WO2022012824A1 - Nacelle optronique - Google Patents

Nacelle optronique Download PDF

Info

Publication number
WO2022012824A1
WO2022012824A1 PCT/EP2021/065689 EP2021065689W WO2022012824A1 WO 2022012824 A1 WO2022012824 A1 WO 2022012824A1 EP 2021065689 W EP2021065689 W EP 2021065689W WO 2022012824 A1 WO2022012824 A1 WO 2022012824A1
Authority
WO
WIPO (PCT)
Prior art keywords
optronic
axis
optical
nacelle
canopy
Prior art date
Application number
PCT/EP2021/065689
Other languages
English (en)
Inventor
Christophe Rannou
Bruno Bustin
Patrick VERRECCHIA
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2022012824A1 publication Critical patent/WO2022012824A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2253Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/007Pressure-resistant sight glasses

Definitions

  • the field of the invention is that of optronic nacelles intended to be installed on a transonic or supersonic carrier of the combat aircraft or drone type.
  • the invention relates, in particular, to optronic pods for laser designation and/or aerial reconnaissance.
  • the invention relates, more particularly, to optronic nacelles intended to be fixed to an aircraft in external payload, directly or by means of a pylon.
  • the optronic nacelle comprises one or more optical windows, and an optronic core (or optronic device) comprising one or more optical channels intended to emit and acquire optical radiation along the same line of sight.
  • the invention relates, more particularly, to optronic sensors operating in the optical domain, for example, in the visible domain and/or in the near infrared or NIR domain (in reference to the Anglo-Saxon expression “Near InfraRed » and/or in the Short Infrared or SWIR domain (with reference to the Anglo-Saxon expression “Short-Wave InfraRed”) and/or in the mid-infrared or MWIR domain (with reference to the Anglo-Saxon expression -Saxon “Mid-Wave InfraRed”).
  • Optronic nacelles comprising a so-called “follower” or “carrier” cover provided with one or more optical windows are known.
  • the “follower” or “carrier” cowl is servo-controlled and motorized so as to make it possible to permanently transmit optical beams through the window or windows following the direction of the line of sight.
  • the inclination of the optical window or windows with respect to the air flow can generate aero-optical effects distorting the wavefront, in particular, when the line of sight is turned backwards with respect to the direction the movement of the aircraft.
  • So-called POD 100 type optronic nacelles are also known, an example of which is shown in FIG. 1, comprising a main section 101. a central longitudinal axis L of the main section 101.
  • the front tip 102 delimits a volume receiving an optronic core not visible in figure 1.
  • the nose cone 102 drives the optronic core in rotation with respect to the main section 101 around the axis L.
  • the nose cone 102 comprises two optical windows 103 and 104 making it possible, by their positioning and their orientation, to address in particular negative elevation angles ae of the line of sight I of the optronic core.
  • the first optical window 103 extends substantially in a plane parallel to the axis L and the second optical window 104 is inclined with respect to the axis L.
  • the air densities are shown in shades of gray (with iso-density contours) circulating around the nacelle when it moves along the axis L forwards ( in the direction of the arrow) at an altitude of 20,000 feet with a Mach number equal to 0.85.
  • This figure shows the presence of separation and recirculation of the airflow under the first optical window 103. These phenomena generate unsteady aero-optical effects.
  • the junction between the two windows 103 and 104 is also responsible for a rapid stationary effect (shock wave), visible in FIG. 1, by a significant variation in the density and therefore in the refractive index of the air in front of the optical windows.
  • the presence of an index gradient in front of a pupil of the optronic core has the consequence of degrading the wave front and generating optical aberrations.
  • the first aberrations correspond to an inclination aberration called “tilt” and to focusing defects.
  • the next ones are Astigmatism and Coma.
  • the first two aberrations are easily correctable at the level of the optronic core when the optical density gradient is constant over time.
  • the following two aberrations are difficult to correct even when the index gradient is constant.
  • there is a temporal variation of the index gradient which makes the correction of aberrations very difficult because it must be dynamically adapted at each instant as a function of the degradation.
  • An object of the invention is to limit at least one of the aforementioned drawbacks.
  • the subject of the invention is an optronic nacelle intended to be embarked on a transonic or supersonic aircraft, the optronic nacelle comprising a main section and a nose cone mounted for rotation with respect to the main section only around a main axis X, the optronic nacelle comprising an optronic core comprising a set of at least one optical channel, the optronic core having an LDV line of sight orientable with respect to the nose cone around a y axis integral with the nose cone and perpendicular to the main axis X, the nose cone comprising a canopy that is substantially flat and inclined with respect to the main axis X, the canopy being arranged and configured so as to allow the detection and/or the emission of radiation optical via a first sub-assembly of at least one optical path of the assembly of at least one optical path through the canopy, substantially over the whole of an angular sector, of at least 120° and less than 180°, formed by the line of sight L
  • the angular sector extends from a minimum angle of sight comprised between -130° and -150° up to a maximum angle of sight comprised between 0° and -10°, the minimum angle of sight and the maximum angle of sight being formed between the line of sight LDV and a reference plane defined by the y axis and an x axis parallel to the main axis X.
  • the optronic nacelle comprises an upper optical window arranged and configured so as to allow the detection and/or the emission of optical radiation by a second subset of the set of at least one optical channel. , through the upper optical window, when the line of sight LDV forms a positive angle of sight with the reference plane.
  • the canopy forms a first angle of inclination, between 10° and 20°, with the x axis.
  • the line of sight LDV is integral with the front nose, in rotation around the main axis X.
  • the canopy comprises a single optical window.
  • the canopy comprises several coplanar optical windows.
  • FIG.1 Figure 1
  • Figure 1 already described illustrates, in shades of gray, the air densities and iso-density contours circulating around an optronic nacelle of the prior art, when it is moves along its longitudinal axis forward (in the direction of the arrow), at an altitude of 20,000 feet with a Mach number equal to 0.85,
  • FIG.2 is a schematic representation, in perspective, of an example of an optronic nacelle according to the invention
  • FIG.3 is a schematic representation, in side view, of the optronic nacelle of Figure 2,
  • Figure 4 schematically illustrates, in section in a radial plane, the optronic nacelle of Figures 2 and 3 and, in shades of gray, air densities and iso-density contours circulating around this nacelle, when it moves along its main axis forwards (in the direction of the arrow) at an altitude of 20,000 feet with a Mach number equal to 0.85.
  • Figure 2 schematically shows, in perspective view, an optronic nacelle 1 according to the invention.
  • the optronic nacelle 1 according to the invention is intended to be installed on a transonic or supersonic air carrier capable of moving at such a speed that its Mach number is greater than 0.65.
  • the optronic nacelle 1 can be attached to a carrier directly or via a pylon by means of attachments.
  • the optronic nacelle 1 comprises a main section 2 which is substantially a cylinder of revolution around an axis X, called main axis in the rest of the text, and a nose cone 3 located in the extension of the main section 2 along the principal axis X.
  • the nose cone 3 is an axial part of the body of the optronic nacelle 1.
  • the nose cone 3 delimits an internal volume VO receiving an optronic core 4 of the optronic nacelle 1.
  • the optronic core 4 is materialized by a partially visible sphere in figure 2.
