WO2013017097A1 - 一种定日镜校正设备及校正方法 - Google Patents

一种定日镜校正设备及校正方法 Download PDF

Info

Publication number
WO2013017097A1
WO2013017097A1 PCT/CN2012/079627 CN2012079627W WO2013017097A1 WO 2013017097 A1 WO2013017097 A1 WO 2013017097A1 CN 2012079627 W CN2012079627 W CN 2012079627W WO 2013017097 A1 WO2013017097 A1 WO 2013017097A1
Authority
WO
WIPO (PCT)
Prior art keywords
heliostat
laser
bracket
spatial position
disposed
Prior art date
Application number
PCT/CN2012/079627
Other languages
English (en)
French (fr)
Inventor
孙海翔
朱亮
Original Assignee
Sun Haixiang
Zhu Liang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Haixiang, Zhu Liang filed Critical Sun Haixiang
Publication of WO2013017097A1 publication Critical patent/WO2013017097A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • F24S2050/25Calibration means; Methods for initial positioning of solar concentrators or solar receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a calibration apparatus and method for a solar tracking calibration device, and more particularly to a movable heliostat correction device capable of correcting a heliostat in real time.
  • Heliostats are optical devices used to reflect the light of the sun or other celestial bodies to a fixed direction. They reflect and concentrate sunlight onto a target through a tracking mechanism.
  • the existing heliostats include mirrors, support frames, and columns. , transmission and tracking data processing systems and other five major parts.
  • the accuracy of the tracking mechanism may be reduced due to various factors, resulting in the reflected light of sunlight not being reflected to the target position, which requires the precision of the heliostat. Degree calibration.
  • the calibration process for heliostats is essentially the process of obtaining the center of rotation of the heliostat.
  • Azimuth-pitch tracking is the most common way in the tracking and reflection of heliostats.
  • the azimuth axis of the heliostat (vertical axis) and the pitch rotation axis (horizontal axis) are perpendicular to each other, and the rotation of the two axes allows the heliostat to complete a 360-degree rotation process.
  • FIG. 102077035 A discloses a heliostat correction method and a correction device thereof, and provides a mirror and central reflection capable of heliostats.
  • the adjustment method and adjustment device for adjusting on the spot while performing the measurement while the mirror surface of the device is facing.
  • the central reflector has a central reflector and the lower portion has a heat receiving portion, and a plurality of heliostats are disposed around the central reflector, and the upper focus of the central reflector and the heliostat are connected to the optical path.
  • An irradiation device that irradiates the central reflector and the heliostat with laser light, and a light receiving device that detects the emitted laser light reflected from the heliostat is arranged in the vicinity of the laser irradiation device, and the correction device is provided with the irradiation Device and light receiving device rotate and tilt The adjustment device of the elevation.
  • the pitch angle and/or the rotation angle of the heliostat are adjusted such that the reflected light of the laser light irradiated to the heliostat forms the same axis as the laser beam irradiated to the upper focus of the central reflector.
  • the above heliostat correction equipment has the following problems during use:
  • the light receiving device receives the laser light reflected by the heliostat, since the light receiving area is small, the beam diameter of the laser reflected light is also small, so that it is difficult for the light receiving device to capture the reflected laser light, so that the correction process There is a great difficulty; in addition, when determining whether the laser is irradiated onto the central reflector, there is a certain error by human observation and visual judgment.
  • each set of heliostat calibration equipment can only calibrate one heliostat at a time, although the laser can be removed from the bracket and then installed to other positions to calibrate other heliostats, but The operation process is complicated. When a large number of heliostats need to be calibrated, this cumbersome process takes a long time and the calibration efficiency is low.
  • the existing Chinese patent document CN 101903818A discloses a mounting posture measuring device, which provides an accurate and simple installation adjustment in the operation of fitting a mirror of a heliostat to a rotating conical surface.
  • the method of adjusting the mounting posture of the lower plane mirror and the mounting posture measuring device are measured.
  • the facet mirror is provided such that the laser reflected light of the facet mirror reaches a virtual passing point of the laser spot measuring unit.
  • the laser emitting device in the above technical solution is mounted on a supporting member, and the supporting member is provided with a movable mechanism, and the adjustment of the mounting angle of the facet mirror is realized by the cooperation of the laser emitting device and the laser receiving device.
  • the mounting posture measuring device in the above solution is applied to the mirror in which the heliostat is mounted. After the focus position of the heliostat is determined, the direction of the incident laser light is known, and then the reflected laser light is reflected to the focus of the heliostat. It must pass through the imaginary point on the laser recording part. When performing this process, it must be ensured that the relative position between the supporting member and the heliostat is a certain value, when the heliostat rotates. When the rotation or the error occurs during the rotation, the focus position may be deviated, the angle between the incident laser and the mirror may change, and the imaginary point through which the laser is reflected may also change. The above process needs to be repeated.
  • the above device cannot realize real-time correction of the rotating shaft of the heliostat; in addition, in the process of measuring the mounting posture, it is necessary to continuously try to reflect whether the laser passes through the artifact point to determine whether the position of the mounting is accurate or not. The process is cumbersome.
  • the correcting device directly receives the reflected laser light having a small diameter by using a receiving device having a small area, and then processes the received reflected laser light, and the reflected laser light is not easily collected, and the heliostat cannot be realized. Correction.
  • the present invention provides a heliostat correction apparatus including a cradle, a laser correction system, and an image processing system.
  • the laser correction system is disposed on the bracket by a positioning device, and includes:
  • At least one laser generator for emitting laser light to the mirror surface of the heliostat, the laser is reflected by the mirror of the heliostat to form a reflected spot on the calibration device;
  • At least one image collector an area setting facing the reflected spot for collecting an image of the reflected spot;
  • At least one positioning unit configured to determine a reflected spot and spatial position information of the laser generator;
  • the image processing system receives the reflected spot collected by the image collector and determines spatial position information of the mirror surface of the heliostat in combination with the spatial position information of the laser generator and the reflected spot.
  • the image collector is disposed on the bracket by an elbow support member.
  • the positioning device includes a slide rail disposed on the bracket, and the laser generator and the elbow support member are provided with a slider that is slidably engaged with the slide rail.
  • the positioning device includes a 360-degree rotating rotating mechanism disposed on the bracket, and the laser generator and the elbow supporting member are disposed on the rotating mechanism.
  • Each of the positioning units includes at least three positioning modules, and the positioning modules are disposed on the bracket according to the principle that they are not on the same straight line.
  • Each of the positioning units includes at least two positioning modules and at least one tilt angle sensing module disposed on the bracket.
  • Each of the positioning units includes at least one tilt angle sensing module disposed on the bracket and at least two positioning modules disposed on the laser generator and the image collector.
