WO2022013468A1 - Procedimiento y sistema para alinear las facetas de un heliostato de un campo solar - Google Patents

Procedimiento y sistema para alinear las facetas de un heliostato de un campo solar Download PDF

Info

Publication number
WO2022013468A1
WO2022013468A1 PCT/ES2021/070510 ES2021070510W WO2022013468A1 WO 2022013468 A1 WO2022013468 A1 WO 2022013468A1 ES 2021070510 W ES2021070510 W ES 2021070510W WO 2022013468 A1 WO2022013468 A1 WO 2022013468A1
Authority
WO
WIPO (PCT)
Prior art keywords
facet
heliostat
image
image acquisition
alignment
Prior art date
Application number
PCT/ES2021/070510
Other languages
English (en)
French (fr)
Inventor
Alberto SÁNCHEZ GONZÁLEZ
José Carlos CASTILLO MONTOYA
Original Assignee
Universidad Carlos Iii De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Carlos Iii De Madrid filed Critical Universidad Carlos Iii De Madrid
Publication of WO2022013468A1 publication Critical patent/WO2022013468A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • F24S2050/25Calibration means; Methods for initial positioning of solar concentrators or solar receivers

Definitions

  • a first object of the present invention is a method for aligning the facets of a heliostat in a solar field in a significantly simpler, more precise and cheaper way than prior art systems.
  • a second object of the present invention is a system designed to carry out the above procedure.
  • heliostats In solar tower plants, thousands of follower mirrors (heliostats) concentrate solar radiation on a receiver to produce electricity.
  • a commercial heliostat is made up of an array of small mirrors (about 2 m 2 each), called facets. These facets must be correctly regulated (aligned, according to the usual terminology), which implies two operations: edging (orientation) and focus (curvature). Alignment is performed both at start-up and during plant operation, since the facets tend to become misaligned over time.
  • the alignment of the heliostats (scanning and focusing) has a great impact on the efficiency of the heliostat field and, consequently, on the overall performance of the plant. An alignment error in these heliostats of only 2 mrad produces around 30% losses in the annual energy production of a plant.
  • optical techniques can be basically classified into six types: based on laser beam, camera look-back, photogrammetry, deflectometry, fluxometry and reflection of an object (HFACET):
  • the method called camera look-back is based on seeing with a camera its own reflection in each facet. This method has been shown to be accurate but, in addition to requiring a long execution time, it largely depends on external aspects such as the accuracy of the heliostat tracking system.
  • Photogrammetric methods are based on a series of images taken from a heliostat with marks on its facets, using photogrammetry to obtain the orientation (edging) and profile (focus) of the facets. Again, this method requires quite a bit of time and its accuracy is not excessively high (up to 1.6 mrad), due, among other reasons, to the use of telephoto lenses.
  • the starting point is a series of white images of the distribution of light produced by a heliostat throughout the day, and the edging errors are determined by means of an optimization algorithm applied to a calculation tool. of the flow distribution.
  • the methodology based on the reflection of an object uses a camera with telephoto lens located at the top of the tower and looking towards a heliostat, which reflects another object of known dimensions. By comparing what is observed with what the camera should see if the heliostat were correctly aligned, the edging errors are detected.
  • the commercial implementation of this technique is known as HFACET. In its current version, HFACET only allows the detection of edge errors and its accuracy is not very high due to the high distance between the heliostat and the camera.
  • the present invention describes a new method for aligning the facets of a heliostat in a solar field in a faster and simpler way than by means of currently known techniques.
  • the new method is based on the fixing of an image acquisition means to the rear support structure of a reference heliostat and on the acquisition of images of an object heliostat located immediately behind the reference heliostat.
  • the position in the image obtained of certain elements of the reference heliostat reflected by the facets of the target heliostat allow determining whether there is misalignment in the target heliostat and, in this case, quantifying said misalignment to carry out the corresponding correction.
  • This method is much simpler than similar methods known in the art based on the provision of a chamber in the upper portion of the tower. Furthermore, since the distance between the imaging medium and the target heliostat is greatly reduced, a great improvement in accuracy is obtained.
  • a first aspect of the present invention describes a method for aligning the facets of a heliostat in a solar field comprising at least one reference heliostat and one target heliostat, where the target heliostat is located behind the reference heliostat.
  • the term "behind” should be interpreted with reference to the main direction of reflection in the direction of the tower towards which all heliostats in the solar field are oriented. That is, the target heliostat is farthest from the tower in the solar field. sun than the reference heliostat.
  • fronta ⁇ ' and “back J ' are interpreted in the same way: the front surface of a heliostat or its facets refers to the reflecting surface oriented towards the side where the solar field tower is located; the back surface of a heliostat or its facets refers to the non-reflective surface facing away from the tower side.
  • the method mainly comprises the following steps:
  • the target heliostat and the reference heliostat are oriented such that a front surface of the target heliostat faces a rear surface of the reference heliostat. That is, both heliostats are arranged in parallel in such a way that the reflective front face of the object heliostat facets is oriented towards the non-reflective rear face of the reference heliostat facets. To carry out this orientation, it is enough to use the conventional orientation mechanism that all heliostats have.
  • the orientation of the object and reference heliostats is such that its angle of elevation is 0 or and its azimuth angle is equal to the relative azimuth of both heliostats.
  • an image acquisition device fixed to the rear face of a reference facet of the reference heliostat and oriented towards the object heliostat, an image is acquired that contains at least the reference facet of the reference heliostat reflected in at least one object facet of the object heliostat.
  • each of the object facets shows the reflection of the reference facet where the image acquisition device is arranged.
  • This configuration allows the alignment process to be carried out more quickly, since the acquisition of a single image allows the alignment of several object facets. To do this, the steps described later in this document can be performed sequentially or in parallel for each of said object facets.
  • the image acquisition device can be of any type as long as it allows the described images to be obtained with sufficient quality to carry out the method of the invention.
  • a digital camera with characteristics essentially similar to those used to carry out the prior art methods is normally used.