  • the front tip 3 is intended to be in front of the main section 2, along the main axis X, when the wearer moves forward along the X axis.
  • the main section 2 has a cylindrical shape without being rotationally symmetrical about the main axis X.
  • the main section 2 is elongated along the main axis X.
  • the main axis X is central. It passes substantially through the centers of the sections of the main section 2, perpendicular to the axis X.
  • the main section 2 can be rotationally symmetrical about the main axis X or not.
  • the front tip 3 is orientable relative to the main section 2 only around the main axis X. In other words, the front tip 3 is mounted for rotation relative to the main section 2 only around the main axis X.
  • the optronic nacelle 1 comprises a drive device making it possible to drive the nose cone 3 in rotation around the main axis X, with respect to the main section 2.
  • the optronic core 4 is arranged in a volume VO delimited by the nose cone 3. We are not deliberately interested here in other optronic devices which could be installed outside the volume delimited by the nose cone 3.
  • the optronic core 4 is intended to transmit and/or acquire optical beams.
  • the optronic core 4 comprises a set of one or more optical channels for transmitting and/or acquiring optical radiation, along the same line of sight LDV.
  • Each optical channel of the optronic core 4 is intended to detect or emit optical beams in the visible range and/or in the near infrared or NIR range (referring to the Anglo-Saxon expression “Near InfraRed” , and/or in the Short Infrared or SWIR domain (with reference to the Anglo-Saxon expression “Short-Wave InfraRed”) and/or in the mid-infrared or MWIR domain (with reference to the Anglo-Saxon expression “Mid-Wave InfraRed”).
  • Each optical channel of the optronic core 4 therefore comprises either a detector making it possible to detect an optical beam in the wavelength range, or an emitter which is, for example, a laser source.
  • an orthogonal marker (C, x, y, z) integral with the nose cone 3 is defined.
  • the x axis is parallel to the main axis X.
  • the x axis is oriented towards the front, that is to say in the direction going from the main section 2 towards the front tip 3.
  • the line of sight LDV originates from an optronic center C located on the x axis.
  • the line of sight LDV In flight, the line of sight LDV must be able to be addressed in elevation and bearing in order, for example, to be able to follow a target.
  • the optronic core 4 comprises an orientation mechanism 5, materialized by a small dotted sphere located inside the sphere materializing the optronic core, making it possible to orient the line of sight LDV by relative to the front tip 3, by rotating the line of sight LDV around the axis y passing through the center C.
  • this makes it possible to modify an orientation of an orthogonal reference (C, x', z') passing through the point C, perpendicular to the y axis and linked to the optronic core 4, with respect to the reference ( C, x, y, z) by rotation around the y axis.
  • the x’ axis is the axis of the LDV line of sight.
  • the modification of the orientation of the line of sight LDV with respect to the front tip 3, around the axis y, varies the elevation angle of the line of sight LDV when the plane (x, y) is horizontal, i.e. parallel to sea level.
  • the orientation mechanism 5 comprises, for example, a motor, for example electric.
  • the orientation mechanism 5 possibly makes it possible to orient the line of sight LDV with respect to the nose cone 3, around the axis z′ with a smaller angular displacement than around the axis y.
  • the line of sight LDV is advantageously integral with the nose cone 3, in rotation around the axis X, with respect to the main section 2.
  • the line of sight LDV can be oriented with respect to the nose cone 3 in rotation around the x axis. This may be more favorable to certain optical paths depending on the viewing angle (elevation angle) addressed.
  • the line of sight LDV is rotatable around the axis x, with respect to the nose cone 3.
  • the canopy V can then, for example, be of the follower type and follow the rotational movements of LDV line of sight to main leg 1.
  • the nose cone 3 comprises a substantially planar canopy V defining a canopy plane.
  • the canopy V is configured and arranged, in particular oriented with respect to the axis X, so as to allow the detection and/or the emission of optical radiation by a first subset of at least one channel optics of the set of at least one optical path of the optronic core through the canopy V, when the line of sight LDV has a minimum sighting angle am and when it has a maximum sighting angle aM, the minimum sighting angle am and the maximum sighting angle aM being separated by an angle, formed around the y-axis, greater than or equal to 120° and less than 180°.
  • the minimum viewing angle am and the maximum viewing angle aM are defined with respect to the reference plane (x, y).
  • the sign of the angle a is positive counterclockwise and negative counterclockwise.
  • the maximum aiming angle aM is between -10° and 0° and the minimum aiming angle am is between -130° and -150°.
  • the canopy V is configured and arranged, in particular oriented with respect to the X axis, so as to allow the detection and/or the emission of optical radiation, through the canopy V, by the first subset of at least one optical channel, substantially over the whole of a sector of sight angles a, formed by the line of sight LDV around the axis y.
  • the angular sector has an angle of at least 120° and less than 180°.
  • the proposed configuration thus makes it possible to address very different negative elevation angles or a wide range of elevation angles ⁇ while limiting the aero-optical effects due to the turbulence generated in the areas neighboring the nose cone when the wearer is in flight, and which lead to degradation of optical performance.
  • FIG 4 there is shown the densities of air circulating around the nacelle 1 of Figures 2 and 3, when the optronic nacelle 1 moves along the X axis, forwards, at a speed such that the Mach number is 0.85 and at an altitude of 20,000 feet.
  • the canopy V forms a first angle of inclination equal to 15° with respect to the axis X.
  • the axis y is perpendicular to the plane of figure 4.
  • the proposed configuration makes it possible to address a wide range of negative elevation angles while significantly limiting, or even reducing eliminating wavefront degradations (other than degradations leading to "tilt” (angular offset) and defocusing) caused by breaks in the slopes between optical windows, responsible for the generation of fast stationary effects (shock wave) and unsteady effects by separation and recirculation of air flows.
  • This limitation of the degradation of the wave front leads to aero-optical aberrations which are limited to "tilt" and "focusing” defects for the elevation angles included in the range of viewing angles. These defects can be corrected, respectively, by angular readjustment of the line of sight and by re-focusing. This allows the size of the pupil or pupils of the optronic core 4 to be increased, thus making it possible to increase the range of the instrument.
  • the air separation was quantified by calculating the thickness between the wall and the surface where the air velocity U is equal to 99% of its velocity considered at l infinity, i.e. very far from the nacelle where the air flow is not disturbed being the air velocities relative to the nacelle along the respective axes x, y and z).
  • This thickness is between 4 mm and 8 mm in the center of the canopy over its entire length.
  • the thickness of the separation is of the order of 10 cm, under the same conditions, for the POD 100 optronic nacelle of figure 1. This means that the influence of the separation on the optical quality of a optronic nacelle according to the invention is extremely weak.
  • the canopy V according to the invention therefore makes it possible to carry out Air/Ground designation and Air/Ground reconnaissance over a wide range of elevation angles with a long range.
  • the canopy V In order to allow the emission and/or reception of optical radiation by a first subset of at least one of the optical channels of the optronic core 4, through the canopy V, the canopy V is transparent to optical radiation in the transmission and/or reception domain of each optical path of the first subset.
