WO2022014586A1 - Inspection method - Google Patents

Inspection method Download PDF

Info

Publication number
WO2022014586A1
WO2022014586A1 PCT/JP2021/026276 JP2021026276W WO2022014586A1 WO 2022014586 A1 WO2022014586 A1 WO 2022014586A1 JP 2021026276 W JP2021026276 W JP 2021026276W WO 2022014586 A1 WO2022014586 A1 WO 2022014586A1
Authority
WO
WIPO (PCT)
Prior art keywords
tree
trees
inspection method
calculated
unit
Prior art date
Application number
PCT/JP2021/026276
Other languages
French (fr)
Japanese (ja)
Inventor
登 三崎
治樹 岩佐
Original Assignee
マルイチ エアリアル エンジニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルイチ エアリアル エンジニア株式会社 filed Critical マルイチ エアリアル エンジニア株式会社
Publication of WO2022014586A1 publication Critical patent/WO2022014586A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/46Wood

Definitions

  • the present disclosure relates to tree inspection methods and inspection systems, and in particular, determines the risk of fallen trees, withering, etc. of multiple trees located in a predetermined area, and identifies trees to be subject to preventive pruning and preventive logging. Regarding that.
  • Patent Document 1 As a method for diagnosing the state of a tree, for example, the technique disclosed in Patent Document 1 can be mentioned.
  • Patent Document 1 diagnoses the corrosion state of a tree using a diagnostic agent, and it is necessary to diagnose each tree using a diagnostic agent, which requires manpower and cost. It takes.
  • the purpose of this disclosure is to realize a method for efficiently determining the risk of fallen trees of a plurality of trees.
  • One embodiment of the present disclosure is a tree inspection method, in which image data relating to each tree of a plurality of trees captured by an imaging unit provided on a moving body traveling a predetermined route is acquired. , The volume of the tree is calculated based on the image data of the captured tree, the weight of the tree is calculated based on the volume and specific gravity of the tree, and the weight of the tree is calculated based on the calculated weight. Judge the degree of danger of.
  • the transport method according to the embodiment of the present disclosure is as follows.
  • [Item 2] The inspection method according to item 1, wherein the actual weight data of the tree is acquired and the specific weight of the tree is calculated based on the actual weight data.
  • [Item 3] The inspection method according to item 1, wherein the type of the tree is determined based on machine learning, and the specific weight of the tree is determined based on the determined type of the tree.
  • [Item 4] The inspection method according to item 1, wherein it is determined whether or not the tree is a dead tree based on the image data.
  • [Item 5] The inspection method according to item 1, wherein the determination result of the degree of danger of the tree is output on a predetermined route included in the map displayed on the user terminal.
  • FIG. 1 is a conceptual diagram illustrating a tree inspection method and a system according to the first embodiment of the present disclosure.
  • the inspection system is composed of a mobile body 10 and an analysis device 11 described later.
  • the moving body 1 passing in the vicinity of the tree 10 captures the appearance of the tree 10 by the imaging unit 2, and the image data of the imaged tree is analyzed by the communication unit 3 via the network, which will be described later. Send to 11.
  • the moving body 1 can be, for example, a car, railroad, or robot traveling on land, or an aircraft or drone (unmanned aerial vehicle) flying in the sky, and can be manned or unmanned traveling / flying. , Regardless.
  • a case where the automobile travels on land as the moving body 1 will be described as an example.
  • the image pickup unit 2 is composed of one or a plurality of cameras, and can be composed of a monocular camera and / or a stereo camera. Assuming a car traveling on a predetermined route as a moving body 1, it is conceivable that the image pickup unit 2 is installed on the roof of the car and one or more cameras shoot a moving image of trees around the car. Will be.
  • the communication unit 3 connects the mobile body 1 to a network such as the Internet or mobile communication.
  • the communication unit 3 may be provided with a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
  • the communication unit 3 transmits the image data of the tree imaged by the image pickup unit 2 to the analysis device 11 via the network.
  • FIG. 2 is a conceptual diagram illustrating a plurality of tree inspection methods and systems according to the first embodiment of the present disclosure.
  • the moving body 1 moves on a predetermined route shown on the map, and the appearance of the tree 10 around the route is imaged by the imaging unit 2.
  • a camera which is an image pickup unit 2
  • a user terminal displays map information, and the current location information of the moving body 1 traveling on the route on the map is used as GPS (Global Positioning System: Global Positioning System). ) Can be used to determine and display.
  • GPS Global Positioning System: Global Positioning System
  • the tree to be inspected can be displayed as an illustration (icon). It is also possible to hide information about the mobile body 1 from anyone other than the user who is the administrator.
  • FIG. 3 is a functional configuration diagram of a mobile body and an analysis device in the inspection system according to the first embodiment of the present disclosure.
  • FIG. 3 is a functional configuration diagram of a mobile body and an analysis device in the inspection system according to the first embodiment of the present disclosure.
  • the inspection system has an analysis device 11 in addition to the mobile body 1.
  • the analysis device 11 can be, for example, an information processing device such as a personal computer or a tablet terminal, but may be configured by a smartphone, a mobile phone, a PDA, or the like.
  • the analysis device 11 has at least a communication unit 12, a control unit 13, and a storage unit 14.
  • the communication unit 12 connects the analysis device 11 to a network such as the Internet or mobile communication.
  • the transmission / reception unit 18 may be provided with a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
  • the communication unit 12 receives the image data of the tree imaged by the image pickup unit 2 of the mobile body 1 from the mobile body 1 via the network. Further, the communication unit 12 transmits the calculation result and the control information calculated by the control unit 13 to the mobile terminal or other terminal via the network.
  • the control unit 13 is an arithmetic unit that controls the operation of the entire system, controls the transmission and reception of data between each element, and performs information processing necessary for application execution and authentication processing.
  • the control unit 13 is a CPU (Central Processing Unit), and executes each information processing by executing a program or the like expanded in the storage unit 14.
  • the storage unit 14 stores a main storage composed of a volatile storage device such as a DRAM (Dynamic Random Access Memory) and an auxiliary storage composed of a non-volatile storage device such as a flash memory or an HDD (Hard Disk Drive). include.
  • the storage unit 14 is used as a work area or the like of the control unit 13, and also stores various setting information and the like.
  • the analysis device 11 can also have a storage.
  • the storage stores various programs such as application programs.
  • a database (not shown) storing data used for each process may be built in the storage.
  • the analysis device 11 can also include an input / output unit.
  • the input / output device is, for example, a keyboard / mouse for inputting an instruction to operate the system for a worker to carry a load, an information input device such as a touch panel, and an output device such as a display.