  • the positioning module is a DGPS (Differential Global Positioning System) positioning module.
  • DGPS Different Global Positioning System
  • the positioning module is a laser tracker or a laser scanner.
  • the laser correction system also includes a light receiving screen for receiving a reflected spot, the light receiving screen being disposed at a position adapted to receive the reflected spot.
  • the laser calibration system further includes an optical path measurement system, the optical path measurement system comprising: a scattered light receiver: receiving laser light scattered at the reflected light spot, and the scattered light receiver is provided with a second positioning module.
  • System clock Set on the laser generator and on the scattered light receiver to determine the time the laser is emitted and the time when the scattered light is received.
  • the optical path measurement system further includes a condensing mirror for scattering the reflected spot The light is concentrated into a beam of laser light and received by the scattered light receiver.
  • the image collector is a camera.
  • the bottom of the bracket is provided with a moving part adapted to move.
  • the present invention also provides a method for obtaining an actual center of rotation of a heliostat, comprising the following steps: Step a, setting a bracket above the heliostat, the laser correction system being disposed on the bracket by the positioning device, and adjusting a laser correction system, wherein the laser light emitted by the laser generator is reflected by the heliostat to form a reflected spot on the heliostat correction device;
  • An area of the image collector facing the reflected spot is disposed on the bracket, and image information for collecting the reflected spot is sent to the image processing system;
  • the positioning unit is configured to determine a reflected spot and spatial position information of the laser generator, and then send the information to the image processing system;
  • Step b The image processing system processes the image of the reflected spot to determine the spatial position information of the reflected spot in combination with the spatial position information obtained by the positioning unit;
  • Step c The heliostat completes a set of rotations, and the actual rotational center of the heliostat is determined by the spatial position of the plurality of heliostat mirrors.
  • step a The image collector described in step a is disposed on the bracket by an elbow-shaped support member facing an area where the spot is formed.
  • the positioning device includes a slide rail disposed on the bracket, and the laser generator and the elbow support member are provided with a slider that cooperates with the slide rail, and is changed by sliding after the step is completed.
  • the position of the laser generator and the image collector acquires the center of rotation of the other heliostats.
  • the positioning device includes a 360-degree rotating rotating mechanism disposed on the bracket, a light generator and the elbow support member are disposed on the rotating mechanism, and after the step is completed, the rotating mechanism is used to control the laser generator and the elbow support member to be turned to different angles to obtain other The center of rotation of the heliostat.
  • step a determining a spatial position of the bracket by using at least three positioning modules disposed on the bracket;
  • the spatial position of the image collector is determined by the spatial position of the bracket in conjunction with the relative position of the image collector to the bracket.
  • step a determining a spatial position of the bracket by using at least two positioning modules disposed on the bracket and at least one tilt angle sensing module;
  • the spatial position of the image collector is determined by the spatial position of the bracket in conjunction with the relative position of the image collector to the bracket.
  • the positioning unit includes at least one tilt angle sensing module disposed on the bracket and at least two positioning modules disposed on the laser generator and the image collector;
  • the spatial position of the reflected spot is obtained by using the spatial position information of the image collector in combination with the spatial position information of the bracket.
  • the positioning module is a DGPS (Differential Global Positioning System) positioning module.
  • DGPS Different Global Positioning System
  • the positioning module is the laser tracking device or the laser scanner.
  • the laser correction system further includes a light receiving screen for receiving a reflected light spot, the light receiving screen is disposed at a position suitable for receiving a reflected light spot, and the laser light emitted by the laser generator is subjected to a heliostat A specular reflection forms a reflected spot on the light receiving screen.
  • step a the laser is scattered by laser at a position where the reflected spot is formed
  • the optical path calculation module analyzes the optical path of the laser according to the wavelength of the laser and the time of emitting the laser and the time of receiving the scattered light;
  • step b the image processing system determines the position of the incident laser on the mirror surface of the heliostat in combination with the laser path and the spatial position of each component in the laser correction system.
  • step b the laser light scattered at the reflected spot is concentrated by a condensing mirror into a laser beam and then irradiated to the scattered light receiver.
  • the device of the present invention causes the laser beam emitted from the laser generator to be reflected by the heliostat to form a reflected spot on the heliostat correction device or on the light receiving screen, and then the image collector is used to collect the image of the reflected spot.
  • the image collector directly faces the spot setting and directly collects the reflected spot during the acquisition process. It is more convenient than the laser that collects the reflection directly with the image collector and can ensure the accuracy of capturing the spot.
  • the apparatus uses at least one positioning unit to determine the spatial position of the bracket, the spatial position of the laser correction system, and the spatial position of the image collector, so that the position of the laser emission and the position of the reflected spot can be determined at any time. Regardless of the angle of the heliostat and the position of the bracket relative to the heliostat, the determination of the axis of rotation of the heliostat can be achieved at any time to achieve real-time correction of the heliostat.
  • FIG. 1 is a schematic structural view of a heliostat correction device according to the present invention.
  • FIG. 2 is a schematic structural view of a heliostat correction device provided with a light receiving screen according to the present invention
  • Figure 3 is a schematic view of a laser light path in the present invention.
  • FIG. 4 is a schematic diagram of an optical path used for image processing when determining a spatial position of a mirror surface of a heliostat
  • FIG. 5 is a schematic diagram of an optical path used for optical path calculation when determining a spatial position of a mirror surface of a heliostat.
  • the embodiment provides a heliostat correction apparatus including a stand, a laser correction system, and an image processing system.
  • the laser correction system is disposed on the bracket by a positioning device, and includes: at least one laser generator: configured to emit a laser to a mirror surface of the heliostat, and the laser forms a reflection spot on the calibration device after specular reflection of the heliostat
  • At least one image collector an area for forming a reflected spot for collecting an image of the reflected spot
  • at least one positioning unit for determining a reflected spot and spatial position information of the laser generator
  • the image processing system Receiving a reflected spot collected by the image collector and determining spatial position information of the mirror surface of the heliostat in combination with spatial position information of the laser generator and the reflected spot.
  • the invention also discloses a method for obtaining the actual rotation center of the heliostat, comprising the following steps: Step a, setting a bracket above the heliostat, the laser correction system is arranged on the bracket by the positioning device, and adjusting a laser correction system, wherein the laser light emitted by the laser generator is reflected by the heliostat to form a reflected spot on the heliostat correction device;
