WO2022014237A1 - Nucleic acid amplification reaction device provided with magnetic bead stirring mechanism - Google Patents

Nucleic acid amplification reaction device provided with magnetic bead stirring mechanism Download PDF

Info

Publication number
WO2022014237A1
WO2022014237A1 PCT/JP2021/022712 JP2021022712W WO2022014237A1 WO 2022014237 A1 WO2022014237 A1 WO 2022014237A1 JP 2021022712 W JP2021022712 W JP 2021022712W WO 2022014237 A1 WO2022014237 A1 WO 2022014237A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
nucleic acid
sequence
primer
coil
Prior art date
Application number
PCT/JP2021/022712
Other languages
French (fr)
Japanese (ja)
Inventor
正靖 ▲桑▼原
博仁 藤田
Original Assignee
学校法人日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人日本大学 filed Critical 学校法人日本大学
Publication of WO2022014237A1 publication Critical patent/WO2022014237A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Definitions

  • the present invention relates to a method for efficiently performing a nucleic acid amplification reaction and a nucleic acid amplification reaction apparatus used therein, which are used in the fields of examination and research.
  • Nucleic acid amplification reaction is a technology that is widely used for detection of pathogens such as viruses and genetic testing, but in order to efficiently perform detection and testing, a simpler and faster method is required.
  • the inventors have developed a SATIC method that uses a single-stranded circular DNA and a primer to form a tripartite complex of a target (template) nucleic acid, a single-stranded circular DNA, and a primer, and amplifies the nucleic acid at an isothermal temperature (patented).
  • Document 1 In order to further simplify the SATIC method, the inventors have disclosed that a primer is immobilized on magnetic beads to carry out the reaction (Patent Document 2).
  • the detection sensitivity of the SATIC method was improved by immobilizing the primer on the magnetic beads, but further improvement of the detection sensitivity and shortening of the detection time were required. Therefore, it is an object of the present invention to provide a method and an apparatus capable of more efficiently advancing a nucleic acid amplification reaction using a primer immobilized on magnetic beads.
  • the present inventors have made diligent studies to solve the above problems. First, it was found that the detection time in the SATIC method can be remarkably shortened by stirring the reaction solution containing the magnetic beads. Then, as a result of examining a device capable of automatically performing stirring, a support made of a coil that can be connected to an AC power source and a heat-conducting magnetic material that is installed inside the coil and on which the reaction vessel can be placed. By applying an AC magnetic field to the coil using a device containing We have found that a device capable of controlling the reaction temperature and rapidly carrying out the SATIC reaction can be easily produced by heating, and have completed the present invention.
  • the gist of the present invention is as follows.
  • a device comprising a coil that can be connected to an AC power source and a support made of a thermally conductive magnetic material that is installed inside the coil and on which the reaction vessel can be placed.
  • the support has one or a plurality of recesses into which a reaction vessel can be inserted.
  • the magnetic material is an iron-containing alloy.
  • nucleic acid amplification reaction is a SATIC reaction.
  • a nucleic acid amplification reaction such as a SATIC reaction can be performed while stirring magnetic beads under a controlled temperature, so that it is easy and quick without using a shaker or the like. Nucleic acid amplification reaction can be carried out.
  • A is a schematic diagram of a device in which A is a coil, B is a support, and C is a support in the coil. It is a schematic diagram which shows one aspect of the use mode of the apparatus of this invention. It is a schematic diagram of the SATIC method.
  • the method of the present invention is a method for advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide immobilized on magnetic beads, in which the reaction vessel is placed in an AC magnetic field and inside the reaction vessel. It is characterized in that a nucleic acid amplification reaction is carried out while stirring the magnetic beads of No. 1 by an AC magnetic field.
  • the nucleic acid amplification reaction is a reaction in which a primer is hybridized to a template nucleic acid containing a target gene sequence and a polynucleotide chain is extended by a nucleic acid polymerase, and the method uses a primer immobilized on magnetic beads. Although it is good, the isothermal reaction is preferable, and the SATIC method described later is more preferable.
  • the magnetic beads are particulate insoluble carriers having an average particle size of, for example, 10 nm to 100 ⁇ m, preferably 30 nm to 10 ⁇ m, more preferably 30 nm to 1 ⁇ m, and even more preferably 30 nm to 500 nm. ..
  • the material of the beads is not particularly limited as long as it is a magnetic material, and examples thereof include iron oxide such as ferrite and magnetite, and magnetic materials such as chromium oxide and cobalt.
  • primers are immobilized on the magnetic beads, and in the case of the SATIC method, the first primer and the second primer are immobilized on the same magnetic beads as described later. preferable.
  • a known method can be adopted for immobilizing the primer on the magnetic beads.
  • a biotin, an amino group, an aldehyde group, an SH group or the like is modified at the 5'end of the primer, and avidin or a derivative thereof (for example, streptavidin, neutralvidin, etc.) is introduced on the surface of the magnetic beads, or an amino group is introduced.
  • avidin or a derivative thereof for example, streptavidin, neutralvidin, etc.
  • a functional group that reacts with an aldehyde group, an SH group, or the like is introduced, and by reacting both of them, the primer can be immobilized on the magnetic beads.
  • the reaction solution for nucleic acid amplification reaction includes a nucleic acid polymerase that performs a nucleic acid amplification reaction, deoxynucleotide triphosphate (dNTP S ) that is a substrate for a nucleic acid extension reaction, and, if necessary, a reaction buffer.
  • dNTP S deoxynucleotide triphosphate
  • a surfactant or the like may be included.
  • the reaction vessel is not particularly limited, but for example, a microtube or a multi-well plate (for example, 96 holes or 384 holes) can be used.
  • the apparatus of the present invention is an apparatus for advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide (hereinafter, simply referred to as a primer) immobilized on magnetic beads, and is an AC power source.
  • a primer oligonucleotide
  • the apparatus of the present invention is an apparatus for advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide (hereinafter, simply referred to as a primer) immobilized on magnetic beads, and is an AC power source.
  • a coil that can be connected to the capacitor and a support made of a thermally conductive magnetic material that is installed inside the coil and on which the reaction vessel can be placed.
  • the coil is not particularly limited as long as it can generate a magnetic field inside, and a normal coil can be used.
  • a metal wire such as a copper wire coated with polyurethane or enamel or a conductive wire such as carbon fiber around a tubular body.
  • the tubular body is not particularly limited as long as it can conduct magnetism, and may be a metal material such as stainless steel or a plastic material.
  • the coil can also be manufactured by winding a conductive wire directly around the support. Further, both ends of the conductive wire constituting the coil may have a connection plug or the like so that they can be connected to an AC power supply.
  • the coil characteristics (inductance) are preferably 10 to 500 mH, more preferably 50 to 200 mH. The coil characteristics can be adjusted by the number of turns and the diameter of the coil.
  • the support placed inside the coil can function as a core material (magnetic core) that can enhance the magnetic field inside the coil, and is a material that can be heated to the reaction temperature by a heater, that is, a thermally conductive magnetic material.
  • the material is not particularly limited, and examples thereof include iron, iron oxide such as ferrite, and iron-containing alloys such as stainless steel.
  • the shape of the support is not particularly limited as long as it can be arranged in the coil and the reaction vessel can be placed, but it is, for example, a columnar shape, preferably (omitted) a columnar shape.
  • the upper surface of the support is shaped so that the reaction vessel can be placed, and may be, for example, a flat surface, or when a reaction tube is used as the reaction vessel, one or more recesses into which the reaction tube can be inserted. May have (eg, FIG. 2).
  • the tubular body and the magnetic body may be integrally molded.
  • the support and the coil are prepared separately, and the support on which the reaction vessel is placed is placed in the coil for a certain period of time during the reaction.
  • the nucleic acid amplification reaction may proceed with.
  • the placement is not particularly limited as long as the reaction liquid in the reaction vessel is heated by receiving heat from the support.
  • the support is connected to a heater (heating means) and heated to the reaction temperature.
  • a device including a coil and a support may be placed on a heater having a heating plate such as a hot plate, and the support may be heated by contacting the support with the heating plate.
  • the coil is formed by winding a metal wire (conductive wire) around a tubular body. Then, by preparing a magnetic material having a cylindrical portion as shown in FIG. 1 (B) and installing it in the coil, a nucleic acid amplification reaction device can be configured (FIG. 1C). As for the coil, it is not necessary to wind the metal wire around the entire tubular body, and it is sufficient that the metal wire is wound so as to cover the outside of the portion where the magnetic material (support) exists in the coil.
  • FIG. 2 shows one aspect of the usage example.
  • a device 10 composed of a coil formed by winding a metal wire 11 around a tubular body 12 and a support 13 arranged in the coil is placed on a hot plate 14, and a magnetic body (support 13) is placed on the hot plate 14. Keep it heated.
  • the reaction solution containing the reaction reagent containing the target nucleic acid and the primer and the enzyme immobilized on the magnetic beads is inserted into the recess (hole) provided in the upper part of the magnetic material into the reaction tube 15 containing the reaction solution. Is heated to 37 ° C, and the reaction is started.
  • a magnetic material having a dent was used to insert the reaction into the dent, but such a dent is not essential, and the reaction tube may be laid on the upper surface of the columnar magnetic material to react. good.
  • the reaction vessel containing the reaction reagent containing the primer oligonucleotide immobilized on the magnetic beads is placed in an AC magnetic field, so that the magnetic beads in the reaction vessel are stirred by the AC magnetic field. Since the nucleic acid amplification reaction can be carried out, it is not always necessary to use the above-mentioned device.
  • the reaction vessel by placing the reaction vessel in a coil connected to an AC power source, the magnetic beads are agitated by the AC magnetic field, so the support is preferred but not essential to be used to enhance the magnetic field in the coil. .
  • the reaction can be promoted by placing the coil on the heater, placing the reaction vessel directly on the heater in the coil, and passing an alternating current through the coil.
  • the strength of the AC voltage (Vp-p) is preferably 10 to 50 V, more preferably 10 to 30 V.
  • the frequency of the alternating current is preferably 1 to 50 Hz, more preferably 2 to 20 Hz.
  • the SATIC method uses a single-stranded circular DNA and a primer disclosed in Patent Document 1 to form a tripartite complex of a target (template) nucleic acid, a single-stranded circular DNA and a primer, and at an isothermal temperature (37 ° C). It is a method for amplifying nucleic acid, and preferably means a method using the first and second single-stranded circular DNAs and the first and second primers described below.
  • a sequence complementary to the second primer binding sequence of the second single-stranded circular DNA adjacent to the 3'side of the sequence With a second oligonucleotide primer, including Is used,
  • the first oligonucleotide primer is attached to a magnetic bead via its 5'end.
  • the second oligonucleotide primer is bound to the magnetic bead to which the first oligonucleotide primer is bound via its 5'end.
  • the first single-stranded circular DNA contains a sequence of 10 to 30 bases complementary to the first site of the target nucleic acid.
  • the second single-stranded circular DNA binding sequence and including.
  • the SATIC method will be described with reference to FIG. However, in the case of single-stranded circular DNA, it is 5' ⁇ 3'clockwise. Further, in FIG. 3, magnetic beads are not shown for convenience.
  • the first single-stranded circular DNA 20 contains a sequence 201 complementary to the first site 211 of the target nucleic acid 21, a primer-binding sequence 202 linked to the 5'side thereof, and a second single-stranded circular DNA-binding sequence 203. ..
  • the length of sequence 201 is usually 10 to 30 bases, preferably 15 to 25 bases, and the GC content is preferably 30 to 70%.
  • the length of the sequence 202 is 7 or 8 bases, and the sequence is not particularly limited, but the GC content is preferably 30 to 70%.
  • the total length of the first single-stranded circular DNA 20 is preferably 35 to 100 bases.
  • the first single-stranded circular DNA 20 can be obtained by circularizing the single-stranded DNA (ssDNA). Circulation of single-stranded DNA can be performed by any means, for example, CircLigase®, CircLigaseII®, ssDNALigase (Epicentre), ThermoPhageligase® single-stranded. It can be performed using DNA (Prokzyme).
  • the first oligonucleotide primer 22 is linked to the sequence 221 of 8 to 15 bases complementary to the second site 212 adjacent to the 3'side of the first site 211 and the 3'side thereof of the target nucleic acid 21. It also contains a 7-8 base sequence 222 complementary to the primer binding site 202 of the first single-stranded circular DNA 20.
  • the first oligonucleotide primer 22 is attached to the magnetic beads via its 5'end.
  • the 5'end of the first oligonucleotide primer 22 include those modified with a biotin, an amino group, an aldehyde group, or an SH group.
  • the magnetic beads include magnetic beads on which avidin (including derivatives thereof, that is, streptavidin, neutralvidin, etc.) are immobilized, and functional groups that react with amino groups, aldehyde groups, or SH groups. Examples thereof include magnetic beads surface-treated with a silane coupling agent having. Immobilization may follow a conventional method.
  • the magnetic beads immobilize the first oligonucleotide primer 22 and the second oligonucleotide primer 25, which will be described later, in the vicinity thereof.
  • the stage where the first amplification product 23 is amplified from the first oligonucleotide primer 22 and the stage where the second amplification product 26 is amplified from the second oligonucleotide primer 25 are efficiently performed. This is done and as a result a significant improvement in detection sensitivity is achieved.
  • the preferred shape of the magnetic beads is a particulate insoluble carrier, the average particle size thereof being, for example, 10 nm to 100 ⁇ m, preferably 30 nm to 10 ⁇ m, more preferably 30 nm to 1 ⁇ m, still more preferably 30 nm to 30 nm. It is 500 nm.
  • the material of the magnetic beads is, for example, a magnetic material such as iron oxide such as ferrite or magnetite, chromium oxide, or cobalt.
  • the second single-stranded circular DNA 24 has the same sequence 241 as the second single-stranded circular DNA binding sequence 203 of the first single-stranded circular DNA 20.
  • the second primer binding sequence 242 adjacent to the 5'side of the sequence and including.
  • the length of sequence 203 is usually 10 to 30 bases, preferably 15 to 25 bases, and the GC content is preferably 30 to 70%.
  • the length of the sequence 242 is 7 or 8 bases, and the sequence is not particularly limited, but the GC content is preferably 30 to 70%.
  • the length of the sequence 242 is 7 or 8 bases, and the sequence is not particularly limited, but the GC content is preferably 30 to 70%.
  • the total length of the second single-stranded circular DNA 24 is preferably 35 to 100 bases.
  • the second single-stranded circular DNA 24 can be obtained by circularizing the single-stranded DNA (ssDNA) by the method described above.
  • the second single-stranded circular DNA 24 preferably contains a sequence complementary to the detection reagent binding sequence.
  • the detection reagent binding sequence include a guanine quadruple chain forming sequence.
  • the second oligonucleotide primer 25 has the same sequence 251 as the site 204 adjacent to the 5'side of the second single-stranded circular DNA binding sequence 203 of the first single-stranded circular DNA 20 (preferably a sequence of 8 to 15 bases).
  • a sequence 252 (preferably a sequence of 7 to 8 bases) complementary to the second primer binding sequence 242 of the second single-stranded circular DNA 24 adjacent to the 3'side of the sequence. including.
  • the second oligonucleotide primer 25 is bound to the magnetic beads to which the first oligonucleotide primer 22 is bound via its 5'end. That is, the 5'end of the first oligonucleotide primer 22 is modified with biotin or the like, and is bound to magnetic beads on which avidin or the like is immobilized via the biotin or the like, and the second oligonucleotide is used. It is preferable that the 5'end of the nucleotide primer 25 is modified with biotin or the like and is bound to the magnetic beads to which the first oligonucleotide primer 22 is bound via the biotin or the like.
  • the quantitative ratio of the first oligonucleotide primer 22 and the second oligonucleotide primer 25 immobilized on the magnetic beads is a molar ratio, preferably 1:10 to 1: 100, and more preferably 1:10 to 1. It is: 30, and more preferably 1:10 to 1:25.
  • the concentration of the first oligonucleotide primer 22 during the amplification reaction (during use) is preferably 0.0025 pmol / ⁇ L or more, more preferably 0.005 pmol / ⁇ L or more, while preferably 0.04 pmol / ⁇ L or less, more preferably. Is 0.02 pmol / ⁇ L or less.
  • the concentration of the second oligonucleotide primer 25 during the amplification reaction (during use) is preferably 0.0125 pmol / ⁇ L or more, more preferably 0.025 pmol / ⁇ L or more, while 0.8 pmol / ⁇ L or less, more preferably. Is less than 0.4 pmol / ⁇ L.
  • the amount ratio of the first single-stranded circular DNA 20 to the second single-stranded circular DNA 24 during the amplification reaction (during use) is a molar ratio, preferably 1: 2 to 1: 1000, more preferably 1: 3 to 1. : 500, more preferably 1: 4 to 1: 400.
  • the lower limit of the concentration of the first single-stranded circular DNA 20 during the amplification reaction (during use) is, for example, 0.1 nM or more, 1 nM or more, 10 nM or more, 50 nM or more, while the upper limit is, for example, 500 nM or less, 200 nM or less.
  • the lower limit of the concentration of the second single-stranded circular DNA 24 during the amplification reaction (during use) is, for example, 20 nM or more, 40 nM or more, 100 nM or more, 200 nM or more, while the upper limit is, for example, 1000 nM or less, 500 nM or less. be.
  • ⁇ Amplification method> As shown in FIG. 3, first, the target nucleic acid 21 is hybridized with the first single-stranded circular DNA 20 and the primer 22 to form a three-way complex, and then the target nucleic acid is formed by the rolling circle amplification (RCA) method. A nucleic acid amplification reaction based on 21 is performed.
  • RCA rolling circle amplification
  • the RCA method is described in Lizardi et al., Nature Genet. 19: 225-232 (1998); US Pat. Nos. 5,854,033 and 6,143,495; PCT application WO 97/19193 and the like. ..
  • the RCA method can be carried out by using, for example, a strand-substituted DNA polymerase such as phi29 DNA polymerase as described above.
  • the DNA elongation reaction by RCA is carried out, for example, at a constant temperature in the range of 25 ° C to 65 ° C.
  • the reaction temperature is appropriately set by a usual procedure based on the optimum temperature of the enzyme and the denaturation temperature based on the primer chain length (the temperature range in which the primer binds (anneals) / dissociates to DNA). Furthermore, it is also carried out at a constant relatively low temperature.
  • the reaction is preferably at 25 ° C to 42 ° C, more preferably at about 30 to 37 ° C.
  • RCA amplifies the first amplification product 23 from primer 22 along the first single-stranded circular DNA 20 in a manner dependent on the target nucleic acid 21.
  • the amplification product 23 contains the sequence 233 complementary to the second single-stranded circular DNA binding sequence 203 of the first single-stranded circular DNA 20, the second single-stranded circular DNA 24 containing the same sequence 241 as this sequence 203. Hybridizes to sequence 233 of the first amplification product 23 via sequence 241.
  • the second oligonucleotide primer 25 hybridizes to the complex of the first amplification product 23 and the second single-stranded circular DNA 24 thus formed to form a tripartite complex.
  • the second oligonucleotide primer 25 has the same sequence 251 as the site 204 adjacent to the 5'side of the second single-stranded circular DNA-binding sequence 203 of the first single-stranded circular DNA 20, the first amplification product. It hybridizes to region 234 complementary to site 204 of the first single-stranded circular DNA 20 of 23 via sequence 251.
  • the second oligonucleotide primer 25 has a sequence 252 complementary to the second primer binding sequence 242 of the second single-stranded circular DNA 24 on the 3'side of the sequence 251, the second single-stranded circular DNA 24 has a sequence 252. Also hybridizes via sequence 252.
  • the second amplification product 26 is amplified by RCA from the tripartite complex of the first amplification product 23, the second single-stranded circular DNA 24, and the second oligonucleotide primer 25.
  • the second amplification product 26 contains, for example, sequence 261 containing a guanine quadruple chain and is detected by the guanine quadruple chain detection reagent 262.
  • the second single-stranded circular DNA 24 hybridizes to each of the regions 231 contained in the first amplification product 23, and an RCA reaction occurs.
  • the first oligonucleotide primer 22 By immobilizing the first oligonucleotide primer 22 and the second oligonucleotide primer 25 on the same magnetic beads, the first oligonucleotide primer 22 amplifies the first amplification product 23, and the second oligonucleotide primer. Since the step of amplifying the second amplification product 26 from 25 is performed in the vicinity, a significant improvement in detection sensitivity can be achieved.
  • the second amplification product 26 obtained by RCA contains the detection reagent binding sequence.
  • the detection reagent binding sequence is a guanine quadruple chain forming sequence or the like
  • the amplification product obtained by RCA can be detected using a guanine quadruple chain binding reagent.
  • the guanine quadruplex binding reagent include thioflavin T (ThT) disclosed in Patent Document 1 or a derivative thereof.
  • ThT-PEG ThT derivative
  • R 1 is an amino group, a hydroxyl group, an alkyl group, or a carboxyl group
  • n is an integer of 4 to 50, preferably an integer of 5 to 20, and more preferably an integer of 8 to 15. , Particularly preferably 11.
  • ThT-PEG a compound in which R 1 is an amino group is more preferable. This compound is described as ThT-P42 in JP-A-2018-154564.
  • ThT-PEG-ThT A ThT derivative (ThT-PEG-ThT) in which the following ThTs are linked by a PEG chain can also be used.
  • n is an integer of 4 to 50, preferably an integer of 5 to 20, more preferably an integer of 8 to 15, and particularly preferably 11.
  • the PEG chain of ThT-PEG-ThT may be replaced with a spermine linker. This compound can be synthesized by the method described in the synthesis example described later.
  • ThT derivative For detection, for example, a ThT derivative is brought into contact with a sample containing an RCA product, and the ThT derivative bound to the guanine quadruplex structure is detected based on the fluorescence emitted by the ThT derivative.
  • the heavy chain structure can be detected.
  • the ThT derivative is preferably added to the reaction solution in advance.
  • ThT-PEG or ThT-PEG-ThT When ThT-PEG or ThT-PEG-ThT is used as the guanine quadruplex binding reagent, specific aggregation occurs when ThT-PEG or ThT-PEG-ThT binds to the RCA product. By visually observing, the presence or absence of RCA amplification can be easily confirmed without using a fluorescence detection device.
  • ThT-PEG and ThT-PEG-ThT may be used at the same time.
  • the concentration of ThT-PEG or ThT-PEG-ThT is, for example, 5 to 50 ⁇ M, preferably 5 to 20 ⁇ M.
  • the reaction reagent containing the first primer and the magnetic beads on which the second primer was immobilized, the first and second single-stranded circular DNA, the nucleic acid polymerase, the nucleic acid substrate, the reaction buffer, etc. was placed in the reaction vessel.
  • the nucleic acid-containing sample to be detected is added here.
  • the SATIC reaction is started by placing this reaction vessel on the support of the apparatus of the present invention preheated to the reaction temperature.
  • the magnetic beads in the reaction vessel are efficiently agitated, and the SATIC reaction proceeds efficiently. Aggregation of magnetic beads based on the formation of nucleic acid amplification reactants is observed about 20 to 30 minutes after the start of the reaction, whereby the presence of the target nucleic acid can be visually confirmed.
  • FG beads FG beads streptavidin Tamagawa Seiki
  • FG beads streptavidin Tamagawa Seiki were well vortexed, stirred until uniform particles, scooped 4 ⁇ L and placed in a 1.5 mL Eppendorf tube.
  • the tube was placed in a magnetic rack (vertical tube with magnet) and the magnetic beads and supernatant were separated (5 minutes). The supernatant was withdrawn, and 40 ⁇ L of 1 ⁇ ⁇ 29 DNA polymerase reaction buffer was added for pipetting. The above operation was performed twice more.
  • Primer was immobilized on nanoparticles and washed.
  • the tube was set in a magnetic rack (tube with magnet), and the magnetic beads and supernatant were separated (5 minutes). The supernatant was removed. 4 ⁇ L of the above P 1 and P 2 mixed solution was added to the washed FG beads. Incubated at 25 ° C for 30 minutes. At that time, vortex was performed every 5 minutes.
  • the tube was placed in a magnetic rack (vertical tube with magnet) and the magnetic beads and supernatant were separated (5 minutes). The supernatant was withdrawn, and 40 ⁇ L of 1 ⁇ ⁇ 29 DNA polymerase reaction buffer was added for pipetting. The above operation was performed twice more.
  • the tube was placed in a magnetic rack (vertical tube with magnet) and the magnetic beads and supernatant were separated (5 minutes). The supernatant was withdrawn, 40 ⁇ L of water was added, and pipetting was performed. The above operation was performed twice more. Refrigerated until used.
  • cT1 67mer (SEQ ID NO: 1) CCCCAAAAAGGAGCTTGAGGTTCTCCTTTAAAAAGAAGCTGTTGTATTGTTGTCGAAGAAGAAAAGT
  • cT2 62mer (SEQ ID NO: 2) CCCAACCCTACCCACCCTCAAGAAAAAAAAGTGATAATTGTTGGAAGAAGAAAAAAAATT P1: 18mer (5'biotin) (SEQ ID NO: 3) GGATCAGGCCATTTTTGG P2: 18mer (5'biotin) (SEQ ID NO: 4) GAAGCTGTTGTTATCACT 40mer target RNA: 40mer (SEQ ID NO: 5) GGGUUGGCCAAAGGAGAACCUCAAGCUCCUGGCCUGAUCC
  • a device for SATIC reaction was prepared (Fig. 2).
  • the coil was made by winding a polyurethane wire with a diameter of 0.29 mm 1200 times around a stainless tubular member with a diameter of 50 mm.
  • the coil characteristics are approximately 100mH (100Hz).
  • a stainless steel column was installed as a pedestal (reaction tube support) of the reaction field in the stainless tubular member. Then, this was placed on a hot plate, and the hot plate was heated to 37 ° C.
  • the coil was connected to an AC power supply and an AC voltage of 20Vp-p (2Hz) was applied.
  • the reaction solution used is as shown in Table 1, and after adding the target RNA and accommodating a total of 50 ⁇ L in the reaction tube, the reaction tube was preheated to 37 ° C. to generate an AC magnetic field. The reaction was carried out by placing it on a pedestal (support) in stainless steel and stirring the magnetic beads with an AC magnetic field. When the changes in the nanobeads in the reaction tube were observed over time, it was found that the beads settled in about 15 minutes, and the target amplification by the SATIC reaction occurred in a short time.
  • ThT-PEG-ThT was synthesized according to the following scheme. References (Kataoka, Y .; Fujita, H .; Afanaseva, A .; Nagao, C .; Mizuguchi, K .; Kasahara, Y .; Obika, S .; Kuwahara, M) for the synthesis method of ThT-AE. .Biochemistry, 2019, 58, 493.). Scheme. Synthesis of ThT derivatives
  • ThT-PEG-ThT Add dry DMF (0.3 mL) to ThT-PEG (10 mg, 10 ⁇ mol) (ThT-P42 of JP-A-2018-154564) and stir, and then HOBt ⁇ H 2 O (4.2 mg, 26 ⁇ mol). , PyBOP (14 mg, 26 ⁇ mol) was added, followed by DIPEA (14 ⁇ L, 80 ⁇ mol). Compound T1 (5.6 mg, 13 ⁇ mol) dissolved in dry DMF (0.2 mL) was added thereto, and the mixture was stirred at room temperature for 5 hours. After distilling off the reaction mixture under reduced pressure, the residue was dissolved in CH 2 Cl 2 and washed with water. The organic layer was distilled off under reduced pressure, and the mixture was subjected to solid-liquid extraction with diethyl ether and then purified by HPLC to obtain ThT-PEG-ThT. Yield: 0.82 mg Yield: 6.1%
  • Device 10 ... Device, 11 ... Metal wire, 12 ... Cylindrical body, 13 ... Support, 14 ... Hot plate
  • Second oligonucleotide primer, 26 ... second amplification product, 201 ... sequence complementary to the first site, 202 ... first primer binding sequence, 203 ... second single strand Circular DNA binding sequence, 204 ... site adjacent to the 5'side of sequence 203, 211 ... first site, 212 ... second site, 221 ... complementary to the second site Sequence 222 ... Sequence complementary to the first primer binding site 231 ... Complementary region of sequence 203 232 ... Region complementary to site 204 233 ...