  • the analysis device 11 can be provided with a bus that is commonly connected to each of the above elements and transmits, for example, an address signal, a data signal, and various control signals.
  • FIG. 4 is a functional configuration diagram of the control unit of the analysis device according to the first embodiment of the present disclosure.
  • control unit 13 has an information acquisition unit 21, an image analysis unit 22, a weight analysis unit 23, and a determination unit 23.
  • the information acquisition unit 21 acquires various data from the mobile body 1 and other devices and / or terminals.
  • the image data of the tree captured by the moving body 1 can be acquired via the communication unit 12.
  • the actual weight data of the tree can be acquired.
  • the image analysis unit 22 executes the image analysis process.
  • the image analysis unit 22 can extract the shape of the tree from the acquired image and calculate the volume of the tree based on the extracted shape.
  • an image recognition method such as CNN (Convolutional Neural Network) is used to calculate the feature amount related to the color and / or shape of the tree, and the image data obtained by capturing another tree.
  • CNN Convolutional Neural Network
  • the recognition and shape of the tree (more specifically, the type of tree) contained in the image is determined, the size of the tree is estimated, and the tree is based on the estimated size.
  • the volume can be estimated.
  • the weight analysis unit 23 can derive the specific gravity of the tree based on the acquired actual weight data or the data related to the analyzed tree type, and can calculate the weight of the tree based on the above-estimated volume and specific weight.
  • the determination unit 24 can determine the degree of risk of fallen trees, withering, etc. of trees based on the image data of the trees and / or the calculated weight of the trees.
  • FIG. 5 is a flowchart illustrating an inspection method according to the first embodiment of the present disclosure.
  • the information acquisition unit 21 of the control unit 13 of the analysis device 11 acquires the image data of the tree captured by the moving body 1 via the communication unit 12.
  • the information acquisition unit 21 can also acquire the position information of the imaged tree, assigns an identification number to the imaged tree, and stores the image data together with the position information in the storage unit 14. can.
  • the image analysis unit 22 of the control unit 13 analyzes the acquired image data.
  • the image analysis unit 22 can extract the shape of the tree from the acquired image by using a known image recognition method, and calculate the volume of the tree based on the extracted shape.
  • the image analysis unit 22 can also determine the type of the tree based on the shape and color of the leaves of the tree included in the image.
  • the image analysis unit 22 stores the calculated information on the volume of the tree (information on the type of the tree, if necessary) as information related to the tree corresponding to the already assigned identification number, together with other information. It can be stored in 14.
  • the image analysis unit 22 can also determine whether or not the tree is a dead tree based on the color of the trunk, branches, and / or leaves of the tree. Regardless, it is possible to immediately propose logging or pruning of trees. In addition, the amount of leaves, the crotch generated on the trunk, and the like can be referred to in the method of determining the dead tree.
  • the information acquisition unit 21 acquires the actual weight data of the tree via the communication unit 12.
  • the actual weight data can be a numerical value measured by using a measuring tool such as a load cell using a predetermined part of the tree as a sample.
  • the actual weight data can be acquired from the mobile body 1 or can be received from a terminal different from the mobile body 1.
  • the information acquisition unit 21 can store the actual weight data in the storage unit 14 together with other information as information related to the tree corresponding to the already assigned identification number.
  • the specific gravity of the tree can be stored in the storage unit 14 in advance as specific gravity data, or can be acquired as external data. Therefore, it is not necessary to acquire the actual weight data as in step S103.
  • the weight analysis unit 23 of the control unit 13 calculates the weight of the tree based on the volume of the tree calculated in step S102 and the actual weight data acquired in step S103.
  • the weight analysis unit 23 can calculate the specific weight of the tree (weight per unit volume) based on the actual weight data, and can calculate the total weight of the tree as the estimated value from the total capacity of the tree calculated as the estimated value. ..
  • the total weight of the tree can be estimated based on the specific weight data of the tree and the volume of the tree, not based on the actual weight data.
  • the weight analysis unit 23 uses the weight of the tree calculated as an estimated value as the strength, and uses the calculated volume of the tree as information related to the tree corresponding to the already assigned identification number, together with other information, in the storage unit 14. Can be stored in.
  • the determination unit 24 of the control unit 13 determines the risk of fallen or dead trees. For example, as the degree of danger, the load applied to the tree (strong wind withstand load) when a strong wind having a wind speed of 10 to 60 meters (m) is applied from the horizontal direction of the tree is calculated in advance, and the determination unit 24 determines the strong wind. The degree of danger can be determined by comparing the withstand load with the calculated strength (total weight of the tree).
  • FIG. 6 is a conceptual diagram illustrating the risk determination of the inspection method according to the first embodiment of the present disclosure.
  • the wind pressure P is as follows.
  • is the air density (1.225 kg / m 3 under the condition of 1 atmospheric pressure 15 ° C.
  • v is the wind speed (m / s)
  • g is the gravitational acceleration (9.8 m / s 2 ), which is 60 meters.
  • the wind pressure P becomes 225 kg / m 2 .
  • step S105 If the total weight of the tree calculated in step S105 is 2000 kg, there is a risk of the tree falling in consideration of the bending moment, and the determination unit 24 determines that there is a risk of the tree falling.
  • FIG. 7 is a conceptual diagram illustrating a method of outputting a risk level determination result of the inspection method according to the first embodiment of the present disclosure.
  • the image generation unit (not shown) of the analysis device 11 displays on the display of the user terminal shown in FIG. 7. It can be output so as to indicate the degree of danger and / or the degree of danger by the icon or the like by superimposing or adjoining the icon of the corresponding tree on the predetermined route included in the map. .. For example, if the total weight of a tree exceeds the strong wind withstand load by a predetermined amount or more, the danger notification icon is not displayed for the tree, and the total weight of the tree exceeds the strong wind withstand load but is less than the predetermined amount.
  • an icon can be displayed to indicate that the level is "2", which indicates that logging will be performed immediately.
  • the method of determining the risk level of the tree based on the actual weight data of the tree is described, but for example, the risk level can also be determined based on the elasticity data of the tree.
  • the elasticity data is calculated by measuring the winding distance of the rope with respect to the load by pulling the tree from an arbitrary direction with a rope with a load cell or the like and returning it.
  • the values at the time of weighting and the value at the time of weighting are compared, and if there is a proportional relationship (or within an appropriate value), it can be determined that the degree of danger is low.