  • the image collector is disposed on the bracket, and the image information of the reflected spot is sent to the image processing system.
  • the image collector is disposed on the elliptical support member. On the support;
  • the positioning unit is configured to determine a reflected spot and spatial position information of the laser generator, and then send the information to the image processing system;
  • Step b The image processing system processes the image of the reflected spot to determine the spatial position information of the reflected spot in combination with the spatial position information obtained by the positioning unit;
  • the vector AA1, BB1 is known, thereby obtaining the spatial position of Al, Bl, and the spatial position of CI is determined by the same, thereby determining the actual spatial position of the heliostat plane.
  • Step c the heliostat completes a set of rotations, and determines the actual rotation axis of the heliostats by using the spatial positions of the plurality of heliostat mirrors;
  • the heliostat is controlled to complete a set of rotations in the pitch direction, and the mirror space position information of the at least one angle after the rotation is obtained by using the step b; the interface of the mirror space position information of the at least two different elevation angles is selected as The actual pitch rotation axis of the heliostat;
  • the actual mirror rotation center has a certain distance from the actual pitch rotation axis and the actual positioning rotation axis, and the mirror surface rotation obtained by the method is obtained.
  • the center is the intersection of the projections of the two actual axes of rotation on the mirror surface.
  • the positioning device includes a slide rail disposed on the bracket, and the laser generator and the elbow support member are provided with a sliding fit with the slide rail. Slider.
  • the position of the laser generator and the image collector is changed by sliding to correct the other heliostats.
  • each of the positioning units includes at least three positioning modules, and the positioning modules are disposed on the bracket according to the principle that they are not on the same straight line.
  • the at least three positioning modules can determine the position of at least three points of the bracket, and the three points can determine a plane, so that the spatial position of the bracket is determined further, and the laser generator and the The relative positional relationship between the image collector and the bracket is known to determine the spatial position of the laser generator and the image collector and the reflected spot.
  • the positioning module is a DGPS (Differential Global Positioning System) positioning module, and other positioning modules having a positioning function may also be selected.
  • DGPS Different Global Positioning System
  • DGPS is the abbreviation of English Difference Global Positioning System, which is a differential global positioning system.
  • the method is to install a monitoring receiver at a precise known position and calculate the distance error of each GPS satellite it can track. This difference is usually called PRC (pseudorange correction value), and this data is transmitted to the user receiver for error correction, thereby improving the positioning accuracy.
  • PRC range correction value
  • DGPS is an effective means to improve the accuracy of GPS positioning, and can achieve Class III and above accuracy. Therefore, in determining the actual center of rotation of the heliostat, the spatial position information of each component in the laser correction system is determined by the DGPS positioning module, and more accurate results can be obtained.
  • the positioning device includes a 360-degree rotating rotating mechanism disposed on the bracket, and the laser generator and the elbow supporting member are disposed on the rotating machine. After the correction of one heliostat is completed, the laser generator and the elbow support member are controlled to rotate to different angles by the rotating mechanism to realize correction of other heliostats.
  • each of the positioning units includes at least two positioning modules and at least one tilt angle sensing module disposed on the bracket;
  • the spatial position of the bracket can be determined by the tilt angle of the bracket combined with the position of the two points of the bracket, and the relative positional relationship between the laser generator and the image collector and the bracket is known, thereby determining The spatial position of the laser generator and the image collector and the reflected spot.
  • each of the positioning units includes at least one tilt angle sensing module disposed on the bracket, and at least two positioning modules disposed on the laser generator and the image collector. Determining a spatial position of each component in the laser correction system by using at least two positioning modules disposed on the laser generator and the image collector;
  • the positioning module is a laser tracker or a laser scanner, and other positioning modules such as a DGPS positioning module may also be selected.
  • the laser correction system further includes a light receiving screen for receiving a reflected light spot, and the light receiving screen is disposed to be adapted to receive the reflected light spot.
  • a laser beam emitted by the laser generator is specularly reflected by the heliostat to form a reflected spot on the light receiving screen, and the image collector collects at least a reflected spot on the light receiving screen.
  • the image collector selects a camera, and the camera is disposed facing the light receiving screen through an elbow supporting member for collecting a reflected spot.
  • the position of the laser on the heliostat is obtained by the method of spot image processing.
  • the difference between the embodiment and the above embodiment is that the optical path calculation method is used in the embodiment.
  • the laser calibration system further includes an optical path measurement system, and the optical path measurement system includes:
  • a scattered light receiver receiving a laser light scattered at a reflected light spot, wherein the scattered light receiver is provided with a second positioning module;
  • the optical path measuring system further includes a condensing mirror for concentrating the laser light scattered at the reflected spot into a laser beam and receiving it by the scattered light receiver.
  • System clock Set on the laser generator and on the scattered light receiver to determine the time the laser is emitted and the time when the scattered light is received.
  • the laser is scattered by laser at a position where the reflected spot is formed;
  • the laser light scattered at the reflected spot is concentrated by a condensing mirror into a laser beam and then irradiated to the scattered light receiver;
  • the scattered light receiver provided with the second positioning device receives the laser light scattered at the reflected spot;
  • the system clock records the a time when the laser generator emits the laser light and a time when the scattered light receiver receives the scattered light;
  • the optical path calculation module analyzes the optical path of the laser according to the wavelength of the laser light and the time of emitting the laser light and the time of receiving the scattered light;
  • FIG. 5 it is a schematic diagram of the optical path in the embodiment
  • AA3 X QB1 Vector AA1, BBl is known, thus obtaining the spatial position of Al, Bl, and the spatial position of C1 is the same, thereby determining the actual spatial position of the heliostat plane.
  • the present embodiment is based on any of the above embodiments, wherein the bottom of the bracket is provided with a moving member adapted to move. After the above steps are completed, the correction device is moved to the top of the other heliostats by using the moving parts at the bottom of the bracket for correction, thereby improving the work efficiency of the correction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种定日镜校正设备,包括支架(1),在支架(1)上配有激光校准系统,以及在支架(1)底部设置可以移动的移动部件(5);当支架(1)设置在定日镜(2)或定日镜组上方时,可以对定日镜(2)镜面发射激光束,经定日镜(2)反射后形成光斑,光斑经过图像处理,可以得到激光在定日镜(2)镜面上的入射点,进而获得镜面的准确空间位置,通过获得多个镜面空间位置获得定日镜(2)的实际旋转中心。定日镜校正设备通过图像采集器(4)采集反射光斑准确率高,而且在校正大量定日镜(2)的过程中具有较高的效率。一种获得定日镜(2)实际旋转中心的方法使用了定日镜校正设备。