Abstract

The present invention addresses the problem of providing a device for more efficiently performing a nucleic acid amplification reaction using a primer fixed to a magnetic bead. The present invention provides a device for performing a nucleic acid amplification reaction in a reactor vessel accommodating a reaction reagent containing a primer oligonucleotide fixed to a magnetic bead, the device comprising: a coil that can be connected to an AC power source; and a support which is installed inside the coil and made of a thermally conductive magnetic material on which the reaction vessel can be placed, wherein the device further comprises a heater that heats the support.

Description

磁気ビーズ撹拌機構を備えた核酸増幅反応用装置Nucleic acid amplification reaction device equipped with a magnetic bead stirring mechanism
本発明は検査や研究の分野などで使用される、核酸増幅反応を効率よく実行するための方法及びそれに使用される核酸増幅反応用装置に関する。 The present invention relates to a method for efficiently performing a nucleic acid amplification reaction and a nucleic acid amplification reaction apparatus used therein, which are used in the fields of examination and research.
核酸増幅反応はウイルスなどの病原体の検出や遺伝子検査などに汎用される技術であるが、検出や検査を効率よく行うため、より簡便で迅速な手法が求められる。 Nucleic acid amplification reaction is a technology that is widely used for detection of pathogens such as viruses and genetic testing, but in order to efficiently perform detection and testing, a simpler and faster method is required.
発明者らは、一本鎖環状DNAとプライマーを用い、標的(鋳型)核酸と一本鎖環状DNAとプライマーの三者複合体を形成させ、等温で核酸を増幅させるSATIC法を開発した(特許文献1)。発明者らはさらにSATIC法を簡便に行うため、プライマーを磁気ビーズに固定化して反応を行うことを開示した(特許文献2)。 The inventors have developed a SATIC method that uses a single-stranded circular DNA and a primer to form a tripartite complex of a target (template) nucleic acid, a single-stranded circular DNA, and a primer, and amplifies the nucleic acid at an isothermal temperature (patented). Document 1). In order to further simplify the SATIC method, the inventors have disclosed that a primer is immobilized on magnetic beads to carry out the reaction (Patent Document 2).
WO 2016/152936WO 2016/152936 WO 2020/213700WO 2020/213700
上記の通り、プライマーを磁気ビーズに固定化することでSATIC法の検出感度が向上したが、更なる検出感度向上と、検出時間の短縮が求められていた。
そこで、本発明は、磁気ビーズに固定化されたプライマーを用いた核酸増幅反応をより効率よく進行させることのできる方法および装置を提供することを課題とする。
As described above, the detection sensitivity of the SATIC method was improved by immobilizing the primer on the magnetic beads, but further improvement of the detection sensitivity and shortening of the detection time were required.
Therefore, it is an object of the present invention to provide a method and an apparatus capable of more efficiently advancing a nucleic acid amplification reaction using a primer immobilized on magnetic beads.
本発明者らは上記課題を解決すべく鋭意検討を行った。そして、まず、磁気ビーズを含む反応液を撹拌することでSATIC法における検出時間を顕著に短縮できることを見出した。
そして、撹拌を自動的に行うことのできる装置を検討した結果、交流電源に接続可能なコイルと、コイル内部に設置され、前記反応容器を載置可能な熱伝導性の磁性体からなる支持体を含む装置を用い、コイルに交流磁場を印加することで、磁力によりSATIC反応試薬に含まれる磁気ビーズを振動させることで機械的な撹拌機構なしで撹拌ができ、かつ、当該支持体をヒーターで加温することで、反応温度を制御でき、SATIC反応を迅速に遂行できる装置が簡便に作製できることを見出し、本発明を完成させるに至った。
The present inventors have made diligent studies to solve the above problems. First, it was found that the detection time in the SATIC method can be remarkably shortened by stirring the reaction solution containing the magnetic beads.
Then, as a result of examining a device capable of automatically performing stirring, a support made of a coil that can be connected to an AC power source and a heat-conducting magnetic material that is installed inside the coil and on which the reaction vessel can be placed. By applying an AC magnetic field to the coil using a device containing We have found that a device capable of controlling the reaction temperature and rapidly carrying out the SATIC reaction can be easily produced by heating, and have completed the present invention.
本発明の要旨は以下の通りである。
[1]磁気ビーズに固定化されたプライマーオリゴヌクレオチドを含む反応試薬を収容した反応容器内で核酸増幅反応を進行させるための装置であって、
交流電源に接続可能なコイル、および
コイル内部に設置され、前記反応容器を載置可能な熱伝導性の磁性体からなる支持体、を含む、装置。
[2]前記支持体は、反応容器を挿入できる1又は複数の窪みを有する、[1]に記載の装置。
[3]前記磁性体が鉄含有合金である、[1]または[2]に記載の装置。
[4]さらに、前記支持体を加温するヒーターを含む、[1]~[3]のいずれかに記載の装置。
[5]核酸増幅反応がSATIC反応である、[1]~[4]のいずれかに記載の装置。
[6]磁気ビーズに固定化されたプライマーオリゴヌクレオチドを含む反応試薬を収容した反応容器内で核酸増幅反応を進行させる方法であって、反応容器を交流磁場内に置き、反応容器内の磁気ビーズを交流磁場により攪拌しつつ核酸増幅反応を行うことを特徴とする方法。
[7]交流磁場が交流電源に接続されたコイル内の磁場である、[6]に記載の方法。
[8]交流周波数が1~50Hzである、[6]または[7]に記載の方法。
[9]交流電圧が10~50Vである、[6]~[8]のいずれかに記載の方法。
[10]前記反応容器を[1]~[4]のいずれかに記載の装置の支持体上に載置して反応を行う、[6]~[9]のいずれかに記載の方法。
[11]核酸増幅反応がSATIC反応である、[6]~[10]のいずれかに記載の方法。
The gist of the present invention is as follows.
[1] A device for advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide immobilized on magnetic beads.
A device comprising a coil that can be connected to an AC power source and a support made of a thermally conductive magnetic material that is installed inside the coil and on which the reaction vessel can be placed.
[2] The device according to [1], wherein the support has one or a plurality of recesses into which a reaction vessel can be inserted.
[3] The apparatus according to [1] or [2], wherein the magnetic material is an iron-containing alloy.
[4] The device according to any one of [1] to [3], further comprising a heater for heating the support.
[5] The apparatus according to any one of [1] to [4], wherein the nucleic acid amplification reaction is a SATIC reaction.
[6] A method for advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide immobilized on magnetic beads. The reaction vessel is placed in an AC magnetic field, and the magnetic beads in the reaction vessel are placed. A method characterized by carrying out a nucleic acid amplification reaction while stirring with an AC magnetic field.
[7] The method according to [6], wherein the AC magnetic field is a magnetic field in a coil connected to an AC power supply.
[8] The method according to [6] or [7], wherein the AC frequency is 1 to 50 Hz.
[9] The method according to any one of [6] to [8], wherein the AC voltage is 10 to 50V.
[10] The method according to any one of [6] to [9], wherein the reaction vessel is placed on the support of the apparatus according to any one of [1] to [4] to carry out the reaction.
[11] The method according to any one of [6] to [10], wherein the nucleic acid amplification reaction is a SATIC reaction.
本発明の方法および装置によれば、制御された温度下で、磁気ビーズを撹拌しつつ、SATIC反応などの核酸増幅反応を行うことができるため、振とう機などを用いることなく簡便かつ迅速に核酸増幅反応を行うことができる。 According to the method and apparatus of the present invention, a nucleic acid amplification reaction such as a SATIC reaction can be performed while stirring magnetic beads under a controlled temperature, so that it is easy and quick without using a shaker or the like. Nucleic acid amplification reaction can be carried out.
本発明の装置の一態様を示す模式図。Aがコイルを、Bが支持体を示し、Cがコイルの中に支持体を配置した装置の模式図である。The schematic diagram which shows one aspect of the apparatus of this invention. A is a schematic diagram of a device in which A is a coil, B is a support, and C is a support in the coil. 本発明の装置の使用態様の一態様を示す模式図である。It is a schematic diagram which shows one aspect of the use mode of the apparatus of this invention. SATIC法の模式図である。It is a schematic diagram of the SATIC method.
本発明の方法は、磁気ビーズに固定化されたプライマーオリゴヌクレオチドを含む反応試薬を収容した反応容器内で核酸増幅反応を進行させる方法であって、反応容器を交流磁場内に置き、反応容器内の磁気ビーズを交流磁場により攪拌しつつ核酸増幅反応を行うことを特徴とする。 The method of the present invention is a method for advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide immobilized on magnetic beads, in which the reaction vessel is placed in an AC magnetic field and inside the reaction vessel. It is characterized in that a nucleic acid amplification reaction is carried out while stirring the magnetic beads of No. 1 by an AC magnetic field.
<核酸増幅反応>
核酸増幅反応は、標的遺伝子配列を含む鋳型核酸に対し、プライマーをハイブリダイズさせて、核酸ポリメラーゼによりポリヌクレオチド鎖を伸長させる反応であって、磁気ビーズに固定化されたプライマーを用いる方法であればよいが、等温反応が好ましく、後述のSATIC法がより好ましい。
<Nucleic acid amplification reaction>
The nucleic acid amplification reaction is a reaction in which a primer is hybridized to a template nucleic acid containing a target gene sequence and a polynucleotide chain is extended by a nucleic acid polymerase, and the method uses a primer immobilized on magnetic beads. Although it is good, the isothermal reaction is preferable, and the SATIC method described later is more preferable.
磁気ビーズとしては、粒子状の不溶性担体であり、その平均粒径は例えば10 nm~100 μmであり、好ましくは30nm~10μmであり、より好ましくは30nm~1μm、さらに好ましくは30nm~500nmである。ビーズの材質は磁性材料であれば特に限定されないが、例えば、フェライトやマグネタイトなどの酸化鉄、酸化クロム、コバルトなどの磁性材料が挙げられる。 The magnetic beads are particulate insoluble carriers having an average particle size of, for example, 10 nm to 100 μm, preferably 30 nm to 10 μm, more preferably 30 nm to 1 μm, and even more preferably 30 nm to 500 nm. .. The material of the beads is not particularly limited as long as it is a magnetic material, and examples thereof include iron oxide such as ferrite and magnetite, and magnetic materials such as chromium oxide and cobalt.
磁気ビーズにはプライマーが1種類または2種類以上固定化されていればよく、SATIC法の場合は、後述の通り、第1プライマーおよび第2プライマーが同一の磁気ビーズに固定化されていることが好ましい。 It is sufficient that one or more types of primers are immobilized on the magnetic beads, and in the case of the SATIC method, the first primer and the second primer are immobilized on the same magnetic beads as described later. preferable.
プライマーを磁気ビーズに固定化するためには、公知の方法を採用することができる。例えば、プライマーの5’末端にビオチン、アミノ基、アルデヒド基又はSH基等を修飾し、磁気ビーズの表面にアビジンもしくはその誘導体(例えば、ストレプトアビジン、ニュートラビジンなど)を導入するか、またはアミノ基、アルデヒド基、SH基などと反応する官能基を導入し、両者を反応させることで、プライマーを磁気ビーズに固定化することができる。 A known method can be adopted for immobilizing the primer on the magnetic beads. For example, a biotin, an amino group, an aldehyde group, an SH group or the like is modified at the 5'end of the primer, and avidin or a derivative thereof (for example, streptavidin, neutralvidin, etc.) is introduced on the surface of the magnetic beads, or an amino group is introduced. , A functional group that reacts with an aldehyde group, an SH group, or the like is introduced, and by reacting both of them, the primer can be immobilized on the magnetic beads.
核酸増幅反応用反応液には、前記プライマー以外に、核酸増幅反応を行う核酸ポリメラーゼと、核酸伸長反応の基質となるデオキシヌクレオチド三リン酸(dNTPS)、さらには必要に応じて反応緩衝剤や界面活性剤などが含まれてよい。 In addition to the above-mentioned primers, the reaction solution for nucleic acid amplification reaction includes a nucleic acid polymerase that performs a nucleic acid amplification reaction, deoxynucleotide triphosphate (dNTP S ) that is a substrate for a nucleic acid extension reaction, and, if necessary, a reaction buffer. A surfactant or the like may be included.
反応容器は特に制限されないが、例えば、マイクロチューブやマルチウェルプレート(例えば、96穴もしくは384穴)などを使用することができる。 The reaction vessel is not particularly limited, but for example, a microtube or a multi-well plate (for example, 96 holes or 384 holes) can be used.
<核酸増幅反応用装置>
本発明の装置は、磁気ビーズに固定化されたプライマーオリゴヌクレオチド(以下、単にプライマーと呼ぶ)を含む反応試薬を収容した反応容器内で核酸増幅反応を進行させるための装置であって、交流電源に接続可能なコイル、およびコイル内部に設置され、前記反応容器を載置可能な熱伝導性の磁性体からなる支持体、を含む。
<Nucleic acid amplification reaction device>
The apparatus of the present invention is an apparatus for advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide (hereinafter, simply referred to as a primer) immobilized on magnetic beads, and is an AC power source. Includes a coil that can be connected to the capacitor and a support made of a thermally conductive magnetic material that is installed inside the coil and on which the reaction vessel can be placed.
