WO2022014331A1 - Turbine for cryogenic power generation - Google Patents

Turbine for cryogenic power generation Download PDF

Info

Publication number
WO2022014331A1
WO2022014331A1 PCT/JP2021/024732 JP2021024732W WO2022014331A1 WO 2022014331 A1 WO2022014331 A1 WO 2022014331A1 JP 2021024732 W JP2021024732 W JP 2021024732W WO 2022014331 A1 WO2022014331 A1 WO 2022014331A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
turbine
blade
power generation
line
Prior art date
Application number
PCT/JP2021/024732
Other languages
French (fr)
Japanese (ja)
Inventor
亮 ▲高▼田
晃 川波
Original Assignee
三菱重工マリンマシナリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マリンマシナリ株式会社 filed Critical 三菱重工マリンマシナリ株式会社
Publication of WO2022014331A1 publication Critical patent/WO2022014331A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • the present disclosure relates to a turbine for cryogenic power generation provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas.
  • Liquefied gas for example, liquefied natural gas
  • a supply destination such as city gas or thermal power plant
  • a heat medium such as seawater.
  • cryogenic power generation may be performed in which cold energy is recovered as electric power instead of being discarded in seawater (for example, Patent Document 1).
  • a secondary medium Rankine cycle method or the like As a cryogenic power generation cycle of liquefied natural gas, a secondary medium Rankine cycle method or the like is known (for example, Patent Document 1).
  • a secondary medium Rankine cycle method a secondary medium circulating in a closed loop is heated by an evaporator using seawater as a heat source to evaporate, and this steam is introduced into a turbine for cryogenic power generation to obtain power.
  • It is a method of cooling and condensing with liquefied natural gas.
  • Turbines for cryogenic power generation include the temperature of seawater, which is the heat source for heating the secondary medium, and the flow rate of the liquefied gas (the amount of liquefied gas introduced into the heat exchanger that exchanges heat between the liquefied gas and the secondary medium). It may be a partial load operation depending on the situation. For example, in hot (low latitude) sea areas and summer, the seawater temperature is about 25 ° C, whereas in high latitude sea areas and winter, compared to low latitude sea areas and summer. As a result, the temperature of seawater drops. When the temperature of seawater, which is a heat source, is low, the temperature of the secondary medium supplied to the turbine is also low.
  • the supply amount of the secondary medium to the turbine is limited to a small amount, and the output of the turbine may decrease. Even if the circulation amount of the secondary medium in the closed loop is increased, the supply amount of the secondary medium to the turbine is limited according to the inlet temperature of the turbine, so that the secondary medium is used as a bypass line that bypasses the turbine. There is a risk that the output of the cryogenic power generation cycle will decrease because a large amount of water will flow.
  • an object of at least one embodiment of the present disclosure is to provide a turbine for cryogenic power generation capable of improving the output of the turbine during partial load operation.
  • the turbine for cryogenic power generation is A turbine for cryogenic power generation provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas.
  • the casing that houses the rotor shaft and A plurality of rotor blades provided around the rotor shaft, including a first rotor blade and a second rotor blade provided downstream of the first rotor blade.
  • a plurality of stationary blades supported inside the casing the first stationary blade provided on the upstream side of the first moving blade, the downstream side of the first moving blade, and the first one.
  • a plurality of stationary blades including a second stationary blade provided on the upstream side of the second moving blade, and A heat medium introduction line for introducing the heat medium into the first stationary blade, and An intermediate confluence line for introducing the heat medium into the second stationary blade by branching from the heat medium introduction line and bypassing the first stationary blade and the first moving blade.
  • a turbine for cryogenic power generation capable of improving the output of the turbine during partial load operation.
  • FIG. 2 is a schematic cross-sectional view schematically showing a cross section along an axis of a turbine for thermal power generation shown in FIG. 2, and is a schematic cross-sectional view showing a state in which an on-off valve is open.
  • FIG. 4 is a schematic cross-sectional view schematically showing a cross section along an axis of a turbine for thermal power generation shown in FIG. 4, and is a schematic cross-sectional view showing a state in which an on-off valve is open. It is a schematic cross-sectional view schematically showing the cross section along the axis of the turbine for cryogenic power generation which concerns on one Embodiment of this disclosure.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfer within the range where the same effect can be obtained. It shall also represent the shape including the part and the like.
  • the expression “includes”, “includes”, or “has” one component is not an exclusive expression that excludes the existence of another component.
  • the same reference numerals may be given to the same configurations, and the description thereof may be omitted.
  • FIG. 1 is a schematic configuration diagram schematically showing a configuration of a cryogenic power generation system including a turbine for cryogenic power generation according to an embodiment of the present disclosure.
  • the cryogenic power generation system 1 includes a turbine 2 for cold power generation (hereinafter referred to as a turbine 2), a liquefied gas supply line 3, a heat medium circulation line 4, and a heated water supply line 5.
  • a turbine 2 for cold power generation hereinafter referred to as a turbine 2
  • a liquefied gas supply line 3 a heat medium circulation line 4
  • a heated water supply line 5 a heated water supply line 5.
  • a generator 11, a first heat exchanger 12, and a second heat exchanger 13 Each of the liquefied gas supply line 3, the heat medium circulation line 4, and the heated water supply line 5 includes a flow path through which a fluid flows, such as a pipeline.
  • the liquefied gas supply line 3 is configured to send liquefied gas from the liquefied gas storage device 31.
  • the liquefied gas storage device for example, a liquefied gas tank
  • the liquefied gas storage device 31 is configured to store liquefied gas.
  • the heat medium circulation line 4 is configured to circulate a heat medium having a freezing point lower than that of water.
  • liquefied natural gas LNG
  • propane will be described as a specific example of the heat medium flowing through the heat medium circulation line 4.
  • liquefied gas other than liquefied natural gas It can also be applied to (liquid hydrogen, etc.), and can also be applied when a heat medium other than propane is used as a heat medium flowing through the heat medium circulation line 4.
  • the cryogenic power generation system 1 further includes a liquefied gas pump 32 provided in the liquefied gas supply line 3 and a heat medium circulation pump 41 provided in the heat medium circulation line 4. ..
  • One end side 33 of the liquefied gas supply line 3 is connected to the liquefied gas storage device 31, and the other end side 34 is connected to the liquefied gas device 35 provided outside the cryogenic power generation system 1.
  • the device 35 for liquefied gas include a gas holder provided on land and a gas pipe connected to the gas holder.
  • the liquefied gas stored in the liquefied gas storage device 31 is sent to the liquefied gas supply line 3 and flows through the liquefied gas supply line 3 from the upstream side to the downstream side. , Is sent to the device 35 for liquefied gas.
  • the turbine 2 By driving the circulation pump 41 for the heat medium, the heat medium circulates in the heat medium circulation line 4.
  • the turbine 2 is provided in a heat medium circulation line 4 configured to circulate a heat medium for heating the liquefied gas.
  • the turbine 2 includes a rotor shaft 21 and is configured to be driven by a heat medium (rotating the rotor shaft 21) flowing through the heat medium circulation line 4.
  • the generator 11 is connected to the rotor shaft 21 and is configured to generate electricity using the driving force of the turbine 2 (rotating force of the rotor shaft 21) as a driving source.
  • the heated water supply line 5 is configured to send heated water introduced from the outside of the cryogenic power generation system 1.
  • the "heated water” may be water that heats the heat exchange target as a heat medium in the heat exchanger, and may be water at room temperature.
  • the cryogenic power generation system 1 is mounted on a hull 10 or a floating body floating on water, the heated water is water that is easily available on the ship or the floating body (for example, outboard water such as seawater or cooling the engine of the ship). Cooling water, etc.) is preferable.
  • the cryogenic power generation system 1 and the turbine 2 for cryogenic power generation are mounted on a hull 10 or a floating body 10A as shown in FIG. In some other embodiment, the cryogenic power generation system 1 and the turbine 2 for cold power generation are installed on land.
  • the cryogenic power generation system 1 has an intermediate heat medium circulation line 6 configured to circulate an intermediate heat medium having a freezing point lower than that of water, and an intermediate heat medium provided in the intermediate heat medium circulation line 6.
  • a circulation pump 61 for heating water, a heating water pump 51 provided in the heating water supply line 5, and a third heat exchanger 14 are further provided.
  • the intermediate heat medium circulates in the intermediate heat medium circulation line 6 by driving the circulation pump 61 for the intermediate heat medium.
  • One end side 52 of the heated water supply line 5 is connected to a heated water supply source 15 provided outside the cryogenic power generation system 1, and the other end side 53 is a hot water discharge destination provided outside the cryogenic power generation system 1. Connected to 16.
  • the heating water pump 51 By driving the heating water pump 51, the heating water is sent from the heating water supply source 15 to the heating water supply line 5, flows through the heating water supply line 5 from the upstream side to the downstream side, and then heated. It is sent to the water discharge destination 16.
  • the heating water supply source 15 is, for example, an intake port 15A for introducing the outboard water provided on the hull 10. Can be mentioned.
  • the heated water discharge destination 16 includes, for example, a discharge port 16A provided on the hull 10 for discharging water to the outside of the ship. Can be mentioned.
  • the intermediate heat medium may be the same type of heat medium as the heat medium flowing through the heat medium circulation line 4, or may be a different type of heat medium.
  • the intermediate heat medium is made of propane and the heated water is made of seawater obtained from the outside of the ship.
  • the first heat exchanger 12 is configured to exchange heat between the liquefied gas flowing through the liquefied gas supply line 3 and the heat medium flowing through the heat medium circulation line 4.
  • the liquefied gas flow path 121 provided in the liquefied gas supply line 3 through which the liquefied gas flows and the heat medium provided in the heat medium circulation line 4 are provided.
  • the second heat exchanger 13 is configured to exchange heat between the heat medium flowing through the heat medium circulation line 4 and the intermediate heat medium flowing through the intermediate heat medium circulation line 6.
  • the second heat exchanger 13 is provided in the heat medium flow path 131 through which the heat medium flows, which is provided in the heat medium circulation line 4, and the intermediate heat provided in the intermediate heat medium circulation line 6.
  • the second heat exchanger 13 exchanges heat between the heat medium flowing through the heat medium circulation line 4 and the heated water flowing through the heated water supply line 5. It may be configured in.
  • the second heat exchanger 13 is a heated water flow path in which the heated water provided in the heated water supply line 5 flows, and is a heated water flow for exchanging heat with the heat medium flow path 132. It may include a road. In this case, since the cryogenic power generation system 1 does not need to include the intermediate heat medium circulation line 6 and the third heat exchanger 14, its structure can be suppressed from becoming large and complicated.
  • the third heat exchanger 14 is configured to exchange heat between the intermediate heat medium flowing through the intermediate heat medium circulation line 6 and the heated water flowing through the heated water supply line 5.
  • the third heat exchanger 14 is provided in the intermediate heat medium flow path 141 provided in the intermediate heat medium circulation line 6 through which the intermediate heat medium flows, and in the heated water supply line 5. Includes a heated water flow path 142 through which heated water flows. Heat exchange is performed between the intermediate heat medium in the intermediate heat medium flow path 141 and the heated water in the heated water flow path 142.
  • the first heat exchanger 12 (specifically, the liquefied gas flow path 121) is provided on the downstream side of the liquefied gas pump 32 of the liquefied gas supply line 3 and on the upstream side of the liquefied gas device 35. ..
  • the liquefied gas pump 32 is provided on the downstream side of the liquefied gas storage device 31 of the liquefied gas supply line 3.
  • the first heat exchanger 12 (specifically, the heat medium flow path 122) is provided on the downstream side of the turbine 2 of the heat medium circulation line 4 and on the upstream side of the circulation pump 41 for the heat medium. ..
  • the second heat exchanger 13 (specifically, the heat medium flow path 131) is provided on the downstream side of the heat medium circulation pump 41 of the heat medium circulation line 4 and on the upstream side of the turbine 2. Further, the second heat exchanger 13 (specifically, the intermediate heat medium flow path 132) is from the third heat exchanger 14 (specifically, the intermediate heat medium flow path 141) of the intermediate heat medium circulation line 6. Is provided on the downstream side and on the upstream side of the circulation pump 61 for the intermediate heat medium.
  • the third heat exchanger 14 (specifically, the heated water flow path 142) is provided on the downstream side of the heated water pump 51 of the heated water supply line 5 and on the upstream side of the heated water discharge destination 16.
  • the heating water pump 51 is provided on the downstream side of the heating water supply source 15 of the heating water supply line 5.
  • the liquefied gas boosted by the liquefied gas pump 32 is sent to the liquefied gas flow path 121 of the first heat exchanger 12.
  • the heat exchange in the first heat exchanger 12 heats the liquefied gas flowing through the liquefied gas flow path 121 and cools the heat medium flowing through the heat medium flow path 122. That is, the cold energy of the liquefied gas flowing through the liquefied gas flow path 121 is recovered by the heat medium flowing through the heat medium flow path 122. Due to the heat exchange in the first heat exchanger 12, the temperature of the heat medium flowing through the heat medium flow path 122 becomes lower than the freezing point of water (heated water).
  • the intermediate heat medium boosted by the circulation pump 61 for the intermediate heat medium is sent to the intermediate heat medium flow path 141 of the third heat exchanger 14. Further, the heated water boosted by the heated water pump 51 is sent to the heated water flow path 142. The heat exchange in the third heat exchanger 14 heats the intermediate heat medium flowing through the intermediate heat medium flow path 141.
  • a heat medium that has been cooled by the first heat exchanger 12 and then boosted by the circulation pump 41 for the heat medium is sent to the heat medium flow path 131 of the second heat exchanger 13. Further, the intermediate heat medium heated by the third heat exchanger 14 is sent to the intermediate heat medium flow path 132. The heat exchange in the second heat exchanger 13 heats the heat medium flowing through the heat medium flow path 131 and cools the intermediate heat medium flow path 132.
  • the cryogenic power generation system 1 branches from the downstream side of the second heat exchanger 13 in the heat medium circulation line 4 and bypasses the turbine 2 to bypass the first heat exchanger 12.
  • a bypass line 17 connected to the upstream side of the heat medium flow path 122 is further provided.
  • the main flow path 42 is a flow path (a flow path passing through the turbine 2) between the branch portion 171 where the bypass line 17 branches in the above-mentioned heat medium circulation line 4 and the confluence portion 172 where the bypass line 17 joins.
  • the cryogenic power generation system 1 further includes an on-off valve 43 provided on the upstream side of the turbine 2 of the main flow path 42, and an on-off valve 173 provided on the bypass line 17.
  • an on-off valve 43 provided on the upstream side of the turbine 2 of the main flow path 42
  • an on-off valve 173 provided on the bypass line 17.
  • the on-off valve 43 is closed and the on-off valve 173 is opened to allow the heat medium to bypass the turbine 2.
  • the on-off valve 43 is opened, the on-off valve 173 is closed, and the turbine 2 is passed through the heat medium.
  • the upstream side in the flow direction of the heat medium in the turbine 2 may be simply referred to as the upstream side
  • the downstream side in the flow direction of the heat medium in the turbine 2 may be simply referred to as the downstream side.
  • the turbine 2 for thermal power generation includes a rotor shaft 21, a casing 7 accommodating the rotor shaft 21, and a plurality of moving blades provided around the rotor shaft 21.
  • a blade 22 and a plurality of stationary blades 23 supported inside the casing 7 are provided.
  • the plurality of rotor blades 22 include a first rotor blade 22A and a second rotor blade 22B provided on the downstream side of the first rotor blade 22A.
  • the plurality of stationary blades 23 are a first stationary blade 23A provided on the upstream side of the first moving blade 22A, a downstream side of the first moving blade 22A, and an upstream side of the second moving blade 22B.
  • the second stationary blade 23B provided in the above is included.
  • the heat medium flowing through the main flow path 42 and introduced into the casing 7 passed through the first stationary blade 23A, the first moving blade 22A, the second stationary blade 23B, and the second moving blade 22B in this order. Later, it is discharged to the outside of the casing 7.
  • the turbine 2 has a heat medium introduction line 81 for introducing a heat medium into the first stationary blade 23A, and the first stationary blade 23A and the first stationary blade 23A branching from the heat medium introduction line 81. Further, an intermediate merging line 82 for introducing a heat medium into the second stationary blade 23B by bypassing the moving blade 22A of the first is provided.
  • the heat medium introduction line 81 includes a part of the main flow path 42 described above, and the intermediate merging line 82 branches from the main flow path 42 at the branch portion 44 and the first rotor blade 22A.
  • a sub-flow path 45 that joins the main flow path 42 between the blade and the second stationary blade 23B is included.
  • the turbine 2 may further include an on-off valve 46 provided in the auxiliary flow path 45.
  • the turbine 2 may be partially loaded according to the temperature of the heated water that is the heat source for heating the heat medium circulation line 4 and the flow rate of the liquefied gas (the amount of the liquefied gas introduced into the first heat exchanger 12).
  • the seawater temperature (heated water temperature) is about 25 ° C., so that the heat medium is sufficiently heated by heat exchange in the second heat exchanger 13. Is sent to the turbine 2.
  • the temperature of seawater is lower than that of low latitude sea areas or summer.
  • the heating of the intermediate heat medium in the third heat exchanger 14 and the heating of the heat medium in the second heat exchanger 13 become insufficient and are supplied to the turbine 2.
  • the temperature of the heat medium to be heated may be low. Further, if the amount of the liquefied gas introduced into the first heat exchanger 12 is large, the heat medium in the first heat exchanger 12 is excessively cooled, and the temperature of the heat medium supplied to the turbine 2 becomes low. Sometimes. As the temperature of the heat medium supplied to the turbine 2 decreases, it is necessary to decrease the saturation pressure of the turbine 2. Therefore, when the temperature of seawater, which is a heat source, is low, the amount of heat medium supplied to the turbine 2 is limited to a small amount, and the output of the turbine 2 may decrease.
  • the turbine 2 for cryogenic power generation is branched from the heat medium introduction line 81 for introducing the heat medium into the first stationary blade 23A and the heat medium introduction line 81, and the first stationary blade. It is provided with an intermediate merging line 82 for introducing a heat medium into the second stationary wing 23B by bypassing the 23A and the first moving wing 22A.
  • the turbine 2 may be in partial load operation.
  • the second stationary blade 23B Since a heat medium having a temperature lowered by working on the first rotor blade 22A is introduced into the second stationary blade 23B, the second stationary blade 23B is compared with the first stationary blade 23A.
  • the temperature of the heat medium that can be introduced is low. Therefore, by introducing a heat medium into the second stationary blade 23B through the merging line 82 that bypasses the first stationary blade 23A and the first moving blade 22A, the heat medium is located on the downstream side of the second stationary blade 23B.
  • the amount of heat medium introduced into the second rotor blade 22B can be increased. By increasing the amount of the heat medium introduced into the second rotor blade 22B, the output of the turbine 2 for cryogenic power generation can be improved.
  • the amount of the heat medium that can be supplied to the turbine 2 during the partial load operation can be increased by the intermediate merging line 82.
  • the amount of heat medium flowing through the bypass line 17 bypassing the turbine 2 can be reduced, so that the output of the cryogenic power generation system 1 can be improved.
  • FIG. 2 and 4 are schematic cross-sectional views schematically showing a cross section along the axis of the turbine for thermal power generation according to the embodiment of the present disclosure, and are schematic cross sections showing a state in which the on-off valve is closed. It is a figure.
  • FIG. 3 is a schematic cross-sectional view schematically showing a cross section along the axis of the turbine for thermal power generation shown in FIG. 2, and is a schematic cross-sectional view showing a state in which the on-off valve is open.
  • FIG. 5 is a schematic cross-sectional view schematically showing a cross section along the axis of the turbine for thermal power generation shown in FIG. 4, and is a schematic cross-sectional view showing a state in which the on-off valve is open.
  • the turbine 2 for thermal power generation includes the rotor shaft 21 described above, the casing 7 described above, the first rotor blade 22A, and the second moving blade 2.
  • the line 82 is provided. As shown in FIGS.
  • the above-mentioned heat medium introduction line 81 is provided on the outer peripheral side of the plurality of blades 22 (22A, 22B) and the plurality of stationary blades 23 (23A, 23B) inside the casing 7.
  • the formed first stationary blade 23A includes an intake chamber 81A for introducing a heat medium, and the above-mentioned intermediate confluence line 82 is formed on the inner peripheral side of the intake chamber 81A inside the casing 7. It includes a through hole 82A penetrating the partition wall portion 71 of the casing 7 that separates the inter-blade space 83 between the moving blade 22A of 1 and the moving blade 22B of 1 and the intake chamber 81A.
  • the turbine 2 (2A, 2B) for cryogenic power generation further includes an on-off valve 47A having a valve body 471 capable of closing the through hole 82A.
  • a plurality of through holes 82A may be formed by opening each other in the circumferential direction of the partition wall portion 71, and the turbine 2 can close at least one or a plurality of through holes 82A among the plurality of through holes 82A.
  • One on-off valve 47A may be provided.
  • the first rotor blade 22A is arranged on one side of the second rotor blade 22B in the axial direction of the turbine 2, that is, in the direction in which the axis CA of the turbine 2 extends.
  • the one side in the axial direction of the turbine 2 is defined as the front side, and the side opposite to the one side is defined as the rear side.
  • the radial direction of the turbine 2 may be simply referred to as a radial direction
  • the circumferential direction of the turbine 2 may be simply referred to as a circumferential direction.
  • the first rotor blade 22A is located on the front side of the second rotor blade 22B.
  • the first stationary blade 23A is arranged on the front side of the first moving blade 22A
  • the second stationary blade 23B is on the front side of the second moving blade 22B and more than the first moving blade 22A. It is located on the rear side.
  • the rotor shaft 21 includes a shaft portion 211 extending along the axis CA of the turbine 2, and a plurality of disc portions 213 protruding outward in a radial direction from the outer surface 212 of the shaft portion 211 in a disk shape.
  • the plurality of disc portions 213 are a front side disc portion 213A to which the first rotor blade 22A is attached to the outer periphery, and a rear side disc portion 213B located on the rear side of the front side disc portion 213A.
  • the rear side disk portion 213B to which the moving blade 22B is attached to the outer periphery is included.
  • the casing 7 supports the partition wall portion 71 described above, the first stationary blade support portion 72 that supports the outer peripheral portion (outer ring) of the first stationary blade 23A, and the outer peripheral portion (outer ring) of the second stationary blade 23B.
  • a second stationary blade support portion 73 and an outer casing 74 including an outer wall portion 741 for accommodating the partition wall portion 71 are included.
  • the partition wall 71 supports the first stationary blade support portion 72 on the front side of the through hole 82A in the axial direction and the second static portion 72 on the rear side of the through hole 82A in the axial direction. It supports the wing support portion 73.
  • the outer casing 74 includes the above-mentioned outer wall portion 741 and a rear side wall portion 742 that extends along the radial direction on the rear side of the through hole 82A in the axial direction and connects the partition wall portion 71 and the outer wall portion 741.
  • the front side wall portion 743 extending inward in the radial direction from the front end located on the front side of the partition wall portion 71 of the outer wall portion 741 and the front side wall portion 743 extending inward in the radial direction from the inner end of the front side wall portion 743.
  • the front side wall portion 743 extending inward in the radial direction from the front end located on the front side of the partition wall portion 71 of the outer wall portion 741 and the front side wall portion 743 extending inward in the radial direction from the inner end of the front side wall portion 743.
  • the front side wall portion 743 extending inward in the radial direction from the front end located on the front side of the partition wall portion 71 of the outer wall portion 741 and the front side wall portion 743 extending inward in the radial direction from the inner end of the front side wall portion 743.
  • the anterior inclined wall portion 744 that inclines rearward with respect to
  • an inner wall portion 745 that extends rearward from the inner end of the
  • the above-mentioned intake chamber 81A is formed between the partition wall portion 71 and the outer wall portion 741.
  • the heat medium introduced into the casing 7 flows inward in the radial direction along the inner surface of the front side wall portion 743, and then axially rearward along the inner surface of the front side inclined wall portion 744 and the inner wall portion 745. It flows to the side and is introduced into the first casing 23A.