Description

一种定日镜校正设备及校正方法 技术领域
本发明涉及对太阳能跟踪定标装置的校准设备及方法, 具体涉及一种可移 动的能够实时对定日镜进行校正的定日镜校正设备。
背景技术
定日镜是用来将太阳或其他天体的光线反射到固定方向的光学装置, 它通 过跟踪机构将太阳光反射并聚集到某一目标, 现有的定日镜包括反射镜、 支撑 框架、 立柱、 传动和跟踪数据处理系统等五大部分。 然而在定日镜的使用过程 中, 由于各种因素的影响, 其跟踪机构的精确度可能会有所下降, 导致太阳光 的反射光不反射到目标位置, 这就需要对定日镜的精准度进行校准。
对定日镜的校正过程实质上就是获得定日镜的旋转中心的过程, 在定日镜 对太阳光跟踪反射的过程中, 方位-俯仰跟踪是最常见的方式, 定日镜的方位旋 转轴 (竖轴) 与俯仰旋转轴 (横轴) 互相垂直, 通过两个轴的旋转配合可以使 定日镜完成 360度的旋转过程。
现有技术中公开了多种定日镜的校准设备, 如中国专利文献 CN 102077035A公开了一种定日镜的校正方法及其校正装置, 提供了一种能够对定 日镜的镜面与中央反射器的镜面正对的情况一边进行实测一边在当场进行调整 的调整方法和调整装置。 上述技术方案中, 在上部具有中央反射器且下部具有 受热部, 在中央反射器的周围配置有多台定日镜的集热装置, 在连结中央反射 器的上部焦点和定日镜的光路上, 设置有向该中央反射器和定日镜分别照射激 光的照射装置, 在激光照射装置的附近排列设置有对从定日镜反射的发射激光 进行检测的受光装置, 并且校正装置具备使该照射装置和受光装置旋转以及俯 仰的调整装置。 在校正过程中, 以被照射到定日镜的激光的反射光与被照射到 中央反射器的上部焦点的激光形成同一轴线的方式, 调整定日镜的俯仰角和 /或 旋转角。
上述定日镜校正设备在使用过程中存在以下几个问题:
首先, 上述的定日镜校准设备, 受光装置接收定日镜反射的激光时, 由于 受光面积较小, 激光反射光的光束直径也很小, 因此受光装置捕捉反射激光存 在困难, 使得校正的过程存在较大的难度; 另外在确定激光是否照射到中央反 射器上时, 通过人为观察, 肉眼进行判断, 存在一定的误差。
其次, 上述技术方案中, 每一组定日镜的校准设备一次只能校准一面定日 镜, 虽然可以将激光器从支架上拆下然后安装到其他的位置对其他的定日镜进 行校准, 但是操作过程复杂, 当需要对大量的定日镜进行校准时, 这一繁琐过 程耗时很长, 校正效率低。
另外, 现有中国专利文献 CN 101903818A公开了一种安装姿势测定装置, 提供了一种在安装定日镜的反射镜配合到旋转圆锥曲面的作业中, 为了进行有 效率且简易的安装调整, 正确地测定下平面镜的安装姿势的调整方法和安装姿 势测定装置。 在设置构成太阳光聚光用的定日镜的反射镜的方法中, 以小平面 镜的激光反射光到达激光点测定部的假想通过点的方式设置上述小平面镜。 上 述技术方案中的激光发射装置安装在支撑构件上, 支撑构件上设置有可移动机 构, 通过激光发射装置和激光接收装置配合来实现对小平面镜安装角度的调整。
上述方案中的安装姿势测定装置应用于安装定日镜的反射镜过程中, 定日 镜的焦点位置确定后, 入射激光的方向是已知的, 那么反射激光要反射到定日 镜的焦点的话必须要经过激光记测部上的假想点, 而在执行这一过程时, 必须 要保证支撑构件与定日镜之间的相对位置为确定值才能进行, 当定日镜发生旋 转或者由于长期使用在旋转过程中产生了误差时, 焦点位置可能发生了偏差, 入射激光与反射镜的角度可能发生了变化, 反射激光所要经过的假想点也发生 了变化, 上述过程就需要重新测定, 因此上述装置不能实现对定日镜的旋转轴 的实时校正; 另外, 在进行安装姿势的测定的过程中, 需要不断的尝试反射激 光有没有通过假象点来判断安装的位置是否准确, 操作过程很繁琐。
发明内容
本发明所要解决的技术问题有以下几个:
( 1 )现有技术中的校正设备, 是直接采用面积较小的接收装置接收直径很 小的反射激光, 然后对接收到的反射激光进行处理, 容易采集不到反射激光无 法实现对定日镜的校正。
(2 ) 现有技术中, 在进行镜面的调整校正时, 要严格要求校正设备的与镜 面的相对位置关系确定, 而且只能在安装过程中实现对镜面安装位置的调整, 在日后定日镜的使用过程中出现的误差不能进行实时的调整和校正。
( 3 ) 现有技术中的校正设备, 在对大量定日镜进行校正时, 校正的效率较 低。
为了解决上述技术问题, 本发明提供一种定日镜校正设备, 其包括支架, 激光校正系统, 以及图像处理系统, 所述激光校正系统通过定位装置设置于所 述支架上, 其包括:
至少一台激光发生器: 用于发射激光至定日镜镜面, 激光经定日镜镜面反 射后在校正设备上形成反射光斑;
至少一个图像采集器: 其面向反射光斑形成的区域设置, 用于采集反射光 斑的图像;
至少一个定位单元: 用于确定反射光斑及所述激光发生器的空间位置信息; 所述图像处理系统接收所述图像采集器采集到的反射光斑并结合所述激光 发生器及所述反射光斑的空间位置信息确定定日镜镜面的空间位置信息。
所述图像采集器通过一肘形支撑部件设置于所述支架上。
所述定位装置包括设置于所述支架上的滑轨, 且所述激光发生器及所述肘 形支撑部件上设置有与所述滑轨滑动配合的滑块。
所述定位装置包括设置于所述支架上的可 360度旋转的旋转机构, 所述激 光发生器及所述肘形支撑部件设置于所述旋转机构上。
每个所述定位单元包括至少三个定位模块, 所述定位模块按照不在同一条 直线上的原则设置于所述支架上。
每个所述定位单元包括设置于所述支架上的至少两个定位模块及至少一个 倾斜角传感模块。
每个所述定位单元包括设置于所述支架上的至少一个倾斜角传感模块以及 设置于所述激光发生器和所述图像采集器上的至少两个定位模块。
所述定位模块为 DGPS (差分全球定位系统) 定位模块。
所述定位模块为激光跟踪仪或激光扫描仪。
所述激光校正系统还包括用于接收反射光斑的光接收屏, 所述光接收屏设 置于适于接收到反射光斑的位置。
所述激光校正系统还包括光程测量系统, 所述光程测量系统包括: 散射光接收器: 接收反射光斑处散射的激光, 所述散射光接收器上设置有 第二定位模块。
系统时钟: 设置于所述激光发生器上及散射光接收器上, 用于确定激光发 出的时间及接收到散射光的时间。
所述光程测量系统还包括聚光镜, 所述聚光镜用于将反射光斑处散射的激 光汇聚为一束激光后由散射光接收器接收。
所述图像采集器为摄像头。
所述支架底部设置有适于移动的移动部件。
本发明还提供一种获得定日镜实际旋转中心的方法, 包括如下歩骤: 歩骤 a、 设置支架于定日镜的上方, 所述激光校正系统通过所述定位装置设 置于支架上, 调整激光校正系统, 使所述激光发生器发射的激光经定日镜反射 后在定日镜校正设备上形成反射光斑;
所述图像采集器面向反射光斑形成的区域设置于所述支架上, 采集反射光 斑的图像信息发送至图像处理系统;
所述定位单元用于确定反射光斑及所述激光发生器的空间位置信息后发送 至所述图像处理系统;
歩骤 b、所述图像处理系统对反射光斑的图像进行处理结合所述定位单元获 得的空间位置信息确定反射光斑的空间位置信息;