  • the canopy V forms, with the main axis X, a first angle of inclination y1 having an absolute value greater than or equal to 10°.
  • the first angle of inclination y1 is the angle formed between the plane of the canopy V and the main axis X, in the plane (X, z) which is the plane of figure 4.
  • the separation phenomenon becomes non-negligible.
  • the flow along the canopy V moves away from a laminar flow, turbulence reappears inducing a local unsteady index gradient deforming the wavefront.
  • a first angle of inclination y1 with an absolute value that is too high does not make it possible to address negative elevation angles with a high absolute value.
  • the absolute value of the first angle of inclination y1 is less than or equal to 20°.
  • This angle of inclination makes it possible to address negative elevation angles of high absolute value and therefore to ensure the aiming of an object sufficiently far to the rear of the nose cone 3.
  • this configuration makes it possible to address a wide range of elevation values while limiting the length of the canopy, which facilitates its industrial production, in particular, when it comprises a single optical window.
  • this configuration makes it possible to inscribe the canopy V in a cylinder of main axis X of diameter substantially equal to or slightly greater than that of the main section 2, which limits the aerodynamic drag of the optronic nacelle 1.
  • the absolute value of the first angle of inclination y1 is less than or equal to 15°.
  • the canopy V is arranged, in particular oriented with respect to the axis X, so as to allow the detection and/or transmission of optical radiation through the canopy V, by the first subset of at least one of the optical paths of the optronic core 4, only when the viewing angle a is negative or zero.
  • the canopy V extends, for example, on one side of the plane (x, y).
  • the canopy V extends on both sides of the plane (x, y) or the intersection between canopy V and the plane (x, z) extends on both sides of the plane (X, y) .
  • the canopy V comprises a single optical window allowing the detection and/or transmission of optical radiation through the optical window, by the first subset of at least one optical channel of the optronic core 4 .
  • This configuration is particularly advantageous because it makes it possible to avoid a difference in "prismaticity" between different optical windows and thus to avoid image duplication which is all the more troublesome as the angular field of the pixel or IFOV, acronym for Anglo-Saxon expression “Instantaneous-Field-Of-View", is weak and the wavelength is small. It also makes it possible to suppress the loss of coherence of the wavefront leading to a loss of MTF (modulation transfer function) in one direction.
  • MTF modulation transfer function
  • the canopy V which is substantially planar, comprises several coplanar optical windows.
  • This solution has the advantage of being more easily technically feasible than a canopy having a single optical window, i.e. having a one-piece substrate as we will see in the following text.
  • the front nose 3 comprises at least one so-called upper optical window 7.
  • the upper optical window 7 is arranged and configured so as to allow the detection and / or the emission of a optical radiation by a second subset of at least one optical channel of the set of at least one optical channel of the optronic core 4, through the upper optical window 7, for at least one positive viewing angle formed between the LDV line of sight and the reference plane, around the y axis. It therefore makes it possible to address positive elevation angles while the canopy V makes it possible to address negative elevation angles.
  • the upper optical window 7 then allows the sighting of aerial objects.
  • the optronic nacelle 1 is multimode. It allows navigation, identification, air/air reconnaissance, air/ground reconnaissance and designation with few stationary aero-optical effects and unsteady. These good performances make it possible to avoid having to use different optronic nacelles for the different modes. This solution is therefore economical due to its multi-mission aspect.
  • the upper optical window 7 advantageously extends on the other side of the plane (x, y) with respect to the canopy V.
  • the intersection between the canopy V and the plane (x, z) extends only on the other side of the plane (X, y) with respect to the upper optical window 7.
  • the upper optical window 7 is inclined with respect to the main axis X.
  • the upper optical window 7 forms, with the main axis X, a second angle of inclination y2 of opposite sign to the first angle of inclination y1.
  • This second angle is the angle formed by the plane of the upper optical window 7 with the main axis X in the plane (X, z).
  • the optronic nacelle 1 comprises a single upper optical window 7.
  • the optronic nacelle comprises several upper optical windows.
  • Each optical window has the shape of a substantially planar plate.
  • Each optical window comprises a substrate which is a one-piece substantially planar panel, which is, for example, made of sapphire.
  • Sapphire has the advantage of being transparent at lengths ranging from visible to mid-infrared (MWIR) and, in particular, in the mid-infrared range.
  • the substrate is a ceramic, for example, a spinel.
  • At least one optical window can comprise one or more coatings covering the substrate.
  • the optical window comprises, for example, an antireflection treatment comprising a monolayer or multilayer antireflection coating.
  • At least one optical window comprises a coating comprising an electromagnetic shielding grid making it possible to guarantee electromagnetic protection of the optronic core 4.
  • the canopy V and the upper optical window 7 are transparent in a spectral band allowing the detection and/or the emission, by at least one of the channels optics, of an optical radiation through them. They can be transparent in the same spectral band or in different spectral bands. They can allow the detection and/or the emission of optical radiation through them, by an optical path, several optical paths, for example, all the optical paths. They can be transparent in the same spectral band or be in different spectral bands so as to allow detection and/or emission by different optical paths.
  • the normal to the canopy V and/or the normal to the upper optical window 7 is inclined with respect to the plane (x, z). This inclination makes it possible to limit the Narcissus effect (retro-reflection on the window in the direction of the optronic sensor) when the LDV line of sight is located in the plane (x, z).
  • the first sub-assembly and the second sub-assembly each comprise at least one optical channel taken from the set of at least one optical channel of the optronic core 4.
  • the first sub-assembly and the second sub-assembly can each include one or more optical paths. These subsets can each correspond to the set of at least one optical channel of the optronic core 4.
  • at least one subset taken from the first subset and the second subset comprises only part of the optical channels of the optronic core 4, that is to say fewer optical channels than the set of optical channels of the optronic core 4, when the latter comprises several optical channels.
  • the first subset and the second subset can be identical or different.
  • the x axis is distant from the main axis X.
  • the x axis and the main axis X are combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Nacelle optronique (1) destinée à être embarquée sur un aéronef transsonique, la nacelle optronique (1) comprenant un tronçon principal (2) et une pointe avant (3) montée à rotation par rapport au tronçon principal (2) uniquement autour d'un axe principal X, la nacelle optronique (1) comprenant un cœur optronique (4) comprenant un ensemble d'au moins une voie optique, le cœur optronique (4) ayant une ligne de visée LDV orientable par rapport à la pointe avant (3) autour d'un axe y solidaire de la pointe avant (3) et perpendiculaire à l'axe principal X, la pointe avant (3) comprenant une verrière (V) sensiblement plane et inclinée par rapport à l'axe principal X, la verrière (V) étant disposée et configurée de façon à permettre la détection et/ou l'émission d'un rayonnement optique par un premier sous-ensemble d'au moins une voie optique de l'ensemble d'au moins une voie optique, au travers de la verrière (V), sensiblement sur la totalité d'un secteur angulaire, d'au moins 120° et de moins que 180°, formé par la ligne de visée LDV autour de l'axe y.