  • the on-off valve 47A is in a closed state, and the valve body 471 comes into contact with the intake chamber side surface 711 of the partition wall portion 71, so that the through hole 82A is closed by the valve body 471.
  • the on-off valve 47A is a rotating portion 472 provided between the valve body 471 and the partition wall portion 71 and the valve body 471, and the valve body 471 is a partition wall portion.
  • the rotation mechanism portion 473 includes a cylinder in which a cylinder rod is attached to a valve body at 471. In response to an open or close instruction of the open / close control unit 474, the rotation mechanism unit 473 rotates the valve body 471 in the opening direction or the closing direction with the rotation unit 472 as the rotation center.
  • the on-off valve 47A comprises a slide valve 47B.
  • the slide valve 47B slides the valve body 471 and the valve body 471 described above in the open direction (rear side in the illustrated example) and the closed direction (front side in the illustrated example) with respect to the intake chamber side surface 711 of the partition wall portion 71.
  • the slide mechanism unit 475 and an open / close control unit 476 configured to instruct the slide mechanism unit 475 to open / close the valve body 471 are provided.
  • the slide mechanism portion 475 includes a cylinder in which a cylinder rod is attached to a valve body at 471.
  • the slide mechanism unit 475 slides the valve body 471 in the opening direction or the closing direction in response to the opening or closing instruction of the opening / closing control unit 476.
  • the on-off valve 47A is in an open state, and a heat medium can flow from the intake chamber 81A to the inter-blade space 83 through the through hole 82A.
  • the heat medium introduction line 81 includes the intake chamber 81A
  • the intermediate merging line 82 is a casing that separates the interwing space 83 formed on the inner peripheral side of the intake chamber 81A and the intake chamber 81A.
  • 7 includes a through hole 82A penetrating the partition wall portion 71.
  • the turbine 2 for cryogenic power generation includes an on-off valve 47A having a valve body 471 capable of closing the through hole 82A.
  • the through hole 82A as the intermediate merging line 82, the heat medium is introduced from the intake chamber 81A into the inter-blade space 83, so that the structure of the intermediate merging line 82 can be simplified.
  • the through hole 82A can be closed by the valve body 471, the opening / closing mechanism of the on-off valve 47A can be simplified. As a result, it is possible to suppress the increase in the price of the turbine 2 for cryogenic power generation. Further, since the through hole 82A can be used as an inspection hole when inspecting the inter-blade space 83, the inspection work of the inter-blade space 83 can be easily performed.
  • the on-off valve 47A described above comprises the slide valve 47B described above.
  • the on-off valve 47A is composed of the slide valve 47B, the opening / closing mechanism thereof can be simplified.
  • the two or more through holes 82A are closed by the valve body 471 of the slide valve 47B to open and close.
  • the number of valves 47A can be reduced. As a result, it is possible to suppress the increase in price of the turbine 2 for cryogenic power generation.
  • the turbine 2 for thermal power generation includes the rotor shaft 21 described above, the casing 7 described above, the first rotor blade 22A, and the second rotor blade 2.
  • the above-mentioned plurality of moving blades 22 including the blade 22B, the above-mentioned plurality of stationary blades 23 including the first stationary blade 23A and the second stationary blade 23B, the above-mentioned heat medium introduction line 81, and the above-mentioned intermediate merging.
  • the line 82 is provided. As shown in FIGS.
  • each of the first stationary blade 23A and the first moving blade 22A is provided on one side (left side in the figure) of the rotor shaft 21 in the axial direction, and the second stationary blade is provided.
  • Each of the blade 23B and the second rotor blade 22B is provided on the other side (right side in the figure) of the rotor shaft 21 in the axial direction.
  • the side on which the first rotor blade 22A is located with respect to the second rotor blade 22B in the axial direction of the rotor shaft 21, that is, the direction in which the axis CA of the turbine 2 extends is defined as the front side.
  • the side opposite to the side is defined as the rear side.
  • the radial direction of the turbine 2 may be simply referred to as a radial direction
  • the circumferential direction of the turbine 2 may be simply referred to as a circumferential direction.
  • the first blade 23A is arranged behind the first blade 22A and the second blade 23B is the second. It is located on the front side of the moving blade 22B.
  • the rotor shaft 21 has a shaft portion 211 extending along the axis CA of the turbine 2 and an outer side in the radial direction from the outer surface 212 of the shaft portion 211. Includes a plurality of disc portions 213 protruding in a disk shape.
  • the plurality of disk portions 213 are front side disk portions 213C provided on one side (front side) in the axial direction, and the front side disk portions 213C to which the first rotor blade 22A is attached to the outer periphery and the front disk portion 213C in the axial direction.
  • It is a rear side disk portion 213D provided on the other side (rear side), and includes a rear side disk portion 213D to which a second rotor blade 22B is attached to the outer periphery.
  • the casing 7 is arranged between the first moving blade 22A and the second moving blade 22B in the axial direction of the turbine 2 and is also arranged.
  • the partition wall 94 divided into a heat medium introduction path 93A, a rear side heat medium introduction path 93B provided on the other side (rear side) in the axial direction, and a rear side heat medium introduction path 93B.
  • the front side heat medium introduction path 93A is a flow path for introducing the heat medium flowing from the outside in the radial direction into the first rotor blade 22A from the rear side in the axial direction.
  • the rear side heat medium introduction path 93B is a flow path for introducing the heat medium flowing from the outside in the radial direction into the second rotor blade 22B from the front side in the axial direction.
  • the shaft accommodating portion 91 supports the inner peripheral portion (inner ring) of the first stationary blade 23A and the inner peripheral portion (inner ring) of the second stationary blade 23B. ..
  • a sealing member 101 is arranged between the front end 911 of the shaft accommodating portion 91 and the rotor shaft 21 to seal between them.
  • a sealing member 102 is arranged between the rear end 912 of the shaft accommodating portion 91 and the rotor shaft 21 to seal between them.
  • each of the front end 911 and the rear end 912 is a protrusion that protrudes inward in the radial direction, and the protrusions 101 and 102 are arranged between the front end 911 and the rotor shaft 21. Including the part.
  • the outer casing 92 supports the outer peripheral portion (outer ring) of the first stationary blade 23A and the outer peripheral portion (outer ring) of the second stationary blade 23B. Further, the outer casing 92 accommodates the first rotor blade 22A and the second rotor blade 22B.
  • the casing 7 has a first introduction port 951 for introducing the heat medium from the outside in the radial direction into the front side heat medium introduction path 93A.
  • a communication flow path forming portion 97 forming a communication flow path 970 for guiding the heat medium passing through the moving blade 22A to the second introduction port 961 and a heat medium passing through the second moving blade 22B in the axial direction.
  • the heat medium flowing through the main flow path 42 and introduced into the casing 7 passed through the first stationary blade 23A, the first moving blade 22A, the second stationary blade 23B, and the second moving blade 22B in this order. Later, it is discharged to the outside of the casing 7.
  • the heat medium introduced into the casing 7 through the first introduction port 951 flows forward along the front side heat medium introduction path 93A toward the front side, and the first stationary blade 23A. And pass through the first rotor blade 22A.
  • the heat medium that has passed through the first rotor blade 22A flows through the communication flow path 970 and the second introduction port 961 and is guided to the rear side heat medium introduction path 93B.
  • the heat medium guided to the rear side heat medium introduction path 93B flows toward the rear side along the rear side heat medium introduction path 93B in the axial direction and passes through the second stationary blade 23B and the second moving blade 22B. do.
  • the heat medium that has passed through the second rotor blade 22B flows rearward along the discharge flow path 980 along the axial direction, and then is discharged to the outside of the casing 7.
  • the heat medium passing through the first rotor blade 22A flows from the rear side to the front side in the axial direction, whereas the heat medium passing through the second rotor blade 22B flows from the front side to the rear side in the axial direction. It flows toward the side. That is, the heat medium passing through the second rotor blade 22B flows to the opposite side of the heat medium passing through the first rotor blade 22A in the axial direction.
  • the first thrust T1 toward the front side generated by receiving pressure from the heat medium by the first rotor blade 22A and the front disk portion 213C, and the second rotor blade 22B and the rear disk portion 213D from the heat medium. Since the second thrust T2 toward the rear side generated by receiving the pressure cancels out, the thrust of the rotor shaft 21 can be reduced.
  • the rotor blade 22A is provided on one side (front side) of the rotor shaft 21, and the second rotor blade 22B is provided on the other side (rear side) of the rotor shaft 21. Since the thrust of the shaft 21 can be reduced, the reliability of the turbine 2 for cryogenic power generation can be improved.
  • the turbine 2 described above is a connecting line 84 for supplying a heat medium that has passed through the first rotor blade 22A to the second stationary blade 23B, and is a connecting line to which the downstream end 822 of the intermediate confluence line 82 is connected. 84 is further provided.
  • the heat medium introduction line 81 includes a first introduction port 951 and a front heat medium introduction path 93A formed inside the casing 7. ..
  • the connecting line 84 includes a connecting flow path 970 formed inside the casing 7, a second introduction port 961, and a rear side heat medium introduction path 93B.
  • the intermediate merging line 82 has a connection pipe 82B in which the upstream end 821 is connected to the first heat medium introduction section 95 and the downstream end 822 is connected to the second heat medium introduction section 96. including.
  • connection pipe 82B communicates the first introduction port 951 and the second introduction port 961 so that the heat medium can be distributed, and the heat medium is connected from the first introduction port 951 to the second introduction port 961 through the connection pipe 82B. Is coming out.
  • the upstream end 821 is connected to the upstream side of the first heat medium introduction unit 95, and the downstream end 822 is connected to the second heat medium introduction unit 96.
  • the bypass pipe 82C includes the bypass pipe 82C.
  • the merging line 82 joins the connecting line 84, the heat medium that has passed through the first rotor blade 22A and the heat medium that has passed through the merging line 82 are second. It can be introduced to the stationary blade 23B. Thereby, with a simple structure, the amount of the heat medium introduced into the second rotor blade 22B can be increased, and the output of the turbine 2 for cryogenic power generation can be improved.
  • the shaft accommodating portion 91 described above accommodates the driven source 100 therein.
  • the driven source 100 is configured to be driven by transmitting the rotational force of the rotor shaft 21.
  • the driven source 100 includes at least one of a generator 11, a pump, and a compressor.
  • the driven source 100 includes the generator 11 described above.
  • the generator 11 includes a motor rotor 11A including a permanent magnet attached to the rotor shaft 21, and a motor stator 11B arranged radially outside the motor rotor 11A and supported by the shaft accommodating portion 91.
  • the shaft accommodating portion 91 described above faces the thrust collar 103 inside and the thrust collar 103 in front of the thrust collar 103. It houses the front thrust bearing 104 to be arranged and the rear thrust bearing 105 arranged to face the thrust collar 103 on the rear side of the thrust collar 103.
  • the thrust collar 103 is attached to the shaft portion 211 of the rotor shaft 21, and each of the front side thrust bearing 104 and the rear side thrust bearing 105 is supported by the shaft accommodating portion 91.
  • the thrust collar 103 and the thrust bearing front side thrust bearing 104, rear side thrust bearing 105 are accommodated inside the shaft accommodating portion 91, the thrust collar 103 and the thrust bearing are provided outside. Compared with the above, it is possible to suppress the increase in size of the turbine 2 for thermal power generation.
  • the above-mentioned intermediate merging line 82 branches from the heat medium introduction line 81 inside the casing 7 and is connected to the connecting line 84 inside the casing 7.
  • the heat medium introduction line 81 includes a first introduction port 951 and a front side heat medium introduction path 93A formed inside the casing 7.
  • the connecting line 84 includes a connecting flow path 970 formed inside the casing 7, a second introduction port 961, and a rear side heat medium introduction path 93B.
  • the intermediate merging line 82 has a connection pipe 82B in which the upstream end 821 is connected to the first heat medium introduction section 95 and the downstream end 822 is connected to the second heat medium introduction section 96. including.
  • connection pipe 82B has a flow path inside which connects the first introduction port 951 and the second introduction port 961 so that the heat medium can flow, and the first introduction port 951 to the second introduction port 951 to the second introduction port 951 through the connection pipe 82B.
  • the heat medium is designed to flow out to the mouth 961.
  • the structure of the merging line 82 (connecting pipe 82B) can be simplified, so that the cost of the turbine 2 for cryogenic power generation can be suppressed.
  • the above-mentioned intermediate merging line 82 branches from the heat medium introduction line 81 outside the casing 7 and is connected to the connecting line 84 inside the casing 7. ..
  • the heat medium introduction line 81 is formed on the outside of the casing 7 and is the above-mentioned main flow path 42 on the upstream side in the flow direction from the first introduction port 951. Including a part of.
  • the connecting line 84 includes a connecting flow path 970 formed inside the casing 7, a second introduction port 961, and a rear side heat medium introduction path 93B.
  • the upstream end 821 is connected to the above-mentioned main flow path 42 on the upstream side in the flow direction from the first introduction port 951, and the downstream end 822 is the second heat.
  • the bypass pipe 82C connected to the medium introduction unit 96 is included.
  • the degree of freedom in designing the branch position of the intermediate merging line 82 can be increased. Further, by branching from the heat medium introduction line 81 outside the casing 7, the complexity of the internal structure of the casing 7 can be suppressed, and the price increase of the turbine 2 for cryogenic power generation can be suppressed.
  • FIG. 8 is an explanatory diagram for explaining a turbine for cryogenic power generation according to an embodiment of the present disclosure.
  • the above-mentioned cryogenic energy storage turbine 2 has a heat medium flowing upstream of the connection portion 841 with the intermediate confluence line 82 in the above-mentioned connection line 84.
  • a heat exchanger 106 configured to exchange heat with a second heat medium having a temperature higher than that of this heat medium is further provided.
  • the heat exchanger 106 has a heat medium flow path 107 in which a heat medium is provided upstream of the connection portion 841 of the connection line 84 described above, and a second heat medium through which the second heat medium flows. Includes a heat medium flow path 108. Heat exchange is performed between the heat medium in the heat medium flow path 107 and the second heat medium in the second heat medium flow path 108 to heat the heat medium in the heat medium flow path 107.
  • the second heat medium may have a higher temperature than the heat medium introduced into the heat medium flow path 107.
  • the second heat medium may be the heated water flowing through the above-mentioned heated water supply line 5, or may be the intermediate heat medium flowing through the above-mentioned intermediate heat medium circulation line 6.
  • the heat exchanger 106 described above includes the second heat exchanger 13 described above. That is, in the above-mentioned heat exchanger 106, an intermediate between the heat medium flow path 131 in which the heat medium provided in the above-mentioned heat medium circulation line 4 flows and the intermediate heat medium provided in the above-mentioned intermediate heat medium circulation line 6 flows. It includes a heat medium flow path 132 and a heat medium flow path 107 through which a heat medium is provided upstream of the connection portion 841 of the connection line 84 described above. The heat medium in the heat medium flow path 132 and the heat medium in the heat medium flow path 107 are heated by the heat medium in the intermediate heat medium flow path 132.
  • the heat medium flowing upstream of the connecting portion 841 with the intermediate merging line 82 in the connecting line 84 passes through the first rotor blade 22A, and its temperature is lowered.
  • the thermal efficiency and output of the turbine 2 for cryogenic power generation can be improved.
  • the above-mentioned turbine 2 for cryogenic power generation has a pressure P1 of a heat medium introduced into the above-mentioned first stationary blade 23A at a design flow rate.
  • the pressure ratio P1 / P2 to the pressure P2 of the heat medium between the first moving blade 22A and the second stationary blade 23B is configured to be larger than the critical pressure ratio.
  • the pressure P2 of the heat medium between the first rotor blade 22A and the second stationary blade 23B is increased. growing.
  • the turbine 2 for cryogenic power generation is configured such that the pressure ratio P1 / P2 is larger than the critical pressure ratio at the design flow rate.
  • the choke is performed at the design flow rate, the flow velocity of the heat medium introduced into the first stationary blade 23A is not affected by the pressure P2, and the flow rate of the heat medium introduced into the first stationary blade 23A is not affected. Will depend on the pressure P1.
  • the turbine 2 is configured so that the pressure ratio P1 / P2 is smaller than the critical pressure ratio at the design flow rate, the heat to the second stationary blade 23B through the merging line 82 is generated.
  • the pressure P2 increases, and in response to this, the flow velocity of the heat medium introduced into the first stationary blade 23A decreases, and the heat medium introduced into the first stationary blade 23A decreases. There is a risk that the flow rate will be small.
  • the present disclosure is not limited to the above-mentioned embodiment, and includes a form in which the above-mentioned embodiment is modified and a form in which these forms are appropriately combined.
  • the turbine (2) for cryogenic power generation is A turbine (2) for cryogenic power generation provided in a heat medium circulation line (4) configured to circulate a heat medium for heating a liquefied gas.
  • Rotor shaft (21) and A casing (7) for accommodating the rotor shaft and A plurality of rotor blades (22) provided around the rotor shaft, the first rotor blade (22A) and the second rotor blade (22B) provided downstream of the first rotor blade.
  • a plurality of stationary blades (23) including a second stationary blade (23B) provided downstream of the blade (22A) and upstream of the second moving blade (22B).
  • the turbine for cryogenic power generation has a heat medium introduction line for introducing a heat medium into the first stationary blade, and a first stationary blade and a first vane branching from the heat medium introduction line. It is provided with an intermediate merging line for introducing a heat medium into the second stationary wing by bypassing the moving wing of 1.
  • the turbine may be in partial load operation. Since a heat medium having a temperature lowered by working on the first rotor blade is introduced into the second rotor blade, the heat that can be introduced into the second rotor blade is higher than that of the first rotor blade.
  • the temperature of the medium is low. Therefore, by introducing a heat medium into the second rotor blade through a confluence line that bypasses the first rotor blade and the first rotor blade, the second rotor blade is located downstream of the second rotor blade.
  • the amount of heat medium introduced into the blade can be increased.
  • the output of the turbine for cryogenic power generation can be improved.
  • the amount of heat medium that can be supplied to the turbine during partial load operation can be increased by the intermediate merging line.
  • the amount of heat medium flowing through the bypass line bypassing the turbine can be reduced, so that the output of the cryogenic power generation system can be improved.
  • the turbine (2) for cryogenic power generation according to 1) above.
  • the heat medium introduction line (81) is To introduce the heat medium into the first stationary blade (23A) formed on the outer peripheral side of the plurality of moving blades (22) and the plurality of stationary blades (23) inside the casing (7).
  • Including the intake chamber (81A) of The merging line (82) on the way is The interwing space (83) between the first rotor blade and the second stationary blade formed on the inner peripheral side of the intake chamber (81A) inside the casing (7), and the intake chamber. (81A) and a through hole (82A) penetrating the partition wall portion (71) of the casing separating the casing.
  • the turbine (2) for cryogenic power generation further includes an on-off valve (47A) having a valve body (471) capable of closing the through hole (82A).
  • the heat medium introduction line includes the intake chamber
  • the intermediate confluence line includes the partition wall portion of the casing that separates the inter-blade space formed on the inner peripheral side of the intake chamber and the intake chamber.
  • a turbine for cryogenic power generation includes an on-off valve having a valve body capable of closing a through hole.
  • the through hole can be closed by the valve body, the opening / closing mechanism of the on-off valve can be simplified. As a result, it is possible to suppress the increase in the price of the turbine for cryogenic power generation.
  • the through hole can be used as an inspection hole when inspecting the inter-blade space, the inspection work of the inter-blade space can be easily performed.
  • the turbine (2) for cryogenic power generation according to 2) above.
  • the on-off valve (47A) is composed of a slide valve (47B).
  • the on-off valve is composed of a slide valve, so that the on-off mechanism can be simplified. Further, when a plurality of through holes are formed at intervals in the circumferential direction of the partition wall, the number of on-off valves is reduced by closing two or more of the through holes with the valve body of the slide valve. can. As a result, it is possible to suppress the increase in the price of the turbine for cryogenic power generation.
  • the turbine (2) for cryogenic power generation according to 1) above.
  • Each of the first stationary blade (23A) and the first moving blade (22A) is provided on one side of the rotor shaft (21).
  • Each of the second stationary blade (23B) and the second moving blade (22B) is provided on the other side of the rotor shaft (21).
  • the turbine (2) for cryogenic power generation is a connecting line (84) for supplying the heat medium that has passed through the first rotor blade (22A) to the second stationary blade (23B).
  • a connecting line (84) to which the downstream end (822) of the intermediate merging line (82) is connected is further provided.
  • the thrust can be reduced by providing the first rotor blade on one side of the rotor shaft and the second rotor blade on the other side of the rotor shaft, so that the turbine for cryogenic power generation can be reduced. Can improve the reliability of the. Further, according to the configuration of 4) above, since the merging line joins the connecting line in the middle, the heat medium that has passed through the first rotor blade and the heat medium that has passed through the merging line in the middle are second. Can be introduced to the stationary blade. Thereby, with a simple structure, the amount of the heat medium introduced into the second rotor blade can be increased, and the output of the turbine for cryogenic power generation can be improved.
  • the turbine (2) for cryogenic power generation according to 4) above.
  • the intermediate merging line (82) branched from the heat medium introduction line (71) inside the casing (7) and was connected to the connecting line (84) inside the casing (7).
  • the structure of the confluence line can be simplified, so that the cost of the turbine for cryogenic power generation can be suppressed.
  • the turbine (2) for cryogenic power generation according to 4) above.
  • the intermediate merging line (82) branched from the heat medium introduction line (71) outside the casing (7) and was connected to the connecting line (84) inside the casing (7).
  • the turbine (2) for cryogenic power generation according to any one of 4) to 6) above.
  • a heat exchanger (106) configured to perform the exchange.
  • the heat medium flowing upstream of the connection portion with the intermediate confluence line in the connection line passes through the first rotor blade, and its temperature is lowered.
  • the thermal efficiency and output of the turbine for cryogenic power generation can be improved.
  • the turbine (2) for cryogenic power generation according to any one of 1) to 7) above.
  • the turbine for cryogenic power generation has the first moving blade (22A) and the second stationary blade (23B) at the pressure P1 of the heat medium introduced into the first stationary blade (23A) at the design flow rate.
  • the pressure ratio P1 / P2 to the pressure P2 of the heat medium is configured to be larger than the critical pressure ratio.
  • the turbine for cryogenic power generation is configured such that the pressure ratio P1 / P2 is larger than the critical pressure ratio at the design flow rate.
  • the choke since the choke is performed at the design flow rate, the flow velocity of the heat medium introduced into the first stationary blade is not affected by the pressure P2, and the flow rate of the heat medium introduced into the first stationary blade is described above. It becomes dependent on the pressure P1. Therefore, a fixed amount of heat medium can be introduced into the first stationary blade regardless of the amount of heat medium introduced through the confluence line on the way. As a result, the amount of the heat medium introduced into the second rotor blade can be increased as compared with the case where the choked flow does not occur, and the output of the cryogenic power generation system can be effectively improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A turbine for cryogenic power generation, said turbine comprising: a rotor shaft; a casing that houses the rotor shaft; a plurality of moving blades that are provided around the rotor shaft, and include a first moving blade and a second moving blade that is provided downstream of the first moving blade; a plurality of stationary blades that are supported by the inner side of the casing, and include a first stationary blade that is provided upstream of the first moving blade and a second stationary blade that is provided downstream of the first moving blade and upstream of the second moving blade; a heat transfer medium introduction line for introducing a heat transfer medium to the first stationary blade; and a joining line that branches from the heat transfer medium introduction line, bypasses the first stationary blade and the first moving blade, and introduces the heat transfer medium to the second stationary blade.