利用反射光斑的空间位置信息结合所述激光发生器的空间位置信息确定定 日镜镜面的空间位置信息;
歩骤 c、 定日镜完成一组旋转, 利用多个定日镜镜面的空间位置确定定日镜 的实际旋转中心。
歩骤 a 中所述图像采集器通过一肘形支撑部件设置于所述支架上, 其面向 光斑形成的区域。
所述定位装置包括设置于所述支架上的滑轨, 所述激光发生器及所述肘形 支撑部件上设置有与所述滑轨配合的滑块, 在上述歩骤完成后, 通过滑动改变 所述激光发生器及所述图像采集器的位置, 获取其他定日镜的旋转中心。
所述定位装置包括设置于所述支架上的可 360度旋转的旋转机构, 所述激 光发生器及所述肘形支撑部件设置于所述旋转机构上, 在上述歩骤完成之后利 用所述旋转机构控制所述激光发生器和所述肘形支撑部件转到不同的角度, 获 取其他定日镜的旋转中心。
歩骤 a 中, 采用设置于所述支架上的至少三个定位模块, 确定所述支架的 空间位置;
利用所述支架的空间位置结合所述激光发生器与所述支架的相对位置确定 所述激光发生器的空间位置;
利用所述支架的空间位置结合所述图像采集器与所述支架的相对位置确定 所述图像采集器的空间位置。
歩骤 a 中, 采用设置于所述支架上的至少两个定位模块及至少一个倾斜角 传感模块, 确定所述支架的空间位置;
利用所述支架的空间位置结合所述激光发生器与所述支架的相对位置确定 所述激光发生器的空间位置;
利用所述支架的空间位置结合所述图像采集器与所述支架的相对位置确定 所述图像采集器的空间位置。
歩骤 a 中, 所述定位单元包括设置于所述支架上的至少一个倾斜角传感模 块以及设置于所述激光发生器和所述图像采集器上的至少两个定位模块;
采用设置于所述激光发生器及所述图像采集器上的至少两个定位模块确定 激光校正系统中各个部件的空间位置;
采用设置于所述支架上至少一个倾斜角传感模块得到所述支架的倾斜角 度;
利用所述支架的倾斜角度结合所述激光发生器或所述图像采集器与所述支 架的相对位置关系得到所述支架的空间位置信息; 利用所述图像采集器的空间位置信息结合所述支架的空间位置信息获得反 射光斑的空间位置。
歩骤 a中, 所述定位模块为 DGPS (差分全球定位系统) 定位模块。
歩骤 a中, 所述定位模块为所述定位模块为激光跟踪仪或激光扫描仪。 歩骤 a 中, 所述激光校正系统还包括用于接收反射光斑的光接收屏, 所述 光接收屏设置于适于接收到反射光斑的位置, 所述激光发生器发射的激光经定 日镜镜面反射后在所述光接收屏上形成反射光斑。
歩骤 a中, 激光在反射光斑形成的位置处有激光散射出来;
利用设置有第二定位模块的散射光接收器接收反射光斑处散射的激光; 利用系统时钟记录所述激光发生器发射激光的时间及所述散射光接收器接 收散射光的时间;
所述光程计算模块根据激光的波长及发射激光的时间和接收到散射光的时 间, 分析激光的光程;
歩骤 b 中, 所述图像处理系统结合激光光程及激光校正系统中各个部件的 空间位置, 确定入射激光在定日镜镜面上的位置。
歩骤 b 中, 反射光斑处散射的激光经一聚光镜汇聚成为一束激光后照射至 所述散射光接收器。
完成上述歩骤之后, 利用支架底部的移动部件将校正设备移动到其他定日 镜的上方, 获取其他定日镜的旋转中心。
本发明的有益效果是:
( 1 )本发明所述设备令激光发生器射出的激光经定日镜反射后在定日镜校 正设备上或者在光接收屏上形成反射光斑, 再利用图像采集器采集反射光斑的 图像, 而图像采集器直接面向光斑设置, 直接采集反射光斑, 在采集的过程中 相对于直接用图像采集器采集反射的激光来说更加便捷而且能够保证捕捉光斑 的准确性。
(2 ) 本发明所述的设备, 采用至少一个定位单元来确定支架的空间位置, 激光校正系统的空间位置, 图像采集器的空间位置, 因此随时可以确定激光发 射的位置和反射光斑的位置, 不论定日镜的角度如何以及支架相对于定日镜的 位置如何, 都可以随时实现对定日镜的旋转轴的确定, 实现实时校正定日镜。
( 3 ) 本发明所述的设备, 在支架上设置上滑轨或者旋转机构或者在支架的 底部设置移动部件, 可以在采用本发明所述设备对一面或者一组定日镜进行校 正完成后, 直接通过滑轨移动的方式或者旋转机构旋转的方式或者支架移动的 方式实现对另一面或者另一组定日镜的校正, 在需要校正多面定日镜时具有较 高的效率。
附图说明
图 1为本发明所述定日镜校正设备的结构示意图;
图 2为本发明所述设有光接收屏的定日镜校正设备结构示意图;
图 3为本发明中激光光路简图;
图 4为本发明中确定定日镜镜面空间位置时进行图像处理采用的光路简图; 图 5 为本发明中确定定日镜镜面空间位置时进行光程计算时采用的光路简 图。
具体实施方式
下面结合附图并通过具体实施方式来进一歩说明本发明的技术方案。
实施例 1
本实施例提供一种定日镜校正设备, 其包括支架, 激光校正系统, 以及图 像处理系统。 所述激光校正系统通过定位装置设置于所述支架上, 其包括: 至少一台激 光发生器: 用于发射激光至定日镜镜面, 激光经定日镜镜面反射后在校正设备 上形成反射光斑; 至少一个图像采集器: 其面向反射光斑形成的区域设置, 用 于采集反射光斑的图像; 至少一个定位单元: 用于确定反射光斑及所述激光发 生器的空间位置信息; 所述图像处理系统接收所述图像采集器采集到的反射光 斑并结合所述激光发生器及所述反射光斑的空间位置信息确定定日镜镜面的空 间位置信息。
本发明还公开一种获得定日镜实际旋转中心的方法, 包括如下歩骤: 歩骤 a、 设置支架于定日镜的上方, 所述激光校正系统通过所述定位装置设 置于支架上, 调整激光校正系统, 使所述激光发生器发射的激光经定日镜反射 后在定日镜校正设备上形成反射光斑;
所述图像采集器面向反射光斑形成的区域设置于所述支架上, 采集反射光 斑的图像信息发送至图像处理系统; 本实施例中, 所述图像采集器通过一肘形 支撑部件设置于所述支架上;
所述定位单元用于确定反射光斑及所述激光发生器的空间位置信息后发送 至所述图像处理系统;
歩骤 b、所述图像处理系统对反射光斑的图像进行处理结合所述定位单元获 得的空间位置信息确定反射光斑的空间位置信息;
利用反射光斑的空间位置信息结合所述激光发生器的空间位置信息确定定 日镜镜面的空间位置信息;
如图 3 所示简化后的光路图, 其中假设反射光斑形成于支架下表面上, 其 中 0, A, B, C, A2, B2, C2, A3, B3 同在支架面上, Al, Bl, CI在定日 镜镜面上, AABC为激光发生器发射激光束中的三个点, AA2B2C2为反射光 斑, AAIBICI为激光射在定日镜面上的位置, 在 OA延长线上选取 A3点, 其 中 OA2=OA3, OB2=OB3, 可得图 4所示的平面关系:
A A■■ -―
其中: A3 B .3
向量 AA1, BB1已知, 从而得到 Al, Bl的空间位置, 同理得 CI的空间位 置, 从而确定定日镜平面的实际空间位置。
歩骤 c、 定日镜完成一组旋转, 利用多个定日镜镜面的空间位置确定定日镜 的实际旋转轴;
在具体实施时, 控制定日镜在俯仰方向完成一组旋转, 采用歩骤 b得到旋 转后的至少一个角度的镜面空间位置信息; 选取至少两个不同俯仰角的镜面空 间位置信息的交界面为定日镜的实际俯仰旋转轴;
