WO2022011688A1 - Connecting application to multiple concurrent network slicing instances - Google Patents

Connecting application to multiple concurrent network slicing instances Download PDF

Info

Publication number
WO2022011688A1
WO2022011688A1 PCT/CN2020/102716 CN2020102716W WO2022011688A1 WO 2022011688 A1 WO2022011688 A1 WO 2022011688A1 CN 2020102716 W CN2020102716 W CN 2020102716W WO 2022011688 A1 WO2022011688 A1 WO 2022011688A1
Authority
WO
WIPO (PCT)
Prior art keywords
application
rsdcs
ursp
processor
network slicing
Prior art date
Application number
PCT/CN2020/102716
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/102716 priority Critical patent/WO2022011688A1/en
Publication of WO2022011688A1 publication Critical patent/WO2022011688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to connecting applications to network slicing instances.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a network slice selection policy (also referred to herein as a UE route selection policy ( “USRP” ) is a descriptor defined in the 5G NR 3GGP wireless network standard that, among other functions, associates various policies with, and partitions network resources among, different types of applications.
  • a user equipment relies on the NSSP/URSP, for example, to connect applications to network slicing instances.
  • the NSSP/URSP descriptor can only associate a single application running on a network device to a single network slicing instance. The network consequently cannot support UE connections of applications to multiple network slicing instances.
  • many of these applications have significant data bandwidth requirements and needs for numerous other network features that cannot be adequately supported by a single network slice.
  • a method, a computer-readable medium, and an apparatus are provided.
  • the method includes receiving at a UE a request for data from an application at a remote device, determining that a URSP enables concurrent connections of the application to different network slicing instances, and connecting the application concurrently to the different network slicing instances.
  • the method includes a base station provisioning a UE with a URSP comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  • RSDCs route selection descriptor components
  • the computer-readable medium includes code that when executed by at least one processor of a UE, causes the at least one processor to receive a request for data from an application at a remote device, determine that a URSP enables concurrent connections of the application to different network slicing instances, and connect the application concurrently to the different network slicing instances.
  • the computer-readable medium includes code that when executed by at least one processor of a base station, causes the at least one processor to provision a UE with a URSP comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  • RSDCs route selection descriptor components
  • the apparatus includes a UE.
  • the UE includes a memory having a URSP stored therein, at least one processor coupled to the memory and configured to receive a request for data from an application at a remote device, determine that the URSP enables concurrent connections of the application to different network slicing instances, and connect the application concurrently to the different network slicing instances.
  • a UE in another aspect, includes means for receiving a request for data from an application at a remote device, means for determining that a URSP enables concurrent connections of the application to different network slicing instances, and means for connecting the application concurrently to the different network slicing instances.
  • a base station in another aspect, includes a memory, and at least one processor coupled to the memory and configured to provision a UE with a URSP including a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  • RSDCs route selection descriptor components
  • a base station includes means for provisioning a UE with a URSP including a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  • RSDCs route selection descriptor components
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a timing diagram illustrating the base station provisioning a UE with a URSP and the UE connecting an application to network slicing instances responsive to a data request.
  • FIG. 5 is a conceptual diagram of modified network rules for enabling a UE to concurrently connect an application to different network slicing instances.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a flowchart of a method of wireless communication.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an example UE.
  • FIG. 9 is a diagram illustrating an example of a hardware implementation for an example base station.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” .
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180/UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180/UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the base station 102/180 may include an NSSP provisioning component 199 for provisioning a UE with NSSP/URSP rules.
  • This includes establishing rules for applications including identifying one or more traffic selectors, e.g., that may identify an application running on a remote device.
  • a “remote device” is any type of computing apparatus or group thereof, including one or more UEs, servers, workstations, PCs, tablets, smart phones, or other platforms on which an application (or application suite) can run.
  • the device is “remote” means for purposes herein that the computing device that includes the running application is physically separate from both the base station that provisions URSP rules for use by a UE, and the UE that configures the provisioned URSP rules for the application or that provides data services for the application, or that otherwise inter-operates with the application as described further below.
  • the NSSP provision component 199 may, based on NSSP policy information received from the network and UE configuration information received from UE transmissions, provision a UE with URSP rules that use various components to identify applications, rules, and slicing instances as further described herein. This information can be transmitted to one or more UEs in the region.
  • a UE 104 may include URSP determining component 198 (1) , an RSDC analyzing component 198 (2) , and an application connecting component 198 (3) . These components may include overlapping functions and in some configurations may be part of a single component or a larger set of sub-components.
  • a UE that receives a data service request from an application may identify the URSP rule (s) specified for the application. Having identified the URSP rule (s) corresponding to the application, the UE may thereupon use the RSDC analyzing component 198 (2) to identify and interpret the route selection descriptors for the application.
  • Each of the route selection descriptors may include one or more route selection descriptor components (RSDCs) needed for the application.
  • Each of the RSDCs may, in turn, identify a network slice type.
  • a network slice is a logical network partitioned from a larger physical network. The logical network may use physical components and resources from the network that are necessary to implement a pre-determined service quality or set of requirements requested by a specific application, for example.
  • the UE 104 of FIG. 1 may further include an application connecting component 198(3) .
  • the UE 104 that received (via a base station) the request for data service from the application may have concluded based on its previous analysis in RSDC analyzing component 198 (2) , that the application is configured to concurrently connect with more than one network slicing instances.
  • a network slicing instance is an active network slice and its associated resources (e.g., for enabling storage and networking activities, for example. )
  • the UE 104 may use the application connection component 198 (3) to concurrently connect the application to these different network slicing instances, thereby according the application with the resource it may need to provide effective data transfers and to perform at a maximum efficiency level.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/ decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with header
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 (1) , (2) and (3) of FIG. 1. Further, at least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 199 of FIG. 1
  • the route selection descriptor in the NSSP (URSP) policy is used by the UE to connect applications to NW slicing instances.
  • network slicing in 5G allows network service providers to provide different services, e.g., to accommodate different needs of customers.
  • a set of core network functions can be defined for each network slice. Resources in the cloud infrastructure can be assigned to different network slices. Thereafter, the network slices can be distributed and assigned to different entities in a network.
  • Certain more popular applications have complex and flexible data service requests that often require different capabilities, depending on factors like the number of users, the direction of the transmission (uplink versus downlink) , the bandwidth involved in a given transmission or group thereof, the amount of precision or accuracy required in a transmission, and timing requirements, among others.
  • Examples include cloud-based virtual reality (VR) applications, live 4K streaming, search engines, chat-based applications, e-mail applications, and the like.
  • VR virtual reality
  • specifically-tailored network slices with complementary functional capabilities may be necessary for the applications to provide multiple functions at a high level, such as providing very high bandwidth on the downlink channels while also providing robust and low-latency uplink communications.
  • VR also benefits from these complementary requirements given its reliance on low-latency uplink data from the UE, since providing small corrections in position by the UE may be common in VR and similar applications.