Description

DESCRIPTION
Titre de l’invention : Nacelle optronique
[0001] Le domaine de l’invention est celui des nacelles optroniques destinées à être installées sur un porteur transsonique ou supersonique de type avion de combat ou drone. L’invention concerne, en particulier, les nacelles optroniques de désignation laser et/ou de reconnaissance aérienne.
[0002] L’invention se rapporte, plus particulièrement, aux nacelles optroniques destinées à être fixées à un aéronef en emport externe, directement ou par l’intermédiaire d’un pylône. La nacelle optronique comprend une ou plusieurs fenêtres optiques, et un cœur optronique (ou dispositif optronique) comprenant une ou plusieurs voies optiques destinées à émettre et acquérir un rayonnement optique selon une même ligne de visée. L’invention se rapporte, plus particulièrement, aux senseurs optroniques fonctionnant dans le domaine optique, par exemple, dans le domaine du visible et/ou dans le domaine du proche Infrarouge ou NIR (en référence à l’expression anglo-saxonne « Near InfraRed », et/ou dans le domaine Infrarouge Court ou SWIR (en référence à l’expression anglo-saxonne «Short-Wave InfraRed ») et/ou dans le domaine de l’infrarouge moyen ou MWIR (en référence à l’expression anglo-saxonne «Mid-Wave InfraRed »).
[0003] On connaît des nacelles optroniques comprenant un capot dit « suiveur » ou « porteur » muni d’une ou plusieurs fenêtres optiques. Le capot « suiveur » ou « porteur » est asservi et motorisé de manière à permettre de transmettre, en permanence, des faisceaux optiques à travers la ou les fenêtres en suivant la direction de la ligne de visée. Toutefois, l’inclinaison de la ou des fenêtres optiques par rapport au flux d’air peut générer des effets aéro-optiques déformant le front d’onde, en particulier, lorsque la ligne de visée est tournée vers l’arrière par rapport au sens du déplacement de l’aéronef.
[0004] On connaît également des nacelles optroniques dites de type POD 100, dont un exemple est représenté en figure 1 , comprenant un tronçon principal 101. Une pointe avant 102 est mobile et motorisée en rotation par rapport au tronçon principal 101 uniquement autour d’un axe longitudinal central L du tronçon principal 101. La pointe avant 102 délimite un volume recevant un cœur optronique non visible en figure 1. La pointe avant 102 entraîne le cœur optronique en rotation par rapport au tronçon principal 101 autour de l’axe L.
[0005] La pointe avant 102 comprend deux fenêtres optiques 103 et 104 permettant, par leur positionnement et leur orientation, d’adresser notamment des angles d’élévation ae négatifs de la ligne de visée I du cœur optronique. La fenêtre première optique 103 s’étend sensiblement dans un plan parallèle à l’axe L et la deuxième fenêtre optique 104 est inclinée par rapport à l’axe L.
[0006] Une des difficultés des systèmes de désignation et/ou de reconnaissance en vol transsonique ou supersonique est la génération de perturbations aéro-optiques devant les pupilles du cœur optronique lorsque l’air dépasse une certaine vitesse. On estime qu’avec un nombre de Mach supérieur à 0,65, les effets aéro-optiques deviennent très perturbateurs pour des dispositifs d’imagerie fonctionnant dans les bandes spectrales à courte longueur d’onde (Visible, NIR et dans une moindre mesure SWIR).
[0007] Sur la figure 1 , on a représenté les densités d’air en nuance de gris (avec des contours d’iso-densité) circulant autour de la nacelle lorsqu’elle se déplace selon l’axe L vers l’avant (dans le sens de la flèche) à une altitude de 20000 pieds avec un nombre de Mach égal à 0,85. Plus la densité de l’air est élevée et plus le gris est foncé.
[0008] Cette figure montre la présence d’un décollement et d’une recirculation du flux d’air sous la première fenêtre optique 103. Ces phénomènes génèrent des effets aéro-optiques instationnaires.
[0009] La jonction entre les deux fenêtres 103 et 104 est également responsable d’un effet stationnaire rapide (onde de choc), visible en figure 1 , par une variation importante de la densité et donc de l’indice de réfraction de l’air devant les fenêtres optiques.
[0010] La présence d’un gradient d’indice devant une pupille du cœur optronique a pour conséquence de dégrader le front d’onde et de générer des aberrations optiques. Les premières aberrations correspondent à une aberration d’inclinaison appelée « tilt » et à des défauts de focalisation. Les suivantes sont l’astigmatisme et la Coma. Les deux premières aberrations sont facilement corrigeables au niveau du cœur optronique lorsque le gradient de densité optique est constant temporellement. En revanche, les deux aberrations suivantes sont difficilement corrigeables même lorsque le gradient d’indice est constant. Par ailleurs, dans le cas d’un décollement d’air, il y a une variation temporelle du gradient d’indice qui rend la correction des aberrations très difficile car elle doit être adaptée dynamiquement à chaque instant en fonction de la dégradation.
[0011] Les effets aéro-optiques stationnaires et instationnaires discutés en référence à la figure 1 conduisent à dégrader la qualité optique en déformant le front d’onde, ce qui a pour conséquence la dégradation de la fonction de transfert de modulation (FTM) des voies optiques et donc de la résolution de l’image, réduisant ainsi la portée de l’instrument optique. L’utilisation d’une grande pupille est rendue inutile si on ne limite pas les aberrations, sachant qu’une grande pupille est indispensable à l’obtention d’une longue portée puisqu’elle permet une grande finesse de la fonction d'étalement du point aussi appelée réponse impulsionnelle spatiale ou PSF (en référence à l’expression anglo-saxonne « Point Spread Function ») dans l’espace objet.
[0012] Par conséquent, l’agencement des fenêtres optiques représenté en figure 1 ne convient pas aux applications très longue portée.
[0013] Un but de l’invention est de limiter au moins un des inconvénients précités.
[0014] A cet effet, l’invention a pour objet une nacelle optronique destinée à être embarquée sur un aéronef transsonique ou supersonique, la nacelle optronique comprenant un tronçon principal et une pointe avant montée à rotation par rapport au tronçon principal uniquement autour d’un axe principal X, la nacelle optronique comprenant un cœur optronique comprenant un ensemble d’au moins une voie optique, le cœur optronique ayant une ligne de visée LDV orientable par rapport à la pointe avant autour d’un axe y solidaire de la pointe avant et perpendiculaire à l’axe principal X, la pointe avant comprenant une verrière sensiblement plane et inclinée par rapport à l’axe principal X, la verrière étant disposée et configurée de façon à permettre la détection et/ou l’émission d’un rayonnement optique par un premier sous-ensemble d’au moins une voie optique de l’ensemble d’au moins une voie optique au travers de la verrière, sensiblement sur la totalité d’un secteur angulaire, d’au moins 120° et de moins que 180°, formé par la ligne de visée LDV autour de l’axe y. [0015] Avantageusement, le secteur angulaire s’étend depuis un angle de visée minimal compris entre -130° et -150° jusqu’à un angle de visée maximal compris entre 0° et -10°, l’angle de visée minimal et l’angle de visée maximal étant formés entre la ligne de visée LDV et un plan de référence définit par l’axe y et un axe x parallèle à l’axe principal X.