控制定日镜在水平定位方向完成一组旋转, 采用歩骤 b得到旋转后的至少 一水角度的镜面空间位置信息; 选取至少两个不同定位角的镜面空间位置信息 的交界面为定日镜的实际俯仰旋转轴。
需要说明的是, 本发明在确定定日镜实际旋转中心的过程中, 实际的镜面 旋转中心与实际俯仰旋转轴和实际的定位旋转轴之间有一定的距离, 该方法得 到的镜面上的旋转中心为两个实际旋转轴在镜面上的投影的交点。
现有技术中常用的获得定日镜的两个旋转轴旋转角度的方法有两种: 一种 是采用歩进电机在控制的过程中, 根据输出脉冲与旋转角度的对应关系直接获 得两个旋转轴旋转的角度; 另一种是在定日镜的两个旋转轴上设置角度传感器 来测量定日镜两个旋转轴旋转的角度。 第一种方法的精确度可以满足一般需求, 但是第二种测量方法精度更高, 可以更加精确的获得定日镜两个旋转轴旋转过 的角度。
而两个旋转轴旋转的旋转角度和本发明获得定日镜旋转中心时定日镜镜面 的旋转角度之间存在一定的误差, 两个实际旋转轴和镜面有一定距离, 在校准 后, 将太阳光反射到指定点的算法会将此差别予以考虑。
实施例 2
本实施例在实施例 1 的基础上, 所述定位装置包括设置于所述支架上的滑 轨, 且所述激光发生器及所述肘形支撑部件上设置有与所述滑轨滑动配合的滑 块。
在完成对一面定日镜的校正后, 通过滑动改变所述激光发生器及所述图像 采集器的位置, 实现对其他定日镜的校正。
在本实施例中, 每个所述定位单元包括至少三个定位模块, 所述定位模块 按照不在同一条直线上的原则设置于所述支架上。 所述至少三个定位模块可以 确定所述支架的至少三个点的位置, 而三个点可以确定一个平面, 因此进一歩 的确定了所述支架的空间位置, 而所述激光发生器和所述图像采集器与所述支 架的相对位置关系已知, 从而确定所述激光发生器及所述图像采集器及反射光 斑的空间位置。
在本实施例中, 所述定位模块为 DGPS (差分全球定位系统)定位模块, 也 可以选择其他具有定位功能的定位模块。
DGPS是英文 Difference Global Positioning System的缩写, 即差分全球定位 系统, 方法是在一个精确的已知位置上安装监测接收机, 计算得到它能跟踪的 每颗 GPS卫星的距离误差。 该差值通常称为 PRC (伪距离修正值), 将此数据 传送给用户接收机作误差修正, 从而提高了定位精度。 DGPS是提高 GPS定位精度的有效手段, 可达到 III级及以上精度。 因而在 确定定日镜实际旋转中心的过程, 通过 DGPS定位模块确定所述激光校正系统 中各个部件空间位置信息, 可以获得更为精确的结果。
实施例 3
本实施例在实施例 1 的基础上, 所述定位装置包括设置于所述支架上的可 360度旋转的旋转机构,所述激光发生器及所述肘形支撑部件设置于所述旋转机 在完成对一面定日镜的校正后, 利用所述旋转机构控制所述激光发生器和 所述肘形支撑部件转到不同的角度, 实现对其他定日镜的校正。
本实施例中, 每个所述定位单元包括设置于所述支架上的至少两个定位模 块及至少一个倾斜角传感模块;
通过所述支架的倾角结合所述支架的两个点的位置可以确定所述支架的空 间位置, 而所述激光发生器和所述图像采集器与所述支架的相对位置关系已知, 从而确定所述激光发生器及所述图像采集器及反射光斑的空间位置。
作为可选的实施方式, 每个所述定位单元包括设置于所述支架上的至少一 个倾斜角传感模块以及设置于所述激光发生器和所述图像采集器上的至少两个 定位模块, 采用设置于所述激光发生器及所述图像采集器上的至少两个定位模 块确定激光校正系统中各个部件的空间位置;
采用设置于所述支架上至少一个倾斜角传感模块得到所述支架的倾斜角 度;
利用所述支架的倾斜角度结合所述激光发生器或所述图像采集器与所述支 架的相对位置关系得到所述支架的空间位置信息;
利用所述图像采集器的空间位置信息结合所述支架的空间位置信息获得反 射光斑的空间位置。
本实施例中, 所述定位模块为所述定位模块为激光跟踪仪或激光扫描仪, 也可以选择 DGPS定位模块等其他定位模块。
实施例 4
本实施例在实施例 1或实施例 2或实施例 3的基础上, 所述激光校正系统 还包括用于接收反射光斑的光接收屏, 所述光接收屏设置于适于接收到反射光 斑的位置, 所述激光发生器发射的激光束经定日镜镜面反射后在所述光接收屏 上形成反射光斑, 所述图像采集器采集所述光接收屏上的至少反射光斑。
而作为优选的实施方式, 所述图像采集器选择摄像头, 所述摄像头通过肘 形支撑部件面向所述光接收屏设置, 用于采集反射光斑。
实施例 5
实施例 1至实施例 4中, 均是采用光斑图像处理的方式获得激光在定日镜 上的位置, 本实施例与上述实施例有所不同的是, 本实施例中应用光程计算方 法获得激光在定日镜上的位置。
本实施例中, 所述激光校正系统还包括光程测量系统, 所述光程测量系统 包括:
散射光接收器: 接收反射光斑处散射的激光, 所述散射光接收器上设置有 第二定位模块;
所述光程测量系统还包括聚光镜, 所述聚光镜用于将反射光斑处散射的激 光汇聚为一束激光后由散射光接收器接收。
系统时钟: 设置于所述激光发生器上及散射光接收器上, 用于确定激光发 出的时间及接收到散射光的时间。
在获得定日镜旋转中心时, 激光在反射光斑形成的位置处有激光散射出来; 反射光斑处散射的激光经一聚光镜汇聚成为一束激光后照射至所述散射光接收 器; 利用设置有第二定位装置的散射光接收器接收反射光斑处散射的激光; 利 用系统时钟记录所述激光发生器发射激光的时间及所述散射光接收器接收散射 光的时间; 所述光程计算模块根据激光的波长及发射激光的时间和接收到散射 光的时间, 分析激光的光程;
如图 5所示, 为本实施例中所述光路简图;
已知 AA1+A1A3 , BB1+B1B3 , y , A3B3, AB 因此有 QB1+B1C= ΒΒ1+Β1Β3-( AA1+A1A3); QC= A3B3-AB 设:
QC = a
SI ÷ SIC =
QBl = x
B1C = y 在 Δ(3€Β 中有:
Figure imgf000016_0001
a2 - b2
x
2b — 2acosy
a2■+ b2― 2abcosy
y =
2b - 2acos)f
:角型相似得:
EB3 X QEI
B81 =
QC 其中
Figure imgf000016_0002
由三角形相似得
AA3 X QB1 向量 AA1, BBl已知, 从而得到 Al, Bl的空间位置, 同理得 C1的空间位 置, 从而确定定日镜平面的实际空间位置。
通过本实施例中的计算方法, 因为减小了镜面平整度的误差, 结果更精确。 实施例 6
本实施例在上述任一实施例的基础上, 所述支架底部设置有适于移动的移 动部件。 在完成上述骤之后, 利用支架底部的移动部件将校正设备移动到其他 定日镜的上方进行校正, 提高校正的工作效率。
以上所述仅为本发明的优选实施例, 并不用于限制本发明, 对于本领域技 术人员而言, 本发明可以有各种改动和变化。 凡在本发明的精神和原理之内所 作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