  • Wechat is a Chinese multi-purpose messaging, social media, and mobile payment application.
  • Wechat has over one million 3 rd party smaller applications running as part of its infrastructure.
  • the diverse nature of its integrated gaming, e-payment, banking, video and other services requires it to effectively run as a miniature operating system.
  • applications similar to Wechat can be made possible in a network environment by allowing them to connect to multiple types of network services while the applications are running.
  • an examples of such a network service includes ultra-reliable low-latency communications (uRLLC) .
  • uRLLC provides the capability for extremely fast, low latency, near real-time applications, including grant-free uplink transmissions ideal for applications that rely on fast uplinks and real-time functionality.
  • Another network service that provides different, but equally important, capabilities is the Enhanced Mobile Broadband (eMMB) .
  • eMMB Enhanced Mobile Broadband
  • 5G NR A significant limitation, however, with the existing 5G NR technologies is that NSSP/URSP are incapable of coupling single applications to multiple network slicing instances. As a result, the above applications cannot leverage the capabilities of more than one network slicing instance, and the above-described benefits are currently not attainable. These limitations of 5G NR extend beyond eMMB and uRLLC and are applicable to the remaining types of network slices.
  • FIG. 4 is a timing diagram 400 illustrating the base station 404 provisioning a UE 402 with a URSP and the UE 402 connecting an application to network slicing instances responsive to a data request.
  • An application may be running at device 406, which is remote (separate) from base station 404 and UE 402.
  • Device 406 may include its own resource pool, including a separate cloud network 412 and database 410.
  • device 406 may in fact represent a number of network servers, and database 410 may be distributed, e.g., as a SAN (storage area network) or similar configuration.
  • Application 406 may, as indicated in block 414, receive short or sporadic uplink requests and send high bandwidth downlink responses. While these actions are merely illustrative in nature, they may represent that the application is a network-based gaming application (or the like) where small correctional moves are quickly being effected on the uplink, and entire scenes are being reproduced using high-speed downlink streams to account for the positional variance, for example. It will be appreciated that other network resources may result in entirely different benefits, and these different benefits may be provided by different types of network slices.
  • a public land mobile network may initially provision UE 402 with a NSSP (interchangeably referenced for purposes herein as URSP) . Since the provisioning information is passed to the base station 404, for purposes of FIG. 4 the base station 404 initially provisions the UE 402 with its capabilities. It will be appreciated that, while base station 404 transmits to the UE 402 the URSP rules, the URSP rules may originate from other network entities of the PLMN or from the 5G core network. According to one aspect of the disclosure, the base station 404 provisions the UE 402 with NSSP (URSP) rules and an RSDC-specific concurrency value to enable the UE to connect a detected application to one or more identified network slicing instances, as described in block 412. Thus the base station 404 provides the UE 402 with a one or more of these provisioning messages 416 over a downlink channel.
  • the URSP information is stored in a memory at UE 402.
  • the application at the remote device 406 sends a data service request 418 to UE 402.
  • the data service request is forwarded to the base station 404 (or equivalently, the base station that is currently within the range of UE 402, which for purposes of simplification that base station and base station 404 are one in the same) .
  • the base station 404 provides the data service request 418, which enables the UE 402 to detect the presence of the application on the network, It will be appreciated that the data service request 418 for purposes of this disclosure can be any request that requires any data, provided only that the signal is sufficient to alert the UE 402 with identifying data of the application sending the transmission 418, so that the UE 402 can subsequently correlate the identifying data with matching traffic descriptor in a URSP.
  • the impetus is now on the UE 402 to configure the network rules of the application.
  • the UE evaluates, for the detected application, the URSP rules in the order of precedence and looks to the traffic descriptor in each URSP rule to identify if the application matches the URSP rule. This is shown in part in block 422.
  • the UE 402 begins to evaluate the route selection descriptors and more specifically the route selection descriptor components (RSDC) therein.
  • RSDC route selection descriptor components
  • the UE 402 may perform the evaluation to matching RSDCs in the order of precedence. A matching RSDC may be found using this procedure. It is at this point that the current standard falls short by restricting the capability of the UE 402 such that the UE 402 can only associate the detected application with a single network slicing instance.
  • the UE 402 reviews the corresponding octet bit value of each S-NSSAI entry (see also FIG. 5) found in a single RSDC to identify the associated network slice.
  • the RSDC may include along with the various entries (including the S-NSSAI entry) a concurrency entry (or entry of like terminology) .
  • the concurrency entry for a given RSDC having a particular S-NSSAI value indicates whether the network slice identified in the S-NSSAI field is to be connected to the application by the UE 402 concurrently with one or more network slices in the RSDC of one or more respective other route selection descriptors in the URSP rule.
  • the application may be connected to the network slicing instances identified in the S-NSSAI octet field for all RSDCs with a network slice for which the concurrency value is set to “true. ” Conversely, if the concurrency bit is set to false or 0, the UE 402 will not connect the application to more than one network slicing instance. Instead, for a false concurrency value, the UE may connect the application with a network slicing instance of an RSDC (if more than one) using the most preferred connection, or using some other criterion.
  • the UE 402 may concurrently connect the application to both the uRLLC and eMMB network slicing instances. This is in contrast to the current solution, in which 3GGP Release 16 lacks a concurrency component, and in fact emphasizes that no more than one such connection can be made. Release 16 states:
  • the UE determines that there is more than one existing PDU session which matches (e.g. the selected Route Selection Descriptor only specifies the Network Slice Selection, while there are multiple existing PDU Sessions matching the Network Slice Selection with different DNNs) , it is up to the UE implementation to select one of them to use . ”
  • three or more network slicing instances can optionally be concurrently used to provide further functional resources to the application.
  • the concurrency term is included in the RSDC in the present disclosure
  • the concurrency of two or more network slicing instances may be established using other rules.
  • a block may be provided in the URSP rule that separately specifies rules for concurrent connections.
  • Still other techniques may be used to implement what in effect is the same procedure –the ability for such applications to exploit the diversity of needed network resources to most effectively achieve their respective goals, rather than limiting the disclosure by the illustrative words or the exemplary rules that are construed to achieve the objectives disclosed herein.
  • the UE 402 transmits a response 420 via the base station 404 to the application at the remote device 406 in which the UE 402 identifies the concurrent connection of the application to the different network slicing instances.
  • the response 420 may include additional instructions relevant to the concurrent connection, or specific to the UE 402.
  • the UE and application may proceed to exchange signals 422 that may include data and requests to perform the objectives of the application.
  • the application may now use the associated network slicing instances that provide the application with the additional services and features.
  • a plurality of applications can be treated in a similar manner, concurrently using a plurality of network slicing applications.
  • FIG. 5 is a conceptual diagram of exemplary modified network rules for enabling a UE to concurrently connect an application to different network slicing instances.
  • the specification describes that the UE evaluates the URSP rules in the order of rule precedence and determines whether they have a traffic descriptor that matches the application.
  • the specification also reviews the route selection descriptor within the matching URSP rule and then determines whether an existing PDU session matches all components of the RSDC.
  • the specification describes that the UE shall select a route selection descriptor within the URSP rule in the order of the set precedence.
  • Table 540 in FIG. 5 illustrates a conventional URSP rule from Fig. 5.2.2 of the 3GGP TS 24.526 specification (ver. 16.3, March 2020) .
  • URSP 540 includes various fields using octets to provide informational bits for each field, such as the exemplary octet 542. In alternative configurations, a different (larger or smaller) number of bits can be used.
  • Various attributes of the URSP rule are described including length and precedence of the URSP rule, the traffic descriptor 504 which identifies the detected application, and a route selection descriptor list 531.
  • route selection descriptor list 531 The details of route selection descriptor list 531 are shown in block 568, which identifies using the octet field 542 a plurality of route selection descriptors 538 (1) - (m) . As noted, the UE reviews the route selection descriptors 538 (1) - (m) in an order of precedence until a valid route selection descriptor 538 is found.