Abstract

[Problem] The purpose of the present disclosure is to realize a method for efficiently determining risks such as fallen trees as pertains to a plurality of trees. [Solution] One embodiment of the present disclosure is a method for inspecting trees, wherein: image data relating to each tree of a plurality of trees is acquired, the image data being captured by an imaging unit provided to a moving body moving on a prescribed route; the volumes of the trees are calculated on the basis of the captured image data of the trees; the weights of the trees are calculated on the basis of the volumes and specific densities of the trees; and degrees of risk of the trees are determined on the basis of the calculated weights.

Description

検査方法Inspection method
 本開示は、樹木の検査方法及び検査システムに関し、特に、所定の地域に所在する複数の樹木の倒木、枯損等の危険性を判定し、予防剪定、予防伐採を行う対象となる樹木を特定することに関する。 The present disclosure relates to tree inspection methods and inspection systems, and in particular, determines the risk of fallen trees, withering, etc. of multiple trees located in a predetermined area, and identifies trees to be subject to preventive pruning and preventive logging. Regarding that.
 従来、広範囲に所在する複数の樹木の、台風等の自然災害による倒木及び枯損等の危険性を判定するために、人力により一本ずつ樹木を検査する必要があった。 Conventionally, it has been necessary to manually inspect trees one by one in order to determine the risk of fallen trees and withering due to natural disasters such as typhoons and multiple trees located in a wide area.
 一本一本の樹木の人手による診断は、労力、コストが掛かるうえに、複数の樹木を検査することで、検査する者の能力のばらつきや疲労に伴い、倒木等の危険性のある樹木を特定するための精度も落ちてしまう。 Manual diagnosis of each tree is laborious and costly, and by inspecting multiple trees, there is a risk of fallen trees due to variations in the ability of the inspector and fatigue. The accuracy for identifying is also reduced.
 そこで、樹木の状態を診断する方法として、例えば、特許文献1に開示される技術が挙げられる。 Therefore, as a method for diagnosing the state of a tree, for example, the technique disclosed in Patent Document 1 can be mentioned.
特開2005-043161号JP-A-2005-0436161
 しかしながら、上記特許文献1に開示の技術は、診断薬を用いて木の腐食状況を診断するものであり、一本一本の木について診断薬を用いて診断する必要があり、人手やコストがかかる。 However, the technique disclosed in Patent Document 1 diagnoses the corrosion state of a tree using a diagnostic agent, and it is necessary to diagnose each tree using a diagnostic agent, which requires manpower and cost. It takes.
 そこで、本開示は、複数の樹木の倒木等の危険性を効率的に判定する方法を実現することを目的とする。 Therefore, the purpose of this disclosure is to realize a method for efficiently determining the risk of fallen trees of a plurality of trees.
本開示の一の実施形態は、樹木の検査方法であって、所定のルートを移動する移動体に備えられた撮像部によって撮像された、複数の樹木の各々の樹木に係る画像データを取得し、前記撮像された樹木の画像データに基づいて、前記樹木の容積を算出し、前記樹木の容積及び比重に基づいて、前記樹木の重量を算出し、前記算出された重量に基づいて、前記樹木の危険度を判定する。 One embodiment of the present disclosure is a tree inspection method, in which image data relating to each tree of a plurality of trees captured by an imaging unit provided on a moving body traveling a predetermined route is acquired. , The volume of the tree is calculated based on the image data of the captured tree, the weight of the tree is calculated based on the volume and specific gravity of the tree, and the weight of the tree is calculated based on the calculated weight. Judge the degree of danger of.
 本開示によれば、複数の樹木の倒木等の危険性を効率的に判定する方法を実現することができる。 According to the present disclosure, it is possible to realize a method for efficiently determining the danger of a plurality of trees such as fallen trees.
本開示の第1の実施形態による、樹木の検査方法及びシステムを説明する概念図である。It is a conceptual diagram explaining the tree inspection method and system by 1st Embodiment of this disclosure. 本開示の第1の実施形態による、複数の樹木の検査方法及びシステムを説明する概念図である。It is a conceptual diagram explaining the inspection method and system of a plurality of trees according to 1st Embodiment of this disclosure. 本開示の第1の実施形態による検査システムにおける、移動体及び解析装置の機能構成図である。It is a functional block diagram of the moving body and the analysis apparatus in the inspection system by 1st Embodiment of this disclosure. 本開示の第1の実施形態による解析装置の制御部の機能構成図である。It is a functional block diagram of the control part of the analysis apparatus by 1st Embodiment of this disclosure. 本開示の第1の実施形態による検査方法を説明するフローチャート図である。It is a flowchart explaining the inspection method by 1st Embodiment of this disclosure. 本開示の第1の実施形態による検査方法の危険度判定を説明する概念図である。It is a conceptual diagram explaining the risk degree determination of the inspection method by 1st Embodiment of this disclosure. 本開示の第1の実施形態による検査方法の危険度判定結果の出力方法を説明する概念図である。It is a conceptual diagram explaining the output method of the risk degree determination result of the inspection method by 1st Embodiment of this disclosure.
 本開示の実施形態の内容を列記して説明する。本開示の実施の形態による搬送方法は以下のとおりである。
[項目1] 
樹木の検査方法であって、
所定のルートを移動する移動体に備えられた撮像部によって撮像された、複数の樹木の各々の樹木に係る画像データを取得し、
前記撮像された樹木の画像データに基づいて、前記樹木の容積を算出し、
前記樹木の容積及び比重に基づいて、前記樹木の重量を算出し、
前記算出された重量に基づいて、前記樹木の危険度を判定する、
検査方法。
[項目2]
前記樹木の実重量データを取得し、前記実重量データに基づいて、前記樹木の比重を算出する、項目1に記載の検査方法。
[項目3]
機械学習に基づいて、前記樹木の種類を決定し、前記決定された樹木の種類に基づいて、前記樹木の比重を決定する、項目1に記載の検査方法。
[項目4]
前記画像データに基づいて、前記樹木が枯損木であるか否かを判定する、項目1に記載の検査方法。
[項目5]
前記樹木の危険度の判定結果を、ユーザ端末に表示される地図に含まれる所定のルート上に出力する、項目1に記載の検査方法。
The contents of the embodiments of the present disclosure will be listed and described. The transport method according to the embodiment of the present disclosure is as follows.
[Item 1]
It ’s a tree inspection method.
The image data related to each tree of a plurality of trees captured by the image pickup unit provided in the moving body moving on a predetermined route is acquired, and the image data is acquired.
Based on the image data of the captured tree, the volume of the tree is calculated.
