一通信节点从第一波束切换到第二波束。例如,可以根据第二波束的宽度等确定是否会与其他通信节点的波束产生干扰,确定是否允许第一通信节点从第一波束切换到第二波束。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。。
第一波束可以是图2所示的波束,第二波束可以是图3所示的波束;或者,第一波束可以是图3所示的波束,第二波束可以是图2所示的波束。第一波束和第二波束的宽度不同。
这里,宽度较宽的波束采用的天线单元数较少,宽度较窄大的波束采用的天线单元数较多。
宽度较宽的波束,可以使用较少数量的天线单元,从而更省电,而且由于宽度变宽,移动性能会变得更好。
宽度较宽的波束,可以使用较多数量的天线单元,指向性更强,能量更集中,抗干扰能力更强,可以适用于信道条件差的通信传输。
示例性的,第一通信节点当前波束为宽度较宽的波束,并且当前波束条件下信道条件较差,且有大量业务数据需要传输,第一通信节点可向第二通信节点申请切换到宽度较窄的波束。
另一个示例中,第一通信节点当前波束为宽度较窄的波束,第一通信节点所处信道条件较好,比如通过第二通信节点下行链路估计出路径损耗较低,或者信噪比大于某一值时,且判断传输的业务量较小时,第一通信节点可向第二通信节点申请切换到宽度较宽的波束。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
波束变化指示可以指示第二波束相对第一波束的变化,例如,波束变化指示可以指示第二波束相对第一波束宽度变大或变小,以及第二波束相对第一波束宽度变化的差异值。
这里,差异值可以是具体的宽度差异值,也可以是第二波束宽度与第一波束宽度的比例关系。
示例性的,如表1所示,波束变化指示可以通过一个比特为指示第二波束相对第一波束宽度增大还是减小,通过另一个比特为指示第二波束宽度与第一波束宽度的比例关系,即宽度变化因子。如此,通过波束变化指示可以显性地指示切换前后波束的差异。
在一个实施例中,所述切换请求包括:指示所述第一通信节点能力的 能力信息。
第一通信节点能力可以包括:第一通信节点可切换的波束宽度,以及从第一波束切换到第二波束在波束指向上的控制能力等。第二通信节点可以基于第一通信节点能力判断是否运行波束切换。
在一个实施例中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。。
不同第一通信节点具有不同的波束切换能力。一个实施例中,第一通信节点进行波束切换后可以确保切换后的波束指向与切换前的波束指向保证一致性,波束切换前后峰值增益方向基本一致,或者波束切换前后峰值增益方向偏差小于或等于偏差阈值。如图5所示,另一个实施例中,第一通信节点进行波束切换后,波束切换前后的峰值增益方向偏差角度大于或等于偏差阈值。如果波束切换前后的峰值增益方向偏差大于或等于偏差阈值,即切换后第二波束峰值增益方向与第二通信节点的偏差角度较大,从而降低信号传输质量。
如此,第一通信节点通过波束扫描请求信息请求采用第二波束进行波束扫描,确定满足传输需求的一个第二波束,可以减少由于波束类型切换产生的切换前后波束峰值增益方向不一致的情况,进而提高信号传输效率。
在一个实施例中,所述方法还包括:
接收携带有波束扫描请求信息的所述切换请求,其中,所述波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
第一通信节点可以在切换请求中携带波束扫描请求信息,用于向第二通信节点请求进行波束管理。这里,波束管理是指第一通信节点采用多个第二波束对第二通信节点发射的参考信号等信号进行扫描,确定信号满足预设条件的一个第二波束,将该第二波束作为第一通信节点和第二通信节 点之间通信的波束。
波束扫描请求信息可以用于向第二通信节点请求进行波束扫描的扫描资源。这里,扫描资源可以包括:扫频的时隙资源和频率资源等。
第二通信节点接收到切换请求后,如果允许进行波束切换,则可以确定用于第二波束扫描的扫描资源。
第一通信节点的能力信息可以作为一种波束扫描请求信息。例如,第一通信节点发送的能力信息指示第一通信节点进行波束切换前波束的峰值增益方向与进行波束切换后波束的峰值增益方向的偏差小于或等于偏差阈值。第二通信节点接收到波束扫描请求信息后可以确定第一通信节点需要进行第二波束的扫描。
通波束扫描可以确定出信号质量最优的第二波束用于第一通信节点和第二通信节点的通信,提高通信质量。
在一个实施例中,所述方法还包括:
响应于接收到携带有所述波束扫描请求信息的所述切换请求,发送携带有指示所述扫描资源的资源信息的切换响应。
这里,第二通信节点可以通过切换响应中携带的资源信息指示用于波束扫描的扫描资源,扫描资源可以包括:扫频的时隙资源和频率资源等。
第一通信节点接收到切换响应后,确定出扫描资源。并在扫描资源上,采用多个第二波束对第二通信节点发射的参考信号等信号进行扫描,确定扫描结果满足预设条件的一个第二波束,将该第二波束作为第一通信节点和第二通信节点之间通信的波束。这里,扫描结果,可以是采用第二波束进行扫描确定的第二通信节点发射的参考信号等信号的信号质量参数,如参考信号接收功率(RSRP,Reference Signal Receiving Power)等。
示例性的,第一通信节点可以采用第二波束进行扫描,确定RSRP最优的一个第二波束,将该信息传输用于第一通信节点和第二通信节点之间 的通信。