WO 2013/017097 权 利 要 求 书 PCT/CN2012/079627
1、一种定日镜校正设备, 其包括支架,激光校正系统, 以及图像处理系统, 其特征在于:
所述激光校正系统通过定位装置设置于所述支架上, 其包括:
至少一台激光发生器, 用于发射激光至定日镜镜面, 激光经定日镜镜面反 射后在校正设备上形成反射光斑;
至少一个图像采集器, 面向反射光斑形成的区域设置, 用于采集反射光斑 的图像;
至少一个定位单元,用于确定反射光斑及所述激光发生器的空间位置信息; 所述图像处理系统接收所述图像采集器采集到的反射光斑并结合所述激光 发生器及所述反射光斑的空间位置信息确定定日镜镜面的空间位置信息。
2、 根据权利要求 1所述的定日镜校正设备, 其特征在于, 所述图像采集器 通过一肘形支撑部件设置于所述支架上。
3、 根据权利要求 2所述的定日镜校正设备, 其特征在于, 所述定位装置包 括设置于所述支架上的滑轨, 且所述激光发生器及所述肘形支撑部件上设置有 与所述滑轨滑动配合的滑块。
4、 根据权利要求 2所述的定日镜校正设备, 其特征在于, 所述定位装置包 括设置于所述支架上的可 360度旋转的旋转机构, 所述激光发生器及所述肘形 支撑部件设置于所述旋转机构上。
5、 根据权利要求 1-4任一所述的定日镜校正设备, 其特征在于, 每个所述 定位单元包括至少三个定位模块, 所述定位模块按照不在同一条直线上的原则 设置于所述支架上。
6、 根据权利要求 1-4任一所述的定日镜校正设备, 其特征在于, 每个所述 定位单元包括设置于所述支架上的至少两个定位模块及至少一个倾斜角传感模 块。
7、 根据权利要求 1-4任一所述的定日镜校正设备, 其特征在于, 每个所述 定位单元包括设置于所述支架上的至少一个倾斜角传感模块以及设置于所述激 光发生器和所述图像采集器上的至少两个定位模块。
8、 根据权利要求 5所述的定日镜校正设备, 其特征在于, 所述定位模块为 差分全球定位系统 (DGPS) 定位模块。
9、 根据权利要求 5所述的定日镜校正设备, 其特征在于, 所述定位模块为 激光跟踪仪或激光扫描仪。
10、 根据权利要求 1所述的定日镜校正设备, 其特征在于, 所述激光校正 系统还包括用于接收反射光斑的光接收屏, 所述光接收屏设置于适于接收到反 射光斑的位置。
11、 根据权利要求 1所述的定日镜校正设备, 其特征在于, 所述激光校正 系统还包括光程测量系统, 所述光程测量系统包括:
散射光接收器, 用于接收反射光斑处散射的激光, 所述散射光接收器上设 置有第二定位模块。
系统时钟, 设置于所述激光发生器上及散射光接收器上, 用于确定激光发 出的时间及接收到散射光的时间。
12、 根据权利要求 11所述的定日镜校正设备, 其特征在于, 所述光程测量 系统还包括聚光镜, 所述聚光镜用于将反射光斑处散射的激光汇聚为一束激光 后由散射光接收器接收。
13、 根据权利要求 1所述的定日镜校正设备, 其特征在于, 所述图像采集 器为摄像头。
14、 根据权利要求 1所述的定日镜校正设备, 其特征在于, 所述支架底部 设置有适于移动的移动部件。
15、 一种利用权利要求 1所述的定日镜校正设备获得定日镜实际旋转中心 的方法, 其特征在于, 包括如下歩骤:
歩骤 a、设置支架于定日镜的上方,激光校正系统通过定位装置设置于支架 上, 调整激光校正系统, 使所述激光发生器发射的激光经定日镜反射后在定日 镜校正设备上形成反射光斑;
所述图像采集器面向反射光斑形成的区域设置于所述支架上, 采集反射光 斑的图像信息发送至图像处理系统;
所述定位单元用于确定反射光斑及所述激光发生器的空间位置信息后发送 至所述图像处理系统;
歩骤 b、 所述图像处理系统对反射光斑的图像进行处理结合所述定位单元 获得的空间位置信息确定反射光斑的空间位置信息;
利用反射光斑的空间位置信息结合所述激光发生器的空间位置信息确定定 日镜镜面的空间位置信息;
歩骤 c、定日镜完成一组旋转,利用多个定日镜镜面的空间位置确定定日镜 的实际旋转中心。
16、根据权利要求 15所述的获得定日镜实际旋转中心的方法,其特征在于, 歩骤 a中, 所述图像采集器通过一肘形支撑部件设置于所述支架上, 其面向光 斑形成的区域。
17、根据权利要求 16所述的获得定日镜实际旋转中心的方法,其特征在于, 所述定位装置包括设置于所述支架上的滑轨, 所述激光发生器及所述肘形支撑 部件上设置有与所述滑轨配合的滑块, 在上述歩骤完成后, 通过滑动改变所述 激光发生器及所述图像采集器的位置, 获取其他定日镜的旋转中心。
18、根据权利要求 16所述的获得定日镜实际旋转中心的方法,其特征在于, 所述定位装置包括设置于所述支架上的可 360度旋转的旋转机构, 所述激光发 生器及所述肘形支撑部件设置于所述旋转机构上, 在上述歩骤完成之后利用所 述旋转机构控制所述激光发生器和所述肘形支撑部件转到不同的角度, 获取其 他定日镜的旋转中心。
19、 根据权利要求 15-18任一所述的获得定日镜实际旋转中心的方法, 其 特征在于:
歩骤 a中, 采用设置于所述支架上的至少三个定位模块, 确定所述支架的 空间位置;
利用所述支架的空间位置结合所述激光发生器与所述支架的相对位置确定 所述激光发生器的空间位置;
利用所述支架的空间位置结合所述图像采集器与所述支架的相对位置确定 所述图像采集器的空间位置。
20、 根据权利要求 15-18任一所述的获得定日镜实际旋转中心的方法, 其 特征在于:
歩骤 a中, 采用设置于所述支架上的至少两个定位模块及至少一个倾斜角 传感模块, 确定所述支架的空间位置;
利用所述支架的空间位置结合所述激光发生器与所述支架的相对位置确定 所述激光发生器的空间位置;
利用所述支架的空间位置结合所述图像采集器与所述支架的相对位置确定 所述图像采集器的空间位置。
21、 根据权利要求 15-18任一所述的获得定日镜实际旋转中心的方法, 其 特征在于: 歩骤 a中, 所述定位单元包括设置于所述支架上的至少一个倾斜角传感模 块以及设置于所述激光发生器和所述图像采集器上的至少两个定位模块;
采用设置于所述激光发生器及所述图像采集器上的至少两个定位模块确定 激光校正系统中各个部件的空间位置;
采用设置于所述支架上至少一个倾斜角传感模块得到所述支架的倾斜角 度;
利用所述支架的倾斜角度结合所述激光发生器或所述图像采集器与所述支 架的相对位置关系得到所述支架的空间位置信息;
利用所述图像采集器的空间位置信息结合所述支架的空间位置信息获得反 射光斑的空间位置。
22、根据权利要求 19所述的获得定日镜实际旋转中心的方法,其特征在于, 歩骤 a中, 所述定位模块为差分全球定位系统 (DGPS ) 定位模块。
23、根据权利要求 19所述的获得定日镜实际旋转中心的方法,其特征在于, 歩骤 a中, 所述定位模块为所述定位模块为激光跟踪仪或激光扫描仪。
24、 根据权利要求 15-18任一所述的获得定日镜实际旋转中心的方法, 其 特征在于:
歩骤 a中, 所述激光校正系统还包括用于接收反射光斑的光接收屏, 所述 光接收屏设置于适于接收到反射光斑的位置, 所述激光发生器发射的激光经定 日镜镜面反射后在所述光接收屏上形成反射光斑。
25、 根据权利要求 15-18任一所述的获得定日镜实际旋转中心的方法, 其 特征在于:
歩骤 a中, 激光在反射光斑形成的位置处有激光散射出来;
利用设置有第二定位模块的散射光接收器接收反射光斑处散射的激光; 利用系统时钟记录所述激光发生器发射激光的时间及所述散射光接收器接 收散射光的时间;
所述光程计算模块根据激光的波长及发射激光的时间和接收到散射光的时 间, 分析激光的光程;
歩骤 b中, 所述图像处理系统结合激光光程及激光校正系统中各个部件的 空间位置, 确定入射激光在定日镜镜面上的位置。
26、 根据权利要求 21所述的获得定日镜实际旋转中心的方法:
歩骤 a中, 反射光斑处散射的激光经一聚光镜汇聚成为一束激光后照射至 所述散射光接收器。
27、 根据权利要求 15-18任一所述的获得定日镜实际旋转中心的方法, 其 特征在于:
完成上述歩骤之后, 利用支架底部的移动部件将校正设备移动到其他定日 镜的上方, 获取其他定日镜的旋转中心。
PCT/CN2012/079627 2011-08-04 2012-08-03 一种定日镜校正设备及校正方法 WO2013017097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110222573.5 2011-08-04
CN2011102225735A CN102298193A (zh) 2011-08-04 2011-08-04 一种定日镜校正设备及校正方法