Description

冷熱発電用のタービンTurbine for cryogenic power generation
 本開示は、液化ガスを加熱するための熱媒体が循環するように構成された熱媒体循環ラインに設けられる冷熱発電用のタービンに関する。
 本願は、2020年7月13日に日本国特許庁に出願された特願2020-119688号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a turbine for cryogenic power generation provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas.
This application claims priority based on Japanese Patent Application No. 2020-119688 filed with the Japan Patent Office on July 13, 2020, the contents of which are incorporated herein by reference.
 液化ガス(例えば、液化天然ガス)は、輸送や貯蔵を目的として液化され、都市ガスや火力発電所などの供給先に供給するに際して、海水などの熱媒体で昇温して気化させることが行われる。液化ガスを気化させる際に、冷熱エネルギを海水に捨てるのではなく電力として回収する冷熱発電が行われることがある(例えば、特許文献1)。 Liquefied gas (for example, liquefied natural gas) is liquefied for the purpose of transportation and storage, and when it is supplied to a supply destination such as city gas or thermal power plant, it is heated and vaporized by a heat medium such as seawater. Will be. When vaporizing a liquefied gas, cryogenic power generation may be performed in which cold energy is recovered as electric power instead of being discarded in seawater (for example, Patent Document 1).
 液化天然ガスの冷熱発電サイクルとしては、二次媒体ランキンサイクル方式などが知られている(例えば、特許文献1)。二次媒体ランキンサイクル方式は、クローズドループ内を循環する二次媒体を、蒸発器にて海水を熱源として加熱して蒸発させ、この蒸気を冷熱発電用のタービンに導入して動力を得た後に、液化天然ガスにて冷却、凝縮させる方式である。 As a cryogenic power generation cycle of liquefied natural gas, a secondary medium Rankine cycle method or the like is known (for example, Patent Document 1). In the secondary medium Rankine cycle method, a secondary medium circulating in a closed loop is heated by an evaporator using seawater as a heat source to evaporate, and this steam is introduced into a turbine for cryogenic power generation to obtain power. , It is a method of cooling and condensing with liquefied natural gas.
実開昭61-59803号公報Jitsukaisho 61-59803 Gazette
 冷熱発電用のタービンは、二次媒体を加熱する熱源である海水の温度や液化ガスの流量(液化ガスと二次媒体との間で熱交換を行う熱交換器への液化ガスの導入量)に応じて部分負荷運用になることがある。例えば、暑い(緯度が低い)海域や夏場などの場合には海水温度が25℃程度になるのに対して、緯度の高い海域や冬場などの場合には、緯度が低い海域や夏場などに比べて、海水の温度が低下する。熱源である海水の温度が低いと、タービンに供給される二次媒体の温度も低くなる。タービンに供給される二次媒体の温度低下に伴い、タービンの飽和圧を低下させる必要がある。このため、熱源である海水の温度が低い場合には、タービンへの二次媒体の供給量が小量に制限され、タービンの出力が低下する虞がある。なお、クローズドループ内二次媒体の循環量を増加させたとしても、タービンの入口温度に応じてタービンへの二次媒体の供給量が制限されるので、タービンを迂回するバイパスラインに二次媒体を大量に流すことになるため、冷熱発電サイクルの出力が低下する虞がある。 Turbines for cryogenic power generation include the temperature of seawater, which is the heat source for heating the secondary medium, and the flow rate of the liquefied gas (the amount of liquefied gas introduced into the heat exchanger that exchanges heat between the liquefied gas and the secondary medium). It may be a partial load operation depending on the situation. For example, in hot (low latitude) sea areas and summer, the seawater temperature is about 25 ° C, whereas in high latitude sea areas and winter, compared to low latitude sea areas and summer. As a result, the temperature of seawater drops. When the temperature of seawater, which is a heat source, is low, the temperature of the secondary medium supplied to the turbine is also low. As the temperature of the secondary medium supplied to the turbine decreases, it is necessary to decrease the saturation pressure of the turbine. Therefore, when the temperature of seawater, which is a heat source, is low, the supply amount of the secondary medium to the turbine is limited to a small amount, and the output of the turbine may decrease. Even if the circulation amount of the secondary medium in the closed loop is increased, the supply amount of the secondary medium to the turbine is limited according to the inlet temperature of the turbine, so that the secondary medium is used as a bypass line that bypasses the turbine. There is a risk that the output of the cryogenic power generation cycle will decrease because a large amount of water will flow.
 上述した事情に鑑みて、本開示の少なくとも一実施形態の目的は、タービンの部分負荷運転時の出力を向上させることができる冷熱発電用のタービンを提供することにある。 In view of the above circumstances, an object of at least one embodiment of the present disclosure is to provide a turbine for cryogenic power generation capable of improving the output of the turbine during partial load operation.
 本開示にかかる冷熱発電用のタービンは、
 液化ガスを加熱するための熱媒体が循環するように構成された熱媒体循環ラインに設けられる冷熱発電用のタービンであって、
 ロータシャフトと、
 前記ロータシャフトを収容するケーシングと、
 前記ロータシャフトの周りに設けられた複数の動翼であって、第1の動翼と、前記第1の動翼よりも下流側に設けられる第2の動翼と、を含む複数の動翼と、
 前記ケーシングの内側に支持された複数の静翼であって、前記第1の動翼よりも上流側に設けられる第1の静翼と、前記第1の動翼よりも下流側、且つ前記第2の動翼よりも上流側に設けられる第2の静翼と、を含む複数の静翼と、
 前記第1の静翼に前記熱媒体を導入するための熱媒体導入ラインと、
 前記熱媒体導入ラインから分岐して前記第1の静翼および前記第1の動翼を迂回して前記第2の静翼に前記熱媒体を導入するための途中合流ラインと、
を備える。
The turbine for cryogenic power generation according to the present disclosure is
A turbine for cryogenic power generation provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas.
With the rotor shaft
The casing that houses the rotor shaft and
A plurality of rotor blades provided around the rotor shaft, including a first rotor blade and a second rotor blade provided downstream of the first rotor blade. When,
A plurality of stationary blades supported inside the casing, the first stationary blade provided on the upstream side of the first moving blade, the downstream side of the first moving blade, and the first one. A plurality of stationary blades including a second stationary blade provided on the upstream side of the second moving blade, and
A heat medium introduction line for introducing the heat medium into the first stationary blade, and
An intermediate confluence line for introducing the heat medium into the second stationary blade by branching from the heat medium introduction line and bypassing the first stationary blade and the first moving blade.
To prepare for.
 本開示の少なくとも一実施形態によれば、タービンの部分負荷運転時の出力を向上させることができる冷熱発電用のタービンが提供される。 According to at least one embodiment of the present disclosure, there is provided a turbine for cryogenic power generation capable of improving the output of the turbine during partial load operation.
本開示の一実施形態にかかる冷熱発電用のタービンを備える冷熱発電システムの構成を概略的に示す概略構成図である。It is a schematic block diagram which shows schematically the configuration of the cryogenic power generation system including the turbine for the thermal power generation which concerns on one Embodiment of this disclosure. 本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図であって、開閉弁が閉じた状態を示す概略断面図である。It is a schematic cross-sectional view which shows schematic cross section along the axis of the turbine for the thermal power generation which concerns on one Embodiment of this disclosure, and is the schematic sectional view which shows the state which the on-off valve is closed. 図2に示される冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図であって、開閉弁が開いた状態を示す概略断面図である。FIG. 2 is a schematic cross-sectional view schematically showing a cross section along an axis of a turbine for thermal power generation shown in FIG. 2, and is a schematic cross-sectional view showing a state in which an on-off valve is open. 本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図であって、開閉弁が閉じた状態を示す概略断面図である。It is a schematic cross-sectional view which shows schematic cross section along the axis of the turbine for the thermal power generation which concerns on one Embodiment of this disclosure, and is the schematic sectional view which shows the state which the on-off valve is closed. 図4に示される冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図であって、開閉弁が開いた状態を示す概略断面図である。FIG. 4 is a schematic cross-sectional view schematically showing a cross section along an axis of a turbine for thermal power generation shown in FIG. 4, and is a schematic cross-sectional view showing a state in which an on-off valve is open. 本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図である。It is a schematic cross-sectional view schematically showing the cross section along the axis of the turbine for cryogenic power generation which concerns on one Embodiment of this disclosure. 本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図である。It is a schematic cross-sectional view schematically showing the cross section along the axis of the turbine for cryogenic power generation which concerns on one Embodiment of this disclosure. 本開示の一実施形態にかかる冷熱発電用のタービンを説明するための説明図である。It is explanatory drawing for demonstrating the turbine for cryogenic power generation which concerns on one Embodiment of this disclosure.
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present disclosure to this, and are merely explanatory examples. No.
For example, expressions that represent relative or absolute arrangements such as "in one direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a tolerance or a state of relative displacement at an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfer within the range where the same effect can be obtained. It shall also represent the shape including the part and the like.
On the other hand, the expression "includes", "includes", or "has" one component is not an exclusive expression that excludes the existence of another component.
The same reference numerals may be given to the same configurations, and the description thereof may be omitted.
(冷熱発電システム)
 図1は、本開示の一実施形態にかかる冷熱発電用のタービンを備える冷熱発電システムの構成を概略的に示す概略構成図である。
 冷熱発電システム1は、図1に示されるように、冷熱発電用のタービン2(以下、タービン2とする)と、液化ガス供給ライン3と、熱媒体循環ライン4と、加熱水供給ライン5と、発電機11と、第1の熱交換器12と、第2の熱交換器13と、を備える。液化ガス供給ライン3、熱媒体循環ライン4および加熱水供給ライン5の夫々は、例えば管路などの流体が流通する流路を含むものである。
(Cryogenic power generation system)
FIG. 1 is a schematic configuration diagram schematically showing a configuration of a cryogenic power generation system including a turbine for cryogenic power generation according to an embodiment of the present disclosure.
As shown in FIG. 1, the cryogenic power generation system 1 includes a turbine 2 for cold power generation (hereinafter referred to as a turbine 2), a liquefied gas supply line 3, a heat medium circulation line 4, and a heated water supply line 5. , A generator 11, a first heat exchanger 12, and a second heat exchanger 13. Each of the liquefied gas supply line 3, the heat medium circulation line 4, and the heated water supply line 5 includes a flow path through which a fluid flows, such as a pipeline.
 液化ガス供給ライン3は、液化ガス貯留装置31から液化ガスを送るように構成されている。液化ガス貯留装置(例えば、液化ガスタンク)31は、液状の液化ガスを貯留するように構成されている。 The liquefied gas supply line 3 is configured to send liquefied gas from the liquefied gas storage device 31. The liquefied gas storage device (for example, a liquefied gas tank) 31 is configured to store liquefied gas.
 熱媒体循環ライン4は、水よりも凝固点が低い熱媒体を循環させるように構成されている。以下、液化ガスの具体例として液化天然ガス(LNG)を、熱媒体循環ライン4を流れる熱媒体の具体例としてプロパンを例に挙げて説明するが、本開示は、液化天然ガス以外の液化ガス(液体水素など)にも適用可能であり、また、プロパン以外の熱媒体を、熱媒体循環ライン4を流れる熱媒体とした場合にも適用可能である。 The heat medium circulation line 4 is configured to circulate a heat medium having a freezing point lower than that of water. Hereinafter, liquefied natural gas (LNG) will be described as a specific example of liquefied gas, and propane will be described as a specific example of the heat medium flowing through the heat medium circulation line 4. However, the present disclosure describes liquefied gas other than liquefied natural gas. It can also be applied to (liquid hydrogen, etc.), and can also be applied when a heat medium other than propane is used as a heat medium flowing through the heat medium circulation line 4.
 図示される実施形態では、冷熱発電システム1は、液化ガス供給ライン3に設けられた液化ガス用ポンプ32と、熱媒体循環ライン4に設けられた熱媒体用の循環ポンプ41と、をさらに備える。液化ガス供給ライン3は、その一端側33が液化ガス貯留装置31に接続され、その他端側34が冷熱発電システム1の外部に設けられる液化ガス用の機器35に接続される。液化ガス用の機器35としては、例えば、陸上に設けられたガスホルダやこれに接続されるガス配管などが挙げられる。 In the illustrated embodiment, the cryogenic power generation system 1 further includes a liquefied gas pump 32 provided in the liquefied gas supply line 3 and a heat medium circulation pump 41 provided in the heat medium circulation line 4. .. One end side 33 of the liquefied gas supply line 3 is connected to the liquefied gas storage device 31, and the other end side 34 is connected to the liquefied gas device 35 provided outside the cryogenic power generation system 1. Examples of the device 35 for liquefied gas include a gas holder provided on land and a gas pipe connected to the gas holder.
 液化ガス用ポンプ32を駆動させることにより、液化ガス貯留装置31に貯留される液化ガスが液化ガス供給ライン3に送られて、液化ガス供給ライン3を上流側から下流側に向かって流れた後に、液化ガス用の機器35に送られる。 By driving the liquefied gas pump 32, the liquefied gas stored in the liquefied gas storage device 31 is sent to the liquefied gas supply line 3 and flows through the liquefied gas supply line 3 from the upstream side to the downstream side. , Is sent to the device 35 for liquefied gas.
 熱媒体用の循環ポンプ41を駆動させることにより、熱媒体循環ライン4を熱媒体が循環する。タービン2は、液化ガスを加熱するための熱媒体が循環するように構成された熱媒体循環ライン4に設けられる。タービン2は、ロータシャフト21を備え、熱媒体循環ライン4を流れる熱媒体により駆動する(ロータシャフト21を回転させる)ように構成されている。発電機11は、ロータシャフト21に接続され、タービン2の駆動力(ロータシャフト21の回転力)を駆動源として発電するように構成されている。 By driving the circulation pump 41 for the heat medium, the heat medium circulates in the heat medium circulation line 4. The turbine 2 is provided in a heat medium circulation line 4 configured to circulate a heat medium for heating the liquefied gas. The turbine 2 includes a rotor shaft 21 and is configured to be driven by a heat medium (rotating the rotor shaft 21) flowing through the heat medium circulation line 4. The generator 11 is connected to the rotor shaft 21 and is configured to generate electricity using the driving force of the turbine 2 (rotating force of the rotor shaft 21) as a driving source.
 加熱水供給ライン5は、冷熱発電システム1の外部から導入された加熱水を送るように構成されている。「加熱水」は、熱交換器において熱媒として熱交換対象を加熱させる水であればよく、常温の水であってもよい。冷熱発電システム1が船体10又は水上に浮かぶ浮体に搭載される場合には、加熱水は、船舶又は浮体において入手が容易な水(例えば、海水などの船外水や、船舶のエンジンを冷却した冷却水など)が好ましい。或る実施形態では、冷熱発電システム1や冷熱発電用のタービン2は、図1に示されるような船体10又は浮体10Aに搭載される。他の或る実施形態では、冷熱発電システム1や冷熱発電用のタービン2は、陸上に設置される。 The heated water supply line 5 is configured to send heated water introduced from the outside of the cryogenic power generation system 1. The "heated water" may be water that heats the heat exchange target as a heat medium in the heat exchanger, and may be water at room temperature. When the cryogenic power generation system 1 is mounted on a hull 10 or a floating body floating on water, the heated water is water that is easily available on the ship or the floating body (for example, outboard water such as seawater or cooling the engine of the ship). Cooling water, etc.) is preferable. In certain embodiments, the cryogenic power generation system 1 and the turbine 2 for cryogenic power generation are mounted on a hull 10 or a floating body 10A as shown in FIG. In some other embodiment, the cryogenic power generation system 1 and the turbine 2 for cold power generation are installed on land.
 図示される実施形態では、冷熱発電システム1は、水よりも凝固点が低い中間熱媒体を循環させるように構成された中間熱媒体循環ライン6と、中間熱媒体循環ライン6に設けられる中間熱媒体用の循環ポンプ61と、加熱水供給ライン5に設けられる加熱水用ポンプ51と、第3の熱交換器14と、をさらに備える。 In the illustrated embodiment, the cryogenic power generation system 1 has an intermediate heat medium circulation line 6 configured to circulate an intermediate heat medium having a freezing point lower than that of water, and an intermediate heat medium provided in the intermediate heat medium circulation line 6. A circulation pump 61 for heating water, a heating water pump 51 provided in the heating water supply line 5, and a third heat exchanger 14 are further provided.
 図示される実施形態では、冷熱発電システム1は、中間熱媒体用の循環ポンプ61を駆動させることにより、中間熱媒体循環ライン6を中間熱媒体が循環する。加熱水供給ライン5は、その一端側52が冷熱発電システム1の外部に設けられる加熱水の供給元15に接続され、その他端側53が冷熱発電システム1の外部に設けられる加熱水の排出先16に接続される。加熱水用ポンプ51を駆動させることにより、加熱水の供給元15から加熱水が加熱水供給ライン5に送られて、加熱水供給ライン5を上流側から下流側に向かって流れた後に、加熱水の排出先16に送られる。 In the illustrated embodiment, in the cryogenic power generation system 1, the intermediate heat medium circulates in the intermediate heat medium circulation line 6 by driving the circulation pump 61 for the intermediate heat medium. One end side 52 of the heated water supply line 5 is connected to a heated water supply source 15 provided outside the cryogenic power generation system 1, and the other end side 53 is a hot water discharge destination provided outside the cryogenic power generation system 1. Connected to 16. By driving the heating water pump 51, the heating water is sent from the heating water supply source 15 to the heating water supply line 5, flows through the heating water supply line 5 from the upstream side to the downstream side, and then heated. It is sent to the water discharge destination 16.
 冷熱発電システム1が船体10又は水上に浮かぶ浮体10Aに搭載される場合には、加熱水の供給元15としては、例えば、船体10に設けられた船外の水を導入するための取水口15Aが挙げられる。また、冷熱発電システム1が船体10又は浮体10Aに搭載される場合には、加熱水の排出先16としては、例えば、船体10に設けられた船外に水を排出するための排出口16Aが挙げられる。 When the cryogenic power generation system 1 is mounted on the hull 10 or the floating body 10A floating on the water, the heating water supply source 15 is, for example, an intake port 15A for introducing the outboard water provided on the hull 10. Can be mentioned. When the cryogenic power generation system 1 is mounted on the hull 10 or the floating body 10A, the heated water discharge destination 16 includes, for example, a discharge port 16A provided on the hull 10 for discharging water to the outside of the ship. Can be mentioned.
 中間熱媒体は、熱媒体循環ライン4を流れる熱媒体と同種の熱媒体であってもよいし、異種の熱媒体であってもよい。図示される実施形態では、中間熱媒体は、プロパンからなり、加熱水は、船外から取得した海水からなる。 The intermediate heat medium may be the same type of heat medium as the heat medium flowing through the heat medium circulation line 4, or may be a different type of heat medium. In the illustrated embodiment, the intermediate heat medium is made of propane and the heated water is made of seawater obtained from the outside of the ship.
 第1の熱交換器12は、液化ガス供給ライン3を流れる液化ガスと、熱媒体循環ライン4を流れる熱媒体と、の間で熱交換を行うように構成されている。
 図1に示される実施形態では、第1の熱交換器12は、液化ガス供給ライン3に設けられた液化ガスが流れる液化ガス流路121と、熱媒体循環ライン4に設けられた熱媒体が流れる熱媒体流路122と、を含む。熱媒体流路122内の熱媒体と、液化ガス流路121内の液化ガスと、の間で熱交換が行われる。
The first heat exchanger 12 is configured to exchange heat between the liquefied gas flowing through the liquefied gas supply line 3 and the heat medium flowing through the heat medium circulation line 4.
In the embodiment shown in FIG. 1, in the first heat exchanger 12, the liquefied gas flow path 121 provided in the liquefied gas supply line 3 through which the liquefied gas flows and the heat medium provided in the heat medium circulation line 4 are provided. Includes a flowing heat medium flow path 122. Heat exchange is performed between the heat medium in the heat medium flow path 122 and the liquefied gas in the liquefied gas flow path 121.
 第2の熱交換器13は、熱媒体循環ライン4を流れる熱媒体と、中間熱媒体循環ライン6を流れる中間熱媒体と、の間で熱交換を行うように構成されている。
 図1に示される実施形態では、第2の熱交換器13は、熱媒体循環ライン4に設けられた熱媒体が流れる熱媒体流路131と、中間熱媒体循環ライン6に設けられた中間熱媒体が流れる中間熱媒体流路132と、を含む。中間熱媒体流路132内の中間熱媒体と、熱媒体流路131内の熱媒体と、の間で熱交換が行われる。
The second heat exchanger 13 is configured to exchange heat between the heat medium flowing through the heat medium circulation line 4 and the intermediate heat medium flowing through the intermediate heat medium circulation line 6.
In the embodiment shown in FIG. 1, the second heat exchanger 13 is provided in the heat medium flow path 131 through which the heat medium flows, which is provided in the heat medium circulation line 4, and the intermediate heat provided in the intermediate heat medium circulation line 6. Includes an intermediate heat medium flow path 132 through which the medium flows. Heat exchange is performed between the intermediate heat medium in the intermediate heat medium flow path 132 and the heat medium in the heat medium flow path 131.
 なお、他の幾つかの実施形態では、第2の熱交換器13は、熱媒体循環ライン4を流れる熱媒体と、加熱水供給ライン5を流れる加熱水と、の間で熱交換を行うように構成されていてもよい。第2の熱交換器13は、その内部に、加熱水供給ライン5に設けられた加熱水が流れる加熱水流路であって、熱媒体流路132との間で熱交換を行うための加熱水流路を含んでいてもよい。この場合には、冷熱発電システム1は、中間熱媒体循環ライン6および第3の熱交換器14を備える必要がないため、その構造を大型化や複雑化を抑制できる。 In some other embodiments, the second heat exchanger 13 exchanges heat between the heat medium flowing through the heat medium circulation line 4 and the heated water flowing through the heated water supply line 5. It may be configured in. The second heat exchanger 13 is a heated water flow path in which the heated water provided in the heated water supply line 5 flows, and is a heated water flow for exchanging heat with the heat medium flow path 132. It may include a road. In this case, since the cryogenic power generation system 1 does not need to include the intermediate heat medium circulation line 6 and the third heat exchanger 14, its structure can be suppressed from becoming large and complicated.
 第3の熱交換器14は、中間熱媒体循環ライン6を流れる中間熱媒体と、加熱水供給ライン5を流れる加熱水と、の間で熱交換を行うように構成されている。
 図1に示される実施形態では、第3の熱交換器14は、中間熱媒体循環ライン6に設けられた中間熱媒体が流れる中間熱媒体流路141と、加熱水供給ライン5に設けられた加熱水が流れる加熱水流路142と、を含む。中間熱媒体流路141内の中間熱媒体と、加熱水流路142内の加熱水と、の間で熱交換が行われる。
The third heat exchanger 14 is configured to exchange heat between the intermediate heat medium flowing through the intermediate heat medium circulation line 6 and the heated water flowing through the heated water supply line 5.
In the embodiment shown in FIG. 1, the third heat exchanger 14 is provided in the intermediate heat medium flow path 141 provided in the intermediate heat medium circulation line 6 through which the intermediate heat medium flows, and in the heated water supply line 5. Includes a heated water flow path 142 through which heated water flows. Heat exchange is performed between the intermediate heat medium in the intermediate heat medium flow path 141 and the heated water in the heated water flow path 142.
 第1の熱交換器12(具体的には液化ガス流路121)は、液化ガス供給ライン3の液化ガス用ポンプ32よりも下流側、且つ液化ガス用の機器35よりも上流側に設けられる。液化ガス用ポンプ32は、液化ガス供給ライン3の液化ガス貯留装置31よりも下流側に設けられる。また、第1の熱交換器12(具体的には熱媒体流路122)は、熱媒体循環ライン4のタービン2よりも下流側、且つ熱媒体用の循環ポンプ41よりも上流側に設けられる。 The first heat exchanger 12 (specifically, the liquefied gas flow path 121) is provided on the downstream side of the liquefied gas pump 32 of the liquefied gas supply line 3 and on the upstream side of the liquefied gas device 35. .. The liquefied gas pump 32 is provided on the downstream side of the liquefied gas storage device 31 of the liquefied gas supply line 3. Further, the first heat exchanger 12 (specifically, the heat medium flow path 122) is provided on the downstream side of the turbine 2 of the heat medium circulation line 4 and on the upstream side of the circulation pump 41 for the heat medium. ..
 第2の熱交換器13(具体的には熱媒体流路131)は、熱媒体循環ライン4の熱媒体用の循環ポンプ41よりも下流側、且つタービン2よりも上流側に設けられる。また、第2の熱交換器13(具体的には中間熱媒体流路132)は、中間熱媒体循環ライン6の第3の熱交換器14(具体的には中間熱媒体流路141)よりも下流側、且つ中間熱媒体用の循環ポンプ61よりも上流側に設けられる。 The second heat exchanger 13 (specifically, the heat medium flow path 131) is provided on the downstream side of the heat medium circulation pump 41 of the heat medium circulation line 4 and on the upstream side of the turbine 2. Further, the second heat exchanger 13 (specifically, the intermediate heat medium flow path 132) is from the third heat exchanger 14 (specifically, the intermediate heat medium flow path 141) of the intermediate heat medium circulation line 6. Is provided on the downstream side and on the upstream side of the circulation pump 61 for the intermediate heat medium.
 第3の熱交換器14(具体的には加熱水流路142)は、加熱水供給ライン5の加熱水用ポンプ51よりも下流側、且つ加熱水の排出先16よりも上流側に設けられる。加熱水用ポンプ51は、加熱水供給ライン5の加熱水の供給元15よりも下流側に設けられる。 The third heat exchanger 14 (specifically, the heated water flow path 142) is provided on the downstream side of the heated water pump 51 of the heated water supply line 5 and on the upstream side of the heated water discharge destination 16. The heating water pump 51 is provided on the downstream side of the heating water supply source 15 of the heating water supply line 5.