如此,第一通信节点采用第二波束进行波束扫描,确定满足传输需求的一个第二波束,可以减少由于波束类型切换产生的切换前后波束峰值增益方向不一致的情况,进而提高信号传输效率。
在一个实施例中,所述方法还包括:
响应于所述第一通信节点切换到所述第二波束,发送信号传输指示信息,其中,所述信号传输指示信息,用于指示在所述第二波束上发送信号的功率配置。
第二通信节点在第一通信节点完成切换波束后,还可以向第一通信节点下发根据第二波束重新调整相应的传输信号的配置,如信号传输功率配置等,这里,传输功率配置可以包括:移动性管理的测量间隔时间配置、信号发射功率配置等。
第一通信节点基于功率配置,在第二波束上进行数据通信。例如,根据功率配置所配置的测量间隔时间进行信号测量等。从而满足功率控制需求,进而节省电量。
在一个实施例中,所述方法还包括:
响应于接收到所述请求信息,发送指示允许切换到所述第二波束的切换响应。
第二通信节点可以根据波束变化指示确定是否允许第一通信节点从第一波束切换到第二波束。例如,可以根据第二波束的宽度等确定是否会与其他通信节点的波束产生干扰,确定是否允许第一通信节点从第一波束切换到第二波束。第二通信节点也可以根据自身负载情况确定是否允许第一通信节点从第一波束切换到第二波束;例如第二通信节点的负载大于负载阈值时,不允许第一通信节点从第一波束切换到第二波束。第二通信节点还可以根据第一通信节点的能力确定是否允许第一通信节点从第一波束切 换到第二波束;例如,当第一通信节点波束管理能力较弱,即第一通信节点进行波束切换前波束的峰值增益方向与进行波束切换后波束的峰值增益方向的偏差大于或等于偏差阈值,并且第一通信节点未在切换请求中携带波束扫描请求信息时,不允许第一通信节点从第一波束切换到第二波束。
第二通信节点可以发送指示允许进行波束切换的切换响应。第一通信节点接收到切换响应后,从第一波束切换到第二波束。如果没有接收到指示允许进行波束切换的切换响应,则不进行波束切换。
以下结合上述任意实施例提供一个具体示例:
终端发向基站发送切换波束带宽的请求,这里,波束带宽是指波束宽度,基站根据该终端上报的能力和当前网络情况判断是否响应该请求。
所述终端向基站发送切换波束带宽的请求,请求信息中还包括是否需要重新做波束管理的信息。终端判断是否做波束管理依据该终端的波束带宽切换能力。
如图5所示,所述波束带宽切换能力指的是该终端是否具有保证切换后的波束朝向与切换前保证一致性,即波束带宽切换前后峰值增益(peak gain)方向基本一致,或者峰值增益小于某一个范围。
所述请求信息中还包括切换目标波束带宽信息。
例1:
终端所处信道条件较好,比如通过基站下行链路估计出路径损耗较低,或者信噪比大于某一值时,且判断传输的业务量较小时,终端可向基站申请宽波束切换。具体的步骤如下:
终端向基站发送切换波束带宽的请求,基站根据该终端的能力和当前网络情况判断是否响应该请求。
所述终端向基站发送切换宽波束带宽的请求,请求信息中还包括是否需要重新做波束管理的信息。终端判断是否做波束管理依据该终端的波束 带宽切换能力。这里,波束带宽是指波束宽度。
所述波束带宽切换能力指的是该终端是否具有保证切换后的波束朝向与切换前保证一致性,即波束带宽切换前后峰值增益方向基本一致,或者峰值增益小于某一个范围。
所述请求信息中还包括切换目标波束带宽信息。如表1所示,波束带宽信息可以通过一个比特位指示目标波束相对当前波束宽度增大还是减小,通过另一个比特为指示目标波束宽度与当前波束宽度的比例关系,即宽度变化因子。这里,当前波束与目标波束不相同可以是宽度不同。
基站判断响应该请求,则在当前波束上向终端发送切换响应,如果根据请求信息判断该终端需要重新做波束管理,则所述切换响应中还包括终端用于波束管理的资源信息。基站保持当前波束不变。
所述波束管理的资源信息,包括终端用于扫频的时隙资源和频率资源。终端在接收到基站的切换响应,并做响应的处理,如关闭部分天线单元,切换到相应的目标波束。如果该终端还需要做波束管理,则按照基站发送的资源信息上在当前基站下行波束上以目标波束进行扫描,根据扫描结果确定最优的波束。
在一个实施例基站在终端完成切换后,基站还需要向终端下发根据新波束重新调整相应的配置参数,如移动性管理的测量间隔时间等。
例2
在另一个实施例中,终端当前波束为非终端支持的最宽波束,而且当前波束条件下信道条件较差,且有大量业务数据需要传输,终端可向基站申请窄波束切换。具体的步骤如下:
终端端向基站发送切换波束带宽的请求,基站根据该终端的能力和当前网络情况判断是否响应该请求。
所述终端向基站发送切换波束带宽的请求,请求信息中还包括是否需 要重新做波束管理的信息。终端判断是否做波束管理依据该终端的波束带宽切换能力。
所述波束带宽切换能力指的是该终端是否具有保证切换后的波束朝向与切换前保证一致性,即波束带宽切换前后峰值增益方向基本一致,或者峰值增益小于某一个范围。
所述请求信息中还包括切换目标波束带宽信息。如表1所示,波束带宽信息可以通过一个比特位指示目标波束相对当前波束宽度增大还是减小,通过另一个比特为指示目标波束宽度与当前波束宽度的比例关系,即宽度变化因子。这里,当前波束与目标波束不相同可以是宽度不同。