Based on the volume and specific gravity of the tree, the weight of the tree is calculated.
Judging the risk of the tree based on the calculated weight,
Inspection method.
[Item 2]
The inspection method according to item 1, wherein the actual weight data of the tree is acquired and the specific weight of the tree is calculated based on the actual weight data.
[Item 3]
The inspection method according to item 1, wherein the type of the tree is determined based on machine learning, and the specific weight of the tree is determined based on the determined type of the tree.
[Item 4]
The inspection method according to item 1, wherein it is determined whether or not the tree is a dead tree based on the image data.
[Item 5]
The inspection method according to item 1, wherein the determination result of the degree of danger of the tree is output on a predetermined route included in the map displayed on the user terminal.
以下、図面を用いて本開示の第1の実施形態による搬送方法及びシステムについて説明する。 Hereinafter, the transport method and the system according to the first embodiment of the present disclosure will be described with reference to the drawings.
 図1は、本開示の第1の実施形態による、樹木の検査方法及びシステムを説明する概念図である。 FIG. 1 is a conceptual diagram illustrating a tree inspection method and a system according to the first embodiment of the present disclosure.
図1において、まず、検査システムは、移動体10と、後述する解析装置11とにより構成される。ここで、樹木10の近傍を通過する移動体1は、撮像部2により樹木10の外観を撮像し、撮像された樹木の画像データを、通信部3により、ネットワークを介して、後述する解析装置11に送信する。 In FIG. 1, first, the inspection system is composed of a mobile body 10 and an analysis device 11 described later. Here, the moving body 1 passing in the vicinity of the tree 10 captures the appearance of the tree 10 by the imaging unit 2, and the image data of the imaged tree is analyzed by the communication unit 3 via the network, which will be described later. Send to 11.
 移動体1として、例えば、陸上を走行する自動車、鉄道、ロボットとすることができ、または、空を飛行する航空機、ドローン(無人飛行体)とすることができ、有人または無人による走行/飛行か、を問わない。以下、移動体1として自動車が陸上を走行する場合を例に説明する。 The moving body 1 can be, for example, a car, railroad, or robot traveling on land, or an aircraft or drone (unmanned aerial vehicle) flying in the sky, and can be manned or unmanned traveling / flying. , Regardless. Hereinafter, a case where the automobile travels on land as the moving body 1 will be described as an example.
 撮像部2は、一または複数のカメラで構成され、単眼カメラ及び/またはステレオカメラで構成することができる。移動体1として所定のルートを走行する自動車を想定したときに、撮像部2は自動車の屋根上に設置され、自動車が走行する周辺の樹木を一または複数台のカメラが動画撮影することが考えられる。 The image pickup unit 2 is composed of one or a plurality of cameras, and can be composed of a monocular camera and / or a stereo camera. Assuming a car traveling on a predetermined route as a moving body 1, it is conceivable that the image pickup unit 2 is installed on the roof of the car and one or more cameras shoot a moving image of trees around the car. Will be.
 通信部3は、移動体1をインターネット、移動体通信等のネットワークに接続する。なお、通信部3は、Bluetooth(登録商標)及びBLE(Bluetooth Low Energy)の近距離通信インターフェースを備えていてもよい。通信部3は、撮像部2によって撮像された樹木の画像データを、ネットワークを介して解析装置11に送信する。 The communication unit 3 connects the mobile body 1 to a network such as the Internet or mobile communication. The communication unit 3 may be provided with a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy). The communication unit 3 transmits the image data of the tree imaged by the image pickup unit 2 to the analysis device 11 via the network.
 図2は、本開示の第1の実施形態による、複数の樹木の検査方法及びシステムを説明する概念図である。 FIG. 2 is a conceptual diagram illustrating a plurality of tree inspection methods and systems according to the first embodiment of the present disclosure.
 本実施形態の樹木の検査方法及びシステムにおいて、移動体1は、地図に示された所定ルート上を移動し、ルート周辺の樹木10の外観を撮像部2によって撮像する。図2において、移動体1である自動車の屋根に撮像部2であるカメラが設置されている。カメラは一または複数台あってもよく、複数のカメラで各々の方向に所在する樹木を撮像することもできるし、一台のカメラで一方向の樹木を撮像することもできる。または、一台のカメラを360度回転させることで、対応する方向の樹木を撮像することもできるし、360度カメラを使用することで、あらゆる方向の樹木を撮像することもできる。 In the tree inspection method and system of the present embodiment, the moving body 1 moves on a predetermined route shown on the map, and the appearance of the tree 10 around the route is imaged by the imaging unit 2. In FIG. 2, a camera, which is an image pickup unit 2, is installed on the roof of an automobile, which is a mobile body 1. There may be one or more cameras, and a plurality of cameras can image trees located in each direction, and one camera can image trees in one direction. Alternatively, by rotating one camera 360 degrees, trees in the corresponding directions can be imaged, and by using a 360 degree camera, trees in all directions can be imaged.
 また、図2に示すように、(図示しない)ユーザ端末に、地図情報を表示させ、かつ、地図上のルートを走行する移動体1の現在地情報を、GPS(Global Positioning System:全地球測位システム)を用いることで決定し、表示させることができる。また、検査対象となる樹木をイラスト(アイコン)表示させることができる。管理者であるユーザ以外には、移動体1に関する情報を表示させないこともできる。 Further, as shown in FIG. 2, a user terminal (not shown) displays map information, and the current location information of the moving body 1 traveling on the route on the map is used as GPS (Global Positioning System: Global Positioning System). ) Can be used to determine and display. In addition, the tree to be inspected can be displayed as an illustration (icon). It is also possible to hide information about the mobile body 1 from anyone other than the user who is the administrator.
 図3は、本開示の第1の実施形態による検査システムにおける、移動体及び解析装置の機能構成図である。 FIG. 3 is a functional configuration diagram of a mobile body and an analysis device in the inspection system according to the first embodiment of the present disclosure.
 図3は、本開示の第1の実施形態による検査システムにおける、移動体及び解析装置の機能構成図である。 FIG. 3 is a functional configuration diagram of a mobile body and an analysis device in the inspection system according to the first embodiment of the present disclosure.