  • Each route selection descriptor e.g., 538 (1) is broken down into blocks 538 (x) that include further values. For example the length and precedence of the route selection descriptor are listed for each route selection descriptor 538 (1) -m in the URSP field. Also, the length of the route selection descriptor contents as well as the route selection descriptor contents 534 themselves are included. Arrow 535 points to an example of a route selection descriptor component 538 within the route selection descriptor contents according to an aspect of the disclosure. Included in the RSDC is S-NSSAI type 560 or the “Singe-Network Slice Selection Assistance Information” type which may identify the network slice (e.g., uRLLC) .
  • a concurrency field may be included.
  • an additional route selection descriptor 538 may match the application and include an eMMB type and a concurrency 537 value of true.
  • Still other RSDCs 538 corresponding to other route selection descriptors e.g., 538 (2)
  • the PLMN via base station 404, provisions UE 402 with an NSSP/URSP that identifies “Wechat. ”
  • the URSP may have two route selection descriptors A and B, each of which includes an RSDC having a concurrency component with a true value.
  • Wechat thereupon requests data service from UE 402.
  • UE 402 checks URSP, e.g., in a manner described above, and therefore checks RSDCs A and B.
  • RSDCs A and B indicate network slices for uRLLC and eMMB, respectively.
  • UE 402 then connects Wechat to uRLLC and eMMB network slices concurrently.
  • FIG. 5 and the examples above demonstrate the connection of multiple network slices to an application using a specific techniques
  • different techniques may be used to achieve the same objective. Those techniques are therefore deemed to fall within the scope of the disclosure.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • the UE receives, via a base station, a data service request on a wireless network (NW) from an application running on a remote device.
  • NW wireless network
  • the UE identifies the NSSP/URSP that has a traffic selector field that matches the information received from the application.
  • the UE determines that the URSP/NSSP enables concurrent connections of the application to different NW slicing instance.
  • the UE connects the application concurrently to the different NW slicing instances corresponding to the different NW slices.
  • the UE may then transmit, via the base station to the application at the remote device, a response identifying the connection of the different NW slicing instances.
  • FIG. 6 further discloses an embodiment of step 604 –namely, the manner of determining that the URSP is configured to enable concurrent connections to different slicing instances.
  • the UE locates a URSP in a memory coupled to its processor (which may be more than one processor) a traffic descriptor component corresponding to, or identifying, the application.
  • the URSP may be located in a logical memory location where the information was previously stored during the original provisioning of the application by the network.
  • the UE identifies in the located URSP two or more route selection descriptors which respectively include two or more route selection descriptor components (RSDCs) .
  • Each of the RSDCs may include a single-network slice selection assistance information (S-NSSAI) identifier that identifies a different NW slice.
  • S-NSSAI single-network slice selection assistance information
  • the UE may further identify that the two or more RSDCs corresponding to the application and including the two NW slices include a concurrency field. If the concurrency value is not true for at least two or more different NW slices (616) , the UE will proceed to connect the application to a NW slicing instance corresponding to a highest priority route selection descriptor, for example, or it may use some other pre-established criterion to assess which NW slicing instance will be connected to the application. Conversely, if the concurrency value is true for the two or more different slices (616) , control is then passed to step 606, and the UE proceeds to connect the application to the two or more different slicing instances.
  • FIG. 7 is a flowchart of a method of wireless communication.
  • a base station (which may be a base station 102/180 of FIG. 1, or the base station of FIGS, 3-5) receives, from a network entity, one or more messages from the network entity that includes provisioning information for a UE, where the provisioning information relates to an application running on a remote device.
  • the base station provisions the UE with an NSSP/URSP that includes two or more RSDCs, such that each of the RSDCs have an S-NSSAI identifier that identifies a network slice for enabling the application to concurrently connect with a plurality of corresponding network slices, .
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802.
  • the apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818.
  • the cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 804 may include a computer-readable medium/memory.
  • the computer-readable medium/memory may be non-transitory.
  • the cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software.
  • the cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834.
  • the communication manager 832 includes the one or more illustrated components.
  • the components within the communication manager 832 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 804.
  • the cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforementioned additional modules of the apparatus 802.
  • the communication manager 832 includes a UE-resource selection determining component (URSP) 840 that is configured to review the URSPs in its memory to identify the URSP that corresponds to a signal, information about which was received from the reception component 830, where the signal was received from an application at a remote device, e.g., as described in connection with step 602 of FIG.
  • URSP UE-resource selection determining component
  • the communication manager 832 further includes an RSDC analyzing component 842 that receives input in the form of the relevant URSP and application identifying information from the component 840 and is configured to review the different route selection descriptors and to identify the route selection descriptor components that identify a network slice and that have a true concurrency value, e.g., as described in connection with steps 604, 610, 612, 614 and 616 of FIG. 6.
  • the communication manager 832 further includes an application connecting component 844 that receives input in the form of the network slices and the concurrency values from the component 840 and is configured to connect the application concurrently to each of the network slicing instances having a true value, e.g., as described in connection with step 606 of FIG. 6.
  • the communication manager 832 further includes an application responding component 846 that receives input in the form of the connected network slicing instances from component 844 and that is configured to transmit a response to the application identifying that the UE has connected the application to the relevant network slicing instances.
  • an application responding component 846 that receives input in the form of the connected network slicing instances from component 844 and that is configured to transmit a response to the application identifying that the UE has connected the application to the relevant network slicing instances.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIG. 6. As such, each block in the aforementioned flowcharts of FIG. 6 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 802 includes means for receiving a request for data from an application at a remote device, means for determining that a UE-route selection policy (URSP) enables concurrent connections of the application to different network slicing instances, means for connecting the application concurrently to the different network slicing instances, and means for transmitting, to the application at the remote device, a response identifying the connections of the application to the different network slicing instances.
  • URSP UE-route selection policy
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902.
  • the apparatus 902 is a BS and includes a baseband unit 904.
  • the baseband unit 904 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 904 may include a computer-readable medium/memory.
  • the baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 904 when executing software.
  • the baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934.
  • the communication manager 932 includes the one or more illustrated components.
  • the components within the communication manager 932 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 904.
  • the baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 932 includes a component 940 that is configured to receive from a network entity an NSSP/URSP policy relating to a particular application, e.g., as described in connection with step 702 of FIG. 7.
  • the communication manager 932 further includes a UE configuration component 942 that is generally configured to store information relating the UE and the specific configuration of the UE.
  • the communication manager 932 further includes an NSSP provisioning component 944 that receives input in the form of the current UE configuration from component 942 and the NSSP/URSP concerning a particular application and is configured to provision the UE with the received URSP information about the application, e.g., as described in connection with step 704 of FIG. 7.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIG. 7. As such, each block in the aforementioned flowcharts of FIG. 7 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 902 includes means for provisioning a user equipment (UE) with a UE-route selection policy (URSP) comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means.
  • the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