基站判断响应该请求,则在当前波束向终端发送切换响应,如果根据请求信息判断该终端需要重新做波束管理,则所述切换响应中还包括终端用于波束管理的资源信息,基站保持当前波束不变。终端在接收到基站的切换响应,并做响应的处理。如果该终端需要做波束管理,则按照基站发送的资源信息上在当前基站波束上以目标波束进行扫描,并根据扫描结果确定最优的波束。
在一个实施例基站在终端完成切换后,基站还需要向终端下发根据新波束重新调整相应的配置参数,如移动性管理的测量间隔时间等。
例3:
另一个实施例中终端由于省电的需要,例如电量低于某一值时,终端向基站申请宽波束切换。
例4
在另一个实施例中,终端根据位置信息来判断是否需要向基站申请波束切换,终端位置信息根据GPS或者其它位置测量单元测得。在一个实施例中,当终端的当前波束与测得的位置信息对应的历史波束不相同时,可向基站申请波束切换。这里,当前波束与历史波束不相同可以是宽度不同。
本发明实施例还提供了一种信息传输装置,应用于无线通信的第一通信节点,图7为本发明实施例提供的信息传输装置100的组成结构示意图;如图7所示,装置100包括:装置包括:第一发送模块110,其中,
所述第一发送模块110,配置为向第二通信节点发送指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
在一个实施例中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
在一个实施例中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
在一个实施例中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
在一个实施例中,所述切换请求包括:波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
在一个实施例中,所述装置100还包括:
第一接收模块120,配置为接收所述第二通信节点发送的携带有指示所述扫描资源的资源信息的切换响应;
第一确定模块130,配置为在所述扫描资源上,采用至少一个所述第二波束进行波束扫描,将扫描结果满足第一条件的所述第二波束,确定为用于所述第一通信节点和所述第二通信节点之间通信的波束。
在一个实施例中,所述装置100还包括:
第二接收模块140,配置为接收所述第二通信节点响应于所述第一通信节点切换到所述第二波束,发送的信号传输指示信息;
第二确定模块150,配置为根据所述信号传输指示信息,确定在所述第二波束上传输信号的配置。
在一个实施例中,所述第一发送模块110,包括以下至少之一:
第一发送子模块111,配置为响应于所述第一通信节点的电量低于电量阈值,向所述第二通信节点发送所述切换请求;
第二发送子模块112,配置为响应于所述第一通信节点的位于预定位置,向所述第二通信节点发送所述切换请求;
第三发送子模块113,配置为响应于所述第一通信节点的位于所述预定位置,并且所述第一通信节点在所述预定位置采用的历史波束为所述第二波束,向所述第二通信节点发送所述切换请求。
在一个实施例中,所述装置100还包括:
第三接收模块160,配置为接收所述第二通信节点响应于所述请求信息发送的切换响应,其中,所述切换响应,用于指示允许切换到所述第二波束;
通信模块170,配置为响应于接收到所述切换响应,在所述第二波束上与所述第二通信节点进行通信。
本发明实施例还提供了一种信息传输装置,应用于无线通信的第二通信节点,图8为本发明实施例提供的信息传输装置200的组成结构示意图;如图8所示,装置200包括:装置包括:第四接收模块210,其中,
所述第四接收模块210,配置接收第一通信节点发送的指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
在一个实施例中,所述切换请求包括波束变化指示,用于指示所述第 一波束与所述第二波束的差异。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
在一个实施例中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
在一个实施例中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
在一个实施例中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
在一个实施例中,所述装置200还包括:
第五接收模块220,配置为接收携带有波束扫描请求信息的所述切换请求,其中,所述波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
在一个实施例中,所述装置200还包括:
第二发送模块230,配置为响应于接收到携带有所述波束扫描请求信息的所述切换请求,发送携带有指示所述扫描资源的资源信息的切换响应。
在一个实施例中,所述装置200还包括:
第三发送模块240,配置为响应于所述第一通信节点切换到所述第二波束,发送信号传输指示信息,其中,所述信号传输指示信息,用于指示在所述第二波束上发送信号的功率配置。
在一个实施例中,所述装置200还包括:
第四发送模块250,配置为响应于接收到所述请求信息,发送指示允许切换到所述第二波束的切换响应。