[0016] Avantageusement, la nacelle optronique comprend une fenêtre optique supérieure disposée et configurée de façon à permettre la détection et/ou l’émission d’un rayonnement optique par un deuxième sous-ensemble de l’ensemble d’au moins une voie optique, au travers de la fenêtre optique supérieure, lorsque la ligne de visée LDV forme un angle de visée positif avec le plan de référence.
[0017] Avantageusement, la verrière forme un premier angle d’inclinaison, compris entre 10°et 20°, avec l’axe x.
[0018] Avantageusement, la ligne de visée LDV est solidaire de la pointe avant, en rotation autour de l’axe principal X.
[0019] Dans un premier mode de réalisation, la verrière comprend une unique fenêtre optique.
[0020] Dans un deuxième mode de réalisation, la verrière comprend plusieurs fenêtres optiques coplanaires.
[0021] D’autres caractéristiques, détails et avantages de l’invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d’exemple et qui représentent, respectivement :
[0022] [Fig.1 ] la figure 1 , déjà décrite illustre, en nuances de gris, les densités d’air et contours d’iso-densité circulant autour d’une nacelle optronique de l’art antérieur, lorsqu’elle se déplace selon son axe longitudinal vers l’avant (dans le sens de la flèche), à une altitude de 20000 pieds avec un nombre de Mach égal à 0,85,
[0023] [Fig.2] la figure 2 est une représentation schématique, en perspective, d’un exemple de nacelle optronique selon l’invention,
[0024] [Fig.3] la figure 3 est une représentation schématique, en vue de côté, de la nacelle optronique de la figure 2,
[0025] [Fig.4] la figure 4 illustre de façon schématique, en coupe dans un plan radial, la nacelle optronique des figures 2 et 3 et, en nuances de gris, des densités d’air et contours d’iso-densité circulant autour de cette nacelle, lorsqu’elle se déplace selon son axe principal vers l’avant (dans le sens de la flèche) à une altitude de 20000 pieds avec un nombre de Mach égal à 0,85.
[0026] D’une figure à l’autre, les mêmes éléments sont repérés par les mêmes références.
[0027] La figure 2 représente schématiquement, en vue perspective, une nacelle optronique 1 selon l’invention.
[0028] La nacelle optronique 1 selon l’invention est destinée à être installée sur un porteur aérien transsonique ou supersonique apte à se déplacer à une vitesse telle que son nombre de Mach soit supérieur à 0,65.
[0029] La nacelle optronique 1 peut être fixée à un porteur directement ou par l'intermédiaire d'un pylône aux moyens d'attaches.
[0030] La nacelle optronique 1 comprend un tronçon principal 2 qui est sensiblement un cylindre de révolution autour d’un axe X, appelé axe principal dans la suite du texte, et une pointe avant 3 située dans le prolongement du tronçon principal 2 selon l’axe principal X.
[0031] La pointe avant 3 est une partie axiale du corps de la nacelle optronique 1. La pointe avant 3 délimite un volume VO interne recevant un cœur optronique 4 de la nacelle optronique 1. Le cœur optronique 4 est matérialisé par une sphère partiellement visible en figure 2.
[0032] La pointe avant 3 est destinée à se trouver devant le tronçon principal 2, selon l’axe principal X, lorsque le porteur se déplace vers l’avant selon l’axe X.
[0033] En variante, le tronçon principal 2 présente une forme cylindrique sans être à symétrie de révolution autour de l’axe principal X.
[0034] De façon plus générale, le tronçon principal 2 est allongé selon l’axe principal X. L’axe principal X est central. Il passe sensiblement par les centres des sections du tronçon principal 2, perpendiculaires à l’axe X. Le tronçon principal 2 peut être à symétrie de révolution autour de l’axe principal X ou non.
[0035] La pointe avant 3 est orientable par rapport au tronçon principal 2 uniquement autour de l’axe principal X. Autrement dit, la pointe avant 3 est montée à rotation par rapport au tronçon principal 2 uniquement autour de l’axe principal X. [0036] La nacelle optronique 1 comprend un dispositif d’entraînement permettant d’entraîner la pointe avant 3 en rotation autour de l’axe principal X, par rapport au tronçon principal 2.
[0037] Le cœur optronique 4 est disposé dans un volume VO délimité par la pointe avant 3. On ne s’intéresse pas ici volontairement à d’autres dispositifs optroniques qui pourraient être installés en dehors du volume délimité par la pointe avant 3.
[0038] Le cœur optronique 4 est destiné à émettre et/ou acquérir des faisceaux optiques.
[0039] Le cœur optronique 4 comprend un ensemble d’une ou plusieurs voies optiques d’émission et/ou d’acquisition d’un rayonnement optique, selon une même ligne de visée LDV.
[0040] Chaque voie optique du cœur optronique 4 est destinée à détecter ou à émettre des faisceaux optiques dans le domaine du visible et/ou dans le domaine du proche Infrarouge ou NIR (en référence à l’expression anglo-saxonne « Near InfraRed », et/ou dans le domaine Infrarouge Court ou SWIR (en référence l’expression anglo-saxonne «Short-Wave InfraRed ») et/ou dans le domaine de l’infrarouge moyen ou MWIR (en référence à l’expression anglo-saxonne «Mid-Wave InfraRed »).
[0041] Chaque voie optique du cœur optronique 4 comprend donc, soit un détecteur permettant de détecter un faisceau optique dans le domaine de longueur d’ondes, soit un émetteur qui est, par exemple, une source laser.
[0042] Comme visible en figure 3, on définit un repère orthogonal (C, x, y, z) solidaire de la pointe avant 3. L’axe x est parallèle à l’axe principal X. L’axe x est orienté vers l’avant, c’est-à-dire dans le sens allant du tronçon principal 2 vers la pointe avant 3. La ligne de visée LDV a pour origine un centre optronique C situé sur l’axe x.
[0043] En vol, la ligne de visée LDV doit pouvoir être adressée en élévation et en gisement afin, par exemple, de pouvoir suivre une cible.
[0044] A cet effet, le cœur optronique 4 comprend un mécanisme d’orientation 5, matérialisé par une petite sphère en pointillés située à l’intérieure de la sphère matérialisant le cœur optronique, permettant d’orienter la ligne de visée LDV par rapport à la pointe avant 3, en faisant tourner la ligne de visée LDV autour de l’axe y passant par le centre C.
[0045] Cela modifie un angle de visée a qui est l’angle orienté, formé entre la ligne de visée et le plan (x, y), autour de l’axe y.
[0046] Autrement dit, cela permet de modifier une orientation d’un repère orthogonal (C, x’, z’) passant par le point C, perpendiculaire à l’axe y et lié au cœur optronique 4, par rapport au repère (C, x, y, z) par rotation autour de l’axe y. L’axe x’ est l’axe de la ligne de visée LDV.
[0047] La modification de l’orientation de la ligne de visée LDV par rapport à la pointe avant 3, autour de l’axe y, fait varier l’angle d’élévation de la ligne de visée LDV lorsque le plan (x, y) est horizontal, c’est-à-dire parallèle au niveau de la mer.
[0048] Le mécanisme d’orientation 5 comprend, par exemple, un moteur, par exemple électrique.
[0049] Le mécanisme d’orientation 5 permet éventuellement d’orienter la ligne de visée LDV par rapport à la pointe avant 3, autour de l’axe z’ avec un plus petit débattement angulaire qu’autour de l’axe y.