The present disclosure provides aspects for a UE to receive a request for data from an application at a remote device, determine that a UE-route selection policy (URSP) enables concurrent connections of the application to different network slicing instances, and connect the application concurrently to the different network slicing instances. In other aspects, the network can provision a UE with a URSP comprising a plurality of route selection descriptor components (RSDCs), each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances. This ability to connect an application to multiple network slicing instances enhances the utility of network applications by providing complementary network resources to support the different demands of a given application.

Description

CONNECTING APPLICATION TO MULTIPLE CONCURRENT NETWORK SLICING INSTANCES BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to connecting applications to network slicing instances.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
A network slice selection policy ( “NSSP” ) (also referred to herein as a UE route selection policy ( “USRP” ) ) is a descriptor defined in the 5G NR 3GGP wireless network standard that, among other functions, associates various policies with, and partitions network resources among, different types of applications. A user equipment (UE) relies on the NSSP/URSP, for example, to connect applications to network slicing instances. In the conventional URSP configuration, the NSSP/URSP descriptor can only associate a single application running on a network device to a single network slicing instance. The network consequently cannot support UE connections of applications to multiple network slicing instances. However, many of these applications have significant data bandwidth requirements and needs for numerous other network features that cannot be adequately supported by a single network slice.
Accordingly, in an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The method includes receiving at a UE a request for data from an application at a remote device, determining that a URSP enables concurrent connections of the application to different network slicing instances, and connecting the application concurrently to the different network slicing instances.
In another aspect, the method includes a base station provisioning a UE with a URSP comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
The computer-readable medium includes code that when executed by at least one processor of a UE, causes the at least one processor to receive a request for data from an application at a remote device, determine that a URSP enables concurrent  connections of the application to different network slicing instances, and connect the application concurrently to the different network slicing instances.
In another aspect, the computer-readable medium includes code that when executed by at least one processor of a base station, causes the at least one processor to provision a UE with a URSP comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
The apparatus includes a UE. The UE includes a memory having a URSP stored therein, at least one processor coupled to the memory and configured to receive a request for data from an application at a remote device, determine that the URSP enables concurrent connections of the application to different network slicing instances, and connect the application concurrently to the different network slicing instances.
In another aspect, a UE includes means for receiving a request for data from an application at a remote device, means for determining that a URSP enables concurrent connections of the application to different network slicing instances, and means for connecting the application concurrently to the different network slicing instances.
In another aspect, a base station includes a memory, and at least one processor coupled to the memory and configured to provision a UE with a URSP including a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
In another aspect, a base station includes means for provisioning a UE with a URSP including a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative,  however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a timing diagram illustrating the base station provisioning a UE with a URSP and the UE connecting an application to network slicing instances responsive to a data request.
FIG. 5 is a conceptual diagram of modified network rules for enabling a UE to concurrently connect an application to different network slicing instances.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a flowchart of a method of wireless communication.
FIG. 8 is a diagram illustrating an example of a hardware implementation for an example UE.
FIG. 9 is a diagram illustrating an example of a hardware implementation for an example base station.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be  practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes  computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a  traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” . The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180/UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180/UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and  initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber  station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the base station 102/180 may include an NSSP provisioning component 199 for provisioning a UE with NSSP/URSP rules. This includes establishing rules for applications including identifying one or more traffic selectors, e.g., that may identify an application running on a remote device. For the purpose of this disclosure, a “remote device” is any type of computing apparatus or group thereof, including one or more UEs, servers, workstations, PCs, tablets, smart phones, or other platforms on which an application (or application suite) can run. The fact that the device is “remote” means for purposes herein that the computing device that includes the running application is physically separate from both the base station that provisions URSP rules for use by a UE, and the UE that configures the provisioned URSP rules for the application or that provides data services for the application, or that otherwise inter-operates with the application as described further below.
The NSSP provision component 199 may, based on NSSP policy information received from the network and UE configuration information received from UE transmissions, provision a UE with URSP rules that use various components to identify applications, rules, and slicing instances as further described herein. This information can be transmitted to one or more UEs in the region.
The UEs can store this URSP information in memory, can subsequently use the stored information to configure applications using the required rules, and can associate the applications with network resources as permitted by these rules. For example, a UE 104 may include URSP determining component 198 (1) , an RSDC analyzing component 198 (2) , and an application connecting component 198 (3) . These components may include overlapping functions and in some configurations may be part of a single component or a larger set of sub-components.
Using the URSP determining component 198 (1) , for example, a UE that receives a data service request from an application may identify the URSP rule (s) specified for the application. Having identified the URSP rule (s) corresponding to the application, the UE may thereupon use the RSDC analyzing component 198 (2) to identify and interpret the route selection descriptors for the application. Each of the route selection descriptors may include one or more route selection descriptor  components (RSDCs) needed for the application. Each of the RSDCs may, in turn, identify a network slice type. In general, a network slice is a logical network partitioned from a larger physical network. The logical network may use physical components and resources from the network that are necessary to implement a pre-determined service quality or set of requirements requested by a specific application, for example.
The UE 104 of FIG. 1 may further include an application connecting component 198(3) . The UE 104 that received (via a base station) the request for data service from the application may have concluded based on its previous analysis in RSDC analyzing component 198 (2) , that the application is configured to concurrently connect with more than one network slicing instances. A network slicing instance is an active network slice and its associated resources (e.g., for enabling storage and networking activities, for example. ) The UE 104 may use the application connection component 198 (3) to concurrently connect the application to these different network slicing instances, thereby according the application with the resource it may need to provide effective data transfers and to perform at a maximum efficiency level.
Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3  being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts  (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system  information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/ decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX  processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC  SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 (1) , (2) and (3) of FIG. 1. Further, at least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 199 of FIG. 1
In the current 3GPP Technical Specification for 5G NR (Release 16) , the route selection descriptor in the NSSP (URSP) policy is used by the UE to connect applications to NW slicing instances. As discussed above, network slicing in 5G allows network service providers to provide different services, e.g., to accommodate different needs of customers. A set of core network functions can be defined for each network slice. Resources in the cloud infrastructure can be assigned to  different network slices. Thereafter, the network slices can be distributed and assigned to different entities in a network.
Certain more popular applications have complex and flexible data service requests that often require different capabilities, depending on factors like the number of users, the direction of the transmission (uplink versus downlink) , the bandwidth involved in a given transmission or group thereof, the amount of precision or accuracy required in a transmission, and timing requirements, among others. Examples include cloud-based virtual reality (VR) applications, live 4K streaming, search engines, chat-based applications, e-mail applications, and the like. For these kinds of higher-profile applications, specifically-tailored network slices with complementary functional capabilities may be necessary for the applications to provide multiple functions at a high level, such as providing very high bandwidth on the downlink channels while also providing robust and low-latency uplink communications. VR also benefits from these complementary requirements given its reliance on low-latency uplink data from the UE, since providing small corrections in position by the UE may be common in VR and similar applications.
As another illustration, Wechat is a Chinese multi-purpose messaging, social media, and mobile payment application. Wechat has over one million 3 rd party smaller applications running as part of its infrastructure. The diverse nature of its integrated gaming, e-payment, banking, video and other services requires it to effectively run as a miniature operating system. Because of their diverse nature and differing network needs, applications similar to Wechat can be made possible in a network environment by allowing them to connect to multiple types of network services while the applications are running.