在示例性实施例中,第一发送模块110、第一接收模块120、第一确定模块130、第二接收模块140、第二确定模块150、第三接收模块160、通信模块170、第四接收模块210、第五接收模块220、第二发送模块230、第三发送模块240和第四发送模块250等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图9是根据一示例性实施例示出的一种用于信息传输装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,信息传输,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在设备3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指 令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当设备3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主 页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到设备3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是 ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (44)

  1. 一种信息传输方法,其中,应用于第一通信节点,所述方法包括:
    向第二通信节点发送指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
  2. 根据权利要求1所述的方法,其中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
  3. 根据权利要求2所述的方法,其中,
    所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
  4. 根据权利要求2所述的方法,其中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
  5. 根据权利要求1所述的方法,其中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
  6. 根据权利要求5所述的方法,其中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
  7. 根据权利要求1所述的方法,其中,所述切换请求包括:波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    接收所述第二通信节点发送的携带有指示所述扫描资源的资源信息的切换响应;
    在所述扫描资源上,采用至少一个所述第二波束进行波束扫描,将扫描结果满足第一条件的所述第二波束,确定为用于所述第一通信节点和所述第二通信节点之间通信的波束。
  9. 根据权利要求1至8任一项所述的方法,其中,所述方法还包括:
    接收所述第二通信节点响应于所述第一通信节点切换到所述第二波束,发送的信号传输指示信息;
    根据所述信号传输指示信息,确定在所述第二波束上传输信号的配置。
  10. 根据权利要求1至8任一项所述的方法,其中,所述向第二通信节点发送请求从第一波束切换到第二波束的切换请求,包括以下至少之一:
    响应于所述第一通信节点的电量低于电量阈值,向所述第二通信节点发送所述切换请求;
    响应于所述第一通信节点的位于预定位置,向所述第二通信节点发送所述切换请求;
    响应于所述第一通信节点的位于所述预定位置,并且所述第一通信节点在所述预定位置采用的历史波束为所述第二波束,向所述第二通信节点发送所述切换请求。
  11. 根据权利要求1至8任一项所述的方法,其中,所述方法还包括:
    接收所述第二通信节点响应于所述请求信息发送的切换响应,其中,所述切换响应,用于指示允许切换到所述第二波束;
    响应于接收到所述切换响应,在所述第二波束上与所述第二通信节点进行通信。
  12. 一种信息传输方法,其中,应用于第二通信节点,所述方法包括:
    接收第一通信节点发送的指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
  13. 根据权利要求12所述的方法,其中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
  14. 根据权利要求13所述的方法,其中,
    所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束 的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
  15. 根据权利要求13所述的方法,其中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
  16. 根据权利要求12所述的方法,其中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