  • the image acquisition device be fixed directly to the rear face of the reference facet itself, but rather it could be fixed to any structure, frame, reinforcement, or in general any rigid and resistant element located on the posterior face of the reference facet.
  • fixation of the image acquisition device can be carried out in any way as long as it is sufficiently firm and secure.
  • the image acquisition device could be fixed to the reference facet by means of anchoring means provided with a fixing element to the rear face of the reference facet and a coupling element for the device image acquisition.
  • the fixing element to the rear face of the reference facet can be attached and detached quickly and conveniently.
  • suction cups could be used for coupling to the rear face of the reference facet itself, or clamps for coupling to a rear support structure of the reference heliostat.
  • the fixing element may comprise any of bolts, screws, snap fasteners, slip fasteners, dovetail fasteners, adhesives, etc.
  • the fixing element may be permanent, such as by welding.
  • the coupling element of the image acquisition device can also take any suitable form, including snap-on, slide-on, screw-on fixings, etc.
  • the anchoring means may comprise a ball joint to which the image acquisition device is directly or indirectly coupled, so as to facilitate the orientation of said image acquisition device towards the desired position of the object heliostat.
  • reference facet characteristics in the obtained image are compared with theoretical reference facet characteristics corresponding to a correct alignment of the object facet. In this way, the alignment errors of the object facet are determined.
  • the features of the reference facet present in the image are compared with the corresponding theoretical target features and, by means of analysis methods known in the art, the alignment errors of the target facet are determined. More specifically, in this step of the procedure, changes in position, shape, size, etc. are determined. of the determined characteristics, and from said changes the alignment errors of the object facet are deduced.
  • the features are determined using at least one of the following methods: SIFT (Scale Invariant Feature Transform), SURF (Speeded Up Robust Features), or machine learning.
  • SIFT Scale Invariant Feature Transform
  • SURF Speeded Up Robust Features
  • machine learning simple features such as at least one of reference facet lines, sides, edges or corners can be used. In the latter case, for example, the comparison might involve determining changes in the position of certain edges or corners of the reference facet relative to its target theoretical position.
  • this step can be performed in parallel or sequentially for each of said object facets.
  • the alignment of the object facet is corrected so that the determined alignment errors are eliminated.
  • orientation normally called “edging”
  • focusing the alignment of the facets of a heliostat
  • the image acquisition device is used to acquire an image of at least one object facet from the corresponding position behind the reference facet.
  • a single image acquisition device can be used that is successively attached to the reference facets in question, or the reference heliostat itself can have of a plurality of image acquisition devices fixed to the respective reference facets permanently.
  • the acquired image shows the reflection of at least one reference facet in several object facets.
  • some characteristics of the image of the reference facet in the reflection of the object facet are compared with characteristics of the reference facet corresponding to a theoretical image where the object facet is perfectly oriented.
  • the alignment of the object facet is corrected based on the result of said comparison.
  • the positioning of the image acquisition means in the heliostats themselves is much more convenient than at the end of the solar field tower, which saves time and simplicity.
  • the invention also extends to computer programs, particularly computer programs disposed on or within a carrier, adapted to carry out the above-described step of comparing features of the reference facet in the image obtained with theoretical characteristics of the reference facet corresponding to a correct alignment of the object facet to determine the alignment errors of the object facet.
  • the program may be in the form of source code, object code, intermediate source code, and object code, for example, as in partially compiled form, or in any other form suitable for use in practicing the processes according to the invention. .
  • the program may be embodied in a storage medium, such as ROM memory, CD ROM memory, or semiconductor ROM memory, or a magnetic recording medium, floppy disk, or hard disk.
  • a storage medium such as ROM memory, CD ROM memory, or semiconductor ROM memory, or a magnetic recording medium, floppy disk, or hard disk.
  • the program may be embedded in a carrier.
  • the carrier can be any entity or device capable of supporting the program.
  • the carrier may be a transmissible carrier, such as an electrical or optical signal that could be transported through electrical or optical cable, by radio, or by any other means.
  • the carrier may be constituted by said cable or other device or medium.
  • the carrier could be an integrated circuit in which the program is included, the integrated circuit being adapted to execute, or to be used in the execution of, the corresponding processes.
  • a second aspect of the present invention is directed to a system configured to carry out the method described above.
  • This system comprises a heliostat which also comprises a plurality of image acquisition devices fixed to the rear face of each facet.
  • Each image acquisition device can be fixed to the respective facet by means of anchoring means such as the one described previously in this document, and which basically comprises an element for fixing to the rear facet of the facet and a coupling element for the acquisition device.
  • the anchoring means may further comprise a ball joint to which the image acquisition device is fixed.
  • the heliostat further comprises motorized fixing means that fix the facets to the rear support structure.
  • These motorized fixing means may be similar to those described above in this document.
  • the same heliostat can comprise both the image acquisition devices and the motorized fixing means, since the same heliostat can function as a reference heliostat or as a target heliostat depending on which target facet is to be examined. to line up.
  • Fig. 1 schematically shows an object heliostat and a reference heliostat in a solar field.
  • Figs. 2A-2C respectively show the image of a reference heliostat obtained during the method of the invention, the objective theoretical image of the reference heliostat, and both images superimposed.
  • Fig. 3 schematically shows the image analysis process of the method of the present invention.
  • Fig. 5 shows a side view of an object heliostat and a reference heliostat equipped with two image acquisition means to carry out the method of the invention.
  • Figs. 6A and 6B respectively show a side view of an object heliostat and a reference heliostat provided with an image acquisition means to carry out the method of the invention, and a representation of the image acquired by the image acquisition means.