[0050] La ligne de visée LDV est, avantageusement, solidaire de la pointe avant 3, en rotation autour de l’axe X, par rapport au tronçon principal 2.
[0051] En variante, la ligne de visée LDV est orientable par rapport à la pointe avant 3 en rotation autour de l’axe x. Cela peut être plus favorable à certaines voies optiques selon l’angle de visée (angle d’élévation) adressé.
[0052] En variante, la ligne de visée LDV est mobile en rotation autour de l’axe x, par rapport à la pointe avant 3. La verrière V peut alors, par exemple, être du type suiveuse et suivre les mouvements de rotation de la ligne de visée LDV par rapport au tronçon principal 1.
[0053] Selon l’invention, la pointe avant 3 comprend une verrière V sensiblement plane définissant un plan de verrière.
[0054] La verrière V est configurée et disposée, notamment orientée par rapport à l’axe X, de façon à permettre la détection et/ou l’émission d’un rayonnement optique par un premier sous-ensemble d’au moins une voie optique de l’ensemble d’au moins une voie optique du cœur optronique au travers de la verrière V, lorsque la ligne de visée LDV présente un angle de visée minimal am et lorsqu’elle présente un angle de visée maximal aM, l’angle de visée minimal am et l’angle de visée maximal aM étant séparés d’un angle, formé autour de l’axe y, supérieur ou égal à 120° et inférieur à 180°.
[0055] On définit l’angle de visée minimal am et l’angle de visée maximal aM par rapport au plan de référence (x, y).
[0056] Le signe de l’angle a est positif dans le sens trigonométrique et négatif dans le sens inverse du sens trigonométrique.
[0057] L’angle de visée maximal aM est compris entre -10° et 0° et l’angle de visée minimal am est compris entre -130° et -150°.
[0058] Avantageusement, la verrière V est configurée et disposée, notamment orientée par rapport à l’axe X, de façon à permettre la détection et/ou l’émission d’un rayonnement optique, au travers de la verrière V, par le premier sous-ensemble d’au moins une voie optique, sensiblement sur la totalité d’un secteur d’angles de visée a, formés par la ligne de visée LDV autour de l’axe y. Le secteur angulaire présente un angle d’au moins 120° et de moins que 180°.
[0059] La configuration proposée permet ainsi d’adresser des angles d’élévation négatifs très différents ou un large intervalle d’angles d’élévation a tout en limitant les effets aéro-optiques dus aux turbulences générées dans les zones voisines de la pointe avant lorsque le porteur est en vol, et qui entraînent des dégradations de performances optiques.
[0060] En figure 4, on a représenté les densités d’air circulant autour de la nacelle 1 des figures 2 et 3, lorsque la nacelle optronique 1 se déplace selon l’axe X, vers l’avant, à une vitesse telle que le nombre de Mach est de 0,85 et à une altitude de 20 000 pieds. Dans la réalisation de la figure 4, la verrière V forme un premier angle d’inclinaison égal à 15° par rapport à l’axe X. L’axe y est perpendiculaire au plan de la figure 4.
[0061] On n’observe pas, sur la figure 4, de zones de décollement des filets d’air sous la verrière V. Par ailleurs, le gradient de densité d’air est sensiblement constant sur toute la surface de la verrière V et faible par rapport au gradient observé en figure 1. Autrement dit, la configuration proposée permet d’adresser une large plage d’angles d’élévation négatifs tout en limitant de façon significative, voire en supprimant les dégradations du front d’onde (autres que des dégradations conduisant à du « tilt » (offset angulaire) et à de la dé-focalisation) causées par des ruptures de pentes entre fenêtres optiques, responsables de la génération d’effets stationnaires rapides (onde de choc) et d’effets instationnaires par décollement et recirculation des flux d’airs. Cette limitation de la dégradation du front d’onde conduit à des aberrations aéro-optiques qui se limitent à des défauts de « tilt » et de « focalisation » pour les angles d’élévation compris sur la plage d’angles de visée. Ces défauts peuvent être corrigés, respectivement, par recalage angulaire de la ligne de visée et par re-focalisation. Cela autorise l’augmentation de la taille de la ou des pupilles du cœur optronique 4 permettant ainsi d’augmenter la portée de l’instrument.
[0062] A partir des résultats de la figure 4, on a quantifié le décollement d’air en calculant l’épaisseur entre la paroi et la surface où la vitesse de l’air U est égale à 99% de sa vitesse considérée à l’infini, c’est-à-dire très loin de la nacelle où l’écoulement d’air n’est pas perturbé
Figure imgf000011_0001
étant les vitesses de l’air par rapport à la nacelle selon les axes respectifs x, y et z). Cette épaisseur est comprise entre 4 mm et 8 mm au centre de la verrière sur toute sa longueur. Il est à noter que l’épaisseur du décollement est de l’ordre de 10 cm, dans les mêmes conditions, pour la nacelle optronique POD 100 de la figure 1. Cela signifie que l’influence du décollement sur la qualité optique d’une nacelle optronique selon l’invention est extrêmement faible. En effet, on considère qu’une épaisseur inférieure au centimètre n’a pas d’influence sur la qualité optique même dans la bande spectrale du visible. La verrière V selon l’invention permet donc de réaliser de la désignation Air/Sol et de la reconnaissance Air/Sol sur une large plage d’angles d’élévation avec une longue portée.
[0063] Le fait de prévoir une verrière V sensiblement plane, permettant d’adresser des angles d’élévation a négatifs espacés d’au moins 120° permet de limiter des aberrations liées à une différence d’indice entre des fenêtres optiques.
[0064] Elle permet également de limiter les risques de dédoublement d’image induits par une différence de pression entre l’intérieur et l’extérieur du volume délimité par la pointe avant 3.
[0065] Afin de permettre l’émission et/ou la réception d’un rayonnement optique par un premier sous-ensemble d’au moins une des voies optiques du cœur optronique 4, au travers de la verrière V, la verrière V est transparente à un rayonnement optique dans le domaine d’émission et/ou de réception de chaque voie optique du premier sous-ensemble.
[0066] Avantageusement comme représenté en figure 4, la verrière V forme, avec l’axe principal X, un premier angle d’inclinaison y1 présentant une valeur absolue supérieure ou égal à 10°.
[0067] Le premier angle d’inclinaison y1 est l’angle formé entre le plan de la verrière V et l’axe principal X, dans le plan (X, z) qui est le plan de la figure 4.
[0068] Il est à noter que lorsque le premier angle d’inclinaison y1 présente une valeur absolue inférieure ou égale à 10°, le phénomène de décollement devient non négligeable. L’écoulement le long de la verrière V s’éloigne d’un écoulement laminaire, des turbulences réapparaissent induisant un gradient d’indice instationnaire local déformant le front d’onde.
[0069] Un premier angle d’inclinaison y1 de valeur absolue trop élevée ne permet pas d’adresser des angles d’élévation négatifs de valeur absolue élevée.
