WO2022013951A1 - Coolant filling device for hollow-head engine valve, and coolant filling method - Google Patents

Coolant filling device for hollow-head engine valve, and coolant filling method Download PDF

Info

Publication number
WO2022013951A1
WO2022013951A1 PCT/JP2020/027405 JP2020027405W WO2022013951A1 WO 2022013951 A1 WO2022013951 A1 WO 2022013951A1 JP 2020027405 W JP2020027405 W JP 2020027405W WO 2022013951 A1 WO2022013951 A1 WO 2022013951A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
hollow
engine valve
umbrella
hollow portion
Prior art date
Application number
PCT/JP2020/027405
Other languages
French (fr)
Japanese (ja)
Inventor
勇介 籠橋
併 稲福
安彦 田中
Original Assignee
フジオーゼックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジオーゼックス株式会社 filed Critical フジオーゼックス株式会社
Priority to CN202080095069.0A priority Critical patent/CN115003899B/en
Priority to JP2022536024A priority patent/JP7310059B2/en
Priority to PCT/JP2020/027405 priority patent/WO2022013951A1/en
Publication of WO2022013951A1 publication Critical patent/WO2022013951A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/24Safety means or accessories, not provided for in preceding sub- groups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves

Definitions

  • the present invention relates to a coolant filling device for an umbrella hollow engine valve and a coolant filling method.
  • engine valves for inflowing intake gas into the combustion chamber of an engine such as an automobile or a ship and discharging exhaust gas have a hollow portion in which the shaft and umbrella of the valve body are hollow, and metal sodium or the like.
  • an umbrella hollow engine valve hereinafter, also simply referred to as an engine valve in which a cooling material is enclosed.
  • a getter material for example, granular titanium material which is a gas adsorbent for preventing oxidation of the coolant and creating a negative pressure in the hollow portion is added to such an engine valve.
  • a getter material for example, granular titanium material
  • a gas adsorbent for preventing oxidation of the coolant and creating a negative pressure in the hollow portion
  • the rod-shaped metallic sodium N is applied to the upper portion of the shaft portion 201.
  • the lower end portion of the metallic sodium N is pushed into the hollow portion 205 from the opening 204 of the above by the pressing rod R, and the lower end portion of the metallic sodium N is pressed against the inner bottom surface 203 of the umbrella-shaped hollow portion 205 heated by the high frequency induction heating device H.
  • the metallic sodium N is melted from the pressed portion and filled in the hollow portion 205.
  • the getter material G on the inner bottom surface 203 is also heated, so that there is a concern about the influence of heat on the getter material G.
  • the getter material G is interposed between the pushed metal sodium N and the inner bottom surface 203, the metal sodium N does not come into direct contact with the inner bottom surface 203, so that heat transfer is not performed efficiently.
  • the present invention has been made in view of the above problems, and an object thereof is a coolant filling device capable of reliably and efficiently filling the hollow portion of an engine valve with a coolant such as metallic sodium, and filling of the coolant. To provide a method.
  • the shaft portion and the other of the shaft portion in the umbrella hollow engine valve having a hollow hollow portion inside the umbrella portion whose diameter is expanded like an umbrella at one end of the shaft portion.
  • a cooling material filling device capable of charging a getter material into the hollow portion from an opening at an end and filling the cooling material, and a valve tilting means for tilting the umbrella hollow engine valve at a predetermined angle in the axial direction, and a rod-shaped rod-shaped device.
  • a cooling material guide means having a tubular holder capable of temporarily holding the cooling material, and a rod-shaped pushing rod capable of pushing the cooling material temporarily held in the holder into the hollow portion.
  • the cooling material pushing means having the umbrella portion and the central portion of the bottom portion of the umbrella portion can be heated to a temperature higher than the melting point of the cooling material, and the cooling material pushed into the hollow portion and in contact with the bottom portion can be melted. It is provided with a partial heating means.
  • the powdery or granular getter material thrown into the hollow portion can be brought to the end of the hollow portion of the umbrella of the hollow portion and only the central portion of the bottom of the umbrella portion can be heated. Therefore, the getter material is difficult to be heated, and the influence of heat on the getter material can be prevented. Further, when the coolant is pushed into the hollow portion, the coolant directly contacts the bottom of the umbrella portion without the intervention of the getter material, so that the coolant can be efficiently melted.
  • the coolant guiding means is the coolant having a depth longer than the depth of the hollow portion pushed into the hollow portion by the push rod.
  • a cylindrical shaft end guide is provided below the holder to cover the portion of the coolant protruding from the opening when the lower end contacts the bottom of the hollow.
  • the coolant when the coolant is pushed into the hollow portion by the push rod, the portion protruding from the opening of the coolant is covered by the shaft end guide, so that the coolant is prevented from bending due to pressing against the coolant. Therefore, the coolant can be reliably pushed in without being damaged.
  • the process of filling the hollow portion with metallic sodium can be completed in one step, the filling work efficiency can be improved, and the equipment for filling the hollow portion with metallic sodium can be miniaturized. It is possible to control costs.
  • the valve vibrating means capable of vibrating the umbrella hollow engine valve tilted at a predetermined angle.
  • the getter material thrown into the hollow portion can be more reliably brought to the end of the umbrella hollow portion of the hollow portion.
  • the shaft portion and the other shaft portion in the umbrella hollow engine valve having a hollow hollow portion inside the umbrella portion whose diameter is expanded like an umbrella at one end of the shaft portion. It is a method of filling a cooling material that can fill the hollow portion from an opening at the end, and by tilting the umbrella hollow engine valve at an angle, the getter material introduced into the hollow portion is put into the hollow portion at the end of the hollow portion.
  • a cooling material pressing step of pushing the rod-shaped cooling material into the hollow portion from the opening, and heating the central portion of the umbrella portion to a temperature higher than the melting point of the cooling material.
  • a melting step of melting the cooling material pushed into the hollow portion and in contact with the bottom portion is performed.
  • the getter material is difficult to be heated, and the influence of heat on the getter material G can be prevented. Further, when the coolant is pushed into the hollow portion, the coolant directly contacts the bottom of the umbrella portion without the intervention of the getter material, so that the coolant can be efficiently melted.
  • the coolant for cooling the umbrella hollow engine valve can be reliably and efficiently filled in the hollow portion of the umbrella hollow engine valve.
  • the umbrella hollow engine valve 100 As shown in FIG. 1, the umbrella hollow engine valve (hereinafter, simply referred to as an engine valve) 100 has a shaft portion 101 formed in a round bar shape and an umbrella whose diameter is concentrically and umbrella-shaped at the lower end portion of the shaft portion 101.
  • the umbrella portion 102 is provided with a portion 102, and the umbrella portion 102 has a disc-shaped bottom portion 103 at the lower portion.
  • the bottom portion 103 has an inner bottom surface 103a inside the hollow portion 105 and an outer bottom surface 103b outside.
  • the hollow portion 105 formed inside the engine valve 100 is opened at the upper portion by the opening 104 provided at the upper portion of the shaft portion 101, and the shaft hollow portion 105a formed in the shaft portion 101 and the umbrella portion 102. It is formed so that the hollow portion 105b of the umbrella formed inside forms an integral space.
  • the engine valve 100 shown in the present embodiment is a semi-finished product formed as described above by a plurality of forming processes such as hot forging, cold forging, and drawing on columnar special steel.
  • the engine valve 100 can fill the hollow portion 105 with metallic sodium N, which is a rod-shaped coolant, from the opening 104.
  • the metal sodium N before melting filled in the hollow portion 105 of the engine valve 100 has a sufficient amount as shown in FIG. 1 (b).
  • a valve that is longer than the depth of the hollow portion 105 of the engine valve 100 (the length from the upper end portion of the shaft hollow portion 105a to the inner bottom surface 103a) is used so as to be filled in the 105. Therefore, when the metallic sodium N is pushed into the hollow portion 105, it protrudes upward by, for example, about 15 mm from the opening 104 (hereinafter, the protruding portion is referred to as a protruding portion N1).
  • the coolant filling device 1 described below can appropriately fill the hollow portion 105 with metallic sodium N that is longer than the depth of the hollow portion 105 of the engine valve 100.
  • the engine valve 100 has an opening 104 by fixing a round bar-shaped shaft end member (not shown) to the upper end of the shaft portion 101 by friction welding or the like after the filling of metallic sodium N is completed in a step described later. By closing, the metallic sodium N can be sealed in the hollow portion 105.
  • the pre-process equipment of the cooling material filling device 1 is provided with a getter material charging means (not shown).
  • the getter material charging means inputs a predetermined amount of the getter material G (see FIG. 1 and the like) from the opening 104 of the engine valve 100 into the hollow portion 105.
  • the coolant filling device 1 measures the weight of the inert gas supply means 10 capable of ejecting the inert gas into the hollow portion 105 of the engine valve 100 and the weight of the engine valve 100.
  • Means 20 a defined amount determining means 30 capable of determining the appropriateness of the amount of metallic sodium N filled in the engine valve 100, and a valve tilting means 40 for tilting the engine valve 100 in a vertical axial direction to an inclined state.
  • the valve vibrating means 46 capable of applying vibration to the engine valve 100 in an inclined state
  • the valve heating means 50 capable of heating a predetermined range of the bottom 103 of the umbrella portion 102
  • the metallic sodium molding capable of forming the metallic sodium N into a rod shape.
  • the means 60, the metal sodium guide means 70 that can be introduced into the hollow portion 105 of the engine valve 100 by holding the rod-shaped metal sodium N, and the metal sodium N held by the metal sodium guide means 70 are hollow. It includes a metal sodium pushing means 80 that can be pushed into the portion 105, and a filling determination means 90 that can determine whether or not the hollow portion 105 is filled with the metallic sodium N. These constituent means (excluding a part of the determination means and the measuring means) are fixed to the upper surface of the fixing plate 2 directly or via a support or the like by bolt tightening, welding, or the like.
  • the driving means (not shown) of each constituent means is appropriately referred to the control unit (not shown). It shall operate properly based on the detection signals from sensors that are electrically connected and placed in place.
  • the inert gas supply means 10 is connected to the hollow pipe 11 connected to the inert gas source (not shown) via the supply pipe 11a and the lower end of the hollow pipe 11 in the vertical direction. It has an elongated nozzle 12 that faces.
  • the inert gas is, for example, nitrogen gas, and is ejected from the inert gas source through the hollow tube 11 and the nozzle 12 from the lower end of the nozzle 12.
  • the hollow tube 11 is fixed to an elevating means (not shown) such as an air cylinder or a solenoid that can expand and contract in the vertical direction, and the lower end of the nozzle 12 is a tapered hole provided inside the inverted cone-shaped guide member 13.
  • the inert gas supply means 10 can fill the hollow portion 105 with the inert gas by moving the hollow tube 11 to the lower limit position and ejecting the inert gas into the hollow portion 105. ing.
  • the weight measuring means 20 has a built-in weight sensor (not shown) capable of measuring the weight of the engine valve 100, and is provided on the upper portion of the base 5 erected on the fixing plate 2.
  • the weight measuring means 20 is arranged at an appropriate position between the process equipment after the getter material G is charged and before the introduction of the metallic sodium N, and measures the weight of the engine valve 100 before and after the introduction of the metallic sodium N. ..
  • the weight measuring means 20 measures the weight of the engine valve 100 before the introduction of the metallic sodium N, for example, after the inert gas is supplied or immediately after the getter material G in the previous step is charged. Further, the weight measuring means 20 measures the weight of the engine valve 100 after the introduction of the metallic sodium N after the filling of the metallic sodium N, which will be described later, is completed.
  • the measured weight information is used for the determination process of the specified amount determination means 30.
  • the specified amount determination means 30 is electrically connected to the weight measuring means 20 and obtains the weight difference d of the engine valve 100 before and after the introduction of the metallic sodium N measured by the weight measuring means 20. , Determine whether the introduced metallic sodium N is in the specified amount.
  • the specified amount determining means 30 determines that it is normal, and when the weight difference d ⁇ 0, it determines that there is an excess or deficiency in the introduced metallic sodium N, that is, an error.
  • the production line control means does not perform any special control when the specified amount determination means 30 determines to be normal, but prevents defective products from being mixed when the specified amount determination means 30 determines to be an error. As a process, for example, the production line is temporarily stopped, or the engine valve 100 determined to be an error is controlled to be discharged to the outside of the production line as a defective product.
  • valve tilting means 40 tilts the gripping arm 41 capable of gripping the shaft portion 101 of the engine valve 100 and the gripping arm 41 by a predetermined angle (for example, 45 degrees) around the horizontal rotation shaft 5a. It has a tilting mechanism 43 which is possible.
  • the gripping arm 41 has a pair of thin plates having an arm portion 41a provided with a driving means (not shown) such as a motor and a non-slip member such as rubber attached to one end of the arm portion 41a so as to face each other. It has a grip portion 41b capable of gripping an object from a horizontal direction by operating a driving means.
  • a valve vibrating means 46 which is a vibration motor, is fixed to the other end of the gripping arm 41 by a bolt or the like.
  • the tilting mechanism 43 has an expansion / contraction means 43a that can be expanded and contracted in the vertical direction by an air cylinder, a solenoid, or the like, and a flat plate-shaped rotary link 43b that extends in the horizontal direction and bends in a reverse shape.
  • the bent portion of the rotary link 43b is rotatably supported by a rotary shaft 5a projecting horizontally from the side surface of the base 5, one end is rotatably connected to the upper end of the telescopic means 43a, and the other end is gripped. It is non-rotatably connected to the substantially center of the arm 41.
  • the tilting mechanism 43 can reciprocate the gripping arm 41 between the horizontal position shown by the virtual line in FIG. 2 and the tilted position shown by the solid line by expanding and contracting the telescopic means 43a in the vertical direction. ing.
  • the valve tilting means 40 grips the shaft portion 101 of the engine valve 100 in which the weight is measured in the vertical direction by the gripping arm 41, and the gripping arm 41 is held at a predetermined angle by the tilting mechanism 43.
  • the engine valve 100 By tilting the engine valve 100 to an inclined position (for example, 45 degrees), the engine valve 100 can be tilted by a predetermined angle in the axial direction to be in an inclined state.
  • the valve tilting means 40 can shift the getter material G in the umbrella hollow portion 105b to one side of the umbrella hollow portion 105b (see FIGS. 1A and 3A).
  • the valve vibrating means 46 can vibrate the tilted engine valve 100 via the gripping arm 41. As a result, the valve vibrating means 46 can reliably offset the getter material G in the hollow portion 105b of the umbrella, which cannot be offset only by tilting the engine valve 100.
  • the valve vibration means 46 may be independently provided so that the valve vibration means 46 can be brought into contact with the engine valve 100 in an inclined state to directly apply vibration. Further, instead of the vibration motor, the valve vibrating means 46 may employ a striking device (not shown) that vibrates by striking.
  • valve heating means 50 As shown in FIG. 2, the valve heating means 50 is a heating device using high frequency, and is a position changing unit 55 that changes a heating unit 51 for outputting heat and a coil unit 53, which will be described later, within a predetermined range. Consists of including.
  • the heating unit 51 includes an induction heating power supply 52 that generates an alternating current, a coil unit (partial heating means) 53 that generates a magnetic flux by the alternating current, and a temperature control unit 54 for controlling the temperature of the coil unit 53. ..