コイルは内部に磁界を生じさせることのできるものであれば特に制限はなく、通常のコイルを使用することができる。例えば、筒状体の周りにポリウレタンやエナメルなどで被覆された銅線などの金属線やカーボンファイバーなどの導電線を巻くことで作製することができる。筒状体は磁気を通すことができるものであれば特に制限はなく、ステンレスなどの金属材料でもよいし、プラスチック材料でもよい。
なお、円柱状の支持体を使用するときには、コイルは当該支持体に直接導電線を巻くことで作製することもできる。
また、コイルを構成する導電線の両端は交流電源に接続できるように、接続プラグなどを有していてもよい。
コイルの特性(インダクタンス)は10~500mHとすることが好ましく、50~200mHとすることがより好ましい。コイル特性はコイルの巻き数や径により調整することができる。
The coil is not particularly limited as long as it can generate a magnetic field inside, and a normal coil can be used. For example, it can be manufactured by winding a metal wire such as a copper wire coated with polyurethane or enamel or a conductive wire such as carbon fiber around a tubular body. The tubular body is not particularly limited as long as it can conduct magnetism, and may be a metal material such as stainless steel or a plastic material.
When a columnar support is used, the coil can also be manufactured by winding a conductive wire directly around the support.
Further, both ends of the conductive wire constituting the coil may have a connection plug or the like so that they can be connected to an AC power supply.
The coil characteristics (inductance) are preferably 10 to 500 mH, more preferably 50 to 200 mH. The coil characteristics can be adjusted by the number of turns and the diameter of the coil.
コイルの内部に配置される支持体はコイル内部の磁界を増強できる芯材(磁芯)として機能しうるものであって、ヒーターによって反応温度に加熱できる材料、すなわち、熱伝導性の磁性体であればよく、その材料は特に制限されないが、鉄、フェライトなどの酸化鉄、ステンレスなどの鉄含有合金などが挙げられる。 The support placed inside the coil can function as a core material (magnetic core) that can enhance the magnetic field inside the coil, and is a material that can be heated to the reaction temperature by a heater, that is, a thermally conductive magnetic material. The material is not particularly limited, and examples thereof include iron, iron oxide such as ferrite, and iron-containing alloys such as stainless steel.
支持体の形状はコイル内に配置可能で、反応容器を載置できる形状であれば特に制限されないが、例えば、柱状であり、好ましくは(略)円柱状である。好ましくは、支持体の上面が反応容器を載置できるような形状を取っており、例えば、平面でもよいし、反応容器として反応チューブを用いる場合には、反応チューブを挿入できる1又は複数の窪みを有していてもよい(例えば、図2)。
なお、前述の筒状体と支持体とを同じ材料で形成する場合には、筒状体と磁性体は一体成型されてもよい。
一方で、支持体は反応時にコイル内に配置されれば十分であるため、支持体とコイルが別々に準備され、反応時に、反応容器を載置した支持体をコイル内に一定時間配置させることで核酸増幅反応を進行させてもよい。
The shape of the support is not particularly limited as long as it can be arranged in the coil and the reaction vessel can be placed, but it is, for example, a columnar shape, preferably (omitted) a columnar shape. Preferably, the upper surface of the support is shaped so that the reaction vessel can be placed, and may be, for example, a flat surface, or when a reaction tube is used as the reaction vessel, one or more recesses into which the reaction tube can be inserted. May have (eg, FIG. 2).
When the above-mentioned tubular body and the support are formed of the same material, the tubular body and the magnetic body may be integrally molded.
On the other hand, since it is sufficient for the support to be placed in the coil during the reaction, the support and the coil are prepared separately, and the support on which the reaction vessel is placed is placed in the coil for a certain period of time during the reaction. The nucleic acid amplification reaction may proceed with.
また、載置とは、反応容器内の反応液が支持体から熱を受けて加熱されるような態様であれば特に制限されない。 Further, the placement is not particularly limited as long as the reaction liquid in the reaction vessel is heated by receiving heat from the support.
支持体はヒーター(加熱手段)に接続され、反応温度に加温される。コイルと支持体を含む装置をホットプレートのような加熱板を有するヒーター上に置き、支持体が加熱板と接することで支持体が加温されてもよい。 The support is connected to a heater (heating means) and heated to the reaction temperature. A device including a coil and a support may be placed on a heater having a heating plate such as a hot plate, and the support may be heated by contacting the support with the heating plate.
以下、図1および図2を参照して本発明の装置及びそれを利用した核酸増幅反応について説明する。
図1(A)のように、コイルは筒状体の周りに金属線(導電線)を巻きつけることにより形成される。
そして、図1(B)のような円柱部を有する磁性体を用意し、コイル内に設置することで、核酸増幅反応用装置を構成することができる(図1C)。なお、コイルについては筒状体の全体に金属線を巻き付ける必要はなく、コイル内の磁性体(支持体)が存在する部分の外側を覆う程度に金属線が巻かれていれば十分である。
Hereinafter, the apparatus of the present invention and the nucleic acid amplification reaction using the apparatus will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1 (A), the coil is formed by winding a metal wire (conductive wire) around a tubular body.
Then, by preparing a magnetic material having a cylindrical portion as shown in FIG. 1 (B) and installing it in the coil, a nucleic acid amplification reaction device can be configured (FIG. 1C). As for the coil, it is not necessary to wind the metal wire around the entire tubular body, and it is sufficient that the metal wire is wound so as to cover the outside of the portion where the magnetic material (support) exists in the coil.
図2に使用例の一態様を示す。
まず、筒状体12に金属線11を巻きつけることで形成されたコイルと、コイル内に配置された支持体13からなる装置10をホットプレート14上に置き、磁性体(支持体13)を加熱しておく。
そして、標的核酸および磁気ビーズに固定化されたプライマーや酵素等を含む反応試薬を反応液を収容した反応チューブ15を磁性体の上部に設けられた窪み(穴)に挿入することで、反応液を37℃に加温し、反応が開始される。
なお、図2では、窪みを有する磁性体を用いて窪みに挿入して反応を行ったが、このような窪みは必須でなく、柱状の磁性体の上面に反応チューブを横たえて反応させてもよい。
FIG. 2 shows one aspect of the usage example.
First, a device 10 composed of a coil formed by winding a metal wire 11 around a tubular body 12 and a support 13 arranged in the coil is placed on a hot plate 14, and a magnetic body (support 13) is placed on the hot plate 14. Keep it heated.
Then, the reaction solution containing the reaction reagent containing the target nucleic acid and the primer and the enzyme immobilized on the magnetic beads is inserted into the recess (hole) provided in the upper part of the magnetic material into the reaction tube 15 containing the reaction solution. Is heated to 37 ° C, and the reaction is started.
In FIG. 2, a magnetic material having a dent was used to insert the reaction into the dent, but such a dent is not essential, and the reaction tube may be laid on the upper surface of the columnar magnetic material to react. good.
そして、コイルの導電線の両端に接続された交流電源から交流電流を流し、交流磁場を印加する。これにより、支持体上の磁場が変化し、チューブ内の磁気ビーズが撹拌され、反応が効率よく進行する。 Then, an AC current is passed from an AC power supply connected to both ends of the conductive wire of the coil, and an AC magnetic field is applied. As a result, the magnetic field on the support changes, the magnetic beads in the tube are agitated, and the reaction proceeds efficiently.
なお、本発明の方法においては、磁気ビーズに固定化されたプライマーオリゴヌクレオチドを含む反応試薬を収容した反応容器を交流磁場内に置くことで、反応容器内の磁気ビーズを交流磁場により攪拌しつつ核酸増幅反応を行うことができるので、必ずしも上記のような装置を用いる必要はない。例えば、交流電源に接続されたコイル内に反応容器を置くことで、磁気ビーズは交流磁場によって撹拌されるので、支持体はコイル内の磁場を増強するために用いることが好ましいものの、必須ではない。例えば、ヒーター上にコイルを置き、コイル内のヒーター上に反応容器を直接置いてコイルに交流電流を流すことでも反応は進行させることができる。 In the method of the present invention, the reaction vessel containing the reaction reagent containing the primer oligonucleotide immobilized on the magnetic beads is placed in an AC magnetic field, so that the magnetic beads in the reaction vessel are stirred by the AC magnetic field. Since the nucleic acid amplification reaction can be carried out, it is not always necessary to use the above-mentioned device. For example, by placing the reaction vessel in a coil connected to an AC power source, the magnetic beads are agitated by the AC magnetic field, so the support is preferred but not essential to be used to enhance the magnetic field in the coil. .. For example, the reaction can be promoted by placing the coil on the heater, placing the reaction vessel directly on the heater in the coil, and passing an alternating current through the coil.
本発明の方法においては、交流電圧の強さ(Vp-p)は10~50Vが好ましく、10~30Vがより好ましい。また、交流電流の周波数は1~50Hzが好ましく、2~20Hzがより好ましい。この範囲に調節することで、核酸増幅反応を阻害せず、検出時間を短縮することができるので特に好ましい。 In the method of the present invention, the strength of the AC voltage (Vp-p) is preferably 10 to 50 V, more preferably 10 to 30 V. The frequency of the alternating current is preferably 1 to 50 Hz, more preferably 2 to 20 Hz. By adjusting to this range, the nucleic acid amplification reaction is not inhibited and the detection time can be shortened, which is particularly preferable.
以下、核酸増幅反応の好ましい態様であるSATIC法について説明する。
SATIC法は、特許文献1に開示されている一本鎖環状DNAとプライマーを用い、標的(鋳型)核酸と一本鎖環状DNAとプライマーの三者複合体を形成させ、等温(37℃)で核酸を増幅させる方法であり、好ましくは以下で説明する第1および第2の一本鎖環状DNAと第1および第2のプライマーを用いる方法を意味する。
Hereinafter, the SATIC method, which is a preferred embodiment of the nucleic acid amplification reaction, will be described.
The SATIC method uses a single-stranded circular DNA and a primer disclosed in Patent Document 1 to form a tripartite complex of a target (template) nucleic acid, a single-stranded circular DNA and a primer, and at an isothermal temperature (37 ° C). It is a method for amplifying nucleic acid, and preferably means a method using the first and second single-stranded circular DNAs and the first and second primers described below.
好ましいSATIC法の態様においては、
(i)標的核酸の第1の部位に相補的な10~30塩基の配列と、
該配列の5’側に隣接した、7~8塩基の第1プライマー結合配列と、
第2一本鎖環状DNA結合配列と、
を含む第1一本鎖環状DNAと、
(ii)標的核酸の、第1の部位の3’側に隣接した第2の部位に相補的な8~15塩基の配列と、
該配列の3’側に隣接した、第1一本鎖環状DNAの第1プライマー結合部位に相補的な7~8塩基の配列と、
を含む第1のオリゴヌクレオチドプライマーと、
(iii)第1一本鎖環状DNAの第2一本鎖環状DNA結合配列と同一の配列と、
該配列の5’側に隣接した、第2プライマー結合配列と、
を含む、第2一本鎖環状DNAと、
(iv)第1一本鎖環状DNAの第2一本鎖環状DNA結合配列の5’側に隣接した部位と同一の配列と、
該配列の3’側に隣接した、第2一本鎖環状DNAの第2プライマー結合配列に相補的な配列と、
を含む、第2のオリゴヌクレオチドプライマーと、
が使用され、
前記第1のオリゴヌクレオチドプライマーは、その5’末端を介して、磁気ビーズと結合しており、
前記第2のオリゴヌクレオチドプライマーは、その5’末端を介して、前記第1のオリゴヌクレオチドプライマーが結合している前記磁気ビーズと結合している。
In the preferred SATIC mode,
(I) A sequence of 10 to 30 bases complementary to the first site of the target nucleic acid,
The 7-8 base first primer binding sequence adjacent to the 5'side of the sequence and
The second single-stranded circular DNA binding sequence and
First single-stranded circular DNA containing
(Ii) A sequence of 8 to 15 bases complementary to the second site adjacent to the 3'side of the first site of the target nucleic acid,
A sequence of 7 to 8 bases adjacent to the 3'side of the sequence and complementary to the first primer binding site of the first single-stranded circular DNA.
A first oligonucleotide primer containing
(Iii) The same sequence as the second single-stranded circular DNA binding sequence of the first single-stranded circular DNA,
The second primer binding sequence adjacent to the 5'side of the sequence and
2nd single-stranded circular DNA, including
(Iv) With the same sequence as the site adjacent to the 5'side of the 2nd single-stranded circular DNA binding sequence of the 1st single-stranded circular DNA.
A sequence complementary to the second primer binding sequence of the second single-stranded circular DNA adjacent to the 3'side of the sequence,
With a second oligonucleotide primer, including
Is used,
The first oligonucleotide primer is attached to a magnetic bead via its 5'end.
The second oligonucleotide primer is bound to the magnetic bead to which the first oligonucleotide primer is bound via its 5'end.
<第1一本鎖環状DNA>
第1一本鎖環状DNAは、標的核酸の第1の部位に相補的な10~30塩基の配列と、
該配列の5’側に隣接した、7~8塩基のプライマー結合配列と、
第2一本鎖環状DNA結合配列と、
を含む。
<1st single-stranded circular DNA>
The first single-stranded circular DNA contains a sequence of 10 to 30 bases complementary to the first site of the target nucleic acid.
A primer binding sequence of 7 to 8 bases adjacent to the 5'side of the sequence and a primer binding sequence of 7 to 8 bases.
The second single-stranded circular DNA binding sequence and
including.
SATIC法について、図3を参照して説明する。ただし、一本鎖環状DNAでは、時計回りに5’→3’である。また、図3では、便宜上、磁気ビーズは記載していない。
第1一本鎖環状DNA20は標的核酸21の第1の部位211に相補的な配列201と、その5’側に連結したプライマー結合配列202と、第2一本鎖環状DNA結合配列203を含む。