  17. 根据权利要求16所述的方法,其中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
  18. 根据权利要求12至17任一项所述的方法,其中,所述方法还包括:
    接收携带有波束扫描请求信息的所述切换请求,其中,所述波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    响应于接收到携带有所述波束扫描请求信息的所述切换请求,发送携带有指示所述扫描资源的资源信息的切换响应。
  20. 根据权利要求12至17任一项所述的方法,其中,所述方法还包括:
    响应于所述第一通信节点切换到所述第二波束,发送信号传输指示信息,其中,所述信号传输指示信息,用于指示在所述第二波束上传输信号的配置。
  21. 根据权利要求12至17任一项所述的方法,其中,所述方法还包括:
    响应于接收到所述请求信息,发送指示允许切换到所述第二波束的切换响应。
  22. 一种信息传输装置,其中,应用于第一通信节点,所述装置包括:第一发送模块,
    其中,所述第一发送模块,配置为向第二通信节点发送指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
  23. 根据权利要求22所述的装置,其中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
  24. 根据权利要求23所述的装置,其中,
    所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
  25. 根据权利要求23所述的装置,其中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
  26. 根据权利要求22所述的装置,其中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
  27. 根据权利要求26所述的装置,其中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
  28. 根据权利要求22所述的装置,其中,所述切换请求包括:波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
  29. 根据权利要求28所述的装置,其中,所述装置还包括:
    第一接收模块,配置为接收所述第二通信节点发送的携带有指示所述扫描资源的资源信息的切换响应;
    第一确定模块,配置为在所述扫描资源上,采用至少一个所述第二波束进行波束扫描,将扫描结果满足第一条件的所述第二波束,确定为用于所述第一通信节点和所述第二通信节点之间通信的波束。
  30. 根据权利要求22至29任一项所述的装置,其中,所述装置还包括:
    第二接收模块,配置为接收所述第二通信节点响应于所述第一通信节点切换到所述第二波束,发送的信号传输指示信息;
    第二确定模块,配置为根据所述信号传输指示信息,确定在所述第二波束上传输信号的配置。
  31. 根据权利要求22至29任一项所述的装置,其中,所述第一发送模块,包括以下至少之一:
    第一发送子模块,配置为响应于所述第一通信节点的电量低于电量阈值,向所述第二通信节点发送所述切换请求;
    第二发送子模块,配置为响应于所述第一通信节点的位于预定位置,向所述第二通信节点发送所述切换请求;
    第三发送子模块,配置为响应于所述第一通信节点的位于所述预定位置,并且所述第一通信节点在所述预定位置采用的历史波束为所述第二波束,向所述第二通信节点发送所述切换请求。
  32. 根据权利要求22至29任一项所述的装置,其中,所述装置还包括:
    第三接收模块,配置为接收所述第二通信节点响应于所述请求信息发送的切换响应,其中,所述切换响应,用于指示允许切换到所述第二波束;
    通信模块,配置为响应于接收到所述切换响应,在所述第二波束上与所述第二通信节点进行通信。
  33. 一种信息传输装置,其中,应用于第二通信节点,所述装置包括:第四接收模块,其中,
    所述第四接收模块,配置接收第一通信节点发送的指示从第一波束切换到第二波束的切换请求,其中,所述第一波束不同于第二波束。
  34. 根据权利要求33所述的装置,其中,所述切换请求包括波束变化指示,用于指示所述第一波束与所述第二波束的差异。
  35. 根据权利要求34所述的装置,其中,所述波束变化指示,用于指示所述第一波束的宽度大于所述第二波束的宽度,或者所述第一波束的宽度小于所述第二波束的宽度。
  36. 根据权利要求34所述的装置,其中,所述波束变化指示,用于指示所述第一波束的宽度和所述第二波束的宽度的差异值。
  37. 根据权利要求33所述的装置,其中,所述切换请求包括:指示所述第一通信节点能力的能力信息。
  38. 根据权利要求37所述的装置,其中,指示所述第一通信节点能力的所述能力信息,用于指示所述第一通信节点具有保证切换前后波束朝向一致性的能力,或者指示所述第一通信节点不具有保证切换前后波束朝向一致性的能力。
  39. 根据权利要求33至38任一项所述的装置,其中,所述装置还包括:
    第五接收模块,配置为接收携带有波束扫描请求信息的所述切换请求,其中,所述波束扫描请求信息,用于请求采用所述第二波束进行波束扫描的扫描资源。