  • the induction heating power supply 52 can pass an alternating current to the coil unit 53 via a feeder line (not shown) arranged along the rotary arm 55a described later, and is close to the coil unit 53 due to the magnetic flux generated in the coil unit 53.
  • the bottom 103 of the engine valve 100 can be heated (see FIG. 3A).
  • the temperature control unit 54 is the coil unit 53 until the temperature at the center of the bottom 103 detected by the thermal camera 57 shown in FIG. 2 reaches a predetermined temperature (for example, 140 ° C. to 160 ° C.) higher than the melting point of the metallic sodium N.
  • the induction heating power supply 52 is controlled so as to continuously generate a magnetic field.
  • the coil portion 53 (partial heating means) of the present embodiment is, for example, a base 53a which is a copper material and has an annular shape and an annular hollow inside, and a cone provided on the upper surface of the base 53a. It has a trapezoidal and annular heating concentration portion 53b.
  • the coil portion 53 can locally concentrate the region for induction heating by increasing the magnetic flux density by the heating concentration portion 53b.
  • the position change unit 55 has a rotation arm 55a extending in a predetermined direction and having a coil portion 53 at one end thereof, and a rotation control unit 55b that rotatably supports the other end of the rotation arm 55a.
  • the rotation control unit 55b has a rotation means (not shown) such as a motor, and reciprocates the coil unit 53 via the rotation arm 55a between the initial position shown by the virtual line in FIG. 2 and the proximity position shown by the solid line. It is possible to move it.
  • the coil portion 53 is located on the same axis as the engine valve 100 at a close position and at a predetermined distance (about several millimeters) so as to face the outer bottom surface 103b of the engine valve 100. Distributed apart.
  • the heating portion 51 has a coil portion 53 that has been moved to a close position, so that only the central portion of the bottom portion 103 of the tilted engine valve 100 (for example, a range slightly wider than the diameter of the rod-shaped metallic sodium N, FIG. 3A).
  • the point region e) shown in (b) can be heated to a predetermined temperature.
  • the influence of heat on the getter material G that is offset in the hollow portion 105b of the umbrella is minimized, and the metallic sodium N that is pushed (introduced) into the hollow portion 105 and comes into contact with the inner bottom surface 103a is removed. Can be heated directly.
  • the metal sodium forming means 60 is arranged in the upper part of the coolant filling device 1, and as shown in FIG. 5, the tapered hole 61a which accommodates the metal sodium N and temporarily reduces the diameter downward in the lower part.
  • the metallic sodium forming means 60 presses the metallic sodium N contained in the cylinder 61 from above by the piston 62, squeezes the metallic sodium N from the nozzle 63 into a rod shape, and cuts the metallic sodium N into an appropriate length by the cutter 64. Can be done.
  • the metal sodium guide means (cooling material guide means) 70 is arranged below the metal sodium forming means 60, and as shown in FIG. 5, a rod-shaped squeezed by the metal sodium forming means 60.
  • the engine valve 100 has a tubular holder 71 made of a transparent synthetic resin that can receive metallic sodium N from above and temporarily hold it, and metallic sodium N extruded from the holder 71 by the metallic sodium pushing means 80 described later.
  • a shaft end guide 72 that can be introduced into the hollow portion 105 from the opening 104 of the above, and is arranged between the holder 71 and the shaft end guide 72 to temporarily prevent the metallic sodium N received in the holder 71 from falling off. It is provided with a stopper 74 for using the stopper 74.
  • the holder 71 and the shaft end guide 72 are fixed to a rectangular plate-shaped movable plate 76 provided so as to be slidable in the vertical direction with respect to the vertically long portion of the L-shaped plate-shaped base plate 75 by bolts or the like. Further, the stopper 74 is directly fixed to the horizontally long portion of the base plate 75 by a bolt or the like. As shown in FIG. 2, the base plate 75 is non-rotatably fixed to a rotation shaft 4a protruding from the side surface of the support column 4 erected on the fixing plate 2.
  • the shaft end guide 72 has a cylindrical shape having a through hole 73 in the vertical direction, and is directly below the holder 71 at the receiving position described later, and has a predetermined distance (for example, for example) from the holder 71. It is provided so as to be separated (about 10 mm) (see FIG. 5).
  • the through holes 73 of the shaft end guide 72 have different diameters or shapes at the upper part, the middle part, and the lower part.
  • a guide hole 73b having a diameter slightly larger than that of the metallic sodium N is provided, and a fitting hole 73c that can be fitted to the upper end of the shaft portion 101 of the engine valve 100 is provided at the lower portion.
  • the shaft end guide 72 receives the metallic sodium N extruded from the holder 71 by the tapered hole 73a and guides it in the centripetal (axial center) direction, and securely from the opening 104 of the engine valve 100 fitted in the fitting hole 73c. Can be introduced in.
  • the metallic sodium N is pushed into the hollow portion 105 (introduced) by setting the guide hole 73b to be relatively long (for example, longer than the tapered hole 73a and the fitting hole 73c). ), It is possible to cover the periphery of the upper end portion of the protruding portion N1 protruding from the opening 104.
  • the stopper 74 has a plate-shaped stopper portion 74a having a stopper surface (not shown) and an expansion / contraction means 74b such as a solenoid in which the stopper portion 74a is fixed by a bolt or the like.
  • the stopper portion 74a is oriented in a direction in which the stopper surface is orthogonal to the axial direction of the holder 71, and can be reciprocated between the closed position shown by the virtual line in FIG. 5 and the open position shown by the solid line by the operation of the expansion / contraction means 74b.
  • the lower end of the insertion hole 71a of the holder 71 can be opened and closed.
  • the holder 71 fixed to the base plate 75 has an axial direction due to the rotation of the base plate 75 due to the rotation of the rotating shaft 4a connected to a driving means (not shown) such as a motor.
  • the receiving position that faces up and down and can receive the metallic sodium N molded into a rod shape by the metallic sodium molding means 60, the axial direction is diagonally oriented (for example, tilted at 45 degrees), and the lower end of the holder 71 is tilted. It is close to the upper end of the engine valve 100 in the state and can be displaced between the engine valve 100 in the inclined state and the introduction preparation position located on the same axis.
  • the shaft end guide 72 and the stopper 74 fixed to the base plate 75 together with the holder 71 are also displaced while maintaining their positional relationship with each other.
  • the movable plate 76 is provided in an elongated hole (not shown) in the vertical direction provided in either the base plate 75 or the movable plate 76, and is provided in the other of the base plate 75 or the movable plate 76. By inserting a pin (not shown) and sliding it in the elongated hole, it is fixed to the base plate 75 so as to be slidable in the vertical direction.
  • the shaft end guide 72 fixed to the movable plate 76 is a shaft in the engine valve 100 in an inclined state by sliding the movable plate 76 by a driving means (not shown) such as a solenoid at an introduction preparation position facing an oblique direction. It is possible to reciprocate between the separation position separated from the upper end portion of the portion 101 (see FIG. 2) and the fitting position fitted to the upper end portion of the shaft portion 101 in the tilted engine valve 100 (see FIG. 3). It has become. At this time, the holder 71 fixed to the movable plate 76 also reciprocates while maintaining the positional relationship with each other.
  • the metallic sodium guide means 70 receives the rod-shaped metallic sodium N formed by the metallic sodium forming means 60 by the holder 71 at the receiving position and temporarily holds it (at this time, the stopper portion 74a of the stopper 74 is in the closed position). ), The holder 71 is moved to the introduction preparation position, the shaft end guide 72 is moved from the separated position to the fitting position, and the stopper portion 74a of the stopper 74 is moved to the open position, whereby the metallic sodium N is transferred to the engine valve. It is possible to prepare for introduction so that it can be introduced (pushed) into the hollow portion 105 of 100.
  • the metal sodium pushing means (coolant pushing means) 80 is provided diagonally above the metal sodium guide means 70, and fixes a rod-shaped pushing rod 81 made of metal such as SUS and the pushing rod 81. It has a rod holder 82 and a pressing means 83 such as a motor, a solenoid, an air cylinder, or a hydraulic cylinder.
  • the metallic sodium pushing means 80 pushes the rod holder 82 having the pushing rod 81 fixed to the tip thereof downward by the pushing means 83 along the axial direction of the engine valve 100 in an inclined state (for example, for example). It can be pushed in (about 100 to 300 g), and the movable range is between the initial position where the pushing rod 81 is most pulled in and the pushing position where the pushing rod 81 is pushed out most.
  • the push rod 81 is set to be, for example, about 15 mm longer than the length from the upper end portion of the holder 71 to the lower end portion of the shaft end guide 72 so that the metallic sodium N can be sufficiently pushed into the hollow portion 105. ..
  • the metallic sodium pushing means 80 presses the metallic sodium N in the holder 71 of the metallic sodium guide means 70 in the introduction preparation state from above by the pushing rod 81. As a result, the metallic sodium N held in the holder 71 can be pushed (introduced) into the hollow portion 105 of the engine valve 100. At this time, since the getter material G is offset in the hollow portion 105b of the umbrella, the lower end portion of the pressed metallic sodium N comes into direct contact with the central portion of the inner bottom surface 103a.
  • the metallic sodium pushing means 80 presses the upper end portion of the protruding portion N1 of the metallic sodium N protruding from the opening 104 of the engine valve 100 by the pushing rod 81 at this time. At this time, the metallic sodium N in contact with the inner bottom surface 103a is gradually melted, and the metallic sodium pushing means 80 moves the pushing rod 81 from the initial position to the pushing position to transfer the metallic sodium N to the engine valve 100. In the hollow portion 105, it can be pushed downward from the opening 104 by, for example, about 15 mm.
  • the metallic sodium pressing means 80 may change the pressing force on the metallic sodium N as follows depending on the situation.
  • the metallic sodium N when extruding the metallic sodium N in the holder 71 (when introducing the metallic sodium N into the hollow portion 105 of the engine valve 100), the metallic sodium N is pressed with a pressing force of, for example, about 50 g (the first). 1 push). If the metallic sodium N is caught in the hollow portion 105 of the engine valve 100 during pressing, the metallic sodium N is pressed with a pressing force of, for example, about 100 g (second pressing). Further, when the bottom portion 103 of the engine valve 100 is heated and the lower end portion of the metallic sodium N comes into contact with the inner bottom surface 103a of the engine valve 100 (the metallic sodium N is pressed against the heated inner bottom surface 103a). In the case of melting), metallic sodium N is pressed with a pressing force of, for example, about 300 g (third pressing).
  • the metallic sodium pushing means 80 pushes the upper end portion of the protruding portion N1 in the metallic sodium N
  • the guide hole 73b of the shaft end guide 72 that covers the periphery of the upper end portion is used.
  • the bending of the metallic sodium N is suppressed, so that the metallic sodium N can be pushed into the hollow portion 105 without being damaged.
  • the pressed metallic sodium N is surely melted by the getter material G being offset and the lower end directly pressed against the inner bottom surface 103a whose central portion is heated.
  • the molten metallic sodium N can be efficiently filled in the hollow portion 105 (umbrella hollow portion 105b) while minimizing the influence of heat on the getter material G. Further, since the metal sodium N longer than the depth of the hollow portion 105 can be filled, the filling step of the metal sodium N can be completed in one time, the filling work efficiency can be improved, and the metal sodium N can be filled.
  • the equipment for filling the hollow portion 105 can be miniaturized, and the cost can be suppressed.
  • the metallic sodium pushing means 80 moves the pushing rod 81 from the pushing position to the initial position based on the completion of filling of the metallic sodium N, and pulls out the pushing rod 81 from the hollow portion 105.
  • the filling determination means 90 is electrically connected to the metallic sodium pushing means 80, and based on the fact that the pushing rod 81 has moved to the pushing position, the metallic sodium into the hollow portion 105 of the engine valve 100 is obtained. It is determined that the filling of N is completed. A timer (not shown) was provided, and the filling determination means 90 completed the filling of the metallic sodium N based on the elapse of a predetermined time from the start of pressing the metallic sodium N by the metallic sodium pressing means 80 (third pressing). You may judge that.
  • the valve tilting means 40 sets the gripping arm 41 in the horizontal position after the pushing rod 81 is pulled out by the metallic sodium pushing means 80. At the same time as returning, the grip on the engine valve 100 is released, and the engine valve 100 is placed on the weight measuring means 20.
  • the weight measuring means 20 measures the weight of the mounted engine valve 100 (engine valve 100 after the introduction of metallic sodium N).
  • the inert gas supply means 10 ejects the inert gas into the hollow portion 105 (step S1) with respect to the engine valve 100 into which the getter material G is charged, and the weight measuring means 20 The weight of the metallic sodium N before introduction is measured (step S2).
  • the valve tilting means 40 tilts the engine valve 100 in the axially vertical state in which the weight is measured, for example, by 45 degrees, and displaces the engine valve 100 in the tilted state (step S3).
  • the valve vibrating means 46 vibrates the engine valve 100 in an inclined state (step S4). As a result, the getter material G in the hollow portion 105b of the umbrella can be completely offset.
  • the heating unit 51 heats the central portion of the bottom portion 103 of the tilted engine valve 100 to, for example, 150 ° C. (step S5).
  • the metal sodium guide means 70 and the metal sodium pushing means 80 introduce the metal sodium N into the hollow portion 105 of the engine valve 100 in an inclined state [first pushing] (step S6), and further, the metal sodium pushing means 80 , Metallic sodium N is pushed from the upper end of the protruding portion N1 protruding from the opening 104 by the pushing rod 81 [third pushing] (step S7). As a result, the lower end portion of the metallic sodium N is pressed against the inner bottom surface 103a of the engine valve 100 and melted, and the metallic sodium N is filled in the hollow portion 105. It should be noted that the introduction and pushing of the metallic sodium N in steps S6 and S7 into the hollow portion 105 are continuously performed without an interval between the work steps.
  • step S8 When the filling determination means 90 determines that the filling of the metallic sodium N is completed (YES in step S8), the valve tilting means 40 returns the engine valve 100 to the horizontal position and places it on the weight measuring means 20. ..
  • the weight measuring means 20 measures the weight of the engine valve 100 filled with metallic sodium N (step S9), and the specified amount determining means 30 determines that the weight of the engine valve 100 is appropriate (specified amount) (step S10). YES), no special processing is performed, and the series of processing is completed.
  • step S8 determines whether the filling completion of the filling determination means 90 is not determined in step S8 (NO in step S8). If the filling completion of the filling determination means 90 is not determined in step S8 (NO in step S8), the determination in step S8 (conditional branching) is repeated. Further, in step S10, if the specified amount determining means 30 determines that the weight of the engine valve 100 is not appropriate (NO in step S10), a process of stopping the production line is executed (step S11). ).
  • step S4 the step of vibrating the engine valve 100 by the valve vibrating means 46 (step S4) may be omitted.
  • each process device is arranged one by one to process the engine valve 100 one by one, but the present invention is not limited to this, and some process devices that require time for processing are arranged in parallel. Then, the plurality of engine valves 100 may be processed in parallel in some processes.
  • the metal sodium forming means 60, the metal sodium guide means 70, and the metal sodium pushing means 80 each perform a process of forming the metal sodium N into a rod shape, temporarily holding the metal sodium N, and pushing the metal sodium N into the hollow portion 105 of the engine valve 100.
  • it may be carried out by a single means (metal sodium supply device).
  • a rod-shaped metal sodium N may be prepared in advance, and only the process of pushing the metallic sodium N into the hollow portion 105 of the engine valve 100 may be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automatic Assembly (AREA)
  • Lift Valve (AREA)