配列201の長さは、通常、10~30塩基であり、好ましくは15~25塩基であり、GC含量は好ましくは30~70%である。配列202の長さは7塩基または8塩基であり、配列は特に制限されないが、GC含量は好ましくは30~70%である。第1一本鎖環状DNA20全体の長さは、好ましくは35~100塩基である。
The SATIC method will be described with reference to FIG. However, in the case of single-stranded circular DNA, it is 5'→ 3'clockwise. Further, in FIG. 3, magnetic beads are not shown for convenience.
The first single-stranded circular DNA 20 contains a sequence 201 complementary to the first site 211 of the target nucleic acid 21, a primer-binding sequence 202 linked to the 5'side thereof, and a second single-stranded circular DNA-binding sequence 203. ..
The length of sequence 201 is usually 10 to 30 bases, preferably 15 to 25 bases, and the GC content is preferably 30 to 70%. The length of the sequence 202 is 7 or 8 bases, and the sequence is not particularly limited, but the GC content is preferably 30 to 70%. The total length of the first single-stranded circular DNA 20 is preferably 35 to 100 bases.
第1一本鎖環状DNA20は、一本鎖DNA(ssDNA)を環状化することによって得ることができる。一本鎖DNAの環状化は、任意の手段によって行うことができるが、例えば、CircLigase(登録商標)、CircLigase II(登録商標)、ssDNA Ligase(Epicentre社)、ThermoPhage ligase(登録商標) single-stranded DNA(Prokzyme社)を用いて行うことができる。 The first single-stranded circular DNA 20 can be obtained by circularizing the single-stranded DNA (ssDNA). Circulation of single-stranded DNA can be performed by any means, for example, CircLigase®, CircLigaseII®, ssDNALigase (Epicentre), ThermoPhageligase® single-stranded. It can be performed using DNA (Prokzyme).
<第1オリゴヌクレオチドプライマー>
第1オリゴヌクレオチドプライマー22は、標的核酸21の、第1の部位211の3’側に隣接した第2の部位212に相補的な8~15塩基の配列221と、その3’側に連結された、第1一本鎖環状DNA20のプライマー結合部位202に相補的な7~8塩基の配列222と、を含む。
<First oligonucleotide primer>
The first oligonucleotide primer 22 is linked to the sequence 221 of 8 to 15 bases complementary to the second site 212 adjacent to the 3'side of the first site 211 and the 3'side thereof of the target nucleic acid 21. It also contains a 7-8 base sequence 222 complementary to the primer binding site 202 of the first single-stranded circular DNA 20.
第1のオリゴヌクレオチドプライマー22は、その5’末端を介して、磁気ビーズと結合している。
第1のオリゴヌクレオチドプライマー22の5’末端として、例えば、ビオチン、アミノ基、アルデヒド基、又はSH基で修飾されたものなどが挙げられる。磁気ビーズとしては、例えば、アビジン(その誘導体、すなわち、例えば、ストレプトアビジン、ニュートラビジンなどを含む。)が固定されている磁気ビーズ、また、アミノ基、アルデヒド基、又はSH基と反応する官能基を有するシランカップリング剤で表面処理された磁気ビーズなどが挙げられる。固定化は常法に従えばよい。
The first oligonucleotide primer 22 is attached to the magnetic beads via its 5'end.
Examples of the 5'end of the first oligonucleotide primer 22 include those modified with a biotin, an amino group, an aldehyde group, or an SH group. Examples of the magnetic beads include magnetic beads on which avidin (including derivatives thereof, that is, streptavidin, neutralvidin, etc.) are immobilized, and functional groups that react with amino groups, aldehyde groups, or SH groups. Examples thereof include magnetic beads surface-treated with a silane coupling agent having. Immobilization may follow a conventional method.
磁気ビーズは、第1のオリゴヌクレオチドプライマー22と後述する第2オリゴヌクレオチドプライマー25とを近傍に固定化する。両者が近傍に存在することで、第1オリゴヌクレオチドプライマー22から第1増幅産物23が増幅される段階と、第2オリゴヌクレオチドプライマー25から第2増幅産物26が増幅される段階とが効率的に行われ、結果として検出感度の著しい向上が達せられる。 The magnetic beads immobilize the first oligonucleotide primer 22 and the second oligonucleotide primer 25, which will be described later, in the vicinity thereof. When both are present in the vicinity, the stage where the first amplification product 23 is amplified from the first oligonucleotide primer 22 and the stage where the second amplification product 26 is amplified from the second oligonucleotide primer 25 are efficiently performed. This is done and as a result a significant improvement in detection sensitivity is achieved.
好ましい磁気ビーズの形状としては、粒子状の不溶性担体であり、その平均粒径は例えば10 nm~100 μmであり、好ましくは30nm~10μmであり、より好ましくは30nm~1μm、さらに好ましくは30nm~500nmである。磁気ビーズの材質は、例えば、フェライトやマグネタイトなどの酸化鉄、酸化クロム、コバルトなどの磁性材料である。 The preferred shape of the magnetic beads is a particulate insoluble carrier, the average particle size thereof being, for example, 10 nm to 100 μm, preferably 30 nm to 10 μm, more preferably 30 nm to 1 μm, still more preferably 30 nm to 30 nm. It is 500 nm. The material of the magnetic beads is, for example, a magnetic material such as iron oxide such as ferrite or magnetite, chromium oxide, or cobalt.
<第2一本鎖環状DNA>
第2一本鎖環状DNA24は、第1一本鎖環状DNA20の第2一本鎖環状DNA結合配列203と同一の配列241と、
該配列の5’側に隣接した、第2プライマー結合配列242と、
を含む。
配列203の長さは、通常、10~30塩基であり、好ましくは15~25塩基であり、GC含量は好ましくは30~70%である。配列242の長さは7塩基または8塩基であり、配列は特に制限されないが、GC含量は好ましくは30~70%である。配列242の長さは7塩基または8塩基であり、配列は特に制限されないが、GC含量は好ましくは30~70%である。第2一本鎖環状DNA24全体の長さは、好ましくは35~100塩基である。第2一本鎖環状DNA24は上述した方法で、一本鎖DNA(ssDNA)を環状化することによって得ることができる。
<Second single-stranded circular DNA>
The second single-stranded circular DNA 24 has the same sequence 241 as the second single-stranded circular DNA binding sequence 203 of the first single-stranded circular DNA 20.
The second primer binding sequence 242 adjacent to the 5'side of the sequence and
including.
The length of sequence 203 is usually 10 to 30 bases, preferably 15 to 25 bases, and the GC content is preferably 30 to 70%. The length of the sequence 242 is 7 or 8 bases, and the sequence is not particularly limited, but the GC content is preferably 30 to 70%. The length of the sequence 242 is 7 or 8 bases, and the sequence is not particularly limited, but the GC content is preferably 30 to 70%. The total length of the second single-stranded circular DNA 24 is preferably 35 to 100 bases. The second single-stranded circular DNA 24 can be obtained by circularizing the single-stranded DNA (ssDNA) by the method described above.
第2一本鎖環状DNA24は、検出用試薬結合配列に相補的な配列を含むことが好ましい。
該検出用試薬結合配列としては、例えばグアニン四重鎖形成配列が挙げられる。
グアニン四重鎖形成配列としては、Nat Rev Drug Discov. 2011 Apr; 10(4): 261-275.に記載されたような配列が挙げられ、G31-1031-1031-103で表されるが、具体的には、特許文献1に記載の配列などが例示される。よって、グアニン四重鎖形成配列に相補的な配列243としては、C31-1031-1031-103が例示される。すなわち、連続する3つのCが、1~10個(好ましくは1~5個)の任意の塩基(N=A,T,GまたはC)からなる配列をスペーサーとして、4回繰り返される配列である。
The second single-stranded circular DNA 24 preferably contains a sequence complementary to the detection reagent binding sequence.
Examples of the detection reagent binding sequence include a guanine quadruple chain forming sequence.
The guanine quadruple chain forming sequence includes a sequence as described in Nat Rev Drug Discov. 2011 Apr; 10 (4): 261-275., G 3 N 1-10 G 3 N 1-10 G. It is represented by 3 N 1-10 G 3 , and specifically, the sequence described in Patent Document 1 and the like are exemplified. Therefore, as the sequence 243 complementary to the guanine quadruple chain forming sequence, C 3 N 1-10 C 3 N 1-10 C 3 N 1-10 C 3 is exemplified. That is, it is a sequence in which three consecutive Cs are repeated four times with a sequence consisting of 1 to 10 (preferably 1 to 5) arbitrary bases (N = A, T, G or C) as a spacer. ..
<第2オリゴヌクレオチドプライマー>
第2オリゴヌクレオチドプライマー25は、第1一本鎖環状DNA20の第2一本鎖環状DNA結合配列203の5’側に隣接した部位204と同一の配列251(好ましくは8~15塩基の配列)と、
該配列の3’側に隣接した、第2一本鎖環状DNA24の第2プライマー結合配列242に相補的な配列252(好ましくは7~8塩基の配列)と、
を含む。
<Second oligonucleotide primer>
The second oligonucleotide primer 25 has the same sequence 251 as the site 204 adjacent to the 5'side of the second single-stranded circular DNA binding sequence 203 of the first single-stranded circular DNA 20 (preferably a sequence of 8 to 15 bases). When,
A sequence 252 (preferably a sequence of 7 to 8 bases) complementary to the second primer binding sequence 242 of the second single-stranded circular DNA 24 adjacent to the 3'side of the sequence.
including.
第2のオリゴヌクレオチドプライマー25は、その5’末端を介して、第1のオリゴヌクレオチドプライマー22が結合している前記磁気ビーズと結合している。
すなわち、第1のオリゴヌクレオチドプライマー22は、その5’末端がビオチン等で修飾されており、該ビオチン等を介して、アビジン等が固定されている磁気ビーズと結合しており、第2のオリゴヌクレオチドプライマー25は、その5’末端がビオチン等で修飾されており、該ビオチン等を介して、第1のオリゴヌクレオチドプライマー22が結合している前記磁気ビーズと結合していることが好ましい。
The second oligonucleotide primer 25 is bound to the magnetic beads to which the first oligonucleotide primer 22 is bound via its 5'end.
That is, the 5'end of the first oligonucleotide primer 22 is modified with biotin or the like, and is bound to magnetic beads on which avidin or the like is immobilized via the biotin or the like, and the second oligonucleotide is used. It is preferable that the 5'end of the nucleotide primer 25 is modified with biotin or the like and is bound to the magnetic beads to which the first oligonucleotide primer 22 is bound via the biotin or the like.
磁気ビーズに固定化された、第1オリゴヌクレオチドプライマー22と第2オリゴヌクレオチドプライマー25の量比は、モル比で、好ましくは1:10~1:100であり、より好ましくは1:10~1:30であり、さらに好ましくは1:10~1:25である。 The quantitative ratio of the first oligonucleotide primer 22 and the second oligonucleotide primer 25 immobilized on the magnetic beads is a molar ratio, preferably 1:10 to 1: 100, and more preferably 1:10 to 1. It is: 30, and more preferably 1:10 to 1:25.
増幅反応時(使用時)の第1オリゴヌクレオチドプライマー22の濃度は、好ましくは0.0025 pmol/μL以上、より好ましくは0.005 pmol/μL以上であり、一方で、好ましくは0.04 pmol/μL以下、より好ましくは0.02 pmol/μL以下である。
また、増幅反応時(使用時)の第2オリゴヌクレオチドプライマー25の濃度は、好ましくは0.0125 pmol/μL以上、より好ましくは0.025 pmol/μL以上であり、一方で、0.8 pmol/μL以下、より好ましくは0.4 pmol/μL以下である。
The concentration of the first oligonucleotide primer 22 during the amplification reaction (during use) is preferably 0.0025 pmol / μL or more, more preferably 0.005 pmol / μL or more, while preferably 0.04 pmol / μL or less, more preferably. Is 0.02 pmol / μL or less.
The concentration of the second oligonucleotide primer 25 during the amplification reaction (during use) is preferably 0.0125 pmol / μL or more, more preferably 0.025 pmol / μL or more, while 0.8 pmol / μL or less, more preferably. Is less than 0.4 pmol / μL.
増幅反応時(使用時)の第1一本鎖環状DNA20と第2一本鎖環状DNA24の量比は、モル比で、好ましくは1:2~1:1000、より好ましくは1:3~1:500、さらに好ましくは1:4~1:400である。 The amount ratio of the first single-stranded circular DNA 20 to the second single-stranded circular DNA 24 during the amplification reaction (during use) is a molar ratio, preferably 1: 2 to 1: 1000, more preferably 1: 3 to 1. : 500, more preferably 1: 4 to 1: 400.
また、増幅反応時(使用時)の第1一本鎖環状DNA20の濃度は、下限が例えば0.1nM以上、1nM以上、10nM以上、50nM以上であり、一方で、上限が例えば500nM以下、200nM以下である。
また、増幅反応時(使用時)の第2一本鎖環状DNA24の濃度は、下限が例えば20nM以上、40nM以上、100nM以上、200nM以上であり、一方で、上限が例えば1000nM以下、500nM以下である。
The lower limit of the concentration of the first single-stranded circular DNA 20 during the amplification reaction (during use) is, for example, 0.1 nM or more, 1 nM or more, 10 nM or more, 50 nM or more, while the upper limit is, for example, 500 nM or less, 200 nM or less. Is.
The lower limit of the concentration of the second single-stranded circular DNA 24 during the amplification reaction (during use) is, for example, 20 nM or more, 40 nM or more, 100 nM or more, 200 nM or more, while the upper limit is, for example, 1000 nM or less, 500 nM or less. be.
<増幅方法>
図3に示されるように、まず、標的核酸21に第1一本鎖環状DNA20およびプライマー22をハイブリダイズさせて三者の複合体を形成させた後、ローリングサークル増幅(RCA)法によって標的核酸21に基づく核酸増幅反応を行う。
<Amplification method>
As shown in FIG. 3, first, the target nucleic acid 21 is hybridized with the first single-stranded circular DNA 20 and the primer 22 to form a three-way complex, and then the target nucleic acid is formed by the rolling circle amplification (RCA) method. A nucleic acid amplification reaction based on 21 is performed.
ハイブリダイゼーションの条件は、当業者であれば、一本鎖環状DNA20と標的核酸21とプライマーの組み合わせを検討し、適宜設定できる。 Those skilled in the art can examine the combination of the single-stranded circular DNA 20, the target nucleic acid 21, and the primer and appropriately set the hybridization conditions.