  • Figs. 7A and 7B respectively show a side and rear view of a facet of an object heliostat provided with motorized fixing means.
  • Fig. 1 shows two heliostats (HR, HO) arranged in adjacent rows in a solar field.
  • the reference heliostat (HR) is located in a row closest to the solar field tower, while the object heliostat (HO) belongs to a subsequent row behind the reference heliostat (HR), that is, further from the solar field tower. the solar field tower than the reference heliostat (HR).
  • the object heliostat (HO) is located behind the reference heliostat (HR).
  • Each of the heliostats (HR, HO) is formed by a rear support structure (EPS) to which a plurality of facets (F) are fixed, which in this particular example are square.
  • Each facet (F) has a reflective front face facing the sun field tower location and a non-reflective back face facing away from the sun field tower location.
  • an image acquisition device is fixed to the rear face of a reference facet (FR) located in a position of the reference heliostat (HR) equivalent to that occupied by the object facet (FO) in the heliostat object (HO).
  • a single image acquisition device can be used for this, which is successively fixed to a reference facet (FR) corresponding to each object facet (FO) to be aligned.
  • FIG. 4 where an anchoring means (MA) is used to fix the camera to the reference facet (FR).
  • the reference heliostat (HR) itself can have an image acquisition device (IAD) fixed to the rear face of each facet (F).
  • the anchoring means (MA) can comprise a fixing element to the reference facet (FR) and a coupling element of the device of acquisition of images (IAD).
  • the anchoring means (MA) shown in this example also has a ball joint on which the coupling element of the image acquisition device (ICD) is arranged, which facilitates the orientation of said image acquisition device (ICD) in the desired direction.
  • a high-resolution digital camera is used here as the image acquisition device (ICD).
  • This digital camera (DAI) is connected to a processing medium, such as a computer, tablet, smartphone, or in general any device with sufficient processing power to carry out the analysis procedure of the images obtained. described in this document.
  • the object (HO) and reference (HR) heliostats are oriented so that the front face of the object (HO) heliostat faces the rear face of the reference (HR) heliostat. That is, both heliostats (HO, HR) are arranged so that they are parallel, which for the most common case corresponding to essentially flat terrain implies arranging them in their completely vertical position. In this position, the front facet of the object facet (FO) is oriented in the direction of the posterior facet of the reference facet (FR), so that an observer located on the posterior facet of the reference facet (FR) can see himself reflected in the reflecting front face of the object facet (FO).
  • the camera (DAI) fixed to the reference facet (FR) is oriented towards the object facet (FO).
  • an image (I) when acquired, it shows the camera itself (DAI) and the reference facet (FR) reflected on the reflecting front face of the object facet (FO).
  • the image analysis part of the method of the present invention can be performed individually for each object facet (FO) or by groups of object facets (FO).
  • the first case corresponds to a configuration in which the image (I) acquired by the camera (DAI) contains only one complete object facet (FO), as shown in Figs. 2A-2C.
  • the second case corresponds to a configuration in which the image (I) acquired by the camera (DAI) covers more than one complete object facet (FO).
  • Figs. 6A and 6B More specifically, Fig. 6B shows how image (I) encompasses four contiguous object facets (FOi, FO 2 , FO 3 , FO 4 ) of the heliostat object (HO). In this way, the alignment is achieved in an even faster and more efficient way.
  • Fig. 3 schematically shows the main steps of the image analysis process of the method of the present invention.
  • the image analysis process is divided into two clearly differentiated phases.
  • the calculation of the optical model which provides information about what the camera (DAI) should see in a theoretical way
  • the vision processing where it is based on the image captured by the camera (DAI).
  • FO object facet
  • Vision processing begins in step 1 of Fig. 3 with the acquisition of high-resolution images (I) by means of the camera (DAI) where the reference facet (FR) reflected on the front face of the image clearly appears. object facet (FO).
  • DAI camera
  • FO object facet
  • step 2 a preprocessing consisting of filtering is carried out to improve the quality of the images (I), eliminating noise and other artifacts that may appear and interfere with subsequent calculations.
  • step 3 the extraction of characteristics of the image (I) is carried out in order to find distinctive patterns and aspects in the reflection of the reference facet (FR) that will allow a comparison to be made with the information obtained from of the optical model.
  • the feature extraction process seeks to define some element of the reference facet (FR) where the camera (DAI) is anchored that is consistently repeated in the reflection of the object facet (FO).
  • step 4 consisting of an initial calibration where some input parameters are determined for the calculation of the optical model (position and orientation of the camera, focal length of the lens and radial and tangential distortions) .
  • This process needs to be done only once when the camera (DAI) is anchored in one position, and it will need to be repeated if the camera (DAI) changes position.
  • the optical model is calculated, which provides an ideal representation of what the camera (DAI) should see when the object facet (FO) is correctly aligned.
  • the optical model comprises a theoretical image (IT) of the reference facet (FR) seen in reflection in the object facet (FO).
  • step 6 the characteristics described above are extracted from the theoretical image (IT) to allow comparison between the theoretical image (IT) and the real image (I) captured in step 1.
  • Figs. 2a-2c they respectively show the real image (I) acquired, the theoretical image (IT) calculated, as well as both superimposed one on the other. Note that, for simplicity, the camera itself (ICD) has been removed from these images. As can be seen in Fig. 2C, the reference facet (FR') that appears in the real image (I) is displaced downwards and to the left in relation to the reference facet (FR') that appears in the theoretical image (IT).
  • FIGs. 7A and 7B show respective views of an object heliostat (HO) where each object facet (FO) is fixed to the rear support structure (EPS) by means of a ball joint (R) and motorized fixing means (MMF). More specifically, the ball (R) connects the center of the object facet (FO) to the posterior support structure (EPS), so that the object facet (FO) can tilt around it to change its orientation.
  • two motorized fixing means (MMF) comprising two removable cylinders connect two contiguous sides of the object facet (FO) to the posterior support structure (EPS).
  • the object facet (FO) is tilted around a first axis that passes through the ball joint (R), and when the other of the means is activated motorized fixation (MMR), the object facet (FO) is tilted around a second axis perpendicular to the first and also passing through the patella (R).
  • MMR motorized fixation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