Abstract

Provided are: a coolant filling device for a hollow-head engine valve, with which a coolant can reliably and efficiently be filled into the hollow portion of an engine valve; and a coolant filling method. A coolant filling device (1), with which it is possible to fill a coolant (N) in the hollow portion (105) of an engine valve (100), comprises: a valve inclination means (40) for inclining the engine valve (100) in the axial direction at a predetermined angle; a coolant guide means (70) that can temporarily retain the coolant (N) in a rod-like shape; a coolant pushing means (80) that can push, into the hollow portion (105), the coolant (N) which is temporarily being retained by the coolant guide means (70); and a partial heating means (53) that can heat the center part of a bottom portion (103) to a temperature higher than the melting point of the coolant (N), and that can melt the coolant (N) which has been pushed into the hollow portion (105) and has thereby made contact with the bottom part (103).

Description

傘中空エンジンバルブの冷却材充填装置、及び冷却材の充填方法Umbrella hollow engine valve coolant filling device and coolant filling method
 本発明は、傘中空エンジンバルブの冷却材充填装置、及び冷却材の充填方法に関する。 The present invention relates to a coolant filling device for an umbrella hollow engine valve and a coolant filling method.
 従来、自動車や船舶などのエンジンの燃焼室に吸気ガスを流入させ、排気ガスを排出させるためのエンジンバルブには、バルブ本体の軸部及び傘部を中空にした中空部に、金属ナトリウムなどの冷却材を封入した傘中空エンジンバルブ(以下、単にエンジンバルブともいう)がある。 Conventionally, engine valves for inflowing intake gas into the combustion chamber of an engine such as an automobile or a ship and discharging exhaust gas have a hollow portion in which the shaft and umbrella of the valve body are hollow, and metal sodium or the like. There is an umbrella hollow engine valve (hereinafter, also simply referred to as an engine valve) in which a cooling material is enclosed.
 また、このようなエンジンバルブには、冷却材の他に、冷却材の酸化防止、及び中空部内を負圧にするためのガス吸着剤であるゲッタ材(例えば、粒状のチタン材)が添加されるものがある(特許文献1参照)。 Further, in addition to the coolant, a getter material (for example, granular titanium material) which is a gas adsorbent for preventing oxidation of the coolant and creating a negative pressure in the hollow portion is added to such an engine valve. There is something (see Patent Document 1).
 図7に示すように、特許文献1に記載のようなエンジンバルブ200の中空部205に金属ナトリウムNを充填する工程においては、ゲッタ材G投入後、棒状の金属ナトリウムNを軸部201の上部の開口部204から中空部205に押圧ロッドRにより押込んで、金属ナトリウムNの下端部を高周波誘導加熱装置Hにより加熱された傘状の中空部205の内底面203に押付ける。これにより、押付けられた部分から金属ナトリウムNは融解し、中空部205内に充填される。 As shown in FIG. 7, in the step of filling the hollow portion 205 of the engine valve 200 with the metallic sodium N as described in Patent Document 1, after the getter material G is charged, the rod-shaped metallic sodium N is applied to the upper portion of the shaft portion 201. The lower end portion of the metallic sodium N is pushed into the hollow portion 205 from the opening 204 of the above by the pressing rod R, and the lower end portion of the metallic sodium N is pressed against the inner bottom surface 203 of the umbrella-shaped hollow portion 205 heated by the high frequency induction heating device H. As a result, the metallic sodium N is melted from the pressed portion and filled in the hollow portion 205.
特許5843991号公報Japanese Patent No. 5843991
 しかしながら、この工程において、高周波誘導加熱装置Hによって内底面203が加熱される際、内底面203上にあるゲッタ材Gも加熱されてしまうため、ゲッタ材Gへの熱の影響が懸念される。また、押込まれた金属ナトリウムNと内底面203との間にゲッタ材Gが介在してしまう場合には、金属ナトリウムNは内底面203に直接接触しないため、伝熱が効率的に行われず、金属ナトリウムNの融解態様にバラツキが生じることがある。その結果、金属ナトリウムNの充填を確実に行うことができない虞があるだけでなく、中空部205内への金属ナトリウムNの充填工程を複数回必要とすることから、充填作業効率の低下を招くとともに、金属ナトリウムNを中空部205内に充填させるための設備が大型化し、コスト上昇の原因にもなる。 However, in this step, when the inner bottom surface 203 is heated by the high frequency induction heating device H, the getter material G on the inner bottom surface 203 is also heated, so that there is a concern about the influence of heat on the getter material G. Further, when the getter material G is interposed between the pushed metal sodium N and the inner bottom surface 203, the metal sodium N does not come into direct contact with the inner bottom surface 203, so that heat transfer is not performed efficiently. There may be variations in the melting mode of metallic sodium N. As a result, not only the filling of the metallic sodium N may not be performed reliably, but also the filling step of the metallic sodium N in the hollow portion 205 is required a plurality of times, which causes a decrease in the filling operation efficiency. At the same time, the equipment for filling the hollow portion 205 with the metallic sodium N becomes large in size, which causes an increase in cost.
 本発明は上記課題を鑑みてなされたものであり、その目的は、金属ナトリウムなどの冷却材をエンジンバルブの中空部に確実かつ効率よく充填することができる冷却材充填装置、及び冷却材の充填方法を提供することである。 The present invention has been made in view of the above problems, and an object thereof is a coolant filling device capable of reliably and efficiently filling the hollow portion of an engine valve with a coolant such as metallic sodium, and filling of the coolant. To provide a method.
 (1)本発明の第1の態様によれば、軸部及び前記軸部の一端に傘状に拡径する傘部の内部に中空の中空部を有する傘中空エンジンバルブにおける前記軸部の他端の開口から前記中空部へゲッタ材を投入可能かつ、冷却材を充填可能な冷却材充填装置であって、前記傘中空エンジンバルブを軸方向へ所定角度傾かせるバルブ傾斜手段と、棒状の前記冷却材を一時的に保持可能な筒状のホルダを有する冷却材ガイド手段と、前記ホルダに一時的に保持された前記冷却材を、前記中空部内に押込むことが可能な棒状の押込み棒を有する冷却材押込み手段と、前記傘部の底部の中心部を前記冷却材の融点よりも高い温度まで加熱可能であって、前記中空部内に押込まれて前記底部に接触した前記冷却材を融解可能な部分加熱手段と、を備える。 (1) According to the first aspect of the present invention, the shaft portion and the other of the shaft portion in the umbrella hollow engine valve having a hollow hollow portion inside the umbrella portion whose diameter is expanded like an umbrella at one end of the shaft portion. A cooling material filling device capable of charging a getter material into the hollow portion from an opening at an end and filling the cooling material, and a valve tilting means for tilting the umbrella hollow engine valve at a predetermined angle in the axial direction, and a rod-shaped rod-shaped device. A cooling material guide means having a tubular holder capable of temporarily holding the cooling material, and a rod-shaped pushing rod capable of pushing the cooling material temporarily held in the holder into the hollow portion. The cooling material pushing means having the umbrella portion and the central portion of the bottom portion of the umbrella portion can be heated to a temperature higher than the melting point of the cooling material, and the cooling material pushed into the hollow portion and in contact with the bottom portion can be melted. It is provided with a partial heating means.
 上記(1)の構成によれば、中空部内に投入された粉状又は粒状のゲッタ材を、中空部の傘中空部の端に寄せるとともに、傘部の底部の中心部のみを加熱することができるため、ゲッタ材は加熱され難く、ゲッタ材への熱の影響を防ぐことができる。また、冷却材を中空部内に押込んだ際、ゲッタ材を介することなく、冷却材が直接傘部の底部に接触するため、冷却材を効率よく融解させることができる。 According to the configuration of (1) above, the powdery or granular getter material thrown into the hollow portion can be brought to the end of the hollow portion of the umbrella of the hollow portion and only the central portion of the bottom of the umbrella portion can be heated. Therefore, the getter material is difficult to be heated, and the influence of heat on the getter material can be prevented. Further, when the coolant is pushed into the hollow portion, the coolant directly contacts the bottom of the umbrella portion without the intervention of the getter material, so that the coolant can be efficiently melted.
 (2)本発明の第2の態様によれば上記第1の態様において、前記冷却材ガイド手段は、前記押込み棒によって前記中空部に押込まれた前記中空部の深さよりも長い前記冷却材の下端部が前記中空部内の前記底部に接触した際に、前記冷却材の前記開口から突出した部分を周囲から覆う筒状の軸端ガイドを、前記ホルダの下方に設ける。 (2) According to the second aspect of the present invention, in the first aspect, the coolant guiding means is the coolant having a depth longer than the depth of the hollow portion pushed into the hollow portion by the push rod. A cylindrical shaft end guide is provided below the holder to cover the portion of the coolant protruding from the opening when the lower end contacts the bottom of the hollow.
 上記(2)の構成によれば、冷却材を押込み棒によって中空部に押込む際、冷却材の開口から突出した部分が軸端ガイドによって覆われるため、冷却材への押圧による撓みを防止して、冷却材を破損させることなく、確実に押込むことができる。また、中空部内への金属ナトリウムの充填工程を1回で完了させることができ、充填作業効率の向上を図るととともに、金属ナトリウムを中空部内に充填させるための設備を小型化することができ、コストの抑制を図ることができる。 According to the configuration (2) above, when the coolant is pushed into the hollow portion by the push rod, the portion protruding from the opening of the coolant is covered by the shaft end guide, so that the coolant is prevented from bending due to pressing against the coolant. Therefore, the coolant can be reliably pushed in without being damaged. In addition, the process of filling the hollow portion with metallic sodium can be completed in one step, the filling work efficiency can be improved, and the equipment for filling the hollow portion with metallic sodium can be miniaturized. It is possible to control costs.
 (3)本発明の第3の態様によれば上記第1の態様又は第2の態様において、前記所定角度傾いた前記傘中空エンジンバルブを振動させることが可能なバルブ振動手段を備える。 (3) According to the third aspect of the present invention, in the first aspect or the second aspect, the valve vibrating means capable of vibrating the umbrella hollow engine valve tilted at a predetermined angle is provided.
 上記(3)の構成によれば、中空部内に投入されたゲッタ材をより確実に中空部の傘中空部の端に寄せることができる。 According to the configuration of (3) above, the getter material thrown into the hollow portion can be more reliably brought to the end of the umbrella hollow portion of the hollow portion.
 (4)本発明の第4の態様によれば、軸部及び前記軸部の一端に傘状に拡径する傘部の内部に中空の中空部を有する傘中空エンジンバルブにおける前記軸部の他端の開口から前記中空部へ冷却材を充填可能な冷却材の充填方法であって、前記傘中空エンジンバルブを斜めに傾けることにより、前記中空部内に投入されたゲッタ材を前記中空部の端に寄せる片寄せ工程と、棒状の前記冷却材を前記開口から前記中空部内に押込む冷却材押圧工程と、前記傘部の中心部を前記冷却材の融点よりも高い温度まで加熱することにより、前記中空部内に押込まれて前記底部に接触した前記冷却材を融解させる融解工程と、を実行する。 (4) According to the fourth aspect of the present invention, the shaft portion and the other shaft portion in the umbrella hollow engine valve having a hollow hollow portion inside the umbrella portion whose diameter is expanded like an umbrella at one end of the shaft portion. It is a method of filling a cooling material that can fill the hollow portion from an opening at the end, and by tilting the umbrella hollow engine valve at an angle, the getter material introduced into the hollow portion is put into the hollow portion at the end of the hollow portion. By one-sided alignment step of pulling the umbrella portion to the bottom, a cooling material pressing step of pushing the rod-shaped cooling material into the hollow portion from the opening, and heating the central portion of the umbrella portion to a temperature higher than the melting point of the cooling material. A melting step of melting the cooling material pushed into the hollow portion and in contact with the bottom portion is performed.
 上記(4)の方法によれば、ゲッタ材は加熱され難く、ゲッタ材Gへの熱の影響を防ぐことができる。また、冷却材を中空部内に押込んだ際、ゲッタ材を介することなく、冷却材が直接傘部の底部に接触するため、冷却材を効率よく融解することができる。 According to the method (4) above, the getter material is difficult to be heated, and the influence of heat on the getter material G can be prevented. Further, when the coolant is pushed into the hollow portion, the coolant directly contacts the bottom of the umbrella portion without the intervention of the getter material, so that the coolant can be efficiently melted.
 本発明によれば、傘中空エンジンバルブを冷却するための冷却材を、傘中空エンジンバルブの中空部に確実かつ効率よく充填することができる。 According to the present invention, the coolant for cooling the umbrella hollow engine valve can be reliably and efficiently filled in the hollow portion of the umbrella hollow engine valve.
本実施形態の冷却材充填装置によって冷却材が充填されるエンジンバルブにおける(a)冷却材導入後(傾斜状態)、(b)冷却材充填後(垂直状態)の縦断面図である。It is a vertical sectional view of the engine valve in which the coolant is filled by the coolant filling device of the present embodiment (a) after the coolant is introduced (inclined state) and (b) after the coolant is filled (vertical state). 同じく冷却材充填装置の側面図である。Similarly, it is a side view of the coolant filling device. 同じく冷却材充填装置の部分拡大側面図、及びエンジンバルブの底部の下方斜視図である。Similarly, it is a partially enlarged side view of the coolant filling device and the lower perspective view of the bottom of the engine valve. 同じく冷却材充填装置におけるコイル部の(a)側面図、(b)平面図、及び(c)IV-IV断面図である。Similarly, it is (a) side view, (b) plan view, and (c) IV-IV sectional view of the coil part in a coolant filling device. 同じく冷却材充填装置における金属ナトリウム成形手段の縦断面図、及び金属ナトリウムガイド手段の側面図である。Similarly, it is a vertical cross-sectional view of the metal sodium forming means in the coolant filling device, and the side view of the metal sodium guide means. 同じく冷却材充填装置において冷却材の充填に係る各工程のフロー図である。Similarly, it is a flow chart of each process which concerns the filling of the coolant in the coolant filling apparatus. 従来の冷却材充填装置によって冷却材が充填される状態のエンジンバルブの縦断面図である。It is a vertical sectional view of the engine valve in a state where the coolant is filled by the conventional coolant filling device.
(本実施形態)
 以下、図1~6を参照し、発明の一実施形態を通じて本発明を詳説するが、以下の実施形態は例示であり、特許請求の範囲に係る発明を限定するものではない。なお、傘中空エンジンバルブ100の方向については図1(b)の方向(上下左右)を基準とし、冷却材充填装置1の方向については図2の方向(上下左右)を基準として説明する。
(The present embodiment)
Hereinafter, the present invention will be described in detail with reference to FIGS. 1 to 6 through one embodiment of the invention, but the following embodiments are examples and do not limit the invention according to the claims. The direction of the umbrella hollow engine valve 100 will be described with reference to the direction of FIG. 1 (b) (up / down / left / right), and the direction of the coolant filling device 1 will be described with reference to the direction of FIG. 2 (up / down / left / right).
(傘中空エンジンバルブ100)
 図1に示すように、傘中空エンジンバルブ(以下、単にエンジンバルブという)100は、丸棒状に成形された軸部101と、軸部101の下端部に同心状かつ傘状に拡径した傘部102とを備え、傘部102は下部に円板状の底部103を有する。底部103は、中空部105の内側の内底面103a及び外側の外底面103bを有する。
(Umbrella hollow engine valve 100)
As shown in FIG. 1, the umbrella hollow engine valve (hereinafter, simply referred to as an engine valve) 100 has a shaft portion 101 formed in a round bar shape and an umbrella whose diameter is concentrically and umbrella-shaped at the lower end portion of the shaft portion 101. The umbrella portion 102 is provided with a portion 102, and the umbrella portion 102 has a disc-shaped bottom portion 103 at the lower portion. The bottom portion 103 has an inner bottom surface 103a inside the hollow portion 105 and an outer bottom surface 103b outside.
 エンジンバルブ100の内部に成形された中空部105は、軸部101の上部に設けた開口部104によって上部が開放されるとともに、軸部101内に形成された軸中空部105aと、傘部102内に形成された傘中空部105bとが一体的な空間をなすようにして形成される。 The hollow portion 105 formed inside the engine valve 100 is opened at the upper portion by the opening 104 provided at the upper portion of the shaft portion 101, and the shaft hollow portion 105a formed in the shaft portion 101 and the umbrella portion 102. It is formed so that the hollow portion 105b of the umbrella formed inside forms an integral space.