RCA法はLizardi et al., Nature Genet. 19: 225-232 (1998);米国特許第5,854,033号及び同第6,143,495号;PCT出願WO97/19193などに記載されている。RCA法は、例えば、上述したようなphi29 DNA polymeraseなどの鎖置換型DNAポリメラーゼを用いることで行うことができる。 The RCA method is described in Lizardi et al., Nature Genet. 19: 225-232 (1998); US Pat. Nos. 5,854,033 and 6,143,495; PCT application WO 97/19193 and the like. .. The RCA method can be carried out by using, for example, a strand-substituted DNA polymerase such as phi29 DNA polymerase as described above.
RCAによるDNAの伸長反応は、例えば、25℃~65℃の範囲の一定の温度において実施される。反応温度は、酵素の至適温度とプライマー鎖長に基づく変性温度(プライマーがDNAに結合(アニール)/解離する温度帯)に基づいて通常の手順により適宜設定される。さらに、一定の比較的低温においても実施される。例えば、鎖置換型DNA合成酵素としてphi29DNAポリメラーゼを使用する場合は、好ましくは25℃~42℃、より好ましくは約30~37℃で反応する。 The DNA elongation reaction by RCA is carried out, for example, at a constant temperature in the range of 25 ° C to 65 ° C. The reaction temperature is appropriately set by a usual procedure based on the optimum temperature of the enzyme and the denaturation temperature based on the primer chain length (the temperature range in which the primer binds (anneals) / dissociates to DNA). Furthermore, it is also carried out at a constant relatively low temperature. For example, when phi29 DNA polymerase is used as a strand-substituted DNA synthase, the reaction is preferably at 25 ° C to 42 ° C, more preferably at about 30 to 37 ° C.
RCAによって、標的核酸21依存的に、プライマー22から第1一本鎖環状DNA20に沿って第1増幅産物23が増幅される。 RCA amplifies the first amplification product 23 from primer 22 along the first single-stranded circular DNA 20 in a manner dependent on the target nucleic acid 21.
増幅産物23は、第1一本鎖環状DNA20の第2一本鎖環状DNA結合配列203に相補的な配列233を含むため、この配列203と同一の配列241を含む第2一本鎖環状DNA24は、第1増幅産物23の配列233に、配列241を介してハイブリダイズする。
このようにしてできた、第1増幅産物23と、第2一本鎖環状DNA24の複合体に、第2オリゴヌクレオチドプライマー25がハイブリダイズして三者の複合体ができる。
Since the amplification product 23 contains the sequence 233 complementary to the second single-stranded circular DNA binding sequence 203 of the first single-stranded circular DNA 20, the second single-stranded circular DNA 24 containing the same sequence 241 as this sequence 203. Hybridizes to sequence 233 of the first amplification product 23 via sequence 241.
The second oligonucleotide primer 25 hybridizes to the complex of the first amplification product 23 and the second single-stranded circular DNA 24 thus formed to form a tripartite complex.
すなわち、第2オリゴヌクレオチドプライマー25は、第1一本鎖環状DNA20の第2一本鎖環状DNA結合配列203の5’側に隣接した部位204と同一の配列251を有するので、第1増幅産物23の、第1一本鎖環状DNA20の部位204に相補的な領域234に、配列251を介してハイブリダイズする。 That is, since the second oligonucleotide primer 25 has the same sequence 251 as the site 204 adjacent to the 5'side of the second single-stranded circular DNA-binding sequence 203 of the first single-stranded circular DNA 20, the first amplification product. It hybridizes to region 234 complementary to site 204 of the first single-stranded circular DNA 20 of 23 via sequence 251.
また、第2オリゴヌクレオチドプライマー25は、配列251の3’側に、第2一本鎖環状DNA24の第2プライマー結合配列242に相補的な配列252を有するので、第2一本鎖環状DNA24にも配列252を介してハイブリダイズする。 Further, since the second oligonucleotide primer 25 has a sequence 252 complementary to the second primer binding sequence 242 of the second single-stranded circular DNA 24 on the 3'side of the sequence 251, the second single-stranded circular DNA 24 has a sequence 252. Also hybridizes via sequence 252.
この第1増幅産物23と、第2一本鎖環状DNA24と、第2オリゴヌクレオチドプライマー25との三者複合体から、RCAにより、第2増幅産物26が増幅される。第2増幅産物26は、例えばグアニン四重鎖を含む配列261を含んでおり、グアニン四重鎖検出試薬262によって検出される。第1増幅産物23に含まれる領域231のそれぞれに第2一本鎖環状DNA24がハイブリダイズしてRCA反応が起こる。 The second amplification product 26 is amplified by RCA from the tripartite complex of the first amplification product 23, the second single-stranded circular DNA 24, and the second oligonucleotide primer 25. The second amplification product 26 contains, for example, sequence 261 containing a guanine quadruple chain and is detected by the guanine quadruple chain detection reagent 262. The second single-stranded circular DNA 24 hybridizes to each of the regions 231 contained in the first amplification product 23, and an RCA reaction occurs.
第1オリゴヌクレオチドプライマー22と第2オリゴヌクレオチドプライマー25が同一磁気ビーズ上に固定化されることにより、第1オリゴヌクレオチドプライマー22から第1増幅産物23が増幅される段階と、第2オリゴヌクレオチドプライマー25から第2増幅産物26が増幅される段階とが、近傍で行われるため、検出感度の著しい向上が達せられる。 By immobilizing the first oligonucleotide primer 22 and the second oligonucleotide primer 25 on the same magnetic beads, the first oligonucleotide primer 22 amplifies the first amplification product 23, and the second oligonucleotide primer. Since the step of amplifying the second amplification product 26 from 25 is performed in the vicinity, a significant improvement in detection sensitivity can be achieved.
第2一本鎖環状DNA24が検出用試薬結合配列に相補的な配列を含むことにより、RCAによって得られる第2増幅産物26には検出用試薬結合配列が含まれる。該検出用試薬結合配列がグアニン四重鎖形成配列等である場合には、RCAによって得られる増幅産物は、グアニン四重鎖結合試薬を用いて検出することができる。グアニン四重鎖結合試薬としては、特許文献1に開示されたチオフラビンT(ThT)またはその誘導体などが挙げられる。 Since the second single-stranded circular DNA 24 contains a sequence complementary to the detection reagent binding sequence, the second amplification product 26 obtained by RCA contains the detection reagent binding sequence. When the detection reagent binding sequence is a guanine quadruple chain forming sequence or the like, the amplification product obtained by RCA can be detected using a guanine quadruple chain binding reagent. Examples of the guanine quadruplex binding reagent include thioflavin T (ThT) disclosed in Patent Document 1 or a derivative thereof.
また、以下のPEG鎖を含むThT誘導体(ThT-PEG)を使用することもできる。
ここで、Rはアミノ基、水酸基、アルキル基、またはカルボキシル基であり、nは4~50の整数であり、好ましくは5~20の整数であり、より好ましくは8~15の整数であり、特に好ましくは11である。ThT-PEGとしては、Rがアミノ基の化合物がより好ましい。この化合物は特開2018-154564においてThT-P42として記載されている。
Figure JPOXMLDOC01-appb-C000001
Further, a ThT derivative (ThT-PEG) containing the following PEG chain can also be used.
Here, R 1 is an amino group, a hydroxyl group, an alkyl group, or a carboxyl group, and n is an integer of 4 to 50, preferably an integer of 5 to 20, and more preferably an integer of 8 to 15. , Particularly preferably 11. As ThT-PEG, a compound in which R 1 is an amino group is more preferable. This compound is described as ThT-P42 in JP-A-2018-154564.
Figure JPOXMLDOC01-appb-C000001
以下のThTがPEG鎖で連結されたThT誘導体(ThT-PEG-ThT)を使用することもできる。
ここで、nは4~50の整数であり、好ましくは5~20の整数であり、より好ましくは8~15の整数であり、特に好ましくは11である。また、ThT-PEG-ThTのPEG鎖はスペルミンリンカーで置換されてもよい。この化合物は後述の合成例に記載の方法で合成できる。
Figure JPOXMLDOC01-appb-C000002
A ThT derivative (ThT-PEG-ThT) in which the following ThTs are linked by a PEG chain can also be used.
Here, n is an integer of 4 to 50, preferably an integer of 5 to 20, more preferably an integer of 8 to 15, and particularly preferably 11. Further, the PEG chain of ThT-PEG-ThT may be replaced with a spermine linker. This compound can be synthesized by the method described in the synthesis example described later.
Figure JPOXMLDOC01-appb-C000002
検出は、例えば、ThT誘導体と、RCA産物を含む試料を接触させ、グアニン四重鎖構造に結合したThT誘導体を、ThT誘導体が発する蛍光に基づいて検出することにより、被検DNA中のグアニン四重鎖構造を検出することができる。ThT誘導体はあらかじめ反応液に添加されていることが好ましい。 For detection, for example, a ThT derivative is brought into contact with a sample containing an RCA product, and the ThT derivative bound to the guanine quadruplex structure is detected based on the fluorescence emitted by the ThT derivative. The heavy chain structure can be detected. The ThT derivative is preferably added to the reaction solution in advance.
なお、グアニン四重鎖結合試薬としてThT-PEGやThT-PEG-ThTを使用する場合には、RCA産物にThT-PEGまたはThT-PEG-ThTが結合すると特異的な凝集が起こるため、その凝集を目視で観察することによって蛍光検出装置を用いなくとも簡便にRCA増幅の有無を確認できる。なお、ThT-PEGとThT-PEG-ThTを同時に使用してもよい。ThT-PEGまたはThT-PEG-ThTの濃度は例えば、5~50μM、好ましくは5~20μMである。 When ThT-PEG or ThT-PEG-ThT is used as the guanine quadruplex binding reagent, specific aggregation occurs when ThT-PEG or ThT-PEG-ThT binds to the RCA product. By visually observing, the presence or absence of RCA amplification can be easily confirmed without using a fluorescence detection device. In addition, ThT-PEG and ThT-PEG-ThT may be used at the same time. The concentration of ThT-PEG or ThT-PEG-ThT is, for example, 5 to 50 μM, preferably 5 to 20 μM.
第1のプライマーと第2のプライマーが固定化された磁気ビーズ、第1および第2の一本鎖環状DNA、核酸ポリメラーゼ、核酸基質、反応緩衝剤等を含む反応試薬を反応容器に収容し、ここに検出対象となる核酸含有試料を添加する。
そして、この反応容器を、あらかじめ反応温度に加温された本発明の装置の支持体上に置くことでSATIC反応が開始される。
そして、コイルに交流電流を印加して支持体上に交流磁場を発生させることで、反応容器内の磁気ビーズが効率よく撹拌され、SATIC反応が効率よく進行する。
反応開始後、約20~30分で核酸増幅反応物の生成に基づく磁気ビーズの凝集がみられるので、それにより、標的核酸の存在を目視で確認することができる。
The reaction reagent containing the first primer and the magnetic beads on which the second primer was immobilized, the first and second single-stranded circular DNA, the nucleic acid polymerase, the nucleic acid substrate, the reaction buffer, etc. was placed in the reaction vessel. The nucleic acid-containing sample to be detected is added here.
Then, the SATIC reaction is started by placing this reaction vessel on the support of the apparatus of the present invention preheated to the reaction temperature.
Then, by applying an alternating current to the coil to generate an alternating magnetic field on the support, the magnetic beads in the reaction vessel are efficiently agitated, and the SATIC reaction proceeds efficiently.
Aggregation of magnetic beads based on the formation of nucleic acid amplification reactants is observed about 20 to 30 minutes after the start of the reaction, whereby the presence of the target nucleic acid can be visually confirmed.
以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例の態様には限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following embodiments.
SATIC法
1-1) プライマー固定化ナノ粒子(磁気ビーズ)の調製
a) ビオチン化プライマーの調製
ビオチン化プライマー(P1)とビオチン化プライマー(P2)を1×φ29 DNA polymerase reaction bufferに溶解させ、P1 (1 μM)、P2(20 μM)のP1・P2混合溶液を調製した。
SATIC method
1-1) Preparation of primer-immobilized nanoparticles (magnetic beads)
a) Preparation of biotinylated primer Dissolve biotinylated primer (P 1 ) and biotinylated primer (P 2 ) in 1 × φ29 DNA polymerase reaction buffer, and P 1 (1 μM), P 2 (20 μM) P 1 -A mixed solution of P 2 was prepared.
b) ナノ粒子の使用前の準備・洗浄
FGビーズ(FG beads streptavidin 多摩川精機)をよくボルテックスし、均一な粒子になるまで撹拌し、4 μLすくいとり、1.5 mLのエッペンドルフ社製チューブに入れた。
磁気ラック(磁石のついたチューブたて)にチューブをセットして、磁気ビーズと上清を分離した(5 分)。上清を抜き取り、1×φ29 DNA polymerase reaction bufferを40 μL加えてピペッティングした。
上記操作をさらに2回行った。
b) Preparation and cleaning of nanoparticles before use
FG beads (FG beads streptavidin Tamagawa Seiki) were well vortexed, stirred until uniform particles, scooped 4 μL and placed in a 1.5 mL Eppendorf tube.
The tube was placed in a magnetic rack (vertical tube with magnet) and the magnetic beads and supernatant were separated (5 minutes). The supernatant was withdrawn, and 40 μL of 1 × φ29 DNA polymerase reaction buffer was added for pipetting.
The above operation was performed twice more.
c) ナノ粒子にプライマーを固定化・洗浄
磁気ラック(磁石のついたチューブたて)にチューブをセットして、磁気ビーズと上清を分離した(5 分)。上清を抜きとった。
洗浄したFGビーズに上記P1・P2混合溶液4 μLを加えた。
25℃、30分間インキュベーションした。その際、5分おきにボルテックスを行った。
磁気ラック(磁石のついたチューブたて)にチューブをセットして、磁気ビーズと上清を分離した(5 分)。上清を抜き取り、1×φ29 DNA polymerase reaction bufferを40 μL加えてピペッティングした。
上記操作をさらに2回行った。
磁気ラック(磁石のついたチューブたて)にチューブをセットして、磁気ビーズと上清を分離した(5 分)。上清を抜き取り、水を40 μL加えてピペッティングした。
上記操作をさらに2回行った。これを使用するまで冷蔵保存した。
c) Primer was immobilized on nanoparticles and washed. The tube was set in a magnetic rack (tube with magnet), and the magnetic beads and supernatant were separated (5 minutes). The supernatant was removed.
4 μL of the above P 1 and P 2 mixed solution was added to the washed FG beads.
Incubated at 25 ° C for 30 minutes. At that time, vortex was performed every 5 minutes.