In 5G NR, an examples of such a network service includes ultra-reliable low-latency communications (uRLLC) . As the name suggests, uRLLC provides the capability for extremely fast, low latency, near real-time applications, including grant-free uplink transmissions ideal for applications that rely on fast uplinks and real-time functionality. Another network service that provides different, but equally important, capabilities is the Enhanced Mobile Broadband (eMMB) . Instead of precision and low latency, eMMB services concentrate on providing high bandwidth services that can permit extremely high network throughput. Thus, for high-bandwidth streaming and virtual reality applications described above, among many  others, eMMB complements uRLLC by combining high-bandwidth capability with precise, low-latency network communications. Thus, applications like the above examples that require both low latency uplink capability and fast downlink speeds would benefit greatly by exploiting both services concurrently.
A significant limitation, however, with the existing 5G NR technologies is that NSSP/URSP are incapable of coupling single applications to multiple network slicing instances. As a result, the above applications cannot leverage the capabilities of more than one network slicing instance, and the above-described benefits are currently not attainable. These limitations of 5G NR extend beyond eMMB and uRLLC and are applicable to the remaining types of network slices.
Accordingly, in one aspect of the disclosure, techniques for enabling a UE to connect an application to multiple concurrent network slicing instances are disclosed. To this end, FIG. 4 is a timing diagram 400 illustrating the base station 404 provisioning a UE 402 with a URSP and the UE 402 connecting an application to network slicing instances responsive to a data request. An application may be running at device 406, which is remote (separate) from base station 404 and UE 402. Device 406 may include its own resource pool, including a separate cloud network 412 and database 410. For larger, social media applications for example, device 406 may in fact represent a number of network servers, and database 410 may be distributed, e.g., as a SAN (storage area network) or similar configuration. Application 406 may, as indicated in block 414, receive short or sporadic uplink requests and send high bandwidth downlink responses. While these actions are merely illustrative in nature, they may represent that the application is a network-based gaming application (or the like) where small correctional moves are quickly being effected on the uplink, and entire scenes are being reproduced using high-speed downlink streams to account for the positional variance, for example. It will be appreciated that other network resources may result in entirely different benefits, and these different benefits may be provided by different types of network slices.
A public land mobile network (PLMS) may initially provision UE 402 with a NSSP (interchangeably referenced for purposes herein as URSP) . Since the provisioning information is passed to the base station 404, for purposes of FIG. 4 the base station 404 initially provisions the UE 402 with its capabilities. It will be appreciated that, while base station 404 transmits to the UE 402 the URSP rules, the  URSP rules may originate from other network entities of the PLMN or from the 5G core network. According to one aspect of the disclosure, the base station 404 provisions the UE 402 with NSSP (URSP) rules and an RSDC-specific concurrency value to enable the UE to connect a detected application to one or more identified network slicing instances, as described in block 412. Thus the base station 404 provides the UE 402 with a one or more of these provisioning messages 416 over a downlink channel. The URSP information is stored in a memory at UE 402.
Thereupon, the application at the remote device 406 sends a data service request 418 to UE 402. The data service request is forwarded to the base station 404 (or equivalently, the base station that is currently within the range of UE 402, which for purposes of simplification that base station and base station 404 are one in the same) . The base station 404 provides the data service request 418, which enables the UE 402 to detect the presence of the application on the network, It will be appreciated that the data service request 418 for purposes of this disclosure can be any request that requires any data, provided only that the signal is sufficient to alert the UE 402 with identifying data of the application sending the transmission 418, so that the UE 402 can subsequently correlate the identifying data with matching traffic descriptor in a URSP.
Having previously been provisioned with the URSP rules by the base station 404, the impetus is now on the UE 402 to configure the network rules of the application. As is initially characteristic of the current versions of the 5G NR specification (see TS 23.. 503 § 6.6.2.3) , the UE evaluates, for the detected application, the URSP rules in the order of precedence and looks to the traffic descriptor in each URSP rule to identify if the application matches the URSP rule. This is shown in part in block 422. Thereupon, referring still to 422, the UE 402 begins to evaluate the route selection descriptors and more specifically the route selection descriptor components (RSDC) therein. The UE 402 may perform the evaluation to matching RSDCs in the order of precedence. A matching RSDC may be found using this procedure. It is at this point that the current standard falls short by restricting the capability of the UE 402 such that the UE 402 can only associate the detected application with a single network slicing instance.
Referring still to block 422 of FIG. 4, the UE 402 reviews the corresponding octet bit value of each S-NSSAI entry (see also FIG. 5) found in a single RSDC to  identify the associated network slice. In various aspects of the disclosure, the RSDC may include along with the various entries (including the S-NSSAI entry) a concurrency entry (or entry of like terminology) . According to these configurations, the concurrency entry for a given RSDC having a particular S-NSSAI value indicates whether the network slice identified in the S-NSSAI field is to be connected to the application by the UE 402 concurrently with one or more network slices in the RSDC of one or more respective other route selection descriptors in the URSP rule. If the concurrency value is set to 1 or “true” or is otherwise activated, the application may be connected to the network slicing instances identified in the S-NSSAI octet field for all RSDCs with a network slice for which the concurrency value is set to “true. ” Conversely, if the concurrency bit is set to false or 0, the UE 402 will not connect the application to more than one network slicing instance. Instead, for a false concurrency value, the UE may connect the application with a network slicing instance of an RSDC (if more than one) using the most preferred connection, or using some other criterion.
For example, if two RSDCs are identified with uRLLC and eMMB, respectively, and the concurrency value of both RSDCs is enabled (i.e., set to true) , then the UE 402 may concurrently connect the application to both the uRLLC and eMMB network slicing instances. This is in contrast to the current solution, in which 3GGP Release 16 lacks a concurrency component, and in fact emphasizes that no more than one such connection can be made. Release 16 states:
“If the UE determines that there is more than one existing PDU session which matches (e.g. the selected Route Selection Descriptor only specifies the Network Slice Selection, while there are multiple existing PDU Sessions matching the Network Slice Selection with different DNNs) ,  it is  up to the UE implementation to select one of them to use. ”
TS 23.503 § 6.6.2.3 (emphasis added) .
While the current aspects of this disclosure are described by using a concurrency component in the RSDC, it should be understood that these implementations are purely exemplary in nature and a number of other configurations may have equal effect without departing from the spirit and scope of the present disclosure. For example, as indicated, any suitable term may be substituted for the “concurrency” term, which is used here to indicate that the connections or associations of the  application to two or more network slicing instances are (at least in part) temporally overlapping. Thus, the use of the concurrently nomenclature is not required but rather only indicates this overlap in connection or association by the network to more than one slicing element, and another word or phrase may be used with equal suitability.
In other implementations, three or more network slicing instances can optionally be concurrently used to provide further functional resources to the application.
As another example, while the concurrency term is included in the RSDC in the present disclosure, in other configurations, for example, the concurrency of two or more network slicing instances may be established using other rules. For example, a block may be provided in the URSP rule that separately specifies rules for concurrent connections. Still other techniques may be used to implement what in effect is the same procedure –the ability for such applications to exploit the diversity of needed network resources to most effectively achieve their respective goals, rather than limiting the disclosure by the illustrative words or the exemplary rules that are construed to achieve the objectives disclosed herein.
Referring still to FIG. 4, the UE 402 transmits a response 420 via the base station 404 to the application at the remote device 406 in which the UE 402 identifies the concurrent connection of the application to the different network slicing instances. In one configuration the response 420 may include additional instructions relevant to the concurrent connection, or specific to the UE 402. Thereupon, the UE and application may proceed to exchange signals 422 that may include data and requests to perform the objectives of the application. In this case, the application may now use the associated network slicing instances that provide the application with the additional services and features. In one implementation, a plurality of applications can be treated in a similar manner, concurrently using a plurality of network slicing applications.
FIG. 5 is a conceptual diagram of exemplary modified network rules for enabling a UE to concurrently connect an application to different network slicing instances.
In general, in 5G NR, the specification describes that the UE evaluates the URSP rules in the order of rule precedence and determines whether they have a traffic descriptor that matches the application. The specification also reviews the  route selection descriptor within the matching URSP rule and then determines whether an existing PDU session matches all components of the RSDC. The specification describes that the UE shall select a route selection descriptor within the URSP rule in the order of the set precedence.