 第1の熱交換器12の液化ガス流路121には、液化ガス用ポンプ32により昇圧された液状の液化ガスが送られる。第1の熱交換器12における熱交換により、液化ガス流路121を流れる液化ガスが加熱され、熱媒体流路122を流れる熱媒体が冷却される。つまり、液化ガス流路121を流れる液化ガスの冷熱エネルギが熱媒体流路122を流れる熱媒体に回収される。第1の熱交換器12における熱交換により、熱媒体流路122を流れる熱媒体は、水(加熱水)の凝固点よりも低い温度になる。 The liquefied gas boosted by the liquefied gas pump 32 is sent to the liquefied gas flow path 121 of the first heat exchanger 12. The heat exchange in the first heat exchanger 12 heats the liquefied gas flowing through the liquefied gas flow path 121 and cools the heat medium flowing through the heat medium flow path 122. That is, the cold energy of the liquefied gas flowing through the liquefied gas flow path 121 is recovered by the heat medium flowing through the heat medium flow path 122. Due to the heat exchange in the first heat exchanger 12, the temperature of the heat medium flowing through the heat medium flow path 122 becomes lower than the freezing point of water (heated water).
 第3の熱交換器14の中間熱媒体流路141には、中間熱媒体用の循環ポンプ61により昇圧された中間熱媒体が送られる。また、加熱水流路142には、加熱水用ポンプ51により昇圧された加熱水が送られる。第3の熱交換器14における熱交換により、中間熱媒体流路141を流れる中間熱媒体が加熱される。 The intermediate heat medium boosted by the circulation pump 61 for the intermediate heat medium is sent to the intermediate heat medium flow path 141 of the third heat exchanger 14. Further, the heated water boosted by the heated water pump 51 is sent to the heated water flow path 142. The heat exchange in the third heat exchanger 14 heats the intermediate heat medium flowing through the intermediate heat medium flow path 141.
 第2の熱交換器13の熱媒体流路131には、第1の熱交換器12により冷却された後に、熱媒体用の循環ポンプ41により昇圧された熱媒体が送られる。また、中間熱媒体流路132には、第3の熱交換器14により加熱された中間熱媒体が送られる。第2の熱交換器13における熱交換により、熱媒体流路131を流れる熱媒体が加熱され、中間熱媒体流路132が冷却される。 A heat medium that has been cooled by the first heat exchanger 12 and then boosted by the circulation pump 41 for the heat medium is sent to the heat medium flow path 131 of the second heat exchanger 13. Further, the intermediate heat medium heated by the third heat exchanger 14 is sent to the intermediate heat medium flow path 132. The heat exchange in the second heat exchanger 13 heats the heat medium flowing through the heat medium flow path 131 and cools the intermediate heat medium flow path 132.
 図1に示される実施形態では、冷熱発電システム1は、熱媒体循環ライン4における第2の熱交換器13よりも下流側から分岐して、タービン2を迂回して第1の熱交換器12の熱媒体流路122よりも上流側に接続されるバイパスライン17をさらに備える。上述した熱媒体循環ライン4におけるバイパスライン17が分岐する分岐部171からバイパスライン17が合流する合流部172までの間の流路(タービン2を通過する流路)を主流路42とする。 In the embodiment shown in FIG. 1, the cryogenic power generation system 1 branches from the downstream side of the second heat exchanger 13 in the heat medium circulation line 4 and bypasses the turbine 2 to bypass the first heat exchanger 12. A bypass line 17 connected to the upstream side of the heat medium flow path 122 is further provided. The main flow path 42 is a flow path (a flow path passing through the turbine 2) between the branch portion 171 where the bypass line 17 branches in the above-mentioned heat medium circulation line 4 and the confluence portion 172 where the bypass line 17 joins.
 図1に示される実施形態では、冷熱発電システム1は、主流路42のタービン2より上流側に設けられる開閉弁43と、バイパスライン17に設けられる開閉弁173と、をさらに備える。例えば、冷熱発電システム1の始動時には、開閉弁43を閉じ、開閉弁173を開いて熱媒体にタービン2を迂回させる。所定期間が経過した後に、開閉弁43を開いて、開閉弁173を閉じて熱媒体にタービン2を通過させる。 In the embodiment shown in FIG. 1, the cryogenic power generation system 1 further includes an on-off valve 43 provided on the upstream side of the turbine 2 of the main flow path 42, and an on-off valve 173 provided on the bypass line 17. For example, when the cryogenic power generation system 1 is started, the on-off valve 43 is closed and the on-off valve 173 is opened to allow the heat medium to bypass the turbine 2. After the predetermined period has elapsed, the on-off valve 43 is opened, the on-off valve 173 is closed, and the turbine 2 is passed through the heat medium.
(冷熱発電用のタービン)
 以下、タービン2における熱媒体の流れ方向における上流側を単に上流側と表すことがあり、タービン2における熱媒体の流れ方向における下流側を単に下流側と表すことがある。
(Turbine for cryogenic power generation)
Hereinafter, the upstream side in the flow direction of the heat medium in the turbine 2 may be simply referred to as the upstream side, and the downstream side in the flow direction of the heat medium in the turbine 2 may be simply referred to as the downstream side.
 幾つかの実施形態にかかる冷熱発電用のタービン2は、図1に示されるように、ロータシャフト21と、ロータシャフト21を収容するケーシング7と、ロータシャフト21の周りに設けられた複数の動翼22と、ケーシング7の内側に支持された複数の静翼23と、を備える。複数の動翼22は、第1の動翼22Aと、第1の動翼22Aよりも下流側に設けられる第2の動翼22Bと、を含む。複数の静翼23は、第1の動翼22Aよりも上流側に設けられる第1の静翼23Aと、第1の動翼22Aよりも下流側、且つ第2の動翼22Bよりも上流側に設けられる第2の静翼23Bと、を含む。主流路42を流れてケーシング7の内部に導入された熱媒体は、第1の静翼23A、第1の動翼22A、第2の静翼23Bおよび第2の動翼22Bをこの順に通過した後に、ケーシング7の外部に排出される。 As shown in FIG. 1, the turbine 2 for thermal power generation according to some embodiments includes a rotor shaft 21, a casing 7 accommodating the rotor shaft 21, and a plurality of moving blades provided around the rotor shaft 21. A blade 22 and a plurality of stationary blades 23 supported inside the casing 7 are provided. The plurality of rotor blades 22 include a first rotor blade 22A and a second rotor blade 22B provided on the downstream side of the first rotor blade 22A. The plurality of stationary blades 23 are a first stationary blade 23A provided on the upstream side of the first moving blade 22A, a downstream side of the first moving blade 22A, and an upstream side of the second moving blade 22B. The second stationary blade 23B provided in the above is included. The heat medium flowing through the main flow path 42 and introduced into the casing 7 passed through the first stationary blade 23A, the first moving blade 22A, the second stationary blade 23B, and the second moving blade 22B in this order. Later, it is discharged to the outside of the casing 7.
 タービン2は、図1に示されるように、第1の静翼23Aに熱媒体を導入するための熱媒体導入ライン81と、熱媒体導入ライン81から分岐して第1の静翼23Aおよび第1の動翼22Aを迂回して第2の静翼23Bに熱媒体を導入するための途中合流ライン82と、をさらに備える。図1に示される実施形態では、熱媒体導入ライン81は、上述した主流路42の一部を含み、途中合流ライン82は、主流路42から分岐部44において分岐して第1の動翼22Aと第2の静翼23Bとの間において主流路42に合流する副流路45を含む。なお、タービン2は、図1に示されるように、副流路45に設けられる開閉弁46をさらに備えていてもよい。 As shown in FIG. 1, the turbine 2 has a heat medium introduction line 81 for introducing a heat medium into the first stationary blade 23A, and the first stationary blade 23A and the first stationary blade 23A branching from the heat medium introduction line 81. Further, an intermediate merging line 82 for introducing a heat medium into the second stationary blade 23B by bypassing the moving blade 22A of the first is provided. In the embodiment shown in FIG. 1, the heat medium introduction line 81 includes a part of the main flow path 42 described above, and the intermediate merging line 82 branches from the main flow path 42 at the branch portion 44 and the first rotor blade 22A. A sub-flow path 45 that joins the main flow path 42 between the blade and the second stationary blade 23B is included. As shown in FIG. 1, the turbine 2 may further include an on-off valve 46 provided in the auxiliary flow path 45.
 タービン2は、熱媒体循環ライン4を加熱する熱源である加熱水の温度や液化ガスの流量(第1の熱交換器12への液化ガスの導入量)に応じて部分負荷運用になることがある。例えば、暑い(緯度が低い)海域や夏場などの場合には海水温度(加熱水の温度)が25℃程度になるので、第2の熱交換器13における熱交換により十分に加熱された熱媒体がタービン2に送られる。これに対して、緯度の高い海域や冬場などの場合には、緯度が低い海域や夏場などに比べて、海水の温度が低下する。熱源である海水(加熱水)の温度が低いと、第3の熱交換器14における中間熱媒体の加熱や、第2の熱交換器13における熱媒体の加熱が不十分となり、タービン2に供給される熱媒体の温度が低くなることがある。また、第1の熱交換器12への液化ガスの導入量が大きいと、第1の熱交換器12における熱媒体の冷却が過剰になり、タービン2に供給される熱媒体の温度が低くなることがある。タービン2に供給される熱媒体の温度低下に伴い、タービン2の飽和圧を低下させる必要がある。このため、熱源である海水の温度が低い場合には、タービン2への熱媒体の供給量が小量に制限され、タービン2の出力が低下する虞がある。 The turbine 2 may be partially loaded according to the temperature of the heated water that is the heat source for heating the heat medium circulation line 4 and the flow rate of the liquefied gas (the amount of the liquefied gas introduced into the first heat exchanger 12). be. For example, in a hot (low latitude) sea area or in summer, the seawater temperature (heated water temperature) is about 25 ° C., so that the heat medium is sufficiently heated by heat exchange in the second heat exchanger 13. Is sent to the turbine 2. On the other hand, in the case of high latitude sea areas or winter, the temperature of seawater is lower than that of low latitude sea areas or summer. When the temperature of seawater (heated water), which is a heat source, is low, the heating of the intermediate heat medium in the third heat exchanger 14 and the heating of the heat medium in the second heat exchanger 13 become insufficient and are supplied to the turbine 2. The temperature of the heat medium to be heated may be low. Further, if the amount of the liquefied gas introduced into the first heat exchanger 12 is large, the heat medium in the first heat exchanger 12 is excessively cooled, and the temperature of the heat medium supplied to the turbine 2 becomes low. Sometimes. As the temperature of the heat medium supplied to the turbine 2 decreases, it is necessary to decrease the saturation pressure of the turbine 2. Therefore, when the temperature of seawater, which is a heat source, is low, the amount of heat medium supplied to the turbine 2 is limited to a small amount, and the output of the turbine 2 may decrease.
 上記の構成によれば、冷熱発電用のタービン2は、第1の静翼23Aに熱媒体を導入するための熱媒体導入ライン81と、熱媒体導入ライン81から分岐して第1の静翼23Aおよび第1の動翼22Aを迂回して第2の静翼23Bに熱媒体を導入するための途中合流ライン82と、を備える。例えば、熱源である海水の温度が低い場合には、熱媒体導入ライン81を通じて第1の静翼23Aに導入される熱媒体の量が制限され、タービン2が部分負荷運転となることがある。第2の静翼23Bには、第1の動翼22Aに対して仕事をして温度低下した熱媒体が導入されるので、第2の静翼23Bは第1の静翼23Aと比べて、導入可能な熱媒体の温度が低い。このため、第1の静翼23Aおよび第1の動翼22Aを迂回する途中合流ライン82を通じて熱媒体を第2の静翼23Bに導入することで、第2の静翼23Bの下流側に位置する第2の動翼22Bへの熱媒体の導入量を増加させることができる。第2の動翼22Bに導入される熱媒体の量を増加させることで、冷熱発電用のタービン2の出力を向上させることができる。 According to the above configuration, the turbine 2 for cryogenic power generation is branched from the heat medium introduction line 81 for introducing the heat medium into the first stationary blade 23A and the heat medium introduction line 81, and the first stationary blade. It is provided with an intermediate merging line 82 for introducing a heat medium into the second stationary wing 23B by bypassing the 23A and the first moving wing 22A. For example, when the temperature of seawater, which is a heat source, is low, the amount of heat medium introduced into the first stationary blade 23A through the heat medium introduction line 81 is limited, and the turbine 2 may be in partial load operation. Since a heat medium having a temperature lowered by working on the first rotor blade 22A is introduced into the second stationary blade 23B, the second stationary blade 23B is compared with the first stationary blade 23A. The temperature of the heat medium that can be introduced is low. Therefore, by introducing a heat medium into the second stationary blade 23B through the merging line 82 that bypasses the first stationary blade 23A and the first moving blade 22A, the heat medium is located on the downstream side of the second stationary blade 23B. The amount of heat medium introduced into the second rotor blade 22B can be increased. By increasing the amount of the heat medium introduced into the second rotor blade 22B, the output of the turbine 2 for cryogenic power generation can be improved.
 また、上記の構成によれば、途中合流ライン82により、部分負荷運転時にタービン2に供給可能な熱媒体の量を増やすことができる。これにより、タービン2を迂回するバイパスライン17を流れる熱媒体の量を減らすことができるため、冷熱発電システム1の出力を向上させることができる。 Further, according to the above configuration, the amount of the heat medium that can be supplied to the turbine 2 during the partial load operation can be increased by the intermediate merging line 82. As a result, the amount of heat medium flowing through the bypass line 17 bypassing the turbine 2 can be reduced, so that the output of the cryogenic power generation system 1 can be improved.
(二重車室構造)
 図2および図4の夫々は、本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図であって、開閉弁が閉じた状態を示す概略断面図である。図3は、図2に示される冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図であって、開閉弁が開いた状態を示す概略断面図である。図5は、図4に示される冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図であって、開閉弁が開いた状態を示す概略断面図である。
(Double cabin structure)
2 and 4 are schematic cross-sectional views schematically showing a cross section along the axis of the turbine for thermal power generation according to the embodiment of the present disclosure, and are schematic cross sections showing a state in which the on-off valve is closed. It is a figure. FIG. 3 is a schematic cross-sectional view schematically showing a cross section along the axis of the turbine for thermal power generation shown in FIG. 2, and is a schematic cross-sectional view showing a state in which the on-off valve is open. FIG. 5 is a schematic cross-sectional view schematically showing a cross section along the axis of the turbine for thermal power generation shown in FIG. 4, and is a schematic cross-sectional view showing a state in which the on-off valve is open.
 幾つかの実施形態にかかる冷熱発電用のタービン2は、図2~図5に示されるように、上述したロータシャフト21と、上述したケーシング7と、第1の動翼22Aおよび第2の動翼22Bを含む上述した複数の動翼22と、第1の静翼23Aおよび第2の静翼23Bを含む上述した複数の静翼23と、上述した熱媒体導入ライン81と、上述した途中合流ライン82と、を備える。
 図2~図5に示されるように、上述した熱媒体導入ライン81は、ケーシング7の内部において複数の動翼22(22A、22B)および複数の静翼23(23A、23B)の外周側に形成された、第1の静翼23Aに熱媒体を導入するための吸気室81Aを含み、上述した途中合流ライン82は、ケーシング7の内部において吸気室81Aの内周側に形成された、第1の動翼22Aと第2の動翼22Bとの間の翼間空間83と吸気室81Aとを隔てるケーシング7の隔壁部71、を貫通する貫通孔82Aを含む。冷熱発電用のタービン2(2A、2B)は、貫通孔82Aを閉塞可能な弁体471を有する開閉弁47Aをさらに備える。なお、隔壁部71の周方向に互いに開けて複数の貫通孔82Aが形成されていてもよく、タービン2は、複数の貫通孔82Aのうちの一つ又は複数の貫通孔82Aを閉塞可能な少なくとも一つの開閉弁47Aを備えていてもよい。
As shown in FIGS. 2 to 5, the turbine 2 for thermal power generation according to some embodiments includes the rotor shaft 21 described above, the casing 7 described above, the first rotor blade 22A, and the second moving blade 2. The above-mentioned plurality of moving blades 22 including the blade 22B, the above-mentioned plurality of stationary blades 23 including the first stationary blade 23A and the second stationary blade 23B, the above-mentioned heat medium introduction line 81, and the above-mentioned intermediate merging. The line 82 is provided.
As shown in FIGS. 2 to 5, the above-mentioned heat medium introduction line 81 is provided on the outer peripheral side of the plurality of blades 22 (22A, 22B) and the plurality of stationary blades 23 (23A, 23B) inside the casing 7. The formed first stationary blade 23A includes an intake chamber 81A for introducing a heat medium, and the above-mentioned intermediate confluence line 82 is formed on the inner peripheral side of the intake chamber 81A inside the casing 7. It includes a through hole 82A penetrating the partition wall portion 71 of the casing 7 that separates the inter-blade space 83 between the moving blade 22A of 1 and the moving blade 22B of 1 and the intake chamber 81A. The turbine 2 (2A, 2B) for cryogenic power generation further includes an on-off valve 47A having a valve body 471 capable of closing the through hole 82A. It should be noted that a plurality of through holes 82A may be formed by opening each other in the circumferential direction of the partition wall portion 71, and the turbine 2 can close at least one or a plurality of through holes 82A among the plurality of through holes 82A. One on-off valve 47A may be provided.
 第1の動翼22Aは、第2の動翼22Bよりもタービン2の軸方向、すなわちタービン2の軸線CAの延在する方向、における一方側に配置されている。以下、タービン2の軸方向における上記一方側を前方側と定義し、上記一方側とは反対側を後方側と定義する。また、タービン2の径方向を単に径方向と称し、タービン2の周方向を単に周方向と称することがある。 The first rotor blade 22A is arranged on one side of the second rotor blade 22B in the axial direction of the turbine 2, that is, in the direction in which the axis CA of the turbine 2 extends. Hereinafter, the one side in the axial direction of the turbine 2 is defined as the front side, and the side opposite to the one side is defined as the rear side. Further, the radial direction of the turbine 2 may be simply referred to as a radial direction, and the circumferential direction of the turbine 2 may be simply referred to as a circumferential direction.
 第1の動翼22Aは、第2の動翼22Bよりも前方側に位置している。第1の静翼23Aは、第1の動翼22Aよりも前方側に配置され、第2の静翼23Bは、第2の動翼22Bよりも前方側、且つ第1の動翼22Aよりも後方側に配置されている。 The first rotor blade 22A is located on the front side of the second rotor blade 22B. The first stationary blade 23A is arranged on the front side of the first moving blade 22A, and the second stationary blade 23B is on the front side of the second moving blade 22B and more than the first moving blade 22A. It is located on the rear side.
 ロータシャフト21は、タービン2の軸線CAに沿って延在するシャフト部211と、シャフト部211の外面212から径方向における外側に円板状に突出する複数のディスク部213と、を含む。複数のディスク部213は、第1の動翼22Aが外周に取り付けられた前方側ディスク部213Aと、前方側ディスク部213Aよりも後方側に位置する後方側ディスク部213Bであって、第2の動翼22Bが外周に取り付けられた後方側ディスク部213Bと、を含む。 The rotor shaft 21 includes a shaft portion 211 extending along the axis CA of the turbine 2, and a plurality of disc portions 213 protruding outward in a radial direction from the outer surface 212 of the shaft portion 211 in a disk shape. The plurality of disc portions 213 are a front side disc portion 213A to which the first rotor blade 22A is attached to the outer periphery, and a rear side disc portion 213B located on the rear side of the front side disc portion 213A. The rear side disk portion 213B to which the moving blade 22B is attached to the outer periphery is included.
 ケーシング7は、上述した隔壁部71と、第1の静翼23Aの外周部(外輪)を支持する第1の静翼支持部72と、第2の静翼23Bの外周部(外輪)を支持する第2の静翼支持部73と、隔壁部71を収納する外壁部741を含む外側ケーシング74と、を含む。 The casing 7 supports the partition wall portion 71 described above, the first stationary blade support portion 72 that supports the outer peripheral portion (outer ring) of the first stationary blade 23A, and the outer peripheral portion (outer ring) of the second stationary blade 23B. A second stationary blade support portion 73 and an outer casing 74 including an outer wall portion 741 for accommodating the partition wall portion 71 are included.
 図示される実施形態では、隔壁部71は、軸方向における貫通孔82Aよりも前方側において第1の静翼支持部72を支持し、軸方向における貫通孔82Aよりも後方側において第2の静翼支持部73を支持している。外側ケーシング74は、上述した外壁部741と、軸方向における貫通孔82Aよりも後方側において径方向に沿って延在して、隔壁部71と外壁部741とを接続する後方側壁部742と、外壁部741の隔壁部71よりも前方側に位置する前方端から径方向に沿って径方向における内側に延在する前方側壁部743と、前方側壁部743の内側端から径方向における内側に向かうに連れて後方側に傾斜する前方側傾斜壁部744と、前方側傾斜壁部744の内側端から後方側に延在する内壁部745と、を含む。内壁部745は、第1の静翼23Aの内周部(内輪)を支持している。 In the illustrated embodiment, the partition wall 71 supports the first stationary blade support portion 72 on the front side of the through hole 82A in the axial direction and the second static portion 72 on the rear side of the through hole 82A in the axial direction. It supports the wing support portion 73. The outer casing 74 includes the above-mentioned outer wall portion 741 and a rear side wall portion 742 that extends along the radial direction on the rear side of the through hole 82A in the axial direction and connects the partition wall portion 71 and the outer wall portion 741. The front side wall portion 743 extending inward in the radial direction from the front end located on the front side of the partition wall portion 71 of the outer wall portion 741 and the front side wall portion 743 extending inward in the radial direction from the inner end of the front side wall portion 743. Includes an anterior inclined wall portion 744 that inclines rearward with respect to, and an inner wall portion 745 that extends rearward from the inner end of the anterior inclined wall portion 744. The inner wall portion 745 supports the inner peripheral portion (inner ring) of the first stationary blade 23A.
 上述した吸気室81Aは、隔壁部71と外壁部741との間に形成されている。ケーシング7内に導入された熱媒体は、前方側壁部743の内面に沿って径方向における内側に向かって流れた後に、前方側傾斜壁部744や内壁部745の内面に沿って軸方向における後方側に流れて、第1の静翼23Aに導入される。 The above-mentioned intake chamber 81A is formed between the partition wall portion 71 and the outer wall portion 741. The heat medium introduced into the casing 7 flows inward in the radial direction along the inner surface of the front side wall portion 743, and then axially rearward along the inner surface of the front side inclined wall portion 744 and the inner wall portion 745. It flows to the side and is introduced into the first casing 23A.
 図2、図4では、開閉弁47Aは、閉状態となっており、弁体471が隔壁部71の吸気室側面711に当接することで、貫通孔82Aが弁体471により閉塞されている。 In FIGS. 2 and 4, the on-off valve 47A is in a closed state, and the valve body 471 comes into contact with the intake chamber side surface 711 of the partition wall portion 71, so that the through hole 82A is closed by the valve body 471.
 図2、図3に示される実施形態では、開閉弁47Aは、弁体471と、隔壁部71と弁体471との間に設けられた回動部472であって、弁体471を隔壁部71の吸気室側面711に対して開方向および閉方向に回動させるための回動部472と、弁体471を回動させるように構成された回動機構部473と、回動機構部473に対して弁体471の開閉指示を行うように構成された開閉制御部474と、を備える。図示例では、回動機構部473は、シリンダロッドが弁体に471に取り付けられたシリンダを含む。開閉制御部474の開指示又は閉指示に応じて、回動機構部473が回動部472を回転中心として弁体471を開方向又は閉方向に回転させるようになっている。 In the embodiment shown in FIGS. 2 and 3, the on-off valve 47A is a rotating portion 472 provided between the valve body 471 and the partition wall portion 71 and the valve body 471, and the valve body 471 is a partition wall portion. A rotating portion 472 for rotating the intake chamber side surface 711 in the opening direction and the closing direction, a rotating mechanism portion 473 configured to rotate the valve body 471, and a rotating mechanism portion 473. It is provided with an opening / closing control unit 474 configured to give an opening / closing instruction to the valve body 471. In the illustrated example, the rotation mechanism portion 473 includes a cylinder in which a cylinder rod is attached to a valve body at 471. In response to an open or close instruction of the open / close control unit 474, the rotation mechanism unit 473 rotates the valve body 471 in the opening direction or the closing direction with the rotation unit 472 as the rotation center.
 図4、図5に示される実施形態では、開閉弁47Aは、スライド弁47Bからなる。スライド弁47Bは、上述した弁体471と、弁体471を隔壁部71の吸気室側面711に対して開方向(図示例では後方側)および閉方向(図示例では前方側)にスライドさせるためのスライド機構部475と、スライド機構部475に対して弁体471の開閉指示を行うように構成された開閉制御部476と、を備える。図示例では、スライド機構部475は、シリンダロッドが弁体に471に取り付けられたシリンダを含む。開閉制御部476の開指示又は閉指示に応じて、スライド機構部475が弁体471を上記開方向又は上記閉方向にスライドさせるようになっている。 In the embodiment shown in FIGS. 4 and 5, the on-off valve 47A comprises a slide valve 47B. The slide valve 47B slides the valve body 471 and the valve body 471 described above in the open direction (rear side in the illustrated example) and the closed direction (front side in the illustrated example) with respect to the intake chamber side surface 711 of the partition wall portion 71. The slide mechanism unit 475 and an open / close control unit 476 configured to instruct the slide mechanism unit 475 to open / close the valve body 471 are provided. In the illustrated example, the slide mechanism portion 475 includes a cylinder in which a cylinder rod is attached to a valve body at 471. The slide mechanism unit 475 slides the valve body 471 in the opening direction or the closing direction in response to the opening or closing instruction of the opening / closing control unit 476.
 図3、図5では、開閉弁47Aは、開状態となっており、貫通孔82Aを通じて吸気室81Aから翼間空間83に熱媒体が流入可能になっている。 In FIGS. 3 and 5, the on-off valve 47A is in an open state, and a heat medium can flow from the intake chamber 81A to the inter-blade space 83 through the through hole 82A.