 本実施形態で示すエンジンバルブ100は、円柱状の特殊鋼に対する熱間鍛造加工、冷間鍛造加工、又は絞り上げ加工などの複数の成形加工により上記のように成形された半完成品である。エンジンバルブ100は、開口部104から棒状の冷却材である金属ナトリウムNを中空部105内へ充填できるようになっている。 The engine valve 100 shown in the present embodiment is a semi-finished product formed as described above by a plurality of forming processes such as hot forging, cold forging, and drawing on columnar special steel. The engine valve 100 can fill the hollow portion 105 with metallic sodium N, which is a rod-shaped coolant, from the opening 104.
 また、図1(a)に示すように、本実施形態においてエンジンバルブ100の中空部105に充填される融解前の金属ナトリウムNは、図1(b)に示すような十分な量が中空部105内に充填されるように、エンジンバルブ100の中空部105の深さ(軸中空部105aの上端部から内底面103aまでの長さ)よりも長いものが用いられる。そのため、金属ナトリウムNは、中空部105に押込まれる際、開口部104から例えば15mmほど上方に突出する(以下、突出する部分を突出部N1という)。
 以下に説明する冷却材充填装置1は、エンジンバルブ100の中空部105の深さよりも長い金属ナトリウムNを、中空部105内に適切に充填することができる。
Further, as shown in FIG. 1 (a), in the present embodiment, the metal sodium N before melting filled in the hollow portion 105 of the engine valve 100 has a sufficient amount as shown in FIG. 1 (b). A valve that is longer than the depth of the hollow portion 105 of the engine valve 100 (the length from the upper end portion of the shaft hollow portion 105a to the inner bottom surface 103a) is used so as to be filled in the 105. Therefore, when the metallic sodium N is pushed into the hollow portion 105, it protrudes upward by, for example, about 15 mm from the opening 104 (hereinafter, the protruding portion is referred to as a protruding portion N1).
The coolant filling device 1 described below can appropriately fill the hollow portion 105 with metallic sodium N that is longer than the depth of the hollow portion 105 of the engine valve 100.
 エンジンバルブ100は、後述する工程で金属ナトリウムNの充填が完了した後に、軸部101の上端部に丸棒状の軸端部材(図示略)を摩擦圧接等により固着することで、開口部104を塞ぐことにより、金属ナトリウムNを中空部105内に封入することができる。 The engine valve 100 has an opening 104 by fixing a round bar-shaped shaft end member (not shown) to the upper end of the shaft portion 101 by friction welding or the like after the filling of metallic sodium N is completed in a step described later. By closing, the metallic sodium N can be sealed in the hollow portion 105.
 冷却材充填装置1の前工程設備には、ゲッタ材投入手段(図示略)が設けられる。ゲッタ材投入手段は、予め定められた規定量のゲッタ材G(図1等参照)をエンジンバルブ100の開口部104から中空部105へ投入する。 The pre-process equipment of the cooling material filling device 1 is provided with a getter material charging means (not shown). The getter material charging means inputs a predetermined amount of the getter material G (see FIG. 1 and the like) from the opening 104 of the engine valve 100 into the hollow portion 105.
(冷却材充填装置1)
 図2に示すように、冷却材充填装置1は、エンジンバルブ100の中空部105内へ向けて不活性ガスを噴出可能な不活性ガス供給手段10と、エンジンバルブ100の重量を計測する重量計測手段20と、エンジンバルブ100内に充填された金属ナトリウムNの量の適否を判断可能な規定量判断手段30と、軸方向が垂直状態のエンジンバルブ100を傾斜状態へ傾かせるバルブ傾斜手段40と、傾斜状態のエンジンバルブ100に振動を付与可能なバルブ振動手段46と、傘部102の底部103の所定範囲を加熱可能なバルブ加熱手段50と、金属ナトリウムNを棒状に成形可能な金属ナトリウム成形手段60と、棒状に成形された金属ナトリウムNを保持して、エンジンバルブ100の中空部105内へ導入可能な金属ナトリウムガイド手段70と、金属ナトリウムガイド手段70によって保持された金属ナトリウムNを中空部105へ押込み可能な金属ナトリウム押込み手段80と、中空部105に金属ナトリウムNが充填されたか否かを判断可能な充填判断手段90とを含んで構成さる。これらの構成手段(判断手段や計測手段の一部を除く)は、直接又は支持体等を介して固定板2の上面にボルト締めや溶接等により固定される。
(Cooling material filling device 1)
As shown in FIG. 2, the coolant filling device 1 measures the weight of the inert gas supply means 10 capable of ejecting the inert gas into the hollow portion 105 of the engine valve 100 and the weight of the engine valve 100. Means 20, a defined amount determining means 30 capable of determining the appropriateness of the amount of metallic sodium N filled in the engine valve 100, and a valve tilting means 40 for tilting the engine valve 100 in a vertical axial direction to an inclined state. , The valve vibrating means 46 capable of applying vibration to the engine valve 100 in an inclined state, the valve heating means 50 capable of heating a predetermined range of the bottom 103 of the umbrella portion 102, and the metallic sodium molding capable of forming the metallic sodium N into a rod shape. The means 60, the metal sodium guide means 70 that can be introduced into the hollow portion 105 of the engine valve 100 by holding the rod-shaped metal sodium N, and the metal sodium N held by the metal sodium guide means 70 are hollow. It includes a metal sodium pushing means 80 that can be pushed into the portion 105, and a filling determination means 90 that can determine whether or not the hollow portion 105 is filled with the metallic sodium N. These constituent means (excluding a part of the determination means and the measuring means) are fixed to the upper surface of the fixing plate 2 directly or via a support or the like by bolt tightening, welding, or the like.
 以下の説明において、冷却材充填装置1における上記各構成手段について、動力や制御等の詳細な説明がない場合には、各構成手段の駆動手段(図示略)は適宜制御部(図示略)に電気的に接続され、適所に配置されたセンサからの検知信号等に基づいて、適切に作動するものとする。 In the following description, if there is no detailed description of the power, control, etc. of each of the above-mentioned constituent means in the coolant filling device 1, the driving means (not shown) of each constituent means is appropriately referred to the control unit (not shown). It shall operate properly based on the detection signals from sensors that are electrically connected and placed in place.
(不活性ガス供給手段10)
 図2に示すように、不活性ガス供給手段10は、供給管11aを介して不活性ガス源(図示略)に接続された中空管11と中空管11の下端に接続され上下方向を向く細長いノズル12とを有する。不活性ガスは、例えば窒素ガス等であって、不活性ガス源から中空管11及びノズル12を通って、ノズル12の下端から噴出するようになっている。中空管11は、上下方向に伸縮可能なエアシリンダ又はソレノイド等の昇降手段(図示略)に固定され、ノズル12の下端が、逆円錐台状のガイド部材13の内部に設けられたテーパ孔13aに案内されて、傘中空部105b内に位置する下限位置と、エンジンバルブ100の移動(搬送)の妨げとならない上限位置との間を上下動可能となっている。不活性ガス供給手段10は、中空管11が下限位置へ移動して、中空部105内に不活性ガスを噴出することによって中空部105内に不活性ガスを充満させることができるようになっている。
(Inert gas supply means 10)
As shown in FIG. 2, the inert gas supply means 10 is connected to the hollow pipe 11 connected to the inert gas source (not shown) via the supply pipe 11a and the lower end of the hollow pipe 11 in the vertical direction. It has an elongated nozzle 12 that faces. The inert gas is, for example, nitrogen gas, and is ejected from the inert gas source through the hollow tube 11 and the nozzle 12 from the lower end of the nozzle 12. The hollow tube 11 is fixed to an elevating means (not shown) such as an air cylinder or a solenoid that can expand and contract in the vertical direction, and the lower end of the nozzle 12 is a tapered hole provided inside the inverted cone-shaped guide member 13. Guided by 13a, it is possible to move up and down between the lower limit position located in the hollow portion 105b of the cone and the upper limit position that does not hinder the movement (transportation) of the engine valve 100. The inert gas supply means 10 can fill the hollow portion 105 with the inert gas by moving the hollow tube 11 to the lower limit position and ejecting the inert gas into the hollow portion 105. ing.
(重量計測手段20)
 図2に示すように、重量計測手段20は、エンジンバルブ100の重量を計測可能な重量センサ(図示略)を内蔵して、固定板2に立設された基台5の上部に設けられる。重量計測手段20は、ゲッタ材G投入後から金属ナトリウムNの導入前までの工程設備の間の適宜の位置に配置され、金属ナトリウムNの導入前及び導入後のエンジンバルブ100の重量を計測する。重量計測手段20は、金属ナトリウムNの導入前のエンジンバルブ100の重量を、例えば、不活性ガスが供給された後や、前工程のゲッタ材Gの投入直後に計測する。また、重量計測手段20は、金属ナトリウムNの導入後のエンジンバルブ100の重量を、後述する金属ナトリウムNの充填完了後に計測する。
 計測された重量情報は、規定量判断手段30の判断処理に用いられる。
(Weight measuring means 20)
As shown in FIG. 2, the weight measuring means 20 has a built-in weight sensor (not shown) capable of measuring the weight of the engine valve 100, and is provided on the upper portion of the base 5 erected on the fixing plate 2. The weight measuring means 20 is arranged at an appropriate position between the process equipment after the getter material G is charged and before the introduction of the metallic sodium N, and measures the weight of the engine valve 100 before and after the introduction of the metallic sodium N. .. The weight measuring means 20 measures the weight of the engine valve 100 before the introduction of the metallic sodium N, for example, after the inert gas is supplied or immediately after the getter material G in the previous step is charged. Further, the weight measuring means 20 measures the weight of the engine valve 100 after the introduction of the metallic sodium N after the filling of the metallic sodium N, which will be described later, is completed.
The measured weight information is used for the determination process of the specified amount determination means 30.
(規定量判断手段30)
 図2に示すように、規定量判断手段30は、重量計測手段20に電気的に接続され、重量計測手段20が計測した金属ナトリウムNの導入前後におけるエンジンバルブ100の重量差dを求めることにより、導入された金属ナトリウムNが規定量か否かを判断する。規定量判断手段30は、重量差d=0の場合は、正常と判断し、重量差d≠0の場合は、導入した金属ナトリウムNに過不足がある、すなわち、エラーと判断する。
(Specified amount determination means 30)
As shown in FIG. 2, the specified amount determination means 30 is electrically connected to the weight measuring means 20 and obtains the weight difference d of the engine valve 100 before and after the introduction of the metallic sodium N measured by the weight measuring means 20. , Determine whether the introduced metallic sodium N is in the specified amount. When the weight difference d = 0, the specified amount determining means 30 determines that it is normal, and when the weight difference d ≠ 0, it determines that there is an excess or deficiency in the introduced metallic sodium N, that is, an error.
 製造ライン制御手段(図示略)は、規定量判断手段30が正常と判断した場合には、特別な制御は行わないが、規定量判断手段30がエラーと判断した場合には、不良品混入防止処理として、例えば、製造ラインを一時的に停止させたり、エラーと判断されたエンジンバルブ100を不良品として製造ライン外へ排出するように制御する。 The production line control means (not shown) does not perform any special control when the specified amount determination means 30 determines to be normal, but prevents defective products from being mixed when the specified amount determination means 30 determines to be an error. As a process, for example, the production line is temporarily stopped, or the engine valve 100 determined to be an error is controlled to be discharged to the outside of the production line as a defective product.
(バルブ傾斜手段40)
 図2に示すように、バルブ傾斜手段40は、エンジンバルブ100の軸部101を把持可能な把持アーム41と、把持アーム41を水平方向の回転軸5a周りに所定角度(例えば45度)傾かせることが可能な傾斜機構43とを有する。
(Valve tilting means 40)
As shown in FIG. 2, the valve tilting means 40 tilts the gripping arm 41 capable of gripping the shaft portion 101 of the engine valve 100 and the gripping arm 41 by a predetermined angle (for example, 45 degrees) around the horizontal rotation shaft 5a. It has a tilting mechanism 43 which is possible.
 把持アーム41は、モータ等の駆動手段(図示略)が設けられるアーム部41aと、アーム部41aの一端に、互いの対向面にゴム等の滑り止め部材が貼着された一対の細板状であって、駆動手段の作動によって対象物を水平方向から把持可能な把持部41bとを有する。
 把持アーム41の他端には、振動モータであるバルブ振動手段46がボルト等によって固定されている。
The gripping arm 41 has a pair of thin plates having an arm portion 41a provided with a driving means (not shown) such as a motor and a non-slip member such as rubber attached to one end of the arm portion 41a so as to face each other. It has a grip portion 41b capable of gripping an object from a horizontal direction by operating a driving means.
A valve vibrating means 46, which is a vibration motor, is fixed to the other end of the gripping arm 41 by a bolt or the like.
 傾斜機構43は、エアシリンダ又はソレノイド等によって上下方向に伸縮可能な伸縮手段43aと、左右方向に伸び逆へ字型に屈曲する平板状の回転リンク43bとを有する。回転リンク43bは、屈曲した部分が基台5の側面から水平方向に突出した回転軸5aによって回転可能に支持されるとともに、一端が伸縮手段43aの上端に回転可能に連結され、他端が把持アーム41の略中央に回転不能に連結される。 The tilting mechanism 43 has an expansion / contraction means 43a that can be expanded and contracted in the vertical direction by an air cylinder, a solenoid, or the like, and a flat plate-shaped rotary link 43b that extends in the horizontal direction and bends in a reverse shape. The bent portion of the rotary link 43b is rotatably supported by a rotary shaft 5a projecting horizontally from the side surface of the base 5, one end is rotatably connected to the upper end of the telescopic means 43a, and the other end is gripped. It is non-rotatably connected to the substantially center of the arm 41.
 傾斜機構43は、伸縮手段43aが上下方向に伸縮することによって、把持アーム41を、図2の仮想線で示す水平位置と、実線で示す傾斜位置との間を往復移動させることが可能となっている。 The tilting mechanism 43 can reciprocate the gripping arm 41 between the horizontal position shown by the virtual line in FIG. 2 and the tilted position shown by the solid line by expanding and contracting the telescopic means 43a in the vertical direction. ing.
 バルブ傾斜手段40は、不活性ガスの供給後、重量が計測された軸方向が垂直状態のエンジンバルブ100の軸部101を把持アーム41によって把持し、傾斜機構43によって把持アーム41を所定角度(例えば45度)傾かせて傾斜位置に変位させることにより、エンジンバルブ100を軸方向に所定角度傾かせて傾斜状態とすることができる。これにより、バルブ傾斜手段40は、傘中空部105b内のゲッタ材Gを傘中空部105bの片側に片寄せすることができる(図1(a)、図3(a)参照)。 After the inert gas is supplied, the valve tilting means 40 grips the shaft portion 101 of the engine valve 100 in which the weight is measured in the vertical direction by the gripping arm 41, and the gripping arm 41 is held at a predetermined angle by the tilting mechanism 43. By tilting the engine valve 100 to an inclined position (for example, 45 degrees), the engine valve 100 can be tilted by a predetermined angle in the axial direction to be in an inclined state. As a result, the valve tilting means 40 can shift the getter material G in the umbrella hollow portion 105b to one side of the umbrella hollow portion 105b (see FIGS. 1A and 3A).
 バルブ振動手段46は、傾斜状態のエンジンバルブ100を、把持アーム41を介して振動させるができる。これにより、バルブ振動手段46は、エンジンバルブ100を傾斜状態にしただけでは片寄せすることができない傘中空部105b内のゲッタ材Gを、確実に片寄せすることができる。なお、バルブ振動手段46を、傾斜状態のエンジンバルブ100に接触させて直接振動を付与可能なように独立して設けるようにしてもよい。
 また、バルブ振動手段46を振動モータの代わりに、打撃により振動を与える打撃装置(図示略)を採用してもよい。
The valve vibrating means 46 can vibrate the tilted engine valve 100 via the gripping arm 41. As a result, the valve vibrating means 46 can reliably offset the getter material G in the hollow portion 105b of the umbrella, which cannot be offset only by tilting the engine valve 100. The valve vibration means 46 may be independently provided so that the valve vibration means 46 can be brought into contact with the engine valve 100 in an inclined state to directly apply vibration.
Further, instead of the vibration motor, the valve vibrating means 46 may employ a striking device (not shown) that vibrates by striking.
(バルブ加熱手段50)
 図2に示すように、バルブ加熱手段50は、高周波を用いた加熱装置であって、熱を出力するための加熱部51と、後述するコイル部53を所定の範囲で変動させる位置変動部55とを含んで構成される。
(Valve heating means 50)
As shown in FIG. 2, the valve heating means 50 is a heating device using high frequency, and is a position changing unit 55 that changes a heating unit 51 for outputting heat and a coil unit 53, which will be described later, within a predetermined range. Consists of including.
 加熱部51は、交流電流を発生させる誘導加熱電源52と、交流電流により磁束を発生させるコイル部(部分加熱手段)53と、コイル部53の温度を制御するための温度制御部54とを有する。誘導加熱電源52は、後述する回転アーム55aに沿って配設される給電線(図示略)を介して交流電流をコイル部53に流すことができ、コイル部53で発生した磁束により、近接するエンジンバルブ100の底部103を加熱することができる(図3(a)参照)。温度制御部54は、図2に示すサーマルカメラ57により検知した底部103の中心部の温度が金属ナトリウムNの融点よりも高い所定の温度(例えば140℃~160℃)に達するまで、コイル部53に磁界を継続して発生させるように誘導加熱電源52を制御する。 The heating unit 51 includes an induction heating power supply 52 that generates an alternating current, a coil unit (partial heating means) 53 that generates a magnetic flux by the alternating current, and a temperature control unit 54 for controlling the temperature of the coil unit 53. .. The induction heating power supply 52 can pass an alternating current to the coil unit 53 via a feeder line (not shown) arranged along the rotary arm 55a described later, and is close to the coil unit 53 due to the magnetic flux generated in the coil unit 53. The bottom 103 of the engine valve 100 can be heated (see FIG. 3A). The temperature control unit 54 is the coil unit 53 until the temperature at the center of the bottom 103 detected by the thermal camera 57 shown in FIG. 2 reaches a predetermined temperature (for example, 140 ° C. to 160 ° C.) higher than the melting point of the metallic sodium N. The induction heating power supply 52 is controlled so as to continuously generate a magnetic field.