Table 540 in FIG. 5 illustrates a conventional URSP rule from Fig. 5.2.2 of the 3GGP TS 24.526 specification (ver. 16.3, March 2020) . URSP 540 includes various fields using octets to provide informational bits for each field, such as the exemplary octet 542. In alternative configurations, a different (larger or smaller) number of bits can be used. Various attributes of the URSP rule are described including length and precedence of the URSP rule, the traffic descriptor 504 which identifies the detected application, and a route selection descriptor list 531. The details of route selection descriptor list 531 are shown in block 568, which identifies using the octet field 542 a plurality of route selection descriptors 538 (1) - (m) . As noted, the UE reviews the route selection descriptors 538 (1) - (m) in an order of precedence until a valid route selection descriptor 538 is found.
Each route selection descriptor, e.g., 538 (1) is broken down into blocks 538 (x) that include further values. For example the length and precedence of the route selection descriptor are listed for each route selection descriptor 538 (1) -m in the URSP field. Also, the length of the route selection descriptor contents as well as the route selection descriptor contents 534 themselves are included. Arrow 535 points to an example of a route selection descriptor component 538 within the route selection descriptor contents according to an aspect of the disclosure. Included in the RSDC is S-NSSAI type 560 or the “Singe-Network Slice Selection Assistance Information” type which may identify the network slice (e.g., uRLLC) . As noted, in an aspect of the disclosure, a concurrency field may be included. In one configuration, the concurrency field can use the present octet field to indicate “00000001” for concurrency = true, for example, or “0000000” for concurrency = false. Other variations are possible.
Separate from route selection descriptor 1 (538 (1) ) in which uRLLC may be identified as the S-NSSAI type, an additional route selection descriptor 538 (X) may match the application and include an eMMB type and a concurrency 537 value of true. Still other RSDCs 538 corresponding to other route selection descriptors (e.g., 538 (2) ) may include yet another network slice type with a concurrency 537 value of  true. The UE can connect all of these network slicing types to the application corresponding to the traffic descriptor 504.
Thus, for example, the PLMN, via base station 404, provisions UE 402 with an NSSP/URSP that identifies “Wechat. ” The URSP may have two route selection descriptors A and B, each of which includes an RSDC having a concurrency component with a true value. Wechat thereupon requests data service from UE 402. UE 402 checks URSP, e.g., in a manner described above, and therefore checks RSDCs A and B. RSDCs A and B indicate network slices for uRLLC and eMMB, respectively. UE 402 then connects Wechat to uRLLC and eMMB network slices concurrently.
While FIG. 5 and the examples above demonstrate the connection of multiple network slices to an application using a specific techniques, in other networks different techniques may be used to achieve the same objective. Those techniques are therefore deemed to fall within the scope of the disclosure.
FIG. 6 is a flowchart of a method of wireless communication. At step 602, the UE (such as the UE of FIGs. 1, 3, 4 and 5 for example) receives, via a base station, a data service request on a wireless network (NW) from an application running on a remote device. The UE identifies the NSSP/URSP that has a traffic selector field that matches the information received from the application. Thereupon, at step 604, the UE determines that the URSP/NSSP enables concurrent connections of the application to different NW slicing instance.
Accordingly, at step 606, the UE connects the application concurrently to the different NW slicing instances corresponding to the different NW slices. The UE may then transmit, via the base station to the application at the remote device, a response identifying the connection of the different NW slicing instances.
FIG. 6 further discloses an embodiment of step 604 –namely, the manner of determining that the URSP is configured to enable concurrent connections to different slicing instances. At step 610, the UE locates a URSP in a memory coupled to its processor (which may be more than one processor) a traffic descriptor component corresponding to, or identifying, the application. The URSP may be located in a logical memory location where the information was previously stored during the original provisioning of the application by the network. At step 612, the UE identifies in the located URSP two or more route selection descriptors which  respectively include two or more route selection descriptor components (RSDCs) . Each of the RSDCs may include a single-network slice selection assistance information (S-NSSAI) identifier that identifies a different NW slice.
At step 614, the UE may further identify that the two or more RSDCs corresponding to the application and including the two NW slices include a concurrency field. If the concurrency value is not true for at least two or more different NW slices (616) , the UE will proceed to connect the application to a NW slicing instance corresponding to a highest priority route selection descriptor, for example, or it may use some other pre-established criterion to assess which NW slicing instance will be connected to the application. Conversely, if the concurrency value is true for the two or more different slices (616) , control is then passed to step 606, and the UE proceeds to connect the application to the two or more different slicing instances.
FIG. 7 is a flowchart of a method of wireless communication. At step 702, a base station (which may be a base station 102/180 of FIG. 1, or the base station of FIGS, 3-5) receives, from a network entity, one or more messages from the network entity that includes provisioning information for a UE, where the provisioning information relates to an application running on a remote device. At step 704, the base station provisions the UE with an NSSP/URSP that includes two or more RSDCs, such that each of the RSDCs have an S-NSSAI identifier that identifies a network slice for enabling the application to concurrently connect with a plurality of corresponding network slices, .
FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802. The apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818. The cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180. The cellular baseband processor 804 may include a computer-readable medium/memory. The computer-readable medium/memory may be non-transitory. The cellular baseband processor 804 is responsible for  general processing, including the execution of software stored on the computer-readable medium/memory. The software, when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software. The cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834. The communication manager 832 includes the one or more illustrated components. The components within the communication manager 832 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 804. The cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforementioned additional modules of the apparatus 802.
The communication manager 832 includes a UE-resource selection determining component (URSP) 840 that is configured to review the URSPs in its memory to identify the URSP that corresponds to a signal, information about which was received from the reception component 830, where the signal was received from an application at a remote device, e.g., as described in connection with step 602 of FIG. 6.The communication manager 832 further includes an RSDC analyzing component 842 that receives input in the form of the relevant URSP and application identifying information from the component 840 and is configured to review the different route selection descriptors and to identify the route selection descriptor components that identify a network slice and that have a true concurrency value, e.g., as described in connection with  steps  604, 610, 612, 614 and 616 of FIG. 6. The communication manager 832 further includes an application connecting component 844 that receives input in the form of the network slices and the concurrency values from the component 840 and is configured to connect the application concurrently to each of the network slicing instances having a true value, e.g., as described in connection with step 606 of FIG. 6. The communication manager 832 further includes an  application responding component 846 that receives input in the form of the connected network slicing instances from component 844 and that is configured to transmit a response to the application identifying that the UE has connected the application to the relevant network slicing instances.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIG. 6. As such, each block in the aforementioned flowcharts of FIG. 6 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 802, and in particular the cellular baseband processor 804, includes means for receiving a request for data from an application at a remote device, means for determining that a UE-route selection policy (URSP) enables concurrent connections of the application to different network slicing instances, means for connecting the application concurrently to the different network slicing instances, and means for transmitting, to the application at the remote device, a response identifying the connections of the application to the different network slicing instances.
The aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902. The apparatus 902 is a BS and includes a baseband unit 904. The baseband unit 904 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 904 may include a computer-readable medium/memory. The baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory. The  software, when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 904 when executing software. The baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934. The communication manager 932 includes the one or more illustrated components. The components within the communication manager 932 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 904. The baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 932 includes a component 940 that is configured to receive from a network entity an NSSP/URSP policy relating to a particular application, e.g., as described in connection with step 702 of FIG. 7. The communication manager 932 further includes a UE configuration component 942 that is generally configured to store information relating the UE and the specific configuration of the UE. The communication manager 932 further includes an NSSP provisioning component 944 that receives input in the form of the current UE configuration from component 942 and the NSSP/URSP concerning a particular application and is configured to provision the UE with the received URSP information about the application, e.g., as described in connection with step 704 of FIG. 7.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIG. 7. As such, each block in the aforementioned flowcharts of FIG. 7 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 902, and in particular the baseband unit 904, includes means for provisioning a user equipment (UE) with a UE-route selection policy (URSP) comprising a plurality of route selection descriptor components  (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances. The aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes/flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes/flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term  “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Figure PCTCN2020102716-appb-000001
Figure PCTCN2020102716-appb-000002
Figure PCTCN2020102716-appb-000003
Figure PCTCN2020102716-appb-000004