 上記の構成によれば、熱媒体導入ライン81は、上記吸気室81Aを含み、途中合流ライン82は、吸気室81Aの内周側に形成された翼間空間83と吸気室81Aとを隔てるケーシング7の隔壁部71を貫通する貫通孔82Aを含む。冷熱発電用のタービン2は、貫通孔82Aを閉塞可能な弁体471を有する開閉弁47Aを備える。この場合には、上記貫通孔82Aを途中合流ライン82とすることで、吸気室81Aから翼間空間83に熱媒体が導入されるので、途中合流ライン82の構造を簡単なものにできる。また、上記貫通孔82Aは弁体471により閉塞できるため、開閉弁47Aの開閉機構を簡単なものにできる。これにより、冷熱発電用のタービン2の高額化を抑制できる。また、上記貫通孔82Aは、翼間空間83を点検する際の点検孔として利用可能であるため、翼間空間83の点検作業を簡単に行うことができる。 According to the above configuration, the heat medium introduction line 81 includes the intake chamber 81A, and the intermediate merging line 82 is a casing that separates the interwing space 83 formed on the inner peripheral side of the intake chamber 81A and the intake chamber 81A. 7 includes a through hole 82A penetrating the partition wall portion 71. The turbine 2 for cryogenic power generation includes an on-off valve 47A having a valve body 471 capable of closing the through hole 82A. In this case, by using the through hole 82A as the intermediate merging line 82, the heat medium is introduced from the intake chamber 81A into the inter-blade space 83, so that the structure of the intermediate merging line 82 can be simplified. Further, since the through hole 82A can be closed by the valve body 471, the opening / closing mechanism of the on-off valve 47A can be simplified. As a result, it is possible to suppress the increase in the price of the turbine 2 for cryogenic power generation. Further, since the through hole 82A can be used as an inspection hole when inspecting the inter-blade space 83, the inspection work of the inter-blade space 83 can be easily performed.
 幾つかの実施形態では、図4、図5に示されるように、上述した開閉弁47Aは、上述したスライド弁47Bからなる。この場合には、開閉弁47Aは、スライド弁47Bからなるので、その開閉機構を簡単なものにできる。また、隔壁部71の周方向に間隔を空けて複数の貫通孔82Aが形成されている場合に、二つ以上の複数の貫通孔82Aをスライド弁47Bの弁体471により閉塞することで、開閉弁47Aの個数を低減できる。これにより、冷熱発電用のタービン2の高価格化を抑制できる。 In some embodiments, as shown in FIGS. 4 and 5, the on-off valve 47A described above comprises the slide valve 47B described above. In this case, since the on-off valve 47A is composed of the slide valve 47B, the opening / closing mechanism thereof can be simplified. Further, when a plurality of through holes 82A are formed at intervals in the circumferential direction of the partition wall portion 71, the two or more through holes 82A are closed by the valve body 471 of the slide valve 47B to open and close. The number of valves 47A can be reduced. As a result, it is possible to suppress the increase in price of the turbine 2 for cryogenic power generation.
(両軸駆動構造)
 図6および図7の夫々は、本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図である。
 幾つかの実施形態にかかる冷熱発電用のタービン2は、図6、図7に示されるように、上述したロータシャフト21と、上述したケーシング7と、第1の動翼22Aおよび第2の動翼22Bを含む上述した複数の動翼22と、第1の静翼23Aおよび第2の静翼23Bを含む上述した複数の静翼23と、上述した熱媒体導入ライン81と、上述した途中合流ライン82と、を備える。
 図6、図7に示されるように、第1の静翼23Aおよび第1の動翼22Aの夫々は、ロータシャフト21の軸方向における一方側(図中左側)に設けられ、第2の静翼23Bおよび第2の動翼22Bの夫々は、ロータシャフト21の軸方向における他方側(図中右側)に設けられている。
(Double-axis drive structure)
6 and 7 are schematic cross-sectional views schematically showing a cross section along an axis of a turbine for thermal power generation according to an embodiment of the present disclosure.
As shown in FIGS. 6 and 7, the turbine 2 for thermal power generation according to some embodiments includes the rotor shaft 21 described above, the casing 7 described above, the first rotor blade 22A, and the second rotor blade 2. The above-mentioned plurality of moving blades 22 including the blade 22B, the above-mentioned plurality of stationary blades 23 including the first stationary blade 23A and the second stationary blade 23B, the above-mentioned heat medium introduction line 81, and the above-mentioned intermediate merging. The line 82 is provided.
As shown in FIGS. 6 and 7, each of the first stationary blade 23A and the first moving blade 22A is provided on one side (left side in the figure) of the rotor shaft 21 in the axial direction, and the second stationary blade is provided. Each of the blade 23B and the second rotor blade 22B is provided on the other side (right side in the figure) of the rotor shaft 21 in the axial direction.
 以下、ロータシャフト21の軸方向、すなわちタービン2の軸線CAの延在する方向、における第2の動翼22Bに対して第1の動翼22Aが位置する側を前方側と定義し、上記前方側とは反対側を後方側と定義する。また、タービン2の径方向を単に径方向と称し、タービン2の周方向を単に周方向と称することがある。 Hereinafter, the side on which the first rotor blade 22A is located with respect to the second rotor blade 22B in the axial direction of the rotor shaft 21, that is, the direction in which the axis CA of the turbine 2 extends is defined as the front side. The side opposite to the side is defined as the rear side. Further, the radial direction of the turbine 2 may be simply referred to as a radial direction, and the circumferential direction of the turbine 2 may be simply referred to as a circumferential direction.
 図示される実施形態では、図6、図7に示されるように、第1の静翼23Aは、第1の動翼22Aよりも後方側に配置され、第2の静翼23Bは、第2の動翼22Bよりも前方側に位置している。 In the illustrated embodiment, as shown in FIGS. 6 and 7, the first blade 23A is arranged behind the first blade 22A and the second blade 23B is the second. It is located on the front side of the moving blade 22B.
 図示される実施形態では、図6、図7に示されるように、ロータシャフト21は、タービン2の軸線CAに沿って延在するシャフト部211と、シャフト部211の外面212から径方向における外側に円板状に突出する複数のディスク部213と、を含む。複数のディスク部213は、軸方向における一方側(前方側)に設けられる前方側ディスク部213Cであって、第1の動翼22Aが外周に取り付けられた前方側ディスク部213Cと、軸方向における他方側(後方側)に設けられる後方側ディスク部213Dであって、第2の動翼22Bが外周に取り付けられた後方側ディスク部213Dと、を含む。 In the illustrated embodiment, as shown in FIGS. 6 and 7, the rotor shaft 21 has a shaft portion 211 extending along the axis CA of the turbine 2 and an outer side in the radial direction from the outer surface 212 of the shaft portion 211. Includes a plurality of disc portions 213 protruding in a disk shape. The plurality of disk portions 213 are front side disk portions 213C provided on one side (front side) in the axial direction, and the front side disk portions 213C to which the first rotor blade 22A is attached to the outer periphery and the front disk portion 213C in the axial direction. It is a rear side disk portion 213D provided on the other side (rear side), and includes a rear side disk portion 213D to which a second rotor blade 22B is attached to the outer periphery.
 図示される実施形態では、図6、図7に示されるように、ケーシング7は、タービン2の軸方向において第1の動翼22Aと第2の動翼22Bとの間に配置されるとともに、ロータシャフト21を収容するシャフト収容部91と、シャフト収容部91の外周を覆う外側ケーシング92であって、シャフト収容部91との間に熱媒体を静翼23に導入するための熱媒体導入路93を形成する外側ケーシング92と、シャフト収容部91と外側ケーシング92との間に配置される隔壁94であって、熱媒体導入路93を軸方向における一方側(前方側)に設けられる前方側熱媒体導入路93Aと、軸方向における他方側(後方側)に設けられる後方側熱媒体導入路93Bと、に区分する隔壁94と、を含む。前方側熱媒体導入路93Aは、径方向における外側から流入した熱媒体を第1の動翼22Aに軸方向における後方側から導入するための流路である。後方側熱媒体導入路93Bは、径方向における外側から流入した熱媒体を第2の動翼22Bに軸方向における前方側から導入するための流路である。 In the illustrated embodiment, as shown in FIGS. 6 and 7, the casing 7 is arranged between the first moving blade 22A and the second moving blade 22B in the axial direction of the turbine 2 and is also arranged. A heat medium introduction path for introducing a heat medium into the stationary blade 23 between the shaft accommodating portion 91 accommodating the rotor shaft 21 and the outer casing 92 covering the outer periphery of the shaft accommodating portion 91 and the shaft accommodating portion 91. A partition wall 94 arranged between the outer casing 92 forming the 93 and the shaft accommodating portion 91 and the outer casing 92, and the front side provided with the heat medium introduction path 93 on one side (front side) in the axial direction. It includes a partition wall 94 divided into a heat medium introduction path 93A, a rear side heat medium introduction path 93B provided on the other side (rear side) in the axial direction, and a rear side heat medium introduction path 93B. The front side heat medium introduction path 93A is a flow path for introducing the heat medium flowing from the outside in the radial direction into the first rotor blade 22A from the rear side in the axial direction. The rear side heat medium introduction path 93B is a flow path for introducing the heat medium flowing from the outside in the radial direction into the second rotor blade 22B from the front side in the axial direction.
 図6、図7に示される実施形態では、シャフト収容部91は、第1の静翼23Aの内周部(内輪)および第2の静翼23Bの内周部(内輪)を支持している。シャフト収容部91の前方端911とロータシャフト21との間にシール部材101が配置され、これらの間をシールしている。シャフト収容部91の後方端912とロータシャフト21との間にシール部材102が配置され、これらの間をシールしている。図6、図7では、前方端911および後方端912の夫々は、径方向における内側に向かって突出する突出部であって、ロータシャフト21との間にシール部材101、102が配置された突出部を含む。 In the embodiment shown in FIGS. 6 and 7, the shaft accommodating portion 91 supports the inner peripheral portion (inner ring) of the first stationary blade 23A and the inner peripheral portion (inner ring) of the second stationary blade 23B. .. A sealing member 101 is arranged between the front end 911 of the shaft accommodating portion 91 and the rotor shaft 21 to seal between them. A sealing member 102 is arranged between the rear end 912 of the shaft accommodating portion 91 and the rotor shaft 21 to seal between them. In FIGS. 6 and 7, each of the front end 911 and the rear end 912 is a protrusion that protrudes inward in the radial direction, and the protrusions 101 and 102 are arranged between the front end 911 and the rotor shaft 21. Including the part.
 図6、図7に示される実施形態では、外側ケーシング92は、第1の静翼23Aの外周部(外輪)および第2の静翼23Bの外周部(外輪)を支持している。また、外側ケーシング92は、第1の動翼22Aおよび第2の動翼22Bを収容している。 In the embodiment shown in FIGS. 6 and 7, the outer casing 92 supports the outer peripheral portion (outer ring) of the first stationary blade 23A and the outer peripheral portion (outer ring) of the second stationary blade 23B. Further, the outer casing 92 accommodates the first rotor blade 22A and the second rotor blade 22B.
 図示される実施形態では、図6、図7に示されるように、ケーシング7は、前方側熱媒体導入路93Aに径方向における外側から熱媒体を導入するための第1の導入口951を有する第1の熱媒体導入部95と、後方側熱媒体導入路93Bに径方向における外側から熱媒体を導入するための第2の導入口961を有する第2の熱媒体導入部96と、第1の動翼22Aを通過した熱媒体を第2の導入口961に導くための連絡流路970を形成する連絡流路形成部97と、第2の動翼22Bを通過した熱媒体を軸方向における後方側に排出するための排出流路980を形成する排出流路形成部98と、をさらに含む。 In the illustrated embodiment, as shown in FIGS. 6 and 7, the casing 7 has a first introduction port 951 for introducing the heat medium from the outside in the radial direction into the front side heat medium introduction path 93A. A first heat medium introduction unit 95, a second heat medium introduction unit 96 having a second introduction port 961 for introducing a heat medium from the outside in the radial direction into the rear side heat medium introduction path 93B, and a first. A communication flow path forming portion 97 forming a communication flow path 970 for guiding the heat medium passing through the moving blade 22A to the second introduction port 961 and a heat medium passing through the second moving blade 22B in the axial direction. Further includes a discharge flow path forming portion 98 for forming a discharge flow path 980 for discharging to the rear side.
 主流路42を流れてケーシング7の内部に導入された熱媒体は、第1の静翼23A、第1の動翼22A、第2の静翼23Bおよび第2の動翼22Bをこの順に通過した後に、ケーシング7の外部に排出される。具体的には、第1の導入口951を通じてケーシング7の内部に導入された熱媒体は、前方側熱媒体導入路93Aを軸方向に沿って前方側に向かって流れて第1の静翼23Aおよび第1の動翼22Aを通過する。第1の動翼22Aを通過した熱媒体は、連絡流路970および第2の導入口961を流れて後方側熱媒体導入路93Bに導かれる。後方側熱媒体導入路93Bに導かれた熱媒体は、後方側熱媒体導入路93Bを軸方向に沿って後方側に向かって流れて第2の静翼23Bおよび第2の動翼22Bを通過する。第2の動翼22Bを通過した熱媒体は、排出流路980を軸方向に沿って後方側に流れた後に、ケーシング7の外部に排出される。 The heat medium flowing through the main flow path 42 and introduced into the casing 7 passed through the first stationary blade 23A, the first moving blade 22A, the second stationary blade 23B, and the second moving blade 22B in this order. Later, it is discharged to the outside of the casing 7. Specifically, the heat medium introduced into the casing 7 through the first introduction port 951 flows forward along the front side heat medium introduction path 93A toward the front side, and the first stationary blade 23A. And pass through the first rotor blade 22A. The heat medium that has passed through the first rotor blade 22A flows through the communication flow path 970 and the second introduction port 961 and is guided to the rear side heat medium introduction path 93B. The heat medium guided to the rear side heat medium introduction path 93B flows toward the rear side along the rear side heat medium introduction path 93B in the axial direction and passes through the second stationary blade 23B and the second moving blade 22B. do. The heat medium that has passed through the second rotor blade 22B flows rearward along the discharge flow path 980 along the axial direction, and then is discharged to the outside of the casing 7.
 第1の動翼22Aを通過する熱媒体は、軸方向における後方側から前方側に向かって流れるのに対して、第2の動翼22Bを通過する熱媒体は、軸方向における前方側から後方側に向かって流れる。つまり、第2の動翼22Bを通過する熱媒体は、軸方向において第1の動翼22Aを通過する熱媒体とは反対側に流れる。これにより、第1の動翼22Aや前方側ディスク部213Cが熱媒体から受圧して生じる前方側に向かう第1のスラストT1と、第2の動翼22Bや後方側ディスク部213Dが熱媒体から受圧して生じる後方側に向かう第2のスラストT2と、が相殺するため、ロータシャフト21のスラストを低減できる。 The heat medium passing through the first rotor blade 22A flows from the rear side to the front side in the axial direction, whereas the heat medium passing through the second rotor blade 22B flows from the front side to the rear side in the axial direction. It flows toward the side. That is, the heat medium passing through the second rotor blade 22B flows to the opposite side of the heat medium passing through the first rotor blade 22A in the axial direction. As a result, the first thrust T1 toward the front side generated by receiving pressure from the heat medium by the first rotor blade 22A and the front disk portion 213C, and the second rotor blade 22B and the rear disk portion 213D from the heat medium. Since the second thrust T2 toward the rear side generated by receiving the pressure cancels out, the thrust of the rotor shaft 21 can be reduced.
 上記の構成によれば、ロータシャフト21の一方側(前方側)に第1の動翼22Aを設け、ロータシャフト21の他方側(後方側)に第2の動翼22Bを設けることで、ロータシャフト21のスラストを低減できるため、冷熱発電用のタービン2の信頼性を向上させることができる。 According to the above configuration, the rotor blade 22A is provided on one side (front side) of the rotor shaft 21, and the second rotor blade 22B is provided on the other side (rear side) of the rotor shaft 21. Since the thrust of the shaft 21 can be reduced, the reliability of the turbine 2 for cryogenic power generation can be improved.
 上述したタービン2は、第1の動翼22Aを通過した熱媒体を第2の静翼23Bに供給するための連結ライン84であって、途中合流ライン82の下流端822が接続された連結ライン84をさらに備える。 The turbine 2 described above is a connecting line 84 for supplying a heat medium that has passed through the first rotor blade 22A to the second stationary blade 23B, and is a connecting line to which the downstream end 822 of the intermediate confluence line 82 is connected. 84 is further provided.
 図示される実施形態では、図6、図7に示されるように、熱媒体導入ライン81は、ケーシング7の内部に形成された、第1の導入口951および前方側熱媒体導入路93Aを含む。連結ライン84は、ケーシング7の内部に形成された、連絡流路970と、第2の導入口961と、後方側熱媒体導入路93Bと、を含む。
 図6に示される実施形態では、途中合流ライン82は、第1の熱媒体導入部95に上流端821が接続され、下流端822が第2の熱媒体導入部96に接続された接続配管82Bを含む。接続配管82Bは、第1の導入口951と第2の導入口961を熱媒体が流通可能に連絡しており、接続配管82Bを通じて第1の導入口951から第2の導入口961に熱媒体が流出するようになっている。
 図7に示される実施形態では、途中合流ライン82は、第1の熱媒体導入部95よりも上流側に上流端821が接続され、下流端822が第2の熱媒体導入部96に接続されたバイパス配管82Cを含む。
In the illustrated embodiment, as shown in FIGS. 6 and 7, the heat medium introduction line 81 includes a first introduction port 951 and a front heat medium introduction path 93A formed inside the casing 7. .. The connecting line 84 includes a connecting flow path 970 formed inside the casing 7, a second introduction port 961, and a rear side heat medium introduction path 93B.
In the embodiment shown in FIG. 6, the intermediate merging line 82 has a connection pipe 82B in which the upstream end 821 is connected to the first heat medium introduction section 95 and the downstream end 822 is connected to the second heat medium introduction section 96. including. The connection pipe 82B communicates the first introduction port 951 and the second introduction port 961 so that the heat medium can be distributed, and the heat medium is connected from the first introduction port 951 to the second introduction port 961 through the connection pipe 82B. Is coming out.
In the embodiment shown in FIG. 7, in the intermediate merging line 82, the upstream end 821 is connected to the upstream side of the first heat medium introduction unit 95, and the downstream end 822 is connected to the second heat medium introduction unit 96. Includes the bypass pipe 82C.
 上記の構成によれば、連結ライン84に途中合流ライン82が合流しているので、第1の動翼22Aを通過した熱媒体と、途中合流ライン82を通過した熱媒体と、を第2の静翼23Bに導入できる。これにより、簡単な構造で、第2の動翼22Bに導入される熱媒体の量を増加させることでき、冷熱発電用のタービン2の出力を向上させることができる。 According to the above configuration, since the merging line 82 joins the connecting line 84, the heat medium that has passed through the first rotor blade 22A and the heat medium that has passed through the merging line 82 are second. It can be introduced to the stationary blade 23B. Thereby, with a simple structure, the amount of the heat medium introduced into the second rotor blade 22B can be increased, and the output of the turbine 2 for cryogenic power generation can be improved.
 幾つかの実施形態では、図6、図7に示されるように、上述したシャフト収容部91は、その内部に被駆動源100を収容している。被駆動源100は、ロータシャフト21の回転力が伝達されて駆動するように構成されている。被駆動源100は、発電機11、ポンプ、および圧縮機の少なくとも一つを含む。図6、図7に示される実施形態では、被駆動源100は、上述した発電機11を含む。発電機11は、ロータシャフト21に取り付けられた、永久磁石を含むモータロータ11Aと、モータロータ11Aよりも径方向における外側に配置され、シャフト収容部91に支持されたモータステータ11Bと、を含む。 In some embodiments, as shown in FIGS. 6 and 7, the shaft accommodating portion 91 described above accommodates the driven source 100 therein. The driven source 100 is configured to be driven by transmitting the rotational force of the rotor shaft 21. The driven source 100 includes at least one of a generator 11, a pump, and a compressor. In the embodiment shown in FIGS. 6 and 7, the driven source 100 includes the generator 11 described above. The generator 11 includes a motor rotor 11A including a permanent magnet attached to the rotor shaft 21, and a motor stator 11B arranged radially outside the motor rotor 11A and supported by the shaft accommodating portion 91.
 上記の構成によれば、シャフト収容部91の内部に被駆動源100を収容することで、被駆動源100を外部に設ける場合に比べて、冷熱発電用のタービン2の大型化を抑制できる。 According to the above configuration, by accommodating the driven source 100 inside the shaft accommodating portion 91, it is possible to suppress an increase in the size of the turbine 2 for cryogenic power generation as compared with the case where the driven source 100 is provided outside.
 幾つかの実施形態では、図6、図7に示されるように、上述したシャフト収容部91は、その内部に、スラストカラー103と、スラストカラー103よりも前方側にスラストカラー103に対面して配置される前方側スラスト軸受104と、スラストカラー103よりも後方側にスラストカラー103に対面して配置される後方側スラスト軸受105と、を収容している。スラストカラー103は、ロータシャフト21のシャフト部211に取り付けられており、前方側スラスト軸受104および後方側スラスト軸受105の夫々は、シャフト収容部91に支持されている。 In some embodiments, as shown in FIGS. 6 and 7, the shaft accommodating portion 91 described above faces the thrust collar 103 inside and the thrust collar 103 in front of the thrust collar 103. It houses the front thrust bearing 104 to be arranged and the rear thrust bearing 105 arranged to face the thrust collar 103 on the rear side of the thrust collar 103. The thrust collar 103 is attached to the shaft portion 211 of the rotor shaft 21, and each of the front side thrust bearing 104 and the rear side thrust bearing 105 is supported by the shaft accommodating portion 91.
 上記の構成によれば、シャフト収容部91の内部にスラストカラー103やスラスト軸受(前方側スラスト軸受104、後方側スラスト軸受105)を収容することで、スラストカラー103やスラスト軸受を外部に設ける場合に比べて、冷熱発電用のタービン2の大型化を抑制できる。 According to the above configuration, when the thrust collar 103 and the thrust bearing (front side thrust bearing 104, rear side thrust bearing 105) are accommodated inside the shaft accommodating portion 91, the thrust collar 103 and the thrust bearing are provided outside. Compared with the above, it is possible to suppress the increase in size of the turbine 2 for thermal power generation.
 幾つかの実施形態では、図6に示されるように、上述した途中合流ライン82は、ケーシング7の内部において熱媒体導入ライン81から分岐し、ケーシング7の内部において連結ライン84に接続された。 In some embodiments, as shown in FIG. 6, the above-mentioned intermediate merging line 82 branches from the heat medium introduction line 81 inside the casing 7 and is connected to the connecting line 84 inside the casing 7.
 図示される実施形態では、図6に示されるように、熱媒体導入ライン81は、ケーシング7の内部に形成された、第1の導入口951および前方側熱媒体導入路93Aを含む。連結ライン84は、ケーシング7の内部に形成された、連絡流路970と、第2の導入口961と、後方側熱媒体導入路93Bと、を含む。図6に示される実施形態では、途中合流ライン82は、第1の熱媒体導入部95に上流端821が接続され、下流端822が第2の熱媒体導入部96に接続された接続配管82Bを含む。接続配管82Bは、第1の導入口951と第2の導入口961を熱媒体が流通可能に連絡する流路を内部に有し、接続配管82Bを通じて第1の導入口951から第2の導入口961に熱媒体が流出するようになっている。 In the illustrated embodiment, as shown in FIG. 6, the heat medium introduction line 81 includes a first introduction port 951 and a front side heat medium introduction path 93A formed inside the casing 7. The connecting line 84 includes a connecting flow path 970 formed inside the casing 7, a second introduction port 961, and a rear side heat medium introduction path 93B. In the embodiment shown in FIG. 6, the intermediate merging line 82 has a connection pipe 82B in which the upstream end 821 is connected to the first heat medium introduction section 95 and the downstream end 822 is connected to the second heat medium introduction section 96. including. The connection pipe 82B has a flow path inside which connects the first introduction port 951 and the second introduction port 961 so that the heat medium can flow, and the first introduction port 951 to the second introduction port 951 to the second introduction port 951 through the connection pipe 82B. The heat medium is designed to flow out to the mouth 961.
 上記の構成によれば、途中合流ライン82(接続配管82B)の構造を簡単なものにできるので、冷熱発電用のタービン2の高額化を抑制できる。 According to the above configuration, the structure of the merging line 82 (connecting pipe 82B) can be simplified, so that the cost of the turbine 2 for cryogenic power generation can be suppressed.
 幾つかの実施形態では、図7に示されるように、上述した途中合流ライン82は、前記ケーシング7の外部において熱媒体導入ライン81から分岐し、ケーシング7の内部において連結ライン84に接続された。 In some embodiments, as shown in FIG. 7, the above-mentioned intermediate merging line 82 branches from the heat medium introduction line 81 outside the casing 7 and is connected to the connecting line 84 inside the casing 7. ..
 図示される実施形態では、図7に示されるように、熱媒体導入ライン81は、ケーシング7の外部に形成された、第1の導入口951よりも流れ方向における上流側の上述した主流路42の一部を含む。連結ライン84は、ケーシング7の内部に形成された、連絡流路970と、第2の導入口961と、後方側熱媒体導入路93Bと、を含む。図7に示される実施形態では、途中合流ライン82は、第1の導入口951よりも流れ方向における上流側の上述した主流路42に上流端821が接続され、下流端822が第2の熱媒体導入部96に接続されたバイパス配管82Cを含む。 In the illustrated embodiment, as shown in FIG. 7, the heat medium introduction line 81 is formed on the outside of the casing 7 and is the above-mentioned main flow path 42 on the upstream side in the flow direction from the first introduction port 951. Including a part of. The connecting line 84 includes a connecting flow path 970 formed inside the casing 7, a second introduction port 961, and a rear side heat medium introduction path 93B. In the embodiment shown in FIG. 7, in the intermediate merging line 82, the upstream end 821 is connected to the above-mentioned main flow path 42 on the upstream side in the flow direction from the first introduction port 951, and the downstream end 822 is the second heat. The bypass pipe 82C connected to the medium introduction unit 96 is included.
 上記の構成によれば、途中合流ライン82を、ケーシング7の外部において熱媒体導入ライン81から分岐させることで、途中合流ライン82の分岐位置の設計の自由度を高めることができる。また、ケーシング7の外部において熱媒体導入ライン81から分岐させることで、ケーシング7の内部構造の複雑化を抑制でき、ひいては冷熱発電用のタービン2の高価格化を抑制できる。 According to the above configuration, by branching the intermediate merging line 82 from the heat medium introduction line 81 outside the casing 7, the degree of freedom in designing the branch position of the intermediate merging line 82 can be increased. Further, by branching from the heat medium introduction line 81 outside the casing 7, the complexity of the internal structure of the casing 7 can be suppressed, and the price increase of the turbine 2 for cryogenic power generation can be suppressed.
 図8は、本開示の一実施形態にかかる冷熱発電用のタービンを説明するための説明図である。
 幾つかの実施形態では、図8に示されるように、上述した冷熱発電用のタービン2は、上述した連結ライン84における途中合流ライン82との接続部841よりも上流側を流れる熱媒体と、この熱媒体よりも高温の第2の熱媒体と、の間で熱交換を行うように構成された熱交換器106をさらに備える。
FIG. 8 is an explanatory diagram for explaining a turbine for cryogenic power generation according to an embodiment of the present disclosure.
In some embodiments, as shown in FIG. 8, the above-mentioned cryogenic energy storage turbine 2 has a heat medium flowing upstream of the connection portion 841 with the intermediate confluence line 82 in the above-mentioned connection line 84. Further, a heat exchanger 106 configured to exchange heat with a second heat medium having a temperature higher than that of this heat medium is further provided.