La invención describe un método para alinear las facetas de un heliostato de un campo solar, donde un heliostato objeto (HO) está situado detrás de un heliostato de referencia (HR). El método comprende: orientar los heliostatos objeto (HO) y de referencia (HR) de manera que están enfrentados uno a otro; obtener, mediante un dispositivo de adquisición de imágenes (DAI) fijado a una cara posterior de una faceta de referencia (FR) del heliostato de referencia (HR), una imagen que contiene al menos dicha faceta de referencia (FR) reflejada en al menos una faceta objeto (FO); comparar unas características de la faceta de referencia (FR) en la imagen (I) obtenida con unas características teóricas correspondientes a un alineamiento correcto de la faceta objeto (FO); y corregir el alineamiento de la faceta objeto (FO) de manera que se eliminan los errores determinados. También se describe un heliostato diseñado para llevar a cabo dicho procedimiento.

Description

DESCRIPCIÓN
Procedimiento y sistema para alinear las facetas de un heliostato de un campo solar
OBJETO DE LA INVENCIÓN
Un primer objeto de la presente invención es un procedimiento para alinear las facetas de un heliostato de un campo solar de una manera sensiblemente más sencilla, precisa y económica que los sistemas de la técnica anterior.
Un segundo objeto de la presente invención es un sistema diseñado para llevar a cabo el procedimiento anterior.
ANTECEDENTES DE LA INVENCIÓN
En las plantas solares de torre, miles de espejos seguidores (heliostatos) concentran la radiación solar en un receptor para producir electricidad. Un heliostato comercial se compone de una matriz de pequeños espejos (de en torno a 2 m2 cada uno), llamados facetas. Estas facetas deben estar correctamente regladas (alineadas, según la terminología habitual), lo cual implica dos operaciones: canteo (orientación) y enfoque (curvatura). El alineamiento se realiza tanto en la puesta en marcha como durante la operación de la planta, dado que las facetas tienden a desajustarse con el paso del tiempo. El alineamiento de los heliostatos (canteo y enfoque) tiene un gran impacto en la eficiencia del campo de heliostatos y, consecuentemente, en el rendimiento global de la planta. Un error de alineamiento en estos heliostatos de tan sólo 2 mrad produce alrededor de un 30% de pérdidas en la producción energética anual de un planta.
Actualmente existen diversas técnicas para alinear las facetas de los heliostatos que se pueden clasificar en tres categorías principales: on-sun, mecánicas y ópticas.
En las técnicas on-sun se realiza un ajuste manual mientras el heliostato sigue al sol. Este ajuste se realiza faceta a faceta, visualizando y corrigiendo (ensayo-error) la posición del haz de luz en una zona de calibración localizada en la torre. El ajuste on-sun es muy poco preciso y requiere mucho tiempo, por lo que no es efectivo.
Las técnicas mecánicas hacen uso de inclinómetros o calibres para corregir la orientación de las facetas mientras el heliostato se encuentra en posición horizontal. Los elevados tiempos que ello conlleva, así como los medios necesarios (al menos tres operarios y una grúa), de nuevo hacen a esta técnica poco competitiva.
Por último, las técnicas ópticas pueden clasificarse fundamentalmente en seis tipos: basadas en haz láser, camera look-back, fotogrametría, deflectometría, fluxometría y reflexión de un objeto (HFACET):
Los métodos basados en haz láser, aplicados en la National Solar Thermal Test Facility, son muy precisos pero viables sólo en condiciones de laboratorio.
El método llamado camera look-back se basa en ver con una cámara su propio reflejo en cada faceta. Este método se ha demostrado preciso pero, además de requerir mucho tiempo de ejecución, depende en buena medida de aspectos externos como la precisión del sistema de seguimiento del heliostato.
Los métodos fotogramétricos parten de una serie de imágenes tomadas de un heliostato con marcas en sus facetas, empleándose la fotogrametría para obtener la orientación (canteo) y el perfil (enfoque) de las facetas. De nuevo, este método requiere bastante tiempo y su precisión no es excesivamente alta (hasta 1 ,6 mrad), debido, entre otros motivos, al uso de teleobjetivos.
En los métodos basados en deflectometría (fringe reflection), un patrón de franjas sinusoidal es reflejado por un heliostato y visto por una cámara. Matemáticamente se obtiene la normal en cada punto del espejo/faceta, por lo que básicamente es útil para analizar el enfoque de las facetas. Si bien se han desarrollado herramientas comerciales basadas en deflectometría, como por ejemplo el software AIMFAST-SOFAST, este método sólo es viable en condiciones controladas de laboratorio y no resulta útil en la detección de errores de canteo.
En los métodos basados en fluxometría, se parte de una serie de imágenes en el blanco de la distribución de luz producida por un heliostato a lo largo del día, y se determinan los errores de canteo mediante un algoritmo de optimización aplicado sobre una herramienta de cálculo de la distribución de flujo.
La metodología basada en la reflexión de un objeto utiliza una cámara con teleobjetivo situada en lo alto de la torre y que mira hacia un heliostato, el cual refleja otro objeto de dimensiones conocidas. Mediante comparación de lo observado con lo que debería ver la cámara si el heliostato estuviese correctamente alineado, se detectan los errores de canteo. La implementación comercial de esta técnica se conoce como HFACET. En su versión actual, HFACET sólo permite la detección de errores de canteo y su precisión no es muy elevada debido a la elevada distancia entre el heliostato y la cámara.
Sin embargo, estas técnicas conocidas presentan diversos inconvenientes, tales como la gran cantidad de tiempo que requieren, su imprecisión, o bien el hecho de ser útiles únicamente en condiciones ideales de laboratorio. Por tanto, existe en este campo de la técnica una necesidad de técnicas de alineamiento de heliostatos más rápidas, sencillas y económicas.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe un nuevo procedimiento para alinear las facetas de un heliostato de un campo solar de una manera más rápida y sencilla que mediante las técnicas actualmente conocidas. Fundamentalmente, el nuevo procedimiento está basado en la fijación de un medio de adquisición de imágenes a la estructura posterior de soporte de un heliostato de referencia y en la adquisición de imágenes de un heliostato objeto ubicado inmediatamente detrás del heliostato de referencia. La posición en la imagen obtenida de determinados elementos del heliostato de referencia reflejados por las facetas del heliostato objeto permiten determinar si existe desalineamiento en el heliostato objeto y, en ese caso, cuantificar dicho desalineamiento para llevar a cabo la correspondiente corrección.
Este método es mucho más sencillo que los métodos similares conocidos en la técnica basados en la disposición de una cámara en la porción superior de la torre. Además, gracias que la distancia entre el medio de adquisición de imágenes y el heliostato objeto se reduce enormemente, se obtiene una gran mejora en la precisión.
Un primer aspecto de la presente invención describe un método para alinear las facetas de un heliostato de un campo solar que comprende al menos un heliostato de referencia y un heliostato objeto, donde el heliostato objeto está situado detrás del heliostato de referencia. En este contexto, el término “detrás" debe interpretarse tomando como referencia la dirección principal de reflexión en dirección a la torre hacia la que se orientan todos los heliostatos del campo solar. Es decir, el heliostato objeto está más alejado de la torre del campo solar que el heliostato de referencia. Del mismo modo se interpretan los términos “frontaí’ y “ posterior J’: la superficie frontal de un heliostato o de sus facetas se refiere a la superficie reflectante orientada hacia el lado donde se encuentra la torre del campo solar; la superficie posterior de un heliostato o de sus facetas se refiere a la superficie no reflectante orientada en sentido opuesto al lado donde está la torre. El método comprende principalmente los siguientes pasos:
- Orientación inicial de los heliostatos