図3に示すように、検査システムは、移動体1のほか、解析装置11を有する。解析装置11は、例えば、パーソナルコンピュータやタブレット端末等の情報処理装置とすることができるが、スマートフォンや携帯電話、PDA等により構成しても良い。解析装置11は、通信部12、制御部13及び記憶部14を少なくとも有する。 As shown in FIG. 3, the inspection system has an analysis device 11 in addition to the mobile body 1. The analysis device 11 can be, for example, an information processing device such as a personal computer or a tablet terminal, but may be configured by a smartphone, a mobile phone, a PDA, or the like. The analysis device 11 has at least a communication unit 12, a control unit 13, and a storage unit 14.
通信部12は、解析装置11をインターネット、移動体通信等のネットワークに接続する。なお、送受信部18は、Bluetooth(登録商標)及びBLE(Bluetooth Low Energy)の近距離通信インターフェースを備えていてもよい。通信部12は、移動体1の撮像部2によって撮像された樹木の画像データを移動体1からネットワークを介して受信する。また、通信部12は、制御部13によって計算された計算結果や制御情報を、ネットワークを介して移動体他の端末に送信する。 The communication unit 12 connects the analysis device 11 to a network such as the Internet or mobile communication. The transmission / reception unit 18 may be provided with a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy). The communication unit 12 receives the image data of the tree imaged by the image pickup unit 2 of the mobile body 1 from the mobile body 1 via the network. Further, the communication unit 12 transmits the calculation result and the control information calculated by the control unit 13 to the mobile terminal or other terminal via the network.
 制御部13は、システム全体の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行及び認証処理に必要な情報処理等を行う演算装置である。例えば制御部13はCPU(Central Processing Unit)であり、記憶部14に展開されたプログラム等を実行して各情報処理を実施する。 The control unit 13 is an arithmetic unit that controls the operation of the entire system, controls the transmission and reception of data between each element, and performs information processing necessary for application execution and authentication processing. For example, the control unit 13 is a CPU (Central Processing Unit), and executes each information processing by executing a program or the like expanded in the storage unit 14.
 記憶部14は、DRAM(Dynamic Random Access Memory)等の揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD(Hard Disc Drive)等の不揮発性記憶装置で構成される補助記憶と、を含む。記憶部14は、制御部13のワークエリア等として使用され、また、各種設定情報等を格納する。 The storage unit 14 stores a main storage composed of a volatile storage device such as a DRAM (Dynamic Random Access Memory) and an auxiliary storage composed of a non-volatile storage device such as a flash memory or an HDD (Hard Disk Drive). include. The storage unit 14 is used as a work area or the like of the control unit 13, and also stores various setting information and the like.
 また、図示しないが、解析装置11は、ストレージを有することもできる。ストレージは、アプリケーション・プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベース(図示せず)がストレージに構築されていてもよい。 Further, although not shown, the analysis device 11 can also have a storage. The storage stores various programs such as application programs. A database (not shown) storing data used for each process may be built in the storage.
 また、図示しないが、解析装置11は、入出力部を備えることもできる。入出力装置は、例えば、作業員が荷物を運搬するために、システムを操作する指示を入力するキーボード・マウス類、タッチパネル等の情報入力機器、及びディスプレイ等の出力機器である。 Although not shown, the analysis device 11 can also include an input / output unit. The input / output device is, for example, a keyboard / mouse for inputting an instruction to operate the system for a worker to carry a load, an information input device such as a touch panel, and an output device such as a display.
 また、図示しないが、解析装置11は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達するバスを備えることができる。 Although not shown, the analysis device 11 can be provided with a bus that is commonly connected to each of the above elements and transmits, for example, an address signal, a data signal, and various control signals.
図4は、本開示の第1の実施形態による解析装置の制御部の機能構成図である。 FIG. 4 is a functional configuration diagram of the control unit of the analysis device according to the first embodiment of the present disclosure.
 図4に示すように、制御部13は、情報取得部21、画像解析部22、重量解析部23及び判定部23を有する。 As shown in FIG. 4, the control unit 13 has an information acquisition unit 21, an image analysis unit 22, a weight analysis unit 23, and a determination unit 23.
 情報取得部21は、移動体1を始め、他の装置及び/または端末から各種データを取得する。例えば、移動体1で撮像された樹木の画像データを、通信部12を介して取得することができる。または、樹木の実重量データを取得することもできる。 The information acquisition unit 21 acquires various data from the mobile body 1 and other devices and / or terminals. For example, the image data of the tree captured by the moving body 1 can be acquired via the communication unit 12. Alternatively, the actual weight data of the tree can be acquired.
 画像解析部22は、画像解析処理を実行する。例えば、画像解析部22は、取得した画像から樹木の形状を抽出し、抽出した形状に基づいて、樹木の容積を算出することができる。樹木の形状の抽出に当たっては、例えば、CNN(Convolutional Neural Network)等の画像認識手法を用いて、樹木の色味及び/または形状に係る特徴量を算出し、他の樹木が撮像された画像データを基に生成された学習モデルを用いて、画像に含まれる樹木(さらに詳細には樹木の種類)の認識及び形状を決定し、樹木の寸法を推測し、推測された寸法に基づいて樹木の容積を推測することができる。 The image analysis unit 22 executes the image analysis process. For example, the image analysis unit 22 can extract the shape of the tree from the acquired image and calculate the volume of the tree based on the extracted shape. In extracting the shape of a tree, for example, an image recognition method such as CNN (Convolutional Neural Network) is used to calculate the feature amount related to the color and / or shape of the tree, and the image data obtained by capturing another tree. Using the learning model generated based on, the recognition and shape of the tree (more specifically, the type of tree) contained in the image is determined, the size of the tree is estimated, and the tree is based on the estimated size. The volume can be estimated.