Claims (32)

  1. A method of wireless communication of a user equipment (UE) , comprising,
    receiving a request for data from an application at a remote device;
    determining that a UE-route selection policy (URSP) enables concurrent connections of the application to different network slicing instances; and
    connecting the application concurrently to the different network slicing instances.
  2. The method of claim 1, wherein the determining further comprises identifying in the URSP a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs comprising a network slice identifier.
  3. The method of claim 2, wherein each of the network slice identifiers comprises a network slice corresponding to one of the connected network slicing instances.
  4. The method of claim 2, wherein the determining further comprises identifying in each of the plurality of RSDCs a concurrency component having a value set to true.
  5. The method of claim 1, further comprising transmitting, to the application at the remote device, a response identifying the connections of the application to the different network slicing instances.
  6. A user equipment (UE) , comprising:
    a memory having a UE-route selection policy (URSP) stored therein; and
    at least one processor coupled to the memory and configured to:
    receive a request for data from an application at a remote device;
    determine that the URSP enables concurrent connections of the application to different network slicing instances; and
    connect the application concurrently to the different network slicing instances.
  7. The UE of claim 6, wherein the URSP comprises a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs comprising a network slice identifier.
  8. The UE of claim 7, wherein each of the network slice identifiers comprises a network slice corresponding to one of the connected network slicing instances.
  9. The UE of claim 7, wherein each of the plurality of RSDCs comprises a concurrency component, and wherein
    when at least two concurrency components have a value set to true, the at least one processor is configured to enable concurrent connections of the application to two or more network slicing instances corresponding to the concurrency components having the true value, and
    when the concurrency component has a value set to false, the at least one processor is configured to enable a connection only to a network slicing instance corresponding to the concurrency component having the false value for a time the connection is enabled.
  10. The UE of claim 6, wherein the at least one processor is configured to transmit, to the application at the remote device, a response identifying the connections to the different network slicing instances.
  11. A user equipment (UE) , comprising:
    means for receiving a request for data from an application at a remote device;
    means for determining that a UE-route selection policy (URSP) enables concurrent connections of the application to different network slicing instances; and
    means for connecting the application concurrently to the different network slicing instances.
  12. The UE of claim 11, wherein the means for determining is further configured to identify, in the URSP, a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs comprising a network slice identifier.
  13. The UE of claim 12, wherein each of the network slice identifiers comprises a network slice corresponding to one of the connected network slicing instances.
  14. The UE of claim 12, wherein the means for determining is further configured to identify in each of the plurality of RSDCs a concurrency component having a value set to true.
  15. The UE of claim 11, further comprising means for transmitting, to the application at the remote device, a response identifying the connections of the application to the different network slicing instances.
  16. A non-transitory computer-readable medium comprising code that when executed by at least one processor, causes the at least one processor to:
    receive a request for data from an application at a remote device;
    determine that a UE-route selection policy (URSP) enables concurrent connections of the application to different network slicing instances; and
    connect the application concurrently to the different network slicing instances.
  17. The computer-readable medium of claim 16, wherein the code to determine that a URSP enables concurrent connections further comprises code to identify in the URSP a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs comprising a network slice identifier.
  18. The computer-readable medium of claim 17, wherein each of the network slice identifiers comprises a network slice corresponding to one of the connected network slicing instances.
  19. The computer-readable medium of claim 17, wherein the code to determine that a URSP enables concurrent connections further comprises code to identify in each of the plurality of RSDCs a concurrency component having a value set to true.
  20. The computer-readable medium of claim 16, wherein the code further causes the at least one processor to transmit, to the application at the remote device, a response identifying the connections of the application to the different network slicing instances.
  21. A method for wireless communication of a base station, comprising provisioning a user equipment (UE) with a UE-route selection policy (URSP) comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  22. The method of claim 21, wherein the provisioning comprises transmitting data comprising the URSP on a downlink channel to the UE.
  23. The method of claim 21, wherein the provisioning comprises including for each of the plurality of RSDCs a concurrency component set to a true value for enabling the concurrent connection.
  24. A base station, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to provision a user equipment (UE) with a UE-route selection policy (URSP) comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  25. The base station of claim 24, wherein the at least one processor is further configured to transmit the URSP on a downlink channel to the UE.
  26. The base station of claim 24, wherein the at least one processor is further configured to include, for each of the plurality of RSDCs, a concurrency component set to a true value for enabling the concurrent connection.
  27. A base station, comprising means for provisioning a user equipment (UE) with a UE-route selection policy (URSP) comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  28. The base station of claim 27, wherein the means for provisioning is further configured to transmit data comprising the URSP on a downlink channel to the UE.
  29. The base station of claim 27, wherein the means for provisioning is further configured to include, for each of the plurality of RSDCs, a concurrency component set to a true value for enabling the concurrent connection.
  30. A non-transitory computer-readable medium comprising code that when executed by at least one processor, causes the at least one processor to provision a user equipment (UE) with a UE-route selection policy (URSP) comprising a plurality of route selection descriptor components (RSDCs) , each of the plurality of RSDCs identifying a network slice for enabling an application at a remote device to concurrently connect with a plurality of corresponding network slicing instances.
  31. The computer-readable medium of claim 30, wherein the code further causes the at least one processor to transmit the URSP on a downlink channel to the UE.
  32. The computer-readable medium of claim 30, wherein code further causes the at least one processor to include, for each of the plurality of RSDCs, a concurrency component set to a true value for enabling the concurrent connection.
PCT/CN2020/102716 2020-07-17 2020-07-17 Connecting application to multiple concurrent network slicing instances WO2022011688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102716 WO2022011688A1 (en) 2020-07-17 2020-07-17 Connecting application to multiple concurrent network slicing instances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102716 WO2022011688A1 (en) 2020-07-17 2020-07-17 Connecting application to multiple concurrent network slicing instances