En primer lugar, se orientan el heliostato objeto y el heliostato de referencia de manera que una superficie frontal del heliostato objeto está enfrentada a una superficie posterior del heliostato de referencia. Es decir, ambos heliostatos se disponen en paralelo de forma que la cara frontal reflectante de las facetas del heliostato objeto está orientada hacia la cara posterior no reflectante de las facetas del heliostato de referencia. Para llevar a cabo esta orientación, basta con emplear el mecanismo de orientación convencional del que disponen todos los heliostatos.
Por ejemplo, en un campo solar donde el desnivel del terreno es pequeño, la orientación de los heliostatos objeto y de referencia es tal que su ángulo de elevación es 0o y su ángulo azimutal es igual al azimut relativo de ambos heliostatos.
- Obtención de la imagen de la faceta de referencia
A continuación, mediante un dispositivo de adquisición de imágenes fijado a la cara posterior de una faceta de referencia del heliostato de referencia y orientado hacia el heliostato objeto, se adquiere una imagen que contiene al menos la faceta de referencia del heliostato de referencia reflejada en al menos una faceta objeto del heliostato objeto.
La fijación del dispositivo de adquisición de imágenes puede realizarse en el momento de realizar el proceso de alineamiento, o bien el propio heliostato de referencia puede comprender varios dispositivos de adquisición de imágenes instalados de forma fija en las posiciones requeridas. En cualquier caso, la imagen adquirida es una fotografía digital donde se aprecia la cara posterior de la faceta de referencia del heliostato de referencia, así como el propio dispositivo de adquisición de imágenes fijado a dicha faceta de referencia, reflejados en la cara frontal reflectante de una o varias facetas objeto del heliostato objeto. Nótese que, en función de características geométricas de los heliostatos, tales como la distancia entre el heliostato objeto y el heliostato de referencia o el tamaño de las facetas, la imagen obtenida mediante el dispositivo de adquisición de imágenes puede contener varias facetas objeto en las que se ve reflejada la faceta de referencia. En dicha imagen, cada una de las facetas objeto muestra el reflejo de la faceta de referencia donde está dispuesto el dispositivo de adquisición de imágenes. Esta configuración permite realizar el proceso de alineamiento de una manera más rápida, ya que la adquisición de una única imagen permite alinear varias facetas objeto. Para ello, los pasos que se describen más adelante en este documento pueden realizarse de manera secuencial o paralela para cada una de dichas facetas objeto.
El dispositivo de adquisición de imágenes puede ser de cualquier tipo siempre que permita obtener las imágenes descritas con una calidad suficiente como para llevar a cabo el método de la invención. Por ejemplo, normalmente se emplea una cámara fotográfica digital de características esencialmente similares a aquellas empleadas para llevar a cabo los métodos de la técnica anterior. Además, nótese que no es imprescindible que el dispositivo de adquisición de imágenes esté fijado directamente a la propia cara posterior de la faceta de referencia, sino que podría estar fijado a cualquier estructura, bastidor, refuerzo, o en general cualquier elemento rígido y resistente ubicado sobre la cara posterior de la faceta de referencia.
Además, la fijación del dispositivo de adquisición de imágenes puede llevarse a cabo de cualquier modo siempre que sea suficientemente firme y segura. Por ejemplo, la fijación del dispositivo de adquisición de imágenes a la faceta de referencia podría estar realizada a través de un medio de anclaje dotado de un elemento de fijación a la cara posterior de la faceta de referencia y de un elemento de acoplamiento del dispositivo de adquisición de imágenes.
En caso de que se utilice un único dispositivo de adquisición de imágenes que se fija sucesivamente a las diferentes facetas a alinear, el elemento de fijación a la cara posterior de la faceta de referencia podrá acoplarse y desacoplarse de una manera rápida y cómoda. En ese caso podrían utilizarse, por ejemplo, ventosas para su acoplamiento a la propia cara posterior de la faceta de referencia, o bien abrazaderas para su acoplamiento a una estructura posterior de soporte del heliostato de referencia. En otras posibilidades, el elemento de fijación puede comprender cualquiera de entre pernos, tornillos, fijaciones a presión, fijaciones deslizantes, fijaciones de tipo cola de milano, adhesivos, etc. Por el contrario, si el heliostato de referencia dispone de una pluralidad de dispositivos de adquisición de imágenes fijados permanentemente a la cara posterior de las respectivas facetas de referencia, el elemento de fijación podrá tener un carácter definitivo, como por ejemplo mediante soldadura.
El elemento de acoplamiento del dispositivo de adquisición de imágenes puede también adoptar cualquier forma adecuada, incluyendo fijaciones a presión, deslizantes, atornilladas, etc. Además, el medio de anclaje puede comprender una rótula a la que se acopla directa o indirectamente el dispositivo de adquisición de imágenes, de modo que se facilita la orientación de dicho dispositivo de adquisición de imágenes hacia la posición deseada del heliostato objeto.
- Comparación de la imagen con objetivo
Después, se comparan unas características de la faceta de referencia en la imagen obtenida con unas características teóricas de la faceta de referencia correspondientes a un alineamiento correcto de la faceta objeto. De ese modo, se determinan los errores de alineamiento de la faceta objeto.
Es decir, gracias a un proceso de calibración previo, se conoce cuáles son las características teóricas que debe tener en la imagen la reflexión de la faceta de referencia en la faceta objeto. En este paso, se comparan las características de la faceta de referencia presente en la imagen con las correspondientes características teóricas objetivo y, mediante métodos de análisis conocidos en la técnica, se determinan los errores de alineamiento de la faceta objeto. Más concretamente, en este paso del procedimiento, se determinan cambios en la posición, forma, tamaño, etc. de las características determinadas, y a partir de dichos cambios se deducen los errores de alineamiento de la faceta objeto.
En realizaciones preferidas de la presente invención, las características se determinan empleando al menos uno de entre los siguientes métodos: SIFT (Scale Invariant Feature Transform), SURF (Speeded Up Robust Features), o aprendizaje automático. También, pueden utilizarse características sencillas tales como al menos uno de entre líneas, lados, bordes o esquinas de la faceta de referencia. En este último caso, por ejemplo, la comparación podría implicar determinar los cambios en la posición de determinados bordes o esquinas de la faceta de referencia con relación a su posición teórica objetivo.
Como se ha mencionado con anterioridad en este documento, en caso de que la imagen obtenida contenga más de una faceta objeto, este paso se puede realizar paralela o secuencialmente para cada una de dichas facetas objeto.
- Corrección del alineamiento de la faceta objeto
Por último, se corrige el alineamiento de la faceta objeto de manera que se eliminan los errores de alineamiento determinados. Como es generalmente conocido en la técnica, el alineamiento de las facetas de un heliostato incluye fundamentalmente dos operaciones diferenciadas: orientación (normalmente denominado “canteo") y enfoque.
La corrección puede realizarse de manera manual, en cuyo caso personal especializado utiliza medios conocidos para modificar la orientación y el enfoque de la faceta objeto de acuerdo con los parámetros determinados en el paso anterior.
Alternativamente, la corrección puede llevarse a cabo de manera automática. Para ello, el heliostato objeto puede disponer de unos medios motorizados de fijación que conectan la faceta objeto a una estructura posterior de soporte del heliostato objeto, en cuyo caso la corrección se realiza simplemente accionando adecuadamente dichos medios motorizados de fijación. Estos medios motorizados de fijación pueden comprender un cuerpo fijado a la estructura posterior de soporte y un cilindro extraíble cuyo extremo está fijado a la faceta en cuestión. Mediante la disposición de al menos dos de dichos medios motorizados de fijación en lados contiguos de la faceta, es posible modificar el alineamiento de dicha faceta simplemente accionando uno u otro de ellos.