 図4に示すように、本実施形態のコイル部53(部分加熱手段)は、例えば銅材であって円環状でかつ内部に円環状の中空を有するベース53aと、ベース53a上面に設けられ円錐台状でかつ円環状の加熱集中部53bとを有する。コイル部53は、加熱集中部53bによって、磁束密度を高めることにより、誘導加熱する領域を局所的に集中することができる。 As shown in FIG. 4, the coil portion 53 (partial heating means) of the present embodiment is, for example, a base 53a which is a copper material and has an annular shape and an annular hollow inside, and a cone provided on the upper surface of the base 53a. It has a trapezoidal and annular heating concentration portion 53b. The coil portion 53 can locally concentrate the region for induction heating by increasing the magnetic flux density by the heating concentration portion 53b.
 図2に示すように、位置変動部55は、所定方向に伸び一端にコイル部53が設けられる回転アーム55aと、回転アーム55aの他端を回転可能に支持する回転制御部55bとを有する。回転制御部55bは、モータ等の回転手段(図示略)を有し、回転アーム55aを介してコイル部53を、図2の仮想線で示す初期位置と実線で示す近接位置との間を往復移動させることが可能となっている。 As shown in FIG. 2, the position change unit 55 has a rotation arm 55a extending in a predetermined direction and having a coil portion 53 at one end thereof, and a rotation control unit 55b that rotatably supports the other end of the rotation arm 55a. The rotation control unit 55b has a rotation means (not shown) such as a motor, and reciprocates the coil unit 53 via the rotation arm 55a between the initial position shown by the virtual line in FIG. 2 and the proximity position shown by the solid line. It is possible to move it.
 図3(a)に示すように、コイル部53は、近接位置において、エンジンバルブ100と同一軸線上に位置するとともに、エンジンバルブ100の外底面103bに対向するように所定距離(数ミリ程度)離間して配設される。 As shown in FIG. 3A, the coil portion 53 is located on the same axis as the engine valve 100 at a close position and at a predetermined distance (about several millimeters) so as to face the outer bottom surface 103b of the engine valve 100. Distributed apart.
 加熱部51は、近接位置に移動したコイル部53により、傾斜状態のエンジンバルブ100における底部103の中心部のみ(例えば、棒状の金属ナトリウムNの直径よりも若干広い範囲、図3(a)、(b)に示す点領域e)を、所定の温度まで加熱することができる。これにより、傘中空部105bにおいて片寄せされたゲッタ材Gへの熱の影響を最小限に抑えるとともに、中空部105内に押込まれて(導入されて)内底面103aに接触した金属ナトリウムNを直接加熱することができる。 The heating portion 51 has a coil portion 53 that has been moved to a close position, so that only the central portion of the bottom portion 103 of the tilted engine valve 100 (for example, a range slightly wider than the diameter of the rod-shaped metallic sodium N, FIG. 3A). The point region e) shown in (b) can be heated to a predetermined temperature. As a result, the influence of heat on the getter material G that is offset in the hollow portion 105b of the umbrella is minimized, and the metallic sodium N that is pushed (introduced) into the hollow portion 105 and comes into contact with the inner bottom surface 103a is removed. Can be heated directly.
(金属ナトリウム成形手段60)
 図2に示すように、金属ナトリウム成形手段60は、冷却材充填装置1の上部に配置され、図5に示すように、金属ナトリウムNを収容し、下部に下方へ暫時縮径するテーパ孔61aを有する上下方向のシリンダ61と、モータ又はソレノイド等の駆動手段(図示略)によってシリンダ61内を上下方向に移動可能なピストン62と、シリンダ61の下端部に設けられる上下方向の小径のノズル63と、モータ又はソレノイド等の駆動手段(図示略)によって水平方向へ移動可能であって、ノズル63から押出された棒状の金属ナトリウムNを適時に切断可能なエアグラインダ等のカッタ64とを備える。金属ナトリウム成形手段60は、シリンダ61内に収容した金属ナトリウムNを、ピストン62により上方から押圧することによって、ノズル63から金属ナトリウムNを棒状に搾り出し、カッタ64によって適切な長さに切断することができるようになっている。
(Metallic Sodium Molding Means 60)
As shown in FIG. 2, the metal sodium forming means 60 is arranged in the upper part of the coolant filling device 1, and as shown in FIG. 5, the tapered hole 61a which accommodates the metal sodium N and temporarily reduces the diameter downward in the lower part. A vertical cylinder 61 having a And a cutter 64 such as an air grinder that can be moved in the horizontal direction by a driving means (not shown) such as a motor or a solenoid and can cut the rod-shaped metallic sodium N extruded from the nozzle 63 in a timely manner. The metallic sodium forming means 60 presses the metallic sodium N contained in the cylinder 61 from above by the piston 62, squeezes the metallic sodium N from the nozzle 63 into a rod shape, and cuts the metallic sodium N into an appropriate length by the cutter 64. Can be done.
(金属ナトリウムガイド手段70)
 図2に示すように、金属ナトリウムガイド手段(冷却材ガイド手段)70は、金属ナトリウム成形手段60の下方に配置され、図5に示すように、金属ナトリウム成形手段60によって搾り出された棒状の金属ナトリウムNを上方から受け入れ、一時的に保持することができる透明の合成樹脂からなる筒状のホルダ71と、後述する金属ナトリウム押込み手段80によってホルダ71から押出された金属ナトリウムNをエンジンバルブ100の開口部104から中空部105に導入することができる軸端ガイド72と、ホルダ71と軸端ガイド72との間に配置され、ホルダ71に受け入れられた金属ナトリウムNの脱落を一時的に防止するためのストッパ74とを備える。
(Metallic Sodium Guide Means 70)
As shown in FIG. 2, the metal sodium guide means (cooling material guide means) 70 is arranged below the metal sodium forming means 60, and as shown in FIG. 5, a rod-shaped squeezed by the metal sodium forming means 60. The engine valve 100 has a tubular holder 71 made of a transparent synthetic resin that can receive metallic sodium N from above and temporarily hold it, and metallic sodium N extruded from the holder 71 by the metallic sodium pushing means 80 described later. A shaft end guide 72 that can be introduced into the hollow portion 105 from the opening 104 of the above, and is arranged between the holder 71 and the shaft end guide 72 to temporarily prevent the metallic sodium N received in the holder 71 from falling off. It is provided with a stopper 74 for using the stopper 74.
 ホルダ71及び軸端ガイド72は、L型板状のベース板75の縦長部分に対して上下方向へスライド移動可能に設けられた矩形板状の可動板76にボルト等により固定される。また、ストッパ74は、ベース板75の横長部分に直接ボルト等により固定される。図2に示すように、ベース板75は、固定板2に立設された支持柱4の側面から突出した回転軸4aに回転不能に固定される。 The holder 71 and the shaft end guide 72 are fixed to a rectangular plate-shaped movable plate 76 provided so as to be slidable in the vertical direction with respect to the vertically long portion of the L-shaped plate-shaped base plate 75 by bolts or the like. Further, the stopper 74 is directly fixed to the horizontally long portion of the base plate 75 by a bolt or the like. As shown in FIG. 2, the base plate 75 is non-rotatably fixed to a rotation shaft 4a protruding from the side surface of the support column 4 erected on the fixing plate 2.
 図3(a)に示すように、軸端ガイド72は、上下方向の貫通孔73を有する筒状であって、後述する受け入れ位置にあるホルダ71の直下に、ホルダ71と所定の間隔(例えば10mm程度)離間するように設けられている(図5参照)。 As shown in FIG. 3A, the shaft end guide 72 has a cylindrical shape having a through hole 73 in the vertical direction, and is directly below the holder 71 at the receiving position described later, and has a predetermined distance (for example, for example) from the holder 71. It is provided so as to be separated (about 10 mm) (see FIG. 5).
 図3(a)に示すように、軸端ガイド72の貫通孔73は、上部、中部、下部の径又は形状がそれぞれ異なっており、上部には上方へ拡径するテーパ孔73a、中部には金属ナトリウムNより若干大径のガイド孔73b、下部にはエンジンバルブ100の軸部101の上端部に嵌合可能な嵌合孔73cがそれぞれ設けられている。軸端ガイド72は、テーパ孔73aによって、ホルダ71から押出された金属ナトリウムNを受け、求心(軸心)方向に導くとともに、嵌合孔73cに嵌合したエンジンバルブ100の開口部104から確実に導入することができる。 As shown in FIG. 3A, the through holes 73 of the shaft end guide 72 have different diameters or shapes at the upper part, the middle part, and the lower part. A guide hole 73b having a diameter slightly larger than that of the metallic sodium N is provided, and a fitting hole 73c that can be fitted to the upper end of the shaft portion 101 of the engine valve 100 is provided at the lower portion. The shaft end guide 72 receives the metallic sodium N extruded from the holder 71 by the tapered hole 73a and guides it in the centripetal (axial center) direction, and securely from the opening 104 of the engine valve 100 fitted in the fitting hole 73c. Can be introduced in.
 また、軸端ガイド72は、ガイド孔73bを比較的長く(例えば、テーパ孔73a及び嵌合孔73cよりも長く)設定することにより、金属ナトリウムNが中空部105に押込まれた(導入された)際に、開口部104から突出する突出部N1の上端部の周囲を覆うことができるようになっている。 Further, in the shaft end guide 72, the metallic sodium N is pushed into the hollow portion 105 (introduced) by setting the guide hole 73b to be relatively long (for example, longer than the tapered hole 73a and the fitting hole 73c). ), It is possible to cover the periphery of the upper end portion of the protruding portion N1 protruding from the opening 104.
 図5に示すように、ストッパ74は、ストッパ面(図示略)を有する板状のストッパ部74aとストッパ部74aがボルト等により固定されたソレノイド等の伸縮手段74bとを有する。ストッパ部74aは、ストッパ面がホルダ71の軸方向に直交する方向を向き、伸縮手段74bの作動により、図5の仮想線で示す閉塞位置と、実線で示す開放位置との間を往復移動可能となっており、ホルダ71の挿通孔71aの下端部を開閉可能となっている。 As shown in FIG. 5, the stopper 74 has a plate-shaped stopper portion 74a having a stopper surface (not shown) and an expansion / contraction means 74b such as a solenoid in which the stopper portion 74a is fixed by a bolt or the like. The stopper portion 74a is oriented in a direction in which the stopper surface is orthogonal to the axial direction of the holder 71, and can be reciprocated between the closed position shown by the virtual line in FIG. 5 and the open position shown by the solid line by the operation of the expansion / contraction means 74b. The lower end of the insertion hole 71a of the holder 71 can be opened and closed.
 図2に示すように、ベース板75に固定されたホルダ71は、モータ等の駆動手段(図示略)に連結された回転軸4aの回転によりベース板75が回動することにより、軸方向が上下方向を向き、金属ナトリウム成形手段60によって棒状に成形された金属ナトリウムNを受け入れることができる受け入れ位置と、軸方向が斜め方向を向き(例えば45度に傾き)、ホルダ71の下端部が傾斜状態のエンジンバルブ100の上端部に近接するとともに、傾斜状態のエンジンバルブ100と同一軸線上に位置する導入準備位置との間を変位可能となっている。このとき、ホルダ71とともにベース板75に固定された軸端ガイド72及びストッパ74も互いの位置関係を維持した状態で変位する。 As shown in FIG. 2, the holder 71 fixed to the base plate 75 has an axial direction due to the rotation of the base plate 75 due to the rotation of the rotating shaft 4a connected to a driving means (not shown) such as a motor. The receiving position that faces up and down and can receive the metallic sodium N molded into a rod shape by the metallic sodium molding means 60, the axial direction is diagonally oriented (for example, tilted at 45 degrees), and the lower end of the holder 71 is tilted. It is close to the upper end of the engine valve 100 in the state and can be displaced between the engine valve 100 in the inclined state and the introduction preparation position located on the same axis. At this time, the shaft end guide 72 and the stopper 74 fixed to the base plate 75 together with the holder 71 are also displaced while maintaining their positional relationship with each other.
 また、可動板76は、ベース板75又は可動板76のいずれか一方に設けられた上下方向の長孔(図示略)に、ベース板75又は可動板76のいずれか他方に設けられた抜け止めピン(図示略)を挿通させて、長孔内を摺動させることによって、ベース板75に対して、上下方向にスライド移動可能に固定されている。 Further, the movable plate 76 is provided in an elongated hole (not shown) in the vertical direction provided in either the base plate 75 or the movable plate 76, and is provided in the other of the base plate 75 or the movable plate 76. By inserting a pin (not shown) and sliding it in the elongated hole, it is fixed to the base plate 75 so as to be slidable in the vertical direction.
 可動板76に固定された軸端ガイド72は、斜め方向を向く導入準備位置において、ソレノイド等の駆動手段(図示略)により可動板76をスライド移動させることによって、傾斜状態のエンジンバルブ100における軸部101の上端部から離間する離間位置(図2参照)と、傾斜状態のエンジンバルブ100における軸部101の上端部に嵌合する嵌合位置(図3参照)との間を往復移動可能となっている。このとき、可動板76に固定されたホルダ71も互いの位置関係を維持した状態で往復移動する。 The shaft end guide 72 fixed to the movable plate 76 is a shaft in the engine valve 100 in an inclined state by sliding the movable plate 76 by a driving means (not shown) such as a solenoid at an introduction preparation position facing an oblique direction. It is possible to reciprocate between the separation position separated from the upper end portion of the portion 101 (see FIG. 2) and the fitting position fitted to the upper end portion of the shaft portion 101 in the tilted engine valve 100 (see FIG. 3). It has become. At this time, the holder 71 fixed to the movable plate 76 also reciprocates while maintaining the positional relationship with each other.
 金属ナトリウムガイド手段70は、金属ナトリウム成形手段60により成形された棒状の金属ナトリウムNを、受け入れ位置のホルダ71により受け入れ、一時的に保持し(このときストッパ74のストッパ部74aは閉塞位置にある)、ホルダ71を導入準備位置に移動させるとともに、軸端ガイド72を離間位置から嵌合位置に移動させて、ストッパ74のストッパ部74aを開放位置に移動させることにより、金属ナトリウムNをエンジンバルブ100の中空部105へ導入(押込み)可能な導入準備状態とすることができる。 The metallic sodium guide means 70 receives the rod-shaped metallic sodium N formed by the metallic sodium forming means 60 by the holder 71 at the receiving position and temporarily holds it (at this time, the stopper portion 74a of the stopper 74 is in the closed position). ), The holder 71 is moved to the introduction preparation position, the shaft end guide 72 is moved from the separated position to the fitting position, and the stopper portion 74a of the stopper 74 is moved to the open position, whereby the metallic sodium N is transferred to the engine valve. It is possible to prepare for introduction so that it can be introduced (pushed) into the hollow portion 105 of 100.
(金属ナトリウム押込み手段80)
 図2に示すように、金属ナトリウム押込み手段(冷却材押込み手段)80は、金属ナトリウムガイド手段70の斜め上方に設けられ、SUS等の金属からなる棒状の押込み棒81と、押込み棒81を固定するロッドホルダ82と、モータ、ソレノイド、エアシリンダ又は油圧シリンダ等の押圧手段83とを有する。金属ナトリウム押込み手段80は、押込み棒81が先端に固定されたロッドホルダ82を、押圧手段83によって、傾斜状態のエンジンバルブ100の軸方向に沿って、下方に向かって所定の押圧力(例えば、100~300g程度)で押込み可能となっており、可動範囲は、押込み棒81を最も引き込む初期位置から最も押出す押込み位置の間となっている。
(Metallic sodium pushing means 80)
As shown in FIG. 2, the metal sodium pushing means (coolant pushing means) 80 is provided diagonally above the metal sodium guide means 70, and fixes a rod-shaped pushing rod 81 made of metal such as SUS and the pushing rod 81. It has a rod holder 82 and a pressing means 83 such as a motor, a solenoid, an air cylinder, or a hydraulic cylinder. The metallic sodium pushing means 80 pushes the rod holder 82 having the pushing rod 81 fixed to the tip thereof downward by the pushing means 83 along the axial direction of the engine valve 100 in an inclined state (for example, for example). It can be pushed in (about 100 to 300 g), and the movable range is between the initial position where the pushing rod 81 is most pulled in and the pushing position where the pushing rod 81 is pushed out most.
 押込み棒81は、金属ナトリウムNを中空部105内へ十分に押込むことができるように、ホルダ71の上端部から軸端ガイド72の下端部までの長さよりも例えば15mmほど長く設定されている。 The push rod 81 is set to be, for example, about 15 mm longer than the length from the upper end portion of the holder 71 to the lower end portion of the shaft end guide 72 so that the metallic sodium N can be sufficiently pushed into the hollow portion 105. ..
 金属ナトリウム押込み手段80は、導入準備状態における金属ナトリウムガイド手段70のホルダ71内にある金属ナトリウムNを上方から押込み棒81によって押圧する。これにより、ホルダ71内に保持されている金属ナトリウムNをエンジンバルブ100の中空部105へ押込む(導入する)ことができる。このとき、傘中空部105bにおいてゲッタ材Gは片寄せされているため、押込まれた金属ナトリウムNの下端部は、内底面103aの中心部に直接接触する。 The metallic sodium pushing means 80 presses the metallic sodium N in the holder 71 of the metallic sodium guide means 70 in the introduction preparation state from above by the pushing rod 81. As a result, the metallic sodium N held in the holder 71 can be pushed (introduced) into the hollow portion 105 of the engine valve 100. At this time, since the getter material G is offset in the hollow portion 105b of the umbrella, the lower end portion of the pressed metallic sodium N comes into direct contact with the central portion of the inner bottom surface 103a.