 重量解析部23は、取得した実重量データまたは解析した樹木の種類に関するデータに基づいて、樹木の比重を導出し、上記推測した容積と比重とに基づいて樹木の重量を算出することができる。 The weight analysis unit 23 can derive the specific gravity of the tree based on the acquired actual weight data or the data related to the analyzed tree type, and can calculate the weight of the tree based on the above-estimated volume and specific weight.
 判定部24は、樹木の画像データ及び/または算出した樹木の重量に基づいて、樹木の倒木、枯損等の危険度について判定を行うことができる。 The determination unit 24 can determine the degree of risk of fallen trees, withering, etc. of trees based on the image data of the trees and / or the calculated weight of the trees.
 図5は、本開示の第1の実施形態による検査方法を説明するフローチャート図である。 FIG. 5 is a flowchart illustrating an inspection method according to the first embodiment of the present disclosure.
 まず、ステップS101として、解析装置11の制御部13の情報取得部21は、移動体1で撮像された樹木の画像データを、通信部12を介して取得する。ここで、情報取得部21は、撮像された樹木の位置情報についても取得することができ、撮像された樹木に識別番号を付与し、位置情報とともに、画像データを記憶部14に格納することができる。 First, as step S101, the information acquisition unit 21 of the control unit 13 of the analysis device 11 acquires the image data of the tree captured by the moving body 1 via the communication unit 12. Here, the information acquisition unit 21 can also acquire the position information of the imaged tree, assigns an identification number to the imaged tree, and stores the image data together with the position information in the storage unit 14. can.
次に、ステップS102として、制御部13の画像解析部22は、取得した画像データの解析を行う。例えば、画像解析部22は、上述の通り、取得した画像から既知の画像認識手法を用いて、樹木の形状を抽出し、抽出した形状に基づいて、樹木の容積を算出することができる。ここで、画像解析部22は、画像に含まれる、樹木の葉の形状及び色に基づいて樹木の種類を判別することもできる。画像解析部22は、算出した樹木の容積に関する情報(必要に応じて、樹木の種類に関する情報)を、既に割り当てられた識別番号に対応する樹木に関連する情報として、他の情報とともに、記憶部14に格納することができる。また、画像解析部22は、樹木の幹、枝及び/または葉の色に基づいて、枯損木である否かの判定を行うこともでき、枯損木であると決定することで後述の処理に関わらず、直ちに樹木の伐採または剪定を提案することができる。枯損木の判定方法に際して、その他、葉の量、幹に発生したクロッチ等を参照することもできる。 Next, in step S102, the image analysis unit 22 of the control unit 13 analyzes the acquired image data. For example, as described above, the image analysis unit 22 can extract the shape of the tree from the acquired image by using a known image recognition method, and calculate the volume of the tree based on the extracted shape. Here, the image analysis unit 22 can also determine the type of the tree based on the shape and color of the leaves of the tree included in the image. The image analysis unit 22 stores the calculated information on the volume of the tree (information on the type of the tree, if necessary) as information related to the tree corresponding to the already assigned identification number, together with other information. It can be stored in 14. Further, the image analysis unit 22 can also determine whether or not the tree is a dead tree based on the color of the trunk, branches, and / or leaves of the tree. Regardless, it is possible to immediately propose logging or pruning of trees. In addition, the amount of leaves, the crotch generated on the trunk, and the like can be referred to in the method of determining the dead tree.
次に、ステップS103として、情報取得部21は、樹木の実重量データを、通信部12を介して取得する。ここで、実重量データは、樹木の所定の部位をサンプルとしてロードセル等の測定具を用いて測定した数値とすることができる。実重量データは、移動体1から取得することもできるし、移動体1とは別の端末から受信することもできる。ここで、情報取得部21は、実重量データを、既に割り当てられた識別番号に対応する樹木に関連する情報として、他の情報とともに、記憶部14に格納することができる。 Next, as step S103, the information acquisition unit 21 acquires the actual weight data of the tree via the communication unit 12. Here, the actual weight data can be a numerical value measured by using a measuring tool such as a load cell using a predetermined part of the tree as a sample. The actual weight data can be acquired from the mobile body 1 or can be received from a terminal different from the mobile body 1. Here, the information acquisition unit 21 can store the actual weight data in the storage unit 14 together with other information as information related to the tree corresponding to the already assigned identification number.
 なお、上述の形状データ解析の処理において、樹木の種類を判別可能な場合は、その樹木の比重を予め比重データとして記憶部14に格納することもでき、または、外部データとして取得することもできるので、ステップS103のように実重量データを取得することは不要となる。 In the above-mentioned shape data analysis process, if the type of the tree can be determined, the specific gravity of the tree can be stored in the storage unit 14 in advance as specific gravity data, or can be acquired as external data. Therefore, it is not necessary to acquire the actual weight data as in step S103.
 次に、ステップS104として、制御部13の重量解析部23は、ステップS102において算出した樹木の容積と、ステップS103において取得した実重量データとに基づいて、樹木の重量を算出する。重量解析部23は、実重量データに基づいて樹木の比重(単位容積当たりの重量)を算出し、推定値として算出された樹木の総容量から樹木の総重量を推定値として算出することができる。ここで、上述のように、実重量データによらない、樹木の比重データと樹木の容積とに基づいて、樹木の総重量を推定することもできる。重量解析部23は、推定値として算出された樹木の重量を強度として、算出した樹木の容積を、既に割り当てられた識別番号に対応する樹木に関連する情報として、他の情報とともに、記憶部14に格納することができる。 Next, as step S104, the weight analysis unit 23 of the control unit 13 calculates the weight of the tree based on the volume of the tree calculated in step S102 and the actual weight data acquired in step S103. The weight analysis unit 23 can calculate the specific weight of the tree (weight per unit volume) based on the actual weight data, and can calculate the total weight of the tree as the estimated value from the total capacity of the tree calculated as the estimated value. .. Here, as described above, the total weight of the tree can be estimated based on the specific weight data of the tree and the volume of the tree, not based on the actual weight data. The weight analysis unit 23 uses the weight of the tree calculated as an estimated value as the strength, and uses the calculated volume of the tree as information related to the tree corresponding to the already assigned identification number, together with other information, in the storage unit 14. Can be stored in.