[0070] Avantageusement, la valeur absolue du premier angle d’inclinaison y1 est inférieure ou égale à 20°. Cet angle d’inclinaison permet d’adresser des angles d’élévation négatifs de valeur absolue élevée et donc d’assurer la visée d’un objet suffisamment loin vers l’arrière de la pointe avant 3. Par ailleurs, cette configuration permet d’adresser une large plage de valeurs d’élévation tout en limitant la longueur de la verrière, ce qui facilite sa réalisation industrielle, en particulier, lorsqu’elle comprend une unique fenêtre optique. En outre cette configuration permet d’inscrire la verrière V dans un cylindre d’axe principal X de diamètre sensiblement égal ou légèrement supérieur à celui du tronçon principal 2 ce qui limite la traînée aérodynamique de la nacelle optronique 1.
[0071] De préférence, la valeur absolue du premier angle d’inclinaison y1 est inférieure ou égal à 15°.
[0072] Dans la réalisation des figures, la verrière V est disposée, notamment orientée par rapport à l’axe X, de façon à permettre la détection et/ou la transmission d’un rayonnement optique à travers la verrière V, par le premier sous-ensemble d’au moins une des voie optique du cœur optronique 4, uniquement lorsque l’angle de visée a est négatif ou nul. [0073] A cet effet, la verrière V s’étend, par exemple, d’un seul côté du plan (x, y).
[0074] En variante, la verrière V s’étend des deux côtés du plan (x, y) ou l’intersection entre verrière V et le plan (x, z) s’étend des deux côtés du plan (X, y).
[0075] Avantageusement, la verrière V comprend une unique fenêtre optique permettant la détection et/ou la transmission d’un rayonnement optique au travers de la fenêtre optique, par le premier sous-ensemble d’au moins une voie optique du cœur optronique 4.
[0076] Cette configuration est particulièrement avantageuse car elle permet d’éviter une différence de « prismaticité » entre différentes fenêtres optiques et ainsi éviter un dédoublement d’image d’autant plus gênant que le champ angulaire du pixel ou IFOV, acronyme de l’expression anglo-saxonne « Instantaneous-Field-Of-View », est faible et que la longueur d’onde est petite. Elle permet également de supprimer la perte de cohérence du front d’onde conduisant à une perte de FTM (fonction de transfert de modulation) dans une direction.
[0077] En variante, la verrière V, sensiblement plane, comprend plusieurs fenêtres optiques coplanaires. Cette solution présente l’avantage d’être plus facilement réalisable techniquement qu’une verrière présentant une unique fenêtre optique, c’est-à-dire présentant un substrat monobloc comme nous le verrons dans la suite du texte.
[0078] Dans la réalisation des figures 2 à 4, la pointe avant 3 comprend au moins une fenêtre optique dite supérieure 7. La fenêtre optique supérieure 7 est disposée et configurée de façon à permettre la détection et/ou l’émission d’un rayonnement optique par un deuxième sous-ensemble d’au moins une voie optique de l’ensemble d’au moins une voie optique du cœur optronique 4, au travers de la fenêtre optique supérieure 7, pour au moins un angle de visée positif formé entre la ligne de visée LDV et le plan de référence, autour de l’axe y. Elle permet donc d’adresser des angles d’élévation positifs alors que la verrière V permet d’adresser des angles d’élévation négatifs. La fenêtre optique supérieure 7 permet alors la visée d’objets aériens.
[0079] Ainsi, la nacelle optronique 1 est multimode. Elle permet de faire de la navigation, de l’identification, de la reconnaissance air/air, de la reconnaissance et de la désignation air/sol avec peu d’effets aéro-optiques stationnaires et instationnaires. Ces bonnes performances permettent d’éviter d’avoir à utiliser des nacelles optroniques différentes pour les différents modes. Cette solution est donc économique par son aspect multi-missions.
[0080] La fenêtre optique supérieure 7 s’étend, avantageusement, de l’autre côté du plan (x, y) par rapport à la verrière V.
[0081] Avantageusement, mais non nécessairement, l’intersection entre la verrière V et le plan (x, z) s’étend uniquement de l’autre côté du plan (X, y) par rapport à la fenêtre optique supérieure 7.
[0082] La fenêtre optique supérieure 7 est inclinée par rapport à l’axe principal X. Avantageusement, la fenêtre optique supérieure 7 forme, avec l’axe principal X, un deuxième angle d’inclinaison y2 de signe opposé au premier angle d’inclinaison y1. Ce deuxième angle est l’angle formé par le plan de la fenêtre optique supérieure 7 avec l’axe principal X dans le plan (X, z).
[0083] Dans la réalisation des figures, la nacelle optronique 1 comprend une unique fenêtre optique supérieure 7. En variante, la nacelle optronique comprend plusieurs fenêtres optiques supérieures.
[0084] Chaque fenêtre optique présente une forme d’une plaque sensiblement plane.
[0085] Chaque fenêtre optique comprend un substrat qui est un panneau sensiblement plan monobloc, qui est, par exemple, en saphir. Le Saphir présente l’avantage d’être transparent à des longueurs allant du visible à l’infrarouge moyen (MWIR) et, en particulier, dans le domaine de l’infrarouge moyen. En variante, le substrat est une céramique, par exemple, un spinelle.
[0086] Avantageusement, au moins une fenêtre optique peut comprendre un ou plusieurs revêtements recouvrant le substrat. La fenêtre optique comprend, par exemple, un traitement antireflet comprenant un revêtement antireflet monocouche ou multicouche.
[0087] Avantageusement, au moins une fenêtre optique comprend un revêtement comprenant une grille de blindage électromagnétique permettant de garantir une protection électromagnétique du cœur optronique 4.
[0088] La verrière V et la fenêtre optique supérieure 7 sont transparentes dans une bande spectrale permettant la détection et/ou l’émission, par au moins une des voies optiques, d’un rayonnement optique au travers d’elles. Elles peuvent être transparentes dans une même bande spectrale ou dans des bandes spectrales différentes. Elles peuvent permettre la détection et/ou l’émission d’un rayonnement optique au travers d’elles, par une voie optique, plusieurs voies optiques, par exemple, toutes les voies optiques. Elles peuvent être transparentes dans une même bande spectrale ou être dans des bandes spectrales différentes de façon à permettre la détection et/ou l’émission par des voies optiques différentes.
[0089] Avantageusement, la normale à la verrière V et/ou la normale à la fenêtre optique supérieure 7 est inclinée par rapport au plan (x, z). Cette inclinaison permet de limiter l’effet Narcisse (rétro-réflexion sur la fenêtre en direction du capteur optronique) lorsque la ligne de visée LDV est située dans le plan (x, z).
[0090] Le premier sous-ensemble et le deuxième sous-ensemble comprennent chacun au moins une voie optique prise dans l’ensemble d’au moins une voie optique du cœur optronique 4. Le premier sous-ensemble et le deuxième sous- ensemble peuvent chacun comprendre une ou plusieurs voies optiques. Ces sous- ensembles peuvent chacun correspondre à l’ensemble d’au moins une voie optique du cœur optronique 4. En variante, au moins un sous-ensemble pris parmi le premier sous-ensemble et le deuxième sous-ensemble comprend seulement une partie des voies optiques du cœur optronique 4, c’est-à-dire moins de voies optiques que l’ensemble de voies optiques du cœur optronique 4, lorsque ce dernier comprend plusieurs voies optiques. Le premier sous-ensemble et le deuxième sous-ensemble peuvent être identiques ou différents.
[0091] Sur la réalisation des figures 2 à 4, l’axe x est distant de l’axe principal X. En variante, l’axe x et l’axe principal X sont confondus.