Publications (1)

Publication Number Publication Date
WO2022011688A1 true WO2022011688A1 (en) 2022-01-20

Family

ID=79554441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102716 WO2022011688A1 (en) 2020-07-17 2020-07-17 Connecting application to multiple concurrent network slicing instances

Country Status (1)

Country Link
WO (1) WO2022011688A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180324646A1 (en) * 2017-05-08 2018-11-08 Samsung Electronics Co., Ltd. Method and apparatus for supporting session continuity for 5g cellular network
CN109286567A (en) * 2018-11-23 2019-01-29 腾讯科技(深圳)有限公司 Acquisition methods, device and the equipment of routing strategy
CN110430590A (en) * 2019-08-15 2019-11-08 广东工业大学 Network is sliced matching process and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180324646A1 (en) * 2017-05-08 2018-11-08 Samsung Electronics Co., Ltd. Method and apparatus for supporting session continuity for 5g cellular network
CN109286567A (en) * 2018-11-23 2019-01-29 腾讯科技(深圳)有限公司 Acquisition methods, device and the equipment of routing strategy
CN110430590A (en) * 2019-08-15 2019-11-08 广东工业大学 Network is sliced matching process and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOTOROLA MOBILITY, LENOVO, HUAWEI: "Update to solution 8 – Routing media traffic via different 5G network slices", 3GPP DRAFT; S2-184457_124_REV3743_UPDATE_TO_IMS_SOLUTION_V0.5, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Sanya, China; 20180416 - 20180420, 19 April 2018 (2018-04-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051432823 *
MOTOROLA MOBILITY, LENOVO: "Update to solution 8 – Routing media traffic via different 5G network slices", 3GPP DRAFT; S2-183743_UPDATE_TO_IMS_SOLUTION_V0.2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Sanya, China; 20180416 - 20180420, 10 April 2018 (2018-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051438045 *

Similar Documents

Publication Publication Date Title
US20220322115A1 (en) Inter-cell mobility across serving and non-serving cells
US11595921B2 (en) Methods and apparatus for QCL assumptions for cross carrier multiple DCI
US11622323B2 (en) Slice allocation and interface to applications
US20210195624A1 (en) Signaling for uplink beam activation
US11641301B2 (en) Methods and apparatus for TRP differentiation based on SSB grouping
US11576052B2 (en) Panel specific uplink transmission
WO2021155719A1 (en) User equipment capability on report related to uplink beam selection
US20230055588A1 (en) Updating pucch spatial relation information
US11791971B2 (en) Component carrier group based bandwidth part switching
US20220272691A1 (en) Indicating pucch repetition factor using reference signal of preceding pdcch
US20230035459A1 (en) Dynamic switching between tb repetitions and multiple tbs via dci
US11470678B2 (en) Broadcast of multiple physical cell identity ranges
WO2022011688A1 (en) Connecting application to multiple concurrent network slicing instances
WO2022047609A1 (en) Methods and apparatus for embb capability utilizing modems
WO2022052028A1 (en) Methods and apparatus for mmtc network reliability enhancements
US20240023090A1 (en) Configuring uplink transmission configuration indicator list
US11729706B2 (en) Methods and apparatus for multi-coreset PDCCH aggregation
US20220141656A1 (en) Handling of slices subject to network slice specific authentication and authorization procedure
WO2022032625A1 (en) Convergence of unicast and broadcast for video streaming
WO2022056662A1 (en) Methods and apparatus for vr/ar in nr-dc
US20230144323A1 (en) Multi-access pdu sessions for multi-usim devices
US20230053377A1 (en) Ue assistance information for slices
WO2021253267A1 (en) Method to handle out of local area data network service area
US20220039139A1 (en) Beam specific rmsi transmission
WO2022027614A1 (en) Methods and apparatus for optimizing qos parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945595

Country of ref document: EP

Kind code of ref document: A1