 さらに、金属ナトリウム押込み手段80は、このときエンジンバルブ100の開口部104から突出した金属ナトリウムNの突出部N1の上端部を押込み棒81によって押圧する。このとき、内底面103aに接触している金属ナトリウムNは漸次融解し、金属ナトリウム押込み手段80は、押込み棒81を初期位置から押込み位置に移動させることにより、金属ナトリウムNを、エンジンバルブ100の中空部105において、開口部104から下向きに例えば15mmほど押込むことができる。 Further, the metallic sodium pushing means 80 presses the upper end portion of the protruding portion N1 of the metallic sodium N protruding from the opening 104 of the engine valve 100 by the pushing rod 81 at this time. At this time, the metallic sodium N in contact with the inner bottom surface 103a is gradually melted, and the metallic sodium pushing means 80 moves the pushing rod 81 from the initial position to the pushing position to transfer the metallic sodium N to the engine valve 100. In the hollow portion 105, it can be pushed downward from the opening 104 by, for example, about 15 mm.
 ここで、金属ナトリウム押込み手段80は、状況に応じて金属ナトリウムNへの押圧力を以下のように変化させてもよい。 Here, the metallic sodium pressing means 80 may change the pressing force on the metallic sodium N as follows depending on the situation.
 例えば、ホルダ71内にある金属ナトリウムNを押出す場合(金属ナトリウムNをエンジンバルブ100の中空部105へ導入する場合)には、金属ナトリウムNを、例えば50g程度の押圧力で押圧する(第1押込み)。また、押圧中に金属ナトリウムNがエンジンバルブ100の中空部105内の途中で引っかかってしまった場合には、金属ナトリウムNを、例えば100g程度の押圧力で押圧する(第2押込み)。また、エンジンバルブ100の底部103が加熱されている場合であって、金属ナトリウムNの下端部がエンジンバルブ100の内底面103aに接触した場合(加熱された内底面103aに金属ナトリウムNを押付けて融解させる場合)には、金属ナトリウムNを、例えば300g程度の押圧力で押圧する(第3押込み)。 For example, when extruding the metallic sodium N in the holder 71 (when introducing the metallic sodium N into the hollow portion 105 of the engine valve 100), the metallic sodium N is pressed with a pressing force of, for example, about 50 g (the first). 1 push). If the metallic sodium N is caught in the hollow portion 105 of the engine valve 100 during pressing, the metallic sodium N is pressed with a pressing force of, for example, about 100 g (second pressing). Further, when the bottom portion 103 of the engine valve 100 is heated and the lower end portion of the metallic sodium N comes into contact with the inner bottom surface 103a of the engine valve 100 (the metallic sodium N is pressed against the heated inner bottom surface 103a). In the case of melting), metallic sodium N is pressed with a pressing force of, for example, about 300 g (third pressing).
 このように、金属ナトリウム押込み手段80の押圧力を適宜変更することによって、消費電力の効率化を図るとともに、金属ナトリウムNの融解を適切に行うことができる。 In this way, by appropriately changing the pressing force of the metallic sodium pressing means 80, it is possible to improve the efficiency of power consumption and appropriately melt the metallic sodium N.
 また、図3(a)に示すように、金属ナトリウム押込み手段80は、金属ナトリウムNにおける突出部N1の上端部を押込む際に、当該上端部の周囲を覆う軸端ガイド72のガイド孔73bによって、金属ナトリウムNの撓みが抑えられるため、金属ナトリウムNを破損することなく中空部105内へ押込むことができる。そして、押込まれた金属ナトリウムNは、ゲッタ材Gが片寄せされるとともに中心部が熱せられた内底面103aに直接下端部が押付けられることにより、確実に融解する。これにより、ゲッタ材Gへの熱の影響を最小限に止めつつ、融解した金属ナトリウムNを中空部105(傘中空部105b)に効率よく充填することができる。また、中空部105の深さよりも長い金属ナトリウムNを充填することができるため、金属ナトリウムNの充填工程を1回で完了させることができ、充填作業効率の向上を図るととともに、金属ナトリウムNを中空部105内に充填させるための設備を小型化することができ、コストの抑制を図ることができる。 Further, as shown in FIG. 3A, when the metallic sodium pushing means 80 pushes the upper end portion of the protruding portion N1 in the metallic sodium N, the guide hole 73b of the shaft end guide 72 that covers the periphery of the upper end portion is used. As a result, the bending of the metallic sodium N is suppressed, so that the metallic sodium N can be pushed into the hollow portion 105 without being damaged. Then, the pressed metallic sodium N is surely melted by the getter material G being offset and the lower end directly pressed against the inner bottom surface 103a whose central portion is heated. As a result, the molten metallic sodium N can be efficiently filled in the hollow portion 105 (umbrella hollow portion 105b) while minimizing the influence of heat on the getter material G. Further, since the metal sodium N longer than the depth of the hollow portion 105 can be filled, the filling step of the metal sodium N can be completed in one time, the filling work efficiency can be improved, and the metal sodium N can be filled. The equipment for filling the hollow portion 105 can be miniaturized, and the cost can be suppressed.
 金属ナトリウム押込み手段80は、金属ナトリウムNの充填が完了したことに基づいて、押込み棒81を押込み位置から初期位置に移動させて、中空部105から押込み棒81を引き抜く。 The metallic sodium pushing means 80 moves the pushing rod 81 from the pushing position to the initial position based on the completion of filling of the metallic sodium N, and pulls out the pushing rod 81 from the hollow portion 105.
(充填判断手段90)
 図2に示すように、充填判断手段90は、金属ナトリウム押込み手段80に電気的に接続され、押込み棒81が押込み位置に移動したことに基づいて、エンジンバルブ100の中空部105への金属ナトリウムNの充填が完了したと判断する。なお、タイマ(図示略)を設け、金属ナトリウム押込み手段80による金属ナトリウムNの押圧開始(第3押込み)から所定時間経過したことに基づいて、充填判断手段90は金属ナトリウムNの充填が完了したと判断してもよい。
(Filling determination means 90)
As shown in FIG. 2, the filling determination means 90 is electrically connected to the metallic sodium pushing means 80, and based on the fact that the pushing rod 81 has moved to the pushing position, the metallic sodium into the hollow portion 105 of the engine valve 100 is obtained. It is determined that the filling of N is completed. A timer (not shown) was provided, and the filling determination means 90 completed the filling of the metallic sodium N based on the elapse of a predetermined time from the start of pressing the metallic sodium N by the metallic sodium pressing means 80 (third pressing). You may judge that.
 充填判断手段90が、金属ナトリウムNの充填が完了したと判断したことに基づいて、バルブ傾斜手段40は、金属ナトリウム押込み手段80により押込み棒81が引き抜かれた後に、把持アーム41を水平位置に戻すとともに、エンジンバルブ100に対する把持を解除して、エンジンバルブ100を重量計測手段20上に載置する。重量計測手段20は、載置されたエンジンバルブ100(金属ナトリウムNの導入後のエンジンバルブ100)の重量を計測する。 Based on the determination by the filling determining means 90 that the filling of the metallic sodium N is completed, the valve tilting means 40 sets the gripping arm 41 in the horizontal position after the pushing rod 81 is pulled out by the metallic sodium pushing means 80. At the same time as returning, the grip on the engine valve 100 is released, and the engine valve 100 is placed on the weight measuring means 20. The weight measuring means 20 measures the weight of the mounted engine valve 100 (engine valve 100 after the introduction of metallic sodium N).
(金属ナトリウムNの充填までの流れ)
 図6に示すように、ゲッタ材Gが投入されたエンジンバルブ100に対して、不活性ガス供給手段10は、中空部105内に不活性ガスを噴出し(ステップS1)、重量計測手段20は金属ナトリウムNの導入前の重量を計測する(ステップS2)。
(Flow until filling of metallic sodium N)
As shown in FIG. 6, the inert gas supply means 10 ejects the inert gas into the hollow portion 105 (step S1) with respect to the engine valve 100 into which the getter material G is charged, and the weight measuring means 20 The weight of the metallic sodium N before introduction is measured (step S2).
(片寄せ工程)
 バルブ傾斜手段40は、重量が計測された軸方向が垂直状態のエンジンバルブ100を、例えば45度傾かせて傾斜状態に変位させる(ステップS3)。
 バルブ振動手段46は、傾斜状態のエンジンバルブ100を振動させる(ステップS4)。その結果、傘中空部105b内のゲッタ材Gを完全に片寄せすることができる。
(One-sided process)
The valve tilting means 40 tilts the engine valve 100 in the axially vertical state in which the weight is measured, for example, by 45 degrees, and displaces the engine valve 100 in the tilted state (step S3).
The valve vibrating means 46 vibrates the engine valve 100 in an inclined state (step S4). As a result, the getter material G in the hollow portion 105b of the umbrella can be completely offset.
(加熱工程)
 また、加熱部51は、傾斜状態のエンジンバルブ100における底部103の中心部を例えば150℃まで加熱する(ステップS5)。
(Heating process)
Further, the heating unit 51 heats the central portion of the bottom portion 103 of the tilted engine valve 100 to, for example, 150 ° C. (step S5).
(冷却材押圧工程、融解工程)
 その後、金属ナトリウムガイド手段70及び金属ナトリウム押込み手段80は、金属ナトリウムNを傾斜状態のエンジンバルブ100の中空部105へ導入し[第1押込み](ステップS6)、さらに、金属ナトリウム押込み手段80は、金属ナトリウムNを、開口部104から突出した突出部N1の上端部から押込み棒81により押込む[第3押込み](ステップS7)。これにより、金属ナトリウムNの下端部がエンジンバルブ100の内底面103aに押付けられ、融解し、金属ナトリウムNは中空部105内に充填される。なお、ステップS6とステップS7の金属ナトリウムNの中空部105への導入から押込みは、作業工程間にインターバルはなく、連続的に行われる。
(Coolant pressing process, melting process)
After that, the metal sodium guide means 70 and the metal sodium pushing means 80 introduce the metal sodium N into the hollow portion 105 of the engine valve 100 in an inclined state [first pushing] (step S6), and further, the metal sodium pushing means 80 , Metallic sodium N is pushed from the upper end of the protruding portion N1 protruding from the opening 104 by the pushing rod 81 [third pushing] (step S7). As a result, the lower end portion of the metallic sodium N is pressed against the inner bottom surface 103a of the engine valve 100 and melted, and the metallic sodium N is filled in the hollow portion 105. It should be noted that the introduction and pushing of the metallic sodium N in steps S6 and S7 into the hollow portion 105 are continuously performed without an interval between the work steps.
(充填確認工程)
 充填判断手段90により、金属ナトリウムNの充填が完了したと判断されると(ステップS8でYES)、バルブ傾斜手段40は、エンジンバルブ100を水平位置に戻して、重量計測手段20に載置する。重量計測手段20は、金属ナトリウムNが充填されたエンジンバルブ100の重量を計測し(ステップS9)、規定量判断手段30は、エンジンバルブ100の重量が適切(規定量)と判断すると(ステップS10でYES)、特別な処理は行わず、一連の処理は終了する。
(Filling confirmation process)
When the filling determination means 90 determines that the filling of the metallic sodium N is completed (YES in step S8), the valve tilting means 40 returns the engine valve 100 to the horizontal position and places it on the weight measuring means 20. .. The weight measuring means 20 measures the weight of the engine valve 100 filled with metallic sodium N (step S9), and the specified amount determining means 30 determines that the weight of the engine valve 100 is appropriate (specified amount) (step S10). YES), no special processing is performed, and the series of processing is completed.
 一方、ステップS8において、充填判断手段90の充填完了の判断がされない場合は(ステップS8でNO)、ステップS8の判断(条件分岐)は繰り返し行われる。また、ステップS10において、規定量判断手段30が、エンジンバルブ100の重量が適切(規定量)ではないと判断した場合は(ステップS10でNO)、製造ラインを停止させる処理を実行する(ステップS11)。 On the other hand, if the filling completion of the filling determination means 90 is not determined in step S8 (NO in step S8), the determination in step S8 (conditional branching) is repeated. Further, in step S10, if the specified amount determining means 30 determines that the weight of the engine valve 100 is not appropriate (NO in step S10), a process of stopping the production line is executed (step S11). ).
 なお、上記片寄せ工程において、バルブ振動手段46によりエンジンバルブ100を振動させる工程(ステップS4)を省略してもよい。 In the one-sided alignment step, the step of vibrating the engine valve 100 by the valve vibrating means 46 (step S4) may be omitted.
 以上、本発明の実施形態について説明したが、本発明の要旨を逸脱しない範囲内で、上記の実施形態に対して、次のような変形や変更を施すことが可能である。また、上記の本発明の一実施形態、及び下記変形例におけるそれぞれの構成部材や処理や条件等を適宜組み合わせることが可能である。 Although the embodiments of the present invention have been described above, the following modifications and changes can be made to the above embodiments without departing from the gist of the present invention. Further, it is possible to appropriately combine the above-described embodiment of the present invention and the respective constituent members, treatments, conditions and the like in the following modified examples.
(変形例1)
 上記実施形態では、各工程装置を一つずつ配置して、エンジンバルブ100を一つずつ処理するようにしているが、それに限定されず、処理に時間を要する一部の工程装置を並列に配置して、複数のエンジンバルブ100を一部工程において並列に処理するようにしてもよい。
(Modification 1)
In the above embodiment, each process device is arranged one by one to process the engine valve 100 one by one, but the present invention is not limited to this, and some process devices that require time for processing are arranged in parallel. Then, the plurality of engine valves 100 may be processed in parallel in some processes.
(変形例2)
 上記実施形態では、金属ナトリウムNを棒状に成形し、一時保持し、エンジンバルブ100の中空部105に押し込む処理を、金属ナトリウム成形手段60、金属ナトリウムガイド手段70、及び金属ナトリウム押込み手段80の各手段によって行っているが、単一の手段(金属ナトリウム供給装置)で行うようにしてもよい。この場合、予め、金属ナトリウムNを棒状に成形したものを用意して、エンジンバルブ100の中空部105に押し込む処理のみを行うようにしてもよい。
(Modification 2)
In the above embodiment, the metal sodium forming means 60, the metal sodium guide means 70, and the metal sodium pushing means 80 each perform a process of forming the metal sodium N into a rod shape, temporarily holding the metal sodium N, and pushing the metal sodium N into the hollow portion 105 of the engine valve 100. Although it is carried out by means, it may be carried out by a single means (metal sodium supply device). In this case, a rod-shaped metal sodium N may be prepared in advance, and only the process of pushing the metallic sodium N into the hollow portion 105 of the engine valve 100 may be performed.
e 点領域
G ゲッタ材               N 金属ナトリウム
1 冷却材充填装置            2 固定板
4 支持柱                4a回転軸
5 基台                 5a 回転軸
10 不活性ガス供給手段         11 中空管
11a 供給管              12 ノズル
20 重量計測手段
30 規定量判断手段
40 バルブ傾斜手段           41 把持アーム
41a アーム部             41b 把持部
43 傾斜機構              43a 伸縮手段
43b 回転リンク            46 バルブ振動手段
50 バルブ加熱手段           51 加熱部
52 誘導加熱電源            53 コイル部
53a ベース              53b 加熱集中部
54 温度制御部             55 位置変動部
55a 回転アーム            55b 回転制御部
57 サーマルカメラ
60 金属ナトリウム成形手段       61 シリンダ
61a テーパ孔             62 ピストン
63 ノズル               64 カッタ
70 金属ナトリウムガイド手段      71 ホルダ
71a 挿通孔              72 軸端ガイド
73 貫通孔               73a テーパ孔
73b ガイド孔             73c 嵌合孔
74 ストッパ              74a ストッパ部
74b 伸縮手段             75 ベース板
76 可動板
80 金属ナトリウム押込み手段      81 押込み棒
82 ロッドホルダ            83 押圧手段
90 充填判断手段
100 エンジンバルブ          101 軸部
102 傘部               103 底部
103a 内底面             103b 外底面
104 開口部              105 中空部
105a 軸中空             105b 傘中空部
e Point area G Getter material N Metallic sodium 1 Cooling material filling device 2 Fixing plate 4 Support pillar 4a Rotating shaft 5 Base 5a Rotating shaft 10 Inactive gas supply means 11 Hollow pipe 11a Supply pipe 12 Nozzle 20 Weight measuring means 30 Amount determination means 40 Valve tilting means 41 Grip arm 41a Arm part 41b Grip part 43 Tilt mechanism 43a Telescopic means 43b Rotating link 46 Valve vibration means 50 Valve heating means 51 Heating part 52 Inductive heating power supply 53 Coil part 53a Base 53b Heating concentration part 54 Temperature control unit 55 Position fluctuation unit 55a Rotation arm 55b Rotation control unit 57 Thermal camera 60 Metallic sodium forming means 61 Cylinder 61a Tapered hole 62 Piston 63 Nozzle 64 Cutter 70 Metal sodium guide means 71 Holder 71a Insertion hole 72 Shaft end guide 73 Through hole 73a Tapered hole 73b Guide hole 73c Fitting hole 74 Stopper 74a Stopper part 74b Telescopic means 75 Base plate 76 Movable plate 80 Metallic sodium Pushing means 81 Pushing rod 82 Rod holder 83 Pressing means 90 Filling judgment means 100 Engine valve 101 Shaft part 102 Umbrella Part 103 Bottom 103a Inner bottom 103b Outer bottom 104 Opening 105 Hollow 105a Shaft hollow 105b Umbrella hollow