The tube was placed in a magnetic rack (vertical tube with magnet) and the magnetic beads and supernatant were separated (5 minutes). The supernatant was withdrawn, and 40 μL of 1 × φ29 DNA polymerase reaction buffer was added for pipetting.
The above operation was performed twice more.
The tube was placed in a magnetic rack (vertical tube with magnet) and the magnetic beads and supernatant were separated (5 minutes). The supernatant was withdrawn, 40 μL of water was added, and pipetting was performed.
The above operation was performed twice more. Refrigerated until used.
1-2) プライマー固定化ナノ粒子を用いた反応
P1・P2固定化FGビーズ2 μLをすくいとり、0.5 mL エッペンドルフ社製チューブに加えた。磁気ラック(磁石のついたチューブたて)にチューブをセットして、磁気ビーズと上清を分離した(1 分)。上清を除去した。
1-2) Reaction using primer-immobilized nanoparticles
2 μL of P 1 and P 2 immobilized FG beads were scooped up and added to a 0.5 mL Eppendorf tube. The tube was placed in a magnetic rack (vertical tube with magnet) and the magnetic beads and supernatant were separated (1 minute). The supernatant was removed.
表1に記載のSATIC試薬45μLを加えて、さらにターゲットRNA(2copies/μL) を5 μL加え、37℃のホットプレート上で反応させた。反応セットを2つ用意し、一方は撹拌機で撹拌しながら(2Hz)、もう一方は静置した状態で反応を行った。 45 μL of the SATIC reagent shown in Table 1 was added, and 5 μL of the target RNA (2 copies / μL) was further added, and the reaction was carried out on a hot plate at 37 ° C. Two reaction sets were prepared, one of which was stirred with a stirrer (2 Hz) and the other of which was allowed to stand.
1-3) 目視による観察
ナノ粒子の変化を目視で観察した。その結果、撹拌しながら反応を行った場合は約15分でSATIC反応の増幅産物に基づくナノ粒子の沈降が見られたが、静置した状態で反応させた場合には約55分経過してようやくナノ粒子の沈降が見られた。
このことから、撹拌により、検出時間を顕著に短縮できることが分かった。
1-3) Visual observation The changes in nanoparticles were visually observed. As a result, when the reaction was carried out with stirring, the nanoparticles based on the amplified product of the SATIC reaction were settled in about 15 minutes, but when the reaction was carried out in a stationary state, about 55 minutes had passed. Finally, the precipitation of nanoparticles was seen.
From this, it was found that the detection time can be significantly shortened by stirring.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
なお、一本鎖環状DNA、プライマーおよび鋳型RNAの配列は以下の通りである。
cT1:67mer(配列番号1)
CCCCAAAAAGGAGCTTGAGGTTCTCCTTTAAAAAGAAGCTGTTGTATTGTTGTCGAAGAAGAAAAGT
cT2:62mer(配列番号2)
CCCAACCCTACCCACCCTCAAGAAAAAAAAGTGATAATTGTTGTCGAAGAAGAAAAAAAATT
P1:18mer (5’biotin) (配列番号3)
GGATCAGGCCATTTTTGG
P2:18mer(5’biotin) (配列番号4)
GAAGCTGTTGTTATCACT
40mer target RNA:40mer(配列番号5)
GGGUUGGCCAAAGGAGAACCUCAAGCUCCUGGCCUGAUCC
The sequences of the single-stranded circular DNA, the primer and the template RNA are as follows.
cT1: 67mer (SEQ ID NO: 1)
CCCCAAAAAGGAGCTTGAGGTTCTCCTTTAAAAAGAAGCTGTTGTATTGTTGTCGAAGAAGAAAAGT
cT2: 62mer (SEQ ID NO: 2)
CCCAACCCTACCCACCCTCAAGAAAAAAAAGTGATAATTGTTGGAAGAAGAAAAAAAATT
P1: 18mer (5'biotin) (SEQ ID NO: 3)
GGATCAGGCCATTTTTGG
P2: 18mer (5'biotin) (SEQ ID NO: 4)
GAAGCTGTTGTTATCACT
40mer target RNA: 40mer (SEQ ID NO: 5)
GGGUUGGCCAAAGGAGAACCUCAAGCUCCUGGCCUGAUCC
<反応装置の作製と当該装置を用いたSATIC法>
次に、撹拌を交流磁場を印加して自動的に行うために、SATIC反応用の装置を作製した(図2)。
コイルは直径50mm のステンレス筒状部材に直径0.29mm のポリウレタン線を 1200 回巻いて作製した。コイルの特性はおおよそ100mH(100Hz) となった。
電磁石の磁力を増すために、ステンレス筒状部材の中にステンレス柱を反応場の台座(反応チューブ支持体)として設置した。
そして、これをホットプレート上に置き、ホットプレートを37℃に加温した。
コイルには交流電源に接続し、20Vp-p(2Hz)の交流電圧を印加した。
<Preparation of reaction device and SATIC method using the device>
Next, in order to automatically perform stirring by applying an AC magnetic field, a device for SATIC reaction was prepared (Fig. 2).
The coil was made by winding a polyurethane wire with a diameter of 0.29 mm 1200 times around a stainless tubular member with a diameter of 50 mm. The coil characteristics are approximately 100mH (100Hz).
In order to increase the magnetic force of the electromagnet, a stainless steel column was installed as a pedestal (reaction tube support) of the reaction field in the stainless tubular member.
Then, this was placed on a hot plate, and the hot plate was heated to 37 ° C.
The coil was connected to an AC power supply and an AC voltage of 20Vp-p (2Hz) was applied.
反応液は表1に記載のものを使用し、ターゲットRNAを加えてトータル50μLを反応チューブ内に収容したうえで、当該反応チューブを、あらかじめ37℃に加温され、交流磁場を発生させた上記ステンレス中の台座(支持体)上に置いて交流磁場により磁気ビーズを攪拌しながら反応を行った。
反応チューブ内のナノビーズの変化を経時的に観察したところ、約15分でビーズの沈降がみられ、SATIC反応によるターゲット増幅が短時間で生じることが分かった。
The reaction solution used is as shown in Table 1, and after adding the target RNA and accommodating a total of 50 μL in the reaction tube, the reaction tube was preheated to 37 ° C. to generate an AC magnetic field. The reaction was carried out by placing it on a pedestal (support) in stainless steel and stirring the magnetic beads with an AC magnetic field.
When the changes in the nanobeads in the reaction tube were observed over time, it was found that the beads settled in about 15 minutes, and the target amplification by the SATIC reaction occurred in a short time.
<与える周波数による凝集体のでき易さの検討>
上記と同様にして、P1・P2固定化FGビーズを含む表1に記載のSATIC試薬45μLを反応チューブに加えて、さらにターゲットRNA(CIDEC:40merおよび全長RNA 2copies/μL) を5 μL加えたうえで、あらかじめ37℃に加温され、交流磁場を発生させた上記ステンレス中の台座(支持体)上に置いて交流磁場により磁気ビーズを攪拌しながら反応を行った。このときの交流電流の周波数は2, 20, 200, または2k Hzとした。
<Examination of the ease of forming aggregates depending on the given frequency>
In the same manner as above , add 45 μL of the SATIC reagent shown in Table 1 containing P 1 and P 2 immobilized FG beads to the reaction tube, and add 5 μL of the target RNA (CIDEC: 40 mer and full-length RNA 2 copies / μL). Then, it was preheated to 37 ° C. and placed on a pedestal (support) in the stainless steel in which an AC magnetic field was generated, and the reaction was carried out while stirring the magnetic beads with the AC magnetic field. The frequency of the alternating current at this time was 2, 20, 200, or 2 kHz.
各周波数の交流磁場において反応させた反応チューブにおけるナノ粒子の変化を経時的に目視で観察した結果、表2に示すように、コイルに交流電流を流さない場合は55分でようやく凝集体がみられたが、コイルに2~20Hzの交流電流を与えたときには凝集体が短時間に生成されることが分かった。 As a result of visually observing the changes in the nanoparticles in the reaction tube reacted in the AC magnetic field of each frequency over time, as shown in Table 2, when no AC current is passed through the coil, aggregates are finally seen in 55 minutes. However, it was found that aggregates were formed in a short time when an alternating current of 2 to 20 Hz was applied to the coil.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[合成例]
ThT誘導体の合成
以下のスキームに従ってThT-PEG-ThTを合成した。なお、ThT-AEの合成法は参考文献(Kataoka, Y.; Fujita, H.; Afanaseva, A.; Nagao, C.; Mizuguchi, K.; Kasahara, Y.; Obika, S.; Kuwahara, M. Biochemistry, 2019, 58, 493.)に記載の通りである。
Figure JPOXMLDOC01-appb-C000005
スキーム. ThT誘導体の合成
[Composite example]
Synthesis of ThT derivatives ThT-PEG-ThT was synthesized according to the following scheme. References (Kataoka, Y .; Fujita, H .; Afanaseva, A .; Nagao, C .; Mizuguchi, K .; Kasahara, Y .; Obika, S .; Kuwahara, M) for the synthesis method of ThT-AE. .Biochemistry, 2019, 58, 493.).
Figure JPOXMLDOC01-appb-C000005
Scheme. Synthesis of ThT derivatives
[化合物T1の合成]
 ThT-AE (32 mg, 0.10 mmol)にdry Dichloromethane (CH2Cl2) (0.30 mL)を加えて撹拌し、そこにTriethylamine (TEA) (85 μL, 0.61 mmol)を加えた後にSuccinic anhydride (11 mg, 0.11 mmol)を加え、室温で30分撹拌した。反応混合物を減圧留去した後、残渣を水で懸濁させ、CH2Cl2で洗浄した。水層を減圧留去することで化合物T1を定量的に得た。ESI-MS (positive ion mode) m/z, found =412.15, calculated for [M+] =412.17.
[Synthesis of compound T1]
Add dry Dichloromethane (CH 2 Cl 2 ) (0.30 mL) to ThT-AE (32 mg, 0.10 mmol), stir, add Triethylamine (TEA) (85 μL, 0.61 mmol), and then Succinic anhydride (11). mg, 0.11 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. After distilling off the reaction mixture under reduced pressure, the residue was suspended in water and washed with CH 2 Cl 2. Compound T1 was quantitatively obtained by distilling off the aqueous layer under reduced pressure. ESI-MS (positive ion mode) m / z, found = 412.15, calculated for [M + ] = 412.17.
[ThT-PEG-ThTの合成]
 ThT-PEG (10 mg, 10 μmol)(特開2018-154564のThT-P42)にdry DMF (0.3 mL)を加えて撹拌し、そこにHOBt・H2O (4. 2 mg, 26 μmol)、PyBOP (14 mg, 26 μmol)を加えた後にDIPEA (14 μL, 80 μmol)を加えた。そこに、dry DMF (0.2 mL)に溶解した化合物T1 (5.6 mg, 13 μmol)を加え、室温で5時間撹拌した。反応混合物を減圧留去した後、残渣をCH2Cl2で溶解し、水で洗浄した。有機層を減圧留去し、ジエチルエーテルで固液抽出した後にHPLCを用いて精製することでThT-PEG-ThTを得た。
収量 : 0.82 mg 収率 : 6.1%
[Synthesis of ThT-PEG-ThT]
Add dry DMF (0.3 mL) to ThT-PEG (10 mg, 10 μmol) (ThT-P42 of JP-A-2018-154564) and stir, and then HOBt · H 2 O (4.2 mg, 26 μmol). , PyBOP (14 mg, 26 μmol) was added, followed by DIPEA (14 μL, 80 μmol). Compound T1 (5.6 mg, 13 μmol) dissolved in dry DMF (0.2 mL) was added thereto, and the mixture was stirred at room temperature for 5 hours. After distilling off the reaction mixture under reduced pressure, the residue was dissolved in CH 2 Cl 2 and washed with water. The organic layer was distilled off under reduced pressure, and the mixture was subjected to solid-liquid extraction with diethyl ether and then purified by HPLC to obtain ThT-PEG-ThT.
Yield: 0.82 mg Yield: 6.1%
1H NMR (500 MHz, Deuterium oxide) δ 8.01 (2H, d) 7.97 (2H, s) 7.75 (6H, t) 6.95 (4H, d) 5.12 (4H, t) 3.86 (4H, s) 3.68 (44H, q) 3.61 (4H, q) 3.42-3.35 (4H, m) 3.10 (12H, s) 2.65 (4H, t) 2.57 (3H, s) 2.54 (3H, t); ESI-MS (positive ion mode) m/z, found = 1348.51, calculated for [H+]= 1348.67. 1 H NMR (500 MHz, Deuterium oxide) δ 8.01 (2H, d) 7.97 (2H, s) 7.75 (6H, t) 6.95 (4H, d) 5.12 (4H, t) 3.86 (4H, s) 3.68 (44H) , q) 3.61 (4H, q) 3.42-3.35 (4H, m) 3.10 (12H, s) 2.65 (4H, t) 2.57 (3H, s) 2.54 (3H, t); ESI-MS (positive ion mode) m / z, found = 1348.51, calculated for [H + ] = 1348.67.
装置10・・・装置、11・・・金属線、12・・・筒状体、13・・・支持体、14・・・ホットプレート Device 10 ... Device, 11 ... Metal wire, 12 ... Cylindrical body, 13 ... Support, 14 ... Hot plate
20・・・一本鎖環状DNA、21・・・標的核酸、22・・・第1オリゴヌクレオチドプライマー、23・・・第1増幅産物、24・・・第2一本鎖環状DNA、25・・・第2オリゴヌクレオチドプライマー、26・・・第2増幅産物、201・・・第1の部位に相補的な配列、202・・・第1プライマー結合配列、203・・・第2一本鎖環状DNA結合配列、204・・・配列203の5’側に隣接した部位、211・・・第1の部位、212・・・第2の部位、221・・・第2の部位に相補的な配列、222・・・第1プライマー結合部位に相補的な配列、231・・・配列203の相補領域、232・・・部位204に相補的な領域、233・・・配列203に相補的な配列、241・・・第2一本鎖環状DNA結合配列203と同一の配列、242・・・第2プライマー結合配列、243・・・グアニン四重鎖形成配列に相補的な配列、251・・・部位204と同一の配列、252・・・第2一本鎖環状DNAの第2プライマー結合配列242に相補的な配列、261・・・グアニン四重鎖を含む配列、262・・・グアニン四重鎖検出試薬  20 ... Single-stranded circular DNA, 21 ... Target nucleic acid, 22 ... First oligonucleotide primer, 23 ... First amplification product, 24 ... Second single-stranded circular DNA, 25. Second oligonucleotide primer, 26 ... second amplification product, 201 ... sequence complementary to the first site, 202 ... first primer binding sequence, 203 ... second single strand Circular DNA binding sequence, 204 ... site adjacent to the 5'side of sequence 203, 211 ... first site, 212 ... second site, 221 ... complementary to the second site Sequence 222 ... Sequence complementary to the first primer binding site 231 ... Complementary region of sequence 203 232 ... Region complementary to site 204 233 ... Sequence complementary to sequence 203 , 241 ... the same sequence as the second single-stranded circular DNA-binding sequence 203, 242 ... the second primer-binding sequence, 243 ... a sequence complementary to the guanine quadruplex forming sequence, 251 ... Same sequence as site 204, 252 ... sequence complementary to second primer binding sequence 242 of second single-stranded circular DNA, 261 ... sequence containing guanine quadruplex, 262 ... guanine quadruplex Chain detection reagent