Como se puede apreciar, este procedimiento es mucho más rápido y sencillo que los procedimientos de la técnica anterior. Para llevar a cabo el alineamiento de las facetas objeto, se utiliza el dispositivo de adquisición de imágenes para adquirir una imagen de al menos una faceta objeto desde la correspondiente posición tras la faceta de referencia. Para ello, puede utilizarse un único dispositivo de adquisición de imágenes que se va fijando sucesivamente a las facetas de referencia en cuestión, o bien el propio heliostato de referencia puede disponer de una pluralidad de dispositivos de adquisición de imágenes fijados a las respectivas facetas de referencia de manera permanente. Además, también es posible que la imagen adquirida muestre el reflejo de al menos una faceta de referencia en varias facetas objeto. A continuación, se comparan unas características de la imagen de la faceta de referencia en la reflexión de la faceta objeto con características de la faceta de referencia correspondientes a una imagen teórica donde la faceta objeto está perfectamente orientada. Finalmente, se corrige el alineamiento de la faceta objeto en función del resultado de dicha comparación. El posicionamiento del medio de adquisición de imágenes en los propios heliostatos es mucho más conveniente que en el extremo de la torre del campo solar, lo que permite ganar en tiempo y sencillez.
Además, la invención se extiende igualmente a los programas de ordenador, particularmente los programas de ordenador dispuestos sobre o dentro de una portadora, adaptados para llevar a la práctica el paso descrito anteriormente de comparar unas características de la faceta de referencia en la imagen obtenida con unas características teóricas de la faceta de referencia correspondientes a un alineamiento correcto de la faceta objeto para determinar los errores de alineamiento de la faceta objeto. El programa puede tener la forma de código fuente, código objeto, una fuente intermedia de código y código objeto, por ejemplo, como en forma parcialmente compilada, o en cualquier otra forma adecuada para uso en la puesta en práctica de los procesos según la invención.
El programa puede estar incorporado en un medio de almacenamiento, como por ejemplo, una memoria ROM, una memoria CD ROM o una memoria ROM de semiconductor, o un soporte de grabación magnética, un disco flexible, o un disco duro.
Alternativamente, el programa puede estar incorporado en una portadora. La portadora puede ser cualquier entidad o dispositivo capaz de soportar el programa. Por ejemplo, la portadora puede ser una portadora transmisible, como una señal eléctrica u óptica que podría transportarse a través de cable eléctrico u óptico, por radio o por cualesquiera otros medios. Cuando el programa va incorporado en una señal que puede ser transportada directamente por un cable u otro dispositivo o medio, la portadora puede estar constituida por dicho cable u otro dispositivo o medio. Como variante, la portadora podría ser un circuito integrado en el que va incluido el programa, estando el circuito integrado adaptado para ejecutar, o para ser utilizado en la ejecución de, los procesos correspondientes.
Un segundo aspecto de la presente invención está dirigido a un sistema configurado para llevar a cabo el método descrito anteriormente. Este sistema comprende un heliostato que, además, comprende una pluralidad de dispositivos de adquisición de imágenes fijados a la cara posterior de cada faceta. Cada dispositivo de adquisición de imágenes puede estar fijado a la respectiva faceta mediante un medio de anclaje como el descrito con anterioridad en este documento, y que fundamentalmente comprende un elemento de fijación a la cara posterior de la faceta y un elemento de acoplamiento del dispositivo de adquisición de imágenes. El medio de anclaje puede comprender además una rótula a la que está fijado el dispositivo de adquisición de imágenes.
En una realización particularmente preferida de la invención, el heliostato comprende además unos medios motorizados de fijación que fijan las facetas a la estructura posterior de soporte. Estos medios motorizados de fijación pueden ser similares a los descritos más arriba en este documento. A este respecto, nótese que el mismo heliostato puede comprender tanto los dispositivos de adquisición de imágenes como los medios motorizados de fijación, ya que el mismo heliostato puede funcionar como heliostato de referencia o como heliostato objeto según cuál sea la faceta objeto que se va a alinear.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Fig. 1 muestra de manera esquemática un heliostato objeto y un heliostato de referencia en un campo solar.
Las Figs. 2A-2C muestran respectivamente la imagen de un heliostato de referencia obtenida durante el procedimiento de la invención, la imagen teórica objetivo del heliostato de referencia, y ambas imágenes superpuestas.
La Fig. 3 muestra esquemáticamente el proceso de análisis de imagen del procedimiento de la presente invención.
La Fig. 4 muestra una vista lateral de un heliostato objeto y un heliostato de referencia dotado de un medio de adquisición de imágenes para llevar a cabo el procedimiento de la invención.
La Fig. 5 muestra una vista lateral de un heliostato objeto y un heliostato de referencia dotado de dos medios de adquisición de imágenes para llevar a cabo el procedimiento de la invención.
Las Figs. 6A y 6B muestran respectivamente una vista lateral de un heliostato objeto y un heliostato de referencia dotado de un medio de adquisición de imágenes para llevar a cabo el procedimiento de la invención, y una representación de la imagen adquirida por el medio de adquisición de imágenes.
Las Figs. 7 A y 7B muestran respectivamente una vista lateral y posterior de una faceta de un heliostato objeto dotado de medios motorizados de fijación.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
La Fig. 1 muestra dos heliostatos (HR, HO) dispuestos en hileras contiguas de un campo solar. El heliostato de referencia (HR) está ubicado en una hilera más cercana a la torre del campo solar, mientras que el heliostato objeto (HO) pertenece a una hilera subsiguiente situada detrás del heliostato de referencia (HR), es decir, más lejos de la torre del campo solar que el heliostato de referencia (HR). En otras palabras, el heliostato objeto (HO) está situado detrás del heliostato de referencia (HR). Cada uno de los heliostatos (HR, HO) está formado por una estructura posterior de soporte (EPS) a la que están fijadas una pluralidad de facetas (F), que en este ejemplo concreto son cuadradas. Cada faceta (F) tiene una cara frontal reflectante orientada hacia el lugar en que se encuentra la torre del campo solar y una cara posterior no reflectante orientada en sentido opuesto al lugar donde se encuentra la torre del campo solar.
Se va a describir aquí de manera simplificada el método de la presente invención aplicado al alineamiento de una faceta objeto (FO) ubicada en una esquina del heliostato objeto (HO). Para ello, un dispositivo de adquisición de imágenes (DAI) está fijado a la cara posterior de una faceta de referencia (FR) ubicada en una posición del heliostato de referencia (HR) equivalente a aquella que ocupa la faceta objeto (FO) en el heliostato objeto (HO). Como se ha descrito con anterioridad en este documento, para ello puede utilizarse un único dispositivo de adquisición de imágenes (DAI) que se fija sucesivamente a una faceta de referencia (FR) correspondiente a cada faceta objeto (FO) que se va a alinear. Esta situación se muestra en la Fig. 4, donde se utiliza un medio de anclaje (MA) para fijar la cámara a la faceta de referencia (FR). Alternativamente, como se aprecia en la Fig. 5, el propio heliostato de referencia (HR) puede disponer de un dispositivo de adquisición de imágenes (DAI) fijado a la cara posterior de cada faceta (F).
En cualquiera de los casos, el medio de anclaje (MA) puede comprender un elemento de fijación a la faceta de referencia (FR) y un elemento de acoplamiento del dispositivo de adquisición de imágenes (DAI). El medio de anclaje (MA) mostrado en este ejemplo dispone además de una rótula sobre la cual está dispuesto el elemento de acoplamiento del dispositivo de adquisición de imágenes (DAI), lo que facilita la orientación de dicho dispositivo de adquisición de imágenes (DAI) en la dirección deseada.