  40. 根据权利要求39所述的装置,其中,所述装置还包括:
    第二发送模块,配置为响应于接收到携带有所述波束扫描请求信息的所述切换请求,发送携带有指示所述扫描资源的资源信息的切换响应。
  41. 根据权利要求33至38任一项所述的装置,其中,所述装置还包括:
    第三发送模块,配置为响应于所述第一通信节点切换到所述第二波束,发送信号传输指示信息,其中,所述信号传输指示信息,用于指示在所述 第二波束上发送信号的功率配置。
  42. 根据权利要求33至38任一项所述的装置,其中,所述装置还包括:
    第四发送模块,配置为响应于接收到所述请求信息,发送指示允许切换到所述第二波束的切换响应。
  43. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至11、或12至21任一项所述信息传输方法的步骤。
  44. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至11、或12至21任一项所述信息传输方法的步骤。
PCT/CN2020/103348 2020-07-21 2020-07-21 信息传输方法、装置、通信设备和存储介质 WO2022016394A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/013,835 US20230327740A1 (en) 2020-07-21 2020-07-21 Information transmission method and apparatus, communication device, and storage medium
PCT/CN2020/103348 WO2022016394A1 (zh) 2020-07-21 2020-07-21 信息传输方法、装置、通信设备和存储介质
CN202080001637.6A CN114258700B (zh) 2020-07-21 2020-07-21 信息传输方法、装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103348 WO2022016394A1 (zh) 2020-07-21 2020-07-21 信息传输方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022016394A1 true WO2022016394A1 (zh) 2022-01-27

Family

ID=79728429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103348 WO2022016394A1 (zh) 2020-07-21 2020-07-21 信息传输方法、装置、通信设备和存储介质

Country Status (3)

Country Link
US (1) US20230327740A1 (zh)
CN (1) CN114258700B (zh)
WO (1) WO2022016394A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116684056A (zh) * 2023-06-15 2023-09-01 中国电信股份有限公司 基于独立组网共享基站的终端接入调整方法及相关设备
WO2023202537A1 (zh) * 2022-04-21 2023-10-26 中兴通讯股份有限公司 信息传输方法、第一节点、第二节点和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置
CN107113041A (zh) * 2015-01-06 2017-08-29 高通股份有限公司 用于在毫米波基站处进行波束整形和无线设备处的快速天线子阵列选择的技术
CN107454645A (zh) * 2016-05-31 2017-12-08 上海贝尔股份有限公司 基于波束的毫米波通信系统中的方法、基站以及用户设备
CN110024299A (zh) * 2016-09-28 2019-07-16 Idac控股公司 用于波束管理的系统和方法
CN110603742A (zh) * 2017-05-05 2019-12-20 摩托罗拉移动有限责任公司 指示波束切换请求

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655425B (zh) * 2011-03-02 2014-12-10 爱立信(中国)通信有限公司 调控波束方向改变而导致的上行负载变化的方法和基站
KR102179044B1 (ko) * 2014-08-08 2020-11-16 삼성전자 주식회사 무선 통신 시스템에서 수신 빔 이득 조정 장치 및 방법
TWI681645B (zh) * 2016-12-13 2020-01-01 華碩電腦股份有限公司 無線通訊系統中用於波束管理的方法和設備
US11088750B2 (en) * 2018-02-16 2021-08-10 Qualcomm Incorporated Feedback of beam switch time capability