Claims (11)

  1. 磁気ビーズに固定化されたプライマーオリゴヌクレオチドを含む反応試薬を収容した反応容器内で核酸増幅反応を進行させるための装置であって、
    交流電源に接続可能なコイル、および
    コイル内部に設置され、前記反応容器を載置可能な熱伝導性の磁性体からなる支持体、
    を含む、装置。
    A device for advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide immobilized on magnetic beads.
    A coil that can be connected to an AC power supply, and a support made of a thermally conductive magnetic material that is installed inside the coil and on which the reaction vessel can be placed.
    Including equipment.
  2. 前記支持体は、反応容器を挿入できる1又は複数の窪みを有する、請求項1に記載の装置。 The device of claim 1, wherein the support has one or more recesses into which the reaction vessel can be inserted.
  3. 前記磁性体が鉄含有合金である、請求項1または2に記載の装置。 The apparatus according to claim 1 or 2, wherein the magnetic material is an iron-containing alloy.
  4. さらに、前記支持体を加温するヒーターを含む、請求項1~3のいずれか一項に記載の装置。 The device according to any one of claims 1 to 3, further comprising a heater for heating the support.
  5. 核酸増幅反応がSATIC反応である、請求項1~4のいずれか一項に記載の装置。 The apparatus according to any one of claims 1 to 4, wherein the nucleic acid amplification reaction is a SATIC reaction.
  6. 磁気ビーズに固定化されたプライマーオリゴヌクレオチドを含む反応試薬を収容した反応容器内で核酸増幅反応を進行させる方法であって、反応容器を交流磁場内に置き、反応容器内の磁気ビーズを交流磁場により攪拌しつつ核酸増幅反応を行うことを特徴とする方法。 A method of advancing a nucleic acid amplification reaction in a reaction vessel containing a reaction reagent containing a primer oligonucleotide immobilized on magnetic beads. The reaction vessel is placed in an AC magnetic field, and the magnetic beads in the reaction vessel are placed in an AC magnetic field. A method characterized by carrying out a nucleic acid amplification reaction while stirring with a magnetic acid.
  7. 交流磁場が交流電源に接続されたコイル内の磁場である、請求項6に記載の方法。 The method of claim 6, wherein the AC magnetic field is a magnetic field in a coil connected to an AC power source.
  8. 交流周波数が1~50Hzである、請求項6または7に記載の方法。 The method according to claim 6 or 7, wherein the AC frequency is 1 to 50 Hz.
  9. 交流電圧が10~50Vである、請求項6~8のいずれか一項に記載の方法。 The method according to any one of claims 6 to 8, wherein the AC voltage is 10 to 50 V.
  10. 前記反応容器を請求項1~4のいずれか一項に記載の装置の支持体上に載置して反応を行う、請求項6~9のいずれか一項に記載の方法。 The method according to any one of claims 6 to 9, wherein the reaction vessel is placed on a support of the apparatus according to any one of claims 1 to 4 to carry out a reaction.
  11. 核酸増幅反応がSATIC反応である、請求項6~10のいずれか一項に記載の方法。 The method according to any one of claims 6 to 10, wherein the nucleic acid amplification reaction is a SATIC reaction.
PCT/JP2021/022712 2020-07-16 2021-06-15 Nucleic acid amplification reaction device provided with magnetic bead stirring mechanism WO2022014237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-122057 2020-07-16
JP2020122057A JP2022024331A (en) 2020-07-16 2020-07-16 Nucleic acid amplification reaction device equipped with magnetic bead stirring mechanism