Como dispositivo de adquisición de imágenes (DAI) se utiliza aquí una cámara digital de alta resolución. Esta cámara digital (DAI) está conectada a un medio de procesamiento, tal como un ordenador, tableta, teléfono inteligente, o en general cualquier dispositivo dotado de una potencia de procesamiento suficiente como para llevar a cabo el procedimiento de análisis de las imágenes obtenidas que se describe en este documento.
Los heliostatos objeto (HO) y de referencia (HR) se orientan de manera que la cara frontal del heliostato objeto (HO) está enfrentada a la cara posterior del heliostato de referencia (HR). Es decir, ambos heliostatos (HO, HR) se disponen de manera que son paralelos, lo que para el caso más común correspondiente a un terreno esencialmente llano implica disponerlos en su posición completamente vertical. En esta posición, la cara frontal de la faceta objeto (FO) está orientada en dirección a la cara posterior de la faceta de referencia (FR), de manera que un observador situado en la cara posterior de la faceta de referencia (FR) puede verse a sí mismo reflejado en la cara frontal reflectante de la faceta objeto (FO). En esta posición, se orienta la cámara (DAI) fijada a la faceta de referencia (FR) en dirección a la faceta objeto (FO). Así, cuando se adquiere una imagen (I), ésta muestra la propia cámara (DAI) y la faceta de referencia (FR) reflejadas en la cara frontal reflectante de la faceta objeto (FO).
Como se ha mencionado con anterioridad en este documento, la parte relativa al análisis de imagen del procedimiento de la presente invención puede realizarse de manera individual para cada faceta objeto (FO) o bien por grupos de facetas objeto (FO). El primer caso corresponde a una configuración en que la imagen (I) adquirida por la cámara (DAI) contiene únicamente una faceta objeto (FO) completa, como se muestra en las Figs. 2A-2C. El segundo caso corresponde a una configuración en que la imagen (I) adquirida por la cámara (DAI) abarca más de una faceta objeto (FO) completa. Esta situación se muestra en las Figs. 6A y 6B. Más concretamente, la Fig. 6B muestra cómo la imagen (I) abarca cuatro facetas objeto (FOi, FO2, FO3, FO4) contiguas del heliostato objeto (HO). De este modo, el alineamiento se consigue de una manera aún más rápida y eficiente.
La Fig. 3 muestra de manera esquemática los principales pasos del proceso de análisis de las imágenes del procedimiento de la presente invención. El proceso de análisis de imagen se divide en dos fases claramente diferenciadas. Por un lado el cálculo del modelo óptico, que proporciona información acerca de lo que debería ver la cámara (DAI) de un modo teórico y, por otro lado, el procesamiento de visión, donde se parte de la imagen capturada por la cámara (DAI) para detectar lo que realmente se refleja en la faceta objeto (FO).
El procesamiento por visión comienza en el paso 1 de la Fig. 3 con la adquisición de imágenes (I) de alta resolución por medio de la cámara (DAI) donde aparezca claramente la faceta de referencia (FR) reflejada en la cara frontal de la faceta objeto (FO). Tras la adquisición, en el paso 2 se lleva a cabo un preprocesamiento consistente en un filtrado para mejorar la calidad de las imágenes (I), eliminando ruido y otros artefactos que puedan aparecer y que interfieran con los cálculos posteriores. A continuación, en el paso 3 se realiza la extracción de características de la imagen (I) con el fin de encontrar patrones y aspectos distintivos en el reflejo de la faceta de referencia (FR) que permitirán establecer una comparación con la información obtenida a partir del modelo óptico. Estas características pueden ir desde las más simples, como por ejemplo líneas, bordes, esquinas, SIFT, SURF, etc., hasta características más complejas proporcionadas por técnicas basadas en aprendizaje automático. El proceso de extracción de características busca definir algún elemento de la faceta de referencia (FR) donde está anclada la cámara (DAI) que se repite de manera consistente en el reflejo de la faceta objeto (FO).
Por otra parte, en paralelo se requiere la realización de un paso 4 consistente en una calibración inicial donde se determinan unos parámetros de entrada para el cálculo del modelo óptico (posición y orientación de la cámara, focal de la lente y distorsiones radial y tangencial). Este proceso es necesario realizarlo una única vez cuando se ancla la cámara (DAI) en una posición, y será necesario repetirlo si la cámara (DAI) cambia de posición. Con la información de calibración obtenida, en el paso 5 se procede al cálculo del modelo óptico, que proporciona una representación ideal de lo que la cámara (DAI) debe ver cuando la faceta objeto (FO) está correctamente alineada. El modelo óptico comprende una imagen teórica (IT) de la faceta de referencia (FR) vista en reflexión en la faceta objeto (FO). Una vez obtenido el modelo óptico, en el paso 6 se extraen de la imagen teórica (IT) las características descritas anteriormente para permitir la comparación entre la imagen teórica (IT) y la imagen (I) real captada en el paso 1.
Finalmente, se realiza la comparación entre las características de la imagen real (I) y de la imagen teórica (IT), y en función de ellas se determinan los errores de alineamiento de la faceta objeto (FO), concretamente el error de canteo y el error de enfoque. Las Figs. 2a-2C muestran respectivamente la imagen (I) real adquirida, la imagen teórica (IT) calculada, así como ambas superpuestas una a otra. Nótese que, por motivos de simplicidad, en estas imágenes se ha eliminado la propia cámara (DAI). Como se puede apreciar en la Fig. 2C, la faceta de referencia (FR') que aparece en la imagen (I) real está desplazada hacia abajo y hacia la izquierda con relación a la faceta de referencia (FR‘) que aparece en la imagen teórica (IT). Una selección adecuada de las características de ambas imágenes (I, IT) y un análisis de las diferencias entre ambas características permite determinar el error de alineamiento de la faceta objeto (FO)
La parte de análisis de imagen del procedimiento de la invención, es decir, esencialmente los pasos descritos en la Fig. 3, se realiza normalmente de manera automática a través de un medio de procesamiento tal como un ordenador, tableta, teléfono inteligente, o en general cualquier dispositivo con una capacidad de procesamiento suficiente. Este medio de procesamiento estará conectado a la cámara (DAI) para recibir los datos de las imágenes (I), preferentemente mediante una conexión inalámbrica.
Por último, una vez determinados los errores de alineamiento de la faceta objeto (FO), se procede a su corrección. Para ello, normalmente unos operarios deberán actuar sobre determinados elementos conocidos para ajustar el canteo y enfoque de la faceta objeto (FO).
Alternativamente, es posible realizar el ajuste de manera automática si el heliostato objeto (HO) dispone de medios para ello. Las Figs. 7A y 7B muestran sendas vistas de un heliostato objeto (HO) donde cada faceta objeto (FO) está fijada a la estructura posterior de soporte (EPS) por medio de una rótula (R) y unos medios motorizados de fijación (MMF). Más concretamente, la rótula (R) conecta el centro de la faceta objeto (FO) a la estructura posterior de soporte (EPS), de manera que la faceta objeto (FO) puede bascular a su alrededor para modificar su orientación. Por otra parte, dos medios motorizados de fijación (MMF) que comprenden sendos cilindros extraíbles conectan dos lados contiguos de la faceta objeto (FO) a la estructura posterior de soporte (EPS). Así, cuando se acciona uno de los medios motorizados de fijación (MMF), se provoca la inclinación de la faceta objeto (FO) alrededor de un primer eje que pasa por la rótula (R), y cuando se acciona el otro de los medios motorizados de fijación (MMR), la faceta objeto (FO) se inclina alrededor de un segundo eje perpendicular al primero y que también pasa por la rótula (R). De ese modo, operando adecuadamente el primer y segundo medios motorizados de fijación (MMF) en función del error obtenido mediante el proceso anterior, es posible orientar la faceta objeto (FO) en la dirección deseada.