Claims (4)

  1.  軸部及び前記軸部の一端に傘状に拡径する傘部の内部に中空の中空部を有する傘中空エンジンバルブにおける前記軸部の他端の開口から前記中空部へゲッタ材を投入可能かつ、冷却材を充填可能な冷却材充填装置であって、
     前記傘中空エンジンバルブを軸方向へ所定角度傾かせるバルブ傾斜手段と、
     棒状の前記冷却材を一時的に保持可能な筒状のホルダを有する冷却材ガイド手段と、
     前記ホルダに一時的に保持された前記冷却材を、前記中空部内に押込むことが可能な棒状の押込み棒を有する冷却材押込み手段と、
     前記傘部の底部の中心部を前記冷却材の融点よりも高い温度まで加熱可能であって、前記中空部内に押込まれて前記底部に接触した前記冷却材を融解可能な部分加熱手段と、を備えることを特徴とする傘中空エンジンバルブの冷却材充填装置。
    The getter material can be injected into the hollow portion from the opening at the other end of the shaft portion in the umbrella hollow engine valve having a hollow hollow portion inside the umbrella portion whose diameter is expanded like an umbrella at one end of the shaft portion and the shaft portion. , A coolant filling device that can fill the coolant,
    A valve tilting means for tilting the umbrella hollow engine valve at a predetermined angle in the axial direction,
    A coolant guiding means having a cylindrical holder capable of temporarily holding the rod-shaped coolant, and a coolant guiding means.
    A coolant pushing means having a rod-shaped pushing rod capable of pushing the coolant temporarily held in the holder into the hollow portion.
    A partial heating means capable of heating the central portion of the bottom portion of the umbrella portion to a temperature higher than the melting point of the cooling material and melting the cooling material pushed into the hollow portion and in contact with the bottom portion. A cooling material filling device for an umbrella hollow engine valve characterized by being provided.
  2.  前記冷却材ガイド手段は、前記押込み棒によって前記中空部に押込まれた前記中空部の深さよりも長い前記冷却材の下端部が前記中空部内の前記底部に接触した際に、前記冷却材の前記開口から突出した部分を周囲から覆う筒状の軸端ガイドを、前記ホルダの下方に設けることを特徴とする請求項1記載の傘中空エンジンバルブの冷却材充填装置。 The coolant guide means is such that when the lower end portion of the coolant, which is longer than the depth of the hollow portion pushed into the hollow portion by the push rod, comes into contact with the bottom portion in the hollow portion, the coolant guide means. The coolant filling device for an umbrella hollow engine valve according to claim 1, wherein a cylindrical shaft end guide that covers a portion protruding from the opening is provided below the holder.
  3.  前記所定角度傾いた前記傘中空エンジンバルブを振動させることが可能なバルブ振動手段を備えることを特徴とする請求項1又は2記載の傘中空エンジンバルブの冷却材充填装置。 The cooling material filling device for an umbrella hollow engine valve according to claim 1 or 2, further comprising a valve vibrating means capable of vibrating the umbrella hollow engine valve tilted at a predetermined angle.
  4.  軸部及び前記軸部の一端に傘状に拡径する傘部の内部に中空の中空部を有する傘中空エンジンバルブにおける前記軸部の他端の開口から前記中空部へ冷却材を充填可能な冷却材の充填方法であって、
     前記傘中空エンジンバルブを斜めに傾けることにより、前記中空部内に投入されたゲッタ材を前記中空部の端に寄せる片寄せ工程と、
     棒状の前記冷却材を前記開口から前記中空部内に押込む冷却材押圧工程と、
     前記傘部の底部の中心部を前記冷却材の融点よりも高い温度まで加熱することにより、前記中空部内に押込まれて前記底部に接触した前記冷却材を融解させる融解工程と、を実行することを特徴とする傘中空エンジンバルブの冷却材の充填方法。
    A coolant can be filled into the hollow portion from the opening at the other end of the shaft portion in an umbrella hollow engine valve having a hollow hollow portion inside the umbrella portion whose diameter is expanded like an umbrella at one end of the shaft portion and the shaft portion. It is a method of filling the coolant.
    A one-sided process in which the getter material introduced into the hollow portion is brought closer to the end of the hollow portion by tilting the hollow engine valve of the umbrella at an angle.
    The coolant pressing step of pushing the rod-shaped coolant from the opening into the hollow portion,
    Performing a melting step of heating the central portion of the bottom portion of the umbrella portion to a temperature higher than the melting point of the coolant to melt the coolant that has been pushed into the hollow portion and brought into contact with the bottom portion. A method of filling the coolant for an umbrella hollow engine valve.
PCT/JP2020/027405 2020-07-14 2020-07-14 Coolant filling device for hollow-head engine valve, and coolant filling method WO2022013951A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080095069.0A CN115003899B (en) 2020-07-14 2020-07-14 Device and method for filling cooling material into umbrella hollow engine valve
JP2022536024A JP7310059B2 (en) 2020-07-14 2020-07-14 COOLANT FILLING DEVICE FOR HOLE HEAD ENGINE VALVE AND METHOD FOR FILLING COOLANT
PCT/JP2020/027405 WO2022013951A1 (en) 2020-07-14 2020-07-14 Coolant filling device for hollow-head engine valve, and coolant filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027405 WO2022013951A1 (en) 2020-07-14 2020-07-14 Coolant filling device for hollow-head engine valve, and coolant filling method