Publications (1)

Publication Number Publication Date
WO2022014237A1 true WO2022014237A1 (en) 2022-01-20

Family

ID=79555484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022712 WO2022014237A1 (en) 2020-07-16 2021-06-15 Nucleic acid amplification reaction device provided with magnetic bead stirring mechanism

Country Status (2)

Country Link
JP (1) JP2022024331A (en)
WO (1) WO2022014237A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814324B (en) * 2022-03-31 2023-09-01 國立臺灣大學 A portable device integrated with all-in-one lamp system for nucleic acid amplification and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140350235A1 (en) * 2013-05-23 2014-11-27 The Board Of Trustees Of The Leland Stanford Junior University In situ oligonucleotide synthesis on a paramagnetic support
WO2016152936A1 (en) * 2015-03-24 2016-09-29 国立大学法人 群馬大学 Simple method for detecting rna sequences
US20190338341A1 (en) * 2018-05-05 2019-11-07 Molde Methods and device for electromagnetic detection of polymerase chain reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140350235A1 (en) * 2013-05-23 2014-11-27 The Board Of Trustees Of The Leland Stanford Junior University In situ oligonucleotide synthesis on a paramagnetic support
WO2016152936A1 (en) * 2015-03-24 2016-09-29 国立大学法人 群馬大学 Simple method for detecting rna sequences
US20190338341A1 (en) * 2018-05-05 2019-11-07 Molde Methods and device for electromagnetic detection of polymerase chain reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814324B (en) * 2022-03-31 2023-09-01 國立臺灣大學 A portable device integrated with all-in-one lamp system for nucleic acid amplification and method thereof

Also Published As

Publication number Publication date
JP2022024331A (en) 2022-02-09

Similar Documents

Publication Publication Date Title
Hu et al. Single-step, salt-aging-free, and thiol-free freezing construction of AuNP-based bioprobes for advancing CRISPR-based diagnostics
JP3020271B2 (en) Nucleic acid probe
Liu et al. A microRNA-triggered self-powered DNAzyme walker operating in living cells
Li et al. Polymerase chain reaction coupling with magnetic nanoparticles-based biotin–avidin system for amplification of chemiluminescent detection signals of nucleic acid
JPH10505492A (en) Method and apparatus for amplifying nucleic acid on a carrier
WO2012021516A2 (en) Nanoparticle-oligonucletide hybrid structures and methods of use thereof
NZ229672A (en) Amplification and detection of nucleic acid sequences
JP2012514461A (en) Cross-priming amplification of target nucleic acids
WO2016152936A1 (en) Simple method for detecting rna sequences
WO2022014237A1 (en) Nucleic acid amplification reaction device provided with magnetic bead stirring mechanism
Dai et al. Localized DNA catalytic hairpin assembly reaction on DNA origami for tumor-associated microRNA detection and imaging in live cells
JP4482557B2 (en) Hybridization method
US20050142598A1 (en) Oligonucleotides containing molecular rods
US20140350235A1 (en) In situ oligonucleotide synthesis on a paramagnetic support
CN107893067A (en) The method based on solid phase carrier film enrichment target nucleic acid for high-flux sequence
WO2008026582A1 (en) Dna fragment used in the form attached to 5&#39;-terminus of primer for use in amplification reaction of nucleic acid, and use thereof
Zhang et al. On-chip oligonucleotide ligation assay using one-dimensional microfluidic beads array for the detection of low-abundant DNA point mutations
JP7448239B2 (en) Simple detection method for nucleic acid sequences, etc.
KR20150056151A (en) Dumbbell structure oligonucleotide, primer for amplificating nucleic acid having the same and method for amplificating nucleic acid using the same
EP1793004B1 (en) Method of forming signal probe polymer
Zeng et al. A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification
Naumann et al. Tetrakis (trifluormethyl) tellur (CF3) 4Te [1]
WO2021230204A1 (en) Kit and method for detecting novel coronavirus sars-cov-2
JP2009222635A (en) Nucleic acid detection method
CN111549104A (en) Preparation method of circRNA-driven DNA nanobelt based on long-chain DNA scaffold and tumor application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843517

Country of ref document: EP

Kind code of ref document: A1