Claims

REIVINDICACIONES
1. Método para alinear las facetas de un heliostato de un campo solar, donde el campo solar comprende al menos un heliostato de referencia (HR) y un heliostato objeto (HO), donde el heliostato objeto (HO) está situado detrás del heliostato de referencia (HR), caracterizado por que comprende los siguientes pasos:
- orientar el heliostato objeto (HO) y el heliostato de referencia (HR) de manera que una superficie frontal reflectante del heliostato objeto (HO) está enfrentada a una superficie posterior no reflectante del heliostato de referencia (HR);
- obtener, mediante un dispositivo de adquisición de imágenes (DAI) fijado a una cara posterior de una faceta de referencia (FR) del heliostato de referencia (HR) y orientado hacia el heliostato objeto (HO), una imagen (I) que contiene al menos dicha faceta de referencia (FR) del heliostato de referencia (HR) reflejada en al menos una faceta objeto (FO) del heliostato objeto (HO);
- comparar unas características de la faceta de referencia (FR) en la imagen (I) obtenida con unas características teóricas de la faceta de referencia (FR) correspondientes a un alineamiento correcto de la faceta objeto (FO) para determinar los errores de alineamiento de la faceta objeto (FO); y
- corregir el alineamiento de la faceta objeto (FO) de manera que se eliminan los errores determinados.
2. Método de acuerdo con la reivindicación 1, donde la imagen (I) obtenida mediante el dispositivo de adquisición de imágenes (DAI) contiene varias facetas objeto (FO) en las que se ve reflejada al menos una faceta de referencia (FR).
3. Método de acuerdo con cualquiera de las reivindicaciones anteriores, donde las características se determinan empleando al menos uno de entre los siguientes métodos: SIFT (Scale Invariant Feature Transform), SURF (Speeded Up Robust Features), o aprendizaje automático.
4. Método de acuerdo con cualquiera de las reivindicaciones anteriores, donde las características comprenden al menos uno de entre líneas, bordes o esquinas de la faceta de referencia (FR).
5. Método de acuerdo con cualquiera de las reivindicaciones anteriores, donde el paso de corregir el alineamiento de la faceta objeto (FO) se realiza de manera manual.
6. Método de acuerdo con cualquiera de las reivindicaciones 1-4, donde el paso de corregir el alineamiento de la faceta objeto (FO) se realiza de manera automática.
7. Método de acuerdo con la reivindicación 6, donde la corrección se realiza accionando unos medios motorizados de fijación (MMF) que conectan la faceta objeto (FO) a una estructura posterior de soporte (EPS) del heliostato objeto (HO).
8. Programa de ordenador que comprende instrucciones de programa para hacer que un ordenador lleve a la práctica el paso descrito en cualquiera de las reivindicaciones 1 a 7 de comparar unas características de la faceta de referencia (FR) en la imagen obtenida con unas características objetivo de la faceta de referencia (FR) correspondientes a un alineamiento correcto de la faceta objeto (FO) para determinar los errores de alineamiento de la faceta objeto (FO).
9. Programa de ordenador según la reivindicación 8, incorporado en medios de almacenamiento.
10. Programa de ordenador según la reivindicación 8, soportado en una señal portadora.
11. Sistema configurado para llevar a cabo el método de cualquiera de las reivindicaciones 1-7, caracterizado por que comprende un heliostato (HR) que además comprende una pluralidad de dispositivos de adquisición de imágenes (DAI) fijados a la cara posterior de cada faceta (F).
12. Sistema de acuerdo con la reivindicación 11 , donde cada dispositivo de adquisición de imágenes (DAI) está fijado a la respectiva faceta (F) mediante un medio de anclaje (MA) que comprende un elemento de fijación a la cara posterior de la faceta (F) y un elemento de acoplamiento del dispositivo de adquisición de imágenes (DAI).
13. Sistema de acuerdo con la reivindicación 12, donde el medio de anclaje (MA) comprende además una rótula a la que está fijado el dispositivo de adquisición de imágenes (DAI).
14. Sistema de acuerdo con cualquiera de las reivindicaciones anteriores, donde el heliostato (HO) además comprende unos medios motorizados de fijación (MMF) que fijan las facetas (F) a la estructura posterior de soporte (EPS).
PCT/ES2021/070510 2020-07-14 2021-07-13 Procedimiento y sistema para alinear las facetas de un heliostato de un campo solar WO2022013468A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202030725 2020-07-14
ES202030725A ES2891178B2 (es) 2020-07-14 2020-07-14 Procedimiento y sistema para alinear las facetas de un heliostato de un campo solar

Publications (1)

Publication Number Publication Date
WO2022013468A1 true WO2022013468A1 (es) 2022-01-20

Family

ID=79555096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070510 WO2022013468A1 (es) 2020-07-14 2021-07-13 Procedimiento y sistema para alinear las facetas de un heliostato de un campo solar

Country Status (2)

Country Link
ES (1) ES2891178B2 (es)
WO (1) WO2022013468A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153903A (en) * 1979-05-18 1980-12-01 Agency Of Ind Science & Technol Angle adjusting method for plane mirror in reflecting mirror for heliostat
GB2329976A (en) * 1997-10-04 1999-04-07 Univ Technology Malaysia Heliostat with an array of individually rotatable mirrors
US8294886B1 (en) * 2006-06-28 2012-10-23 Sandia Corporation Alignment method for solar collector arrays
US8582092B1 (en) * 2006-06-28 2013-11-12 Sandia Corporation Alignment and focus of mirrored facets of a heliostat
US20180299264A1 (en) * 2015-06-19 2018-10-18 Solarreserve Technology, Llc Heliostat characterization using starlight

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153903A (en) * 1979-05-18 1980-12-01 Agency Of Ind Science & Technol Angle adjusting method for plane mirror in reflecting mirror for heliostat
GB2329976A (en) * 1997-10-04 1999-04-07 Univ Technology Malaysia Heliostat with an array of individually rotatable mirrors
US8294886B1 (en) * 2006-06-28 2012-10-23 Sandia Corporation Alignment method for solar collector arrays
US8582092B1 (en) * 2006-06-28 2013-11-12 Sandia Corporation Alignment and focus of mirrored facets of a heliostat
US20180299264A1 (en) * 2015-06-19 2018-10-18 Solarreserve Technology, Llc Heliostat characterization using starlight

Also Published As

Publication number Publication date
ES2891178A1 (es) 2022-01-26
ES2891178B2 (es) 2022-05-27

Similar Documents

Publication Publication Date Title
US10830588B2 (en) Surveying instrument for scanning an object and image acquistion of the object
US8651100B2 (en) Method for controlling the alignment of a heliostat with respect to a receiver, heliostat device and solar power plant
US9523759B2 (en) Closed loop tracking system using signal beam
CN107678448B (zh) 一种基于天体图像的追日校正系统及其方法
US20100031952A1 (en) Camera-based heliostat calibration with artificial light sources
WO2013017099A1 (zh) 一种定日镜校正设备及校正方法
WO2013017097A1 (zh) 一种定日镜校正设备及校正方法
CN108139115B (zh) 用于定日镜的校准方法
US20150226461A1 (en) Solar energy collection utilizing heliostats
WO2013083053A1 (zh) 太阳能发电站的定日镜校准方法及校准系统
ES2617569B2 (es) Dispositivo de calibración de helióstatos y método de calibración de helióstatos
EP1815209A1 (en) Improved measurement system
SA517381838B1 (ar) جهاز وطريقة لتتبع الطاقة الشمسية المركزة
JP2016056965A (ja) ヘリオスタット、太陽光集光システム、および、太陽光集光システムの制御方法
ES2702023T3 (es) Procedimiento y dispositivo de caracterización en tres dimensiones de una superficie de un objeto
ES2891178B2 (es) Procedimiento y sistema para alinear las facetas de un heliostato de un campo solar
ES2671847A2 (es) Calibración de heliostatos de una planta de energía solar termoeléctrica
GB2329976A (en) Heliostat with an array of individually rotatable mirrors
WO2013055989A2 (en) A focal display panel for visual optimization of solar collection
WO2012025648A1 (es) Método y sistema para compensar aberraciones ópticas en un telescopio
US8294886B1 (en) Alignment method for solar collector arrays
CN112631339B (zh) 一种移动式定日镜二次反射指向修正系统及方法
WO2020097744A1 (es) Sistema de auto colimación para un telescopio; telescopio reflector newtoniano; y método para colimar un telescopio
ES2945632B2 (es) Sistema de auscultacion de aerogeneradores de parques eolicos en operacion y procedimiento para dicho sistema
ES2951153T3 (es) Disposición de sensores y rastreo optimizado para sistemas CSP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843257

Country of ref document: EP

Kind code of ref document: A1