 図示される実施形態では、熱交換器106は、上述した連結ライン84の接続部841よりも上流側に設けられた熱媒体が流れる熱媒体流路107と、第2の熱媒体が流れる第2熱媒体流路108と、を含む。熱媒体流路107内の熱媒体と、第2の熱媒体流路108内の第2の熱媒体と、の間で熱交換が行われて、熱媒体流路107内の熱媒体が加熱される。第2の熱媒体は、熱媒体流路107に導入される熱媒体よりも高温であればよい。この第2の熱媒体は、上述した加熱水供給ライン5を流れる加熱水であってもよいし、上述した中間熱媒体循環ライン6を流れる中間熱媒体であってもよい。 In the illustrated embodiment, the heat exchanger 106 has a heat medium flow path 107 in which a heat medium is provided upstream of the connection portion 841 of the connection line 84 described above, and a second heat medium through which the second heat medium flows. Includes a heat medium flow path 108. Heat exchange is performed between the heat medium in the heat medium flow path 107 and the second heat medium in the second heat medium flow path 108 to heat the heat medium in the heat medium flow path 107. To. The second heat medium may have a higher temperature than the heat medium introduced into the heat medium flow path 107. The second heat medium may be the heated water flowing through the above-mentioned heated water supply line 5, or may be the intermediate heat medium flowing through the above-mentioned intermediate heat medium circulation line 6.
 図8に示される実施形態では、上述した熱交換器106は、上述した第2の熱交換器13を含む。すなわち、上述した熱交換器106は、上述した熱媒体循環ライン4に設けられた熱媒体が流れる熱媒体流路131と、上述した中間熱媒体循環ライン6に設けられた中間熱媒体が流れる中間熱媒体流路132と、上述した連結ライン84の接続部841よりも上流側に設けられた熱媒体が流れる熱媒体流路107と、を含む。熱媒体流路132内の熱媒体や熱媒体流路107内の熱媒体は、中間熱媒体流路132内の熱媒体により加熱される。 In the embodiment shown in FIG. 8, the heat exchanger 106 described above includes the second heat exchanger 13 described above. That is, in the above-mentioned heat exchanger 106, an intermediate between the heat medium flow path 131 in which the heat medium provided in the above-mentioned heat medium circulation line 4 flows and the intermediate heat medium provided in the above-mentioned intermediate heat medium circulation line 6 flows. It includes a heat medium flow path 132 and a heat medium flow path 107 through which a heat medium is provided upstream of the connection portion 841 of the connection line 84 described above. The heat medium in the heat medium flow path 132 and the heat medium in the heat medium flow path 107 are heated by the heat medium in the intermediate heat medium flow path 132.
 上記の構成によれば、連結ライン84における途中合流ライン82との接続部841よりも上流側を流れる熱媒体は、第1の動翼22Aを通過して、その温度が低下している。この温度が低下した熱媒体を熱交換器106により加熱(再熱)した後に、第2の動翼22Bに送ることで、冷熱発電用のタービン2の熱効率および出力を向上させることができる。 According to the above configuration, the heat medium flowing upstream of the connecting portion 841 with the intermediate merging line 82 in the connecting line 84 passes through the first rotor blade 22A, and its temperature is lowered. By heating (reheating) the heat medium whose temperature has decreased by the heat exchanger 106 and then sending it to the second moving blade 22B, the thermal efficiency and output of the turbine 2 for cryogenic power generation can be improved.
 幾つかの実施形態では、図1~図7に示されるように、上述した冷熱発電用のタービン2は、設計流量において、上述した第1の静翼23Aに導入される熱媒体の圧力P1の、第1の動翼22Aと第2の静翼23Bとの間における熱媒体の圧力P2に対する圧力比P1/P2が、臨界圧力比よりも大きくなるように構成されている。 In some embodiments, as shown in FIGS. 1-7, the above-mentioned turbine 2 for cryogenic power generation has a pressure P1 of a heat medium introduced into the above-mentioned first stationary blade 23A at a design flow rate. , The pressure ratio P1 / P2 to the pressure P2 of the heat medium between the first moving blade 22A and the second stationary blade 23B is configured to be larger than the critical pressure ratio.
 上記の構成によれば、途中合流ライン82を通じて熱媒体を第2の静翼23Bに導入することで、第1の動翼22Aと第2の静翼23Bとの間における熱媒体の圧力P2が大きくなる。冷熱発電用のタービン2は、設計流量において、圧力比P1/P2が、臨界圧力比よりも大きくなるように構成されている。この場合には、設計流量においてチョークするため、第1の静翼23Aに導入される熱媒体の流速が上記圧力P2の影響を受けなくなり、第1の静翼23Aに導入される熱媒体の流量が上記圧力P1に依存するようになる。このため、途中合流ライン82を通じた熱媒体の導入量に関わらず、一定量の熱媒体を第1の静翼23Aに導入できる。これにより、チョーク流れが生じない場合に比べて、第2の動翼22Bへの熱媒体の導入量を増加させることができ、ひいては冷熱発電システム1の出力を効果的に向上させることができる。
 なお、仮にタービン2が、設計流量において、圧力比P1/P2が、臨界圧力比よりも小さくなるように構成されている場合には、途中合流ライン82を通じた第2の静翼23Bへの熱媒体の導入に応じて、上記圧力P2が大きくなり、これに対応して第1の静翼23Aに導入される熱媒体の流速が低下し、第1の静翼23Aに導入される熱媒体の流量が小さなものとなる虞がある。
According to the above configuration, by introducing the heat medium into the second stationary blade 23B through the merging line 82, the pressure P2 of the heat medium between the first rotor blade 22A and the second stationary blade 23B is increased. growing. The turbine 2 for cryogenic power generation is configured such that the pressure ratio P1 / P2 is larger than the critical pressure ratio at the design flow rate. In this case, since the choke is performed at the design flow rate, the flow velocity of the heat medium introduced into the first stationary blade 23A is not affected by the pressure P2, and the flow rate of the heat medium introduced into the first stationary blade 23A is not affected. Will depend on the pressure P1. Therefore, a fixed amount of heat medium can be introduced into the first stationary blade 23A regardless of the amount of heat medium introduced through the merging line 82 on the way. As a result, the amount of the heat medium introduced into the second rotor blade 22B can be increased as compared with the case where the choked flow does not occur, and the output of the cryogenic power generation system 1 can be effectively improved.
If the turbine 2 is configured so that the pressure ratio P1 / P2 is smaller than the critical pressure ratio at the design flow rate, the heat to the second stationary blade 23B through the merging line 82 is generated. With the introduction of the medium, the pressure P2 increases, and in response to this, the flow velocity of the heat medium introduced into the first stationary blade 23A decreases, and the heat medium introduced into the first stationary blade 23A decreases. There is a risk that the flow rate will be small.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the above-mentioned embodiment, and includes a form in which the above-mentioned embodiment is modified and a form in which these forms are appropriately combined.
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。 The contents described in some of the above-mentioned embodiments are grasped as follows, for example.
1)本開示の少なくとも一実施形態にかかる冷熱発電用のタービン(2)は、
 液化ガスを加熱するための熱媒体が循環するように構成された熱媒体循環ライン(4)に設けられる冷熱発電用のタービン(2)であって、
 ロータシャフト(21)と、
 前記ロータシャフトを収容するケーシング(7)と、
 前記ロータシャフトの周りに設けられた複数の動翼(22)であって、第1の動翼(22A)と、前記第1の動翼よりも下流側に設けられる第2の動翼(22B)と、を含む複数の動翼(22)と、
 前記ケーシングの内側に支持された複数の静翼(23)であって、前記第1の動翼(22A)よりも上流側に設けられる第1の静翼(23A)と、前記第1の動翼(22A)よりも下流側、且つ前記第2の動翼(22B)よりも上流側に設けられる第2の静翼(23B)と、を含む複数の静翼(23)と、
 前記第1の静翼(23A)に前記熱媒体を導入するための熱媒体導入ライン(81)と、
 前記熱媒体導入ライン(81)から分岐して前記第1の静翼および前記第1の動翼を迂回して前記第2の静翼に前記熱媒体を導入するための途中合流ライン(82)と、
を備える。
1) The turbine (2) for cryogenic power generation according to at least one embodiment of the present disclosure is
A turbine (2) for cryogenic power generation provided in a heat medium circulation line (4) configured to circulate a heat medium for heating a liquefied gas.
Rotor shaft (21) and
A casing (7) for accommodating the rotor shaft and
A plurality of rotor blades (22) provided around the rotor shaft, the first rotor blade (22A) and the second rotor blade (22B) provided downstream of the first rotor blade. ), And multiple blades (22), including
A plurality of stationary blades (23) supported inside the casing, the first stationary blade (23A) provided on the upstream side of the first moving blade (22A), and the first moving blade. A plurality of stationary blades (23) including a second stationary blade (23B) provided downstream of the blade (22A) and upstream of the second moving blade (22B).
A heat medium introduction line (81) for introducing the heat medium into the first stationary blade (23A),
An intermediate merging line (82) for introducing the heat medium into the second stationary blade by branching from the heat medium introduction line (81) and bypassing the first stationary blade and the first moving blade. When,
To prepare for.
 上記1)の構成によれば、冷熱発電用のタービンは、第1の静翼に熱媒体を導入するための熱媒体導入ラインと、熱媒体導入ラインから分岐して第1の静翼および第1の動翼を迂回して第2の静翼に熱媒体を導入するための途中合流ラインと、を備える。例えば、熱源である海水の温度が低い場合には、熱媒体導入ラインを通じて第1の静翼に導入される熱媒体の量が制限され、タービンが部分負荷運転となることがある。第2の静翼には、第1の動翼に対して仕事をして温度低下した熱媒体が導入されるので、第2の静翼は第1の静翼と比べて、導入可能な熱媒体の温度が低い。このため、第1の静翼および第1の動翼を迂回する途中合流ラインを通じて熱媒体を第2の静翼に導入することで、第2の静翼の下流側に位置する第2の動翼への熱媒体の導入量を増加させることができる。第2の動翼に導入される熱媒体の量を増加させることで、冷熱発電用のタービンの出力を向上させることができる。 According to the configuration of 1) above, the turbine for cryogenic power generation has a heat medium introduction line for introducing a heat medium into the first stationary blade, and a first stationary blade and a first vane branching from the heat medium introduction line. It is provided with an intermediate merging line for introducing a heat medium into the second stationary wing by bypassing the moving wing of 1. For example, when the temperature of seawater, which is a heat source, is low, the amount of heat medium introduced into the first vane through the heat medium introduction line is limited, and the turbine may be in partial load operation. Since a heat medium having a temperature lowered by working on the first rotor blade is introduced into the second rotor blade, the heat that can be introduced into the second rotor blade is higher than that of the first rotor blade. The temperature of the medium is low. Therefore, by introducing a heat medium into the second rotor blade through a confluence line that bypasses the first rotor blade and the first rotor blade, the second rotor blade is located downstream of the second rotor blade. The amount of heat medium introduced into the blade can be increased. By increasing the amount of heat medium introduced into the second rotor blade, the output of the turbine for cryogenic power generation can be improved.
 また、上記1)の構成によれば、途中合流ラインにより、部分負荷運転時にタービンに供給可能な熱媒体の量を増やすことができる。これにより、タービンを迂回するバイパスラインを流れる熱媒体の量を減らすことができるため、冷熱発電システムの出力を向上させることができる。 Further, according to the configuration of 1) above, the amount of heat medium that can be supplied to the turbine during partial load operation can be increased by the intermediate merging line. As a result, the amount of heat medium flowing through the bypass line bypassing the turbine can be reduced, so that the output of the cryogenic power generation system can be improved.
 2)幾つかの実施形態では、上記1)に記載の冷熱発電用のタービン(2)であって、
 前記熱媒体導入ライン(81)は、
 前記ケーシング(7)の内部において前記複数の動翼(22)および前記複数の静翼(23)の外周側に形成された、前記第1の静翼(23A)に前記熱媒体を導入するための吸気室(81A)を含み、
 前記途中合流ライン(82)は、
 前記ケーシング(7)の内部において前記吸気室(81A)の内周側に形成された前記第1の動翼と前記第2の静翼との間の翼間空間(83)と、前記吸気室(81A)と、を隔てる前記ケーシングの隔壁部(71)を貫通する貫通孔(82A)を含む、
 前記冷熱発電用のタービン(2)は、前記貫通孔(82A)を閉塞可能な弁体(471)を有する開閉弁(47A)をさらに備える。
2) In some embodiments, the turbine (2) for cryogenic power generation according to 1) above.
The heat medium introduction line (81) is
To introduce the heat medium into the first stationary blade (23A) formed on the outer peripheral side of the plurality of moving blades (22) and the plurality of stationary blades (23) inside the casing (7). Including the intake chamber (81A) of
The merging line (82) on the way is
The interwing space (83) between the first rotor blade and the second stationary blade formed on the inner peripheral side of the intake chamber (81A) inside the casing (7), and the intake chamber. (81A) and a through hole (82A) penetrating the partition wall portion (71) of the casing separating the casing.
The turbine (2) for cryogenic power generation further includes an on-off valve (47A) having a valve body (471) capable of closing the through hole (82A).
 上記2)の構成によれば、熱媒体導入ラインは、上記吸気室を含み、途中合流ラインは、吸気室の内周側に形成された翼間空間と吸気室とを隔てるケーシングの隔壁部を貫通する貫通孔を含む。冷熱発電用のタービンは、貫通孔を閉塞可能な弁体を有する開閉弁を備える。この場合には、上記貫通孔を途中合流ラインとすることで、吸気室から翼間空間に熱媒体が導入されるので、途中合流ラインの構造を簡単なものにできる。また、上記貫通孔は弁体により閉塞できるため、開閉弁の開閉機構を簡単なものにできる。これにより、冷熱発電用のタービンの高額化を抑制できる。また、上記貫通孔は、翼間空間を点検する際の点検孔として利用可能であるため、翼間空間の点検作業を簡単に行うことができる。 According to the configuration of 2) above, the heat medium introduction line includes the intake chamber, and the intermediate confluence line includes the partition wall portion of the casing that separates the inter-blade space formed on the inner peripheral side of the intake chamber and the intake chamber. Includes through holes that penetrate. A turbine for cryogenic power generation includes an on-off valve having a valve body capable of closing a through hole. In this case, by making the through hole an intermediate merging line, a heat medium is introduced from the intake chamber into the inter-blade space, so that the structure of the intermediate merging line can be simplified. Further, since the through hole can be closed by the valve body, the opening / closing mechanism of the on-off valve can be simplified. As a result, it is possible to suppress the increase in the price of the turbine for cryogenic power generation. Further, since the through hole can be used as an inspection hole when inspecting the inter-blade space, the inspection work of the inter-blade space can be easily performed.
3)幾つかの実施形態では、上記2)に記載の冷熱発電用のタービン(2)であって、
 前記開閉弁(47A)は、スライド弁(47B)からなる。
3) In some embodiments, the turbine (2) for cryogenic power generation according to 2) above.
The on-off valve (47A) is composed of a slide valve (47B).
 上記3)の構成によれば、開閉弁は、スライド弁からなるので、その開閉機構を簡単なものにできる。また、隔壁部の周方向に間隔を空けて複数の貫通孔が形成されている場合に、二つ以上の複数の貫通孔をスライド弁の弁体により閉塞することで、開閉弁の個数を低減できる。これにより、冷熱発電用のタービンの高価格化を抑制できる。 According to the configuration of 3) above, the on-off valve is composed of a slide valve, so that the on-off mechanism can be simplified. Further, when a plurality of through holes are formed at intervals in the circumferential direction of the partition wall, the number of on-off valves is reduced by closing two or more of the through holes with the valve body of the slide valve. can. As a result, it is possible to suppress the increase in the price of the turbine for cryogenic power generation.
4)幾つかの実施形態では、上記1)に記載の冷熱発電用のタービン(2)であって、
 前記第1の静翼(23A)および前記第1の動翼(22A)の夫々は、前記ロータシャフト(21)の一方側に設けられ、
 前記第2の静翼(23B)および前記第2の動翼(22B)の夫々は、前記ロータシャフト(21)の他方側に設けられ、
 前記冷熱発電用のタービン(2)は、前記第1の動翼(22A)を通過した前記熱媒体を前記第2の静翼(23B)に供給するための連結ライン(84)であって、前記途中合流ライン(82)の下流端(822)が接続された連結ライン(84)をさらに備える。
4) In some embodiments, the turbine (2) for cryogenic power generation according to 1) above.
Each of the first stationary blade (23A) and the first moving blade (22A) is provided on one side of the rotor shaft (21).
Each of the second stationary blade (23B) and the second moving blade (22B) is provided on the other side of the rotor shaft (21).
The turbine (2) for cryogenic power generation is a connecting line (84) for supplying the heat medium that has passed through the first rotor blade (22A) to the second stationary blade (23B). A connecting line (84) to which the downstream end (822) of the intermediate merging line (82) is connected is further provided.
 上記4)の構成によれば、ロータシャフトの一方側に第1の動翼を設け、ロータシャフトの他方側に第2の動翼を設けることで、スラストを低減できるため、冷熱発電用のタービンの信頼性を向上させることができる。また、上記4)の構成によれば、連結ラインに途中合流ラインが合流しているので、第1の動翼を通過した熱媒体と、途中合流ラインを通過した熱媒体と、を第2の静翼に導入できる。これにより、簡単な構造で、第2の動翼に導入される熱媒体の量を増加させることでき、冷熱発電用のタービンの出力を向上させることができる。 According to the configuration of 4) above, the thrust can be reduced by providing the first rotor blade on one side of the rotor shaft and the second rotor blade on the other side of the rotor shaft, so that the turbine for cryogenic power generation can be reduced. Can improve the reliability of the. Further, according to the configuration of 4) above, since the merging line joins the connecting line in the middle, the heat medium that has passed through the first rotor blade and the heat medium that has passed through the merging line in the middle are second. Can be introduced to the stationary blade. Thereby, with a simple structure, the amount of the heat medium introduced into the second rotor blade can be increased, and the output of the turbine for cryogenic power generation can be improved.
5)幾つかの実施形態では、上記4)に記載の冷熱発電用のタービン(2)であって、
 前記途中合流ライン(82)は、前記ケーシング(7)の内部において前記熱媒体導入ライン(71)から分岐し、前記ケーシング(7)の内部において前記連結ライン(84)に接続された。
5) In some embodiments, the turbine (2) for cryogenic power generation according to 4) above.
The intermediate merging line (82) branched from the heat medium introduction line (71) inside the casing (7) and was connected to the connecting line (84) inside the casing (7).
 上記5)の構成によれば、途中合流ラインの構造を簡単なものにできるので、冷熱発電用のタービンの高額化を抑制できる。 According to the configuration of 5) above, the structure of the confluence line can be simplified, so that the cost of the turbine for cryogenic power generation can be suppressed.
6)幾つかの実施形態では、上記4)に記載の冷熱発電用のタービン(2)であって、
 前記途中合流ライン(82)は、前記ケーシング(7)の外部において前記熱媒体導入ライン(71)から分岐し、前記ケーシング(7)の内部において前記連結ライン(84)に接続された。
6) In some embodiments, the turbine (2) for cryogenic power generation according to 4) above.
The intermediate merging line (82) branched from the heat medium introduction line (71) outside the casing (7) and was connected to the connecting line (84) inside the casing (7).
 上記6)の構成によれば、ケーシングの外部において熱媒体導入ラインから分岐させることで、途中合流ラインの分岐位置の設計の自由度を高めることができる。また、ケーシングの外部において熱媒体導入ラインから分岐させることで、ケーシングの内部構造の複雑化を抑制でき、ひいては冷熱発電用のタービンの高価格化を抑制できる。 According to the configuration of 6) above, by branching from the heat medium introduction line outside the casing, it is possible to increase the degree of freedom in designing the branch position of the merging line in the middle. Further, by branching from the heat medium introduction line outside the casing, it is possible to suppress the complexity of the internal structure of the casing and, by extension, the price increase of the turbine for cryogenic power generation.
7)幾つかの実施形態では、上記4)~6)の何れかに記載の冷熱発電用のタービン(2)であって、
 前記連結ライン(84)における前記途中合流ライン(82)との接続部(841)よりも上流側を流れる前記熱媒体と、前記熱媒体よりも高温の第2の熱媒体と、の間で熱交換を行うように構成された熱交換器(106)をさらに備える。
7) In some embodiments, the turbine (2) for cryogenic power generation according to any one of 4) to 6) above.
Heat between the heat medium flowing upstream of the connection portion (841) with the intermediate confluence line (82) in the connection line (84) and the second heat medium having a temperature higher than that of the heat medium. Further comprises a heat exchanger (106) configured to perform the exchange.
 上記7)の構成によれば、連結ラインにおける途中合流ラインとの接続部よりも上流側を流れる熱媒体は、第1の動翼を通過して、その温度が低下している。この温度が低下した熱媒体を熱交換器により加熱(再熱)した後に、第2の動翼に送ることで、冷熱発電用のタービンの熱効率および出力を向上させることができる。 According to the configuration of 7) above, the heat medium flowing upstream of the connection portion with the intermediate confluence line in the connection line passes through the first rotor blade, and its temperature is lowered. By heating (reheating) the heat medium whose temperature has dropped by a heat exchanger and then sending it to the second moving blade, the thermal efficiency and output of the turbine for cryogenic power generation can be improved.
8)幾つかの実施形態では、上記1)~7)の何れかに記載の冷熱発電用のタービン(2)であって、
 前記冷熱発電用のタービンは、設計流量において、前記第1の静翼(23A)に導入される前記熱媒体の圧力P1の、前記第1の動翼(22A)と第2の静翼(23B)との間における前記熱媒体の圧力P2に対する圧力比P1/P2が、臨界圧力比よりも大きくなるように構成された。
8) In some embodiments, the turbine (2) for cryogenic power generation according to any one of 1) to 7) above.
The turbine for cryogenic power generation has the first moving blade (22A) and the second stationary blade (23B) at the pressure P1 of the heat medium introduced into the first stationary blade (23A) at the design flow rate. ), The pressure ratio P1 / P2 to the pressure P2 of the heat medium is configured to be larger than the critical pressure ratio.
 上記8)の構成によれば、途中合流ラインを通じて熱媒体を第2の静翼に導入することで、第1の静翼よりも下流側の熱媒体(第2の静翼に導入前の熱媒体)の圧力P2が大きくなる。冷熱発電用のタービンは、設計流量において、圧力比P1/P2が、臨界圧力比よりも大きくなるように構成されている。この場合には、設計流量においてチョークするため、第1の静翼に導入される熱媒体の流速が上記圧力P2の影響を受けなくなり、第1の静翼に導入される熱媒体の流量が上記圧力P1に依存するようになる。このため、途中合流ラインを通じた熱媒体の導入量に関わらず、一定量の熱媒体を第1の静翼に導入できる。これにより、チョーク流れが生じない場合に比べて、第2の動翼への熱媒体の導入量を増加させることができ、ひいては冷熱発電システムの出力を効果的に向上させることができる。 According to the configuration of 8) above, by introducing the heat medium into the second stationary blade through the confluence line in the middle, the heat medium downstream of the first stationary blade (heat before introduction into the second stationary blade). The pressure P2 of the medium) increases. The turbine for cryogenic power generation is configured such that the pressure ratio P1 / P2 is larger than the critical pressure ratio at the design flow rate. In this case, since the choke is performed at the design flow rate, the flow velocity of the heat medium introduced into the first stationary blade is not affected by the pressure P2, and the flow rate of the heat medium introduced into the first stationary blade is described above. It becomes dependent on the pressure P1. Therefore, a fixed amount of heat medium can be introduced into the first stationary blade regardless of the amount of heat medium introduced through the confluence line on the way. As a result, the amount of the heat medium introduced into the second rotor blade can be increased as compared with the case where the choked flow does not occur, and the output of the cryogenic power generation system can be effectively improved.
1      冷熱発電システム
2      タービン
21     ロータシャフト
211    シャフト部
212    外面
213    ディスク部
213A,213C 前方側ディスク部
213B,213D 後方側ディスク部
22     動翼
22A    第1の動翼
22B    第2の動翼
23     静翼
23A    第1の静翼
23B    第2の静翼
3      液化ガス供給ライン
31     液化ガス貯留装置
32     液化ガス用ポンプ
35     機器
4      熱媒体循環ライン
41     循環ポンプ
43,46,47A 開閉弁
47B    スライド弁
5      加熱水供給ライン
51     加熱水用ポンプ
6      中間熱媒体循環ライン
61     循環ポンプ
7      ケーシング
71     隔壁部
72     第1の静翼支持部
73     第2の静翼支持部
74     外側ケーシング
81     熱媒体導入ライン
81A    吸気室
82     途中合流ライン
82A    貫通孔
82B    接続配管
82C    バイパス配管
83     翼間空間
84     連結ライン
91     シャフト収容部
92     外側ケーシング
93     熱媒体導入路
93A    前方側熱媒体導入路
93B    後方側熱媒体導入路
94     隔壁
95     第1の熱媒体導入部
96     第2の熱媒体導入部
97     流路形成部
98     排出流路形成部
10     船体
10A    浮体
11     発電機
12     第1の熱交換器
13     第2の熱交換器
14     第3の熱交換器
15     供給元
15A    取水口
16     排出先
16A    排出口
17     バイパスライン
100    被駆動源
101,102 シール部材
103    スラストカラー
104    前方側スラスト軸受
105    後方側スラスト軸受
106    熱交換器
CA     軸線
P1,P2  圧力
T1     第1のスラスト
T2     第2のスラスト
1 Thermal power generation system 2 Turbine 21 Rotor shaft 211 Shaft section 212 Outer surface 213 Disc section 213A, 213C Front disk section 213B, 213D Rear disk section 22 Moving wing 22A First moving wing 22B Second moving wing 23 Static wing 23A 1st stationary wing 23B 2nd stationary wing 3 liquefied gas supply line 31 liquefied gas storage device 32 liquefied gas pump 35 equipment 4 heat medium circulation line 41 circulation pump 43,46,47A on-off valve 47B slide valve 5 heating water supply Line 51 Heating water pump 6 Intermediate heat medium circulation line 61 Circulation pump 7 Casing 71 Partition 72 First stationary blade support 73 Second stationary blade support 74 Outer casing 81 Heat medium introduction line 81A Intake chamber 82 Midway merge Line 82A Through hole 82B Connection pipe 82C Bypass pipe 83 Inter-blade space 84 Connection line 91 Shaft accommodating part 92 Outer casing 93 Heat medium introduction path 93A Front side heat medium introduction path 93B Rear side heat medium introduction path 94 Partition 95 First heat Medium introduction section 96 Second heat medium introduction section 97 Flow path forming section 98 Flow path forming section 10 Ship body 10A Floating body 11 Generator 12 First heat exchanger 13 Second heat exchanger 14 Third heat exchanger 15 Supply source 15A Intake port 16 Discharge destination 16A Discharge port 17 Bypass line 100 Driven source 101, 102 Seal member 103 Thrust collar 104 Front side thrust bearing 105 Rear side thrust bearing 106 Heat exchanger CA Axis line P1, P2 Pressure T1 1st Thrust T2 Second thrust