CN110753388B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 一种波束管理方法和相关设备
US11349545B2 (en) * 2018-11-02 2022-05-31 Apple Inc. Beam management without beam correspondence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113041A (zh) * 2015-01-06 2017-08-29 高通股份有限公司 用于在毫米波基站处进行波束整形和无线设备处的快速天线子阵列选择的技术
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置
CN107454645A (zh) * 2016-05-31 2017-12-08 上海贝尔股份有限公司 基于波束的毫米波通信系统中的方法、基站以及用户设备
CN110024299A (zh) * 2016-09-28 2019-07-16 Idac控股公司 用于波束管理的系统和方法
CN110603742A (zh) * 2017-05-05 2019-12-20 摩托罗拉移动有限责任公司 指示波束切换请求

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202537A1 (zh) * 2022-04-21 2023-10-26 中兴通讯股份有限公司 信息传输方法、第一节点、第二节点和存储介质
CN116684056A (zh) * 2023-06-15 2023-09-01 中国电信股份有限公司 基于独立组网共享基站的终端接入调整方法及相关设备

Also Published As

Publication number Publication date
CN114258700B (zh) 2024-01-23
CN114258700A (zh) 2022-03-29
US20230327740A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2022056788A1 (zh) 通信方法及装置、网络设备、ue及存储介质
WO2022120601A1 (zh) 小区切换方法及装置、通信设备和存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2021196146A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2022021100A1 (zh) 位置确定方法、装置、通信设备和存储介质
WO2021243723A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2022016394A1 (zh) 信息传输方法、装置、通信设备和存储介质
KR20240005098A (ko) 리소스 설정 방법, 장치, 통신 장치 및 저장 매체(resource configuration method and apparatus, communication device, and storage medium)
WO2022000200A1 (zh) 定位参考信号配置方法及装置、用户设备、存储介质
WO2022155835A1 (zh) 切换配置确定方法、装置和通信设备装置
WO2022036597A1 (zh) 信息处理方法、装置及计算机可读存储介质
WO2022011577A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022006786A1 (zh) 网络数据收集方法及装置、网络设备、用户设备及存储介质
WO2021120204A1 (zh) 信号测量方法、装置、通信设备及存储介质
WO2023184121A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022027473A1 (zh) 小区测量处理方法、装置、通信设备及存储介质
WO2022021271A1 (zh) 波束切换方法及装置、网络设备、终端及存储介质
WO2022147695A1 (zh) 中继ue选择、信息处理方法及装置、设备及介质
WO2022011507A1 (zh) 测量反馈方法及装置、网络设备、终端及存储介质
WO2022061717A1 (zh) 生效时间确定方法、装置、通信设备和存储介质
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021142662A1 (zh) 资源配置方法、装置、通信设备及存储介质
WO2021077266A1 (zh) 网络接入方法、装置、通信设备及存储介质
WO2022147726A1 (zh) 波束扫描的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946068

Country of ref document: EP

Kind code of ref document: A1