 次に、ステップS105として、制御部13の判定部24は、樹木の倒木または枯損の危険度を判定する。例えば、危険度として、樹木の水平方向から風速10から60メートル(m)の強風が印加された場合に樹木にかかる荷重(強風耐用荷重)を事前に算出しておき、判定部24は、強風耐用荷重と上記算出された強度(樹木の総重量)とを比較することで、危険度を判定することができる。 Next, as step S105, the determination unit 24 of the control unit 13 determines the risk of fallen or dead trees. For example, as the degree of danger, the load applied to the tree (strong wind withstand load) when a strong wind having a wind speed of 10 to 60 meters (m) is applied from the horizontal direction of the tree is calculated in advance, and the determination unit 24 determines the strong wind. The degree of danger can be determined by comparing the withstand load with the calculated strength (total weight of the tree).
 図6は、本開示の第1の実施形態による検査方法の危険度判定を説明する概念図である。 FIG. 6 is a conceptual diagram illustrating the risk determination of the inspection method according to the first embodiment of the present disclosure.
 例えば、樹木に対し風速vメートルの風が印加される場合、風圧Pは、以下となる。 For example, when a wind with a wind speed of v meters is applied to a tree, the wind pressure P is as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、ρは空気密度(1気圧15℃の条件下で1.225kg/m、vは風速(m/s)、gは重力加速度(9.8m/s)とすると、60メートルの風速が印加されると、風圧Pは225kg/mとなる。 Here, ρ is the air density (1.225 kg / m 3 under the condition of 1 atmospheric pressure 15 ° C., v is the wind speed (m / s), and g is the gravitational acceleration (9.8 m / s 2 ), which is 60 meters. When the wind speed is applied, the wind pressure P becomes 225 kg / m 2 .
 特に、樹木の地上10mに風速60メートルの強風が印加されると、樹木の幹にかかる曲げモーメントは、225kg/mx10m=2250kg/mとなる。 In particular, when a strong wind having a wind speed of 60 meters is applied to 10 m above the ground of the tree, the bending moment applied to the trunk of the tree becomes 225 kg / m 2 x 10 m = 2250 kg / m 3.
 仮に、ステップS105で算定された樹木の総重量が2000kgであったとすると、曲げモーメントを考慮すると倒木する危険性があり、判定部24は、「倒木の危険あり」、と判断する。 If the total weight of the tree calculated in step S105 is 2000 kg, there is a risk of the tree falling in consideration of the bending moment, and the determination unit 24 determines that there is a risk of the tree falling.
 図7は、本開示の第1の実施形態による検査方法の危険度判定結果の出力方法を説明する概念図である。 FIG. 7 is a conceptual diagram illustrating a method of outputting a risk level determination result of the inspection method according to the first embodiment of the present disclosure.
 判定部24が、一または複数の樹木について危険度を判定し、「危険度あり」と判断すると、解析装置11の(図示しない)画像生成部は、図7に示す、ユーザ端末のディスプレイに表示される地図に含まれる所定のルート上の該当する樹木のアイコンに重ねてまたは隣接して、アイコン等により危険である旨、及び/または、その危険度の度合いを示すように出力させることができる。例えば、樹木の総重量が強風耐用荷重を所定量以上上回る場合は、その樹木について、危険を知らせるアイコンを表示せず、樹木の総重量が強風耐用荷重を上回るが、所定量未満である場合には、アイコンを表示し、そのレベルを「1」と示し、伐採することが好ましい旨知らせることができる。また、樹木の総重量が強風耐用荷重を下回る場合は、アイコンを表示し、直ちに伐採することを知らせる、レベル「2」であることを示すことができる。 When the determination unit 24 determines the degree of danger for one or more trees and determines that there is a degree of danger, the image generation unit (not shown) of the analysis device 11 displays on the display of the user terminal shown in FIG. 7. It can be output so as to indicate the degree of danger and / or the degree of danger by the icon or the like by superimposing or adjoining the icon of the corresponding tree on the predetermined route included in the map. .. For example, if the total weight of a tree exceeds the strong wind withstand load by a predetermined amount or more, the danger notification icon is not displayed for the tree, and the total weight of the tree exceeds the strong wind withstand load but is less than the predetermined amount. Can display an icon, indicate its level as "1", and inform that it is preferable to cut down. In addition, if the total weight of the tree is less than the load capacity for strong winds, an icon can be displayed to indicate that the level is "2", which indicates that logging will be performed immediately.
 以上により、本実施形態の検査方法及びシステムによれば、複数の樹木の倒木等の危険性を効率的に検査することができる。 From the above, according to the inspection method and system of the present embodiment, it is possible to efficiently inspect the risk of fallen trees of a plurality of trees.
 なお、上記実施形態において、樹木の実重量データに基づいて樹木の危険度を判定する方法を挙げたが、例えば、樹木の弾性データに基づいて、危険度を判定することもできる。例えば、弾性データは、樹木を任意の方向からロードセル付きのロープ等で引っ張り、戻すことで、荷重に対するロープの巻き込み距離を測定することで算出する。ここで、加重時と抜重時の値を比較し、比例関係(あるいは適正値内)であれば、危険度が低いと判断することができる。 In the above embodiment, the method of determining the risk level of the tree based on the actual weight data of the tree is described, but for example, the risk level can also be determined based on the elasticity data of the tree. For example, the elasticity data is calculated by measuring the winding distance of the rope with respect to the load by pulling the tree from an arbitrary direction with a rope with a load cell or the like and returning it. Here, the values at the time of weighting and the value at the time of weighting are compared, and if there is a proportional relationship (or within an appropriate value), it can be determined that the degree of danger is low.
 上述した実施の形態は、本開示の理解を容易にするための例示に過ぎず、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更、改良することができると共に、本開示にはその均等物が含まれることは言うまでもない。 The above-described embodiment is merely an example for facilitating the understanding of the present disclosure, and is not intended to limit the interpretation of the present disclosure. It goes without saying that the present disclosure may be modified or improved without departing from the spirit thereof, and the present disclosure includes the equivalent thereof.
 1  移動体
 2  撮像部
 3  通信部
 10 樹木
 11 解析装置
 12 通信部
 13 制御部
 14 記憶部