Claims (8)

  1.  液化ガスを加熱するための熱媒体が循環するように構成された熱媒体循環ラインに設けられる冷熱発電用のタービンであって、
     ロータシャフトと、
     前記ロータシャフトを収容するケーシングと、
     前記ロータシャフトの周りに設けられた複数の動翼であって、第1の動翼と、前記第1の動翼よりも下流側に設けられる第2の動翼と、を含む複数の動翼と、
     前記ケーシングの内側に支持された複数の静翼であって、前記第1の動翼よりも上流側に設けられる第1の静翼と、前記第1の動翼よりも下流側、且つ前記第2の動翼よりも上流側に設けられる第2の静翼と、を含む複数の静翼と、
     前記第1の静翼に前記熱媒体を導入するための熱媒体導入ラインと、
     前記熱媒体導入ラインから分岐して前記第1の静翼および前記第1の動翼を迂回して前記第2の静翼に前記熱媒体を導入するための途中合流ラインと、
    を備える、
    冷熱発電用のタービン。
    A turbine for cryogenic power generation provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas.
    With the rotor shaft
    The casing that houses the rotor shaft and
    A plurality of rotor blades provided around the rotor shaft, including a first rotor blade and a second rotor blade provided downstream of the first rotor blade. When,
    A plurality of stationary blades supported inside the casing, the first stationary blade provided on the upstream side of the first moving blade, the downstream side of the first moving blade, and the first one. A plurality of stationary blades including a second stationary blade provided on the upstream side of the second moving blade, and
    A heat medium introduction line for introducing the heat medium into the first stationary blade, and
    An intermediate confluence line for introducing the heat medium into the second stationary blade by branching from the heat medium introduction line and bypassing the first stationary blade and the first moving blade.
    To prepare
    Turbine for cryogenic power generation.
  2.  前記熱媒体導入ラインは、
     前記ケーシングの内部において前記複数の動翼および前記複数の静翼の外周側に形成された、前記第1の静翼に前記熱媒体を導入するための吸気室を含み、
     前記途中合流ラインは、
     前記ケーシングの内部において前記吸気室の内周側に形成された前記第1の動翼と前記第2の静翼との間の翼間空間と、前記吸気室と、を隔てる前記ケーシングの隔壁部を貫通する貫通孔を含む、
     前記冷熱発電用のタービンは、前記貫通孔を閉塞可能な弁体を有する開閉弁をさらに備える、
    請求項1に記載の冷熱発電用のタービン。
    The heat medium introduction line is
    An intake chamber for introducing the heat medium into the first stationary blade, which is formed on the outer peripheral side of the plurality of moving blades and the plurality of stationary blades inside the casing, is included.
    The merging line on the way is
    A partition wall portion of the casing that separates the inter-blade space between the first moving blade and the second stationary blade formed on the inner peripheral side of the intake chamber inside the casing and the intake chamber. Including through holes that penetrate the
    The turbine for cryogenic power generation further includes an on-off valve having a valve body capable of closing the through hole.
    The turbine for cryogenic power generation according to claim 1.
  3.  前記開閉弁は、スライド弁からなる、
    請求項2に記載の冷熱発電用のタービン。
    The on-off valve comprises a slide valve.
    The turbine for cryogenic power generation according to claim 2.
  4.  前記第1の静翼および前記第1の動翼の夫々は、前記ロータシャフトの一方側に設けられ、
     前記第2の静翼および前記第2の動翼の夫々は、前記ロータシャフトの他方側に設けられ、
     前記冷熱発電用のタービンは、前記第1の動翼を通過した前記熱媒体を前記第2の静翼に供給するための連結ラインであって、前記途中合流ラインの下流端が接続された連結ラインをさらに備える、
    請求項1に記載の冷熱発電用のタービン。
    Each of the first stationary blade and the first moving blade is provided on one side of the rotor shaft.
    Each of the second stationary blade and the second rotor blade is provided on the other side of the rotor shaft.
    The turbine for cryogenic power generation is a connection line for supplying the heat medium that has passed through the first rotor blade to the second stationary blade, and is a connection line to which the downstream end of the intermediate confluence line is connected. With more lines,
    The turbine for cryogenic power generation according to claim 1.
  5.  前記途中合流ラインは、前記ケーシングの内部において前記熱媒体導入ラインから分岐し、前記ケーシングの内部において前記連結ラインに接続された、
    請求項4に記載の冷熱発電用のタービン。
    The intermediate merging line branches from the heat medium introduction line inside the casing and is connected to the connecting line inside the casing.
    The turbine for cryogenic power generation according to claim 4.
  6.  前記途中合流ラインは、前記ケーシングの外部において前記熱媒体導入ラインから分岐し、前記ケーシングの内部において前記連結ラインに接続された、
    請求項4に記載の冷熱発電用のタービン。
    The intermediate merging line branches from the heat medium introduction line outside the casing and is connected to the connecting line inside the casing.
    The turbine for cryogenic power generation according to claim 4.
  7.  前記連結ラインにおける前記途中合流ラインとの接続部よりも上流側を流れる前記熱媒体と、前記熱媒体よりも高温の第2の熱媒体と、の間で熱交換を行うように構成された熱交換器をさらに備える、
    請求項4乃至6の何れか1項に記載の冷熱発電用のタービン。
    Heat configured to exchange heat between the heat medium flowing upstream of the connection portion with the intermediate confluence line in the connection line and the second heat medium having a temperature higher than that of the heat medium. Equipped with more exchangers,
    The turbine for cryogenic power generation according to any one of claims 4 to 6.
  8.  前記冷熱発電用のタービンは、設計流量において、前記第1の静翼に導入される前記熱媒体の圧力P1の、前記第1の動翼と第2の静翼との間における前記熱媒体の圧力P2に対する圧力比P1/P2が、臨界圧力比よりも大きくなるように構成された、
    請求項1乃至7の何れか1項に記載の冷熱発電用のタービン。
    The turbine for cryogenic power generation is a turbine of the heat medium between the first moving blade and the second stationary blade of the pressure P1 of the heat medium introduced into the first stationary blade at a design flow rate. The pressure ratio P1 / P2 to the pressure P2 is configured to be larger than the critical pressure ratio.
    The turbine for cryogenic power generation according to any one of claims 1 to 7.
PCT/JP2021/024732 2020-07-13 2021-06-30 Turbine for cryogenic power generation WO2022014331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-119688 2020-07-13
JP2020119688A JP7382907B2 (en) 2020-07-13 2020-07-13 Turbine for cold power generation