Claims

REVENDICATIONS
1. Nacelle optronique (1) destinée à être embarquée sur un aéronef transsonique ou supersonique, la nacelle optronique (1) comprenant un tronçon principal (2) et une pointe avant (3) montée à rotation par rapport au tronçon principal (2) uniquement autour d’un axe principal X, la nacelle optronique (1) comprenant un cœur optronique (4) comprenant un ensemble d’au moins une voie optique, le cœur optronique (4) ayant une ligne de visée LDV orientable par rapport à la pointe avant (3) autour d’un axe y solidaire de la pointe avant (3) et perpendiculaire à l’axe principal X, la pointe avant (3) comprenant une verrière (V) sensiblement plane et inclinée par rapport à l’axe principal X, la verrière (V) étant disposée et configurée de façon à permettre la détection et/ou l’émission d’un rayonnement optique par un premier sous- ensemble d’au moins une voie optique de l’ensemble d’au moins une voie optique, au travers de la verrière (V), sensiblement sur la totalité d’un secteur angulaire, d’au moins 120° et de moins que 180°, formé par la ligne de visée LDV autour de l’axe y.
2. Nacelle optronique (1) selon la revendication précédente, dans laquelle le secteur angulaire s’étend depuis un angle de visée minimal (am) compris entre -130° et -150° jusqu’à un angle de visée maximal (aM) compris entre 0° et -10°, l’angle de visée minimal et l’angle de visée maximal étant formés entre la ligne de visée LDV et un plan de référence défini par l’axe y et un axe x parallèle à l’axe principal X.
3. Nacelle optronique (1) selon l’une quelconque des revendications 1 à 2, comprenant une fenêtre optique supérieure (7) disposée et configurée de façon à permettre la détection et/ou l’émission d’un rayonnement optique par un deuxième sous-ensemble d’au moins une voie optique de l’ensemble d’au moins une voie optique, au travers de la fenêtre optique supérieure (7), lorsque la ligne de visée LDV forme un angle de visée positif avec le plan de référence.
4. Nacelle optronique (1) selon l’une quelconque des revendications 1 à 3, dans laquelle la verrière (V) forme un premier angle d’inclinaison (y1) compris entre 10°et 20° avec l’axe x.
5. Nacelle optronique (1) selon l’une quelconque des revendications 1 à 4, dans laquelle la ligne de visée LDV est solidaire de la pointe avant (3), en rotation autour de l’axe principal X.
6. Nacelle optronique (1) selon l’une quelconque des revendications 1 à 5, dans laquelle la verrière (V) comprend une unique fenêtre optique.
7. Nacelle optronique (1) selon l’une quelconque des revendications 1 à 5, dans laquelle la verrière (V) comprend plusieurs fenêtres optiques coplanaires.
PCT/EP2021/065689 2020-07-17 2021-06-10 Nacelle optronique WO2022012824A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007501A FR3112620B1 (fr) 2020-07-17 2020-07-17 Nacelle optronique
FRFR2007501 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022012824A1 true WO2022012824A1 (fr) 2022-01-20

Family

ID=74045508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/065689 WO2022012824A1 (fr) 2020-07-17 2021-06-10 Nacelle optronique

Country Status (2)

Country Link
FR (1) FR3112620B1 (fr)
WO (1) WO2022012824A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717822A (en) * 1986-08-04 1988-01-05 Hughes Aircraft Company Rosette scanning surveillance sensor
US20120111992A1 (en) * 2010-11-10 2012-05-10 Lockheed Martin Corporation Vehicle having side portholes and an array of fixed eo imaging sub-systems utilizing the portholes
EP3169968A1 (fr) * 2014-07-14 2017-05-24 Raytheon Company Système de fenêtre optique doté de lames conductrices aéro-optiques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717822A (en) * 1986-08-04 1988-01-05 Hughes Aircraft Company Rosette scanning surveillance sensor
US20120111992A1 (en) * 2010-11-10 2012-05-10 Lockheed Martin Corporation Vehicle having side portholes and an array of fixed eo imaging sub-systems utilizing the portholes
EP3169968A1 (fr) * 2014-07-14 2017-05-24 Raytheon Company Système de fenêtre optique doté de lames conductrices aéro-optiques

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOOKHEED MARTIN: "Sniper Pod Combat Proven, Multi-Mission Capable Lockheed Martin Corporation Missiles and Fire Control Business Development", 1 January 2013 (2013-01-01), XP055840986, Retrieved from the Internet <URL:https://web.archive.org/web/20131014094741if_/http://www.lockheedmartin.com/content/dam/lockheed/data/mfc/pc/sniper-pod/mfc-sniper-pc.pdf> [retrieved on 20210914] *
UHL B: "RecceLite tactical reconnaissance pod", PROCEEDINGS OF SPIE, IEEE, US, vol. 4492, 30 July 2001 (2001-07-30), pages 92 - 102, XP008022820, ISBN: 978-1-62841-730-2, DOI: 10.1117/12.451123 *

Also Published As

Publication number Publication date
FR3112620B1 (fr) 2022-10-21
FR3112620A1 (fr) 2022-01-21

Similar Documents

Publication Publication Date Title
FR3031807A1 (fr) Senseur stellaire diurne et nocturne a polarisateur actif
EP1456706B1 (fr) Combinaison optique multichamp de type cassegrain
WO2005066024A1 (fr) Systeme optronique modulaire embarquable sur un porteur
EP2385411B1 (fr) Procédé de correction de défauts d&#39; aberrations au sein d&#39;un dispositif optique d&#39; observation d&#39;un champ à travers une fenêtre
EP0702246B1 (fr) Dispositif embarquable de mesure de rétrodiffusion de lumière
WO2022012824A1 (fr) Nacelle optronique
EP3084507B1 (fr) Module optique d&#39;imagerie a champ hyper-hemispherique et distorsion controlee, compatible d&#39;un environnement exterieur
EP2811319B1 (fr) Système optique de mesure d&#39;orientation et de position à source ponctuelle, masque central, capteur matriciel photosensible et coin de cube
EP2929284B1 (fr) Dispositif optronique
EP2508836B1 (fr) Tête pour autodirecteur de missile, et autodirecteur correspondant
EP3465321A1 (fr) Drone adapté a la vision d&#39;une scène eloignée
EP0433160B1 (fr) Equipement optoélectronique aéroporté, d&#39;identification et de localisation, avec hublot à facettes compensé
EP1203978B1 (fr) Equipment optique destiné à être aéroportés
FR2897165A1 (fr) Optique grand angle dans le spectre infrarouge
WO2020127688A1 (fr) Dispositif de detection optique d&#39;un engin volant autoguide
FR2944593A1 (fr) Tete autodirectrice comportant au moins deux voies de detection distinctes, et missile comportant une telle tete
FR3090125A1 (fr) Système lidar compact
EP2936798B1 (fr) Procede d&#39;imagerie d&#39;une cible dans un ciel de nuit
WO2024089367A1 (fr) Télescope de schmidt à performances améliorées, dispositifs et procédé de détection associés
EP0482987B1 (fr) Dispositif de visée compact à grand débattement angulaire pour équipement optronique de localisation et d&#39;acquisition de cible
FR3122262A1 (fr) Télescope compact pour la détection de débris spatiaux
FR3121759A1 (fr) Télescope bi-champ catadioptrique
FR3090136A1 (fr) Téléscope à champ de vue amélioré
FR2973892A1 (fr) Systeme de conduite infrarouge stereoscopique a profondeur de champ augmentee
FR2969273A1 (fr) Conduite de tir bi-spectrale pour projectile autopropulse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21730248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21730248

Country of ref document: EP

Kind code of ref document: A1