 
1 Mobile 2 Imaging unit 3 Communication unit 10 Tree 11 Analysis device 12 Communication unit 13 Control unit 14 Storage unit

Claims (5)

  1. 樹木の検査方法であって、
    所定のルートを移動する移動体に備えられた撮像部によって撮像された、複数の樹木の各々の樹木に係る画像データを取得し、
    前記撮像された樹木の画像データに基づいて、前記樹木の容積を算出し、
    前記樹木の容積及び比重に基づいて、前記樹木の重量を算出し、
    前記算出された重量に基づいて、前記樹木の危険度を判定する、
    検査方法。
    It ’s a tree inspection method.
    The image data related to each tree of a plurality of trees captured by the image pickup unit provided in the moving body moving on a predetermined route is acquired, and the image data is acquired.
    Based on the image data of the captured tree, the volume of the tree is calculated.
    Based on the volume and specific gravity of the tree, the weight of the tree is calculated.
    Judging the risk of the tree based on the calculated weight,
    Inspection method.
  2. 前記樹木の実重量データを取得し、前記実重量データに基づいて、前記樹木の比重を算出する、請求項1に記載の検査方法。 The inspection method according to claim 1, wherein the actual weight data of the tree is acquired and the specific weight of the tree is calculated based on the actual weight data.
  3. 機械学習に基づいて、前記樹木の種類を決定し、前記決定された樹木の種類に基づいて、前記樹木の比重を決定する、請求項1に記載の検査方法。 The inspection method according to claim 1, wherein the type of the tree is determined based on machine learning, and the specific weight of the tree is determined based on the determined type of the tree.
  4. 前記画像データに基づいて、前記樹木が枯損木であるか否かを判定する、請求項1に記載の検査方法。 The inspection method according to claim 1, wherein it is determined whether or not the tree is a dead tree based on the image data.
  5. 前記樹木の危険度の判定結果を、ユーザ端末に表示される地図に含まれる所定のルート上に出力する、請求項1に記載の検査方法。

     
    The inspection method according to claim 1, wherein the determination result of the degree of danger of the tree is output on a predetermined route included in the map displayed on the user terminal.

PCT/JP2021/026276 2020-07-16 2021-07-13 Inspection method WO2022014586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-122133 2020-07-16
JP2020122133A JP6785023B1 (en) 2020-07-16 2020-07-16 Inspection methods

Publications (1)

Publication Number Publication Date
WO2022014586A1 true WO2022014586A1 (en) 2022-01-20

Family

ID=73220078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026276 WO2022014586A1 (en) 2020-07-16 2021-07-13 Inspection method

Country Status (2)

Country Link
JP (2) JP6785023B1 (en)
WO (1) WO2022014586A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431018B (en) * 2022-03-22 2023-01-31 南方电网电力科技股份有限公司 Tree obstacle clearing method, device and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002360070A (en) * 2001-06-12 2002-12-17 Kansai Electric Power Co Inc:The Evaluation method of plant vitality
CN108254540A (en) * 2018-02-07 2018-07-06 国家林业局北京林业机械研究所 A kind of sawn timber surface quality grades divide device and method
US20190227049A1 (en) * 2017-03-13 2019-07-25 Lucidyne Technologies, Inc. Method of board lumber grading using deep learning techniques
JP2019144607A (en) * 2018-02-15 2019-08-29 西日本高速道路株式会社 Tree species estimation method using satellite image and tree species soundness determination method for tree species estimated
US20200033312A1 (en) * 2017-04-11 2020-01-30 Agerpoint, Inc. Forestry management tool for assessing risk of catastrophic tree failure due to weather events
JP2020067279A (en) * 2018-10-22 2020-04-30 環境緑地株式会社 Tree health evaluation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002360070A (en) * 2001-06-12 2002-12-17 Kansai Electric Power Co Inc:The Evaluation method of plant vitality
US20190227049A1 (en) * 2017-03-13 2019-07-25 Lucidyne Technologies, Inc. Method of board lumber grading using deep learning techniques
US20200033312A1 (en) * 2017-04-11 2020-01-30 Agerpoint, Inc. Forestry management tool for assessing risk of catastrophic tree failure due to weather events
CN108254540A (en) * 2018-02-07 2018-07-06 国家林业局北京林业机械研究所 A kind of sawn timber surface quality grades divide device and method
JP2019144607A (en) * 2018-02-15 2019-08-29 西日本高速道路株式会社 Tree species estimation method using satellite image and tree species soundness determination method for tree species estimated
JP2020067279A (en) * 2018-10-22 2020-04-30 環境緑地株式会社 Tree health evaluation method

Also Published As

Publication number Publication date
JP6785023B1 (en) 2020-11-18
JP2022018783A (en) 2022-01-27
JP2022019497A (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US10281911B1 (en) System and method for controlling a remote aerial device for up-close inspection
CN111537515A (en) Iron tower bolt defect display method and system based on three-dimensional live-action model
CN109829908B (en) Binocular image-based method and device for detecting safety distance of ground object below power line
US20160356001A1 (en) Method of measuring road state, method of identifying degradation point of road surface, information process apparatus, and non-transitory computer-readable recording medium
JP7065477B2 (en) Disaster situation judgment system and disaster judgment flight system
EP3023912A1 (en) Crack data collection apparatus and server apparatus to collect crack data
JP6149080B2 (en) Measurement data collection system, server device, terminal device, program, and measurement data collection method
CN112101088A (en) Automatic unmanned aerial vehicle power inspection method, device and system
WO2022014586A1 (en) Inspection method
CN114299011A (en) Remote sensing target quadrilateral frame rapid detection method based on deep learning
CN107687994A (en) air detection system and method
Kerle et al. UAV-based structural damage mapping–Results from 6 years of research in two European projects
US11913789B2 (en) Inspection management device, inspection management method, and recording medium to store program
CN107767366B (en) A kind of transmission line of electricity approximating method and device
CN114018219A (en) Transmission tower vibration monitoring method, device, equipment and storage medium
CN116012422B (en) Monocular vision-based unmanned aerial vehicle 6D pose estimation tracking method and application thereof
Gudmundsson et al. Porting Computer Vision Models to the Edge for Smart City Applications: Enabling Autonomous Vision-Based Power Line Inspection at the Smart Grid Edge for Unmanned Aerial Vehicles (UAVs).
US10692160B1 (en) Property damage estimator
CN113780086B (en) Remote natural resource dynamic monitoring method based on unmanned aerial vehicle
CN115438945A (en) Risk identification method, device, equipment and medium based on power equipment inspection
CN115471826B (en) Method and device for judging safe driving behavior of aviation fueller and safe operation and maintenance system
US20160283815A1 (en) Method for detecting metallic objects
CN116012336B (en) Tunnel intelligent geological sketch and surrounding rock grade identification device and method
Davis Expeditionary logistics: a low-cost, deployable, unmanned aerial system for airfield damage assessment
CN111522228A (en) Aircraft detection method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841290

Country of ref document: EP

Kind code of ref document: A1