Publications (1)

Publication Number Publication Date
WO2022014331A1 true WO2022014331A1 (en) 2022-01-20

Family

ID=79555508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024732 WO2022014331A1 (en) 2020-07-13 2021-06-30 Turbine for cryogenic power generation

Country Status (2)

Country Link
JP (1) JP7382907B2 (en)
WO (1) WO2022014331A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865916A (en) * 1981-10-14 1983-04-19 Toshiba Corp Thermal power plant
JPH09209717A (en) * 1996-01-29 1997-08-12 Ishikawajima Harima Heavy Ind Co Ltd Cryogenic power generating facility
JP2005291094A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Power plant facility using liquefied gas vaporizing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865916B2 (en) 2011-10-31 2016-02-17 京セラ株式会社 Gas nozzle, plasma apparatus using the same, and method for manufacturing gas nozzle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865916A (en) * 1981-10-14 1983-04-19 Toshiba Corp Thermal power plant
JPH09209717A (en) * 1996-01-29 1997-08-12 Ishikawajima Harima Heavy Ind Co Ltd Cryogenic power generating facility
JP2005291094A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Power plant facility using liquefied gas vaporizing device

Also Published As

Publication number Publication date
JP7382907B2 (en) 2023-11-17
JP2022016768A (en) 2022-01-25

Similar Documents

Publication Publication Date Title
US10082081B2 (en) Heat exchanger arrangement for turbine engine
JP5683359B2 (en) Waste heat recovery generator
ES2953295T3 (en) Compressor module
WO2021106984A1 (en) Cold recovery system, ship including cold recovery system, and cold recovery method
US20230304422A1 (en) Plant and operation method therefor
US5113669A (en) Self-powered heat exchange system
US6125623A (en) Heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle
WO2022014331A1 (en) Turbine for cryogenic power generation
WO2023084619A1 (en) Cryogenic power generation turbine and cryogenic power generation system comprising cryogenic power generation turbine
WO2022014333A1 (en) Turbine for cryogenic power generation
WO2022014336A1 (en) Turbine for cryogenic power generation
JP6001909B2 (en) Steam turbine plant
US11434776B2 (en) Turbine module
WO2024080158A1 (en) Cryogenic power generation apparatus and cryogenic power generation system
WO2022044875A1 (en) Motive power recovery system, and water-borne floating structure
US12000334B1 (en) Heat exchanger(s) for recovering water and/or heat energy from turbine engine combustion products
KR102077731B1 (en) Generator with one-body type rotor and turbine and generating cycle system including the same
JP6854262B2 (en) Exhaust heat recovery system
JP2013104335A (en) Radial turbine wheel
JP2023544814A (en) Gas processing systems and ships containing them
IT201800005082A1 (en) A new thermodynamic arrangement having combined power generation and refrigeration circuits with a shared heat sink and a shared working fluid
JP2013104336A (en) Exhaust heat recovery type ship propulsion apparatus
KR940021923A (en) Power generation, thrust and flotation generator using fluid
JP2014161187A (en) Magnetic coupling and assembling method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841961

Country of ref document: EP

Kind code of ref document: A1