Publications (1)

Publication Number Publication Date
WO2013017097A1 true WO2013017097A1 (zh) 2013-02-07

Family

ID=45358742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079627 WO2013017097A1 (zh) 2011-08-04 2012-08-03 一种定日镜校正设备及校正方法

Country Status (2)

Country Link
CN (1) CN102298193A (zh)
WO (1) WO2013017097A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024088093A1 (zh) * 2022-10-25 2024-05-02 歌尔科技有限公司 智能眼镜、智能眼镜的校正方法、装置及存储介质

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298193A (zh) * 2011-08-04 2011-12-28 深圳市联讯创新工场科技开发有限公司 一种定日镜校正设备及校正方法
CN102354224B (zh) * 2011-08-30 2014-09-17 浙江大学 基于人造光源的日光反射装置校正系统及校正方法
ES2422806B1 (es) * 2012-03-12 2014-09-17 Ingemetal Energias, S.A. Sistema, procedimiento y programa informático de calibración del posicionamiento de los espejos en heliostatos
CN103092221A (zh) * 2013-01-24 2013-05-08 陕西日升源创能科技有限公司 一种跟踪捕捉太阳光的方法
CN104062743A (zh) * 2014-07-07 2014-09-24 大连宏海新能源发展有限公司 用于太阳能聚光镜片调整的自动调焦系统及其调焦方法
CN106644399B (zh) * 2016-12-31 2019-02-05 伽行科技(北京)有限公司 一种用无人机校正定日镜偏差的系统和方法
CN107101595B (zh) * 2017-05-18 2019-05-14 上海晶电新能源有限公司 一种定日镜子镜姿态检测系统及方法
CN109308684B (zh) * 2017-07-27 2022-03-08 成都理想境界科技有限公司 一种图像倾斜矫正方法及计算机可读存储介质
CN109084960B (zh) * 2018-07-03 2020-06-26 长春理工大学 一种双平行光管式跟瞄转台指向精度测试系统及方法
CN109035824B (zh) * 2018-08-01 2021-01-22 隆昌照明集团有限公司 一种基于物联网的交通信号灯
CN109062269A (zh) * 2018-08-23 2018-12-21 杨军峰 一种定日镜自动聚焦纠偏方法、装置及系统
CN109062265B (zh) * 2018-08-29 2021-12-14 中国电力工程顾问集团西北电力设计院有限公司 一种太阳光热发电定日镜安装误差校正方法
CN110749281B (zh) * 2019-10-30 2021-08-17 深圳中科能投能源有限公司 一种定日镜支架的定位系统及定位方法
CN113687302B (zh) * 2021-08-19 2023-08-29 浙江可胜技术股份有限公司 一种定日镜地址配置方法及系统
CN114236743B (zh) * 2021-12-16 2023-09-29 北京环境特性研究所 一种平面反射镜阵列的校准系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219729A (en) * 1978-06-16 1980-08-26 Smith Otto J M Method of aligning and locating the mirrors of a collector field with respect to a receptor tower
JP2009109443A (ja) * 2007-10-31 2009-05-21 Mitsui Eng & Shipbuild Co Ltd 取付姿勢測定装置
JP2009109923A (ja) * 2007-10-31 2009-05-21 Mitsui Eng & Shipbuild Co Ltd 取付姿勢測定装置
CN101776919A (zh) * 2009-12-29 2010-07-14 中国科学院电工研究所 一种定日镜跟踪误差校正方法
CN102116618A (zh) * 2009-12-31 2011-07-06 北方工业大学 定日镜姿态角的在线测量方法及系统
CN102298193A (zh) * 2011-08-04 2011-12-28 深圳市联讯创新工场科技开发有限公司 一种定日镜校正设备及校正方法
CN102354224A (zh) * 2011-08-30 2012-02-15 浙江大学 基于人造光源的日光反射装置校正系统及校正方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7207327B2 (en) * 2004-06-15 2007-04-24 United Technologies Corporation Feedback control method for a heliostat
US8344305B2 (en) * 2009-03-18 2013-01-01 Convery Mark R System and method for aligning heliostats of a solar power tower

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219729A (en) * 1978-06-16 1980-08-26 Smith Otto J M Method of aligning and locating the mirrors of a collector field with respect to a receptor tower
JP2009109443A (ja) * 2007-10-31 2009-05-21 Mitsui Eng & Shipbuild Co Ltd 取付姿勢測定装置
JP2009109923A (ja) * 2007-10-31 2009-05-21 Mitsui Eng & Shipbuild Co Ltd 取付姿勢測定装置
CN101776919A (zh) * 2009-12-29 2010-07-14 中国科学院电工研究所 一种定日镜跟踪误差校正方法
CN102116618A (zh) * 2009-12-31 2011-07-06 北方工业大学 定日镜姿态角的在线测量方法及系统
CN102298193A (zh) * 2011-08-04 2011-12-28 深圳市联讯创新工场科技开发有限公司 一种定日镜校正设备及校正方法
CN102354224A (zh) * 2011-08-30 2012-02-15 浙江大学 基于人造光源的日光反射装置校正系统及校正方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024088093A1 (zh) * 2022-10-25 2024-05-02 歌尔科技有限公司 智能眼镜、智能眼镜的校正方法、装置及存储介质

Also Published As

Publication number Publication date
CN102298193A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2013017097A1 (zh) 一种定日镜校正设备及校正方法
WO2013017099A1 (zh) 一种定日镜校正设备及校正方法
WO2013056507A1 (zh) 塔式太阳能热发电系统的定日镜角度偏差检测方法
CN109211107B (zh) 测量装置、旋转体以及产生图像数据的方法
WO2013044850A1 (zh) 太阳能发电站的定日镜校准系统及校准方法
US20130021471A1 (en) Reflective Surface Orientating with Multiple View Ports
WO2013083053A1 (zh) 太阳能发电站的定日镜校准方法及校准系统
CN108413987B (zh) 一种定日镜的校准方法、装置及系统
CN101949711B (zh) 大型光电经纬仪动态测角精度的检测装置及方法
US20130284162A1 (en) Heliostat calibration and control
CN102243067A (zh) 太阳能聚光镜面形检测装置
CN110989695B (zh) 一种移动平台上的太阳自动跟踪装置及方法
CN106249764B (zh) 以太阳为参照物的定日镜角度零点自动标定装置及方法
CN102354224B (zh) 基于人造光源的日光反射装置校正系统及校正方法
CN109557947A (zh) 一种塔式定日镜的双闭环跟踪控制方法
RU2611571C1 (ru) Система управления платформой концентраторных солнечных модулей
WO2013044849A1 (zh) 太阳能发电站的定日镜校准系统及校准方法
CN101661292B (zh) 一种反射式太阳红外辐射动态光路跟踪系统
JP2013190158A (ja) 太陽光集光装置のヘリオスタットの鏡面角度制御方法およびその装置
CN103438830A (zh) 一种太阳能聚光镜检测装置及其检测方法
JP2009109443A (ja) 取付姿勢測定装置
TW201537123A (zh) 太陽追蹤器之方向修正方法
CN116907535A (zh) 一种采用人工光源和相机进行定日镜的校验方法
CN103134664A (zh) 一种基于凸面反射镜的在轨光学卫星相机mtf测量方法
CN112631339B (zh) 一种移动式定日镜二次反射指向修正系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12819222

Country of ref document: EP

Kind code of ref document: A1