Publications (1)

Publication Number Publication Date
WO2022013951A1 true WO2022013951A1 (en) 2022-01-20

Family

ID=79555517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027405 WO2022013951A1 (en) 2020-07-14 2020-07-14 Coolant filling device for hollow-head engine valve, and coolant filling method

Country Status (3)

Country Link
JP (1) JP7310059B2 (en)
CN (1) CN115003899B (en)
WO (1) WO2022013951A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236839A (en) * 2010-05-12 2011-11-24 Mitsubishi Heavy Ind Ltd Method for manufacturing of engine valve having metallic sodium enclosed therein
JP2012136979A (en) * 2010-12-24 2012-07-19 Mitsubishi Heavy Ind Ltd Method of manufacturing engine valve containing metallic sodium, and metallic sodium supply system
JP5843991B1 (en) * 2015-04-28 2016-01-13 三菱重工業株式会社 Method and apparatus for manufacturing metallic sodium filled engine valve

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670529B2 (en) * 1989-06-14 1997-10-29 フジオーゼックス株式会社 Method and apparatus for injecting metallic sodium into hollow engine valve
JP2832756B2 (en) * 1990-12-28 1998-12-09 フジオーゼックス株式会社 Method and apparatus for inserting metallic sodium into hollow valve
JP2832757B2 (en) * 1990-12-28 1998-12-09 フジオーゼックス株式会社 Device for inserting metallic sodium into hollow valve
JPH04272413A (en) * 1991-02-27 1992-09-29 Mitsubishi Heavy Ind Ltd Filling method for metallic sodium
JPH06335848A (en) * 1993-05-24 1994-12-06 Nisshinbo Ind Inc Workpiece feeding device and discharging device for centerless polisher and polishing device using them
JP2001179631A (en) * 1999-12-24 2001-07-03 Aichi Prefecture Antibacterial layer forming method and antibacterial austenitic stainless steel in such method
DE10204122C1 (en) * 2002-02-01 2003-05-08 Daimler Chrysler Ag Valve, for reciprocating piston machine, comprises a valve disk having an undercut expansion axially protruding over an enlarged area of a valve shaft to axially clamp the enlarged area and produce a form-locking connection
KR200295364Y1 (en) * 2002-08-09 2002-11-18 안전공업주식회사 Automatic manufacture apparatus of intake valve and exhaust valve for internal-combustion engine
JP4038724B2 (en) * 2003-06-30 2008-01-30 トヨタ自動車株式会社 Laser cladding processing apparatus and laser cladding processing method
JP4595868B2 (en) * 2006-03-31 2010-12-08 マツダ株式会社 Diagnosis device for valve timing control device
JP2008240645A (en) * 2007-03-27 2008-10-09 Aisan Ind Co Ltd Engine valve and its manufacturing method
JP4879920B2 (en) * 2008-01-30 2012-02-22 株式会社ケーヒン Throttle body structure for internal combustion engines
JP2010007531A (en) * 2008-06-25 2010-01-14 Toyota Motor Corp Poppet valve
KR101165795B1 (en) * 2009-07-30 2012-07-17 (주)에쎈테크 Valve for gas container
WO2011118593A1 (en) * 2010-03-25 2011-09-29 本田技研工業株式会社 Workpiece transfer apparatus, valve grinding machine provided with same, workpiece transfer method, and valve grinding method
JP2012097627A (en) * 2010-11-01 2012-05-24 Mitsubishi Heavy Ind Ltd Metallic-sodium-filled engine valve
JP2012237312A (en) * 2011-04-28 2012-12-06 Aisan Industry Co Ltd Method for manufacturing hollow engine valve
WO2013145250A1 (en) * 2012-03-30 2013-10-03 日鍛バルブ株式会社 Method for manufacturing hollow poppet valve containing refrigerant, hollow poppet valve containing refrigerant, and valve-housing fixture
PL2740908T3 (en) * 2012-06-14 2017-06-30 Nittan Valve Co., Ltd. Method of forming poppet valve faces and poppet valves having faces formed by this method
JP6027882B2 (en) * 2012-12-19 2016-11-16 本田技研工業株式会社 Valve cotter insertion system and valve cotter insertion method
WO2014155667A1 (en) * 2013-03-29 2014-10-02 日鍛バルブ株式会社 Hollow poppet valve
JP6091008B2 (en) * 2013-11-18 2017-03-08 三菱重工業株式会社 Exhaust valve valve mechanism, diesel engine, and exhaust valve cooling method for exhaust valve valve mechanism
KR102122919B1 (en) * 2013-11-21 2020-06-15 니탄 밸브 가부시키가이샤 Method for manufacturing hollow poppet valve
JP6584067B2 (en) * 2014-05-30 2019-10-02 日立造船株式会社 Vacuum deposition equipment
PL3020933T3 (en) * 2014-09-02 2018-06-29 Fuji Hollow Valve Inc. Method and device for supplying metallic sodium to hollow valves
JP6435486B2 (en) * 2014-09-24 2018-12-12 株式会社テージーケー Control valve
EP3051080A1 (en) * 2015-02-02 2016-08-03 Caterpillar Energy Solutions GmbH Variable valve timing systems for internal combustion engines
EP3073069A1 (en) * 2015-03-25 2016-09-28 Caterpillar Energy Solutions GmbH Push rod based variable valve timing systems
CN205504025U (en) * 2016-02-01 2016-08-24 无锡智能自控工程股份有限公司 Long -pending material type pipeline sample blowing plunger angle valve is prevented to horizontal type
JP2018118257A (en) * 2017-01-23 2018-08-02 愛三工業株式会社 Hot-forging device and method for manufacturing engine valve using the same
CN109027273A (en) * 2018-10-23 2018-12-18 广州达意隆包装机械股份有限公司 A kind of flow-limiting valve and filling apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236839A (en) * 2010-05-12 2011-11-24 Mitsubishi Heavy Ind Ltd Method for manufacturing of engine valve having metallic sodium enclosed therein
JP2012136979A (en) * 2010-12-24 2012-07-19 Mitsubishi Heavy Ind Ltd Method of manufacturing engine valve containing metallic sodium, and metallic sodium supply system
JP5843991B1 (en) * 2015-04-28 2016-01-13 三菱重工業株式会社 Method and apparatus for manufacturing metallic sodium filled engine valve

Also Published As

Publication number Publication date
JPWO2022013951A1 (en) 2022-01-20
CN115003899B (en) 2024-03-08
JP7310059B2 (en) 2023-07-19
CN115003899A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
US6629632B1 (en) Apparatus and method for manufacturing hollow shafts
CN110430949B (en) Molding system and molding method
WO2022013951A1 (en) Coolant filling device for hollow-head engine valve, and coolant filling method
KR101565258B1 (en) Forming apparatus, apparatus for producing semi-solid metal, forming method and method for producing semi-solid metal
CN100516741C (en) Casting method and apparatus
JP4649255B2 (en) Closing processing method and closing processing machine
KR101561692B1 (en) Plasma cutting device for flange
JPH07309303A (en) Inside surface heating device for open end of plastic tubular container
CN105880807A (en) TIG filler wire narrow-gap welding method utilizing bypass arc induction
US7040524B2 (en) Automated packaging apparatus and method of optical elements
EP1867405B1 (en) Closing method and closing machine
CN103894717A (en) Preheating burnoff flash butt welding method for welding large-section steel vehicle wheels
JP4452778B2 (en) Semi-solid alloy processing method and apparatus
US20070137061A1 (en) Freeze dryer shelf assembly
JP3974815B2 (en) Casting apparatus, molten metal supply apparatus, and molten metal supply method
CN104475963B (en) A kind of Novel friction welding machine
KR101505131B1 (en) Manufcturing device of electode casing for electric furnace
JP3988976B2 (en) Cooling device used for heat treatment and heat treatment device provided with the same
JP4750624B2 (en) Manufacturing apparatus and manufacturing method of tube in solenoid
JP5965890B2 (en) Molding apparatus, semi-solid metal production apparatus, molding method, and semi-solid metal production method
JPH08109030A (en) Method for forming glass optical element and apparatus therefor
JP3987374B2 (en) Metal melting heating device
JP2005342750A (en) Injection molding apparatus and method
KR20180034825A (en) Titanium vacuum centrifugal casting system
JP2008001037A (en) Welder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536024

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945311

Country of ref document: EP

Kind code of ref document: A1